Sample records for current error control

  1. Error processing in current and former cocaine users

    PubMed Central

    Castelluccio, Brian C.; Meda, Shashwath A.; Muska, Christine E.; Stevens, Michael C.; Pearlson, Godfrey D.

    2013-01-01

    Deficits in response inhibition and error processing can result in maladaptive behavior, including failure to use past mistakes to inform present decisions. A specific deficit in inhibiting a prepotent response represents one aspect of impulsivity and is a prominent feature of addictive behaviors in general, including cocaine abuse/dependence. Brain regions implicated in cognitive control exhibit reduced activation in cocaine abusers. The purposes of the present investigation were (1) to identify neural differences associated with error processing in current and former cocaine-dependent individuals compared to healthy controls and (2) to determine whether former, long-term abstinent cocaine users showed similar differences compared with current users. The present study used an fMRI Go/No-Go task to investigate differences in BOLD response to correct rejections and false alarms between current cocaine users (n=30), former cocaine users (n=29), and healthy controls (n=35). Impulsivity trait measures were also assessed and compared with BOLD activity. Nineteen regions of interest previously implicated in errors of disinhibition were queried. There were no group differences in the correct rejections condition, but both current and former users exhibited increased BOLD response relative to controls for false alarms. In current users, the pregenual cingulate gyrus and left angular/supramarginal gyri overactivated. In former users, the right middle frontal/precentral gyri, right inferior parietal lobule, and left angular/supramarginal gyri overactivated. Overall, our results support a hypothesis that neural activity in former users differs more from healthy controls than that of current users due to cognitive compensation that facilitates abstinence. PMID:23949893

  2. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  3. Error field optimization in DIII-D using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.

    2016-07-01

    DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n  =  1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.

  4. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  5. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  6. Error field optimization in DIII-D using extremum seeking control

    DOE PAGES

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...

    2016-06-03

    A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less

  7. Practical scheme for error control using feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene

    2004-05-01

    We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.

  8. An Improved Model Predictive Current Controller of Switched Reluctance Machines Using Time-Multiplexed Current Sensor

    PubMed Central

    Li, Bingchu; Ling, Xiao; Huang, Yixiang; Gong, Liang; Liu, Chengliang

    2017-01-01

    This paper presents a fixed-switching-frequency model predictive current controller using multiplexed current sensor for switched reluctance machine (SRM) drives. The converter was modified to distinguish currents from simultaneously excited phases during the sampling period. The only current sensor installed in the converter was time division multiplexing for phase current sampling. During the commutation stage, the control steps of adjacent phases were shifted so that sampling time was staggered. The maximum and minimum duty ratio of pulse width modulation (PWM) was limited to keep enough sampling time for analog-to-digital (A/D) conversion. Current sensor multiplexing was realized without complex adjustment of either driver circuit nor control algorithms, while it helps to reduce the cost and errors introduced in current sampling due to inconsistency between sensors. The proposed controller is validated by both simulation and experimental results with a 1.5 kW three-phase 12/8 SRM. Satisfied current sampling is received with little difference compared with independent phase current sensors for each phase. The proposed controller tracks the reference current profile as accurately as the model predictive current controller with independent phase current sensors, while having minor tracking errors compared with a hysteresis current controller. PMID:28513554

  9. Prediction of final error level in learning and repetitive control

    NASA Astrophysics Data System (ADS)

    Levoci, Peter A.

    Repetitive control (RC) is a field that creates controllers to eliminate the effects of periodic disturbances on a feedback control system. The methods have applications in spacecraft problems, to isolate fine pointing equipment from periodic vibration disturbances such as slight imbalances in momentum wheels or cryogenic pumps. A closely related field of control design is iterative learning control (ILC) which aims to eliminate tracking error in a task that repeats, each time starting from the same initial condition. Experiments done on a robot at NASA Langley Research Center showed that the final error levels produced by different candidate repetitive and learning controllers can be very different, even when each controller is analytically proven to converge to zero error in the deterministic case. Real world plant and measurement noise and quantization noise (from analog to digital and digital to analog converters) in these control methods are acted on as if they were error sources that will repeat and should be cancelled, which implies that the algorithms amplify such errors. Methods are developed that predict the final error levels of general first order ILC, of higher order ILC including current cycle learning, and of general RC, in the presence of noise, using frequency response methods. The method involves much less computation than the corresponding time domain approach that involves large matrices. The time domain approach was previously developed for ILC and handles a certain class of ILC methods. Here methods are created to include zero-phase filtering that is very important in creating practical designs. Also, time domain methods are developed for higher order ILC and for repetitive control. Since RC and ILC must be implemented digitally, all of these methods predict final error levels at the sample times. It is shown here that RC can easily converge to small error levels between sample times, but that ILC in most applications will have large and

  10. Control by model error estimation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Skelton, R. E.

    1976-01-01

    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).

  11. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Fujiwara, T.; Lin, S.

    1986-01-01

    In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.

  12. Metering error quantification under voltage and current waveform distortion

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  13. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Shu, L.; Kasami, T.

    1985-01-01

    A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.

  14. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Lin, S.

    1985-01-01

    A cascaded coding scheme for error control was investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are studied which seem to be quite suitable for satellite down-link error control.

  15. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  16. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  17. Optimal estimation of large structure model errors. [in Space Shuttle controller design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.

  18. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  19. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error control in data communications is analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. The probability of undetected error of the above error control scheme is derived and upper bounded. Two specific exmaples are analyzed. In the first example, the inner code is a distance-4 shortened Hamming code with generator polynomial (X+1)(X(6)+X+1) = X(7)+X(6)+X(2)+1 and the outer code is a distance-4 shortened Hamming code with generator polynomial (X+1)X(15+X(14)+X(13)+X(12)+X(4)+X(3)+X(2)+X+1) = X(16)+X(12)+X(5)+1 which is the X.25 standard for packet-switched data network. This example is proposed for error control on NASA telecommand links. In the second example, the inner code is the same as that in the first example but the outer code is a shortened Reed-Solomon code with symbols from GF(2(8)) and generator polynomial (X+1)(X+alpha) where alpha is a primitive element in GF(z(8)).

  20. Multiple Cognitive Control Effects of Error Likelihood and Conflict

    PubMed Central

    Brown, Joshua W.

    2010-01-01

    Recent work on cognitive control has suggested a variety of performance monitoring functions of the anterior cingulate cortex, such as errors, conflict, error likelihood, and others. Given the variety of monitoring effects, a corresponding variety of control effects on behavior might be expected. This paper explores whether conflict and error likelihood produce distinct cognitive control effects on behavior, as measured by response time. A change signal task (Brown & Braver, 2005) was modified to include conditions of likely errors due to tardy as well as premature responses, in conditions with and without conflict. The results discriminate between competing hypotheses of independent vs. interacting conflict and error likelihood control effects. Specifically, the results suggest that the likelihood of premature vs. tardy response errors can lead to multiple distinct control effects, which are independent of cognitive control effects driven by response conflict. As a whole, the results point to the existence of multiple distinct cognitive control mechanisms and challenge existing models of cognitive control that incorporate only a single control signal. PMID:19030873

  1. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  2. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  3. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters.

    PubMed

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing

    2014-02-01

    Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.

  4. Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI)

    PubMed Central

    Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.

    2015-01-01

    Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212

  5. Utilizing measure-based feedback in control-mastery theory: A clinical error.

    PubMed

    Snyder, John; Aafjes-van Doorn, Katie

    2016-09-01

    Clinical errors and ruptures are an inevitable part of clinical practice. Often times, therapists are unaware that a clinical error or rupture has occurred, leaving no space for repair, and potentially leading to patient dropout and/or less effective treatment. One way to overcome our blind spots is by frequently and systematically collecting measure-based feedback from the patient. Patient feedback measures that focus on the process of psychotherapy such as the Patient's Experience of Attunement and Responsiveness scale (PEAR) can be used in conjunction with treatment outcome measures such as the Outcome Questionnaire 45.2 (OQ-45.2) to monitor the patient's therapeutic experience and progress. The regular use of these types of measures can aid clinicians in the identification of clinical errors and the associated patient deterioration that might otherwise go unnoticed and unaddressed. The current case study describes an instance of clinical error that occurred during the 2-year treatment of a highly traumatized young woman. The clinical error was identified using measure-based feedback and subsequently understood and addressed from the theoretical standpoint of the control-mastery theory of psychotherapy. An alternative hypothetical response is also presented and explained using control-mastery theory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  7. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  8. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  9. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  10. Methods for Addressing Technology-induced Errors: The Current State.

    PubMed

    Borycki, E; Dexheimer, J W; Hullin Lucay Cossio, C; Gong, Y; Jensen, S; Kaipio, J; Kennebeck, S; Kirkendall, E; Kushniruk, A W; Kuziemsky, C; Marcilly, R; Röhrig, R; Saranto, K; Senathirajah, Y; Weber, J; Takeda, H

    2016-11-10

    The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology- induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years.

  11. Methods for Addressing Technology-Induced Errors: The Current State

    PubMed Central

    Dexheimer, J. W.; Hullin Lucay Cossio, C.; Gong, Y.; Jensen, S.; Kaipio, J.; Kennebeck, S.; Kirkendall, E.; Kushniruk, A. W.; Kuziemsky, C.; Marcilly, R.; Röhrig, R.; Saranto, K.; Senathirajah, Y.; Weber, J.; Takeda, H.

    2016-01-01

    Summary Objectives The objectives of this paper are to review and discuss the methods that are being used internationally to report on, mitigate, and eliminate technology-induced errors. Methods The IMIA Working Group for Health Informatics for Patient Safety worked together to review and synthesize some of the main methods and approaches associated with technology-induced error reporting, reduction, and mitigation. The work involved a review of the evidence-based literature as well as guideline publications specific to health informatics. Results The paper presents a rich overview of current approaches, issues, and methods associated with: (1) safe HIT design, (2) safe HIT implementation, (3) reporting on technology-induced errors, (4) technology-induced error analysis, and (5) health information technology (HIT) risk management. The work is based on research from around the world. Conclusions Internationally, researchers have been developing methods that can be used to identify, report on, mitigate, and eliminate technology-induced errors. Although there remain issues and challenges associated with the methodologies, they have been shown to improve the quality and safety of HIT. Since the first publications documenting technology-induced errors in healthcare in 2005, we have seen in a short 10 years researchers develop ways of identifying and addressing these types of errors. We have also seen organizations begin to use these approaches. Knowledge has been translated into practice in a short ten years whereas the norm for other research areas is of 20 years. PMID:27830228

  12. Constant-current control method of multi-function electromagnetic transmitter.

    PubMed

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  13. Constant-current control method of multi-function electromagnetic transmitter

    NASA Astrophysics Data System (ADS)

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  14. Error Correction, Control Systems and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  15. Electronic laboratory system reduces errors in National Tuberculosis Program: a cluster randomized controlled trial.

    PubMed

    Blaya, J A; Shin, S S; Yale, G; Suarez, C; Asencios, L; Contreras, C; Rodriguez, P; Kim, J; Cegielski, P; Fraser, H S F

    2010-08-01

    To evaluate the impact of the e-Chasqui laboratory information system in reducing reporting errors compared to the current paper system. Cluster randomized controlled trial in 76 health centers (HCs) between 2004 and 2008. Baseline data were collected every 4 months for 12 months. HCs were then randomly assigned to intervention (e-Chasqui) or control (paper). Further data were collected for the same months the following year. Comparisons were made between intervention and control HCs, and before and after the intervention. Intervention HCs had respectively 82% and 87% fewer errors in reporting results for drug susceptibility tests (2.1% vs. 11.9%, P = 0.001, OR 0.17, 95%CI 0.09-0.31) and cultures (2.0% vs. 15.1%, P < 0.001, OR 0.13, 95%CI 0.07-0.24), than control HCs. Preventing missing results through online viewing accounted for at least 72% of all errors. e-Chasqui users sent on average three electronic error reports per week to the laboratories. e-Chasqui reduced the number of missing laboratory results at point-of-care health centers. Clinical users confirmed viewing electronic results not available on paper. Reporting errors to the laboratory using e-Chasqui promoted continuous quality improvement. The e-Chasqui laboratory information system is an important part of laboratory infrastructure improvements to support multidrug-resistant tuberculosis care in Peru.

  16. Context Specificity of Post-Error and Post-Conflict Cognitive Control Adjustments

    PubMed Central

    Forster, Sarah E.; Cho, Raymond Y.

    2014-01-01

    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, control-related performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. PMID:24603900

  17. Smart photodetector arrays for error control in page-oriented optical memory

    NASA Astrophysics Data System (ADS)

    Schaffer, Maureen Elizabeth

    1998-12-01

    Page-oriented optical memories (POMs) have been proposed to meet high speed, high capacity storage requirements for input/output intensive computer applications. This technology offers the capability for storage and retrieval of optical data in two-dimensional pages resulting in high throughput data rates. Since currently measured raw bit error rates for these systems fall several orders of magnitude short of industry requirements for binary data storage, powerful error control codes must be adopted. These codes must be designed to take advantage of the two-dimensional memory output. In addition, POMs require an optoelectronic interface to transfer the optical data pages to one or more electronic host systems. Conventional charge coupled device (CCD) arrays can receive optical data in parallel, but the relatively slow serial electronic output of these devices creates a system bottleneck thereby eliminating the POM advantage of high transfer rates. Also, CCD arrays are "unintelligent" interfaces in that they offer little data processing capabilities. The optical data page can be received by two-dimensional arrays of "smart" photo-detector elements that replace conventional CCD arrays. These smart photodetector arrays (SPAs) can perform fast parallel data decoding and error control, thereby providing an efficient optoelectronic interface between the memory and the electronic computer. This approach optimizes the computer memory system by combining the massive parallelism and high speed of optics with the diverse functionality, low cost, and local interconnection efficiency of electronics. In this dissertation we examine the design of smart photodetector arrays for use as the optoelectronic interface for page-oriented optical memory. We review options and technologies for SPA fabrication, develop SPA requirements, and determine SPA scalability constraints with respect to pixel complexity, electrical power dissipation, and optical power limits. Next, we examine data

  18. Human error in hospitals and industrial accidents: current concepts.

    PubMed

    Spencer, F C

    2000-10-01

    Most data concerning errors and accidents are from industrial accidents and airline injuries. General Electric, Alcoa, and Motorola, among others, all have reported complex programs that resulted in a marked reduction in frequency of worker injuries. In the field of medicine, however, with the outstanding exception of anesthesiology, there is a paucity of information, most reports referring to the 1984 Harvard-New York State Study, more than 16 years ago. This scarcity of information indicates the complexity of the problem. It seems very unlikely that simple exhortation or additional regulations will help because the problem lies principally in the multiple human-machine interfaces that constitute modern medical care. The absence of success stories also indicates that the best methods have to be learned by experience. A liaison with industry should be helpful, although the varieties of human illness are far different from a standardized manufacturing process. Concurrent with the studies of industrial and nuclear accidents, cognitive psychologists have intensively studied how the brain stores and retrieves information. Several concepts have emerged. First, errors are not character defects to be treated by the classic approach of discipline and education, but are byproducts of normal thinking that occur frequently. Second, major accidents are rarely causedby a single error; instead, they are often a combination of chronic system errors, termed latent errors. Identifying and correcting these latent errors should be the principal focus for corrective planning rather than searching for an individual culprit. This nonpunitive concept of errors is a key basis for an effective reporting system, brilliantly demonstrated in aviation with the ASRS system developed more than 25 years ago. The ASRS currently receives more than 30,000 reports annually and is credited with the remarkable increase in safety of airplane travel. Adverse drug events constitute about 25% of hospital

  19. Improved Conflict Detection for Reducing Operational Errors in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Hainz

    2003-01-01

    An operational error is an incident in which an air traffic controller allows the separation between two aircraft to fall below the minimum separation standard. The rates of such errors in the US have increased significantly over the past few years. This paper proposes new detection methods that can help correct this trend by improving on the performance of Conflict Alert, the existing software in the Host Computer System that is intended to detect and warn controllers of imminent conflicts. In addition to the usual trajectory based on the flight plan, a "dead-reckoning" trajectory (current velocity projection) is also generated for each aircraft and checked for conflicts. Filters for reducing common types of false alerts were implemented. The new detection methods were tested in three different ways. First, a simple flightpath command language was developed t o generate precisely controlled encounters for the purpose of testing the detection software. Second, written reports and tracking data were obtained for actual operational errors that occurred in the field, and these were "replayed" to test the new detection algorithms. Finally, the detection methods were used to shadow live traffic, and performance was analysed, particularly with regard to the false-alert rate. The results indicate that the new detection methods can provide timely warnings of imminent conflicts more consistently than Conflict Alert.

  20. Online Error Reporting for Managing Quality Control Within Radiology.

    PubMed

    Golnari, Pedram; Forsberg, Daniel; Rosipko, Beverly; Sunshine, Jeffrey L

    2016-06-01

    Information technology systems within health care, such as picture archiving and communication system (PACS) in radiology, can have a positive impact on production but can also risk compromising quality. The widespread use of PACS has removed the previous feedback loop between radiologists and technologists. Instead of direct communication of quality discrepancies found for an examination, the radiologist submitted a paper-based quality-control report. A web-based issue-reporting tool can help restore some of the feedback loop and also provide possibilities for more detailed analysis of submitted errors. The purpose of this study was to evaluate the hypothesis that data from use of an online error reporting software for quality control can focus our efforts within our department. For the 372,258 radiologic examinations conducted during the 6-month period study, 930 errors (390 exam protocol, 390 exam validation, and 150 exam technique) were submitted, corresponding to an error rate of 0.25 %. Within the category exam protocol, technologist documentation had the highest number of submitted errors in ultrasonography (77 errors [44 %]), while imaging protocol errors were the highest subtype error for computed tomography modality (35 errors [18 %]). Positioning and incorrect accession had the highest errors in the exam technique and exam validation error category, respectively, for nearly all of the modalities. An error rate less than 1 % could signify a system with a very high quality; however, a more likely explanation is that not all errors were detected or reported. Furthermore, staff reception of the error reporting system could also affect the reporting rate.

  1. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  2. Simultaneous Control of Error Rates in fMRI Data Analysis

    PubMed Central

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-01-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730

  3. Antidepressant and antipsychotic medication errors reported to United States poison control centers.

    PubMed

    Kamboj, Alisha; Spiller, Henry A; Casavant, Marcel J; Chounthirath, Thitphalak; Hodges, Nichole L; Smith, Gary A

    2018-05-08

    To investigate unintentional therapeutic medication errors associated with antidepressant and antipsychotic medications in the United States and expand current knowledge on the types of errors commonly associated with these medications. A retrospective analysis of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications was conducted using data from the National Poison Data System. From 2000 to 2012, poison control centers received 207 670 calls reporting unintentional therapeutic errors associated with antidepressant or antipsychotic medications that occurred outside of a health care facility, averaging 15 975 errors annually. The rate of antidepressant-related errors increased by 50.6% from 2000 to 2004, decreased by 6.5% from 2004 to 2006, and then increased 13.0% from 2006 to 2012. The rate of errors related to antipsychotic medications increased by 99.7% from 2000 to 2004 and then increased by 8.8% from 2004 to 2012. Overall, 70.1% of reported errors occurred among adults, and 59.3% were among females. The medications most frequently associated with errors were selective serotonin reuptake inhibitors (30.3%), atypical antipsychotics (24.1%), and other types of antidepressants (21.5%). Most medication errors took place when an individual inadvertently took or was given a medication twice (41.0%), inadvertently took someone else's medication (15.6%), or took the wrong medication (15.6%). This study provides a comprehensive overview of non-health care facility unintentional therapeutic errors associated with antidepressant and antipsychotic medications. The frequency and rate of these errors increased significantly from 2000 to 2012. Given that use of these medications is increasing in the US, this study provides important information about the epidemiology of the associated medication errors. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Error control for reliable digital data transmission and storage systems

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, R. H.

    1985-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.

  5. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    PubMed

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  6. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  7. Research on error control and compensation in magnetorheological finishing.

    PubMed

    Dai, Yifan; Hu, Hao; Peng, Xiaoqiang; Wang, Jianmin; Shi, Feng

    2011-07-01

    Although magnetorheological finishing (MRF) is a deterministic finishing technology, the machining results always fall short of simulation precision in the actual process, and it cannot meet the precision requirements just through a single treatment but after several iterations. We investigate the reasons for this problem through simulations and experiments. Through controlling and compensating the chief errors in the manufacturing procedure, such as removal function calculation error, positioning error of the removal function, and dynamic performance limitation of the CNC machine, the residual error convergence ratio (ratio of figure error before and after processing) in a single process is obviously increased, and higher figure precision is achieved. Finally, an improved technical process is presented based on these researches, and the verification experiment is accomplished on the experimental device we developed. The part is a circular plane mirror of fused silica material, and the surface figure error is improved from the initial λ/5 [peak-to-valley (PV) λ=632.8 nm], λ/30 [root-mean-square (rms)] to the final λ/40 (PV), λ/330 (rms) just through one iteration in 4.4 min. Results show that a higher convergence ratio and processing precision can be obtained by adopting error control and compensation techniques in MRF.

  8. Permanence analysis of a concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.; Kasami, T.

    1983-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.

  9. Current profilers and current meters: compass and tilt sensors errors and calibration

    NASA Astrophysics Data System (ADS)

    Le Menn, M.; Lusven, A.; Bongiovanni, E.; Le Dû, P.; Rouxel, D.; Lucas, S.; Pacaud, L.

    2014-08-01

    Current profilers and current meters have a magnetic compass and tilt sensors for relating measurements to a terrestrial reference frame. As compasses are sensitive to their magnetic environment, they must be calibrated in the configuration in which they will be used. A calibration platform for magnetic compasses and tilt sensors was built, based on a method developed in 2007, to correct angular errors and guarantee a measurement uncertainty for instruments mounted in mooring cages. As mooring cages can weigh up to 800 kg, it was necessary to find a suitable place to set up this platform, map the magnetic fields in this area and dimension the platform to withstand these loads. It was calibrated using a GPS positioning technique. The platform has a table that can be tilted to calibrate the tilt sensors. The measurement uncertainty of the system was evaluated. Sinusoidal corrections based on the anomalies created by soft and hard magnetic materials were tested, as well as manufacturers’ calibration methods.

  10. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  11. Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors

    NASA Astrophysics Data System (ADS)

    Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.

    2013-03-01

    Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  13. Controlling qubit drift by recycling error correction syndromes

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin

    2015-03-01

    Physical qubits are susceptible to systematic drift, above and beyond the stochastic Markovian noise that motivates quantum error correction. This parameter drift must be compensated - if it is ignored, error rates will rise to intolerable levels - but compensation requires knowing the parameters' current value, which appears to require halting experimental work to recalibrate (e.g. via quantum tomography). Fortunately, this is untrue. I show how to perform on-the-fly recalibration on the physical qubits in an error correcting code, using only information from the error correction syndromes. The algorithm for detecting and compensating drift is very simple - yet, remarkably, when used to compensate Brownian drift in the qubit Hamiltonian, it achieves a stabilized error rate very close to the theoretical lower bound. Against 1/f noise, it is less effective only because 1/f noise is (like white noise) dominated by high-frequency fluctuations that are uncompensatable. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  14. The importance of robust error control in data compression applications

    NASA Technical Reports Server (NTRS)

    Woolley, S. I.

    1993-01-01

    Data compression has become an increasingly popular option as advances in information technology have placed further demands on data storage capabilities. With compression ratios as high as 100:1 the benefits are clear; however, the inherent intolerance of many compression formats to error events should be given careful consideration. If we consider that efficiently compressed data will ideally contain no redundancy, then the introduction of a channel error must result in a change of understanding from that of the original source. While the prefix property of codes such as Huffman enables resynchronisation, this is not sufficient to arrest propagating errors in an adaptive environment. Arithmetic, Lempel-Ziv, discrete cosine transform (DCT) and fractal methods are similarly prone to error propagating behaviors. It is, therefore, essential that compression implementations provide sufficient combatant error control in order to maintain data integrity. Ideally, this control should be derived from a full understanding of the prevailing error mechanisms and their interaction with both the system configuration and the compression schemes in use.

  15. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  16. Drug error in paediatric anaesthesia: current status and where to go now.

    PubMed

    Anderson, Brian J

    2018-06-01

    Medication errors in paediatric anaesthesia and the perioperative setting continue to occur despite widespread recognition of the problem and published advice for reduction of this predicament at international, national, local and individual levels. Current literature was reviewed to ascertain drug error rates and to appraise causes and proposed solutions to reduce these errors. The medication error incidence remains high. There is documentation of reduction through identification of causes with consequent education and application of safety analytics and quality improvement programs in anaesthesia departments. Children remain at higher risk than adults because of additional complexities such as drug dose calculations, increased susceptibility to some adverse effects and changes associated with growth and maturation. Major improvements are best made through institutional system changes rather than a commitment to do better on the part of each practitioner. Medication errors in paediatric anaesthesia represent an important risk to children and most are avoidable. There is now an understanding of the genesis of adverse drug events and this understanding should facilitate the implementation of known effective countermeasures. An institution-wide commitment and strategy are the basis for a worthwhile and sustained improvement in medication safety.

  17. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  18. Current pulse: can a production system reduce medical errors in health care?

    PubMed

    Printezis, Antonios; Gopalakrishnan, Mohan

    2007-01-01

    One of the reasons for rising health care costs is medical errors, a majority of which result from faulty systems and processes. Health care in the past has used process-based initiatives such as Total Quality Management, Continuous Quality Improvement, and Six Sigma to reduce errors. These initiatives to redesign health care, reduce errors, and improve overall efficiency and customer satisfaction have had moderate success. Current trend is to apply the successful Toyota Production System (TPS) to health care since its organizing principles have led to tremendous improvement in productivity and quality for Toyota and other businesses that have adapted them. This article presents insights on the effectiveness of TPS principles in health care and the challenges that lie ahead in successfully integrating this approach with other quality initiatives.

  19. An error-tuned model for sensorimotor learning

    PubMed Central

    Sadeghi, Mohsen; Wolpert, Daniel M.

    2017-01-01

    Current models of sensorimotor control posit that motor commands are generated by combining multiple modules which may consist of internal models, motor primitives or motor synergies. The mechanisms which select modules based on task requirements and modify their output during learning are therefore critical to our understanding of sensorimotor control. Here we develop a novel modular architecture for multi-dimensional tasks in which a set of fixed primitives are each able to compensate for errors in a single direction in the task space. The contribution of the primitives to the motor output is determined by both top-down contextual information and bottom-up error information. We implement this model for a task in which subjects learn to manipulate a dynamic object whose orientation can vary. In the model, visual information regarding the context (the orientation of the object) allows the appropriate primitives to be engaged. This top-down module selection is implemented by a Gaussian function tuned for the visual orientation of the object. Second, each module's contribution adapts across trials in proportion to its ability to decrease the current kinematic error. Specifically, adaptation is implemented by cosine tuning of primitives to the current direction of the error, which we show to be theoretically optimal for reducing error. This error-tuned model makes two novel predictions. First, interference should occur between alternating dynamics only when the kinematic errors associated with each oppose one another. In contrast, dynamics which lead to orthogonal errors should not interfere. Second, kinematic errors alone should be sufficient to engage the appropriate modules, even in the absence of contextual information normally provided by vision. We confirm both these predictions experimentally and show that the model can also account for data from previous experiments. Our results suggest that two interacting processes account for module selection during

  20. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns.

    PubMed

    Kolehmainen, V; Vauhkonen, M; Karjalainen, P A; Kaipio, J P

    1997-11-01

    In electrical impedance tomography (EIT), difference imaging is often preferred over static imaging. This is because of the many unknowns in the forward modelling which make it difficult to obtain reliable absolute resistivity estimates. However, static imaging and absolute resistivity values are needed in some potential applications of EIT. In this paper we demonstrate by simulation the effects of different error components that are included in the reconstruction of static EIT images. All simulations are carried out in two dimensions with the so-called complete electrode model. Errors that are considered are the modelling error in the boundary shape of an object, errors in the electrode sizes and localizations and errors in the contact impedances under the electrodes. Results using both adjacent and trigonometric current patterns are given.

  1. Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.

    PubMed

    Cole, Steve W; Galic, Zoran; Zack, Jerome A

    2003-09-22

    Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus

  2. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.

  3. Analysis technique for controlling system wavefront error with active/adaptive optics

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate goal of an active mirror system is to control system level wavefront error (WFE). In the past, the use of this technique was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for controlling system level WFE using a linear optics model is presented. An error estimate is included in the analysis output for both surface error disturbance fitting and actuator influence function fitting. To control adaptive optics, the technique has been extended to write system WFE in state space matrix form. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  4. Masked and unmasked error-related potentials during continuous control and feedback

    NASA Astrophysics Data System (ADS)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the

  5. Neurometaplasticity: Glucoallostasis control of plasticity of the neural networks of error commission, detection, and correction modulates neuroplasticity to influence task precision

    NASA Astrophysics Data System (ADS)

    Welcome, Menizibeya O.; Dane, Şenol; Mastorakis, Nikos E.; Pereverzev, Vladimir A.

    2017-12-01

    The term "metaplasticity" is a recent one, which means plasticity of synaptic plasticity. Correspondingly, neurometaplasticity simply means plasticity of neuroplasticity, indicating that a previous plastic event determines the current plasticity of neurons. Emerging studies suggest that neurometaplasticity underlie many neural activities and neurobehavioral disorders. In our previous work, we indicated that glucoallostasis is essential for the control of plasticity of the neural network that control error commission, detection and correction. Here we review recent works, which suggest that task precision depends on the modulatory effects of neuroplasticity on the neural networks of error commission, detection, and correction. Furthermore, we discuss neurometaplasticity and its role in error commission, detection, and correction.

  6. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    PubMed

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  7. Discrete-Time Stable Generalized Self-Learning Optimal Control With Approximation Errors.

    PubMed

    Wei, Qinglai; Li, Benkai; Song, Ruizhuo

    2018-04-01

    In this paper, a generalized policy iteration (GPI) algorithm with approximation errors is developed for solving infinite horizon optimal control problems for nonlinear systems. The developed stable GPI algorithm provides a general structure of discrete-time iterative adaptive dynamic programming algorithms, by which most of the discrete-time reinforcement learning algorithms can be described using the GPI structure. It is for the first time that approximation errors are explicitly considered in the GPI algorithm. The properties of the stable GPI algorithm with approximation errors are analyzed. The admissibility of the approximate iterative control law can be guaranteed if the approximation errors satisfy the admissibility criteria. The convergence of the developed algorithm is established, which shows that the iterative value function is convergent to a finite neighborhood of the optimal performance index function, if the approximate errors satisfy the convergence criterion. Finally, numerical examples and comparisons are presented.

  8. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response.

    PubMed

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2014-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors.

  9. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    PubMed Central

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2015-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors. PMID:25674058

  10. Systematic sparse matrix error control for linear scaling electronic structure calculations.

    PubMed

    Rubensson, Emanuel H; Sałek, Paweł

    2005-11-30

    Efficient truncation criteria used in multiatom blocked sparse matrix operations for ab initio calculations are proposed. As system size increases, so does the need to stay on top of errors and still achieve high performance. A variant of a blocked sparse matrix algebra to achieve strict error control with good performance is proposed. The presented idea is that the condition to drop a certain submatrix should depend not only on the magnitude of that particular submatrix, but also on which other submatrices that are dropped. The decision to remove a certain submatrix is based on the contribution the removal would cause to the error in the chosen norm. We study the effect of an accumulated truncation error in iterative algorithms like trace correcting density matrix purification. One way to reduce the initial exponential growth of this error is presented. The presented error control for a sparse blocked matrix toolbox allows for achieving optimal performance by performing only necessary operations needed to maintain the requested level of accuracy. Copyright 2005 Wiley Periodicals, Inc.

  11. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13–17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD. PMID:27147964

  12. Reed Solomon codes for error control in byte organized computer memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  13. Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles

    NASA Astrophysics Data System (ADS)

    Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin

    2017-02-01

    This paper exploits an error tracking control method for overhead crane systems for which the error trajectories for the trolley and the payload swing can be pre-specified. The proposed method does not require that the initial payload swing angle remains zero, whereas this requirement is usually assumed in conventional methods. The significant feature of the proposed method is its superior control performance as well as its strong robustness over different or uncertain rope lengths, payload masses, desired positions, initial payload swing angles, and external disturbances. Owing to the same attenuation behavior, the desired error trajectory for the trolley for each traveling distance is not needed to be reset, which is easy to implement in practical applications. By converting the error tracking overhead crane dynamics to the objective system, we obtain the error tracking control law for arbitrary initial payload swing angles. Lyapunov techniques and LaSalle's invariance theorem are utilized to prove the convergence and stability of the closed-loop system. Simulation and experimental results are illustrated to validate the superior performance of the proposed error tracking control method.

  14. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  15. A cerebellar thalamic cortical circuit for error-related cognitive control.

    PubMed

    Ide, Jaime S; Li, Chiang-shan R

    2011-01-01

    Error detection and behavioral adjustment are core components of cognitive control. Numerous studies have focused on the anterior cingulate cortex (ACC) as a critical locus of this executive function. Our previous work showed greater activation in the dorsal ACC and subcortical structures during error detection, and activation in the ventrolateral prefrontal cortex (VLPFC) during post-error slowing (PES) in a stop signal task (SST). However, the extent of error-related cortical or subcortical activation across subjects was not correlated with VLPFC activity during PES. So then, what causes VLPFC activation during PES? To address this question, we employed Granger causality mapping (GCM) and identified regions that Granger caused VLPFC activation in 54 adults performing the SST during fMRI. These brain regions, including the supplementary motor area (SMA), cerebellum, a pontine region, and medial thalamus, represent potential targets responding to errors in a way that could influence VLPFC activation. In confirmation of this hypothesis, the error-related activity of these regions correlated with VLPFC activation during PES, with the cerebellum showing the strongest association. The finding that cerebellar activation Granger causes prefrontal activity during behavioral adjustment supports a cerebellar function in cognitive control. Furthermore, multivariate GCA described the "flow of information" across these brain regions. Through connectivity with the thalamus and SMA, the cerebellum mediates error and post-error processing in accord with known anatomical projections. Taken together, these new findings highlight the role of the cerebello-thalamo-cortical pathway in an executive function that has heretofore largely been ascribed to the anterior cingulate-prefrontal cortical circuit. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained.

    PubMed

    Yang, Yana; Hua, Changchun; Guan, Xinping

    2016-03-01

    Due to the cognitive limitations of the human operator and lack of complete information about the remote environment, the work performance of such teleoperation systems cannot be guaranteed in most cases. However, some practical tasks conducted by the teleoperation system require high performances, such as tele-surgery needs satisfactory high speed and more precision control results to guarantee patient' health status. To obtain some satisfactory performances, the error constrained control is employed by applying the barrier Lyapunov function (BLF). With the constrained synchronization errors, some high performances, such as, high convergence speed, small overshoot, and an arbitrarily predefined small residual constrained synchronization error can be achieved simultaneously. Nevertheless, like many classical control schemes only the asymptotic/exponential convergence, i.e., the synchronization errors converge to zero as time goes infinity can be achieved with the error constrained control. It is clear that finite time convergence is more desirable. To obtain a finite-time synchronization performance, the terminal sliding mode (TSM)-based finite time control method is developed for teleoperation system with position error constrained in this paper. First, a new nonsingular fast terminal sliding mode (NFTSM) surface with new transformed synchronization errors is proposed. Second, adaptive neural network system is applied for dealing with the system uncertainties and the external disturbances. Third, the BLF is applied to prove the stability and the nonviolation of the synchronization errors constraints. Finally, some comparisons are conducted in simulation and experiment results are also presented to show the effectiveness of the proposed method.

  17. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model

  18. Data mining of air traffic control operational errors

    DOT National Transportation Integrated Search

    2006-01-01

    In this paper we present the results of : applying data mining techniques to identify patterns and : anomalies in air traffic control operational errors (OEs). : Reducing the OE rate is of high importance and remains a : challenge in the aviation saf...

  19. Effects of modeling errors on trajectory predictions in air traffic control automation

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda

    1996-01-01

    Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.

  20. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  1. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2018-04-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  2. Combined Wavelet Video Coding and Error Control for Internet Streaming and Multicast

    NASA Astrophysics Data System (ADS)

    Chu, Tianli; Xiong, Zixiang

    2003-12-01

    This paper proposes an integrated approach to Internet video streaming and multicast (e.g., receiver-driven layered multicast (RLM) by McCanne) based on combined wavelet video coding and error control. We design a packetized wavelet video (PWV) coder to facilitate its integration with error control. The PWV coder produces packetized layered bitstreams that are independent among layers while being embedded within each layer. Thus, a lost packet only renders the following packets in the same layer useless. Based on the PWV coder, we search for a multilayered error-control strategy that optimally trades off source and channel coding for each layer under a given transmission rate to mitigate the effects of packet loss. While both the PWV coder and the error-control strategy are new—the former incorporates embedded wavelet video coding and packetization and the latter extends the single-layered approach for RLM by Chou et al.—the main distinction of this paper lies in the seamless integration of the two parts. Theoretical analysis shows a gain of up to 1 dB on a channel with 20% packet loss using our combined approach over separate designs of the source coder and the error-control mechanism. This is also substantiated by our simulations with a gain of up to 0.6 dB. In addition, our simulations show a gain of up to 2.2 dB over previous results reported by Chou et al.

  3. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  4. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    PubMed

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  6. Trends in Health Information Technology Safety: From Technology-Induced Errors to Current Approaches for Ensuring Technology Safety

    PubMed Central

    2013-01-01

    Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411

  7. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  8. Error correcting mechanisms during antisaccades: contribution of online control during primary saccades and offline control via secondary saccades.

    PubMed

    Bedi, Harleen; Goltz, Herbert C; Wong, Agnes M F; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary "corrective" saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task.

  9. Error Correcting Mechanisms during Antisaccades: Contribution of Online Control during Primary Saccades and Offline Control via Secondary Saccades

    PubMed Central

    Bedi, Harleen; Goltz, Herbert C.; Wong, Agnes M. F.; Chandrakumar, Manokaraananthan; Niechwiej-Szwedo, Ewa

    2013-01-01

    Errors in eye movements can be corrected during the ongoing saccade through in-flight modifications (i.e., online control), or by programming a secondary eye movement (i.e., offline control). In a reflexive saccade task, the oculomotor system can use extraretinal information (i.e., efference copy) online to correct errors in the primary saccade, and offline retinal information to generate a secondary corrective saccade. The purpose of this study was to examine the error correction mechanisms in the antisaccade task. The roles of extraretinal and retinal feedback in maintaining eye movement accuracy were investigated by presenting visual feedback at the spatial goal of the antisaccade. We found that online control for antisaccade is not affected by the presence of visual feedback; that is whether visual feedback is present or not, the duration of the deceleration interval was extended and significantly correlated with reduced antisaccade endpoint error. We postulate that the extended duration of deceleration is a feature of online control during volitional saccades to improve their endpoint accuracy. We found that secondary saccades were generated more frequently in the antisaccade task compared to the reflexive saccade task. Furthermore, we found evidence for a greater contribution from extraretinal sources of feedback in programming the secondary “corrective” saccades in the antisaccade task. Nonetheless, secondary saccades were more corrective for the remaining antisaccade amplitude error in the presence of visual feedback of the target. Taken together, our results reveal a distinctive online error control strategy through an extension of the deceleration interval in the antisaccade task. Target feedback does not improve online control, rather it improves the accuracy of secondary saccades in the antisaccade task. PMID:23936308

  10. Sliding mode output feedback control based on tracking error observer with disturbance estimator.

    PubMed

    Xiao, Lingfei; Zhu, Yue

    2014-07-01

    For a class of systems who suffers from disturbances, an original output feedback sliding mode control method is presented based on a novel tracking error observer with disturbance estimator. The mathematical models of the systems are not required to be with high accuracy, and the disturbances can be vanishing or nonvanishing, while the bounds of disturbances are unknown. By constructing a differential sliding surface and employing reaching law approach, a sliding mode controller is obtained. On the basis of an extended disturbance estimator, a creative tracking error observer is produced. By using the observation of tracking error and the estimation of disturbance, the sliding mode controller is implementable. It is proved that the disturbance estimation error and tracking observation error are bounded, the sliding surface is reachable and the closed-loop system is robustly stable. The simulations on a servomotor positioning system and a five-degree-of-freedom active magnetic bearings system verify the effect of the proposed method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.

    PubMed

    Hoyo, Javier Del; Choi, Heejoo; Burge, James H; Kim, Geon-Hee; Kim, Dae Wook

    2017-06-20

    The control of surface errors as a function of spatial frequency is critical during the fabrication of modern optical systems. A large-scale surface figure error is controlled by a guided removal process, such as computer-controlled optical surfacing. Smaller-scale surface errors are controlled by polishing process parameters. Surface errors of only a few millimeters may degrade the performance of an optical system, causing background noise from scattered light and reducing imaging contrast for large optical systems. Conventionally, the microsurface roughness is often given by the root mean square at a high spatial frequency range, with errors within a 0.5×0.5  mm local surface map with 500×500 pixels. This surface specification is not adequate to fully describe the characteristics for advanced optical systems. The process for controlling and minimizing mid- to high-spatial frequency surface errors with periods of up to ∼2-3  mm was investigated for many optical fabrication conditions using the measured surface power spectral density (PSD) of a finished Zerodur optical surface. Then, the surface PSD was systematically related to various fabrication process parameters, such as the grinding methods, polishing interface materials, and polishing compounds. The retraceable experimental polishing conditions and processes used to produce an optimal optical surface PSD are presented.

  12. Synchronization error estimation and controller design for delayed Lur'e systems with parameter mismatches.

    PubMed

    He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde

    2012-10-01

    This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.

  13. Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age.

    PubMed

    Larson, Michael J; Clayson, Peter E; Keith, Cierra M; Hunt, Isaac J; Hedges, Dawson W; Nielsen, Brent L; Call, Vaughn R A

    2016-03-01

    Older adults display alterations in neural reflections of conflict-related processing. We examined response times (RTs), error rates, and event-related potential (ERP; N2 and P3 components) indices of conflict adaptation (i.e., congruency sequence effects) a cognitive control process wherein previous-trial congruency influences current-trial performance, along with post-error slowing, correct-related negativity (CRN), error-related negativity (ERN) and error positivity (Pe) amplitudes in 65 healthy older adults and 94 healthy younger adults. Older adults showed generalized slowing, had decreased post-error slowing, and committed more errors than younger adults. Both older and younger adults showed conflict adaptation effects; magnitude of conflict adaptation did not differ by age. N2 amplitudes were similar between groups; younger, but not older, adults showed conflict adaptation effects for P3 component amplitudes. CRN and Pe, but not ERN, amplitudes differed between groups. Data support generalized declines in cognitive control processes in older adults without specific deficits in conflict adaptation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Unequal error control scheme for dimmable visible light communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Keyan; Yuan, Lei; Wan, Yi; Li, Huaan

    2017-01-01

    Visible light communication (VLC), which has the advantages of a very large bandwidth, high security, and freedom from license-related restrictions and electromagnetic-interference, has attracted much interest. Because a VLC system simultaneously performs illumination and communication functions, dimming control, efficiency, and reliable transmission are significant and challenging issues of such systems. In this paper, we propose a novel unequal error control (UEC) scheme in which expanding window fountain (EWF) codes in an on-off keying (OOK)-based VLC system are used to support different dimming target values. To evaluate the performance of the scheme for various dimming target values, we apply it to H.264 scalable video coding bitstreams in a VLC system. The results of the simulations that are performed using additive white Gaussian noises (AWGNs) with different signal-to-noise ratios (SNRs) are used to compare the performance of the proposed scheme for various dimming target values. It is found that the proposed UEC scheme enables earlier base layer recovery compared to the use of the equal error control (EEC) scheme for different dimming target values and therefore afford robust transmission for scalable video multicast over optical wireless channels. This is because of the unequal error protection (UEP) and unequal recovery time (URT) of the EWF code in the proposed scheme.

  15. Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.

    1986-01-01

    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.

  16. Current Controller for Multi-level Front-end Converter and Its Digital Implementation Considerations on Three-level Flying Capacitor Topology

    NASA Astrophysics Data System (ADS)

    Tekwani, P. N.; Shah, M. T.

    2017-10-01

    This paper presents behaviour analysis and digital implementation of current error space phasor based hysteresis controller applied to three-phase three-level flying capacitor converter as front-end topology. The controller is self-adaptive in nature, and takes the converter from three-level to two-level mode of operation and vice versa, following various trajectories of sector change with the change in reference dc-link voltage demanded by the load. It keeps current error space phasor within the prescribed hexagonal boundary. During the contingencies, the proposed controller takes the converter in over modulation mode to meet the load demand, and once the need is satisfied, controller brings back the converter in normal operating range. Simulation results are presented to validate behaviour of controller to meet the said contingencies. Unity power factor is assured by proposed controller with low current harmonic distortion satisfying limits prescribed in IEEE 519-2014. Proposed controller is implemented using TMS320LF2407 16-bit fixed-point digital signal processor. Detailed analysis of numerical format to avoid overflow of sensed variables in processor, and per-unit model implementation in software are discussed and hardware results are presented at various stages of signal conditioning to validate the experimental setup. Control logic for the generation of reference currents is implemented in TMS320LF2407A using assembly language and experimental results are also presented for the same.

  17. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  18. Quaternion error-based optimal control applied to pinpoint landing

    NASA Astrophysics Data System (ADS)

    Ghiglino, Pablo

    Accurate control techniques for pinpoint planetary landing - i.e., the goal of achieving landing errors in the order of 100m for unmanned missions - is a complex problem that have been tackled in different ways in the available literature. Among other challenges, this kind of control is also affected by the well known trade-off in UAV control that for complex underlying models the control is sub-optimal, while optimal control is applied to simplifed models. The goal of this research has been the development new control algorithms that would be able to tackle these challenges and the result are two novel optimal control algorithms namely: OQTAL and HEX2OQTAL. These controllers share three key properties that are thoroughly proven and shown in this thesis; stability, accuracy and adaptability. Stability is rigorously demonstrated for both controllers. Accuracy is shown in results of comparing these novel controllers with other industry standard algorithms in several different scenarios: there is a gain in accuracy of at least 15% for each controller, and in many cases much more than that. A new tuning algorithm based on swarm heuristics optimisation was developed as well as part of this research in order to tune in an online manner the standard Proportional-Integral-Derivative (PID) controllers used for benchmarking. Finally, adaptability of these controllers can be seen as a combination of four elements: mathematical model extensibility, cost matrices tuning, reduced computation time required and finally no prior knowledge of the navigation or guidance strategies needed. Further simulations in real planetary landing trajectories has shown that these controllers have the capacity of achieving landing errors in the order of pinpoint landing requirements, making them not only very precise UAV controllers, but also potential candidates for pinpoint landing unmanned missions.

  19. Resisting attraction: Individual differences in executive control are associated with subject-verb agreement errors in production.

    PubMed

    Veenstra, Alma; Antoniou, Kyriakos; Katsos, Napoleon; Kissine, Mikhail

    2018-04-19

    We propose that attraction errors in agreement production (e.g., the key to the cabinets are missing) are related to two components of executive control: working memory and inhibitory control. We tested 138 children aged 10 to 12, an age when children are expected to produce high rates of errors. To increase the potential of individual variation in executive control skills, participants came from monolingual, bilingual, and bidialectal language backgrounds. Attraction errors were elicited with a picture description task in Dutch and executive control was measured with a digit span task, Corsi blocks task, switching task, and attentional networks task. Overall, higher rates of attraction errors were negatively associated with higher verbal working memory and, independently, with higher inhibitory control. To our knowledge, this is the first demonstration of the role of both working memory and inhibitory control in attraction errors in production. Implications for memory- and grammar-based models are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Sequential Tests of Multiple Hypotheses Controlling Type I and II Familywise Error Rates

    PubMed Central

    Bartroff, Jay; Song, Jinlin

    2014-01-01

    This paper addresses the following general scenario: A scientist wishes to perform a battery of experiments, each generating a sequential stream of data, to investigate some phenomenon. The scientist would like to control the overall error rate in order to draw statistically-valid conclusions from each experiment, while being as efficient as possible. The between-stream data may differ in distribution and dimension but also may be highly correlated, even duplicated exactly in some cases. Treating each experiment as a hypothesis test and adopting the familywise error rate (FWER) metric, we give a procedure that sequentially tests each hypothesis while controlling both the type I and II FWERs regardless of the between-stream correlation, and only requires arbitrary sequential test statistics that control the error rates for a given stream in isolation. The proposed procedure, which we call the sequential Holm procedure because of its inspiration from Holm’s (1979) seminal fixed-sample procedure, shows simultaneous savings in expected sample size and less conservative error control relative to fixed sample, sequential Bonferroni, and other recently proposed sequential procedures in a simulation study. PMID:25092948

  1. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  2. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  3. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  4. Pilot-controller communication errors : an analysis of Aviation Safety Reporting System (ASRS) reports

    DOT National Transportation Integrated Search

    1998-08-01

    The purpose of this study was to identify the factors that contribute to pilot-controller communication errors. Resports submitted to the Aviation Safety Reporting System (ASRS) offer detailed accounts of specific types of errors and a great deal of ...

  5. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    PubMed Central

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  6. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  7. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional

  8. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  9. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  10. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  11. Comparing Interval Management Control Laws for Steady-State Errors and String Stability

    NASA Technical Reports Server (NTRS)

    Weitz, Lesley A.; Swieringa, Kurt A.

    2018-01-01

    Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.

  12. Nonlinear adaptive control system design with asymptotically stable parameter estimation error

    NASA Astrophysics Data System (ADS)

    Mishkov, Rumen; Darmonski, Stanislav

    2018-01-01

    The paper presents a new general method for nonlinear adaptive system design with asymptotic stability of the parameter estimation error. The advantages of the approach include asymptotic unknown parameter estimation without persistent excitation and capability to directly control the estimates transient response time. The method proposed modifies the basic parameter estimation dynamics designed via a known nonlinear adaptive control approach. The modification is based on the generalised prediction error, a priori constraints with a hierarchical parameter projection algorithm, and the stable data accumulation concepts. The data accumulation principle is the main tool for achieving asymptotic unknown parameter estimation. It relies on the parametric identifiability system property introduced. Necessary and sufficient conditions for exponential stability of the data accumulation dynamics are derived. The approach is applied in a nonlinear adaptive speed tracking vector control of a three-phase induction motor.

  13. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia

    2017-03-14

    Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data

  14. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  15. Digitally Controllable Current Amplifier and Current Conveyors in Practical Application of Controllable Frequency Filter

    NASA Astrophysics Data System (ADS)

    Polak, Josef; Jerabek, Jan; Langhammer, Lukas; Sotner, Roman; Dvorak, Jan; Panek, David

    2016-07-01

    This paper presents the simulations results in comparison with the measured results of the practical realization of the multifunctional second order frequency filter with a Digitally Adjustable Current Amplifier (DACA) and two Dual-Output Controllable Current Conveyors (CCCII +/-). This filter is designed for use in current mode. The filter was designed of the single input multiple outputs (SIMO) type, therefore it has only one input and three outputs with individual filtering functions. DACA element used in a newly proposed circuit is present in form of an integrated chip and the current conveyors are implemented using the Universal Current Conveyor (UCC) chip with designation UCC-N1B. Proposed frequency filter enables independent control of the pole frequency using parameters of two current conveyors and also independent control of the quality factor by change of a current gain of DACA.

  16. Current good manufacturing practice in manufacturing, processing, packing, or holding of drugs; revision of certain labeling controls. Final rule.

    PubMed

    2012-03-20

    The Food and Drug Administration (FDA) is amending the packaging and labeling control provisions of the current good manufacturing practice (CGMP) regulations for human and veterinary drug products by limiting the application of special control procedures for the use of cut labeling to immediate container labels, individual unit cartons, or multiunit cartons containing immediate containers that are not packaged in individual unit cartons. FDA is also permitting the use of any automated technique, including differentiation by labeling size and shape, that physically prevents incorrect labeling from being processed by labeling and packaging equipment when cut labeling is used. This action is intended to protect consumers from labeling errors more likely to cause adverse health consequences, while eliminating the regulatory burden of applying the rule to labeling unlikely to reach or adversely affect consumers. This action is also intended to permit manufacturers to use a broader range of error prevention and labeling control techniques than permitted by current CGMPs.

  17. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  19. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle.

    PubMed

    Lindström, Björn R; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful.

  20. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle

    PubMed Central

    Lindström, Björn R.; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful. PMID:23840356

  1. Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Bergamaschi, B.A.

    2005-01-01

    Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed with an unaccounted input of 0.20 m 3 s-1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidalty averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebb-dominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main

  2. Procedural errors in air traffic control: effects of traffic density, expertise, and automation.

    PubMed

    Di Nocera, Francesco; Fabrizi, Roberto; Terenzi, Michela; Ferlazzo, Fabio

    2006-06-01

    Air traffic management requires operators to frequently shift between multiple tasks and/or goals with different levels of accomplishment. Procedural errors can occur when a controller accomplishes one of the tasks before the entire operation has been completed. The present study had two goals: first, to verify the occurrence of post-completion errors in air traffic control (ATC) tasks; and second, to assess effects on performance of medium term conflict detection (MTCD) tools. There were 18 military controllers who performed a simulated ATC task with and without automation support (MTCD vs. manual) in high and low air traffic density conditions. During the task, which consisted of managing several simulated flights in an enroute ATC scenario, a trace suddenly disappeared "after" the operator took the aircraft in charge, "during" the management of the trace, or "before" the pilot's first contact. In the manual condition, only the fault type "during" was found to be significantly different from the other two. On the contrary, when in the MTCD condition, the fault type "after" generated significantly less errors than the fault type "before." Additionally, automation was found to affect performance of junior controllers, whereas seniors' performance was not affected. Procedural errors can happen in ATC, but automation can mitigate this effect. Lack of benefits for the "before" fault type may be due to the fact that operators extend their reliance to a part of the task that is unsupported by the automated system.

  3. Kinect technology for hand tracking control of surgical robots: technical and surgical skill comparison to current robotic masters.

    PubMed

    Kim, Yonjae; Leonard, Simon; Shademan, Azad; Krieger, Axel; Kim, Peter C W

    2014-06-01

    Current surgical robots are controlled by a mechanical master located away from the patient, tracking surgeon's hands by wire and pulleys or mechanical linkage. Contactless hand tracking for surgical robot control is an attractive alternative, because it can be executed with minimal footprint at the patient's bedside without impairing sterility, while eliminating current disassociation between surgeon and patient. We compared technical and technologic feasibility of contactless hand tracking to the current clinical standard master controllers. A hand-tracking system (Kinect™-based 3Gear), a wire-based mechanical master (Mantis Duo), and a clinical mechanical linkage master (da Vinci) were evaluated for technical parameters with strong clinical relevance: system latency, static noise, robot slave tremor, and controller range. Five experienced surgeons performed a skill comparison study, evaluating the three different master controllers for efficiency and accuracy in peg transfer and pointing tasks. da Vinci had the lowest latency of 89 ms, followed by Mantis with 374 ms and 3Gear with 576 ms. Mantis and da Vinci produced zero static error. 3Gear produced average static error of 0.49 mm. The tremor of the robot used by the 3Gear and Mantis system had a radius of 1.7 mm compared with 0.5 mm for da Vinci. The three master controllers all had similar range. The surgeons took 1.98 times longer to complete the peg transfer task with the 3Gear system compared with Mantis, and 2.72 times longer with Mantis compared with da Vinci (p value 2.1e-9). For the pointer task, surgeons were most accurate with da Vinci with average error of 0.72 mm compared with Mantis's 1.61 mm and 3Gear's 2.41 mm (p value 0.00078). Contactless hand-tracking technology as a surgical master can execute simple surgical tasks. Whereas traditional master controllers outperformed, given that contactless hand-tracking is a first-generation technology, clinical potential is promising and could

  4. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  5. Motivational state controls the prediction error in Pavlovian appetitive-aversive interactions.

    PubMed

    Laurent, Vincent; Balleine, Bernard W; Westbrook, R Frederick

    2018-01-01

    Contemporary theories of learning emphasize the role of a prediction error signal in driving learning, but the nature of this signal remains hotly debated. Here, we used Pavlovian conditioning in rats to investigate whether primary motivational and emotional states interact to control prediction error. We initially generated cues that positively or negatively predicted an appetitive food outcome. We then assessed how these cues modulated aversive conditioning when a novel cue was paired with a foot shock. We found that a positive predictor of food enhances, whereas a negative predictor of that same food impairs, aversive conditioning. Critically, we also showed that the enhancement produced by the positive predictor is removed by reducing the value of its associated food. In contrast, the impairment triggered by the negative predictor remains insensitive to devaluation of its associated food. These findings provide compelling evidence that the motivational value attributed to a predicted food outcome can directly control appetitive-aversive interactions and, therefore, that motivational processes can modulate emotional processes to generate the final error term on which subsequent learning is based. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  7. Many tests of significance: new methods for controlling type I errors.

    PubMed

    Keselman, H J; Miller, Charles W; Holland, Burt

    2011-12-01

    There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise control is intended to deal with the multiplicity issue of computing many tests of significance, yet such control is conservative--that is, less powerful--compared to per test/hypothesis control. The purpose of our article is to introduce the readership, particularly those readers familiar with issues related to controlling Type I errors when many tests of significance are computed, to newer methods that provide protection from the effects of multiple testing, yet are more powerful than familywise controlling methods. Specifically, we introduce a number of procedures that control the k-FWER. These methods--say, 2-FWER instead of 1-FWER (i.e., FWER)--are equivalent to specifying that the probability of 2 or more false rejections is controlled at .05, whereas FWER controls the probability of any (i.e., 1 or more) false rejections at .05. 2-FWER implicitly tolerates 1 false rejection and makes no explicit attempt to control the probability of its occurrence, unlike FWER, which tolerates no false rejections at all. More generally, k-FWER tolerates k - 1 false rejections, but controls the probability of k or more false rejections at α =.05. We demonstrate with two published data sets how more hypotheses can be rejected with k-FWER methods compared to FWER control.

  8. Evaluation of Trajectory Errors in an Automated Terminal-Area Environment

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa M.; Williams, David H.

    2003-01-01

    A piloted simulation experiment was conducted to document the trajectory errors associated with use of an airplane's Flight Management System (FMS) in conjunction with a ground-based ATC automation system, Center-TRACON Automation System (CTAS) in the terminal area. Three different arrival procedures were compared: current-day (vectors from ATC), modified (current-day with minor updates), and data link with FMS lateral navigation. Six active airline pilots flew simulated arrivals in a fixed-base simulator. The FMS-datalink procedure resulted in the smallest time and path distance errors, indicating that use of this procedure could reduce the CTAS arrival-time prediction error by about half over the current-day procedure. Significant sources of error contributing to the arrival-time error were crosstrack errors and early speed reduction in the last 2-4 miles before the final approach fix. Pilot comments were all very positive, indicating the FMS-datalink procedure was easy to understand and use, and the increased head-down time and workload did not detract from the benefit. Issues that need to be resolved before this method of operation would be ready for commercial use include development of procedures acceptable to controllers, better speed conformance monitoring, and FMS database procedures to support the approach transitions.

  9. Impact of random and systematic recall errors and selection bias in case--control studies on mobile phone use and brain tumors in adolescents (CEFALO study).

    PubMed

    Aydin, Denis; Feychting, Maria; Schüz, Joachim; Andersen, Tina Veje; Poulsen, Aslak Harbo; Prochazka, Michaela; Klaeboe, Lars; Kuehni, Claudia E; Tynes, Tore; Röösli, Martin

    2011-07-01

    Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents. Copyright © 2011 Wiley-Liss, Inc.

  10. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.

  11. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  12. Fault-Tolerant Signal Processing Architectures with Distributed Error Control.

    DTIC Science & Technology

    1985-01-01

    Zm, Revisited," Information and Control, Vol. 37, pp. 100-104, 1978. 13. J. Wakerly , Error Detecting Codes. SeIf-Checkino Circuits and Applications ...However, the newer results concerning applications of real codes are still in the publication process. Hence, two very detailed appendices are included to...significant entities to be protected. While the distributed finite field approach afforded adequate protection, its applicability was restricted and

  13. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  14. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.

    PubMed

    Maurer, Willi; Jones, Byron; Chen, Ying

    2018-05-10

    In a 2×2 crossover trial for establishing average bioequivalence (ABE) of a generic agent and a currently marketed drug, the recommended approach to hypothesis testing is the two one-sided test (TOST) procedure, which depends, among other things, on the estimated within-subject variability. The power of this procedure, and therefore the sample size required to achieve a minimum power, depends on having a good estimate of this variability. When there is uncertainty, it is advisable to plan the design in two stages, with an interim sample size reestimation after the first stage, using an interim estimate of the within-subject variability. One method and 3 variations of doing this were proposed by Potvin et al. Using simulation, the operating characteristics, including the empirical type I error rate, of the 4 variations (called Methods A, B, C, and D) were assessed by Potvin et al and Methods B and C were recommended. However, none of these 4 variations formally controls the type I error rate of falsely claiming ABE, even though the amount of inflation produced by Method C was considered acceptable. A major disadvantage of assessing type I error rate inflation using simulation is that unless all possible scenarios for the intended design and analysis are investigated, it is impossible to be sure that the type I error rate is controlled. Here, we propose an alternative, principled method of sample size reestimation that is guaranteed to control the type I error rate at any given significance level. This method uses a new version of the inverse-normal combination of p-values test, in conjunction with standard group sequential techniques, that is more robust to large deviations in initial assumptions regarding the variability of the pharmacokinetic endpoints. The sample size reestimation step is based on significance levels and power requirements that are conditional on the first-stage results. This necessitates a discussion and exploitation of the peculiar properties

  15. 76 FR 67315 - Supplemental Nutrition Assistance Program: Quality Control Error Tolerance Threshold

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ...This direct final rule is amending the Quality Control (QC) review error threshold in our regulations from $25.00 to $50.00. The purpose for raising the QC error threshold is to make permanent the temporary threshold change that was required by the American Recovery and Reinvestment Act of 2008. This change does not have an impact on the public. The QC system measures the accuracy of the eligibility system for the Supplemental Nutrition Assistance Program (SNAP).

  16. Proximal antecedents and correlates of adopted error approach: a self-regulatory perspective.

    PubMed

    Van Dyck, Cathy; Van Hooft, Edwin; De Gilder, Dick; Liesveld, Lillian

    2010-01-01

    The current study aims to further investigate earlier established advantages of an error mastery approach over an error aversion approach. The two main purposes of the study relate to (1) self-regulatory traits (i.e., goal orientation and action-state orientation) that may predict which error approach (mastery or aversion) is adopted, and (2) proximal, psychological processes (i.e., self-focused attention and failure attribution) that relate to adopted error approach. In the current study participants' goal orientation and action-state orientation were assessed, after which they worked on an error-prone task. Results show that learning goal orientation related to error mastery, while state orientation related to error aversion. Under a mastery approach, error occurrence did not result in cognitive resources "wasted" on self-consciousness. Rather, attention went to internal-unstable, thus controllable, improvement oriented causes of error. Participants that had adopted an aversion approach, in contrast, experienced heightened self-consciousness and attributed failure to internal-stable or external causes. These results imply that when working on an error-prone task, people should be stimulated to take on a mastery rather than an aversion approach towards errors.

  17. Effect of gyro verticality error on lateral autoland tracking performance for an inertially smoothed control law

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1977-01-01

    The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.

  18. Smart monitoring system based on adaptive current control for superconducting cable test.

    PubMed

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  19. The effect of speaking rate on serial-order sound-level errors in normal healthy controls and persons with aphasia.

    PubMed

    Fossett, Tepanta R D; McNeil, Malcolm R; Pratt, Sheila R; Tompkins, Connie A; Shuster, Linda I

    Although many speech errors can be generated at either a linguistic or motoric level of production, phonetically well-formed sound-level serial-order errors are generally assumed to result from disruption of phonologic encoding (PE) processes. An influential model of PE (Dell, 1986; Dell, Burger & Svec, 1997) predicts that speaking rate should affect the relative proportion of these serial-order sound errors (anticipations, perseverations, exchanges). These predictions have been extended to, and have special relevance for persons with aphasia (PWA) because of the increased frequency with which speech errors occur and because their localization within the functional linguistic architecture may help in diagnosis and treatment. Supporting evidence regarding the effect of speaking rate on phonological encoding has been provided by studies using young normal language (NL) speakers and computer simulations. Limited data exist for older NL users and no group data exist for PWA. This study tested the phonologic encoding properties of Dell's model of speech production (Dell, 1986; Dell,et al., 1997), which predicts that increasing speaking rate affects the relative proportion of serial-order sound errors (i.e., anticipations, perseverations, and exchanges). The effects of speech rate on the error ratios of anticipation/exchange (AE), anticipation/perseveration (AP) and vocal reaction time (VRT) were examined in 16 normal healthy controls (NHC) and 16 PWA without concomitant motor speech disorders. The participants were recorded performing a phonologically challenging (tongue twister) speech production task at their typical and two faster speaking rates. A significant effect of increased rate was obtained for the AP but not the AE ratio. Significant effects of group and rate were obtained for VRT. Although the significant effect of rate for the AP ratio provided evidence that changes in speaking rate did affect PE, the results failed to support the model derived predictions

  20. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  1. Active stabilization of error field penetration via control field and bifurcation of its stable frequency range

    NASA Astrophysics Data System (ADS)

    Inoue, S.; Shiraishi, J.; Takechi, M.; Matsunaga, G.; Isayama, A.; Hayashi, N.; Ide, S.

    2017-11-01

    An active stabilization effect of a rotating control field against an error field penetration is numerically studied. We have developed a resistive magnetohydrodynamic code ‘AEOLUS-IT’, which can simulate plasma responses to rotating/static external magnetic field. Adopting non-uniform flux coordinates system, the AEOLUS-IT simulation can employ high magnetic Reynolds number condition relevant to present tokamaks. By AEOLUS-IT, we successfully clarified the stabilization mechanism of the control field against the error field penetration. Physical processes of a plasma rotation drive via the control field are demonstrated by the nonlinear simulation, which reveals that the rotation amplitude at a resonant surface is not a monotonic function of the control field frequency, but has an extremum. Consequently, two ‘bifurcated’ frequency ranges of the control field are found for the stabilization of the error field penetration.

  2. Potential benefit of electronic pharmacy claims data to prevent medication history errors and resultant inpatient order errors

    PubMed Central

    Palmer, Katherine A; Shane, Rita; Wu, Cindy N; Bell, Douglas S; Diaz, Frank; Cook-Wiens, Galen; Jackevicius, Cynthia A

    2016-01-01

    Objective We sought to assess the potential of a widely available source of electronic medication data to prevent medication history errors and resultant inpatient order errors. Methods We used admission medication history (AMH) data from a recent clinical trial that identified 1017 AMH errors and 419 resultant inpatient order errors among 194 hospital admissions of predominantly older adult patients on complex medication regimens. Among the subset of patients for whom we could access current Surescripts electronic pharmacy claims data (SEPCD), two pharmacists independently assessed error severity and our main outcome, which was whether SEPCD (1) was unrelated to the medication error; (2) probably would not have prevented the error; (3) might have prevented the error; or (4) probably would have prevented the error. Results Seventy patients had both AMH errors and current, accessible SEPCD. SEPCD probably would have prevented 110 (35%) of 315 AMH errors and 46 (31%) of 147 resultant inpatient order errors. When we excluded the least severe medication errors, SEPCD probably would have prevented 99 (47%) of 209 AMH errors and 37 (61%) of 61 resultant inpatient order errors. SEPCD probably would have prevented at least one AMH error in 42 (60%) of 70 patients. Conclusion When current SEPCD was available for older adult patients on complex medication regimens, it had substantial potential to prevent AMH errors and resultant inpatient order errors, with greater potential to prevent more severe errors. Further study is needed to measure the benefit of SEPCD in actual use at hospital admission. PMID:26911817

  3. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error.

    PubMed

    Verduzco-Flores, Sergio O; O'Reilly, Randall C

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.

  4. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    PubMed Central

    Verduzco-Flores, Sergio O.; O'Reilly, Randall C.

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations. PMID:25852535

  5. A function space approach to smoothing with applications to model error estimation for flexible spacecraft control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1981-01-01

    A function space approach to smoothing is used to obtain a set of model error estimates inherent in a reduced-order model. By establishing knowledge of inevitable deficiencies in the truncated model, the error estimates provide a foundation for updating the model and thereby improving system performance. The function space smoothing solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for spacecraft attitude control.

  6. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  7. Errors in patient specimen collection: application of statistical process control.

    PubMed

    Dzik, Walter Sunny; Beckman, Neil; Selleng, Kathleen; Heddle, Nancy; Szczepiorkowski, Zbigniew; Wendel, Silvano; Murphy, Michael

    2008-10-01

    Errors in the collection and labeling of blood samples for pretransfusion testing increase the risk of transfusion-associated patient morbidity and mortality. Statistical process control (SPC) is a recognized method to monitor the performance of a critical process. An easy-to-use SPC method was tested to determine its feasibility as a tool for monitoring quality in transfusion medicine. SPC control charts were adapted to a spreadsheet presentation. Data tabulating the frequency of mislabeled and miscollected blood samples from 10 hospitals in five countries from 2004 to 2006 were used to demonstrate the method. Control charts were produced to monitor process stability. The participating hospitals found the SPC spreadsheet very suitable to monitor the performance of the sample labeling and collection and applied SPC charts to suit their specific needs. One hospital monitored subcategories of sample error in detail. A large hospital monitored the number of wrong-blood-in-tube (WBIT) events. Four smaller-sized facilities, each following the same policy for sample collection, combined their data on WBIT samples into a single control chart. One hospital used the control chart to monitor the effect of an educational intervention. A simple SPC method is described that can monitor the process of sample collection and labeling in any hospital. SPC could be applied to other critical steps in the transfusion processes as a tool for biovigilance and could be used to develop regional or national performance standards for pretransfusion sample collection. A link is provided to download the spreadsheet for free.

  8. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  9. Error and Error Mitigation in Low-Coverage Genome Assemblies

    PubMed Central

    Hubisz, Melissa J.; Lin, Michael F.; Kellis, Manolis; Siepel, Adam

    2011-01-01

    The recent release of twenty-two new genome sequences has dramatically increased the data available for mammalian comparative genomics, but twenty of these new sequences are currently limited to ∼2× coverage. Here we examine the extent of sequencing error in these 2× assemblies, and its potential impact in downstream analyses. By comparing 2× assemblies with high-quality sequences from the ENCODE regions, we estimate the rate of sequencing error to be 1–4 errors per kilobase. While this error rate is fairly modest, sequencing error can still have surprising effects. For example, an apparent lineage-specific insertion in a coding region is more likely to reflect sequencing error than a true biological event, and the length distribution of coding indels is strongly distorted by error. We find that most errors are contributed by a small fraction of bases with low quality scores, in particular, by the ends of reads in regions of single-read coverage in the assembly. We explore several approaches for automatic sequencing error mitigation (SEM), making use of the localized nature of sequencing error, the fact that it is well predicted by quality scores, and information about errors that comes from comparisons across species. Our automatic methods for error mitigation cannot replace the need for additional sequencing, but they do allow substantial fractions of errors to be masked or eliminated at the cost of modest amounts of over-correction, and they can reduce the impact of error in downstream phylogenomic analyses. Our error-mitigated alignments are available for download. PMID:21340033

  10. Error measure comparison of currently employed dose-modulation schemes for e-beam proximity effect control

    NASA Astrophysics Data System (ADS)

    Peckerar, Martin C.; Marrian, Christie R.

    1995-05-01

    Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.

  11. Analog-digital simulation of transient-induced logic errors and upset susceptibility of an advanced control system

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.; Choi, G.; Iyer, R. K.

    1990-01-01

    A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.

  12. Value-based HR practices, i-deals and clinical error control with CSR as a moderator.

    PubMed

    Luu, Tuan; Rowley, Chris; Siengthai, Sununta; Thanh Thao, Vo

    2017-05-08

    Purpose Notwithstanding the rising magnitude of system factors in patient safety improvement, "human factors" such as idiosyncratic deals (i-deals) which also contribute to the adjustment of system deficiencies should not be neglected. The purpose of this paper is to investigate the role of value-based HR practices in catalyzing i-deals, which then influence clinical error control. The research further examines the moderating role of corporate social responsibility (CSR) on the effect of value-based HR practices on i-deals. Design/methodology/approach The data were collected from middle-level clinicians from hospitals in the Vietnam context. Findings The research results confirmed the effect chain from value-based HR practices through i-deals to clinical error control with CSR as a moderator. Originality/value The HRM literature is expanded through enlisting i-deals and clinical error control as the outcomes of HR practices.

  13. Cognitive Impairments in Occupational Burnout – Error Processing and Its Indices of Reactive and Proactive Control

    PubMed Central

    Golonka, Krystyna; Mojsa-Kaja, Justyna; Gawlowska, Magda; Popiel, Katarzyna

    2017-01-01

    The presented study refers to cognitive aspects of burnout as the effects of long-term work-related stress. The purpose of the study was to investigate electrophysiological correlates of burnout to explain the mechanisms of the core burnout symptoms: exhaustion and depersonalization/cynicism. The analyzed error-related electrophysiological markers shed light on impaired cognitive mechanisms and the specific changes in information-processing in burnout. In the EEG study design (N = 80), two components of error-related potential (ERP), error-related negativity (ERN), and error positivity (Pe), were analyzed. In the non-clinical burnout group (N = 40), a significant increase in ERN amplitude and a decrease in Pe amplitude were observed compared to controls (N = 40). Enhanced error detection, indexed by increased ERN amplitude, and diminished response monitoring, indexed by decreased Pe amplitude, reveal emerging cognitive problems in the non-clinical burnout group. Cognitive impairments in burnout subjects relate to both reactive and unconscious (ERN) and proactive and conscious (Pe) aspects of error processing. The results indicate a stronger ‘reactive control mode’ that can deplete resources for proactive control and the ability to actively maintain goals. The analysis refers to error processing and specific task demands, thus should not be extended to cognitive processes in general. The characteristics of ERP patterns in burnout resemble psychophysiological indexes of anxiety (increased ERN) and depressive symptoms (decreased Pe), showing to some extent an overlapping effect of burnout and related symptoms and disorders. The results support the scarce existing data on the psychobiological nature of burnout, while extending and specifying its cognitive characteristics. PMID:28507528

  14. Recurrent cerebellar architecture solves the motor-error problem.

    PubMed Central

    Porrill, John; Dean, Paul; Stone, James V.

    2004-01-01

    Current views of cerebellar function have been heavily influenced by the models of Marr and Albus, who suggested that the climbing fibre input to the cerebellum acts as a teaching signal for motor learning. It is commonly assumed that this teaching signal must be motor error (the difference between actual and correct motor command), but this approach requires complex neural structures to estimate unobservable motor error from its observed sensory consequences. We have proposed elsewhere a recurrent decorrelation control architecture in which Marr-Albus models learn without requiring motor error. Here, we prove convergence for this architecture and demonstrate important advantages for the modular control of systems with multiple degrees of freedom. These results are illustrated by modelling adaptive plant compensation for the three-dimensional vestibular ocular reflex. This provides a functional role for recurrent cerebellar connectivity, which may be a generic anatomical feature of projections between regions of cerebral and cerebellar cortex. PMID:15255096

  15. Correcting groove error in gratings ruled on a 500-mm ruling engine using interferometric control.

    PubMed

    Mi, Xiaotao; Yu, Haili; Yu, Hongzhu; Zhang, Shanwen; Li, Xiaotian; Yao, Xuefeng; Qi, Xiangdong; Bayinhedhig; Wan, Qiuhua

    2017-07-20

    Groove error is one of the most important factors affecting grating quality and spectral performance. To reduce groove error, we propose a new ruling-tool carriage system based on aerostatic guideways. We design a new blank carriage system with double piezoelectric actuators. We also propose a completely closed-loop servo-control system with a new optical measurement system that can control the position of the diamond relative to the blank. To evaluate our proposed methods, we produced several gratings, including an echelle grating with 79  grooves/mm, a grating with 768  grooves/mm, and a high-density grating with 6000  grooves/mm. The results show that our methods effectively reduce groove error in ruled gratings.

  16. [Epidemiology of refractive errors].

    PubMed

    Wolfram, C

    2017-07-01

    Refractive errors are very common and can lead to severe pathological changes in the eye. This article analyzes the epidemiology of refractive errors in the general population in Germany and worldwide and describes common definitions for refractive errors and clinical characteristics for pathologicaal changes. Refractive errors differ between age groups due to refractive changes during the life time and also due to generation-specific factors. Current research about the etiology of refractive errors has strengthened the influence of environmental factors, which led to new strategies for the prevention of refractive pathologies.

  17. New class of photonic quantum error correction codes

    NASA Astrophysics Data System (ADS)

    Silveri, Matti; Michael, Marios; Brierley, R. T.; Salmilehto, Juha; Albert, Victor V.; Jiang, Liang; Girvin, S. M.

    We present a new class of quantum error correction codes for applications in quantum memories, communication and scalable computation. These codes are constructed from a finite superposition of Fock states and can exactly correct errors that are polynomial up to a specified degree in creation and destruction operators. Equivalently, they can perform approximate quantum error correction to any given order in time step for the continuous-time dissipative evolution under these errors. The codes are related to two-mode photonic codes but offer the advantage of requiring only a single photon mode to correct loss (amplitude damping), as well as the ability to correct other errors, e.g. dephasing. Our codes are also similar in spirit to photonic ''cat codes'' but have several advantages including smaller mean occupation number and exact rather than approximate orthogonality of the code words. We analyze how the rate of uncorrectable errors scales with the code complexity and discuss the unitary control for the recovery process. These codes are realizable with current superconducting qubit technology and can increase the fidelity of photonic quantum communication and memories.

  18. Errors in clinical laboratories or errors in laboratory medicine?

    PubMed

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  19. Geometric error characterization and error budgets. [thematic mapper

    NASA Technical Reports Server (NTRS)

    Beyer, E.

    1982-01-01

    Procedures used in characterizing geometric error sources for a spaceborne imaging system are described using the LANDSAT D thematic mapper ground segment processing as the prototype. Software was tested through simulation and is undergoing tests with the operational hardware as part of the prelaunch system evaluation. Geometric accuracy specifications, geometric correction, and control point processing are discussed. Cross track and along track errors are tabulated for the thematic mapper, the spacecraft, and ground processing to show the temporal registration error budget in pixel (42.5 microrad) 90%.

  20. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  1. High-precision register error control using active-motion-based roller in roll-to-roll gravure printing

    NASA Astrophysics Data System (ADS)

    Jung, Hoeryong; Nguyen, Ho Anh Duc; Choi, Jaeho; Yim, Hongsik; Shin, Kee-Hyun

    2018-05-01

    The roll-to-roll (R2R) gravure printing method is increasingly being utilized to fabricate electronic devices such as organic thin-film transistor (OTFT), radio-frequency identification (RFID) tags, and flexible PCB owing to its characteristics of high throughput and large area. High precision registration is crucial to satisfy the demand for device miniaturization, the improvement of resolution and accuracy. This paper presents a novel register control method that uses an active motion-based roller (AMBR) to reduce register error in R2R gravure printing. Instead of shifting the phase of the downstream printing roller, which leads to undesired tension disturbance, the 1 degree-of-freedom (1-DOF) mechanical device AMBR is used to compensate for web elongation by controlling its motion according to the register error. The performance of the proposed control method is verified through simulations and experiments, and the results show that the proposed register control method using the AMBR could maintain a register error under ±15 µm.

  2. Proposing a new iterative learning control algorithm based on a non-linear least square formulation - Minimising draw-in errors

    NASA Astrophysics Data System (ADS)

    Endelt, B.

    2017-09-01

    Forming operation are subject to external disturbances and changing operating conditions e.g. new material batch, increasing tool temperature due to plastic work, material properties and lubrication is sensitive to tool temperature. It is generally accepted that forming operations are not stable over time and it is not uncommon to adjust the process parameters during the first half hour production, indicating that process instability is gradually developing over time. Thus, in-process feedback control scheme might not-be necessary to stabilize the process and an alternative approach is to apply an iterative learning algorithm, which can learn from previously produced parts i.e. a self learning system which gradually reduces error based on historical process information. What is proposed in the paper is a simple algorithm which can be applied to a wide range of sheet-metal forming processes. The input to the algorithm is the final flange edge geometry and the basic idea is to reduce the least-square error between the current flange geometry and a reference geometry using a non-linear least square algorithm. The ILC scheme is applied to a square deep-drawing and the Numisheet’08 S-rail benchmark problem, the numerical tests shows that the proposed control scheme is able control and stabilise both processes.

  3. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  4. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  5. The current approach to human error and blame in the NHS.

    PubMed

    Ottewill, Melanie

    There is a large body of research to suggest that serious errors are widespread throughout medicine. The traditional response to these adverse events has been to adopt a 'person approach' - blaming the individual seen as 'responsible'. The culture of medicine is highly complicit in this response. Such an approach results in enormous personal costs to the individuals concerned and does little to address the root causes of errors and thus prevent their recurrence. Other industries, such as aviation, where safety is a paramount concern and which have similar structures to the medical profession, have, over the past decade or so, adopted a 'systems' approach to error, recognizing that human error is ubiquitous and inevitable and that systems need to be developed with this in mind. This approach has been highly successful, but has necessitated, first and foremost, a cultural shift. It is in the best interests of patients, and medical professionals alike, that such a shift is embraced in the NHS.

  6. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks.

    PubMed

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-10-09

    The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice.

  7. An analysis of control reversal errors during unusual attitude recoveries using helmet-mounted display symbology.

    PubMed

    Liggett, Kristen K; Gallimore, Jennie J

    2002-02-01

    Spatial disorientation (SD) refers to pilots' inability to accurately interpret the attitude of their aircraft with respect to Earth. Unfortunately, SD statistics have held constant for the past few decades, through the transition from the head-down attitude indicator (Al) to the head-up display (HUD) as the attitude instrument. The newest attitude-indicating device to find its way into military cockpits is the helmet-mounted display (HMD). HMDs were initially introduced into the cockpit to enhance target location and weapon-pointing, but there is currently an effort to make HMDs attitude reference displays so pilots need not go head-down to obtain attitude information. However, unintuitive information or inappropriate implementation of on-boresight attitude symbology on the HMD may contribute to the SD problem. The occurrence of control reversal errors (CREs) during unusual attitude recovery tasks when using an HMD to provide attitude information was investigated. The effect of such errors was evaluated in terms of altitude changes during recovery and time to recover. There were 12 pilot-subjects who completed 8 unusual attitude recovery tasks. Results showed that CREs did occur, and there was a significant negative effect of these errors on absolute altitude change, but not on total recovery time. Results failed to show a decrease in the number of CREs occurring when using the HMD as compared with data from other studies that used an Al or a HUD. Results suggest that new HMD attitude symbology needs to be designed to help reduce CREs and, perhaps, SD incidences.

  8. Bilingual language intrusions and other speech errors in Alzheimer's disease.

    PubMed

    Gollan, Tamar H; Stasenko, Alena; Li, Chuchu; Salmon, David P

    2017-11-01

    The current study investigated how Alzheimer's disease (AD) affects production of speech errors in reading-aloud. Twelve Spanish-English bilinguals with AD and 19 matched controls read-aloud 8 paragraphs in four conditions (a) English-only, (b) Spanish-only, (c) English-mixed (mostly English with 6 Spanish words), and (d) Spanish-mixed (mostly Spanish with 6 English words). Reading elicited language intrusions (e.g., saying la instead of the), and several types of within-language errors (e.g., saying their instead of the). Patients produced more intrusions (and self-corrected less often) than controls, particularly when reading non-dominant language paragraphs with switches into the dominant language. Patients also produced more within-language errors than controls, but differences between groups for these were not consistently larger with dominant versus non-dominant language targets. These results illustrate the potential utility of speech errors for diagnosis of AD, suggest a variety of linguistic and executive control impairments in AD, and reveal multiple cognitive mechanisms needed to mix languages fluently. The observed pattern of deficits, and unique sensitivity of intrusions to AD in bilinguals, suggests intact ability to select a default language with contextual support, to rapidly translate and switch languages in production of connected speech, but impaired ability to monitor language membership while regulating inhibitory control. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Non-Static error tracking control for near space airship loading platform

    NASA Astrophysics Data System (ADS)

    Ni, Ming; Tao, Fei; Yang, Jiandong

    2018-01-01

    A control scheme based on internal model with non-static error is presented against the uncertainty of the near space airship loading platform system. The uncertainty in the tracking table is represented as interval variations in stability and control derivatives. By formulating the tracking problem of the uncertainty system as a robust state feedback stabilization problem of an augmented system, sufficient condition for the existence of robust tracking controller is derived in the form of linear matrix inequality (LMI). Finally, simulation results show that the new method not only has better anti-jamming performance, but also improves the dynamic performance of the high-order systems.

  10. Irregular analytical errors in diagnostic testing - a novel concept.

    PubMed

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC

  11. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  12. Prediction of discretization error using the error transport equation

    NASA Astrophysics Data System (ADS)

    Celik, Ismail B.; Parsons, Don Roscoe

    2017-06-01

    This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.

  13. An Adaptive Method of Lines with Error Control for Parabolic Equations of the Reaction-Diffusion Type.

    DTIC Science & Technology

    1984-06-01

    space discretization error . 1. I 3 1. INTRODUCTION Reaction- diffusion processes occur in many branches of biology and physical chemistry. Examples...to model reaction- diffusion phenomena. The primary goal of this adaptive method is to keep a particular norm of the space discretization error less...AD-A142 253 AN ADAPTIVE MET6 OFD LNES WITH ERROR CONTROL FOR 1 INST FOR PHYSICAL SCIENCE AND TECH. I BABUSKAAAO C7 EA OH S UMR AN UNVC EEP R

  14. Third-order 2N-storage Runge-Kutta schemes with error control

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Kennedy, Christopher A.

    1994-01-01

    A family of four-stage third-order explicit Runge-Kutta schemes is derived that requires only two storage locations and has desirable stability characteristics. Error control is achieved by embedding a second-order scheme within the four-stage procedure. Certain schemes are identified that are as efficient and accurate as conventional embedded schemes of comparable order and require fewer storage locations.

  15. Awareness of technology-induced errors and processes for identifying and preventing such errors.

    PubMed

    Bellwood, Paule; Borycki, Elizabeth M; Kushniruk, Andre W

    2015-01-01

    There is a need to determine if organizations working with health information technology are aware of technology-induced errors and how they are addressing and preventing them. The purpose of this study was to: a) determine the degree of technology-induced error awareness in various Canadian healthcare organizations, and b) identify those processes and procedures that are currently in place to help address, manage, and prevent technology-induced errors. We identified a lack of technology-induced error awareness among participants. Participants identified there was a lack of well-defined procedures in place for reporting technology-induced errors, addressing them when they arise, and preventing them.

  16. Data entry errors and design for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.

  17. An examination of the operational error database for air route traffic control centers.

    DOT National Transportation Integrated Search

    1993-12-01

    Monitoring the frequency and determining the causes of operational errors - defined as the loss of prescribed separation between aircraft - is one approach to assessing the operational safety of the air traffic control system. The Federal Aviation Ad...

  18. Fast and error-resilient coherent control in an atomic vapor

    NASA Astrophysics Data System (ADS)

    He, Yizun; Wang, Mengbing; Zhao, Jian; Qiu, Liyang; Wang, Yuzhuo; Fang, Yami; Zhao, Kaifeng; Wu, Saijun

    2017-04-01

    Nanosecond chirped pulses from an optical arbitrary waveform generator is applied to both invert and coherently split the D1 line population of potassium vapor within a laser focal volume of 2X105 μ m3. The inversion fidelity of f>96%, mainly limited by spontaneous emission during the nanosecond pulse, is inferred from both probe light transmission and superfluorescence emission. The nearly perfect inversion is uniformly achieved for laser intensity varying over an order of magnitude, and is tolerant to detuning error of more than 1000 times the D1 transition linewidth. We further demonstrate enhanced intensity error resilience with multiple chirped pulses and ``universal composite pulses''. This fast and robust coherent control technique should find wide applications in the field of quantum optics, laser cooling, and atom interferometry. This work is supported by National Key Research Program of China under Grant No. 2016YFA0302000, and NNSFC under Grant No. 11574053.

  19. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks

    PubMed Central

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-01-01

    Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636

  20. The Neural-fuzzy Thermal Error Compensation Controller on CNC Machining Center

    NASA Astrophysics Data System (ADS)

    Tseng, Pai-Chung; Chen, Shen-Len

    The geometric errors and structural thermal deformation are factors that influence the machining accuracy of Computer Numerical Control (CNC) machining center. Therefore, researchers pay attention to thermal error compensation technologies on CNC machine tools. Some real-time error compensation techniques have been successfully demonstrated in both laboratories and industrial sites. The compensation results still need to be enhanced. In this research, the neural-fuzzy theory has been conducted to derive a thermal prediction model. An IC-type thermometer has been used to detect the heat sources temperature variation. The thermal drifts are online measured by a touch-triggered probe with a standard bar. A thermal prediction model is then derived by neural-fuzzy theory based on the temperature variation and the thermal drifts. A Graphic User Interface (GUI) system is also built to conduct the user friendly operation interface with Insprise C++ Builder. The experimental results show that the thermal prediction model developed by neural-fuzzy theory methodology can improve machining accuracy from 80µm to 3µm. Comparison with the multi-variable linear regression analysis the compensation accuracy is increased from ±10µm to ±3µm.

  1. Patterning control strategies for minimum edge placement error in logic devices

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  2. Skills, rules and knowledge in aircraft maintenance: errors in context

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Williamson, Ann

    2002-01-01

    Automatic or skill-based behaviour is generally considered to be less prone to error than behaviour directed by conscious control. However, researchers who have applied Rasmussen's skill-rule-knowledge human error framework to accidents and incidents have sometimes found that skill-based errors appear in significant numbers. It is proposed that this is largely a reflection of the opportunities for error which workplaces present and does not indicate that skill-based behaviour is intrinsically unreliable. In the current study, 99 errors reported by 72 aircraft mechanics were examined in the light of a task analysis based on observations of the work of 25 aircraft mechanics. The task analysis identified the opportunities for error presented at various stages of maintenance work packages and by the job as a whole. Once the frequency of each error type was normalized in terms of the opportunities for error, it became apparent that skill-based performance is more reliable than rule-based performance, which is in turn more reliable than knowledge-based performance. The results reinforce the belief that industrial safety interventions designed to reduce errors would best be directed at those aspects of jobs that involve rule- and knowledge-based performance.

  3. Ion beam machining error control and correction for small scale optics.

    PubMed

    Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi

    2011-09-20

    Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.

  4. A new assessment method of pHEMT models by comparing relative errors of drain current and its derivatives up to the third order

    NASA Astrophysics Data System (ADS)

    Dobeš, Josef; Grábner, Martin; Puričer, Pavel; Vejražka, František; Míchal, Jan; Popp, Jakub

    2017-05-01

    Nowadays, there exist relatively precise pHEMT models available for computer-aided design, and they are frequently compared to each other. However, such comparisons are mostly based on absolute errors of drain-current equations and their derivatives. In the paper, a novel method is suggested based on relative root-mean-square errors of both drain current and its derivatives up to the third order. Moreover, the relative errors are subsequently relativized to the best model in each category to further clarify obtained accuracies of both drain current and its derivatives. Furthermore, one our older and two newly suggested models are also included in comparison with the traditionally precise Ahmed, TOM-2 and Materka ones. The assessment is performed using measured characteristics of a pHEMT operating up to 110 GHz. Finally, a usability of the proposed models including the higher-order derivatives is illustrated using s-parameters analysis and measurement at more operating points as well as computation and measurement of IP3 points of a low-noise amplifier of a multi-constellation satellite navigation receiver with ATF-54143 pHEMT.

  5. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  6. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  7. Detecting and Correcting Errors in Rapid Aiming Movements: Effects of Movement Time, Distance, and Velocity

    ERIC Educational Resources Information Center

    Sherwood, David E.

    2010-01-01

    According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…

  8. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration

    PubMed Central

    Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George

    2018-01-01

    Abstract Background Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. Methods We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Results Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Conclusions Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present. PMID:29088358

  9. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration.

    PubMed

    Sanderson, Eleanor; Macdonald-Wallis, Corrie; Davey Smith, George

    2018-04-01

    Negative control exposure studies are increasingly being used in epidemiological studies to strengthen causal inference regarding an exposure-outcome association when unobserved confounding is thought to be present. Negative control exposure studies contrast the magnitude of association of the negative control, which has no causal effect on the outcome but is associated with the unmeasured confounders in the same way as the exposure, with the magnitude of the association of the exposure with the outcome. A markedly larger effect of the exposure on the outcome than the negative control on the outcome strengthens inference that the exposure has a causal effect on the outcome. We investigate the effect of measurement error in the exposure and negative control variables on the results obtained from a negative control exposure study. We do this in models with continuous and binary exposure and negative control variables using analysis of the bias of the estimated coefficients and Monte Carlo simulations. Our results show that measurement error in either the exposure or negative control variables can bias the estimated results from the negative control exposure study. Measurement error is common in the variables used in epidemiological studies; these results show that negative control exposure studies cannot be used to precisely determine the size of the effect of the exposure variable, or adequately adjust for unobserved confounding; however, they can be used as part of a body of evidence to aid inference as to whether a causal effect of the exposure on the outcome is present.

  10. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    PubMed

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  11. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  12. Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1987-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.

  13. Dissociating response conflict and error likelihood in anterior cingulate cortex.

    PubMed

    Yeung, Nick; Nieuwenhuis, Sander

    2009-11-18

    Neuroimaging studies consistently report activity in anterior cingulate cortex (ACC) in conditions of high cognitive demand, leading to the view that ACC plays a crucial role in the control of cognitive processes. According to one prominent theory, the sensitivity of ACC to task difficulty reflects its role in monitoring for the occurrence of competition, or "conflict," between responses to signal the need for increased cognitive control. However, a contrasting theory proposes that ACC is the recipient rather than source of monitoring signals, and that ACC activity observed in relation to task demand reflects the role of this region in learning about the likelihood of errors. Response conflict and error likelihood are typically confounded, making the theories difficult to distinguish empirically. The present research therefore used detailed computational simulations to derive contrasting predictions regarding ACC activity and error rate as a function of response speed. The simulations demonstrated a clear dissociation between conflict and error likelihood: fast response trials are associated with low conflict but high error likelihood, whereas slow response trials show the opposite pattern. Using the N2 component as an index of ACC activity, an EEG study demonstrated that when conflict and error likelihood are dissociated in this way, ACC activity tracks conflict and is negatively correlated with error likelihood. These findings support the conflict-monitoring theory and suggest that, in speeded decision tasks, ACC activity reflects current task demands rather than the retrospective coding of past performance.

  14. Systematic error of diode thermometer.

    PubMed

    Iskrenovic, Predrag S

    2009-08-01

    Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.

  15. Human error in airway facilities.

    DOT National Transportation Integrated Search

    2001-01-01

    This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...

  16. Current-controlled curvature of coated micromirrors

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Talghader, Joseph J.

    2003-06-01

    Precise control of micromirror curvature is critical in many optical microsystems. Micromirrors with current-controlled curvature are demonstrated. The working principle is that resistive heating changes the temperature of the micromirrors and thermal expansion induces a controlled curvature whose magnitude is determined by coating design. For example, for wide focal-length tuning, the radius of curvature of a gold-coated mirror was tuned from 2.5 to 8.2 mm over a current-induced temperature range from 22° to 72 °C. For fine focal-length tuning, the radius of curvature of a dielectric-coated (SiO2/Y2O3 λ/4 pairs) mirror was tuned from -0.68 to -0.64 mm over a current-induced temperature range from 22 to 84 °C. These results should be readily extendable to mirror flattening or real-time adaptive shape control.

  17. Detecting errors and anomalies in computerized materials control and accountability databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiteson, R.; Hench, K.; Yarbro, T.

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines thesemore » large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results.« less

  18. A preliminary taxonomy of medical errors in family practice.

    PubMed

    Dovey, S M; Meyers, D S; Phillips, R L; Green, L A; Fryer, G E; Galliher, J M; Kappus, J; Grob, P

    2002-09-01

    To develop a preliminary taxonomy of primary care medical errors. Qualitative analysis to identify categories of error reported during a randomized controlled trial of computer and paper reporting methods. The National Network for Family Practice and Primary Care Research. Family physicians. Medical error category, context, and consequence. Forty two physicians made 344 reports: 284 (82.6%) arose from healthcare systems dysfunction; 46 (13.4%) were errors due to gaps in knowledge or skills; and 14 (4.1%) were reports of adverse events, not errors. The main subcategories were: administrative failure (102; 30.9% of errors), investigation failures (82; 24.8%), treatment delivery lapses (76; 23.0%), miscommunication (19; 5.8%), payment systems problems (4; 1.2%), error in the execution of a clinical task (19; 5.8%), wrong treatment decision (14; 4.2%), and wrong diagnosis (13; 3.9%). Most reports were of errors that were recognized and occurred in reporters' practices. Affected patients ranged in age from 8 months to 100 years, were of both sexes, and represented all major US ethnic groups. Almost half the reports were of events which had adverse consequences. Ten errors resulted in patients being admitted to hospital and one patient died. This medical error taxonomy, developed from self-reports of errors observed by family physicians during their routine clinical practice, emphasizes problems in healthcare processes and acknowledges medical errors arising from shortfalls in clinical knowledge and skills. Patient safety strategies with most effect in primary care settings need to be broader than the current focus on medication errors.

  19. Numerical Experiments in Error Control for Sound Propagation Using a Damping Layer Boundary Treatment

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2017-01-01

    This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].

  20. Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain.

    PubMed

    Reinhart, Robert M G; Zhu, Julia; Park, Sohee; Woodman, Geoffrey F

    2015-07-28

    Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia.

  1. Blood transfusion sampling and a greater role for error recovery.

    PubMed

    Oldham, Jane

    Patient identification errors in pre-transfusion blood sampling ('wrong blood in tube') are a persistent area of risk. These errors can potentially result in life-threatening complications. Current measures to address root causes of incidents and near misses have not resolved this problem and there is a need to look afresh at this issue. PROJECT PURPOSE: This narrative review of the literature is part of a wider system-improvement project designed to explore and seek a better understanding of the factors that contribute to transfusion sampling error as a prerequisite to examining current and potential approaches to error reduction. A broad search of the literature was undertaken to identify themes relating to this phenomenon. KEY DISCOVERIES: Two key themes emerged from the literature. Firstly, despite multi-faceted causes of error, the consistent element is the ever-present potential for human error. Secondly, current focus on error prevention could potentially be augmented with greater attention to error recovery. Exploring ways in which clinical staff taking samples might learn how to better identify their own errors is proposed to add to current safety initiatives.

  2. The Relationship Between Work Commitment, Dynamic, and Medication Error.

    PubMed

    Rezaiamin, Abdoolkarim; Pazokian, Marzieh; Zagheri Tafreshi, Mansoureh; Nasiri, Malihe

    2017-05-01

    Incidence of medication errors in intensive care unit (ICU) can cause irreparable damage for ICU patients. Therefore, it seems necessary to find the causes of medication errors in this section. Work commitment and dynamic might affect the incidence of medication errors in ICU. To assess the mentioned hypothesis, we performed a descriptive-analytical study which was carried out on 117 nurses working in ICU of educational hospitals in Tehran. Minick et al., Salyer et al., and Wakefield et al. scales were used for data gathering on work commitment, dynamic, and medication errors, respectively. Findings of the current study revealed that high work commitment in ICU nurses caused low number of medication errors, including intravenous and nonintravenous. We controlled the effects of confounding variables in detection of this relationship. In contrast, no significant association was found between work dynamic and different types of medication errors. Although the study did not observe any relationship between the dynamics and rate of medication errors, the training of nurses or nursing students to create a dynamic environment in hospitals can increase their interest in the profession and increase job satisfaction in them. Also they must have enough ability in work dynamic so that they don't confused and distracted result in frequent changes of orders, care plans, and procedures.

  3. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  4. Airborne data measurement system errors reduction through state estimation and control optimization

    NASA Astrophysics Data System (ADS)

    Sebryakov, G. G.; Muzhichek, S. M.; Pavlov, V. I.; Ermolin, O. V.; Skrinnikov, A. A.

    2018-02-01

    The paper discusses the problem of airborne data measurement system errors reduction through state estimation and control optimization. The approaches are proposed based on the methods of experiment design and the theory of systems with random abrupt structure variation. The paper considers various control criteria as applied to an aircraft data measurement system. The physics of criteria is explained, the mathematical description and the sequence of steps for each criterion application is shown. The formula is given for airborne data measurement system state vector posterior estimation based for systems with structure variations.

  5. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  6. Error characterization and quantum control benchmarking in liquid state NMR using quantum information processing techniques

    NASA Astrophysics Data System (ADS)

    Laforest, Martin

    Quantum information processing has been the subject of countless discoveries since the early 1990's. It is believed to be the way of the future for computation: using quantum systems permits one to perform computation exponentially faster than on a regular classical computer. Unfortunately, quantum systems that not isolated do not behave well. They tend to lose their quantum nature due to the presence of the environment. If key information is known about the noise present in the system, methods such as quantum error correction have been developed in order to reduce the errors introduced by the environment during a given quantum computation. In order to harness the quantum world and implement the theoretical ideas of quantum information processing and quantum error correction, it is imperative to understand and quantify the noise present in the quantum processor and benchmark the quality of the control over the qubits. Usual techniques to estimate the noise or the control are based on quantum process tomography (QPT), which, unfortunately, demands an exponential amount of resources. This thesis presents work towards the characterization of noisy processes in an efficient manner. The protocols are developed from a purely abstract setting with no system-dependent variables. To circumvent the exponential nature of quantum process tomography, three different efficient protocols are proposed and experimentally verified. The first protocol uses the idea of quantum error correction to extract relevant parameters about a given noise model, namely the correlation between the dephasing of two qubits. Following that is a protocol using randomization and symmetrization to extract the probability that a given number of qubits are simultaneously corrupted in a quantum memory, regardless of the specifics of the error and which qubits are affected. Finally, a last protocol, still using randomization ideas, is developed to estimate the average fidelity per computational gates for

  7. Trait anger in relation to neural and behavioral correlates of response inhibition and error-processing.

    PubMed

    Lievaart, Marien; van der Veen, Frederik M; Huijding, Jorg; Naeije, Lilian; Hovens, Johannes E; Franken, Ingmar H A

    2016-01-01

    Effortful control is considered to be an important factor in explaining individual differences in trait anger. In the current study, we sought to investigate the relation between anger-primed effortful control (i.e., inhibitory control and error-processing) and trait anger using an affective Go/NoGo task. Individuals low (LTA; n=45) and high (HTA; n=49) on trait anger were selected for this study. Behavioral performance (accuracy) and Event-Related Potentials (ERPs; i.e., N2, P3, ERN, Pe) were compared between both groups. Contrary to our predictions, we found no group differences regarding inhibitory control. That is, HTA and LTA individuals made comparable numbers of commission errors on NoGo trials and no significant differences were found on the N2 and P3 amplitudes. With respect to error-processing, we found reduced Pe amplitudes following errors in HTA individuals as compared to LTA individuals, whereas the ERN amplitudes were comparable for both groups. These results indicate that high trait anger individuals show deficits in later stages of error-processing, which may explain the continuation of impulsive behaviors in HTA individuals despite their negative consequences. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  9. Error Sources in Asteroid Astrometry

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.

    2000-01-01

    Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.

  10. Software error detection

    NASA Technical Reports Server (NTRS)

    Buechler, W.; Tucker, A. G.

    1981-01-01

    Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.

  11. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    NASA Technical Reports Server (NTRS)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  12. Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection.

    PubMed

    He, Jianbo; Li, Jijie; Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan

    2015-01-01

    Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively.

  13. IPTV multicast with peer-assisted lossy error control

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd

    2010-07-01

    Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.

  14. A preliminary taxonomy of medical errors in family practice

    PubMed Central

    Dovey, S; Meyers, D; Phillips, R; Green, L; Fryer, G; Galliher, J; Kappus, J; Grob, P

    2002-01-01

    Objective: To develop a preliminary taxonomy of primary care medical errors. Design: Qualitative analysis to identify categories of error reported during a randomized controlled trial of computer and paper reporting methods. Setting: The National Network for Family Practice and Primary Care Research. Participants: Family physicians. Main outcome measures: Medical error category, context, and consequence. Results: Forty two physicians made 344 reports: 284 (82.6%) arose from healthcare systems dysfunction; 46 (13.4%) were errors due to gaps in knowledge or skills; and 14 (4.1%) were reports of adverse events, not errors. The main subcategories were: administrative failures (102; 30.9% of errors), investigation failures (82; 24.8%), treatment delivery lapses (76; 23.0%), miscommunication (19; 5.8%), payment systems problems (4; 1.2%), error in the execution of a clinical task (19; 5.8%), wrong treatment decision (14; 4.2%), and wrong diagnosis (13; 3.9%). Most reports were of errors that were recognized and occurred in reporters' practices. Affected patients ranged in age from 8 months to 100 years, were of both sexes, and represented all major US ethnic groups. Almost half the reports were of events which had adverse consequences. Ten errors resulted in patients being admitted to hospital and one patient died. Conclusions: This medical error taxonomy, developed from self-reports of errors observed by family physicians during their routine clinical practice, emphasizes problems in healthcare processes and acknowledges medical errors arising from shortfalls in clinical knowledge and skills. Patient safety strategies with most effect in primary care settings need to be broader than the current focus on medication errors. PMID:12486987

  15. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  16. An Efficient Silent Data Corruption Detection Method with Error-Feedback Control and Even Sampling for HPC Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Sheng; Berrocal, Eduardo; Cappello, Franck

    The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method tomore » minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.« less

  17. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  18. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  19. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

    PubMed

    Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A

    2018-05-01

    An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  1. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  2. Error sources affecting thermocouple thermometry in RF electromagnetic fields.

    PubMed

    Chakraborty, D P; Brezovich, I A

    1982-03-01

    Thermocouple thermometry errors in radiofrequency (typically 13, 56 MHZ) electromagnetic fields such as are encountered in hyperthermia are described. RF currents capacitatively or inductively coupled into the thermocouple-detector circuit produce errors which are a combination of interference, i.e., 'pick-up' error, and genuine rf induced temperature changes at the junction of the thermocouple. The former can be eliminated by adequate filtering and shielding; the latter is due to (a) junction current heating in which the generally unequal resistances of the thermocouple wires cause a net current flow from the higher to the lower resistance wire across the junction, (b) heating in the surrounding resistive material (tissue in hyperthermia), and (c) eddy current heating of the thermocouple wires in the oscillating magnetic field. Low frequency theories are used to estimate these errors under given operating conditions and relevant experiments demonstrating these effects and precautions necessary to minimize the errors are described. It is shown that at 13.56 MHz and voltage levels below 100 V rms these errors do not exceed 0.1 degrees C if the precautions are observed and thermocouples with adequate insulation (e.g., Bailey IT-18) are used. Results of this study are being currently used in our clinical work with good success.

  3. Common errors in multidrug-resistant tuberculosis management.

    PubMed

    Monedero, Ignacio; Caminero, Jose A

    2014-02-01

    Multidrug-resistant tuberculosis (MDR-TB), defined as being resistant to at least rifampicin and isoniazid, has an increasing burden and threatens TB control. Diagnosis is limited and usually delayed while treatment is long lasting, toxic and poorly effective. MDR-TB management in scarce-resource settings is demanding however it is feasible and extremely necessary. In these settings, cure rates do not usually exceed 60-70% and MDR-TB management is novel for many TB programs. In this challenging scenario, both clinical and programmatic errors are likely to occur. The majority of these errors may be prevented or alleviated with appropriate and timely training in addition to uninterrupted procurement of high-quality drugs, updated national guidelines and laws and an overall improvement in management capacities. While new tools for diagnosis and shorter and less toxic treatment are not available in developing countries, MDR-TB management will remain complex in scarce resource settings. Focusing special attention on the common errors in diagnosis, regimen design and especially treatment delivery may benefit patients and programs with current outdated tools. The present article is a compilation of typical errors repeatedly observed by the authors in a wide range of countries during technical assistant missions and trainings.

  4. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  5. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  6. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  7. Local position control: A new concept for control of manipulators

    NASA Technical Reports Server (NTRS)

    Kelly, Frederick A.

    1988-01-01

    Resolved motion rate control is currently one of the most frequently used methods of manipulator control. It is currently used in the Space Shuttle remote manipulator system (RMS) and in prosthetic devices. Position control is predominately used in locating the end-effector of an industrial manipulator along a path with prescribed timing. In industrial applications, resolved motion rate control is inappropriate since position error accumulates. This is due to velocity being the control variable. In some applications this property is an advantage rather than a disadvantage. It may be more important for motion to end as soon as the input command is removed rather than reduce the position error to zero. Local position control is a new concept for manipulator control which retains the important properties of resolved motion rate control, but reduces the drift. Local position control can be considered to be a generalization of resolved position and resolved rate control. It places both control schemes on a common mathematical basis.

  8. Motion compensated shape error concealment.

    PubMed

    Schuster, Guido M; Katsaggelos, Aggelos K

    2006-02-01

    The introduction of Video Objects (VOs) is one of the innovations of MPEG-4. The alpha-plane of a VO defines its shape at a given instance in time and hence determines the boundary of its texture. In packet-based networks, shape, motion, and texture are subject to loss. While there has been considerable attention paid to the concealment of texture and motion errors, little has been done in the field of shape error concealment. In this paper we propose a post-processing shape error concealment technique that uses the motion compensated boundary information of the previously received alpha-plane. The proposed approach is based on matching received boundary segments in the current frame to the boundary in the previous frame. This matching is achieved by finding a maximally smooth motion vector field. After the current boundary segments are matched to the previous boundary, the missing boundary pieces are reconstructed by motion compensation. Experimental results demonstrating the performance of the proposed motion compensated shape error concealment method, and comparing it with the previously proposed weighted side matching method are presented.

  9. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr; Picarelli, Athena, E-mail: athena.picarelli@inria.fr; Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system ofmore » controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.« less

  10. Disclosure of Medical Errors in Oman

    PubMed Central

    Norrish, Mark I. K.

    2015-01-01

    Objectives: This study aimed to provide insight into the preferences for and perceptions of medical error disclosure (MED) by members of the public in Oman. Methods: Between January and June 2012, an online survey was used to collect responses from 205 members of the public across five governorates of Oman. Results: A disclosure gap was revealed between the respondents’ preferences for MED and perceived current MED practices in Oman. This disclosure gap extended to both the type of error and the person most likely to disclose the error. Errors resulting in patient harm were found to have a strong influence on individuals’ perceived quality of care. In addition, full disclosure was found to be highly valued by respondents and able to mitigate for a perceived lack of care in cases where medical errors led to damages. Conclusion: The perceived disclosure gap between respondents’ MED preferences and perceptions of current MED practices in Oman needs to be addressed in order to increase public confidence in the national health care system. PMID:26052463

  11. Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder.

    PubMed

    Ross, Marisa C; Lenow, Jennifer K; Kilts, Clinton D; Cisler, Josh M

    2018-05-12

    Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Headaches associated with refractive errors: myth or reality?

    PubMed

    Gil-Gouveia, R; Martins, I P

    2002-04-01

    Headache and refractive errors are very common conditions in the general population, and those with headache often attribute their pain to a visual problem. The International Headache Society (IHS) criteria for the classification of headache includes an entity of headache associated with refractive errors (HARE), but indicates that its importance is widely overestimated. To compare overall headache frequency and HARE frequency in healthy subjects with uncorrected or miscorrected refractive errors and a control group. We interviewed 105 individuals with uncorrected refractive errors and a control group of 71 subjects (with properly corrected or without refractive errors) regarding their headache history. We compared the occurrence of headache and its diagnosis in both groups and assessed its relation to their habits of visual effort and type of refractive errors. Headache frequency was similar in both subjects and controls. Headache associated with refractive errors was the only headache type significantly more common in subjects with refractive errors than in controls (6.7% versus 0%). It was associated with hyperopia and was unrelated to visual effort or to the severity of visual error. With adequate correction, 72.5% of the subjects with headache and refractive error reported improvement in their headaches, and 38% had complete remission of headache. Regardless of the type of headache present, headache frequency was significantly reduced in these subjects (t = 2.34, P =.02). Headache associated with refractive errors was rarely identified in individuals with refractive errors. In those with chronic headache, proper correction of refractive errors significantly improved headache complaints and did so primarily by decreasing the frequency of headache episodes.

  13. Passive quantum error correction of linear optics networks through error averaging

    NASA Astrophysics Data System (ADS)

    Marshman, Ryan J.; Lund, Austin P.; Rohde, Peter P.; Ralph, Timothy C.

    2018-02-01

    We propose and investigate a method of error detection and noise correction for bosonic linear networks using a method of unitary averaging. The proposed error averaging does not rely on ancillary photons or control and feedforward correction circuits, remaining entirely passive in its operation. We construct a general mathematical framework for this technique and then give a series of proof of principle examples including numerical analysis. Two methods for the construction of averaging are then compared to determine the most effective manner of implementation and probe the related error thresholds. Finally we discuss some of the potential uses of this scheme.

  14. The effectiveness of the error reporting promoting program on the nursing error incidence rate in Korean operating rooms.

    PubMed

    Kim, Myoung-Soo; Kim, Jung-Soon; Jung, In Sook; Kim, Young Hae; Kim, Ho Jung

    2007-03-01

    The purpose of this study was to develop and evaluate an error reporting promoting program(ERPP) to systematically reduce the incidence rate of nursing errors in operating room. A non-equivalent control group non-synchronized design was used. Twenty-six operating room nurses who were in one university hospital in Busan participated in this study. They were stratified into four groups according to their operating room experience and were allocated to the experimental and control groups using a matching method. Mann-Whitney U Test was used to analyze the differences pre and post incidence rates of nursing errors between the two groups. The incidence rate of nursing errors decreased significantly in the experimental group compared to the pre-test score from 28.4% to 15.7%. The incidence rate by domains, it decreased significantly in the 3 domains-"compliance of aseptic technique", "management of document", "environmental management" in the experimental group while it decreased in the control group which was applied ordinary error-reporting method. Error-reporting system can make possible to hold the errors in common and to learn from them. ERPP was effective to reduce the errors of recognition-related nursing activities. For the wake of more effective error-prevention, we will be better to apply effort of risk management along the whole health care system with this program.

  15. Human Error: A Concept Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.

    2007-01-01

    Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.

  16. BETASEQ: a powerful novel method to control type-I error inflation in partially sequenced data for rare variant association testing.

    PubMed

    Yan, Song; Li, Yun

    2014-02-15

    Despite its great capability to detect rare variant associations, next-generation sequencing is still prohibitively expensive when applied to large samples. In case-control studies, it is thus appealing to sequence only a subset of cases to discover variants and genotype the identified variants in controls and the remaining cases under the reasonable assumption that causal variants are usually enriched among cases. However, this approach leads to inflated type-I error if analyzed naively for rare variant association. Several methods have been proposed in recent literature to control type-I error at the cost of either excluding some sequenced cases or correcting the genotypes of discovered rare variants. All of these approaches thus suffer from certain extent of information loss and thus are underpowered. We propose a novel method (BETASEQ), which corrects inflation of type-I error by supplementing pseudo-variants while keeps the original sequence and genotype data intact. Extensive simulations and real data analysis demonstrate that, in most practical situations, BETASEQ leads to higher testing powers than existing approaches with guaranteed (controlled or conservative) type-I error. BETASEQ and associated R files, including documentation, examples, are available at http://www.unc.edu/~yunmli/betaseq

  17. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  18. Error Discounting in Probabilistic Category Learning

    PubMed Central

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    Some current theories of probabilistic categorization assume that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report two probabilistic-categorization experiments that investigated error discounting by shifting feedback probabilities to new values after different amounts of training. In both experiments, responding gradually became less responsive to errors, and learning was slowed for some time after the feedback shift. Both results are indicative of error discounting. Quantitative modeling of the data revealed that adding a mechanism for error discounting significantly improved the fits of an exemplar-based and a rule-based associative learning model, as well as of a recency-based model of categorization. We conclude that error discounting is an important component of probabilistic learning. PMID:21355666

  19. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic

  20. Errors in fluid balance with pump control of continuous hemodialysis.

    PubMed

    Roberts, M; Winney, R J

    1992-02-01

    The use of pumps both proximal and distal to the dialyzer during continuous hemodialysis provides control of dialysate and ultrafiltration flow rates, thereby reducing nursing time. However, we had noted unexpected severe extracellular fluid depletion suggesting that errors in pump delivery may be responsible. We measured in vitro the operation of various pumps under conditions similar to continuous hemodialysis. Fluid delivery of peristaltic and roller pumps varied with how the tubing set was inserted in the pump. Piston and peristaltic pumps with dedicated pump segments were more accurate. Pumps should be calibrated and tested under conditions simulating continuous hemodialysis prior to in vivo use.

  1. Error Consistency Analysis Scheme for Infrared Ultraspectral Sounding Retrieval Error Budget Estimation

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, Larry, L.

    2013-01-01

    Great effort has been devoted towards validating geophysical parameters retrieved from ultraspectral infrared radiances obtained from satellite remote sensors. An error consistency analysis scheme (ECAS), utilizing fast radiative transfer model (RTM) forward and inverse calculations, has been developed to estimate the error budget in terms of mean difference and standard deviation of error in both spectral radiance and retrieval domains. The retrieval error is assessed through ECAS without relying on other independent measurements such as radiosonde data. ECAS establishes a link between the accuracies of radiances and retrieved geophysical parameters. ECAS can be applied to measurements from any ultraspectral instrument and any retrieval scheme with its associated RTM. In this manuscript, ECAS is described and demonstrated with measurements from the MetOp-A satellite Infrared Atmospheric Sounding Interferometer (IASI). This scheme can be used together with other validation methodologies to give a more definitive characterization of the error and/or uncertainty of geophysical parameters retrieved from ultraspectral radiances observed from current and future satellite remote sensors such as IASI, the Atmospheric Infrared Sounder (AIRS), and the Cross-track Infrared Sounder (CrIS).

  2. Selecting Statistical Quality Control Procedures for Limiting the Impact of Increases in Analytical Random Error on Patient Safety.

    PubMed

    Yago, Martín

    2017-05-01

    QC planning based on risk management concepts can reduce the probability of harming patients due to an undetected out-of-control error condition. It does this by selecting appropriate QC procedures to decrease the number of erroneous results reported. The selection can be easily made by using published nomograms for simple QC rules when the out-of-control condition results in increased systematic error. However, increases in random error also occur frequently and are difficult to detect, which can result in erroneously reported patient results. A statistical model was used to construct charts for the 1 ks and X /χ 2 rules. The charts relate the increase in the number of unacceptable patient results reported due to an increase in random error with the capability of the measurement procedure. They thus allow for QC planning based on the risk of patient harm due to the reporting of erroneous results. 1 ks Rules are simple, all-around rules. Their ability to deal with increases in within-run imprecision is minimally affected by the possible presence of significant, stable, between-run imprecision. X /χ 2 rules perform better when the number of controls analyzed during each QC event is increased to improve QC performance. Using nomograms simplifies the selection of statistical QC procedures to limit the number of erroneous patient results reported due to an increase in analytical random error. The selection largely depends on the presence or absence of stable between-run imprecision. © 2017 American Association for Clinical Chemistry.

  3. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  4. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  5. Reduced error signalling in medication-naive children with ADHD: associations with behavioural variability and post-error adaptations

    PubMed Central

    Plessen, Kerstin J.; Allen, Elena A.; Eichele, Heike; van Wageningen, Heidi; Høvik, Marie Farstad; Sørensen, Lin; Worren, Marius Kalsås; Hugdahl, Kenneth; Eichele, Tom

    2016-01-01

    Background We examined the blood-oxygen level–dependent (BOLD) activation in brain regions that signal errors and their association with intraindividual behavioural variability and adaptation to errors in children with attention-deficit/hyperactivity disorder (ADHD). Methods We acquired functional MRI data during a Flanker task in medication-naive children with ADHD and healthy controls aged 8–12 years and analyzed the data using independent component analysis. For components corresponding to performance monitoring networks, we compared activations across groups and conditions and correlated them with reaction times (RT). Additionally, we analyzed post-error adaptations in behaviour and motor component activations. Results We included 25 children with ADHD and 29 controls in our analysis. Children with ADHD displayed reduced activation to errors in cingulo-opercular regions and higher RT variability, but no differences of interference control. Larger BOLD amplitude to error trials significantly predicted reduced RT variability across all participants. Neither group showed evidence of post-error response slowing; however, post-error adaptation in motor networks was significantly reduced in children with ADHD. This adaptation was inversely related to activation of the right-lateralized ventral attention network (VAN) on error trials and to task-driven connectivity between the cingulo-opercular system and the VAN. Limitations Our study was limited by the modest sample size and imperfect matching across groups. Conclusion Our findings show a deficit in cingulo-opercular activation in children with ADHD that could relate to reduced signalling for errors. Moreover, the reduced orienting of the VAN signal may mediate deficient post-error motor adaptions. Pinpointing general performance monitoring problems to specific brain regions and operations in error processing may help to guide the targets of future treatments for ADHD. PMID:26441332

  6. Error Discounting in Probabilistic Category Learning

    ERIC Educational Resources Information Center

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    The assumption in some current theories of probabilistic categorization is that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report 2 probabilistic-categorization experiments in which we investigated error…

  7. A method on error analysis for large-aperture optical telescope control system

    NASA Astrophysics Data System (ADS)

    Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei

    2016-10-01

    For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error

  8. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  9. A Rejection Principle for Sequential Tests of Multiple Hypotheses Controlling Familywise Error Rates

    PubMed Central

    BARTROFF, JAY; SONG, JINLIN

    2015-01-01

    We present a unifying approach to multiple testing procedures for sequential (or streaming) data by giving sufficient conditions for a sequential multiple testing procedure to control the familywise error rate (FWER). Together we call these conditions a “rejection principle for sequential tests,” which we then apply to some existing sequential multiple testing procedures to give simplified understanding of their FWER control. Next the principle is applied to derive two new sequential multiple testing procedures with provable FWER control, one for testing hypotheses in order and another for closed testing. Examples of these new procedures are given by applying them to a chromosome aberration data set and to finding the maximum safe dose of a treatment. PMID:26985125

  10. Negligence, genuine error, and litigation

    PubMed Central

    Sohn, David H

    2013-01-01

    Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort system in the United States; and review current and future solutions, including medical malpractice reform, alternative dispute resolution, health courts, and no-fault compensation systems. The current political environment favors investigation of non-cap tort reform remedies; investment into more rational oversight systems, such as health courts or no-fault systems may reap both quantitative and qualitative benefits for a less costly and safer health system. PMID:23426783

  11. Errors Affect Hypothetical Intertemporal Food Choice in Women

    PubMed Central

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2014-01-01

    Growing evidence suggests that the ability to control behavior is enhanced in contexts in which errors are more frequent. Here we investigated whether pairing desirable food with errors could decrease impulsive choice during hypothetical temporal decisions about food. To this end, healthy women performed a Stop-signal task in which one food cue predicted high-error rate, and another food cue predicted low-error rate. Afterwards, we measured participants’ intertemporal preferences during decisions between smaller-immediate and larger-delayed amounts of food. We expected reduced sensitivity to smaller-immediate amounts of food associated with high-error rate. Moreover, taking into account that deprivational states affect sensitivity for food, we controlled for participants’ hunger. Results showed that pairing food with high-error likelihood decreased temporal discounting. This effect was modulated by hunger, indicating that, the lower the hunger level, the more participants showed reduced impulsive preference for the food previously associated with a high number of errors as compared with the other food. These findings reveal that errors, which are motivationally salient events that recruit cognitive control and drive avoidance learning against error-prone behavior, are effective in reducing impulsive choice for edible outcomes. PMID:25244534

  12. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  13. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  14. Refractive errors and ocular findings in children with intellectual disability: A controlled study

    PubMed Central

    Akinci, Arsen; Oner, Ozgur; Bozkurt, Ozlem Hekim; Guven, Alev; Degerliyurt, Aydan; Munir, Kerim

    2015-01-01

    PURPOSE To evaluate the ocular findings and refractive errors in children with intellectual disability and in controls of average intellectual development of similar socioeconomic backgrounds. METHODS The study was conducted at Diskapi Children’s Hospital in Ankara, Turkey: 724 subjects with intellectual disability and 151 control subjects were evaluated. The subjects with intellectual disability were subdivided into mild (IQ 50–69, n = 490), moderate (IQ 35–49, n = 164), and severe (IQ <34, n = 70) groups, and syndromic (n = 138) versus nonsyndromic (n = 586) disability. All children underwent cycloplegic autorefraction or retinoscopy, slit-lamp biomicroscopy, and dilated fundus examination. Ocular alignment was assessed by Hirschberg, Krimsky, or prism cover test. The main outcome measure was the prevalence of refractive errors and ocular findings. RESULTS Seventy-seven percent of subjects with intellectual disability, and 42.4% of controls, had ocular findings. The children with intellectual disability had significantly more nystagmus, strabismus, astigmatism, and hypermetropia than controls. Children with syndromic intellectual disability had significantly more nystagmus, strabismus, astigmatism, and hypermetropia than subjects with nonsyndromic intellectual disability. Increasing severity of intellectual disability was related to higher prevalence of nystagmus, strabismus, astigmatism, hypermetropia, and anisometropia. CONCLUSIONS From a public health perspective, evaluation and treatment of ocular and refractive findings in children with moderate, severe, and syndromic intellectual disability categories is urgently needed and likely to be highly effective in alleviating future health and social care costs, as well as improving the productive lives of individuals with intellectual disability. PMID:18595752

  15. Fault-tolerant quantum error detection.

    PubMed

    Linke, Norbert M; Gutierrez, Mauricio; Landsman, Kevin A; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R; Monroe, Christopher

    2017-10-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors.

  16. Fault-tolerant quantum error detection

    PubMed Central

    Linke, Norbert M.; Gutierrez, Mauricio; Landsman, Kevin A.; Figgatt, Caroline; Debnath, Shantanu; Brown, Kenneth R.; Monroe, Christopher

    2017-01-01

    Quantum computers will eventually reach a size at which quantum error correction becomes imperative. Quantum information can be protected from qubit imperfections and flawed control operations by encoding a single logical qubit in multiple physical qubits. This redundancy allows the extraction of error syndromes and the subsequent detection or correction of errors without destroying the logical state itself through direct measurement. We show the encoding and syndrome measurement of a fault-tolerantly prepared logical qubit via an error detection protocol on four physical qubits, represented by trapped atomic ions. This demonstrates the robustness of a logical qubit to imperfections in the very operations used to encode it. The advantage persists in the face of large added error rates and experimental calibration errors. PMID:29062889

  17. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  18. Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats

    2012-01-01

    Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.

  19. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  20. Self-regulating proportionally controlled heating apparatus and technique

    NASA Technical Reports Server (NTRS)

    Strange, M. G. (Inventor)

    1975-01-01

    A self-regulating proportionally controlled heating apparatus and technique is provided wherein a single electrical resistance heating element having a temperature coefficient of resistance serves simultaneously as a heater and temperature sensor. The heating element is current-driven and the voltage drop across the heating element is monitored and a component extracted which is attributable to a change in actual temperature of the heating element from a desired reference temperature, so as to produce a resulting error signal. The error signal is utilized to control the level of the heater drive current and the actual heater temperature in a direction to reduce the noted temperature difference. The continuous nature of the process for deriving the error signal feedback information results in true proportional control of the heating element without the necessity for current-switching which may interfere with nearby sensitive circuits, and with no cyclical variation in the controlled temperature.

  1. Relationship of employee attitudes and supervisor-controller ratio to en route operational error rates : final report.

    DOT National Transportation Integrated Search

    2002-05-01

    An operational error (OE) results when an air traffic control specialist (ATCS) fails to maintain appropriate separation between aircraft, obstacles, etc. Recent research on OEs has focused on situational and individual characteristics (Center for Na...

  2. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  3. Off-axis current drive and real-time control of current profile in JT-60U

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Ide, S.; Oikawa, T.; Fujita, T.; Ishikawa, M.; Seki, M.; Matsunaga, G.; Hatae, T.; Naito, O.; Hamamatsu, K.; Sueoka, M.; Hosoyama, H.; Nakazato, M.; JT-60 Team

    2008-04-01

    Aiming at optimization of current profile in high-β plasmas for higher confinement and stability, a real-time control system of the minimum of the safety factor (qmin) using the off-axis current drive has been developed. The off-axis current drive can raise the safety factor in the centre and help to avoid instability that limits the performance of the plasma. The system controls the injection power of lower-hybrid waves, and hence its off-axis driven current in order to control qmin. The real-time control of qmin is demonstrated in a high-β plasma, where qmin follows the temporally changing reference qmin,ref from 1.3 to 1.7. Applying the control to another high-β discharge (βN = 1.7, βp = 1.5) with m/n = 2/1 neo-classical tearing mode (NTM), qmin was raised above 2 and the NTM was suppressed. The stored energy increased by 16% with the NTM suppressed, since the resonant rational surface was eliminated. For the future use for current profile control, current density profile for off-axis neutral beam current drive (NBCD) is for the first time measured, using the motional Stark effect diagnostic. Spatially localized NBCD profile was clearly observed at the normalized minor radius ρ of about 0.6-0.8. The location was also confirmed by multi-chordal neutron emission profile measurement. The total amount of the measured beam driven current was consistent with the theoretical calculation using the ACCOME code. The CD location in the calculation was inward shifted than the measurement.

  4. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    NASA Astrophysics Data System (ADS)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  5. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  6. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception.

    PubMed

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs.

  7. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    PubMed

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  8. Zener diode controls switching of large direct currents

    NASA Technical Reports Server (NTRS)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  9. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  10. Prescribing Errors Involving Medication Dosage Forms

    PubMed Central

    Lesar, Timothy S

    2002-01-01

    CONTEXT Prescribing errors involving medication dose formulations have been reported to occur frequently in hospitals. No systematic evaluations of the characteristics of errors related to medication dosage formulation have been performed. OBJECTIVE To quantify the characteristics, frequency, and potential adverse patient effects of prescribing errors involving medication dosage forms . DESIGN Evaluation of all detected medication prescribing errors involving or related to medication dosage forms in a 631-bed tertiary care teaching hospital. MAIN OUTCOME MEASURES Type, frequency, and potential for adverse effects of prescribing errors involving or related to medication dosage forms. RESULTS A total of 1,115 clinically significant prescribing errors involving medication dosage forms were detected during the 60-month study period. The annual number of detected errors increased throughout the study period. Detailed analysis of the 402 errors detected during the last 16 months of the study demonstrated the most common errors to be: failure to specify controlled release formulation (total of 280 cases; 69.7%) both when prescribing using the brand name (148 cases; 36.8%) and when prescribing using the generic name (132 cases; 32.8%); and prescribing controlled delivery formulations to be administered per tube (48 cases; 11.9%). The potential for adverse patient outcome was rated as potentially “fatal or severe” in 3 cases (0.7%), and “serious” in 49 cases (12.2%). Errors most commonly involved cardiovascular agents (208 cases; 51.7%). CONCLUSIONS Hospitalized patients are at risk for adverse outcomes due to prescribing errors related to inappropriate use of medication dosage forms. This information should be considered in the development of strategies to prevent adverse patient outcomes resulting from such errors. PMID:12213138

  11. Prefrontal transcranial direct current stimulation improves fundamental vehicle control abilities.

    PubMed

    Sakai, Hiroyuki; Uchiyama, Yuji; Tanaka, Satoshi; Sugawara, Sho K; Sadato, Norihiro

    2014-10-15

    Noninvasive brain stimulation techniques have increasingly attracted the attention of neuroscientists because they enable the identification of the causal role of a targeted brain region. However, few studies have applied such techniques to everyday life situations. Here, we investigate the causal role of the dorsolateral prefrontal cortex (DLPFC) in fundamental vehicle control abilities. Thirteen participants underwent a simulated driving task under prefrontal transcranial direct current stimulation (tDCS) on three separate testing days. Each testing day was randomly assigned to either anodal over the right with cathodal over the left DLPFC, cathodal over the right with anodal over the left DLPFC, or sham stimulation. The driving task required the participants to maintain an inter-vehicle distance to a leading car traveling a winding road with a constant speed. Driving performance was quantified using two metrics: the root-mean-square error of inter-vehicle distance as car-following performance, and the standard deviation of lateral position as lane-keeping performance. Results showed that both car-following and lane-keeping performances were significantly greater for right anodal/left cathodal compared with right cathodal/left cathodal and sham stimulation. These results suggest not only the causal involvement of the DLPFC in driving, but also right hemisphere dominance for vehicle control. The findings of this study indicate that tDCS can be a useful tool to examine the causal role of a specific brain region in ecologically valid environments, and also might be a help to drivers with difficulties in vehicle control. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Trial-by-Trial Adjustments of Cognitive Control Following Errors and Response Conflict are Altered in Pediatric Obsessive Compulsive Disorder

    PubMed Central

    Liu, Yanni; Gehring, William J.; Weissman, Daniel H.; Taylor, Stephan F.; Fitzgerald, Kate Dimond

    2012-01-01

    Background: Impairments of cognitive control have been theorized to drive the repetitive thoughts and behaviors of obsessive compulsive disorder (OCD) from early in the course of illness. However, it remains unclear whether altered trial-by-trial adjustments of cognitive control characterize young patients. To test this hypothesis, we determined whether trial-by-trial adjustments of cognitive control are altered in children with OCD, relative to healthy controls. Methods: Forty-eight patients with pediatric OCD and 48 healthy youth performed the Multi-Source Interference Task. Two types of trial-by-trial adjustments of cognitive control were examined: post-error slowing (i.e., slower responses after errors than after correct trials) and post-conflict adaptation (i.e., faster responses in high-conflict incongruent trials that are preceded by other high-conflict incongruent trials, relative to low-conflict congruent trials). Results: While healthy youth exhibited both post-error slowing and post-conflict adaptation, patients with pediatric OCD failed to exhibit either of these effects. Further analyses revealed that patients with low symptom severity showed a reversal of the post-conflict adaptation effect, whereas patients with high symptom severity did not show any post-conflict adaptation. Conclusion: Two types of trial-by-trial adjustments of cognitive control are altered in pediatric OCD. These abnormalities may serve as early markers of the illness. PMID:22593744

  13. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  14. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  15. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  16. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  17. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...

  18. Refractive errors and schizophrenia.

    PubMed

    Caspi, Asaf; Vishne, Tali; Reichenberg, Abraham; Weiser, Mark; Dishon, Ayelet; Lubin, Gadi; Shmushkevitz, Motti; Mandel, Yossi; Noy, Shlomo; Davidson, Michael

    2009-02-01

    Refractive errors (myopia, hyperopia and amblyopia), like schizophrenia, have a strong genetic cause, and dopamine has been proposed as a potential mediator in their pathophysiology. The present study explored the association between refractive errors in adolescence and schizophrenia, and the potential familiality of this association. The Israeli Draft Board carries a mandatory standardized visual accuracy assessment. 678,674 males consecutively assessed by the Draft Board and found to be psychiatrically healthy at age 17 were followed for psychiatric hospitalization with schizophrenia using the Israeli National Psychiatric Hospitalization Case Registry. Sib-ships were also identified within the cohort. There was a negative association between refractive errors and later hospitalization for schizophrenia. Future male schizophrenia patients were two times less likely to have refractive errors compared with never-hospitalized individuals, controlling for intelligence, years of education and socioeconomic status [adjusted Hazard Ratio=.55; 95% confidence interval .35-.85]. The non-schizophrenic male siblings of schizophrenia patients also had lower prevalence of refractive errors compared to never-hospitalized individuals. Presence of refractive errors in adolescence is related to lower risk for schizophrenia. The familiality of this association suggests that refractive errors may be associated with the genetic liability to schizophrenia.

  19. Apparatus for electrode current control in linear MHD generators

    DOEpatents

    Demirjian, Ara M.; Solbes, Albert

    1984-01-01

    Apparatus for controlling a plurality of opposing, electrode, direct-currents at pre-set locations across a channel that comprises a converter for converting each electrode current into first and second periodic control signals which are 180.degree. out of phase with respect to each other and which have equal magnitudes corresponding to the magnitude of the associated electrode current; and couplers for magnetically coupling individual ones of the first control signals and for magnetically coupling individual ones of the second signals such that the corresponding electrode currents are equalized or rendered proportional by balancing the same in the same or constant ratios in accordance with the locations of the electrode currents.

  20. Effect of DM Actuator Errors on the WFIRST/AFTA Coronagraph Contrast Performance

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Shi, Fang

    2015-01-01

    The WFIRST/AFTA 2.4 m space telescope currently under study includes a stellar coronagraph for the imaging and the spectral characterization of extrasolar planets. The coronagraph employs two sequential deformable mirrors (DMs) to compensate for phase and amplitude errors in creating dark holes. DMs are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Working with a low-order wavefront-sensor the DM that is conjugate to a pupil can also be used to correct low-order wavefront drift during a scientific observation. However, not all actuators in a DM have the same gain. When using such a DM in low-order wavefront sensing and control subsystem, the actuator gain errors introduce high-spatial frequency errors to the DM surface and thus worsen the contrast performance of the coronagraph. We have investigated the effects of actuator gain errors and the actuator command digitization errors on the contrast performance of the coronagraph through modeling and simulations, and will present our results in this paper.

  1. Error-related brain activity and error awareness in an error classification paradigm.

    PubMed

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  3. A simplified controller and detailed dynamics of constant off-time peak current control

    NASA Astrophysics Data System (ADS)

    Van den Bossche, Alex; Dimitrova, Ekaterina; Valchev, Vencislav; Feradov, Firgan

    2017-09-01

    A fast and reliable current control is often the base of power electronic converters. The traditional constant frequency peak control is unstable above 50 % duty ratio. In contrast, the constant off-time peak current control (COTCC) is unconditionally stable and fast, so it is worth analyzing it. Another feature of the COTCC is that one can combine a current control together with a current protection. The time dynamics show a zero-transient response, even when the inductor changes in a wide range. It can also be modeled as a special transfer function for all frequencies. The article shows also that it can be implemented in a simple analog circuit using a wide temperature range IC, such as the LM2903, which is compatible with PV conversion and automotive temperature range. Experiments are done using a 3 kW step-up converter. A drawback is still that the principle does not easily fit in usual digital controllers up to now.

  4. Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Olofsson, K. E. J.; Frassinetti, L.; Drake, J. R.

    2007-10-01

    Experiments in the EXTRAP T2R reversed field pinch [P. R. Brunsell, H. Bergsåker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] on feedback control of m =1 resistive wall modes (RWMs) are compared with simulations using the cylindrical linear magnetohydrodynamic model, including the dynamics of the active coils and power amplifiers. Stabilization of the main RWMs (n=-11,-10,-9,-8,+5,+6) is shown using modest loop gains of the order G ˜1. However, other marginally unstable RWMs (n=-2,-1,+1,+2) driven by external field errors are only partially canceled at these gains. The experimental system stability limit is confirmed by simulations showing that the latency of the digital controller ˜50μs is degrading the system gain margin. The transient response is improved with a proportional-plus-derivative controller, and steady-state error is improved with a proportional-plus-integral controller. Suppression of all modes is obtained at high gain G ˜10 using a proportional-plus-integral-plus-derivative controller.

  5. Compact disk error measurements

    NASA Technical Reports Server (NTRS)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  6. [Analysis of intrusion errors in free recall].

    PubMed

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  7. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  8. Feedback error learning control of magnetic satellites using type-2 fuzzy neural networks with elliptic membership functions.

    PubMed

    Khanesar, Mojtaba Ahmadieh; Kayacan, Erdal; Reyhanoglu, Mahmut; Kaynak, Okyay

    2015-04-01

    A novel type-2 fuzzy membership function (MF) in the form of an ellipse has recently been proposed in literature, the parameters of which that represent uncertainties are de-coupled from its parameters that determine the center and the support. This property has enabled the proposers to make an analytical comparison of the noise rejection capabilities of type-1 fuzzy logic systems with its type-2 counterparts. In this paper, a sliding mode control theory-based learning algorithm is proposed for an interval type-2 fuzzy logic system which benefits from elliptic type-2 fuzzy MFs. The learning is based on the feedback error learning method and not only the stability of the learning is proved but also the stability of the overall system is shown by adding an additional component to the control scheme to ensure robustness. In order to test the efficiency and efficacy of the proposed learning and the control algorithm, the trajectory tracking problem of a magnetic rigid spacecraft is studied. The simulations results show that the proposed control algorithm gives better performance results in terms of a smaller steady state error and a faster transient response as compared to conventional control algorithms.

  9. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  10. Space-Borne Laser Altimeter Geolocation Error Analysis

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fang, J.; Ai, Y.

    2018-05-01

    This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  11. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our

  12. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  13. Historical shoreline mapping (I): improving techniques and reducing positioning errors

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the

  14. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  15. Refractive Errors and Academic Achievements of Primary School Children.

    PubMed

    Joseph, Lucyamma

    2014-01-01

    The current study was conducted among school children of selected schools of Thiruvananthapuram district of Kerala. It was designed to investigate the effect of refractive errors on academic achievement of primary school children. Experimental method was used in the study and the study used a sample of 185 children. An equated sample without myopia were selected as control group. Academic achievement tests based on the study syllabus were prepared and administered to both groups. The children with myopia were given corrective devices such as glasses prescribed by the ophthalmologist. After five months academic achievement tests were again given to both groups and the results of the scores between two groups as well as the scores before and after correction of errors were compared, which showed a significant influence of myopia on academic achievement and examination anxiety of children.

  16. Quantum error correction in crossbar architectures

    NASA Astrophysics Data System (ADS)

    Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie

    2018-07-01

    A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.

  17. Robust current control-based generalized predictive control with sliding mode disturbance compensation for PMSM drives.

    PubMed

    Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi

    2017-11-01

    This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Association between reading speed, cycloplegic refractive error, and oculomotor function in reading disabled children versus controls.

    PubMed

    Quaid, Patrick; Simpson, Trefford

    2013-01-01

    Approximately one in ten students aged 6 to 16 in Ontario (Canada) school boards have an individual education plan (IEP) in place due to various learning disabilities, many of which are specific to reading difficulties. The relationship between reading (specifically objectively determined reading speed and eye movement data), refractive error, and binocular vision related clinical measurements remain elusive. One hundred patients were examined in this study (50 IEP and 50 controls, age range 6 to 16 years). IEP patients were referred by three local school boards, with controls being recruited from the routine clinic population (non-IEP patients in the same age group). A comprehensive eye examination was performed on all subjects, in addition to a full binocular vision work-up and cycloplegic refraction. In addition to the cycloplegic refractive error, the following binocular vision related data was also acquired: vergence facility, vergence amplitudes, accommodative facility, accommodative amplitudes, near point of convergence, stereopsis, and a standardized symptom scoring scale. Both the IEP and control groups were also examined using the Visagraph III system, which permits recording of the following reading parameters objectively: (i) reading speed, both raw values and values compared to grade normative data, and (ii) the number of eye movements made per 100 words read. Comprehension was assessed via a questionnaire administered at the end of the reading task, with each subject requiring 80% or greater comprehension. The IEP group had significantly greater hyperopia compared to the control group on cycloplegic examination. Vergence facility was significantly correlated to (i) reading speed, (ii) number of eye movements made when reading, and (iii) a standardized symptom scoring system. Vergence facility was also significantly reduced in the IEP group versus controls. Significant differences in several other binocular vision related scores were also found. This

  19. Refractive Errors in Patients with Migraine Headache.

    PubMed

    Gunes, Alime; Demirci, Seden; Tok, Levent; Tok, Ozlem; Koyuncuoglu, Hasan; Yurekli, Vedat Ali

    2016-01-01

    To evaluate refractive errors in patients with migraine headache and to compare with healthy subjects. This prospective case-control study includes patients with migraine and age- and sex-matched healthy subjects. Clinical and demographic characteristics of the patients were noted. Detailed ophthalmological examinations were performed containing spherical refractive error, astigmatic refractive error, spherical equivalent (SE), anisometropia, best-corrected visual acuity, intraocular pressure, slit lamp biomicroscopy, fundus examination, axial length, anterior chamber depth, and central corneal thickness. Spectacle use in migraine and control groups was compared. Also, the relationship between refractive components and migraine headache variables was investigated. Seventy-seven migraine patients with mean age of 33.27 ± 8.84 years and 71 healthy subjects with mean age of 31.15 ± 10.45 years were enrolled (p = 0.18). The migraine patients had higher degrees of astigmatic refractive error, SE, and anisometropia when compared with the control subjects (p = 0.01, p = 0.03, p = 0.02, respectively). Migraine patients may have higher degrees of astigmatism, SE, and anisometropia. Therefore, they should have ophthalmological examinations regularly to ensure that their refractive errors are appropriately corrected.

  20. Terminal iterative learning control based station stop control of a train

    NASA Astrophysics Data System (ADS)

    Hou, Zhongsheng; Wang, Yi; Yin, Chenkun; Tang, Tao

    2011-07-01

    The terminal iterative learning control (TILC) method is introduced for the first time into the field of train station stop control and three TILC-based algorithms are proposed in this study. The TILC-based train station stop control approach utilises the terminal stop position error in previous braking process to update the current control profile. The initial braking position, or the braking force, or their combination is chosen as the control input, and corresponding learning law is developed. The terminal stop position error of each algorithm is guaranteed to converge to a small region related with the initial offset of braking position with rigorous analysis. The validity of the proposed algorithms is verified by illustrative numerical examples.

  1. Augmenting intracortical brain-machine interface with neurally driven error detectors

    NASA Astrophysics Data System (ADS)

    Even-Chen, Nir; Stavisky, Sergey D.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2017-12-01

    Objective. Making mistakes is inevitable, but identifying them allows us to correct or adapt our behavior to improve future performance. Current brain-machine interfaces (BMIs) make errors that need to be explicitly corrected by the user, thereby consuming time and thus hindering performance. We hypothesized that neural correlates of the user perceiving the mistake could be used by the BMI to automatically correct errors. However, it was unknown whether intracortical outcome error signals were present in the premotor and primary motor cortices, brain regions successfully used for intracortical BMIs. Approach. We report here for the first time a putative outcome error signal in spiking activity within these cortices when rhesus macaques performed an intracortical BMI computer cursor task. Main results. We decoded BMI trial outcomes shortly after and even before a trial ended with 96% and 84% accuracy, respectively. This led us to develop and implement in real-time a first-of-its-kind intracortical BMI error ‘detect-and-act’ system that attempts to automatically ‘undo’ or ‘prevent’ mistakes. The detect-and-act system works independently and in parallel to a kinematic BMI decoder. In a challenging task that resulted in substantial errors, this approach improved the performance of a BMI employing two variants of the ubiquitous Kalman velocity filter, including a state-of-the-art decoder (ReFIT-KF). Significance. Detecting errors in real-time from the same brain regions that are commonly used to control BMIs should improve the clinical viability of BMIs aimed at restoring motor function to people with paralysis.

  2. A constrained-gradient method to control divergence errors in numerical MHD

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-10-01

    In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.

  3. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  4. Generation 1.5 Written Error Patterns: A Comparative Study

    ERIC Educational Resources Information Center

    Doolan, Stephen M.; Miller, Donald

    2012-01-01

    In an attempt to contribute to existing research on Generation 1.5 students, the current study uses quantitative and qualitative methods to compare error patterns in a corpus of Generation 1.5, L1, and L2 community college student writing. This error analysis provides one important way to determine if error patterns in Generation 1.5 student…

  5. Controller and pilot error in airport operations : a review of previous research and analysis of safety data

    DOT National Transportation Integrated Search

    2001-01-01

    The purpose of this study was to examine controller and pilot errors in airport operations to identify potential tower remedies. The : first part of the report contains a review of the literature of studies conducted of tower operationsand of efforts...

  6. Modeling coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  7. Unconventional Rotor Power Response to Yaw Error Variations

    DOE PAGES

    Schreck, S. J.; Schepers, J. G.

    2014-12-16

    Continued inquiry into rotor and blade aerodynamics remains crucial for achieving accurate, reliable prediction of wind turbine power performance under yawed conditions. To exploit key advantages conferred by controlled inflow conditions, we used EU-JOULE DATA Project and UAE Phase VI experimental data to characterize rotor power production under yawed conditions. Anomalies in rotor power variation with yaw error were observed, and the underlying fluid dynamic interactions were isolated. Unlike currently recognized influences caused by angled inflow and skewed wake, which may be considered potential flow interactions, these anomalies were linked to pronounced viscous and unsteady effects.

  8. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly.

    PubMed

    Chen, Yi-Ching; Lin, Linda L; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations [Formula: see text], short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13-35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  10. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    PubMed Central

    Chen, Yi-Ching; Lin, Linda L.; Lin, Yen-Ting; Hu, Chia-Ling; Hwang, Ing-Shiou

    2017-01-01

    Error amplification (EA) feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG). EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds), and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization. PMID:29167637

  11. Medical Error and Moral Luck.

    PubMed

    Hubbeling, Dieneke

    2016-09-01

    This paper addresses the concept of moral luck. Moral luck is discussed in the context of medical error, especially an error of omission that occurs frequently, but only rarely has adverse consequences. As an example, a failure to compare the label on a syringe with the drug chart results in the wrong medication being administered and the patient dies. However, this error may have previously occurred many times with no tragic consequences. Discussions on moral luck can highlight conflicting intuitions. Should perpetrators receive a harsher punishment because of an adverse outcome, or should they be dealt with in the same way as colleagues who have acted similarly, but with no adverse effects? An additional element to the discussion, specifically with medical errors, is that according to the evidence currently available, punishing individual practitioners does not seem to be effective in preventing future errors. The following discussion, using relevant philosophical and empirical evidence, posits a possible solution for the moral luck conundrum in the context of medical error: namely, making a distinction between the duty to make amends and assigning blame. Blame should be assigned on the basis of actual behavior, while the duty to make amends is dependent on the outcome.

  12. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  13. Similarities in error processing establish a link between saccade prediction at baseline and adaptation performance.

    PubMed

    Wong, Aaron L; Shelhamer, Mark

    2014-05-01

    Adaptive processes are crucial in maintaining the accuracy of body movements and rely on error storage and processing mechanisms. Although classically studied with adaptation paradigms, evidence of these ongoing error-correction mechanisms should also be detectable in other movements. Despite this connection, current adaptation models are challenged when forecasting adaptation ability with measures of baseline behavior. On the other hand, we have previously identified an error-correction process present in a particular form of baseline behavior, the generation of predictive saccades. This process exhibits long-term intertrial correlations that decay gradually (as a power law) and are best characterized with the tools of fractal time series analysis. Since this baseline task and adaptation both involve error storage and processing, we sought to find a link between the intertrial correlations of the error-correction process in predictive saccades and the ability of subjects to alter their saccade amplitudes during an adaptation task. Here we find just such a relationship: the stronger the intertrial correlations during prediction, the more rapid the acquisition of adaptation. This reinforces the links found previously between prediction and adaptation in motor control and suggests that current adaptation models are inadequate to capture the complete dynamics of these error-correction processes. A better understanding of the similarities in error processing between prediction and adaptation might provide the means to forecast adaptation ability with a baseline task. This would have many potential uses in physical therapy and the general design of paradigms of motor adaptation. Copyright © 2014 the American Physiological Society.

  14. Handbook of satellite pointing errors and their statistical treatment

    NASA Astrophysics Data System (ADS)

    Weinberger, M. C.

    1980-03-01

    This handbook aims to provide both satellite payload and attitude control system designers with a consistent, unambiguous approach to the formulation, definition and interpretation of attitude pointing and measurement specifications. It reviews and assesses the current terminology and practices, and from them establishes a set of unified terminology, giving the user a sound basis to understand the meaning and implications of various specifications and requirements. Guidelines are presented for defining the characteristics of the error sources influencing satellite pointing and attitude measurement, and their combination in performance verification.

  15. The Perception of Error in Production Plants of a Chemical Organisation

    ERIC Educational Resources Information Center

    Seifried, Jurgen; Hopfer, Eva

    2013-01-01

    There is considerable current interest in error-friendly corporate culture, one particular research question being how and under what conditions errors are learnt from in the workplace. This paper starts from the assumption that errors are inevitable and considers key factors which affect learning from errors in high responsibility organisations,…

  16. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.

  17. Error Modeling of Multi-baseline Optical Truss. Part II; Application to SIM Metrology Truss Field Dependent Error

    NASA Technical Reports Server (NTRS)

    Zhang, Liwei Dennis; Milman, Mark; Korechoff, Robert

    2004-01-01

    The current design of the Space Interferometry Mission (SIM) employs a 19 laser-metrology-beam system (also called L19 external metrology truss) to monitor changes of distances between the fiducials of the flight system's multiple baselines. The function of the external metrology truss is to aid in the determination of the time-variations of the interferometer baseline. The largest contributor to truss error occurs in SIM wide-angle observations when the articulation of the siderostat mirrors (in order to gather starlight from different sky coordinates) brings to light systematic errors due to offsets at levels of instrument components (which include comer cube retro-reflectors, etc.). This error is labeled external metrology wide-angle field-dependent error. Physics-based model of field-dependent error at single metrology gauge level is developed and linearly propagated to errors in interferometer delay. In this manner delay error sensitivity to various error parameters or their combination can be studied using eigenvalue/eigenvector analysis. Also validation of physics-based field-dependent model on SIM testbed lends support to the present approach. As a first example, dihedral error model is developed for the comer cubes (CC) attached to the siderostat mirrors. Then the delay errors due to this effect can be characterized using the eigenvectors of composite CC dihedral error. The essence of the linear error model is contained in an error-mapping matrix. A corresponding Zernike component matrix approach is developed in parallel, first for convenience of describing the RMS of errors across the field-of-regard (FOR), and second for convenience of combining with additional models. Average and worst case residual errors are computed when various orders of field-dependent terms are removed from the delay error. Results of the residual errors are important in arriving at external metrology system component requirements. Double CCs with ideally co-incident vertices

  18. Error image aware content restoration

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo; Lee, Moonsik; Jung, Byunghee

    2015-12-01

    As the resolution of TV significantly increased, content consumers have become increasingly sensitive to the subtlest defect in TV contents. This rising standard in quality demanded by consumers has posed a new challenge in today's context where the tape-based process has transitioned to the file-based process: the transition necessitated digitalizing old archives, a process which inevitably produces errors such as disordered pixel blocks, scattered white noise, or totally missing pixels. Unsurprisingly, detecting and fixing such errors require a substantial amount of time and human labor to meet the standard demanded by today's consumers. In this paper, we introduce a novel, automated error restoration algorithm which can be applied to different types of classic errors by utilizing adjacent images while preserving the undamaged parts of an error image as much as possible. We tested our method to error images detected from our quality check system in KBS(Korean Broadcasting System) video archive. We are also implementing the algorithm as a plugin of well-known NLE(Non-linear editing system), which is a familiar tool for quality control agent.

  19. Resampling-Based Empirical Bayes Multiple Testing Procedures for Controlling Generalized Tail Probability and Expected Value Error Rates: Focus on the False Discovery Rate and Simulation Study

    PubMed Central

    Dudoit, Sandrine; Gilbert, Houston N.; van der Laan, Mark J.

    2014-01-01

    Summary This article proposes resampling-based empirical Bayes multiple testing procedures for controlling a broad class of Type I error rates, defined as generalized tail probability (gTP) error rates, gTP(q, g) = Pr(g(Vn, Sn) > q), and generalized expected value (gEV) error rates, gEV(g) = E[g(Vn, Sn)], for arbitrary functions g(Vn, Sn) of the numbers of false positives Vn and true positives Sn. Of particular interest are error rates based on the proportion g(Vn, Sn) = Vn/(Vn + Sn) of Type I errors among the rejected hypotheses, such as the false discovery rate (FDR), FDR = E[Vn/(Vn + Sn)]. The proposed procedures offer several advantages over existing methods. They provide Type I error control for general data generating distributions, with arbitrary dependence structures among variables. Gains in power are achieved by deriving rejection regions based on guessed sets of true null hypotheses and null test statistics randomly sampled from joint distributions that account for the dependence structure of the data. The Type I error and power properties of an FDR-controlling version of the resampling-based empirical Bayes approach are investigated and compared to those of widely-used FDR-controlling linear step-up procedures in a simulation study. The Type I error and power trade-off achieved by the empirical Bayes procedures under a variety of testing scenarios allows this approach to be competitive with or outperform the Storey and Tibshirani (2003) linear step-up procedure, as an alternative to the classical Benjamini and Hochberg (1995) procedure. PMID:18932138

  20. Bus current analysis of high power cryocooler's controller

    NASA Astrophysics Data System (ADS)

    Jin, Zhanlei; Sun, Qiyang; Dai, Liqun; Dong, Jie

    2016-03-01

    Current analysis was an important research content for reducing power of cryocooler's controller. Simulation was done among load current, H bridge current and power current refer to 42V bus power voltage. Then relationship among IL1, IC1, ρ and IM1 was established. Simulation results indicate that IL1-max, IL1-ave, IL1-rms, IC1-min and IC1-ave were linearly increasing to ρ and IM1, especially IL1-rms ≈ 0.612ρ IM1-max . IC1-rms increase firstly then decrease with the increasing of ρ. IC1-rms reaches maximum when ρ=0.8, then ICL-rms =(12.32/RM1 + 0.98) exp -((ρ-0.78)/0.57)2. The results were useful for miniaturizing cryocooler's controller.

  1. An in-situ measuring method for planar straightness error

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  2. Effect of electrical coupling on ionic current and synaptic potential measurements.

    PubMed

    Rabbah, Pascale; Golowasch, Jorge; Nadim, Farzan

    2005-07-01

    Recent studies have found electrical coupling to be more ubiquitous than previously thought, and coupling through gap junctions is known to play a crucial role in neuronal function and network output. In particular, current spread through gap junctions may affect the activation of voltage-dependent conductances as well as chemical synaptic release. Using voltage-clamp recordings of two strongly electrically coupled neurons of the lobster stomatogastric ganglion and conductance-based models of these neurons, we identified effects of electrical coupling on the measurement of leak and voltage-gated outward currents, as well as synaptic potentials. Experimental measurements showed that both leak and voltage-gated outward currents are recruited by gap junctions from neurons coupled to the clamped cell. Nevertheless, in spite of the strong coupling between these neurons, the errors made in estimating voltage-gated conductance parameters were relatively minor (<10%). Thus in many cases isolation of coupled neurons may not be required if a small degree of measurement error of the voltage-gated currents or the synaptic potentials is acceptable. Modeling results show, however, that such errors may be as high as 20% if the gap-junction position is near the recording site or as high as 90% when measuring smaller voltage-gated ionic currents. Paradoxically, improved space clamp increases the errors arising from electrical coupling because voltage control across gap junctions is poor for even the highest realistic coupling conductances. Furthermore, the common procedure of leak subtraction can add an extra error to the conductance measurement, the sign of which depends on the maximal conductance.

  3. Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors.

    PubMed

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien

    2016-06-01

    A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. Subaperture test of wavefront error of large telescopes: error sources and stitching performance simulations

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Li, Shengyi; Wang, Guilin

    2014-11-01

    environmental control. We simulate the performance of the stitching algorithm dealing with surface error and misalignment of the ACF, and noise suppression, which provides guidelines to optomechanical design of the stitching test system.

  5. Beyond hypercorrection: remembering corrective feedback for low-confidence errors.

    PubMed

    Griffiths, Lauren; Higham, Philip A

    2018-02-01

    Correcting errors based on corrective feedback is essential to successful learning. Previous studies have found that corrections to high-confidence errors are better remembered than low-confidence errors (the hypercorrection effect). The aim of this study was to investigate whether corrections to low-confidence errors can also be successfully retained in some cases. Participants completed an initial multiple-choice test consisting of control, trick and easy general-knowledge questions, rated their confidence after answering each question, and then received immediate corrective feedback. After a short delay, they were given a cued-recall test consisting of the same questions. In two experiments, we found high-confidence errors to control questions were better corrected on the second test compared to low-confidence errors - the typical hypercorrection effect. However, low-confidence errors to trick questions were just as likely to be corrected as high-confidence errors. Most surprisingly, we found that memory for the feedback and original responses, not confidence or surprise, were significant predictors of error correction. We conclude that for some types of material, there is an effortful process of elaboration and problem solving prior to making low-confidence errors that facilitates memory of corrective feedback.

  6. Clover: Compiler directed lightweight soft error resilience

    DOE PAGES

    Liu, Qingrui; Lee, Dongyoon; Jung, Changhee; ...

    2015-05-01

    This paper presents Clover, a compiler directed soft error detection and recovery scheme for lightweight soft error resilience. The compiler carefully generates soft error tolerant code based on idem-potent processing without explicit checkpoint. During program execution, Clover relies on a small number of acoustic wave detectors deployed in the processor to identify soft errors by sensing the wave made by a particle strike. To cope with DUE (detected unrecoverable errors) caused by the sensing latency of error detection, Clover leverages a novel selective instruction duplication technique called tail-DMR (dual modular redundancy). Once a soft error is detected by either themore » sensor or the tail-DMR, Clover takes care of the error as in the case of exception handling. To recover from the error, Clover simply redirects program control to the beginning of the code region where the error is detected. Lastly, the experiment results demonstrate that the average runtime overhead is only 26%, which is a 75% reduction compared to that of the state-of-the-art soft error resilience technique.« less

  7. LATERAL CONTROL IN A DRIVING SIMULATOR: CORRELATIONS WITH NEUROPSYCHOLOGICAL TESTS AND ON-ROAD SAFETY ERRORS

    PubMed Central

    Johnson, Amy; Dawson, Jeffrey; Rizzo, Matthew

    2012-01-01

    Summary Driving simulators provide precise information on vehicular position at high capture rates. To analyze such data, we have previously proposed a time series model that reduces lateral position data into several parameters for measuring lateral control, and have shown that these parameters can detect differences between neurologically impaired and healthy drivers (Dawson et al, 2010a). In this paper, we focus on the “re-centering” parameter of this model, and test whether the parameter estimates are associated with off-road neuropsychological tests and/or with on-road safety errors. We assessed such correlations in 127 neurologically healthy drivers, ages 40 to 89. We found that our re-centering parameter had significant correlations with five neuropsychological tests: Judgment of Line Orientation (r = 0.38), Block Design (r = 0.27), Contrast Sensitivity (r = 0.31), Near Visual Acuity (r = -0.26), and Grooved Pegboard (r = -0.25). We also found that our re-centering parameter was associated with on-road safety errors at stop signs (r = -0.34) and on-road safety errors during turns (r = -0.22). These results suggest that our re-centering parameter may be a useful tool for measuring and monitoring ability to maintain vehicular lateral control. As GPS-based technology continues to improve in precision and reliability to measure vehicular positioning, our time-series model may potentially be applied as an automated index of driver performance in real world settings that is sensitive to cognitive decline. This work was supported by NIH/NIA awards AG17177, AG15071, and NS044930, and by a scholarship from Nissan Motor Company. PMID:24273756

  8. CORRELATED ERRORS IN EARTH POINTING MISSIONS

    NASA Technical Reports Server (NTRS)

    Bilanow, Steve; Patt, Frederick S.

    2005-01-01

    Two different Earth-pointing missions dealing with attitude control and dynamics changes illustrate concerns with correlated error sources and coupled effects that can occur. On the OrbView-2 (OV-2) spacecraft, the assumption of a nearly-inertially-fixed momentum axis was called into question when a residual dipole bias apparently changed magnitude. The possibility that alignment adjustments and/or sensor calibration errors may compensate for actual motions of the spacecraft is discussed, and uncertainties in the dynamics are considered. Particular consideration is given to basic orbit frequency and twice orbit frequency effects and their high correlation over the short science observation data span. On the Tropical Rainfall Measuring Mission (TRMM) spacecraft, the switch to a contingency Kalman filter control mode created changes in the pointing error patterns. Results from independent checks on the TRMM attitude using science instrument data are reported, and bias shifts and error correlations are discussed. Various orbit frequency effects are common with the flight geometry for Earth pointing instruments. In both dual-spin momentum stabilized spacecraft (like OV-2) and three axis stabilized spacecraft with gyros (like TRMM under Kalman filter control), changes in the initial attitude state propagate into orbit frequency variations in attitude and some sensor measurements. At the same time, orbit frequency measurement effects can arise from dynamics assumptions, environment variations, attitude sensor calibrations, or ephemeris errors. Also, constant environment torques for dual spin spacecraft have similar effects to gyro biases on three axis stabilized spacecraft, effectively shifting the one-revolution-per-orbit (1-RPO) body rotation axis. Highly correlated effects can create a risk for estimation errors particularly when a mission switches an operating mode or changes its normal flight environment. Some error effects will not be obvious from attitude sensor

  9. Propagation of resist heating mask error to wafer level

    NASA Astrophysics Data System (ADS)

    Babin, S. V.; Karklin, Linard

    2006-10-01

    As technology is approaching 45 nm and below the IC industry is experiencing a severe product yield hit due to rapidly shrinking process windows and unavoidable manufacturing process variations. Current EDA tools are unable by their nature to deliver optimized and process-centered designs that call for 'post design' localized layout optimization DFM tools. To evaluate the impact of different manufacturing process variations on final product it is important to trace and evaluate all errors through design to manufacturing flow. Photo mask is one of the critical parts of this flow, and special attention should be paid to photo mask manufacturing process and especially to mask tight CD control. Electron beam lithography (EBL) is a major technique which is used for fabrication of high-end photo masks. During the writing process, resist heating is one of the sources for mask CD variations. Electron energy is released in the mask body mainly as heat, leading to significant temperature fluctuations in local areas. The temperature fluctuations cause changes in resist sensitivity, which in turn leads to CD variations. These CD variations depend on mask writing speed, order of exposure, pattern density and its distribution. Recent measurements revealed up to 45 nm CD variation on the mask when using ZEP resist. The resist heating problem with CAR resists is significantly smaller compared to other types of resists. This is partially due to higher resist sensitivity and the lower exposure dose required. However, there is no data yet showing CD errors on the wafer induced by CAR resist heating on the mask. This effect can be amplified by high MEEF values and should be carefully evaluated at 45nm and below technology nodes where tight CD control is required. In this paper, we simulated CD variation on the mask due to resist heating; then a mask pattern with the heating error was transferred onto the wafer. So, a CD error on the wafer was evaluated subject to only one term of the

  10. Cognitive Errors, Anxiety Sensitivity, and Anxiety Control Beliefs: Their Unique and Specific Associations with Childhood Anxiety Symptoms

    ERIC Educational Resources Information Center

    Weems, Carl F.; Costa, Natalie M.; Watts, Sarah E.; Taylor, Leslie K.; Cannon, Melinda F.

    2007-01-01

    This study examined the interrelations among negative cognitive errors, anxiety sensitivity, and anxiety control beliefs and explored their unique and specific associations with anxiety symptoms in a community sample of youth. Existing research has suggested that these constructs are related to childhood anxiety disorder symptoms; however,…

  11. Impact of Alcohol Use Disorder Comorbidity on Defensive Reactivity to Errors in Veterans with Post-traumatic Stress Disorder

    PubMed Central

    Gorka, Stephanie M.; MacNamara, Annmarie; Aase, Darrin M.; Proescher, Eric; Greenstein, Justin E.; Walters, Robert; Passi, Holly; Babione, Joseph M.; Levy, David M.; Kennedy, Amy E.; DiGangi, Julia A.; Rabinak, Christine A.; Schroth, Christopher; Afshar, Kaveh; Fitzgerald, Jacklynn; Hajcak, Greg; Phan, K. Luan

    2017-01-01

    Converging lines of evidence suggest that individuals with comorbid post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) may be characterized by heightened defensive reactivity, which serves to maintain drinking behaviors and anxiety/hyperarousal symptoms. Notably, however, very few studies have directly tested whether individuals with PTSD and AUD exhibit greater defensive reactivity compared with individuals with PTSD without AUD. The aim of the current study was to therefore test this emerging hypothesis by examining individual differences in error related negativity (ERN), an event-related component that is larger among anxious individuals and is thought to reflect defensive reactivity to errors. Participants were sixty-six military veterans who completed a well-validated flanker task known to robustly elicit the ERN. Veterans were comprised of three groups: controls (i.e., no PTSD or AUD), PTSD-AUD (i.e., current PTSD but no AUD), and PTSD+AUD (i.e., current comorbid PTSD and AUD). Results indicated that in general, individuals with PTSD and controls did not differ in ERN amplitude. However, among individuals with PTSD, those with comorbid AUD had significantly larger ERNs than those without AUD. These findings suggest that PTSD+AUD is a neurobiologically unique subtype of PTSD and the comorbidity of AUD may enhance defensive reactivity to errors in individuals with PTSD. PMID:27786513

  12. Errors due to measuring voltage on current-carrying electrodes in electric current computed tomography.

    PubMed

    Cheng, K S; Simske, S J; Isaacson, D; Newell, J C; Gisser, D G

    1990-01-01

    Electric current computed tomography is a process for determining the distribution of electrical conductivity inside a body based upon measurements of voltage or current made at the body's surface. Most such systems use different electrodes for the application of current and the measurement of voltage. This paper shows that when a multiplicity of electrodes are attached to a body's surface, the voltage data are most sensitive to changes in resistivity in the body's interior when voltages are measured from all electrodes, including those carrying current. This assertion is true despite the presence of significant levels of skin impedance at the electrodes. This conclusion is supported both theoretically and by experiment. Data were first taken using all electrodes for current and voltage. Then current was applied only at a pair of electrodes, with voltages measured on all other electrodes. We then constructed the second data set by calculation from the first. Targets could be detected with better signal-to-noise ratio by using the reconstructed data than by using the directly measured voltages on noncurrent-carrying electrodes. Images made from voltage data using only noncurrent-carrying electrodes had higher noise levels and were less able to accurately locate targets. We conclude that in multiple electrode systems for electric current computed tomography, current should be applied and voltage should be measured from all available electrodes.

  13. Quantifying errors without random sampling.

    PubMed

    Phillips, Carl V; LaPole, Luwanna M

    2003-06-12

    All quantifications of mortality, morbidity, and other health measures involve numerous sources of error. The routine quantification of random sampling error makes it easy to forget that other sources of error can and should be quantified. When a quantification does not involve sampling, error is almost never quantified and results are often reported in ways that dramatically overstate their precision. We argue that the precision implicit in typical reporting is problematic and sketch methods for quantifying the various sources of error, building up from simple examples that can be solved analytically to more complex cases. There are straightforward ways to partially quantify the uncertainty surrounding a parameter that is not characterized by random sampling, such as limiting reported significant figures. We present simple methods for doing such quantifications, and for incorporating them into calculations. More complicated methods become necessary when multiple sources of uncertainty must be combined. We demonstrate that Monte Carlo simulation, using available software, can estimate the uncertainty resulting from complicated calculations with many sources of uncertainty. We apply the method to the current estimate of the annual incidence of foodborne illness in the United States. Quantifying uncertainty from systematic errors is practical. Reporting this uncertainty would more honestly represent study results, help show the probability that estimated values fall within some critical range, and facilitate better targeting of further research.

  14. Error begat error: design error analysis and prevention in social infrastructure projects.

    PubMed

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  15. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  16. Underlying Cause(s) of Letter Perseveration Errors

    PubMed Central

    Fischer-Baum, Simon; Rapp, Brenda

    2011-01-01

    Perseverations, the inappropriate intrusion of elements from a previous response into a current response, are commonly observed in individuals with acquired deficits. This study specifically investigates the contribution of failure-to activate and failure-to-inhibit deficit(s) in the generation of letter perseveration errors in acquired dysgraphia. We provide evidence from the performance 12 dysgraphic individuals indicating that a failure to activate graphemes for a target word gives rise to letter perseveration errors. In addition, we also provide evidence that, in some individuals, a failure-to-inhibit deficit may also contribute to the production of perseveration errors. PMID:22178232

  17. L2 Spelling Errors in Italian Children with Dyslexia.

    PubMed

    Palladino, Paola; Cismondo, Dhebora; Ferrari, Marcella; Ballagamba, Isabella; Cornoldi, Cesare

    2016-05-01

    The present study aimed to investigate L2 spelling skills in Italian children by administering an English word dictation task to 13 children with dyslexia (CD), 13 control children (comparable in age, gender, schooling and IQ) and a group of 10 children with an English learning difficulty, but no L1 learning disorder. Patterns of difficulties were examined for accuracy and type of errors, in spelling dictated short and long words (i.e. disyllables and three syllables). Notably, CD were poor in spelling English words. Furthermore, their errors were mainly related with phonological representation of words, as they made more 'phonologically' implausible errors than controls. In addition, CD errors were more frequent for short than long words. Conversely, the three groups did not differ in the number of plausible ('non-phonological') errors, that is, words that were incorrectly written, but whose reading could correspond to the dictated word via either Italian or English rules. Error analysis also showed syllable position differences in the spelling patterns of CD, children with and English learning difficulty and control children. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Real-Time Minimization of Tracking Error for Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Garud, Sumedha; Kaneshige, John T.; Krishnakumar, Kalmanje S.; Kulkarni, Nilesh V.; Burken, John

    2013-01-01

    This technology presents a novel, stable, discrete-time adaptive law for flight control in a Direct adaptive control (DAC) framework. Where errors are not present, the original control design has been tuned for optimal performance. Adaptive control works towards achieving nominal performance whenever the design has modeling uncertainties/errors or when the vehicle suffers substantial flight configuration change. The baseline controller uses dynamic inversion with proportional-integral augmentation. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to a dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. If the system senses that at least one aircraft component is experiencing an excursion and the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, then the neural network (NN) modeling of aircraft operation may be changed.

  19. DC-Compensated Current Transformer †

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  20. Use of historical control data for assessing treatment effects in clinical trials.

    PubMed

    Viele, Kert; Berry, Scott; Neuenschwander, Beat; Amzal, Billy; Chen, Fang; Enas, Nathan; Hobbs, Brian; Ibrahim, Joseph G; Kinnersley, Nelson; Lindborg, Stacy; Micallef, Sandrine; Roychoudhury, Satrajit; Thompson, Laura

    2014-01-01

    Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are available prior to the start of a study, particularly on the current study's control arm. There is obvious appeal in using (i.e., 'borrowing') this information. With historical data providing information on the control arm, more trial resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parameters. This can result in more accurate point estimates, increased power, and reduced type I error in clinical trials, provided the historical information is sufficiently similar to the current control data. If this assumption of similarity is not satisfied, however, one can acquire increased mean square error of point estimates due to bias and either reduced power or increased type I error depending on the direction of the bias. In this manuscript, we review several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, we compare these methods on the basis of mean square error, power and type I error. We emphasize two main themes. First, we discuss the idea of 'dynamic' (versus 'static') borrowing. Second, we emphasize the decision process involved in determining whether or not to include historical borrowing in terms of the perceived likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to provide a clear review of the key issues involved in historical borrowing and provide a comparison of several methods useful for practitioners. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Use of historical control data for assessing treatment effects in clinical trials

    PubMed Central

    Viele, Kert; Berry, Scott; Neuenschwander, Beat; Amzal, Billy; Chen, Fang; Enas, Nathan; Hobbs, Brian; Ibrahim, Joseph G.; Kinnersley, Nelson; Lindborg, Stacy; Micallef, Sandrine; Roychoudhury, Satrajit; Thompson, Laura

    2014-01-01

    Clinical trials rarely, if ever, occur in a vacuum. Generally, large amounts of clinical data are available prior to the start of a study, particularly on the current study’s control arm. There is obvious appeal in using (i.e., ‘borrowing’) this information. With historical data providing information on the control arm, more trial resources can be devoted to the novel treatment while retaining accurate estimates of the current control arm parameters. This can result in more accurate point estimates, increased power, and reduced type I error in clinical trials, provided the historical information is sufficiently similar to the current control data. If this assumption of similarity is not satisfied, however, one can acquire increased mean square error of point estimates due to bias and either reduced power or increased type I error depending on the direction of the bias. In this manuscript, we review several methods for historical borrowing, illustrating how key parameters in each method affect borrowing behavior, and then, we compare these methods on the basis of mean square error, power and type I error. We emphasize two main themes. First, we discuss the idea of ‘dynamic’ (versus ‘static’) borrowing. Second, we emphasize the decision process involved in determining whether or not to include historical borrowing in terms of the perceived likelihood that the current control arm is sufficiently similar to the historical data. Our goal is to provide a clear review of the key issues involved in historical borrowing and provide a comparison of several methods useful for practitioners. PMID:23913901

  2. Factors controlling volume errors through 2D gully erosion assessment: guidelines for optimal survey design

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Pérez, Rafael

    2017-04-01

    The assessment of gully erosion volumes is essential for the quantification of soil losses derived from this relevant degradation process. Traditionally, 2D and 3D approaches has been applied for this purpose (Casalí et al., 2006). Although innovative 3D approaches have recently been proposed for gully volume quantification, a renewed interest can be found in literature regarding the useful information that cross-section analysis still provides in gully erosion research. Moreover, the application of methods based on 2D approaches can be the most cost-effective approach in many situations such as preliminary studies with low accuracy requirements or surveys under time or budget constraints. The main aim of this work is to examine the key factors controlling volume error variability in 2D gully assessment by means of a stochastic experiment involving a Monte Carlo analysis over synthetic gully profiles in order to 1) contribute to a better understanding of the drivers and magnitude of gully erosion 2D-surveys uncertainty and 2) provide guidelines for optimal survey designs. Owing to the stochastic properties of error generation in 2D volume assessment, a statistical approach was followed to generate a large and significant set of gully reach configurations to evaluate quantitatively the influence of the main factors controlling the uncertainty of the volume assessment. For this purpose, a simulation algorithm in Matlab® code was written, involving the following stages: - Generation of synthetic gully area profiles with different degrees of complexity (characterized by the cross-section variability) - Simulation of field measurements characterised by a survey intensity and the precision of the measurement method - Quantification of the volume error uncertainty as a function of the key factors In this communication we will present the relationships between volume error and the studied factors and propose guidelines for 2D field surveys based on the minimal survey

  3. Increased instrument intelligence--can it reduce laboratory error?

    PubMed

    Jekelis, Albert W

    2005-01-01

    Recent literature has focused on the reduction of laboratory errors and the potential impact on patient management. This study assessed the intelligent, automated preanalytical process-control abilities in newer generation analyzers as compared with older analyzers and the impact on error reduction. Three generations of immuno-chemistry analyzers were challenged with pooled human serum samples for a 3-week period. One of the three analyzers had an intelligent process of fluidics checks, including bubble detection. Bubbles can cause erroneous results due to incomplete sample aspiration. This variable was chosen because it is the most easily controlled sample defect that can be introduced. Traditionally, lab technicians have had to visually inspect each sample for the presence of bubbles. This is time consuming and introduces the possibility of human error. Instruments with bubble detection may be able to eliminate the human factor and reduce errors associated with the presence of bubbles. Specific samples were vortexed daily to introduce a visible quantity of bubbles, then immediately placed in the daily run. Errors were defined as a reported result greater than three standard deviations below the mean and associated with incomplete sample aspiration of the analyte of the individual analyzer Three standard deviations represented the target limits of proficiency testing. The results of the assays were examined for accuracy and precision. Efficiency, measured as process throughput, was also measured to associate a cost factor and potential impact of the error detection on the overall process. The analyzer performance stratified according to their level of internal process control The older analyzers without bubble detection reported 23 erred results. The newest analyzer with bubble detection reported one specimen incorrectly. The precision and accuracy of the nonvortexed specimens were excellent and acceptable for all three analyzers. No errors were found in the

  4. Current developments in bovine mastitis treatment and control.

    PubMed

    Wager, L A; Linquist, W E; Hayes, G L; Britten, A M; Whitehead, R G; Webster, D E; Barnes, F D

    1978-01-01

    Mastitis in its complexity has managed to forestall all efforts of eradication in spite of years of research, antibiotics and practical control measures. This minisymposium will touch on seven topics current to treatment and control of this economically important disease.

  5. Correction of a Technical Error in the Golf Swing: Error Amplification Versus Direct Instruction.

    PubMed

    Milanese, Chiara; Corte, Stefano; Salvetti, Luca; Cavedon, Valentina; Agostini, Tiziano

    2016-01-01

    Performance errors drive motor learning for many tasks. The authors' aim was to determine which of two strategies, method of amplification of error (MAE) or direct instruction (DI), would be more beneficial for error correction during a full golfing swing with a driver. Thirty-four golfers were randomly assigned to one of three training conditions (MAE, DI, and control). Participants were tested in a practice session in which each golfer performed 7 pretraining trials, 6 training-intervention trials, and 7 posttraining trials; and a retention test after 1 week. An optoeletronic motion capture system was used to measure the kinematic parameters of each golfer's performance. Results showed that MAE is an effective strategy for correcting the technical errors leading to a rapid improvement in performance. These findings could have practical implications for sport psychology and physical education because, while practice is obviously necessary for improving learning, the efficacy of the learning process is essential in enhancing learners' motivation and sport enjoyment.

  6. Data Analysis & Statistical Methods for Command File Errors

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Waggoner, Bruce; Bryant, Larry

    2014-01-01

    This paper explains current work on modeling for managing the risk of command file errors. It is focused on analyzing actual data from a JPL spaceflight mission to build models for evaluating and predicting error rates as a function of several key variables. We constructed a rich dataset by considering the number of errors, the number of files radiated, including the number commands and blocks in each file, as well as subjective estimates of workload and operational novelty. We have assessed these data using different curve fitting and distribution fitting techniques, such as multiple regression analysis, and maximum likelihood estimation to see how much of the variability in the error rates can be explained with these. We have also used goodness of fit testing strategies and principal component analysis to further assess our data. Finally, we constructed a model of expected error rates based on the what these statistics bore out as critical drivers to the error rate. This model allows project management to evaluate the error rate against a theoretically expected rate as well as anticipate future error rates.

  7. Net current control device. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugate, D.; Cooper, J.H.

    1998-11-01

    Net currents generally result in elevated magnetic fields because the alternate paths are distant from the circuit conductors. Investigations have shown that one of the primary sources of power frequency magnetic fields in residential buildings is currents that return to their source via paths other than the neutral conductors. As part of EPRI`s Magnetic Field Shielding Project, ferromagnetic devices, called net current control (NCC) devices, were developed and tested for use in reducing net currents on electric power cables and the resulting magnetic fields. Applied to a residential service drop, an NCC device reduces net current by forcing current offmore » local non-utility ground paths, and back onto the neutral conductor. Circuit models and basic design equations for the NCC concept were developed, and proof-of-principles tests were carried out on an actual residence with cooperation from the local utility. After proving the basic concepts, three prototype NCC devices were built and tested on a simulated neighborhood power system. Additional prototypes were built for testing by interested EPRI utility members. Results have shown that the NCC prototypes installed on residential service drops reduce net currents to milliampere levels with compromising the safety of the ground system. Although the focus was on application to residential service cables, the NCC concept is applicable to single-phase and three-phase distribution systems as well.« less

  8. A GPU accelerated and error-controlled solver for the unbounded Poisson equation in three dimensions

    NASA Astrophysics Data System (ADS)

    Exl, Lukas

    2017-12-01

    An efficient solver for the three dimensional free-space Poisson equation is presented. The underlying numerical method is based on finite Fourier series approximation. While the error of all involved approximations can be fully controlled, the overall computation error is driven by the convergence of the finite Fourier series of the density. For smooth and fast-decaying densities the proposed method will be spectrally accurate. The method scales with O(N log N) operations, where N is the total number of discretization points in the Cartesian grid. The majority of the computational costs come from fast Fourier transforms (FFT), which makes it ideal for GPU computation. Several numerical computations on CPU and GPU validate the method and show efficiency and convergence behavior. Tests are performed using the Vienna Scientific Cluster 3 (VSC3). A free MATLAB implementation for CPU and GPU is provided to the interested community.

  9. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    PubMed Central

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-01

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448

  10. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  11. Impact of geophysical model error for recovering temporal gravity field model

    NASA Astrophysics Data System (ADS)

    Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang

    2016-07-01

    The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.

  12. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  13. Errors as a Means of Reducing Impulsive Food Choice.

    PubMed

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2016-06-05

    Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities.

  14. Estimation of chromatic errors from broadband images for high contrast imaging

    NASA Astrophysics Data System (ADS)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  15. Amperometric Glucose Sensors: Sources of Error and Potential Benefit of Redundancy

    PubMed Central

    Castle, Jessica R.; Kenneth Ward, W.

    2010-01-01

    Amperometric glucose sensors have advanced the care of patients with diabetes and are being studied to control insulin delivery in the research setting. However, at times, currently available sensors demonstrate suboptimal accuracy, which can result from calibration error, sensor drift, or lag. Inaccuracy can be particularly problematic in a closed-loop glycemic control system. In such a system, the use of two sensors allows selection of the more accurate sensor as the input to the controller. In our studies in subjects with type 1 diabetes, the accuracy of the better of two sensors significantly exceeded the accuracy of a single, randomly selected sensor. If an array with three or more sensors were available, it would likely allow even better accuracy with the use of voting. PMID:20167187

  16. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  17. Did I Do That? Expectancy Effects of Brain Stimulation on Error-related Negativity and Sense of Agency.

    PubMed

    Hoogeveen, Suzanne; Schjoedt, Uffe; van Elk, Michiel

    2018-06-19

    This study examines the effects of expected transcranial stimulation on the error(-related) negativity (Ne or ERN) and the sense of agency in participants who perform a cognitive control task. Placebo transcranial direct current stimulation was used to elicit expectations of transcranially induced cognitive improvement or impairment. The improvement/impairment manipulation affected both the Ne/ERN and the sense of agency (i.e., whether participants attributed errors to oneself or the brain stimulation device): Expected improvement increased the ERN in response to errors compared with both impairment and control conditions. Expected impairment made participants falsely attribute errors to the transcranial stimulation. This decrease in sense of agency was correlated with a reduced ERN amplitude. These results show that expectations about transcranial stimulation impact users' neural response to self-generated errors and the attribution of responsibility-especially when actions lead to negative outcomes. We discuss our findings in relation to predictive processing theory according to which the effect of prior expectations on the ERN reflects the brain's attempt to generate predictive models of incoming information. By demonstrating that induced expectations about transcranial stimulation can have effects at a neural level, that is, beyond mere demand characteristics, our findings highlight the potential for placebo brain stimulation as a promising tool for research.

  18. Eliminating US hospital medical errors.

    PubMed

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  19. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Ma, Haotong; Luo, Chuanxin

    2016-10-01

    The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.

  20. Neurochemical enhancement of conscious error awareness.

    PubMed

    Hester, Robert; Nandam, L Sanjay; O'Connell, Redmond G; Wagner, Joe; Strudwick, Mark; Nathan, Pradeep J; Mattingley, Jason B; Bellgrove, Mark A

    2012-02-22

    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited. We conducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors.

  1. Neurophysiological correlates of error monitoring and inhibitory processing in juvenile violent offenders.

    PubMed

    Vilà-Balló, Adrià; Hdez-Lafuente, Prado; Rostan, Carles; Cunillera, Toni; Rodriguez-Fornells, Antoni

    2014-10-01

    Performance monitoring is crucial for well-adapted behavior. Offenders typically have a pervasive repetition of harmful-impulsive behaviors, despite an awareness of the negative consequences of their actions. However, the link between performance monitoring and aggressive behavior in juvenile offenders has not been closely investigated. Event-related brain potentials (ERPs) were used to investigate performance monitoring in juvenile non-psychopathic violent offenders compared with a well-matched control group. Two ERP components associated with error monitoring, error-related negativity (ERN) and error-positivity (Pe), and two components related to inhibitory processing, the stop-N2 and stop-P3 components, were evaluated using a combined flanker-stop-signal task. The results showed that the amplitudes of the ERN, the stop-N2, the stop-P3, and the standard P3 components were clearly reduced in the offenders group. Remarkably, no differences were observed for the Pe. At the behavioral level, slower stop-signal reaction times were identified for offenders, which indicated diminished inhibitory processing. The present results suggest that the monitoring of one's own behavior is affected in juvenile violent offenders. Specifically, we determined that different aspects of executive function were affected in the studied offenders, including error processing (reduced ERN) and response inhibition (reduced N2 and P3). However, error awareness and compensatory post-error adjustment processes (error correction) were unaffected. The current pattern of results highlights the role of performance monitoring in the acquisition and maintenance of externalizing harmful behavior that is frequently observed in juvenile offenders. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Controlling heat and particle currents in nanodevices by quantum observation

    NASA Astrophysics Data System (ADS)

    Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel

    2017-07-01

    We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.

  3. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    PubMed

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  4. Do calculation errors by nurses cause medication errors in clinical practice? A literature review.

    PubMed

    Wright, Kerri

    2010-01-01

    calculation skills. Of the 33 studies reviewed only five articles specifically recorded information relating to calculation errors and only two of these detected errors using the direct observational approach. The literature suggests that there are other more pressing aspects of nurses' preparation and administration of medications which are contributing to medication errors in practice that require more urgent attention and calls into question the current focus on calculation and numeracy skills of pre registration and qualified nurses (NMC 2008). However, more research is required into the calculation errors in practice. In particular there is a need for a direct observational study on paediatric nurses as there are presently none examining this area of practice.

  5. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    PubMed

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  6. Head repositioning accuracy to neutral: a comparative study of error calculation.

    PubMed

    Hill, Robert; Jensen, Pål; Baardsen, Tor; Kulvik, Kristian; Jull, Gwendolen; Treleaven, Julia

    2009-02-01

    Deficits in cervical proprioception have been identified in subjects with neck pain through the measure of head repositioning accuracy (HRA). Nevertheless there appears to be no general consensus regarding the construct of measurement of error used for calculating HRA. This study investigated four different mathematical methods of measurement of error to determine if there were any differences in their ability to discriminate between a control group and subjects with a whiplash associated disorder. The four methods for measuring cervical joint position error were calculated using a previous data set consisting of 50 subjects with whiplash complaining of dizziness (WAD D), 50 subjects with whiplash not complaining of dizziness (WAD ND) and 50 control subjects. The results indicated that no one measure of HRA uniquely detected or defined the differences between the whiplash and control groups. Constant error (CE) was significantly different between the whiplash and control groups from extension (p<0.05). Absolute errors (AEs) and root mean square errors (RMSEs) demonstrated differences between the two WAD groups in rotation trials (p<0.05). No differences were seen with variable error (VE). The results suggest that a combination of AE (or RMSE) and CE are probably the most suitable measures for analysis of HRA.

  7. Counteracting structural errors in ensemble forecast of influenza outbreaks.

    PubMed

    Pei, Sen; Shaman, Jeffrey

    2017-10-13

    For influenza forecasts generated using dynamical models, forecast inaccuracy is partly attributable to the nonlinear growth of error. As a consequence, quantification of the nonlinear error structure in current forecast models is needed so that this growth can be corrected and forecast skill improved. Here, we inspect the error growth of a compartmental influenza model and find that a robust error structure arises naturally from the nonlinear model dynamics. By counteracting these structural errors, diagnosed using error breeding, we develop a new forecast approach that combines dynamical error correction and statistical filtering techniques. In retrospective forecasts of historical influenza outbreaks for 95 US cities from 2003 to 2014, overall forecast accuracy for outbreak peak timing, peak intensity and attack rate, are substantially improved for predicted lead times up to 10 weeks. This error growth correction method can be generalized to improve the forecast accuracy of other infectious disease dynamical models.Inaccuracy of influenza forecasts based on dynamical models is partly due to nonlinear error growth. Here the authors address the error structure of a compartmental influenza model, and develop a new improved forecast approach combining dynamical error correction and statistical filtering techniques.

  8. Scaffolding--How Can Contingency Lead to Successful Learning When Dealing with Errors?

    ERIC Educational Resources Information Center

    Wischgoll, Anke; Pauli, Christine; Reusser, Kurt

    2015-01-01

    Errors indicate learners' misunderstanding and can provide learning opportunities. Providing learning support which is contingent on learners' needs when errors occur is considered effective for developing learners' understanding. The current investigation examines how tutors and tutees interact productively with errors when working on a…

  9. Partially Key Distribution with Public Key Cryptosystem Based on Error Control Codes

    NASA Astrophysics Data System (ADS)

    Tavallaei, Saeed Ebadi; Falahati, Abolfazl

    Due to the low level of security in public key cryptosystems based on number theory, fundamental difficulties such as "key escrow" in Public Key Infrastructure (PKI) and a secure channel in ID-based cryptography, a new key distribution cryptosystem based on Error Control Codes (ECC) is proposed . This idea is done by some modification on McEliece cryptosystem. The security of ECC cryptosystem obtains from the NP-Completeness of block codes decoding. The capability of generating public keys with variable lengths which is suitable for different applications will be provided by using ECC. It seems that usage of these cryptosystems because of decreasing in the security of cryptosystems based on number theory and increasing the lengths of their keys would be unavoidable in future.

  10. A fault-tolerant strategy based on SMC for current-controlled converters

    NASA Astrophysics Data System (ADS)

    Azer, Peter M.; Marei, Mostafa I.; Sattar, Ahmed A.

    2018-05-01

    The sliding mode control (SMC) is used to control variable structure systems such as power electronics converters. This paper presents a fault-tolerant strategy based on the SMC for current-controlled AC-DC converters. The proposed SMC is based on three sliding surfaces for the three legs of the AC-DC converter. Two sliding surfaces are assigned to control the phase currents since the input three-phase currents are balanced. Hence, the third sliding surface is considered as an extra degree of freedom which is utilised to control the neutral voltage. This action is utilised to enhance the performance of the converter during open-switch faults. The proposed fault-tolerant strategy is based on allocating the sliding surface of the faulty leg to control the neutral voltage. Consequently, the current waveform is improved. The behaviour of the current-controlled converter during different types of open-switch faults is analysed. Double switch faults include three cases: two upper switch fault; upper and lower switch fault at different legs; and two switches of the same leg. The dynamic performance of the proposed system is evaluated during healthy and open-switch fault operations. Simulation results exhibit the various merits of the proposed SMC-based fault-tolerant strategy.

  11. Goal-oriented explicit residual-type error estimates in XFEM

    NASA Astrophysics Data System (ADS)

    Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin

    2013-08-01

    A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.

  12. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  13. Neuromotor Noise Is Malleable by Amplifying Perceived Errors

    PubMed Central

    Zhang, Zhaoran; Abe, Masaki O.; Sternad, Dagmar

    2016-01-01

    Variability in motor performance results from the interplay of error correction and neuromotor noise. This study examined whether visual amplification of error, previously shown to improve performance, affects not only error correction, but also neuromotor noise, typically regarded as inaccessible to intervention. Seven groups of healthy individuals, with six participants in each group, practiced a virtual throwing task for three days until reaching a performance plateau. Over three more days of practice, six of the groups received different magnitudes of visual error amplification; three of these groups also had noise added. An additional control group was not subjected to any manipulations for all six practice days. The results showed that the control group did not improve further after the first three practice days, but the error amplification groups continued to decrease their error under the manipulations. Analysis of the temporal structure of participants’ corrective actions based on stochastic learning models revealed that these performance gains were attained by reducing neuromotor noise and, to a considerably lesser degree, by increasing the size of corrective actions. Based on these results, error amplification presents a promising intervention to improve motor function by decreasing neuromotor noise after performance has reached an asymptote. These results are relevant for patients with neurological disorders and the elderly. More fundamentally, these results suggest that neuromotor noise may be accessible to practice interventions. PMID:27490197

  14. Error monitoring issues for common channel signaling

    NASA Astrophysics Data System (ADS)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  15. Speech errors of amnesic H.M.: unlike everyday slips-of-the-tongue.

    PubMed

    MacKay, Donald G; James, Lori E; Hadley, Christopher B; Fogler, Kethera A

    2011-03-01

    Three language production studies indicate that amnesic H.M. produces speech errors unlike everyday slips-of-the-tongue. Study 1 was a naturalistic task: H.M. and six controls closely matched for age, education, background and IQ described what makes captioned cartoons funny. Nine judges rated the descriptions blind to speaker identity and gave reliably more negative ratings for coherence, vagueness, comprehensibility, grammaticality, and adequacy of humor-description for H.M. than the controls. Study 2 examined "major errors", a novel type of speech error that is uncorrected and reduces the coherence, grammaticality, accuracy and/or comprehensibility of an utterance. The results indicated that H.M. produced seven types of major errors reliably more often than controls: substitutions, omissions, additions, transpositions, reading errors, free associations, and accuracy errors. These results contradict recent claims that H.M. retains unconscious or implicit language abilities and produces spoken discourse that is "sophisticated," "intact" and "without major errors." Study 3 examined whether three classical types of errors (omissions, additions, and substitutions of words and phrases) differed for H.M. versus controls in basic nature and relative frequency by error type. The results indicated that omissions, and especially multi-word omissions, were relatively more common for H.M. than the controls; and substitutions violated the syntactic class regularity (whereby, e.g., nouns substitute with nouns but not verbs) relatively more often for H.M. than the controls. These results suggest that H.M.'s medial temporal lobe damage impaired his ability to rapidly form new connections between units in the cortex, a process necessary to form complete and coherent internal representations for novel sentence-level plans. In short, different brain mechanisms underlie H.M.'s major errors (which reflect incomplete and incoherent sentence-level plans) versus everyday slips

  16. A Bayesian sequential design using alpha spending function to control type I error.

    PubMed

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  17. Errors as a Means of Reducing Impulsive Food Choice

    PubMed Central

    Sellitto, Manuela; di Pellegrino, Giuseppe

    2016-01-01

    Nowadays, the increasing incidence of eating disorders due to poor self-control has given rise to increased obesity and other chronic weight problems, and ultimately, to reduced life expectancy. The capacity to refrain from automatic responses is usually high in situations in which making errors is highly likely. The protocol described here aims at reducing imprudent preference in women during hypothetical intertemporal choices about appetitive food by associating it with errors. First, participants undergo an error task where two different edible stimuli are associated with two different error likelihoods (high and low). Second, they make intertemporal choices about the two edible stimuli, separately. As a result, this method decreases the discount rate for future amounts of the edible reward that cued higher error likelihood, selectively. This effect is under the influence of the self-reported hunger level. The present protocol demonstrates that errors, well known as motivationally salient events, can induce the recruitment of cognitive control, thus being ultimately useful in reducing impatient choices for edible commodities. PMID:27341281

  18. Monitoring robot actions for error detection and recovery

    NASA Technical Reports Server (NTRS)

    Gini, M.; Smith, R.

    1987-01-01

    Reliability is a serious problem in computer controlled robot systems. Although robots serve successfully in relatively simple applications such as painting and spot welding, their potential in areas such as automated assembly is hampered by programming problems. A program for assembling parts may be logically correct, execute correctly on a simulator, and even execute correctly on a robot most of the time, yet still fail unexpectedly in the face of real world uncertainties. Recovery from such errors is far more complicated than recovery from simple controller errors, since even expected errors can often manifest themselves in unexpected ways. Here, a novel approach is presented for improving robot reliability. Instead of anticipating errors, researchers use knowledge-based programming techniques so that the robot can autonomously exploit knowledge about its task and environment to detect and recover from failures. They describe preliminary experiment of a system that they designed and constructed.

  19. Intrusion errors in visuospatial working memory performance.

    PubMed

    Cornoldi, Cesare; Mammarella, Nicola

    2006-02-01

    This study tested the hypothesis that failure in active visuospatial working memory tasks involves a difficulty in avoiding intrusions due to information that is already activated. Two experiments are described, in which participants were required to process several series of locations on a 4 x 4 matrix and then to produce only the final location of each series. Results revealed a higher number of errors due to already activated locations (intrusions) compared with errors due to new locations (inventions). Moreover, when participants were required to pay extra attention to some irrelevant (non-final) locations by tapping on the table, intrusion errors increased. Results are discussed in terms of current models of working memory functioning.

  20. Unforced errors and error reduction in tennis

    PubMed Central

    Brody, H

    2006-01-01

    Only at the highest level of tennis is the number of winners comparable to the number of unforced errors. As the average player loses many more points due to unforced errors than due to winners by an opponent, if the rate of unforced errors can be reduced, it should lead to an increase in points won. This article shows how players can improve their game by understanding and applying the laws of physics to reduce the number of unforced errors. PMID:16632568

  1. Error management for musicians: an interdisciplinary conceptual framework

    PubMed Central

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians’ generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly – or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and

  2. Error management for musicians: an interdisciplinary conceptual framework.

    PubMed

    Kruse-Weber, Silke; Parncutt, Richard

    2014-01-01

    Musicians tend to strive for flawless performance and perfection, avoiding errors at all costs. Dealing with errors while practicing or performing is often frustrating and can lead to anger and despair, which can explain musicians' generally negative attitude toward errors and the tendency to aim for flawless learning in instrumental music education. But even the best performances are rarely error-free, and research in general pedagogy and psychology has shown that errors provide useful information for the learning process. Research in instrumental pedagogy is still neglecting error issues; the benefits of risk management (before the error) and error management (during and after the error) are still underestimated. It follows that dealing with errors is a key aspect of music practice at home, teaching, and performance in public. And yet, to be innovative, or to make their performance extraordinary, musicians need to risk errors. Currently, most music students only acquire the ability to manage errors implicitly - or not at all. A more constructive, creative, and differentiated culture of errors would balance error tolerance and risk-taking against error prevention in ways that enhance music practice and music performance. The teaching environment should lay the foundation for the development of such an approach. In this contribution, we survey recent research in aviation, medicine, economics, psychology, and interdisciplinary decision theory that has demonstrated that specific error-management training can promote metacognitive skills that lead to better adaptive transfer and better performance skills. We summarize how this research can be applied to music, and survey-relevant research that is specifically tailored to the needs of musicians, including generic guidelines for risk and error management in music teaching and performance. On this basis, we develop a conceptual framework for risk management that can provide orientation for further music education and

  3. The Surveillance Error Grid

    PubMed Central

    Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B.; Kirkman, M. Sue; Kovatchev, Boris

    2014-01-01

    Introduction: Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. Methods: A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. Results: SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments

  4. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  5. Error-Transparent Quantum Gates for Small Logical Qubit Architectures

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2018-02-01

    One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.

  6. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  7. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  8. Polarimeter calibration error gets far out of control

    NASA Astrophysics Data System (ADS)

    Chipman, Russell A.

    2015-09-01

    This is a sad story about a polarization calibration error gone amuck. A simple laboratory mistake was mistaken for a new phenomena. Aggressive management did their job and sold the flawed idea very effectively and substantial funding followed. Questions were raised and a Government lab tried but couldn't to recreate the breakthrough. The results were unpleasant and the field of infrared polarimetry developed a bad reputation for several years.

  9. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  10. Error Mitigation for Short-Depth Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  11. Research on control strategy based on fuzzy PR for grid-connected inverter

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Guan, Weiguo; Miao, Wen

    2018-04-01

    In the traditional PI controller, there is static error in tracking ac signals. To solve the problem, the control strategy of a fuzzy PR and the grid voltage feed-forward is proposed. The fuzzy PR controller is to eliminate the static error of the system. It also adjusts parameters of PR controller in real time, which avoids the defect of fixed parameter fixed. The grid voltage feed-forward control can ensure the quality of current and improve the system's anti-interference ability when the grid voltage is distorted. Finally, the simulation results show that the system can output grid current with good quality and also has good dynamic and steady state performance.

  12. Error Types and Error Positions in Neglect Dyslexia: Comparative Analyses in Neglect Patients and Healthy Controls

    ERIC Educational Resources Information Center

    Weinzierl, Christiane; Kerkhoff, Georg; van Eimeren, Lucia; Keller, Ingo; Stenneken, Prisca

    2012-01-01

    Unilateral spatial neglect frequently involves a lateralised reading disorder, neglect dyslexia (ND). Reading of single words in ND is characterised by left-sided omissions and substitutions of letters. However, it is unclear whether the distribution of error types and positions within a word shows a unique pattern of ND when directly compared to…

  13. Spelling in adolescents with dyslexia: errors and modes of assessment.

    PubMed

    Tops, Wim; Callens, Maaike; Bijn, Evi; Brysbaert, Marc

    2014-01-01

    In this study we focused on the spelling of high-functioning students with dyslexia. We made a detailed classification of the errors in a word and sentence dictation task made by 100 students with dyslexia and 100 matched control students. All participants were in the first year of their bachelor's studies and had Dutch as mother tongue. Three main error categories were distinguished: phonological, orthographic, and grammatical errors (on the basis of morphology and language-specific spelling rules). The results indicated that higher-education students with dyslexia made on average twice as many spelling errors as the controls, with effect sizes of d ≥ 2. When the errors were classified as phonological, orthographic, or grammatical, we found a slight dominance of phonological errors in students with dyslexia. Sentence dictation did not provide more information than word dictation in the correct classification of students with and without dyslexia. © Hammill Institute on Disabilities 2012.

  14. Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter

    NASA Astrophysics Data System (ADS)

    Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.

    2008-06-01

    This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.

  15. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  16. Indirect learning control for nonlinear dynamical systems

    NASA Technical Reports Server (NTRS)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  17. High accuracy switched-current circuits using an improved dynamic mirror

    NASA Technical Reports Server (NTRS)

    Zweigle, G.; Fiez, T.

    1991-01-01

    The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.

  18. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation

    PubMed Central

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-01-01

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245

  19. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  20. The role of hand of error and stimulus orientation in the relationship between worry and error-related brain activity: Implications for theory and practice.

    PubMed

    Lin, Yanli; Moran, Tim P; Schroder, Hans S; Moser, Jason S

    2015-10-01

    Anxious apprehension/worry is associated with exaggerated error monitoring; however, the precise mechanisms underlying this relationship remain unclear. The current study tested the hypothesis that the worry-error monitoring relationship involves left-lateralized linguistic brain activity by examining the relationship between worry and error monitoring, indexed by the error-related negativity (ERN), as a function of hand of error (Experiment 1) and stimulus orientation (Experiment 2). Results revealed that worry was exclusively related to the ERN on right-handed errors committed by the linguistically dominant left hemisphere. Moreover, the right-hand ERN-worry relationship emerged only when stimuli were presented horizontally (known to activate verbal processes) but not vertically. Together, these findings suggest that the worry-ERN relationship involves left hemisphere verbal processing, elucidating a potential mechanism to explain error monitoring abnormalities in anxiety. Implications for theory and practice are discussed. © 2015 Society for Psychophysiological Research.

  1. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  2. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials

    PubMed Central

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  3. Design of laser diode driver with constant current and temperature control system

    NASA Astrophysics Data System (ADS)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  4. Ironic Effects of Drawing Attention to Story Errors

    PubMed Central

    Eslick, Andrea N.; Fazio, Lisa K.; Marsh, Elizabeth J.

    2014-01-01

    Readers learn errors embedded in fictional stories and use them to answer later general knowledge questions (Marsh, Meade, & Roediger, 2003). Suggestibility is robust and occurs even when story errors contradict well-known facts. The current study evaluated whether suggestibility is linked to participants’ inability to judge story content as correct versus incorrect. Specifically, participants read stories containing correct and misleading information about the world; some information was familiar (making error discovery possible), while some was more obscure. To improve participants’ monitoring ability, we highlighted (in red font) a subset of story phrases requiring evaluation; readers no longer needed to find factual information. Rather, they simply needed to evaluate its correctness. Readers were more likely to answer questions with story errors if they were highlighted in red font, even if they contradicted well-known facts. Though highlighting to-be-evaluated information freed cognitive resources for monitoring, an ironic effect occurred: Drawing attention to specific errors increased rather than decreased later suggestibility. Failure to monitor for errors, not failure to identify the information requiring evaluation, leads to suggestibility. PMID:21294039

  5. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback

    PubMed Central

    Hwang, Ing-Shiou; Lin, Yen-Ting; Huang, Wei-Min; Yang, Zong-Ru; Hu, Chia-Ling; Chen, Yi-Ching

    2017-01-01

    Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13–35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band. PMID:28125658

  6. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    NASA Technical Reports Server (NTRS)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  8. Error framing effects on performance: cognitive, motivational, and affective pathways.

    PubMed

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  9. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  10. MEADERS: Medication Errors and Adverse Drug Event Reporting system.

    PubMed

    Zafar, Atif

    2007-10-11

    The Agency for Healthcare Research and Quality (AHRQ) recently funded the PBRN Resource Center to develop a system for reporting ambulatory medication errors. Our goal was to develop a usable system that practices could use internally to track errors. We initially performed a comprehensive literature review of what is currently available. Then, using a combination of expert panel meetings and iterative development we designed an instrument for ambulatory medication error reporting and createad a reporting system based both in MS Access 2003 and on the web using MS ASP.NET 2.0 technologies.

  11. Decisions to shoot in a weapon identification task: The influence of cultural stereotypes and perceived threat on false positive errors.

    PubMed

    Fleming, Kevin K; Bandy, Carole L; Kimble, Matthew O

    2010-01-01

    The decision to shoot a gun engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC), where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and electroencephalogram (EEG) activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of Middle-Eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERNs were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERNs, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of Middle-Eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to Middle-Eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance.

  12. Decisions to Shoot in a Weapon Identification Task: The Influence of Cultural Stereotypes and Perceived Threat on False Positive Errors

    PubMed Central

    Fleming, Kevin K.; Bandy, Carole L.; Kimble, Matthew O.

    2014-01-01

    The decision to shoot engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC) where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and EEG activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of middle-eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERN’s were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERN’s, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of middle-eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to middle-eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance. PMID:19813139

  13. Neural correlates of response inhibition in current and former smokers.

    PubMed

    Weywadt, Christina R; Kiehl, Kent A; Claus, Eric D

    2017-02-15

    Loss of behavioral control is a hallmark of addiction. Individual differences in basic cognitive processes such as response inhibition may be important for interrupting automatic behaviors associated with smoking and supporting prolonged abstinence. To examine how response inhibition and error monitoring processes differ as a function of smoking status, current smokers, former smokers and never smokers (N=126) completed a simple Go/No-Go task while undergoing functional magnetic resonance imaging. All groups performed similarly on the task and similarly engaged the inferior frontal gyrus and dorsal anterior cingulate cortex, regions traditionally associated with response inhibition and error monitoring, respectively. During response inhibition (i.e., Correct Rejects>Hits contrast), overall group differences emerged in the recruitment of the cerebellum, while individual group differences in error monitoring (False Alarms>Hits contrast) were seen for regions of the parietal lobe and thalamus (current smokers>former smokers), as well as regions of the bilateral cerebellum, parahippocampal gyrus and superior parietal lobe (i.e., ever smokers>never smokers). We discuss how our results replicate two previous large-sample studies that used the same Go/No-Go task and review these data in terms of network models of inhibitory and error monitoring abnormalities in addiction. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Multi-GNSS signal-in-space range error assessment - Methodology and results

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André

    2018-06-01

    The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.

  15. Errors in radial velocity variance from Doppler wind lidar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  16. Errors in radial velocity variance from Doppler wind lidar

    DOE PAGES

    Wang, H.; Barthelmie, R. J.; Doubrawa, P.; ...

    2016-08-29

    A high-fidelity lidar turbulence measurement technique relies on accurate estimates of radial velocity variance that are subject to both systematic and random errors determined by the autocorrelation function of radial velocity, the sampling rate, and the sampling duration. Our paper quantifies the effect of the volumetric averaging in lidar radial velocity measurements on the autocorrelation function and the dependence of the systematic and random errors on the sampling duration, using both statistically simulated and observed data. For current-generation scanning lidars and sampling durations of about 30 min and longer, during which the stationarity assumption is valid for atmospheric flows, themore » systematic error is negligible but the random error exceeds about 10%.« less

  17. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  18. On codes with multi-level error-correction capabilities

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1987-01-01

    In conventional coding for error control, all the information symbols of a message are regarded equally significant, and hence codes are devised to provide equal protection for each information symbol against channel errors. However, in some occasions, some information symbols in a message are more significant than the other symbols. As a result, it is desired to devise codes with multilevel error-correcting capabilities. Another situation where codes with multi-level error-correcting capabilities are desired is in broadcast communication systems. An m-user broadcast channel has one input and m outputs. The single input and each output form a component channel. The component channels may have different noise levels, and hence the messages transmitted over the component channels require different levels of protection against errors. Block codes with multi-level error-correcting capabilities are also known as unequal error protection (UEP) codes. Structural properties of these codes are derived. Based on these structural properties, two classes of UEP codes are constructed.

  19. Intervention strategies for the management of human error

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  20. Adult myeloid leukaemia and radon exposure: a Bayesian model for a case-control study with error in covariates.

    PubMed

    Toti, Simona; Biggeri, Annibale; Forastiere, Francesco

    2005-06-30

    The possible association between radon exposure in dwellings and adult myeloid leukaemia had been explored in an Italian province by a case-control study. A total of 44 cases and 211 controls were selected from death certificates file. No association had been found in the original study (OR = 0.58 for > 185 vs 80 < or = Bq/cm). Here we reanalyse the data taking into account the measurement error of radon concentration and the presence of missing data. A Bayesian hierarchical model with error in covariates is proposed which allows appropriate imputation of missing values. The general conclusion of no evidence of association with radon does not change, but a negative association is not observed anymore (OR = 0.99 for > 185 vs 80 < or = Bq/cm). After adjusting for residential house radon and gamma radiation, and for the multilevel data structure, geological features of the soil is associated with adult myeloid leukaemia risk (OR = 2.14, 95 per cent Cr.I. 1.0-5.5). Copyright 2005 John Wiley & Sons, Ltd.

  1. Changes to Hospital Inpatient Volume After Newspaper Reporting of Medical Errors.

    PubMed

    Fukuda, Haruhisa

    2017-06-30

    The aim of this study was to investigate the influence of medical error case reporting by national newspapers on inpatient volume at acute care hospitals. A case-control study was conducted using the article databases of 3 major Japanese newspapers with nationwide circulation between fiscal years 2012 and 2013. Data on inpatient volume at acute care hospitals were obtained from a Japanese government survey between fiscal years 2011 and 2014. Panel data were constructed and analyzed using a difference-in-differences design. Acute care hospitals in Japan. Hospitals named in articles that included the terms "medical error" and "hospital" were designated case hospitals, which were matched with control hospitals using corresponding locations, nurse-to-patient ratios, and bed numbers. Medical error case reporting in newspapers. Changes to hospital inpatient volume after error reports. The sample comprised 40 case hospitals and 40 control hospitals. Difference-in-differences analyses indicated that newspaper reporting of medical errors was not significantly associated (P = 0.122) with overall inpatient volume. Medical error case reporting by newspapers showed no influence on inpatient volume. Hospitals therefore have little incentive to respond adequately and proactively to medical errors. There may be a need for government intervention to improve the posterror response and encourage better health care safety.

  2. Influence of current or former smoking on asthma management and control.

    PubMed

    Boulet, Louis-Philippe; FitzGerald, J Mark; McIvor, R Andrew; Zimmerman, Sabrina; Chapman, Kenneth R

    2008-01-01

    In patients with asthma, smoking has been associated with accelerated decline in pulmonary function, poor disease control and reduced responsiveness to corticosteroids. To assess the influence of current and former smoking on self-reported asthma control and health care use in a large population of asthma patients. The present analysis was conducted following a telephone survey of adult Canadians aged 18 to 54 years who had physician-diagnosed asthma and a smoking history of less than 20 pack-years. Of 893 patients, 268 were former smokers and 108 were current smokers. Daytime and nighttime symptoms, absenteeism from work or school, emergency care use for asthma in the past year, and use of a short-acting bronchodilator without controller medication were reported more frequently by current smokers than nonsmokers and former smokers. Former smokers were not significantly different from nonsmokers with respect to most asthma outcomes. Current smokers with asthma show evidence of poorer asthma control and greater acute care needs than lifelong nonsmokers or former smokers. These observations stress the importance of smoking cessation to help achieve asthma control.

  3. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  4. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    PubMed

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  5. Challenge and Error: Critical Events and Attention-Related Errors

    ERIC Educational Resources Information Center

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  6. Review of current GPS methodologies for producing accurate time series and their error sources

    NASA Astrophysics Data System (ADS)

    He, Xiaoxing; Montillet, Jean-Philippe; Fernandes, Rui; Bos, Machiel; Yu, Kegen; Hua, Xianghong; Jiang, Weiping

    2017-05-01

    The Global Positioning System (GPS) is an important tool to observe and model geodynamic processes such as plate tectonics and post-glacial rebound. In the last three decades, GPS has seen tremendous advances in the precision of the measurements, which allow researchers to study geophysical signals through a careful analysis of daily time series of GPS receiver coordinates. However, the GPS observations contain errors and the time series can be described as the sum of a real signal and noise. The signal itself can again be divided into station displacements due to geophysical causes and to disturbing factors. Examples of the latter are errors in the realization and stability of the reference frame and corrections due to ionospheric and tropospheric delays and GPS satellite orbit errors. There is an increasing demand on detecting millimeter to sub-millimeter level ground displacement signals in order to further understand regional scale geodetic phenomena hence requiring further improvements in the sensitivity of the GPS solutions. This paper provides a review spanning over 25 years of advances in processing strategies, error mitigation methods and noise modeling for the processing and analysis of GPS daily position time series. The processing of the observations is described step-by-step and mainly with three different strategies in order to explain the weaknesses and strengths of the existing methodologies. In particular, we focus on the choice of the stochastic model in the GPS time series, which directly affects the estimation of the functional model including, for example, tectonic rates, seasonal signals and co-seismic offsets. Moreover, the geodetic community continues to develop computational methods to fully automatize all phases from analysis of GPS time series. This idea is greatly motivated by the large number of GPS receivers installed around the world for diverse applications ranging from surveying small deformations of civil engineering structures (e

  7. A Mechanism for Error Detection in Speeded Response Time Tasks

    ERIC Educational Resources Information Center

    Holroyd, Clay B.; Yeung, Nick; Coles, Michael G. H.; Cohen, Jonathan D.

    2005-01-01

    The concept of error detection plays a central role in theories of executive control. In this article, the authors present a mechanism that can rapidly detect errors in speeded response time tasks. This error monitor assigns values to the output of cognitive processes involved in stimulus categorization and response generation and detects errors…

  8. Improving Localization Accuracy: Successive Measurements Error Modeling

    PubMed Central

    Abu Ali, Najah; Abu-Elkheir, Mervat

    2015-01-01

    Vehicle self-localization is an essential requirement for many of the safety applications envisioned for vehicular networks. The mathematical models used in current vehicular localization schemes focus on modeling the localization error itself, and overlook the potential correlation between successive localization measurement errors. In this paper, we first investigate the existence of correlation between successive positioning measurements, and then incorporate this correlation into the modeling positioning error. We use the Yule Walker equations to determine the degree of correlation between a vehicle’s future position and its past positions, and then propose a p-order Gauss–Markov model to predict the future position of a vehicle from its past p positions. We investigate the existence of correlation for two datasets representing the mobility traces of two vehicles over a period of time. We prove the existence of correlation between successive measurements in the two datasets, and show that the time correlation between measurements can have a value up to four minutes. Through simulations, we validate the robustness of our model and show that it is possible to use the first-order Gauss–Markov model, which has the least complexity, and still maintain an accurate estimation of a vehicle’s future location over time using only its current position. Our model can assist in providing better modeling of positioning errors and can be used as a prediction tool to improve the performance of classical localization algorithms such as the Kalman filter. PMID:26140345

  9. The spectral basis of optimal error field correction on DIII-D

    DOE PAGES

    Paz-Soldan, Carlos A.; Buttery, Richard J.; Garofalo, Andrea M.; ...

    2014-04-28

    Here, experimental optimum error field correction (EFC) currents found in a wide breadth of dedicated experiments on DIII-D are shown to be consistent with the currents required to null the poloidal harmonics of the vacuum field which drive the kink mode near the plasma edge. This allows the identification of empirical metrics which predict optimal EFC currents with accuracy comparable to that of first- principles modeling which includes the ideal plasma response. While further metric refinements are desirable, this work suggests optimal EFC currents can be effectively fed-forward based purely on knowledge of the vacuum error field and basic equilibriummore » properties which are routinely calculated in real-time.« less

  10. Aliasing errors in measurements of beam position and ellipticity

    NASA Astrophysics Data System (ADS)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  11. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  12. Dynamically correcting two-qubit gates against any systematic logical error

    NASA Astrophysics Data System (ADS)

    Calderon Vargas, Fernando Antonio

    The reliability of quantum information processing depends on the ability to deal with noise and error in an efficient way. A significant source of error in many settings is coherent, systematic gate error. This work introduces a set of composite pulse sequences that generate maximally entangling gates and correct all systematic errors within the logical subspace to arbitrary order. These sequences are applica- ble for any two-qubit interaction Hamiltonian, and make no assumptions about the underlying noise mechanism except that it is constant on the timescale of the opera- tion. The prime use for our results will be in cases where one has limited knowledge of the underlying physical noise and control mechanisms, highly constrained control, or both. In particular, we apply these composite pulse sequences to the quantum system formed by two capacitively coupled singlet-triplet qubits, which is charac- terized by having constrained control and noise sources that are low frequency and of a non-Markovian nature.

  13. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  14. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  15. Prescribers' expectations and barriers to electronic prescribing of controlled substances

    PubMed Central

    Kim, Meelee; McDonald, Ann; Kreiner, Peter; Kelleher, Stephen J; Blackman, Michael B; Kaufman, Peter N; Carrow, Grant M

    2011-01-01

    Objective To better understand barriers associated with the adoption and use of electronic prescribing of controlled substances (EPCS), a practice recently established by US Drug Enforcement Administration regulation. Materials and methods Prescribers of controlled substances affiliated with a regional health system were surveyed regarding current electronic prescribing (e-prescribing) activities, current prescribing of controlled substances, and expectations and barriers to the adoption of EPCS. Results 246 prescribers (response rate of 64%) represented a range of medical specialties, with 43.1% of these prescribers current users of e-prescribing for non-controlled substances. Reported issues with controlled substances included errors, pharmacy call-backs, and diversion; most prescribers expected EPCS to address many of these problems, specifically reduce medical errors, improve work flow and efficiency of practice, help identify prescription diversion or misuse, and improve patient treatment management. Prescribers expected, however, that it would be disruptive to practice, and over one-third of respondents reported that carrying a security authentication token at all times would be so burdensome as to discourage adoption. Discussion Although adoption of e-prescribing has been shown to dramatically reduce medication errors, challenges to efficient processes and errors still persist from the perspective of the prescriber, that may interfere with the adoption of EPCS. Most prescribers regarded EPCS security measures as a small or moderate inconvenience (other than carrying a security token), with advantages outweighing the burden. Conclusion Prescribers are optimistic about the potential for EPCS to improve practice, but view certain security measures as a burden and potential barrier. PMID:21946239

  16. High-resolution wavefront control of high-power laser systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brase, J; Brown, C; Carrano, C

    1999-07-08

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformablemore » glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of

  17. Human error and the search for blame

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    Human error is a frequent topic in discussions about risks in using computer systems. A rational analysis of human error leads through the consideration of mistakes to standards that designers use to avoid mistakes that lead to known breakdowns. The irrational side, however, is more interesting. It conditions people to think that breakdowns are inherently wrong and that there is ultimately someone who is responsible. This leads to a search for someone to blame which diverts attention from: learning from the mistakes; seeing the limitations of current engineering methodology; and improving the discourse of design.

  18. Emergency Multiengine Aircraft System for Lateral Control Using Differential Thrust Control of Wing Engines

    NASA Technical Reports Server (NTRS)

    Burken, John J. (Inventor); Burcham, Frank W., Jr. (Inventor); Bull, John (Inventor)

    2000-01-01

    Development of an emergency flight control system is disclosed for lateral control using only differential engine thrust modulation of multiengine aircraft is currently underway. The multiengine has at least two engines laterally displaced to the left and right from the axis of the aircraft. In response to a heading angle command psi(sub c) is to be tracked. By continually sensing the heading angle psi of the aircraft and computing a heading error signal psi(sub e) as a function of the difference between the heading angle command psi(sub c) and the sensed heading angle psi, a track control signal is developed with compensation as a function of sensed bank angle phi. Bank angle rate phi, or roll rate p, yaw rate tau, and true velocity produce an aircraft thrust control signal ATC(sub psi(L,R)). The thrust control signal is differentially applied to the left and right engines, with equal amplitude and opposite sign, such that a negative sign is applied to the control signal on the side of the aircraft. A turn is required to reduce the error signal until the heading feedback reduces the error to zero.

  19. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  20. Multiple imputation to account for measurement error in marginal structural models

    PubMed Central

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  1. Probability of undetected error after decoding for a concatenated coding scheme

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.

  2. 76 FR 42715 - Quarantine Release Errors in Blood Establishments; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-19

    ... Committee on Blood Safety and Availability (the Committee) met to discuss the current FDA blood donor...] Quarantine Release Errors in Blood Establishments; Public Workshop AGENCY: Food and Drug Administration, HHS... entitled: ``Quarantine Release Errors in Blood Establishments.'' The purpose of this public workshop is to...

  3. The effectiveness of risk management program on pediatric nurses' medication error.

    PubMed

    Dehghan-Nayeri, Nahid; Bayat, Fariba; Salehi, Tahmineh; Faghihzadeh, Soghrat

    2013-09-01

    Medication therapy is one of the most complex and high-risk clinical processes that nurses deal with. Medication error is the most common type of error that brings about damage and death to patients, especially pediatric ones. However, these errors are preventable. Identifying and preventing undesirable events leading to medication errors are the main risk management activities. The aim of this study was to investigate the effectiveness of a risk management program on the pediatric nurses' medication error rate. This study is a quasi-experimental one with a comparison group. In this study, 200 nurses were recruited from two main pediatric hospitals in Tehran. In the experimental hospital, we applied the risk management program for a period of 6 months. Nurses of the control hospital did the hospital routine schedule. A pre- and post-test was performed to measure the frequency of the medication error events. SPSS software, t-test, and regression analysis were used for data analysis. After the intervention, the medication error rate of nurses at the experimental hospital was significantly lower (P < 0.001) and the error-reporting rate was higher (P < 0.007) compared to before the intervention and also in comparison to the nurses of the control hospital. Based on the results of this study and taking into account the high-risk nature of the medical environment, applying the quality-control programs such as risk management can effectively prevent the occurrence of the hospital undesirable events. Nursing mangers can reduce the medication error rate by applying risk management programs. However, this program cannot succeed without nurses' cooperation.

  4. Exploring the Current Landscape of Intravenous Infusion Practices and Errors (ECLIPSE): protocol for a mixed-methods observational study.

    PubMed

    Blandford, Ann; Furniss, Dominic; Lyons, Imogen; Chumbley, Gill; Iacovides, Ioanna; Wei, Li; Cox, Anna; Mayer, Astrid; Schnock, Kumiko; Bates, David Westfall; Dykes, Patricia C; Bell, Helen; Franklin, Bryony Dean

    2016-03-03

    Intravenous medication is essential for many hospital inpatients. However, providing intravenous therapy is complex and errors are common. 'Smart pumps' incorporating dose error reduction software have been widely advocated to reduce error. However, little is known about their effect on patient safety, how they are used or their likely impact. This study will explore the landscape of intravenous medication infusion practices and errors in English hospitals and how smart pumps may relate to the prevalence of medication administration errors. This is a mixed-methods study involving an observational quantitative point prevalence study to determine the frequency and types of errors that occur in the infusion of intravenous medication, and qualitative interviews with hospital staff to better understand infusion practices and the contexts in which errors occur. The study will involve 5 clinical areas (critical care, general medicine, general surgery, paediatrics and oncology), across 14 purposively sampled acute hospitals and 2 paediatric hospitals to cover a range of intravenous infusion practices. Data collectors will compare each infusion running at the time of data collection against the patient's medication orders to identify any discrepancies. The potential clinical importance of errors will be assessed. Quantitative data will be analysed descriptively; interviews will be analysed using thematic analysis. Ethical approval has been obtained from an NHS Research Ethics Committee (14/SC/0290); local approvals will be sought from each participating organisation. Findings will be published in peer-reviewed journals and presented at conferences for academic and health professional audiences. Results will also be fed back to participating organisations to inform local policy, training and procurement. Aggregated findings will inform the debate on costs and benefits of the NHS investing in smart pump technology, and what other changes may need to be made to ensure

  5. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array

    PubMed Central

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Tao, Yuan

    2018-01-01

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%. PMID:29734742

  6. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

    PubMed

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Abu-Siada, Ahmed; Tao, Yuan

    2018-05-05

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%.

  7. Sources of error in the retracted scientific literature.

    PubMed

    Casadevall, Arturo; Steen, R Grant; Fang, Ferric C

    2014-09-01

    Retraction of flawed articles is an important mechanism for correction of the scientific literature. We recently reported that the majority of retractions are associated with scientific misconduct. In the current study, we focused on the subset of retractions for which no misconduct was identified, in order to identify the major causes of error. Analysis of the retraction notices for 423 articles indexed in PubMed revealed that the most common causes of error-related retraction are laboratory errors, analytical errors, and irreproducible results. The most common laboratory errors are contamination and problems relating to molecular biology procedures (e.g., sequencing, cloning). Retractions due to contamination were more common in the past, whereas analytical errors are now increasing in frequency. A number of publications that have not been retracted despite being shown to contain significant errors suggest that barriers to retraction may impede correction of the literature. In particular, few cases of retraction due to cell line contamination were found despite recognition that this problem has affected numerous publications. An understanding of the errors leading to retraction can guide practices to improve laboratory research and the integrity of the scientific literature. Perhaps most important, our analysis has identified major problems in the mechanisms used to rectify the scientific literature and suggests a need for action by the scientific community to adopt protocols that ensure the integrity of the publication process. © FASEB.

  8. Modeling conflict and error in the medial frontal cortex.

    PubMed

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  9. Method for controlling a vehicle with two or more independently steered wheels

    DOEpatents

    Reister, D.B.; Unseren, M.A.

    1995-03-28

    A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.

  10. DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases

    PubMed Central

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2015-01-01

    Nanopore DNA sequencing via transverse current has emerged as a promising candidate for third-generation sequencing technology. It produces long read lengths which could alleviate problems with assembly errors inherent in current technologies. However, the high error rates of nanopore sequencing have to be addressed. A very important source of the error is the intrinsic noise in the current arising from carrier dispersion along the chain of the molecule, i.e., from the influence of neighboring bases. In this work we perform calculations of the transverse current within an effective multi-orbital tight-binding model derived from first-principles calculations of the DNA/RNA molecules, to study the effect of this structural noise on the error rates in DNA/RNA sequencing via transverse current in nanopores. We demonstrate that a statistical technique, utilizing not only the currents through the nucleotides but also the correlations in the currents, can in principle reduce the error rate below any desired precision. PMID:26150827

  11. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  12. Towards Current Profile Control in ITER: Potential Approaches and Research Needs

    NASA Astrophysics Data System (ADS)

    Schuster, E.; Barton, J. E.; Wehner, W. P.

    2014-10-01

    Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.

  13. [CIRRNET® - learning from errors, a success story].

    PubMed

    Frank, O; Hochreutener, M; Wiederkehr, P; Staender, S

    2012-06-01

    CIRRNET® is the network of local error-reporting systems of the Swiss Patient Safety Foundation. The network has been running since 2006 together with the Swiss Society for Anaesthesiology and Resuscitation (SGAR), and network participants currently include 39 healthcare institutions from all four different language regions of Switzerland. Further institutions can join at any time. Local error reports in CIRRNET® are bundled at a supraregional level, categorised in accordance with the WHO classification, and analysed by medical experts. The CIRRNET® database offers a solid pool of data with error reports from a wide range of medical specialist's areas and provides the basis for identifying relevant problem areas in patient safety. These problem areas are then processed in cooperation with specialists with extremely varied areas of expertise, and recommendations for avoiding these errors are developed by changing care processes (Quick-Alerts®). Having been approved by medical associations and professional medical societies, Quick-Alerts® are widely supported and well accepted in professional circles. The CIRRNET® database also enables any affiliated CIRRNET® participant to access all error reports in the 'closed user area' of the CIRRNET® homepage and to use these error reports for in-house training. A healthcare institution does not have to make every mistake itself - it can learn from the errors of others, compare notes with other healthcare institutions, and use existing knowledge to advance its own patient safety.

  14. A Theoretical Foundation for the Study of Inferential Error in Decision-Making Groups.

    ERIC Educational Resources Information Center

    Gouran, Dennis S.

    To provide a theoretical base for investigating the influence of inferential error on group decision making, current literature on both inferential error and decision making is reviewed and applied to the Watergate incident. Although groups tend to make fewer inferential errors because members' inferences are generally not biased in the same…

  15. Current control circuitry

    DOEpatents

    Taubman, Matthew S [Richland, WA

    2005-03-15

    Among the embodiments of the present invention is an apparatus that includes a transistor (30), a servo device (40), and a current source (50). The servo device (40) is operable to provide a common base mode of operation of the transistor (30) by maintaining an approximately constant voltage level at the transistor base (32b). The current source (150) is operable to provide a bias current to the transistor (30). A first device (24) provides an input signal to an electrical node (70) positioned between the emitter (32e) of the transistor (30) and the current source (50). A second device (26) receives an output signal from the collector (32c) of the transistor (30).

  16. Error-Free Software

    NASA Technical Reports Server (NTRS)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  17. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  18. Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, H.; Lin, S.

    1984-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.

  19. Beam current controller for laser ion source

    DOEpatents

    Okamura, Masahiro

    2014-10-28

    The present invention relates to the design and use of an ion source with a rapid beam current controller for experimental and medicinal purposes. More particularly, the present invention relates to the design and use of a laser ion source with a magnetic field applied to confine a plasma flux caused by laser ablation.

  20. Performance monitoring and error significance in patients with obsessive-compulsive disorder.

    PubMed

    Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert

    2010-05-01

    Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Myodo, Miho; Inaba, Masafumi; Ohara, Kazuyoshi; Kato, Ryogo; Kobayashi, Mikinori; Hirano, Yu; Suzuki, Kazuma; Kawarada, Hiroshi

    2015-05-01

    Large-current-controllable carbon nanotube field-effect transistors (CNT-FETs) were fabricated with mm-long CNT sheets. The sheets, synthesized by remote-plasma-enhanced CVD, contained both single- and double-walled CNTs. Titanium was deposited on the sheet as source and drain electrodes, and an electrolyte solution was used as a gate electrode (solution gate) to apply a gate voltage to the CNTs through electric double layers formed around the CNTs. The drain current came to be well modulated as electrolyte solution penetrated into the sheets, and one of the solution gate CNT-FETs was able to control a large current of over 2.5 A. In addition, we determined the transconductance parameter per tube and compared it with values for other CNT-FETs. The potential of CNT sheets for applications requiring the control of large current is exhibited in this study.

  2. Decreasing patient identification band errors by standardizing processes.

    PubMed

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P < .001) and was maintained for 8 months. Standardization of ID bands and labels in conjunction with other interventions resulted in a statistical decrease in ID band error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  3. Error rates in forensic DNA analysis: definition, numbers, impact and communication.

    PubMed

    Kloosterman, Ate; Sjerps, Marjan; Quak, Astrid

    2014-09-01

    Forensic DNA casework is currently regarded as one of the most important types of forensic evidence, and important decisions in intelligence and justice are based on it. However, errors occasionally occur and may have very serious consequences. In other domains, error rates have been defined and published. The forensic domain is lagging behind concerning this transparency for various reasons. In this paper we provide definitions and observed frequencies for different types of errors at the Human Biological Traces Department of the Netherlands Forensic Institute (NFI) over the years 2008-2012. Furthermore, we assess their actual and potential impact and describe how the NFI deals with the communication of these numbers to the legal justice system. We conclude that the observed relative frequency of quality failures is comparable to studies from clinical laboratories and genetic testing centres. Furthermore, this frequency is constant over the five-year study period. The most common causes of failures related to the laboratory process were contamination and human error. Most human errors could be corrected, whereas gross contamination in crime samples often resulted in irreversible consequences. Hence this type of contamination is identified as the most significant source of error. Of the known contamination incidents, most were detected by the NFI quality control system before the report was issued to the authorities, and thus did not lead to flawed decisions like false convictions. However in a very limited number of cases crucial errors were detected after the report was issued, sometimes with severe consequences. Many of these errors were made in the post-analytical phase. The error rates reported in this paper are useful for quality improvement and benchmarking, and contribute to an open research culture that promotes public trust. However, they are irrelevant in the context of a particular case. Here case-specific probabilities of undetected errors are needed

  4. Analysis and modeling of leakage current sensor under pulsating direct current

    NASA Astrophysics Data System (ADS)

    Li, Kui; Dai, Yihua; Wang, Yao; Niu, Feng; Chen, Zhao; Huang, Shaopo

    2017-05-01

    In this paper, the transformation characteristics of current sensor under pulsating DC leakage current is investigated. The mathematical model of current sensor is proposed to accurately describe the secondary side current and excitation current. The transformation process of current sensor is illustrated in details and the transformation error is analyzed from multi aspects. A simulation model is built and a sensor prototype is designed to conduct comparative evaluation, and both simulation and experimental results are presented to verify the correctness of theoretical analysis.

  5. Simulations in site error estimation for direction finders

    NASA Astrophysics Data System (ADS)

    López, Raúl E.; Passi, Ranjit M.

    1991-08-01

    The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.

  6. Self-controlled knowledge of results: age-related differences in motor learning, strategies, and error detection.

    PubMed

    Carter, Michael J; Patterson, Jae T

    2012-12-01

    Research has demonstrated that a self-controlled KR schedule is advantageous for motor learning; however, the usefulness of a self-controlled KR context in older adults remains unknown. To address this gap in knowledge, we examined whether (1) the learning benefits of a self-controlled KR schedule are modulated by the age of the learner; (2) practicing in a self-controlled KR context concurrently strengthens the learner's error detection mechanism, and (3) the KR strategy during acquisition changes as a function of practice trials completed and age. As a function of age, participants were quasirandomly assigned to either the self-control or yoked group resulting in four experimental groups (Self-Young, Yoked-Young, Self-Old, and Yoked-Old). The results revealed the Self-Young group: (1) demonstrated superior retention performance than all other groups (p<.05); (2) was more accurate in estimating motor performance than all other groups during retention (p<.05), and (3) self-reported a switch in their strategy for requesting KR during acquisition based on the number of practice trials completed. Collectively, our findings suggest that older adults do not demonstrate the same learning benefits of a self-controlled KR context as younger adults which may be attributed to differences in KR strategies. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  8. The analysis and compensation of errors of precise simple harmonic motion control under high speed and large load conditions based on servo electric cylinder

    NASA Astrophysics Data System (ADS)

    Ma, Chen-xi; Ding, Guo-qing

    2017-10-01

    Simple harmonic waves and synthesized simple harmonic waves are widely used in the test of instruments. However, because of the errors caused by clearance of gear and time-delay error of FPGA, it is difficult to control servo electric cylinder in precise simple harmonic motion under high speed, high frequency and large load conditions. To solve the problem, a method of error compensation is proposed in this paper. In the method, a displacement sensor is fitted on the piston rod of the electric cylinder. By using the displacement sensor, the real-time displacement of the piston rod is obtained and fed back to the input of servo motor, then a closed loop control is realized. There is compensation of pulses in the next period of the synthetic waves. This paper uses FPGA as the processing core. The software mainly comprises a waveform generator, an Ethernet module, a memory module, a pulse generator, a pulse selector, a protection module, an error compensation module. A durability of shock absorbers is used as the testing platform. The durability mainly comprises a single electric cylinder, a servo motor for driving the electric cylinder, and the servo motor driver.

  9. Initial experience with a microprocessor controlled current based defibrillator.

    PubMed Central

    Dalzell, G W; Cunningham, S R; Anderson, J; Adgey, A A

    1989-01-01

    Intramyocardial current flow is a critical factor in successful ventricular defibrillation. The main determinants of intramyocardial current flow during transthoracic countershock are the selected energy and the transthoracic impedance of the patient. To optimise the success of the first shock and to titrate energy dosage according to each patient's transthoracic impedance, a microprocessor controlled current based defibrillator was developed. It was compared with a conventional energy based protocol of 200 J (delivered energy), 200 J, then 360 J if required in 42 consecutive episodes of ventricular fibrillation in 33 men and seven women. The mean (SD) predicted transthoracic impedance was 69.9 (14.0) omega. First shock success with the standard protocol was 80.9%, and first or second shock success was 95.2%. The microprocessor controlled current based defibrillator automatically measured transthoracic impedance and calculated the energy required to develop a selected current in each patient. A current protocol of 30 A, 30 A, then 40 A, if required, was used in 29 men and 12 women with 41 episodes of ventricular fibrillation. Transthoracic impedance (mean 65.1 (15.9) omega) was similar to that in the energy protocol group and success rates for first shock (82.9%) and first or second shocks (97.5%) were also similar. The mean delivered energy per shock with the current based defibrillator for first or second shock success was significantly less (144.8 J) with the energy protocol (200 J). The mean peak current of successful shocks was also significantly reduced (29.0 v 31.9 A). A current based defibrillator titrates energy according to transthoracic impedance; it has a success rate comparable to conventional defibrillators but it delivers significantly less energy and current per shock. Images Fig 1 PMID:2757862

  10. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Error field detection in DIII-D by magnetic steering of locked modes

    DOE PAGES

    Shiraki, Daisuke; La Haye, Robert J.; Logan, Nikolas C.; ...

    2014-02-20

    Optimal correction coil currents for the n = 1 intrinsic error field of the DIII-D tokamak are inferred by applying a rotating external magnetic perturbation to steer the phase of a saturated locked mode with poloidal/toroidal mode number m/n = 2/1. The error field is detected non-disruptively in a single discharge, based on the toroidal torque balance of the resonant surface, which is assumed to be dominated by the balance of resonant electromagnetic torques. This is equivalent to the island being locked at all times to the resonant 2/1 component of the total of the applied and intrinsic error fields,more » such that the deviation of the locked mode phase from the applied field phase depends on the existing error field. The optimal set of correction coil currents is determined to be those currents which best cancels the torque from the error field, based on fitting of the torque balance model. The toroidal electromagnetic torques are calculated from experimental data using a simplified approach incorporating realistic DIII-D geometry, and including the effect of the plasma response on island torque balance based on the ideal plasma response to external fields. This method of error field detection is demonstrated in DIII-D discharges, and the results are compared with those based on the onset of low-density locked modes in ohmic plasmas. Furthermore, this magnetic steering technique presents an efficient approach to error field detection and is a promising method for ITER, particularly during initial operation when the lack of auxiliary heating systems makes established techniques based on rotation or plasma amplification unsuitable.« less

  12. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  13. Prevalence of refraction errors and color blindness in heavy vehicle drivers.

    PubMed

    Erdoğan, Haydar; Ozdemir, Levent; Arslan, Seher; Cetin, Ilhan; Ozeç, Ayşe Vural; Cetinkaya, Selma; Sümer, Haldun

    2011-01-01

    To investigate the frequency of eye disorders in heavy vehicle drivers. A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security.

  14. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS

    PubMed Central

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T.; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J.; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A.; Lempicki, Richard A.; Huang, Da Wei

    2013-01-01

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results. PMID:24179701

  15. A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS.

    PubMed

    Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A; Lempicki, Richard A; Huang, Da Wei

    2013-07-31

    PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.

  16. Acetaminophen attenuates error evaluation in cortex.

    PubMed

    Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C

    2016-06-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Backward-gazing method for heliostats shape errors measurement and calibration

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-06-01

    The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.

  18. A Randomized, Double-Blind, Sham-Controlled Trial of Transcranial Direct Current Stimulation in Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Cosmo, Camila; Baptista, Abrahão Fontes; de Araújo, Arão Nogueira; do Rosário, Raphael Silva; Miranda, José Garcia Vivas; Montoya, Pedro; de Sena, Eduardo Pondé

    2015-01-01

    Current standardized treatments for cognitive impairment in attention-deficit/hyperactivity disorder remain limited and their efficacy restricted. Transcranial direct current stimulation (tDCS) is a promising tool for enhancing cognitive performance in several neuropsychiatric disorders. Nevertheless, the effects of tDCS in reducing cognitive impairment in patients with attention-deficit/hyperactivity disorder (ADHD) have not yet been investigated. A parallel, randomized, double-blind, sham-controlled trial was conducted to examine the efficacy of tDCS on the modulation of inhibitory control in adults with ADHD. Thirty patients were randomly allocated to each group and performed a go/no-go task before and after a single session of either anodal stimulation (1 mA) over the left dorsolateral prefrontal cortex or sham stimulation. A nonparametric two-sample Wilcoxon rank-sum (Mann-Whitney) test revealed no significant differences between the two groups of individuals with ADHD (tDCS vs. sham) in regard to behavioral performance in the go/no go tasks. Furthermore, the effect sizes of group differences after treatment for the primary outcome measures-correct responses, impulsivity and omission errors--were small. No adverse events resulting from stimulation were reported. According to these findings, there is no evidence in support of the use of anodal stimulation over the left dorsolateral prefrontal cortex as an approach for improving inhibitory control in ADHD patients. To the best of our knowledge, this is the first clinical study to assess the cognitive effects of tDCS in individuals with ADHD. Further research is needed to assess the clinical efficacy of tDCS in this population. ClinicalTrials.gov NCT01968512.

  19. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Understanding diagnostic errors in medicine: a lesson from aviation

    PubMed Central

    Singh, H; Petersen, L A; Thomas, E J

    2006-01-01

    The impact of diagnostic errors on patient safety in medicine is increasingly being recognized. Despite the current progress in patient safety research, the understanding of such errors and how to prevent them is inadequate. Preliminary research suggests that diagnostic errors have both cognitive and systems origins. Situational awareness is a model that is primarily used in aviation human factors research that can encompass both the cognitive and the systems roots of such errors. This conceptual model offers a unique perspective in the study of diagnostic errors. The applicability of this model is illustrated by the analysis of a patient whose diagnosis of spinal cord compression was substantially delayed. We suggest how the application of this framework could lead to potential areas of intervention and outline some areas of future research. It is possible that the use of such a model in medicine could help reduce errors in diagnosis and lead to significant improvements in patient care. Further research is needed, including the measurement of situational awareness and correlation with health outcomes. PMID:16751463

  1. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Treesearch

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  2. The next organizational challenge: finding and addressing diagnostic error.

    PubMed

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  3. Claims, errors, and compensation payments in medical malpractice litigation.

    PubMed

    Studdert, David M; Mello, Michelle M; Gawande, Atul A; Gandhi, Tejal K; Kachalia, Allen; Yoon, Catherine; Puopolo, Ann Louise; Brennan, Troyen A

    2006-05-11

    In the current debate over tort reform, critics of the medical malpractice system charge that frivolous litigation--claims that lack evidence of injury, substandard care, or both--is common and costly. Trained physicians reviewed a random sample of 1452 closed malpractice claims from five liability insurers to determine whether a medical injury had occurred and, if so, whether it was due to medical error. We analyzed the prevalence, characteristics, litigation outcomes, and costs of claims that lacked evidence of error. For 3 percent of the claims, there were no verifiable medical injuries, and 37 percent did not involve errors. Most of the claims that were not associated with errors (370 of 515 [72 percent]) or injuries (31 of 37 [84 percent]) did not result in compensation; most that involved injuries due to error did (653 of 889 [73 percent]). Payment of claims not involving errors occurred less frequently than did the converse form of inaccuracy--nonpayment of claims associated with errors. When claims not involving errors were compensated, payments were significantly lower on average than were payments for claims involving errors (313,205 dollars vs. 521,560 dollars, P=0.004). Overall, claims not involving errors accounted for 13 to 16 percent of the system's total monetary costs. For every dollar spent on compensation, 54 cents went to administrative expenses (including those involving lawyers, experts, and courts). Claims involving errors accounted for 78 percent of total administrative costs. Claims that lack evidence of error are not uncommon, but most are denied compensation. The vast majority of expenditures go toward litigation over errors and payment of them. The overhead costs of malpractice litigation are exorbitant. Copyright 2006 Massachusetts Medical Society.

  4. Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia.

    PubMed

    Moran, Lauren V; Stoeckel, Luke E; Wang, Kristina; Caine, Carolyn E; Villafuerte, Rosemond; Calderon, Vanessa; Baker, Justin T; Ongur, Dost; Janes, Amy C; Evins, A Eden; Pizzagalli, Diego A

    2018-03-01

    Nicotine improves attention and processing speed in individuals with schizophrenia. Few studies have investigated the effects of nicotine on cognitive control. Prior functional magnetic resonance imaging (fMRI) research demonstrates blunted activation of dorsal anterior cingulate cortex (dACC) and rostral anterior cingulate cortex (rACC) in response to error and decreased post-error slowing in schizophrenia. Participants with schizophrenia (n = 13) and healthy controls (n = 12) participated in a randomized, placebo-controlled, crossover study of the effects of transdermal nicotine on cognitive control. For each drug condition, participants underwent fMRI while performing the stop signal task where participants attempt to inhibit prepotent responses to "go (motor activation)" signals when an occasional "stop (motor inhibition)" signal appears. Error processing was evaluated by comparing "stop error" trials (failed response inhibition) to "go" trials. Resting-state fMRI data were collected prior to the task. Participants with schizophrenia had increased nicotine-induced activation of right caudate in response to errors compared to controls (DRUG × GROUP effect: p corrected  < 0.05). Both groups had significant nicotine-induced activation of dACC and rACC in response to errors. Using right caudate activation to errors as a seed for resting-state functional connectivity analysis, relative to controls, participants with schizophrenia had significantly decreased connectivity between the right caudate and dACC/bilateral dorsolateral prefrontal cortices. In sum, we replicated prior findings of decreased post-error slowing in schizophrenia and found that nicotine was associated with more adaptive (i.e., increased) post-error reaction time (RT). This proof-of-concept pilot study suggests a role for nicotinic agents in targeting cognitive control deficits in schizophrenia.

  5. Control of bootstrap current in the pedestal region of tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less

  6. Which Measures of Online Control Are Least Sensitive to Offline Processes?

    PubMed

    de Grosbois, John; Tremblay, Luc

    2018-02-28

    A major challenge to the measurement of online control is the contamination by offline, planning-based processes. The current study examined the sensitivity of four measures of online control to offline changes in reaching performance induced by prism adaptation and terminal feedback. These measures included the squared Z scores (Z 2 ) of correlations of limb position at 75% movement time versus movement end, variable error, time after peak velocity, and a frequency-domain analysis (pPower). The results indicated that variable error and time after peak velocity were sensitive to the prism adaptation. Furthermore, only the Z 2 values were biased by the terminal feedback. Ultimately, the current study has demonstrated the sensitivity of limb kinematic measures to offline control processes and that pPower analyses may yield the most suitable measure of online control.

  7. 42 CFR 400.310 - Display of currently valid OMB control numbers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Information § 400.310 Display of currently valid OMB control numbers. Sections in 42 CFR that... 42 Public Health 2 2011-10-01 2011-10-01 false Display of currently valid OMB control numbers. 400....408 0938—0566 412.42 0938—0666 412.92 0938—0477 412.105 0938—0456 412.230, 412.232, 412.234, 412.236...

  8. 42 CFR 400.310 - Display of currently valid OMB control numbers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of Information § 400.310 Display of currently valid OMB control numbers. Sections in 42 CFR that... 42 Public Health 2 2010-10-01 2010-10-01 false Display of currently valid OMB control numbers. 400....408 0938—0566 412.42 0938—0666 412.92 0938—0477 412.105 0938—0456 412.230, 412.232, 412.234, 412.236...

  9. Extinction measurements with low-power hsrl systems—error limits

    NASA Astrophysics Data System (ADS)

    Eloranta, Ed

    2018-04-01

    HSRL measurements of extinction are more difficult than backscatter measurements. This is particularly true for low-power, eye-safe systems. This paper looks at error sources that currently provide an error limit of 10-5 m-1 for boundary layer extinction measurements made with University of Wisconsin HSRL systems. These eye-safe systems typically use 300mW transmitters and 40 cm diameter receivers with a 10-4 radian field-of-view.

  10. Current harmonics elimination control method for six-phase PM synchronous motor drives.

    PubMed

    Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei

    2015-11-01

    To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Rotor Current Control of DFIG for Improving Fault Ride - Through Using a Novel Sliding Mode Control Approach

    NASA Astrophysics Data System (ADS)

    Cai, Guowei; Liu, Cheng; Yang, Deyou

    2013-11-01

    The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

  12. Geometric error analysis for shuttle imaging spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.

    1984-01-01

    The demand of more powerful tools for remote sensing and management of earth resources steadily increased over the last decade. With the recent advancement of area array detectors, high resolution multichannel imaging spectrometers can be realistically constructed. The error analysis study for the Shuttle Imaging Spectrometer Experiment system is documented for the purpose of providing information for design, tradeoff, and performance prediction. Error sources including the Shuttle attitude determination and control system, instrument pointing and misalignment, disturbances, ephemeris, Earth rotation, etc., were investigated. Geometric error mapping functions were developed, characterized, and illustrated extensively with tables and charts. Selected ground patterns and the corresponding image distortions were generated for direct visual inspection of how the various error sources affect the appearance of the ground object images.

  13. Hospital prescribing errors: epidemiological assessment of predictors

    PubMed Central

    Fijn, R; Van den Bemt, P M L A; Chow, M; De Blaey, C J; De Jong-Van den Berg, L T W; Brouwers, J R B J

    2002-01-01

    Aims To demonstrate an epidemiological method to assess predictors of prescribing errors. Methods A retrospective case-control study, comparing prescriptions with and without errors. Results Only prescriber and drug characteristics were associated with errors. Prescriber characteristics were medical specialty (e.g. orthopaedics: OR: 3.4, 95% CI 2.1, 5.4) and prescriber status (e.g. verbal orders transcribed by nursing staff: OR: 2.5, 95% CI 1.8, 3.6). Drug characteristics were dosage form (e.g. inhalation devices: OR: 4.1, 95% CI 2.6, 6.6), therapeutic area (e.g. gastrointestinal tract: OR: 1.7, 95% CI 1.2, 2.4) and continuation of preadmission treatment (Yes: OR: 1.7, 95% CI 1.3, 2.3). Conclusions Other hospitals could use our epidemiological framework to identify their own error predictors. Our findings suggest a focus on specific prescribers, dosage forms and therapeutic areas. We also found that prescriptions originating from general practitioners involved errors and therefore, these should be checked when patients are hospitalized. PMID:11874397

  14. Prevalence of refraction errors and color blindness in heavy vehicle drivers

    PubMed Central

    Erdoğan, Haydar; Özdemir, Levent; Arslan, Seher; Çetin, Ilhan; Özeç, Ayşe Vural; Çetinkaya, Selma; Sümer, Haldun

    2011-01-01

    AIM To investigate the frequency of eye disorders in heavy vehicle drivers. METHODS A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. RESULTS According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. CONCLUSION A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security. PMID:22553671

  15. Linear error analysis of slope-area discharge determinations

    USGS Publications Warehouse

    Kirby, W.H.

    1987-01-01

    The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.

  16. Feedback on prescribing errors to junior doctors: exploring views, problems and preferred methods.

    PubMed

    Bertels, Jeroen; Almoudaris, Alex M; Cortoos, Pieter-Jan; Jacklin, Ann; Franklin, Bryony Dean

    2013-06-01

    Prescribing errors are common in hospital inpatients. However, the literature suggests that doctors are often unaware of their errors as they are not always informed of them. It has been suggested that providing more feedback to prescribers may reduce subsequent error rates. Only few studies have investigated the views of prescribers towards receiving such feedback, or the views of hospital pharmacists as potential feedback providers. Our aim was to explore the views of junior doctors and hospital pharmacists regarding feedback on individual doctors' prescribing errors. Objectives were to determine how feedback was currently provided and any associated problems, to explore views on other approaches to feedback, and to make recommendations for designing suitable feedback systems. A large London NHS hospital trust. To explore views on current and possible feedback mechanisms, self-administered questionnaires were given to all junior doctors and pharmacists, combining both 5-point Likert scale statements and open-ended questions. Agreement scores for statements regarding perceived prescribing error rates, opinions on feedback, barriers to feedback, and preferences for future practice. Response rates were 49% (37/75) for junior doctors and 57% (57/100) for pharmacists. In general, doctors did not feel threatened by feedback on their prescribing errors. They felt that feedback currently provided was constructive but often irregular and insufficient. Most pharmacists provided feedback in various ways; however some did not or were inconsistent. They were willing to provide more feedback, but did not feel it was always effective or feasible due to barriers such as communication problems and time constraints. Both professional groups preferred individual feedback with additional regular generic feedback on common or serious errors. Feedback on prescribing errors was valued and acceptable to both professional groups. From the results, several suggested methods of providing

  17. Closed-loop torque feedback for a universal field-oriented controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  18. Closed-loop torque feedback for a universal field-oriented controller

    DOEpatents

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  19. Underlying Cause(s) of Letter Perseveration Errors

    ERIC Educational Resources Information Center

    Fischer-Baum, Simon; Rapp, Brenda

    2012-01-01

    Perseverations, the inappropriate intrusion of elements from a previous response into a current response, are commonly observed in individuals with acquired deficits. This study specifically investigates the contribution of failure-to activate and failure-to-inhibit deficit(s) in the generation of letter perseveration errors in acquired…

  20. Manufacturing Error Effects on Mechanical Properties and Dynamic Characteristics of Rotor Parts under High Acceleration

    NASA Astrophysics Data System (ADS)

    Jia, Mei-Hui; Wang, Cheng-Lin; Ren, Bin

    2017-07-01

    Stress, strain and vibration characteristics of rotor parts should be changed significantly under high acceleration, manufacturing error is one of the most important reason. However, current research on this problem has not been carried out. A rotor with an acceleration of 150,000 g is considered as the objective, the effects of manufacturing errors on rotor mechanical properties and dynamic characteristics are executed by the selection of the key affecting factors. Through the force balance equation of the rotor infinitesimal unit establishment, a theoretical model of stress calculation based on slice method is proposed and established, a formula for the rotor stress at any point derives. A finite element model (FEM) of rotor with holes is established with manufacturing errors. The changes of the stresses and strains of a rotor in parallelism and symmetry errors are analyzed, which verify the validity of the theoretical model. The pre-stressing modal analysis is performed based on the aforementioned static analysis. The key dynamic characteristics are analyzed. The results demonstrated that, as the parallelism and symmetry errors increase, the equivalent stresses and strains of the rotor slowly increase linearly, the highest growth rate does not exceed 4%, the maximum change rate of natural frequency is 0.1%. The rotor vibration mode is not significantly affected. The FEM construction method of the rotor with manufacturing errors can be utilized for the quantitative research on rotor characteristics, which will assist in the active control of rotor component reliability under high acceleration.