Science.gov

Sample records for current error control

  1. Aircraft system modeling error and control error

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V. (Inventor); Kaneshige, John T. (Inventor); Krishnakumar, Kalmanje S. (Inventor); Burken, John J. (Inventor)

    2012-01-01

    A method for modeling error-driven adaptive control of an aircraft. Normal aircraft plant dynamics is modeled, using an original plant description in which a controller responds to a tracking error e(k) to drive the component to a normal reference value according to an asymptote curve. Where the system senses that (1) at least one aircraft plant component is experiencing an excursion and (2) the return of this component value toward its reference value is not proceeding according to the expected controller characteristics, neural network (NN) modeling of aircraft plant operation may be changed. However, if (1) is satisfied but the error component is returning toward its reference value according to expected controller characteristics, the NN will continue to model operation of the aircraft plant according to an original description.

  2. Control by model error estimation

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Skelton, R. E.

    1976-01-01

    Modern control theory relies upon the fidelity of the mathematical model of the system. Truncated modes, external disturbances, and parameter errors in linear system models are corrected by augmenting to the original system of equations an 'error system' which is designed to approximate the effects of such model errors. A Chebyshev error system is developed for application to the Large Space Telescope (LST).

  3. Superconducting fault current controller/current controller

    DOEpatents

    Cha, Yung S.

    2004-06-15

    A superconducting fault current controller/current controller employs a superconducting-shielded core reactor (SSCR) with a variable impedance in a secondary circuit to control current in a primary circuit such as an electrical distribution system. In a second embodiment, a variable current source is employed in a secondary circuit of an SSCR to control current in the primary circuit. In a third embodiment, both a variable impedance in one secondary circuit and a variable current source in a second circuit of an SSCR are employed for separate and independent control of current in the primary circuit.

  4. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  5. A cascaded coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Shu, L.; Kasami, T.

    1985-01-01

    A cascade coding scheme for error control is investigated. The scheme employs a combination of hard and soft decisions in decoding. Error performance is analyzed. If the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit-error-rate. Some example schemes are evaluated. They seem to be quite suitable for satellite down-link error control.

  6. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Fujiwara, T.; Lin, S.

    1986-01-01

    In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.

  7. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  8. RHIC INSERTION REGION, SHUNT POWER SUPPLY CURRENT ERRORS.

    SciTech Connect

    BRUNO,D.; GANETIS,G.; LAMBIASE,R.F.; SANDBERG,J.

    2001-06-18

    The Relativistic Heavy Ion Collider (RHIC) was commissioned in 1999 and 2000. RHIC requires power supplies to supply currents to highly inductive superconducting magnets. The RHIC Insertion Region contain's many shunt power supplies to trim the current of different magnet elements in a large superconducting magnet circuit. Power Supply current error measurements were performed during the commissioning of RHIC. Models of these power supply systems were produced to predict and improve these power supply current errors using the circuit analysis program MicroCap V by Spectrum Software (TM). Results of the power supply current errors are presented from the models and from the measurements performed during the commissioning of RHIC.

  9. Effects of errors on decoupled control systems

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.

    1978-01-01

    Various error sources in a decoupled control system are considered in connection with longitudinal control on a simulated externally blown jet-flap STOL aircraft. The system employed the throttle, horizontal tail, and flaps to decouple the forward velocity, pitch angle, and flight-path angle. The errors considered were: (1) imperfect knowledge of airplane aerodynamic and control characteristics; (2) imperfect measurements of airplane state variables; (3) change in flight conditions, and (4) lag in the airplane controls and in engine response. The effects of the various errors on the decoupling process were generally minor. Significant coupling in flight-path angle was caused by control lag during speed-command maneuvers. However, this coupling could be eliminated by including the control lag in the design of the decoupled system. Other error sources affected primarily the commanded response quantity.

  10. Linearization of Attitude-Control Error Dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1993-01-01

    Direction cosines and quaternions are useful for representing rigid-body attitude because they exhibit no kinematic singularities. Each utilizes more variables than the minimum three degrees of freedom required to specify attitude. Therefore, application of a nonlinear inversion procedure to either formulation introduces singularities. Furthermore, in designing an attitude-control system, it is not appropriate to express attitude error as a difference of direction cosines (or quaternions). One should employ a measure of attitude error that not only is minimal but preserves orthogonal rotation properties as well. This note applies an inversion procedure to an appropriate measure of attitude error, so that the singularity occurs when the error reaches +/- 180 deg. This approach leads to the realization of a new model-follower attitude-control system that exhibits exact linear attitude-error dynamics.

  11. Error types and error positions in neglect dyslexia: comparative analyses in neglect patients and healthy controls.

    PubMed

    Weinzierl, Christiane; Kerkhoff, Georg; van Eimeren, Lucia; Keller, Ingo; Stenneken, Prisca

    2012-10-01

    Unilateral spatial neglect frequently involves a lateralised reading disorder, neglect dyslexia (ND). Reading of single words in ND is characterised by left-sided omissions and substitutions of letters. However, it is unclear whether the distribution of error types and positions within a word shows a unique pattern of ND when directly compared to healthy controls. This question has been difficult to answer so far, given the usually low number of reading errors in healthy controls. Therefore, the present study compared single word reading of 18 patients with left-sided neglect, due to right-hemisphere stroke, and 11 age-matched healthy controls, and adjusted individual task difficulty (by varying stimulus presentation times in participants) in order to reach approximately equal error rates between neglect patients and controls. Results showed that, while both omission and substitution errors were frequently produced in neglect patients and controls, only omissions appeared neglect-specific when task difficulty was adapted between groups. Analyses of individual letter positions within words revealed that the spatial distribution of reading errors in the neglect dyslexic patients followed an almost linear increase from the end to the beginning of the word (right-to-left-gradient). Both, the gradient in error positions and the predominance of omission errors presented a neglect-specific pattern. Consistent with current models of visual word processing, these findings suggest that ND reflects sublexical, visuospatial attentional mechanisms in letter string encoding.

  12. A neural fuzzy controller learning by fuzzy error propagation

    NASA Technical Reports Server (NTRS)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  13. Error Correction, Control Systems and Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Smith, Earl B.

    2004-01-01

    This paper will be a discussion on dealing with errors. While error correction and communication is important when dealing with spacecraft vehicles, the issue of control system design is also important. There will be certain commands that one wants a motion device to execute. An adequate control system will be necessary to make sure that the instruments and devices will receive the necessary commands. As it will be discussed later, the actual value will not always be equal to the intended or desired value. Hence, an adequate controller will be necessary so that the gap between the two values will be closed.

  14. Measurement process error determination and control

    SciTech Connect

    Everhart, J.

    1992-01-01

    Traditional production processes have required repeated inspection activities to assure product quality. A typical production process follows this pattern: production makes product; production inspects product; Quality Control (QC) inspects product to ensure production inspected properly QC then inspects the product on a different gage to ensure the production gage performance; and QC often inspects on a different day to determine environmental effect. All of these costly inspection activities are due to the lack of confidence in the initial production measurement. The Process Measurement Assurance Program (PMAP) is a method of determining and controlling measurement error in design, development, and production. It is a preventive rather than an appraisal method that determines, improves, and controls the error in the measurement process, including measurement equipment, environment, procedure, and personnel. PMAP expands the concept of the Measurement Assurance Program developed in the 1960's by the National Bureau of Standards (NBS), today known as the National Institute of Standards and Technology (NIST). PMAP acts as a bridge in the gap between the Metrology Laboratory and the production environment by introducing standards (or certified parts) into the production process. These certified control standards are then measured as part of the production process. A control system is present to examine the measurement results of the control standards before, during, and after the manufacturing and measuring of the product. The results of the PMAP control charts determine random uncertainty and systematic (bias from the standard) error of the measurement process. The combinations of these uncertainties determine the margin of error of the measurement process. The total measurement process error is determined by combining the margin of error and the uncertainty in the control standard.

  15. Measurement process error determination and control

    SciTech Connect

    Everhart, J.

    1992-11-01

    Traditional production processes have required repeated inspection activities to assure product quality. A typical production process follows this pattern: production makes product; production inspects product; Quality Control (QC) inspects product to ensure production inspected properly QC then inspects the product on a different gage to ensure the production gage performance; and QC often inspects on a different day to determine environmental effect. All of these costly inspection activities are due to the lack of confidence in the initial production measurement. The Process Measurement Assurance Program (PMAP) is a method of determining and controlling measurement error in design, development, and production. It is a preventive rather than an appraisal method that determines, improves, and controls the error in the measurement process, including measurement equipment, environment, procedure, and personnel. PMAP expands the concept of the Measurement Assurance Program developed in the 1960`s by the National Bureau of Standards (NBS), today known as the National Institute of Standards and Technology (NIST). PMAP acts as a bridge in the gap between the Metrology Laboratory and the production environment by introducing standards (or certified parts) into the production process. These certified control standards are then measured as part of the production process. A control system is present to examine the measurement results of the control standards before, during, and after the manufacturing and measuring of the product. The results of the PMAP control charts determine random uncertainty and systematic (bias from the standard) error of the measurement process. The combinations of these uncertainties determine the margin of error of the measurement process. The total measurement process error is determined by combining the margin of error and the uncertainty in the control standard.

  16. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  17. Error control in the GCF: An information-theoretic model for error analysis and coding

    NASA Technical Reports Server (NTRS)

    Adeyemi, O.

    1974-01-01

    The structure of data-transmission errors within the Ground Communications Facility is analyzed in order to provide error control (both forward error correction and feedback retransmission) for improved communication. Emphasis is placed on constructing a theoretical model of errors and obtaining from it all the relevant statistics for error control. No specific coding strategy is analyzed, but references to the significance of certain error pattern distributions, as predicted by the model, to error correction are made.

  18. Multijoint error compensation mediates unstable object control.

    PubMed

    Cluff, Tyler; Manos, Aspasia; Lee, Timothy D; Balasubramaniam, Ramesh

    2012-08-01

    A key feature of skilled object control is the ability to correct performance errors. This process is not straightforward for unstable objects (e.g., inverted pendulum or "stick" balancing) because the mechanics of the object are sensitive to small control errors, which can lead to rapid performance changes. In this study, we have characterized joint recruitment and coordination processes in an unstable object control task. Our objective was to determine whether skill acquisition involves changes in the recruitment of individual joints or distributed error compensation. To address this problem, we monitored stick-balancing performance across four experimental sessions. We confirmed that subjects learned the task by showing an increase in the stability and length of balancing trials across training sessions. We demonstrated that motor learning led to the development of a multijoint error compensation strategy such that after training, subjects preferentially constrained joint angle variance that jeopardized task performance. The selective constraint of destabilizing joint angle variance was an important metric of motor learning. Finally, we performed a combined uncontrolled manifold-permutation analysis to ensure the variance structure was not confounded by differences in the variance of individual joint angles. We showed that reliance on multijoint error compensation increased, whereas individual joint variation (primarily at the wrist joint) decreased systematically with training. We propose a learning mechanism that is based on the accurate estimation of sensory states.

  19. High Current Power Controller

    DTIC Science & Technology

    1981-04-01

    AFWAL-TR-81- 2016 U iui.N HIGH CURRENT Ŕ POWER CONTROLLER P. E. McCOLLUM Audwo ROCKWELL INTERNATIONAL AUTONETICS STRATEGIC SYSTEMS DIVISION 3370...personnel. During norm3l operation, HCP \\.s pose no hazard, bLt unde- certain operating conditions potential noaza-ds do exist. They are: (1) During

  20. Error-control techniques for digital communication

    NASA Astrophysics Data System (ADS)

    Michelson, A. M.; Levesque, A. H.

    The reliable transmission of digital information is discussed, taking into account the communication system design problem, the elements of a digital communication system, important channel models, information theory and channel capacity, modulation performance on the AWGN channel, and combined modulation and coding for efficient signal design. Other topics studied are related to fundamental and simple block codes, the algebra of linear block codes, binary cyclic codes and BCH codes, decoding techniques for binary BCH codes, nonbinary BCH codes and Reed-Solomon codes, the performance of linear block codes with bounded-distance decoding an introduction to convolutional codes, maximum likelihood decoding of convolutional codes, sequential decoding, and applications of error-control coding. Attention is given to groups, fields, vector spaces, binary linear block codes, the parity-check matrix revisited, dual codes, Hamming distance and the weight distribution, code geometry and error-correction capability, and the representations of finite fields.

  1. Performance analysis of ARQ error controls under Markovian block error pattern

    NASA Astrophysics Data System (ADS)

    Cho, Young Jong; Un, Chong Kwan

    1994-02-01

    In this paper, we investigate the effect of forward/backward channel memory (statistical dependence in the occurrence of transmission errors) on ARQ error controls. To take into account the effect of backward channel errors in the performance analysis, we suppose some modified ARQ schemes that have an effective retransmission strategy to prevent the deadlock incurred by the errors on acknowledgments. In the study, we consider two modified go-back-N schemes with timer control and with buffer control.

  2. Type I Error Control for Tree Classification

    PubMed Central

    Jung, Sin-Ho; Chen, Yong; Ahn, Hongshik

    2014-01-01

    Binary tree classification has been useful for classifying the whole population based on the levels of outcome variable that is associated with chosen predictors. Often we start a classification with a large number of candidate predictors, and each predictor takes a number of different cutoff values. Because of these types of multiplicity, binary tree classification method is subject to severe type I error probability. Nonetheless, there have not been many publications to address this issue. In this paper, we propose a binary tree classification method to control the probability to accept a predictor below certain level, say 5%. PMID:25452689

  3. Modeling-Error-Driven Performance-Seeking Direct Adaptive Control

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Kaneshige, John; Krishnakumar, Kalmanje; Burken, John

    2008-01-01

    This paper presents a stable discrete-time adaptive law that targets modeling errors in a direct adaptive control framework. The update law was developed in our previous work for the adaptive disturbance rejection application. The approach is based on the philosophy that without modeling errors, the original control design has been tuned to achieve the desired performance. The adaptive control should, therefore, work towards getting this performance even in the face of modeling uncertainties/errors. In this work, the baseline controller uses dynamic inversion with proportional-integral augmentation. Dynamic inversion is carried out using the assumed system model. On-line adaptation of this control law is achieved by providing a parameterized augmentation signal to the dynamic inversion block. The parameters of this augmentation signal are updated to achieve the nominal desired error dynamics. Contrary to the typical Lyapunov-based adaptive approaches that guarantee only stability, the current approach investigates conditions for stability as well as performance. A high-fidelity F-15 model is used to illustrate the overall approach.

  4. Current control circuitry

    DOEpatents

    Taubman, Matthew S.

    2005-03-15

    Among the embodiments of the present invention is an apparatus that includes a transistor (30), a servo device (40), and a current source (50). The servo device (40) is operable to provide a common base mode of operation of the transistor (30) by maintaining an approximately constant voltage level at the transistor base (32b). The current source (150) is operable to provide a bias current to the transistor (30). A first device (24) provides an input signal to an electrical node (70) positioned between the emitter (32e) of the transistor (30) and the current source (50). A second device (26) receives an output signal from the collector (32c) of the transistor (30).

  5. An error control system with multiple-stage forward error corrections

    NASA Technical Reports Server (NTRS)

    Takata, Toyoo; Fujiwara, Toru; Kasami, Tadao; Lin, Shu

    1990-01-01

    A robust error-control coding system is presented. This system is a cascaded FEC (forward error control) scheme supported by parity retransmissions for further error correction in the erroneous data words. The error performance and throughput efficiency of the system are analyzed. Two specific examples of the error-control system are studied. The first example does not use an inner code, and the outer code, which is not interleaved, is a shortened code of the NASA standard RS code over GF(28). The second example, as proposed for NASA, uses the same shortened RS code as the base outer code C2, except that it is interleaved to a depth of 2. It is shown that both examples provide high reliability and throughput efficiency even for high channel bit-error rates in the range of 0.01.

  6. Current projects in Fuzzy Control

    NASA Technical Reports Server (NTRS)

    Sugeno, Michio

    1990-01-01

    Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.

  7. Computerised physician order entry-related medication errors: analysis of reported errors and vulnerability testing of current systems

    PubMed Central

    Schiff, G D; Amato, M G; Eguale, T; Boehne, J J; Wright, A; Koppel, R; Rashidee, A H; Elson, R B; Whitney, D L; Thach, T-T; Bates, D W; Seger, A C

    2015-01-01

    Importance Medication computerised provider order entry (CPOE) has been shown to decrease errors and is being widely adopted. However, CPOE also has potential for introducing or contributing to errors. Objectives The objectives of this study are to (a) analyse medication error reports where CPOE was reported as a ‘contributing cause’ and (b) develop ‘use cases’ based on these reports to test vulnerability of current CPOE systems to these errors. Methods A review of medication errors reported to United States Pharmacopeia MEDMARX reporting system was made, and a taxonomy was developed for CPOE-related errors. For each error we evaluated what went wrong and why and identified potential prevention strategies and recurring error scenarios. These scenarios were then used to test vulnerability of leading CPOE systems, asking typical users to enter these erroneous orders to assess the degree to which these problematic orders could be entered. Results Between 2003 and 2010, 1.04 million medication errors were reported to MEDMARX, of which 63 040 were reported as CPOE related. A review of 10 060 CPOE-related cases was used to derive 101 codes describing what went wrong, 67 codes describing reasons why errors occurred, 73 codes describing potential prevention strategies and 21 codes describing recurring error scenarios. Ability to enter these erroneous order scenarios was tested on 13 CPOE systems at 16 sites. Overall, 298 (79.5%) of the erroneous orders were able to be entered including 100 (28.0%) being ‘easily’ placed, another 101 (28.3%) with only minor workarounds and no warnings. Conclusions and relevance Medication error reports provide valuable information for understanding CPOE-related errors. Reports were useful for developing taxonomy and identifying recurring errors to which current CPOE systems are vulnerable. Enhanced monitoring, reporting and testing of CPOE systems are important to improve CPOE safety. PMID:25595599

  8. Application of Interval Analysis to Error Control.

    DTIC Science & Technology

    1976-09-01

    We give simple examples of ways in which interval arithmetic can be used to alert instabilities in computer algorithms , roundoff error accumulation, and even the effects of hardware inadequacies. This paper is primarily tutorial. (Author)

  9. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  10. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  11. Reducing Pointing Errors During Cassini Reaction Control System Orbit Trim Maneuvers

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen

    2013-01-01

    The effect of altering a gain parameter in the Cassini reaction control system (RCS) delta-V controller on the maneuver execution errors during orbit trim maneuvers (OTMs) is explored. Cassini consists of two reaction control thruster branches (A & B) each with eight thrusters. Currently, the B-branch is operational while the A-branch serves as a back-up. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. During an OTM, the Z-thrusters fire to maintain the X and Y-axes pointing within an attitude control dead-zone (-10 to 10 milliradians). The errors do not remain at zero due to pointing error sources such as spacecraft center of mass offset from the geometric center of the Z-facing thrusters, and variability in the thruster forces due to the thruster hardware differences. The delta-V reaction control system (RCS) controller ensures that the attitude error remains within this dead-zone. Gain parameters within the RCS delta-V controller affect the maneuver execution errors. Different parameter values are used to explore effect on these errors. It is found that pointing error decreases and magnitude error increases rapidly for gain parameters 10 times greater than the current parameter values used in the flight software.

  12. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  13. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  14. Steady-state error of a system with fuzzy controller.

    PubMed

    Butkiewicz, B S

    1998-01-01

    We consider the problem of control error of a fuzzy system with feedback. The system consists of a plant, linear or nonlinear, fuzzy controller, and feedback loop. As controller we use both PD and PI fuzzy type controllers. We apply different t-norm and co-norm: logic, algebraic, Yager, Hamacher, bounded, drastic, etc. in the process of fuzzy reasoning. Triangular shape of membership functions is supposed, but we generalize the results obtained. Steady-state error of a system is calculated. We have obtained very interesting results. The steady-state error is identical for pairs of triangular t- and co-norms.

  15. Error control for reliable digital data transmission and storage systems

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Deng, R. H.

    1985-01-01

    A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.

  16. Multiple Cognitive Control Effects of Error Likelihood and Conflict

    PubMed Central

    Brown, Joshua W.

    2010-01-01

    Recent work on cognitive control has suggested a variety of performance monitoring functions of the anterior cingulate cortex, such as errors, conflict, error likelihood, and others. Given the variety of monitoring effects, a corresponding variety of control effects on behavior might be expected. This paper explores whether conflict and error likelihood produce distinct cognitive control effects on behavior, as measured by response time. A change signal task (Brown & Braver, 2005) was modified to include conditions of likely errors due to tardy as well as premature responses, in conditions with and without conflict. The results discriminate between competing hypotheses of independent vs. interacting conflict and error likelihood control effects. Specifically, the results suggest that the likelihood of premature vs. tardy response errors can lead to multiple distinct control effects, which are independent of cognitive control effects driven by response conflict. As a whole, the results point to the existence of multiple distinct cognitive control mechanisms and challenge existing models of cognitive control that incorporate only a single control signal. PMID:19030873

  17. Inherent Error in Asynchronous Digital Flight Controls.

    DTIC Science & Technology

    1980-02-01

    the algorithm for estimating T, * will wait until the state observers (x*) equal the state variables (xp) and this system is in steady state. From...Appendix A (this system is in steady state at the time 200T) and Appendix C (the state observers equal the state variables at time approximate equals 40T...system, the DIGITAL CONTROLLER #1 in the monitor will wait until the state observers (x*) equal the state variables (xp). Then p the DIGITAL CONTROLLER

  18. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  19. Model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Monopoli, R. V.

    1974-01-01

    It is shown how globally stable model reference adaptive control systems may be designed when one has access to only the plant's input and output signals. Controllers for single input-single output, nonlinear, nonautonomous plants are developed based on Lyapunov's direct method and the Meyer-Kalman-Yacubovich lemma. Derivatives of the plant output are not required, but are replaced by filtered derivative signals. An augmented error signal replaces the error normally used, which is defined as the difference between the model and plant outputs. However, global stability is assured in the sense that the normally used error signal approaches zero asymptotically.

  20. Error control of iterative linear solvers for integrated groundwater models.

    PubMed

    Dixon, Matthew F; Bai, Zhaojun; Brush, Charles F; Chung, Francis I; Dogrul, Emin C; Kadir, Tariq N

    2011-01-01

    An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of "forward error bound estimation" to explain the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed by the US Geological Survey and the California State Department of Water Resources, we observe that this error bound guides the choice of a practical measure for controlling the error in linear systems. We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation (SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers through the demonstration of a practical and general approach for setting the residual tolerance in line with the solution error tolerance and presentation of GMRES performance benchmarking results.

  1. Acetylcholine mediates behavioral and neural post-error control.

    PubMed

    Danielmeier, Claudia; Allen, Elena A; Jocham, Gerhard; Onur, Oezguer A; Eichele, Tom; Ullsperger, Markus

    2015-06-01

    Humans often commit errors when they are distracted by irrelevant information and no longer focus on what is relevant to the task at hand. Adjustments following errors are essential for optimizing goal achievement. The posterior medial frontal cortex (pMFC), a key area for monitoring errors, has been shown to trigger such post-error adjustments by modulating activity in visual cortical areas. However, the mechanisms by which pMFC controls sensory cortices are unknown. We provide evidence for a mechanism based on pMFC-induced recruitment of cholinergic projections to task-relevant sensory areas. Using fMRI in healthy volunteers, we found that error-related pMFC activity predicted subsequent adjustments in task-relevant visual brain areas. In particular, following an error, activity increased in those visual cortical areas involved in processing task-relevant stimulus features, whereas activity decreased in areas representing irrelevant, distracting features. Following treatment with the muscarinic acetylcholine receptor antagonist biperiden, activity in visual areas was no longer under control of error-related pMFC activity. This was paralleled by abolished post-error behavioral adjustments under biperiden. Our results reveal a prominent role of acetylcholine in cognitive control that has not been recognized thus far. Regaining optimal performance after errors critically depends on top-down control of perception driven by the pMFC and mediated by acetylcholine. This may explain the lack of adaptivity in conditions with reduced availability of cortical acetylcholine, such as Alzheimer's disease.

  2. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  3. Developing control charts to review and monitor medication errors.

    PubMed

    Ciminera, J L; Lease, M P

    1992-03-01

    There is a need to monitor reported medication errors in a hospital setting. Because the quantity of errors vary due to external reporting, quantifying the data is extremely difficult. Typically, these errors are reviewed using classification systems that often have wide variations in the numbers per class per month. The authors recommend the use of control charts to review historical data and to monitor future data. The procedure they have adopted is a modification of schemes using absolute (i.e., positive) values of successive differences to estimate the standard deviation when only single incidence values are available in time rather than sample averages, and when many successive differences may be zero.

  4. When soft controls get slippery: User interfaces and human error

    SciTech Connect

    Stubler, W.F.; O`Hara, J.M.

    1998-12-01

    Many types of products and systems that have traditionally featured physical control devices are now being designed with soft controls--input formats appearing on computer-based display devices and operated by a variety of input devices. A review of complex human-machine systems found that soft controls are particularly prone to some types of errors and may affect overall system performance and safety. This paper discusses the application of design approaches for reducing the likelihood of these errors and for enhancing usability, user satisfaction, and system performance and safety.

  5. On the undetected error probability of a concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Deng, H.; Costello, D. J., Jr.

    1984-01-01

    Consider a concatenated coding scheme for error control on a binary symmetric channel, called the inner channel. The bit error rate (BER) of the channel is correspondingly called the inner BER, and is denoted by Epsilon (sub i). Two linear block codes, C(sub f) and C(sub b), are used. The inner code C(sub f), called the frame code, is an (n,k) systematic binary block code with minimum distance, d(sub f). The frame code is designed to correct + or fewer errors and simultaneously detect gamma (gamma +) or fewer errors, where + + gamma + 1 = to or d(sub f). The outer code C(sub b) is either an (n(sub b), K(sub b)) binary block with a n(sub b) = mk, or an (n(sub b), k(Sub b) maximum distance separable (MDS) code with symbols from GF(q), where q = 2(b) and the code length n(sub b) satisfies n(sub)(b) = mk. The integerim is the number of frames. The outercode is designed for error detection only.

  6. Servo control booster system for minimizing following error

    DOEpatents

    Wise, W.L.

    1979-07-26

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  7. The importance of robust error control in data compression applications

    NASA Technical Reports Server (NTRS)

    Woolley, S. I.

    1993-01-01

    Data compression has become an increasingly popular option as advances in information technology have placed further demands on data storage capabilities. With compression ratios as high as 100:1 the benefits are clear; however, the inherent intolerance of many compression formats to error events should be given careful consideration. If we consider that efficiently compressed data will ideally contain no redundancy, then the introduction of a channel error must result in a change of understanding from that of the original source. While the prefix property of codes such as Huffman enables resynchronisation, this is not sufficient to arrest propagating errors in an adaptive environment. Arithmetic, Lempel-Ziv, discrete cosine transform (DCT) and fractal methods are similarly prone to error propagating behaviors. It is, therefore, essential that compression implementations provide sufficient combatant error control in order to maintain data integrity. Ideally, this control should be derived from a full understanding of the prevailing error mechanisms and their interaction with both the system configuration and the compression schemes in use.

  8. Discrete model reference adaptive control with an augmented error signal

    NASA Technical Reports Server (NTRS)

    Ionescu, T.; Monopoli, R.

    1975-01-01

    A method for designing discrete model reference adaptive control systems when one has access to only the plant's input and output signals is given. Controllers for single-input, single-output, nonlinear, nonautonomous plants are developed via Liapunov's second method. Anticipative values of the plant output are not required, but are replaced by signals easily obtained from a low-pass filter operating on the plant's output. The augmented error signal method is employed, ensuring finally that the normally used error signal also approaches zero asymptotically.

  9. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  10. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.; Vallely, D. P.

    1978-01-01

    This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.

  11. Continuous quantum error correction as classical hybrid control

    NASA Astrophysics Data System (ADS)

    Mabuchi, Hideo

    2009-10-01

    The standard formulation of quantum error correction (QEC) comprises repeated cycles of error estimation and corrective intervention in the free dynamics of a qubit register. QEC can thus be seen as a form of feedback control, and it is of interest to seek a deeper understanding of the connection between the associated theories. Here we present a focused case study within this broad program, connecting continuous QEC with elements of hybrid control theory. We show that canonical methods of the latter engineering discipline, such as recursive filtering and dynamic programming approaches to solving the optimal control problem, can be applied fruitfully in the design of separated controller structures for quantum memories based on coding and continuous syndrome measurement.

  12. Controlling type-1 error rates in whole effluent toxicity testing

    SciTech Connect

    Smith, R.; Johnson, S.C.

    1995-12-31

    A form of variability, called the dose x test interaction, has been found to affect the variability of the mean differences from control in the statistical tests used to evaluate Whole Effluent Toxicity Tests for compliance purposes. Since the dose x test interaction is not included in these statistical tests, the assumed type-1 and type-2 error rates can be incorrect. The accepted type-1 error rate for these tests is 5%. Analysis of over 100 Ceriodaphnia, fathead minnow and sea urchin fertilization tests showed that when the test x dose interaction term was not included in the calculations the type-1 error rate was inflated to as high as 20%. In a compliance setting, this problem may lead to incorrect regulatory decisions. Statistical tests are proposed that properly incorporate the dose x test interaction variance.

  13. Attitude-Control Algorithm for Minimizing Maneuver Execution Errors

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet

    2008-01-01

    A G-RAC attitude-control algorithm is used to minimize maneuver execution error in a spacecraft with a flexible appendage when said spacecraft must induce translational momentum by firing (in open loop) large thrusters along a desired direction for a given period of time. The controller is dynamic with two integrators and requires measurement of only the angular position and velocity of the spacecraft. The global stability of the closed-loop system is guaranteed without having access to the states describing the dynamics of the appendage and with severe saturation in the available torque. Spacecraft apply open-loop thruster firings to induce a desired translational momentum with an extended appendage. This control algorithm will assist this maneuver by stabilizing the attitude dynamics around a desired orientation, and consequently minimize the maneuver execution errors.

  14. Precision electronic speed controller for an alternating-current motor

    DOEpatents

    Bolie, V.W.

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. The motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The speed error signal is generated by a novel vernier-logic circuit which is drift-free and highly sensitive to small speed changes. The phase error is also computed by digital logic, with adjustable sensitivity around a 0 mid-scale value. The drift error signal, generated by long-term counting of the phase error, is used to compensate for any slow changes in the average friction drag on the motor. An auxillary drift-byte status sensor prevents any disruptive overflow or underflow of the drift-error counter. An adjustable clocked-delay unit is inserted between the controller and the source of the reference pulse train to permit phase alignment of the rotor to any desired offset angle. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of read-only memories, and a pair of digital-to-analog converters.

  15. Coordinated joint motion control system with position error correction

    SciTech Connect

    Danko, George

    2011-11-22

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two-joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  16. Coordinated joint motion control system with position error correction

    DOEpatents

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  17. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1991-01-01

    Research activities related to error control techniques for satellite and space communication are reported. Specific areas of research include: coding gains for bandwidth efficient codes, hardware implementation of a bandwidth efficient coding scheme for the Hubble Space Telescope, construction of long trellis codes for use with sequential decoding, performance analysis of multilevel trellis codes, and M-algorithm decoding of trellis codes. Each topic is discussed in a corresponding paper that appears in the appendices.

  18. Unequal error control scheme for dimmable visible light communication systems

    NASA Astrophysics Data System (ADS)

    Deng, Keyan; Yuan, Lei; Wan, Yi; Li, Huaan

    2017-01-01

    Visible light communication (VLC), which has the advantages of a very large bandwidth, high security, and freedom from license-related restrictions and electromagnetic-interference, has attracted much interest. Because a VLC system simultaneously performs illumination and communication functions, dimming control, efficiency, and reliable transmission are significant and challenging issues of such systems. In this paper, we propose a novel unequal error control (UEC) scheme in which expanding window fountain (EWF) codes in an on-off keying (OOK)-based VLC system are used to support different dimming target values. To evaluate the performance of the scheme for various dimming target values, we apply it to H.264 scalable video coding bitstreams in a VLC system. The results of the simulations that are performed using additive white Gaussian noises (AWGNs) with different signal-to-noise ratios (SNRs) are used to compare the performance of the proposed scheme for various dimming target values. It is found that the proposed UEC scheme enables earlier base layer recovery compared to the use of the equal error control (EEC) scheme for different dimming target values and therefore afford robust transmission for scalable video multicast over optical wireless channels. This is because of the unequal error protection (UEP) and unequal recovery time (URT) of the EWF code in the proposed scheme.

  19. Ordering genes: controlling the decision-error probabilities.

    PubMed Central

    Rogatko, A; Zacks, S

    1993-01-01

    Determination of the relative gene order on chromosomes is of critical importance in the construction of human gene maps. In this paper we develop a sequential algorithm for gene ordering. We start by comparing three sequential procedures to order three genes on the basis of Bayesian posterior probabilities, maximum-likelihood ratio, and minimal recombinant class. In the second part of the paper we extend sequential procedure based on the posterior probabilities to the general case of g genes. We present a theorem that states that the predicted average probability of committing a decision error, associated with a Bayesian sequential procedure that accepts the hypothesis of a gene-order configuration with posterior probability equal to or greater than pi *, is smaller than 1 - pi *. This theorem holds irrespective of the number of genes, the genetic model, and the source of genetic information. The theorem is an extension of a classical result of Wald, concerning the sum of the actual and the nominal error probabilities in the sequential probability ratio test of two hypotheses. A stepwise strategy for ordering a large number of genes, with control over the decision-error probabilities, is discussed. An asymptotic approximation is provided, which facilitates the calculations with existing computer software for gene mapping, of the posterior probabilities of an order and the error probabilities. We illustrate with some simulations that the stepwise ordering is an efficient procedure. PMID:8488844

  20. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  1. Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI).

    PubMed

    Logan, Dustin M; Hill, Kyle R; Larson, Michael J

    2015-01-01

    Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI.

  2. Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI)

    PubMed Central

    Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.

    2015-01-01

    Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212

  3. A wire spark chamber capacitive readout system with low leakage current and small systematic error

    NASA Astrophysics Data System (ADS)

    Anderhub, H. B.; Boecklin, J.; von Gunten, H. P.; Koenig, H.; Le Coultre, P.; Makowiecki, D.; Seiler, P. G.

    1983-02-01

    A wire spark chamber capacitive readout system with analog FET switch multiplexing and CAMAC interface is described. Two wire planes per chamber are read out. The information of each plane is sequentially digitized in one ADC. This and the low leakage current of the FET switches guarantee a small systematic error of the measurement of the spark position.

  4. Straight to the Source: Detecting Aggregate Objects in Astronomical Images with Proper Error Control

    PubMed Central

    Friedenberg, David A.; Genovese, Christopher R.

    2013-01-01

    The next generation of telescopes, coming on-line in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few if any provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this paper, we propose a technique that is effective at source detection while providing rigorous control on source-wise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques. PMID:24068849

  5. Controlling your impulses: electrical stimulation of the human supplementary motor complex prevents impulsive errors.

    PubMed

    Spieser, Laure; van den Wildenberg, Wery; Hasbroucq, Thierry; Ridderinkhof, K Richard; Burle, Borís

    2015-02-18

    To err is human. However, an inappropriate urge does not always result in error. Impulsive errors thus entail both a motor system capture by an urge to act and a failed inhibition of that impulse. Here we show that neuromodulatory electrical stimulation of the supplementary motor complex in healthy humans leaves action urges unchanged but prevents them from turning into overt errors. Subjects performed a choice reaction-time task known to trigger impulsive responses, leading to fast errors that can be revealed by analyzing accuracy as a function of poststimulus time. Yet, such fast errors are only the tip of the iceberg: electromyography (EMG) revealed fast subthreshold muscle activation in the incorrect response hand in an even larger proportion of overtly correct trials, revealing covert response impulses not discernible in overt behavior. Analyzing both overt and covert response tendencies enables to gauge the ability to prevent these incorrect impulses from turning into overt action errors. Hyperpolarizing the supplementary motor complex using transcranial direct current stimulation (tDCS) preserves action impulses but prevents their behavioral expression. This new combination of detailed behavioral, EMG, and tDCS techniques clarifies the neurophysiology of impulse control, and may point to avenues for improving impulse control deficits in various neurologic and psychiatric disorders.

  6. Error field optimization in DIII-D using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; Humphreys, D. A.; Eidietis, N.; Hanson, J. M.; Paz-Soldan, C.; Strait, E. J.; Walker, M. L.

    2016-07-01

    DIII-D experiments have demonstrated a new real-time approach to tokamak error field control based on maximizing the toroidal angular momentum. This approach uses extremum seeking control theory to optimize the error field in real time without inducing instabilities. Slowly-rotating n  =  1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coil currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.

  7. Geometric quantum gates that are robust against stochastic control errors

    SciTech Connect

    Zhu Shiliang; Zanardi, Paolo

    2005-08-15

    The realistic application of geometric quantum computation is crucially dependent on an unproved robustness conjecture, claiming that geometric quantum gates are more resilient against random noise than dynamic gates. We propose a suitable model that allows a direct and fair comparison between geometrical and dynamical operations. In the presence of stochastic control errors we find that the maximum of gate fidelity corresponds to quantum gates with a vanishing dynamical phase. This is a clear evidence for the robustness of nonadiabatic geometric quantum computation. The predictions here presented can be experimentally tested in almost all of the already existing quantum computer candidates.

  8. Adaptive Current Control Method for Hybrid Active Power Filter

    NASA Astrophysics Data System (ADS)

    Chau, Minh Thuyen

    2016-09-01

    This paper proposes an adaptive current control method for Hybrid Active Power Filter (HAPF). It consists of a fuzzy-neural controller, identification and prediction model and cost function. The fuzzy-neural controller parameters are adjusted according to the cost function minimum criteria. For this reason, the proposed control method has a capability on-line control clings to variation of the load harmonic currents. Compared to the single fuzzy logic control method, the proposed control method shows the advantages of better dynamic response, compensation error in steady-state is smaller, able to online control is better and harmonics cancelling is more effective. Simulation and experimental results have demonstrated the effectiveness of the proposed control method.

  9. Current pulse: can a production system reduce medical errors in health care?

    PubMed

    Printezis, Antonios; Gopalakrishnan, Mohan

    2007-01-01

    One of the reasons for rising health care costs is medical errors, a majority of which result from faulty systems and processes. Health care in the past has used process-based initiatives such as Total Quality Management, Continuous Quality Improvement, and Six Sigma to reduce errors. These initiatives to redesign health care, reduce errors, and improve overall efficiency and customer satisfaction have had moderate success. Current trend is to apply the successful Toyota Production System (TPS) to health care since its organizing principles have led to tremendous improvement in productivity and quality for Toyota and other businesses that have adapted them. This article presents insights on the effectiveness of TPS principles in health care and the challenges that lie ahead in successfully integrating this approach with other quality initiatives.

  10. Multivariable current control for electrically and magnetically coupled superconducting magnets

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1985-02-08

    Superconducting magnet systems under construction and projected for the future contain magnets that are magnetically coupled and electrically connected with shared power supplies. A change in one power supply voltage affects all of the magnet currents. A current controller for these systems must be designed as a multivariable system. The paper describes a method, based on decoupling control, for the rational design of these systems. Dynamic decoupling is achieved by cross-feedback of the measured currents. A network of gains at the input decouples the system statically and eliminates the steady-state error. Errors are then due to component variations. The method has been applied to the magnet system of the MFTF-B, at the Lawrence Livermore National Laboratory.

  11. Current Concepts in Conception Control

    PubMed Central

    Ringrose, C. A. Douglas

    1963-01-01

    The progressive increase in world population has become a most urgent global problem in recent years. Man has, however, been interested in controlling his reproductivity at the family level for many centuries. Historical aspects of this saga are reviewed. The modern era of conception control was ushered in by Makepeace et al. in 1937 when ovulation inhibition by progesterone was demonstrated. Confirmation of this by Pincus and associates, and development of the potent oral progestational agents, the 19-norsteroids, have made efficient reliable contraception a reality. Experience with one of these agents (Ortho-Novum, 2 mg.) in 115 patients through 805 cycles is presented. Conception control was 100% effective at this dosage. Side effects were minimal. Only three of the women discontinued the tablets because of these effects. All but five in this group of 115 preferred the oral contraceptives to methods previously employed. PMID:13973987

  12. Deciphering the genetic regulatory code using an inverse error control coding framework.

    SciTech Connect

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  13. A concatenated coded modulation scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Takata, Toyoo; Fujiwara, Toru; Lin, Shu

    1990-01-01

    A concatenated coded modulation scheme for error control in data communications is presented. The scheme is achieved by concatenating a Reed-Solomon outer code and a bandwidth efficient block inner code for M-ary PSK modulation. Error performance of the scheme is analyzed for an AWGN channel. It is shown that extremely high reliability can be attained by using a simple M-ary PSK modulation inner code and relatively powerful Reed-Solomon outer code. Furthermore, if an inner code of high effective rate is used, the bandwidth expansion required by the scheme due to coding will be greatly reduced. The proposed scheme is particularly effective for high speed satellite communications for large file transfer where high reliability is required. Also presented is a simple method for constructing block codes for M-ary PSK modulation. Some short M-ary PSK codes with good minimum squared Euclidean distance are constructed. These codes have trellis structure and hence can be decoded with a soft-decision Viterbi decoding algorithm.

  14. Development of a Transmission Error Model and an Error Control Model

    DTIC Science & Technology

    1975-05-01

    13 Tsai uses an error burst defined by Brayer [.24] as a sequence: 1. beginning and ending with an error, 2. the ratio of the number of errors to the...real channel data has been conducted by Brayer r23], 724], [25], [26] who considers HF, troposcatter, satellite and wireline channels. Extensive...an HF link. c) A model termed the Markov-Tasi model developed for a different HF link from that of (b). d) Seven models developed by Brayer [26) to

  15. Testing and error analysis of a real-time controller

    NASA Technical Reports Server (NTRS)

    Savolaine, C. G.

    1983-01-01

    Inexpensive ways to organize and conduct system testing that were used on a real-time satellite network control system are outlined. This system contains roughly 50,000 lines of executable source code developed by a team of eight people. For a small investment of staff, the system was thoroughly tested, including automated regression testing, before field release. Detailed records were kept for fourteen months, during which several versions of the system were written. A separate testing group was not established, but testing itself was structured apart from the development process. The errors found during testing are examined by frequency per subsystem by size and complexity as well as by type. The code was released to the user in March, 1983. To date, only a few minor problems found with the system during its pre-service testing and user acceptance has been good.

  16. Trends in Health Information Technology Safety: From Technology-Induced Errors to Current Approaches for Ensuring Technology Safety

    PubMed Central

    2013-01-01

    Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411

  17. 76 FR 67315 - Supplemental Nutrition Assistance Program: Quality Control Error Tolerance Threshold

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-01

    ... Service 7 CFR Part 275 RIN 0584-AE24 Supplemental Nutrition Assistance Program: Quality Control Error... direct final rule is amending the Quality Control (QC) review error threshold in our regulations from $25... Assistance Program: Quality Control Error Tolerance Threshold Direct Rule, in the subject line of the...

  18. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  19. An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters

    PubMed Central

    Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao

    2014-01-01

    In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061

  20. Nonlinear signal-based control with an error feedback action for nonlinear substructuring control

    NASA Astrophysics Data System (ADS)

    Enokida, Ryuta; Kajiwara, Koichi

    2017-01-01

    A nonlinear signal-based control (NSBC) method utilises the 'nonlinear signal' that is obtained from the outputs of a controlled system and its linear model under the same input signal. Although this method has been examined in numerical simulations of nonlinear systems, its application in physical experiments has not been studied. In this paper, we study an application of NSBC in physical experiments and incorporate an error feedback action into the method to minimise the error and enhance the feasibility in practice. Focusing on NSBC in substructure testing methods, we propose nonlinear substructuring control (NLSC), that is a more general form of linear substructuring control (LSC) developed for dynamical substructured systems. In this study, we experimentally and numerically verified the proposed NLSC via substructuring tests on a rubber bearing used in base-isolated structures. In the examinations, NLSC succeeded in gaining accurate results despite significant nonlinear hysteresis and unknown parameters in the substructures. The nonlinear signal feedback action in NLSC was found to be notably effective in minimising the error caused by nonlinearity or unknown properties in the controlled system. In addition, the error feedback action in NLSC was found to be essential for maintaining stability. A stability analysis based on the Nyquist criterion, which is used particularly for linear systems, was also found to be efficient for predicting the instability conditions of substructuring tests with NLSC and useful for the error feedback controller design.

  1. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.; ,

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  2. Error correction, sensory prediction, and adaptation in motor control.

    PubMed

    Shadmehr, Reza; Smith, Maurice A; Krakauer, John W

    2010-01-01

    Motor control is the study of how organisms make accurate goal-directed movements. Here we consider two problems that the motor system must solve in order to achieve such control. The first problem is that sensory feedback is noisy and delayed, which can make movements inaccurate and unstable. The second problem is that the relationship between a motor command and the movement it produces is variable, as the body and the environment can both change. A solution is to build adaptive internal models of the body and the world. The predictions of these internal models, called forward models because they transform motor commands into sensory consequences, can be used to both produce a lifetime of calibrated movements, and to improve the ability of the sensory system to estimate the state of the body and the world around it. Forward models are only useful if they produce unbiased predictions. Evidence shows that forward models remain calibrated through motor adaptation: learning driven by sensory prediction errors.

  3. Striatal prediction errors support dynamic control of declarative memory decisions

    PubMed Central

    Scimeca, Jason M.; Katzman, Perri L.; Badre, David

    2016-01-01

    Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals. PMID:27713407

  4. LCL Current Control Loop Stability Design

    NASA Astrophysics Data System (ADS)

    Delepaut, Christophe; Kuremyr, Tobias; Martin, Manuel; Tonicello, Ferdinando

    2014-08-01

    Latching Current Limiters include a control loop meant at limiting the current in case of downstream failure. Such current control loop consists typically of a simple proportional feedback gain from a current measurement shunt resistance and may result in very limited phase margin for specified operating conditions. The present paper investigates the combination of a proportional and derivative feedback to mitigate the lack of stability margin, providing a comprehensive overview on designing Latching Current Limiters for stability. For illustration purpose, a LCL based on radiation hardened ITAR free components is considered. A breadboard has been manufactured and the reported phase margin measurements demonstrate performances in line with the analytic results.

  5. Precision electronic speed controller for an alternating-current

    DOEpatents

    Bolie, Victor W.

    1988-01-01

    A high precision controller for an alternating-current multi-phase electrical motor that is subject to a large inertial load. The controller was developed for and is particularly suitable for controlling, in a neutron chopper system, a heavy spinning rotor that must be rotated in phase-locked synchronism with a reference pulse train that is representative of an ac power supply signal having a meandering line frequency. The controller includes a shaft revolution sensor which provides a feedback pulse train representative of the actual speed of the motor. An internal digital timing signal generator provides a reference signal which is compared with the feedback signal in a computing unit to provide a motor control signal. In the preferred embodiment, the motor control signal is a weighted linear sum of a speed error voltage, a phase error voltage, and a drift error voltage, each of which is computed anew with each revolution of the motor shaft. The stator windings of the motor are driven by two amplifiers which are provided with input signals having the proper quadrature relationship by an exciter unit consisting of a voltage controlled oscillator, a binary counter, a pair of readonly memories, and a pair of digital-to-analog converters.

  6. Error Types and Error Positions in Neglect Dyslexia: Comparative Analyses in Neglect Patients and Healthy Controls

    ERIC Educational Resources Information Center

    Weinzierl, Christiane; Kerkhoff, Georg; van Eimeren, Lucia; Keller, Ingo; Stenneken, Prisca

    2012-01-01

    Unilateral spatial neglect frequently involves a lateralised reading disorder, neglect dyslexia (ND). Reading of single words in ND is characterised by left-sided omissions and substitutions of letters. However, it is unclear whether the distribution of error types and positions within a word shows a unique pattern of ND when directly compared to…

  7. Motor control: correcting errors and learning from mistakes.

    PubMed

    Miall, Chris

    2010-07-27

    How do we learn from errors during complex movement tasks with redundancy? A new study shows that ambiguous mistakes in bimanual movements are corrected by the non-dominant hand, and responsibility for the error is assumed to fall to the effector with a recent history of poor performance.

  8. Fault tolerance control of phase current in permanent magnet synchronous motor control system

    NASA Astrophysics Data System (ADS)

    Chen, Kele; Chen, Ke; Chen, Xinglong; Li, Jinying

    2014-08-01

    As the Photoelectric tracking system develops from earth based platform to all kinds of moving platform such as plane based, ship based, car based, satellite based and missile based, the fault tolerance control system of phase current sensor is studied in order to detect and control of failure of phase current sensor on a moving platform. By using a DC-link current sensor and the switching state of the corresponding SVPWM inverter, the failure detection and fault control of three phase current sensor is achieved. Under such conditions as one failure, two failures and three failures, fault tolerance is able to be controlled. The reason why under the method, there exists error between fault tolerance control and actual phase current, is analyzed, and solution to weaken the error is provided. The experiment based on permanent magnet synchronous motor system is conducted, and the method is proven to be capable of detecting the failure of phase current sensor effectively and precisely, and controlling the fault tolerance simultaneously. With this method, even though all the three phase current sensors malfunction, the moving platform can still work by reconstructing the phase current of the motor.

  9. A cascaded error control coding scheme for space and satellite communication

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    An error control coding scheme for space and satellite communications is presented. The scheme is attained by cascading two codes, the inner and outer codes. Error performance of the scheme is analyzed. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be achieved even for a high channel bit-error-rate. Several exmple schemes are studied. One of the example schemes is proposed to NASA for satellite or spacecraft downlink error control.

  10. Improved Conflict Detection for Reducing Operational Errors in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Hainz

    2003-01-01

    An operational error is an incident in which an air traffic controller allows the separation between two aircraft to fall below the minimum separation standard. The rates of such errors in the US have increased significantly over the past few years. This paper proposes new detection methods that can help correct this trend by improving on the performance of Conflict Alert, the existing software in the Host Computer System that is intended to detect and warn controllers of imminent conflicts. In addition to the usual trajectory based on the flight plan, a "dead-reckoning" trajectory (current velocity projection) is also generated for each aircraft and checked for conflicts. Filters for reducing common types of false alerts were implemented. The new detection methods were tested in three different ways. First, a simple flightpath command language was developed t o generate precisely controlled encounters for the purpose of testing the detection software. Second, written reports and tracking data were obtained for actual operational errors that occurred in the field, and these were "replayed" to test the new detection algorithms. Finally, the detection methods were used to shadow live traffic, and performance was analysed, particularly with regard to the false-alert rate. The results indicate that the new detection methods can provide timely warnings of imminent conflicts more consistently than Conflict Alert.

  11. IM Direct Torque Control with no flux distortion and no static torque error.

    PubMed

    Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said

    2015-11-01

    The purpose of this paper is to improve DTC control strategy performances. In fact, we propose controlling both stator flux components (real and imaginary) through two hysteresis controllers. Thus, a new switching table which is independent from sector determination, and does not introduce zero voltage vectors is established; with much reduced size when compared to Takahashi's one. The proposed strategy has allowed cutting off with flux and current harmonics related to distortion caused by sector exchanges. Also, we provide theoretical evidence about the existence of static torque error in classical DTC, and propose a simple PI-type controller to cancel it. The proposed strategy is validated by simulation and practically on a DSPace 1104 board, for a 1.5 (kW) induction motor and various torque references.

  12. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Kasami, Tadao; Fujiwara, Toru; Takata, Toyoo; Lin, Shu

    1988-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error-correcting codes, called the inner and outer codes. Its error performance is analyzed for a binary symmetric channel with bit-error rate epsilon less than 1/2. It is shown that, if the inner and outer codes are chosen properly, high reliability can be attained even for a high-channel bit-error rate. Specific examples with inner codes ranging from high rates and Reed-Solomon codes as outer codes are considered, and their error probabilities evaluated. They all provide high reliability even for high bit-error rates, say 0.1-0.01. Several example schemes are being considered for satellite and spacecraft downlink error control.

  13. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  14. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    PubMed Central

    Soshi, Takahiro; Ando, Kumiko; Noda, Takamasa; Nakazawa, Kanako; Tsumura, Hideki; Okada, Takayuki

    2015-01-01

    Post-error slowing (PES) is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms). Neural correlates of post-error processing were examined using event-related potentials (ERPs). Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS). Behavioral results demonstrated that the commission error for No-go trials was 15%, but PES did not take place immediately. Delayed PES was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to PES. Stimulus-locked N2 was negatively correlated with PES and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater PES and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and PES did not occur quickly. Furthermore, PES and its neural correlate (N2) were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke impulsive behaviors. PMID:25674058

  15. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  16. Context specificity of post-error and post-conflict cognitive control adjustments.

    PubMed

    Forster, Sarah E; Cho, Raymond Y

    2014-01-01

    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, control-related performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control.

  17. IPTV multicast with peer-assisted lossy error control

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhu, Xiaoqing; Begen, Ali C.; Girod, Bernd

    2010-07-01

    Emerging IPTV technology uses source-specific IP multicast to deliver television programs to end-users. To provide reliable IPTV services over the error-prone DSL access networks, a combination of multicast forward error correction (FEC) and unicast retransmissions is employed to mitigate the impulse noises in DSL links. In existing systems, the retransmission function is provided by the Retransmission Servers sitting at the edge of the core network. In this work, we propose an alternative distributed solution where the burden of packet loss repair is partially shifted to the peer IP set-top boxes. Through Peer-Assisted Repair (PAR) protocol, we demonstrate how the packet repairs can be delivered in a timely, reliable and decentralized manner using the combination of server-peer coordination and redundancy of repairs. We also show that this distributed protocol can be seamlessly integrated with an application-layer source-aware error protection mechanism called forward and retransmitted Systematic Lossy Error Protection (SLEP/SLEPr). Simulations show that this joint PARSLEP/ SLEPr framework not only effectively mitigates the bottleneck experienced by the Retransmission Servers, thus greatly enhancing the scalability of the system, but also efficiently improves the resistance to the impulse noise.

  18. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  19. Position control of redundant manipulators using an adaptive error-based control scheme

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    A Cartesian-space control scheme is developed to control the motion of kinematically redundant manipulators with 7 degrees of freedom (DOF). The control scheme consists mainly of proportional derivative (PD) controllers whose gains are adjusted by an adaptation law driven by the errors between the desired and actual trajectories. The adaptation law is derived using the concept of model reference adaptive control (MRAC) and Lyapunov direct method under the assumption that the manipulator performs non-compliant and slowly-varying motions. The developed control scheme is computationally efficient because its implementation does not require the computation of the manipulator dynamics. Computer simulation performed to evaluate the control scheme performance is presented and discussed.

  20. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1980-01-01

    Power measurement errors due to the bandwidth of a power meter and the sampling of the input voltage and current of a power meter were investigated assuming sinusoidal excitation and periodic signals generated by a model of a simple chopper system. Errors incurred in measuring power using a microcomputer with limited data storage were also considered. The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current, and the signal multiplier was studied. Results indicate that this power measurement error can be minimized if the frequency responses of the first order transfer functions are identical. The power error analysis was extended to include the power measurement error for a model of a simple chopper system with a power source and an ideal shunt motor acting as an electrical load for the chopper. The behavior of the power measurement error was determined as a function of the chopper's duty cycle and back EMF of the shunt motor. Results indicate that the error is large when the duty cycle or back EMF is small. Theoretical and experimental results indicate that the power measurement error due to sampling of sinusoidal voltages and currents becomes excessively large when the number of observation periods approaches one-half the size of the microcomputer data memory allocated to the storage of either the input sinusoidal voltage or current.

  1. When Errors Do Not Matter: Weakening Belief in Intentional Control Impairs Cognitive Reaction to Errors

    ERIC Educational Resources Information Center

    Rigoni, Davide; Wilquin, Helene; Brass, Marcel; Burle, Boris

    2013-01-01

    The belief that one can exert intentional control over behavior is deeply rooted in virtually all human beings. It has been shown that weakening such belief--e.g. by exposure to "anti-free will" messages--can lead people to display antisocial tendencies. We propose that this cursory and irresponsible behavior may be facilitated by a breakdown of…

  2. An error-resistant linguistic protocol for air traffic control

    NASA Technical Reports Server (NTRS)

    Cushing, Steven

    1989-01-01

    The research results described here are intended to enhance the effectiveness of the DATALINK interface that is scheduled by the Federal Aviation Administration (FAA) to be deployed during the 1990's to improve the safety of various aspects of aviation. While voice has a natural appeal as the preferred means of communication both among humans themselves and between humans and machines as the form of communication that people find most convenient, the complexity and flexibility of natural language are problematic, because of the confusions and misunderstandings that can arise as a result of ambiguity, unclear reference, intonation peculiarities, implicit inference, and presupposition. The DATALINK interface will avoid many of these problems by replacing voice with vision and speech with written instructions. This report describes results achieved to date on an on-going research effort to refine the protocol of the DATALINK system so as to avoid many of the linguistic problems that still remain in the visual mode. In particular, a working prototype DATALINK simulator system has been developed consisting of an unambiguous, context-free grammar and parser, based on the current air-traffic-control language and incorporated into a visual display involving simulated touch-screen buttons and three levels of menu screens. The system is written in the C programming language and runs on the Macintosh II computer. After reviewing work already done on the project, new tasks for further development are described.

  3. Polarimeter calibration error gets far out of control

    NASA Astrophysics Data System (ADS)

    Chipman, Russell A.

    2015-09-01

    This is a sad story about a polarization calibration error gone amuck. A simple laboratory mistake was mistaken for a new phenomena. Aggressive management did their job and sold the flawed idea very effectively and substantial funding followed. Questions were raised and a Government lab tried but couldn't to recreate the breakthrough. The results were unpleasant and the field of infrared polarimetry developed a bad reputation for several years.

  4. Current control of light by nonreciprocal magnetoplasmonics

    SciTech Connect

    Gong, Yongkang Li, Kang; Carver, Sara; Martinez, Juan Jose; Huang, Jungang; Copner, Nigel; Thueux, Yoann; Avlonitis, Nick

    2015-05-11

    The ability to actively control light has long been a major scientific and technological goal. We proposed a scheme that allows for active control of light by utilizing the nonreciprocal magnetoplasmonic effect. As a proof of concept, we applied current signal through an ultrathin metallic film in a magneto-plasmonic multilayer and found that dynamic photonic nonreciprocity appears in magnetic-optical material layer due to the magnetic field being induced from current signal and modulates surface plasmon polaritons trapped in the metal surface and the light reflected. The proposed concept provides a possible way for the active control of light and could find potential applications such as ultrafast optoelectronic signal processing for plasmonic nanocircuit technology and ultrafast/large-aperture free-space electro-optic modulation platform for wireless laser communication technology.

  5. Study of Kink Modes and Error Fields using Rotation Control with a Biased Probe

    NASA Astrophysics Data System (ADS)

    Stoafer, Chris C.; Levesque, J. P.; Peng, Q.; Mauel, M. E.; Navratil, G. A.

    2015-11-01

    A bias probe has been installed in the High Beta Tokamak - Extended Pulse (HBT-EP) for studying MHD mode rotation and stability. When the probe is inserted into the edge of the plasma and a voltage applied, the rotation of long-wavelength kink instabilities is strongly modified. A large poloidal plasma flow results, measured with a bi-directional Mach probe, and changes in plasma flow correlate to changes in edge kink mode rotation. An active controller is used to adjust the probe voltage in real time for controlling both the plasma flow and mode rotation. Bias probe voltages are generated through an active GPU-based digital feedback system. Mode rotation control is desirable and allows for MHD stability studies under conditions of varying mode rotation rates. At large positive biases, the probe current induces a torque that opposes the natural direction of mode rotation. We are able to apply sufficiently large torque to induce a transition to a fast rotation state (both mode and plasma rotation). The bias required to induce the transition is shown to depend on an applied error field, establishing a technique to determine the natural error field on HBT-EP. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  6. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali

    1997-01-01

    Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.

  7. Simultaneous control of error rates in fMRI data analysis.

    PubMed

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-12-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to "cleaner"-looking brain maps and operational superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain.

  8. Error analysis in the measurement of average power with application to switching controllers

    NASA Technical Reports Server (NTRS)

    Maisel, J. E.

    1979-01-01

    The behavior of the power measurement error due to the frequency responses of first order transfer functions between the input sinusoidal voltage, input sinusoidal current and the signal multiplier was studied. It was concluded that this measurement error can be minimized if the frequency responses of the first order transfer functions are identical.

  9. Current Profile Control in DIII-D

    NASA Astrophysics Data System (ADS)

    Schuster, E. M.; Barton, J. E.; Boyer, M. D.; Wehner, W. P.; Ferron, J. R.; Humphreys, D. A.; Hyatt, A. W.; Jackson, G. L.; Luce, T. C.; Walker, M. L.

    2014-10-01

    Experimental results successfully demonstrate the potential of physics-model-based control for systematic attainment of desired q profiles, with the subsequent benefit of enabling exploration and reproducibility. The control scheme is constructed by embedding a nonlinear, control-oriented, physics-based model of the plasma dynamics into the control design process. This modeling approach combines first-principles laws with empirical correlations obtained from physical observations, which leads to PDE models capturing the high-dimensionality and nonlinearity of the plasma response. Model-based control design includes not only the synthesis of feedback controllers for robust regulation or tracking, but also the determination of optimal feedforward actuator trajectories for a systematic approach to scenario planning. Feedforward+feedback (closed loop) control experiments in DIII-D consistently demonstrate improved current-profile control performance relative to feedforward (open loop) control alone. Supported by the US Department of Energy under DE-SC0001334, DE-SC0010661 and DE-FC02-04ER54698.

  10. Current limiting remote power control module

    NASA Technical Reports Server (NTRS)

    Hopkins, Douglas C.

    1990-01-01

    The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.

  11. VOC Control: Current practices and future trends

    SciTech Connect

    Moretti, E.C.; Mukhopadhyay, N. )

    1993-07-01

    One of the most formidable challenges posed by the Clean Air Act Amendments of 1990 (CAAA) is the search for efficient and economical control strategies for volatile organic compounds (VOCs). VOCs are precursors to ground-level ozone, a major component in the formation of smog. Under the CAAA, thousands of currently unregulated sources will be required to reduce or eliminate VOC emissions. In addition, sources that are currently regulated may seek to evaluate alternative VOC control strategies to meet stricter regulatory requirements such as the maximum achievable control technology (MACT) requirements in Title III of the CAAA. Because of the increasing attention being given to VOC control, the American Institute of Chemical Engineers' (AIChE) Center for Waste Reduction Technologies (CWRT) initiated a study of VOC control technologies and regulatory initiatives. A key objective of the project was to identify and describe existing VOC control technologies and air regulations, as well as emerging technologies and forthcoming regulations. That work is the basis for this article.

  12. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  13. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1995-01-01

    This report focuses on the results obtained during the PI's recent sabbatical leave at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from January 1, 1995 through June 30, 1995. Two projects investigated various properties of TURBO codes, a new form of concatenated coding that achieves near channel capacity performance at moderate bit error rates. The performance of TURBO codes is explained in terms of the code's distance spectrum. These results explain both the near capacity performance of the TURBO codes and the observed 'error floor' for moderate and high signal-to-noise ratios (SNR's). A semester project, entitled 'The Realization of the Turbo-Coding System,' involved a thorough simulation study of the performance of TURBO codes and verified the results claimed by previous authors. A copy of the final report for this project is included as Appendix A. A diploma project, entitled 'On the Free Distance of Turbo Codes and Related Product Codes,' includes an analysis of TURBO codes and an explanation for their remarkable performance. A copy of the final report for this project is included as Appendix B.

  14. Two-stage feedforward tracking control system with error-based disturbance observer for optical discs

    NASA Astrophysics Data System (ADS)

    Sakimura, Naohide; Ohashi, Takahiro; Ohishi, Kiyoshi; Miyazaki, Toshimasa

    2014-09-01

    Recently, the scaling up of the storage capacity and data transfer rate of digital storage media has been required. However, increasing in the storage capacity and transfer rate makes optical head control more difficult. Thus, a tracking control system for optical discs must exhibit a high degree of precision control. Consequently, a new two-stage feedforward control (TSFFC) system for high-precision control is proposed in this paper. The proposed system is constructed using two zero phase error tracking (ZPET) control systems based on error prediction and an error-based disturbance observer (EDOB) that uses a notch filter to suppress non periodic disturbances. The proposed control system is designed for DDU-1000 for digital versatile discs (DVDs). The experimental results demonstrate that the proposed system effectively suppresses tracking errors.

  15. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    NASA Technical Reports Server (NTRS)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  16. Error bounds of adaptive dynamic programming algorithms for solving undiscounted optimal control problems.

    PubMed

    Liu, Derong; Li, Hongliang; Wang, Ding

    2015-06-01

    In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.

  17. ERP evidence of adaptive changes in error processing and attentional control during rhythm synchronization learning.

    PubMed

    Padrão, Gonçalo; Penhune, Virginia; de Diego-Balaguer, Ruth; Marco-Pallares, Josep; Rodriguez-Fornells, Antoni

    2014-10-15

    The ability to detect and use information from errors is essential during the acquisition of new skills. There is now a wealth of evidence about the brain mechanisms involved in error processing. However, the extent to which those mechanisms are engaged during the acquisition of new motor skills remains elusive. Here we examined rhythm synchronization learning across 12 blocks of practice in musically naïve individuals and tracked changes in ERP signals associated with error-monitoring and error-awareness across distinct learning stages. Synchronization performance improved with practice, and performance improvements were accompanied by dynamic changes in ERP components related to error-monitoring and error-awareness. Early in learning, when performance was poor and the internal representations of the rhythms were weaker we observed a larger error-related negativity (ERN) following errors compared to later learning. The larger ERN during early learning likely results from greater conflict between competing motor responses, leading to greater engagement of medial-frontal conflict monitoring processes and attentional control. Later in learning, when performance had improved, we observed a smaller ERN accompanied by an enhancement of a centroparietal positive component resembling the P3. This centroparietal positive component was predictive of participant's performance accuracy, suggesting a relation between error saliency, error awareness and the consolidation of internal templates of the practiced rhythms. Moreover, we showed that during rhythm learning errors led to larger auditory evoked responses related to attention orientation which were triggered automatically and which were independent of the learning stage. The present study provides crucial new information about how the electrophysiological signatures related to error-monitoring and error-awareness change during the acquisition of new skills, extending previous work on error processing and cognitive

  18. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1992-01-01

    Worked performed during the reporting period is summarized. Construction of robustly good trellis codes for use with sequential decoding was developed. The robustly good trellis codes provide a much better trade off between free distance and distance profile. The unequal error protection capabilities of convolutional codes was studied. The problem of finding good large constraint length, low rate convolutional codes for deep space applications is investigated. A formula for computing the free distance of 1/n convolutional codes was discovered. Double memory (DM) codes, codes with two memory units per unit bit position, were studied; a search for optimal DM codes is being conducted. An algorithm for constructing convolutional codes from a given quasi-cyclic code was developed. Papers based on the above work are included in the appendix.

  19. Deep space communications, weather effects, and error control

    NASA Technical Reports Server (NTRS)

    Posner, Edward C.

    1989-01-01

    Deep space telemetry is and will remain signal-to-noise limited and vulnerable to interference. A need exists to increase received signal power and decrease noise. This includes going to Ka-band in the mid-1990's to increase directivity. The effects of a wet atmosphere can increase the noise temperature by a factor of 5 or more, even at X-band, but the order of magnitude increase in average data rate obtainable at Ka-band relative to X-band makes the increased uncertainty a good trade. Lowbit error probabilities required by data compression are available both theoretically and practically with coding, at an infinitesimal power penalty rather than the 10 to 15 dB more power required to reduce error probabilities without coding. Advances are coming rapidly in coding, as with the new constraint-length 15 rate 1/4 convolutional code concatenated with the already existing Reed-Solomon code to be demonstrated on Galileo. In addition, high density spacecraft data storage will allow selective retransmissions, even from the edge of the Solar System, to overcome weather effects. In general, deep space communication was able to operate, and will continue to operate, closer to theoretical limits than any other form of communication. These include limits in antenna area and directivity, system noise temperature, coding efficiency, and everything else. The deep space communication links of the mid-90's and beyond will be compatible with new instruments and compression algorithms and represent a sensible investment in an overall end-to-end information system design.

  20. Stray current interference control for HVDC earth currents

    SciTech Connect

    Fitzgerald, J.H. III

    1995-06-01

    High-voltage direct current (HVDC) transmission lines exist around the world, with several in the US. When one conductor must be taken out of operation (in case of emergency), the earth may be used as an alternate conductor. The earth current may be accumulated on and discharged from underground metallic structures that cross the voltage gradient created by the current. Test results on two lines showed that stray current interference is not a major problem if mitigated properly.

  1. Make no mistake—errors can be controlled*

    PubMed Central

    Hinckley, C

    2003-01-01

    

 Traditional quality control methods identify "variation" as the enemy. However, the control of variation by itself can never achieve the remarkably low non-conformance rates of world class quality leaders. Because the control of variation does not achieve the highest levels of quality, an inordinate focus on these techniques obscures key quality improvement opportunities and results in unnecessary pain and suffering for patients, and embarrassment, litigation, and loss of revenue for healthcare providers. Recent experience has shown that mistakes are the most common cause of problems in health care as well as in other industrial environments. Excessive product and process complexity contributes to both excessive variation and unnecessary mistakes. The best methods for controlling variation, mistakes, and complexity are each a form of mistake proofing. Using these mistake proofing techniques, virtually every mistake and non-conformance can be controlled at a fraction of the cost of traditional quality control methods. PMID:14532368

  2. Correcting image placement errors using registration control (RegC®) technology in the photomask periphery

    NASA Astrophysics Data System (ADS)

    Cohen, Avi; Lange, Falk; Ben-Zvi, Guy; Graitzer, Erez; Vladimir, Dmitriev

    2012-11-01

    The ITRS roadmap specifies wafer overlay control as one of the major tasks for the sub 40 nm nodes in addition to CD control and defect control. Wafer overlay is strongly dependent on mask image placement error (registration errors or Reg errors)1. The specifications for registration or mask placement accuracy are significantly tighter in some of the double patterning techniques (DPT). This puts a heavy challenge on mask manufacturers (mask shops) to comply with advanced node registration specifications. The conventional methods of feeding back the systematic registration error to the E-beam writer and re-writing the mask are becoming difficult, expensive and not sufficient for the advanced nodes especially for double pattering technologies. Six production masks were measured on a standard registration metrology tool and the registration errors were calculated and plotted. Specially developed algorithm along with the RegC Wizard (dedicated software) was used to compute a correction lateral strain field that would minimize the registration errors. This strain field was then implemented in the photomask bulk material using an ultra short pulse laser based system. Finally the post process registration error maps were measured and the resulting residual registration error field with and without scale and orthogonal errors removal was calculated. In this paper we present a robust process flow in the mask shop which leads up to 32% registration 3sigma improvement, bringing some out-of-spec masks into spec, utilizing the RegC® process in the photomask periphery while leaving the exposure field optically unaffected.

  3. Predictive current control of permanent magnet synchronous motor based on linear active disturbance rejection control

    NASA Astrophysics Data System (ADS)

    Li, Kunpeng

    2017-01-01

    The compatibility problem between rapidity and overshooting in the traditional predictive current control structure is inevitable and difficult to solve by reason of using PI controller. A novel predictive current control (PCC) algorithm for permanent magnet synchronous motor (PMSM) based on linear active disturbance rejection control (LADRC) is presented in this paper. In order to displace PI controller, the LADRC strategy which consisted of linear state error feedback (LSEF) control algorithm and linear extended state observer (LESO), is designed based on the mathematic model of PMSM. The purpose of LSEF is to make sure fast response to load mutation and system uncertainties, and LESO is designed to estimate the uncertain disturbances. The principal structures of the proposed system are speed outer loop based on LADRC and current inner loop based on predictive current control. Especially, the instruction value of qaxis current in inner loop is derived from the control quantity which is designed in speed outer loop. The simulation is carried out in Matlab/Simulink software, and the results illustrate that the dynamic and static performances of proposed system are satisfied. Moreover the robust against model parameters mismatch is enhanced obviously.

  4. Analysis of Covariance with Linear Regression Error Model on Antenna Control Unit Tracking

    DTIC Science & Technology

    2015-10-20

    412TW-PA-15238 Analysis of Covariance with Linear Regression Error Model on Antenna Control Unit Tracking DANIEL T. LAIRD AIR...COVERED (From - To) 20 OCT 15 – 23 OCT 15 4. TITLE AND SUBTITLE Analysis of Covariance with Linear Regression Error Model on Antenna Control Tracking...analysis of variance (ANOVA) to decide for the null- or alternative-hypotheses of a telemetry antenna control unit’s (ACU) ability to track on C-band

  5. Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks

    PubMed Central

    Pedrocchi, Alessandra; Ferrante, Simona; De Momi, Elena; Ferrigno, Giancarlo

    2006-01-01

    Background The design of an optimal neuroprostheses controller and its clinical use presents several challenges. First, the physiological system is characterized by highly inter-subjects varying properties and also by non stationary behaviour with time, due to conditioning level and fatigue. Secondly, the easiness to use in routine clinical practice requires experienced operators. Therefore, feedback controllers, avoiding long setting procedures, are required. Methods The error mapping controller (EMC) here proposed uses artificial neural networks (ANNs) both for the design of an inverse model and of a feedback controller. A neuromuscular model is used to validate the performance of the controllers in simulations. The EMC performance is compared to a Proportional Integral Derivative (PID) included in an anti wind-up scheme (called PIDAW) and to a controller with an ANN as inverse model and a PID in the feedback loop (NEUROPID). In addition tests on the EMC robustness in response to variations of the Plant parameters and to mechanical disturbances are carried out. Results The EMC shows improvements with respect to the other controllers in tracking accuracy, capability to prolong exercise managing fatigue, robustness to parameter variations and resistance to mechanical disturbances. Conclusion Different from the other controllers, the EMC is capable of balancing between tracking accuracy and mapping of fatigue during the exercise. In this way, it avoids overstressing muscles and allows a considerable prolongation of the movement. The collection of the training sets does not require any particular experimental setting and can be introduced in routine clinical practice. PMID:17029636

  6. The Tukey Honestly Significant Difference Procedure and Its Control of the Type I Error-Rate.

    ERIC Educational Resources Information Center

    Barnette, J. Jackson; McLean, James E.

    Tukey's Honestly Significant Difference (HSD) procedure (J. Tukey, 1953) is probably the most recommended and used procedure for controlling Type I error rate when making multiple pairwise comparisons as follow-ups to a significant omnibus F test. This study compared observed Type I errors with nominal alphas of 0.01, 0.05, and 0.10 compared for…

  7. Using Mendelian inheritance errors as quality control criteria in whole genome sequencing data set

    PubMed Central

    2014-01-01

    Although the technical and analytic complexity of whole genome sequencing is generally appreciated, best practices for data cleaning and quality control have not been defined. Family based data can be used to guide the standardization of specific quality control metrics in nonfamily based data. Given the low mutation rate, Mendelian inheritance errors are likely as a result of erroneous genotype calls. Thus, our goal was to identify the characteristics that determine Mendelian inheritance errors. To accomplish this, we used chromosome 3 whole genome sequencing family based data from the Genetic Analysis Workshop 18. Mendelian inheritance errors were provided as part of the GAW18 data set. Additionally, for binary variants we calculated Mendelian inheritance errors using PLINK. Based on our analysis, nonbinary single-nucleotide variants have an inherently high number of Mendelian inheritance errors. Furthermore, in binary variants, Mendelian inheritance errors are not randomly distributed. Indeed, we identified 3 Mendelian inheritance error peaks that were enriched with repetitive elements. However, these peaks can be lessened with the inclusion of a single filter from the sequencing file. In summary, we demonstrated that erroneous sequencing calls are nonrandomly distributed across the genome and quality control metrics can dramatically reduce the number of mendelian inheritance errors. Appropriate quality control will allow optimal use of genetic data to realize the full potential of whole genome sequencing. PMID:25519373

  8. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  9. Minimum sliding mode error feedback control for fault tolerant reconfigurable satellite formations with J2 perturbations

    NASA Astrophysics Data System (ADS)

    Cao, Lu; Chen, Xiaoqian; Misra, Arun K.

    2014-03-01

    Minimum Sliding Mode Error Feedback Control (MSMEFC) is proposed to improve the control precision of spacecraft formations based on the conventional sliding mode control theory. This paper proposes a new approach to estimate and offset the system model errors, which include various kinds of uncertainties and disturbances, as well as smoothes out the effect of nonlinear switching control terms. To facilitate the analysis, the concept of equivalent control error is introduced, which is the key to the utilization of MSMEFC. A cost function is formulated on the basis of the principle of minimum sliding mode error; then the equivalent control error is estimated and fed back to the conventional sliding mode control. It is shown that the sliding mode after the MSMEFC will approximate to the ideal sliding mode, resulting in improved control performance and quality. The new methodology is applied to spacecraft formation flying. It guarantees global asymptotic convergence of the relative tracking error in the presence of J2 perturbations. In addition, some fault tolerant situations such as thruster failure for a period of time, thruster degradation and so on, are also considered to verify the effectiveness of MSMEFC. Numerical simulations are performed to demonstrate the efficacy of the proposed methodology to maintain and reconfigure the satellite formation with the existence of initial offsets and J2 perturbation effects, even in the fault-tolerant cases.

  10. One active debris removal control system design and error analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weilin; Chen, Lei; Li, Kebo; Lei, Yongjun

    2016-11-01

    The increasing expansion of debris presents a significant challenge to space safety and sustainability. To address it, active debris removal, usually involving a chaser performing autonomous rendezvous with targeted debris to be removed is a feasible solution. In this paper, we explore a mid-range autonomous rendezvous control system based on augmented proportional navigation (APN), establishing a three-dimensional kinematic equation set constructed in a rotating coordinate system. In APN, feedback control is applied in the direction of line of sight (LOS), thus analytical solutions of LOS rate and relative motion are expectedly obtained. To evaluate the effectiveness of the control system, we adopt Zero-Effort-Miss (ZEM) in this research as the index, the uncertainty of which is directly determined by that of LOS rate. Accordingly, we apply covariance analysis (CA) method to analyze the propagation of LOS rate uncertainty. Consequently, we find that the accuracy of the control system can be verified even with uncertainty and the CA method is drastically more computationally efficient compared with nonlinear Monte-Carlo method. Additionally, to justify the superiority of the system, we further discuss more simulation cases to show the robustness and feasibility of APN proposed in the paper.

  11. Suspended sediment fluxes in a tidal wetland: Measurement, controlling factors, and error analysis

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Bergamaschi, B.A.

    2005-01-01

    Suspended sediment fluxes to and from tidal wetlands are of increasing concern because of habitat restoration efforts, wetland sustainability as sea level rises, and potential contaminant accumulation. We measured water and sediment fluxes through two channels on Browns Island, at the landward end of San Francisco Bay, United States, to determine the factors that control sediment fluxes on and off the island. In situ instrumentation was deployed between October 10 and November 13, 2003. Acoustic Doppler current profilers and the index velocity method were employed to calculate water fluxes. Suspended sediment concentrations (SSC) were determined with optical sensors and cross-sectional water sampling. All procedures were analyzed for their contribution to total error in the flux measurement. The inability to close the water balance and determination of constituent concentration were identified as the main sources of error; total error was 27% for net sediment flux. The water budget for the island was computed with an unaccounted input of 0.20 m 3 s-1 (22% of mean inflow), after considering channel flow, change in water storage, evapotranspiration, and precipitation. The net imbalance may be a combination of groundwater seepage, overland flow, and flow through minor channels. Change of island water storage, caused by local variations in water surface elevation, dominated the tidalty averaged water flux. These variations were mainly caused by wind and barometric pressure change, which alter regional water levels throughout the Sacramento-San Joaquin River Delta. Peak instantaneous ebb flow was 35% greater than peak flood flow, indicating an ebb-dominant system, though dominance varied with the spring-neap cycle. SSC were controlled by wind-wave resuspension adjacent to the island and local tidal currents that mobilized sediment from the channel bed. During neap tides sediment was imported onto the island but during spring tides sediment was exported because the main

  12. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  13. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  14. Error tracking control for underactuated overhead cranes against arbitrary initial payload swing angles

    NASA Astrophysics Data System (ADS)

    Zhang, Menghua; Ma, Xin; Rong, Xuewen; Tian, Xincheng; Li, Yibin

    2017-02-01

    This paper exploits an error tracking control method for overhead crane systems for which the error trajectories for the trolley and the payload swing can be pre-specified. The proposed method does not require that the initial payload swing angle remains zero, whereas this requirement is usually assumed in conventional methods. The significant feature of the proposed method is its superior control performance as well as its strong robustness over different or uncertain rope lengths, payload masses, desired positions, initial payload swing angles, and external disturbances. Owing to the same attenuation behavior, the desired error trajectory for the trolley for each traveling distance is not needed to be reset, which is easy to implement in practical applications. By converting the error tracking overhead crane dynamics to the objective system, we obtain the error tracking control law for arbitrary initial payload swing angles. Lyapunov techniques and LaSalle's invariance theorem are utilized to prove the convergence and stability of the closed-loop system. Simulation and experimental results are illustrated to validate the superior performance of the proposed error tracking control method.

  15. EMG versus torque control of human-machine systems: equalizing control signal variability does not equalize error or uncertainty.

    PubMed

    Johnson, Reva E; Koerding, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2016-08-25

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  16. An error criterion for determining sampling rates in closed-loop control systems

    NASA Technical Reports Server (NTRS)

    Brecher, S. M.

    1972-01-01

    The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.

  17. Automatic Time Stepping with Global Error Control for Groundwater Flow Models

    SciTech Connect

    Tang, Guoping

    2008-09-01

    An automatic time stepping with global error control is proposed for the time integration of the diffusion equation to simulate groundwater flow in confined aquifers. The scheme is based on an a posteriori error estimate for the discontinuous Galerkin (dG) finite element methods. A stability factor is involved in the error estimate and it is used to adapt the time step and control the global temporal error for the backward difference method. The stability factor can be estimated by solving a dual problem. The stability factor is not sensitive to the accuracy of the dual solution and the overhead computational cost can be minimized by solving the dual problem using large time steps. Numerical experiments are conducted to show the application and the performance of the automatic time stepping scheme. Implementation of the scheme can lead to improvement in accuracy and efficiency for groundwater flow models.

  18. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  19. Real-time modeling and online filtering of the stochastic error in a fiber optic current transducer

    NASA Astrophysics Data System (ADS)

    Wang, Lihui; Wei, Guangjin; Zhu, Yunan; Liu, Jian; Tian, Zhengqi

    2016-10-01

    The stochastic error characteristics of a fiber optic current transducer (FOCT) influence the relay protection, electric-energy metering, and other devices in the spacer layer. Real-time modeling and online filtering of the FOCT’s stochastic error tends to be an effective method for improving the measurement accuracy of the FOCT. This paper first pretreats and inspects the FOCT data, statistically. Then, the model order is set by the AIC principle to establish an ARMA (2,1) model and model’s applicability is tested. Finally, a Kalman filter is adopted to reduce the noise in the FOCT data. The results of the experiment and the simulation demonstrate that there is a notable decrease in the stochastic error after time series modeling and Kalman filtering. Besides, the mean-variance is decreased by two orders. All the stochastic error coefficients are decreased by the total variance method; the BI is decreased by 41.4%, the RRW is decreased by 67.5%, and the RR is decreased by 53.4%. Consequently, the method can reduce the stochastic error and improve the measurement accuracy of the FOCT, effectively.

  20. Design, performance, and calculated error of a Faraday cup for absolute beam current measurements of 600-MeV protons

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A mobile self-contained Faraday cup system for beam current measurments of nominal 600 MeV protons was designed, constructed, and used at the NASA Space Radiation Effects Laboratory. The cup is of reentrant design with a length of 106.7 cm and an outside diameter of 20.32 cm. The inner diameter is 15.24 cm and the base thickness is 30.48 cm. The primary absorber is commercially available lead hermetically sealed in a 0.32-cm-thick copper jacket. Several possible systematic errors in using the cup are evaluated. The largest source of error arises from high-energy electrons which are ejected from the entrance window and enter the cup. A total systematic error of -0.83 percent is calculated to be the decrease from the true current value. From data obtained in calibrating helium-filled ion chambers with the Faraday cup, the mean energy required to produce one ion pair in helium is found to be 30.76 + or - 0.95 eV for nominal 600 MeV protons. This value agrees well, within experimental error, with reported values of 29.9 eV and 30.2 eV.

  1. Higher order feed-forward control of reticle writing error fingerprints

    NASA Astrophysics Data System (ADS)

    van Haren, Richard; Cekli, Hakki Ergun; Beltman, Jan; Pastol, Anne; Sundermann, Frank; Gatefait, Maxime

    2015-10-01

    The understanding and control of the intra-field overlay budget becomes crucial particularly after the introduction of multi-patterning applications. The intra-field overlay budget is built-up out of many contributors, each with its own characteristic. Some of them are (semi-)static like the reticle writing error (RWE) fingerprint, the scanner lens fingerprint, or the intra-field processing signature. Others are more dynamic. Examples are reticle heating and lens heating due to the absorption of a small portion of the exposure light. Ideally, all overlay contributors that are understood and known could be taken out of the feed-back control loop and send as feed-forward corrections to the scanner. As a consequence, only non-correctable overlay residuals are measured on the wafer. In the current work, we have studied the possibility to characterize the reticle writing error fingerprint by an off-line position measurement tool and use this information to send feed-forward corrections to the ASML TWINSCANTM exposure tool. The current work is an extension of the work we published earlier. To this end, we have selected a reticle pair out of 50 production reticles that are used to manufacture a 28-nm technology device. These two reticles are special in the sense that the delta fingerprint contains a significant higher order RWE signature. While previously only the linear parameters were sent as feed-forward corrections to the ASML TWINSCANTM exposure tool, this time we additionally demonstrate the capability to correct for the non-linear terms as well. Since the concept heavily relies on the quality of the off-line mask registration measurements, a state-of-the-art reticle registration tool was chosen. Special care was taken to eliminate any effects of the tool induced shifts that may affect the quality of the measurements. The on-wafer overlay verification measurements were performed on an ASML YieldStar metrology tool as well as on a different vendor tool. In conclusion

  2. Collision error avoidance: influence of proportion congruency and sensorimotor memory on open-loop grasp control.

    PubMed

    Brydges, Ryan; Dubrowski, Adam

    2009-10-01

    Grasping behaviour involves the integration of current and historical knowledge about an object, a process that can be influenced by sensory uncertainty. In the present study, participants simultaneously interacted with a visual cue and a haptic cue before reaching to grasp a target object. The visual cue was either congruent (equal in size to haptic cue and target) or incongruent (larger than haptic cue and target). To enhance sensory uncertainty, we manipulated the proportion of congruent trials to be either 80 or 20%. We compared grasp kinematics and forces between congruent and incongruent trials and between the 20 and 80% proportion congruency groups. We also studied the effects of trial history by comparing the performance of congruent and incongruent trials preceded by either the same or opposite trial type. Proportion congruency did not affect temporal kinematics but did affect maximum grip aperture (MGA) as the 80% proportion congruency group used a greater MGA, regardless of trial type. For grasping forces, an interaction effect showed that the 20% proportion congruency group used a greater peak load force on congruent trials. Incongruent trials that followed congruent trials had decreased movement time, increased MGA and increased grasping forces, relative to those that followed incongruent trials. We interpret the data to suggest that the grasp control system integrates multisensory information using flexible, yet specific criteria regarding task constraints. The prevention of collision error (i.e., an inadequate MGA when contacting the target) may be one guiding principle in the control process.

  3. Adjoint-field errors in high fidelity compressible turbulence simulations for sound control

    NASA Astrophysics Data System (ADS)

    Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2013-11-01

    A consistent discrete adjoint for high-fidelity discretization of the three-dimensional Navier-Stokes equations is used to quantify the error in the sensitivity gradient predicted by the continuous adjoint method, and examine the aeroacoustic flow-control problem for free-shear-flow turbulence. A particular quadrature scheme for approximating the cost functional makes our discrete adjoint formulation for a fourth-order Runge-Kutta scheme with high-order finite differences practical and efficient. The continuous adjoint-based sensitivity gradient is shown to to be inconsistent due to discretization truncation errors, grid stretching and filtering near boundaries. These errors cannot be eliminated by increasing the spatial or temporal resolution since chaotic interactions lead them to become O (1) at the time of control actuation. Although this is a known behavior for chaotic systems, its effect on noise control is much harder to anticipate, especially given the different resolution needs of different parts of the turbulence and acoustic spectra. A comparison of energy spectra of the adjoint pressure fields shows significant error in the continuous adjoint at all wavenumbers, even though they are well-resolved. The effect of this error on the noise control mechanism is analyzed.

  4. Effects of modeling errors on trajectory predictions in air traffic control automation

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda

    1996-01-01

    Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.

  5. Systematic sparse matrix error control for linear scaling electronic structure calculations.

    PubMed

    Rubensson, Emanuel H; Sałek, Paweł

    2005-11-30

    Efficient truncation criteria used in multiatom blocked sparse matrix operations for ab initio calculations are proposed. As system size increases, so does the need to stay on top of errors and still achieve high performance. A variant of a blocked sparse matrix algebra to achieve strict error control with good performance is proposed. The presented idea is that the condition to drop a certain submatrix should depend not only on the magnitude of that particular submatrix, but also on which other submatrices that are dropped. The decision to remove a certain submatrix is based on the contribution the removal would cause to the error in the chosen norm. We study the effect of an accumulated truncation error in iterative algorithms like trace correcting density matrix purification. One way to reduce the initial exponential growth of this error is presented. The presented error control for a sparse blocked matrix toolbox allows for achieving optimal performance by performing only necessary operations needed to maintain the requested level of accuracy.

  6. PD plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain Jacobian matrix.

    PubMed

    Huang, C Q; Xie, L F; Liu, Y L

    2012-11-01

    In framework of traditional PID controllers, there are only three parameters available to tune, as a result, performance of the resulting system is always limited. As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, a scheme of PID controllers with error-dependent integral action is proposed. Compare with traditional PID controllers, the error-dependent integration is employed in the proposed PID controller, in which more parameters are available to be tuned. It provides additional flexibility for controller characteristics and tuning as well, and hence makes better transient performance. In addition, asymptotic stability of the resulting closed-loop system is guaranteed. All signals in the system are bounded when exogenous disturbances and measurement noises are bounded. Numerical example demonstrates the superior transient performance of the proposed controller over the traditional one via Cartesian space set-point manipulation of two-link robotic manipulator.

  7. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  8. Combustion Control of Diesel Engine using Feedback Error Learning with Kernel Online Learning Approach

    NASA Astrophysics Data System (ADS)

    Widayaka, Elfady Satya; Ohmori, Hiromitsu

    2016-09-01

    This paper shows how to design Multivariable Model Reference Adaptive Control System (MRACS) for “Tokyo University discrete-time engine model” proposed by Yasuda et al (2014). This controller configuration has the structure of “Feedback error learning (FEL)” and adaptive law is based on kernel method. Simulation results indicate that “kernelized” adaptive controllers can improve the tracking performance, the speed of convergence and the robustness to disturbances.

  9. Controlling local currents in molecular junctions

    NASA Astrophysics Data System (ADS)

    Yadalam, Hari Kumar; Harbola, Upendra

    2016-09-01

    The effects of nonequilibrium constraints and dephasing on the circulating currents in molecular junctions are analyzed. Circulating currents are manifestations of quantum effects and can be induced either by externally applied bias or an external magnetic field through the molecular system. In a symmetric Aharonov-Bohm ring, bond currents have two contributions, bias driven and magnetic field driven. We analyze the competition between these two contributions and show that, as a consequence, current through one of the branches can be completely suppressed. We then study the effect of asymmetry (as a result of chemical substitution) on the current pathways inside the molecule and study asymmetry-induced circulating currents (without magnetic field) by tuning the coupling strength of the substituent (at finite bias).

  10. Effect of gyro verticality error on lateral autoland tracking performance for an inertially smoothed control law

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1977-01-01

    The results of a simulation study performed to determine the effects of gyro verticality error on lateral autoland tracking and landing performance are presented. A first order vertical gyro error model was used to generate the measurement of the roll attitude feedback signal normally supplied by an inertial navigation system. The lateral autoland law used was an inertially smoothed control design. The effect of initial angular gyro tilt errors (2 deg, 3 deg, 4 deg, and 5 deg), introduced prior to localizer capture, were investigated by use of a small perturbation aircraft simulation. These errors represent the deviations which could occur in the conventional attitude sensor as a result of the maneuver-induced spin-axis misalinement and drift. Results showed that for a 1.05 deg per minute erection rate and a 5 deg initial tilt error, ON COURSE autoland control logic was not satisfied. Failure to attain the ON COURSE mode precluded high control loop gains and localizer beam path integration and resulted in unacceptable beam standoff at touchdown.

  11. The Influence on Stability Robustness of Compromising on the Zero Tracking Error Requirement in Repetitive Control

    NASA Astrophysics Data System (ADS)

    Shi, Yunde; Longman, Richard W.

    2012-06-01

    Repetitive control (RC) can be used to design active vibration isolation mounts that aim to cancel the influence of spacecraft vibrations on fine pointing equipment. It can cancel the influence of slight imbalance in momentum wheels, reaction wheels, and CMGs. Because RC aims for zero error, it requires reasonably accurate knowledge of the system dynamics all the way to Nyquist frequency. As a result, special methods are needed to establish robustness to model error. A series of publications have demonstrated a method of averaging a cost function over models to increase the robustness. A previous paper improves on this by adjusting the learning rate as a function of frequency to further improve robustness, but there is still a hard limit on phase error. This paper considers yet one more approach, and all three can be used simultaneously. Here we compromise on the zero tracking error requirement for frequencies that require extra robustness. This allows one to extend this hard limit making RC tolerate larger model errors. A quadratic cost is used that penalizes not just the rate of change of the input function, but also the size of the input function. We first establish how to do this for the sister field of iterative learning control, and then the frequency response characteristics are produced for design of repetitive control. The method can improve tracking error for a frequency interval above the frequency at which one would otherwise have to cut off the learning because of model error. Model uncertainty can be used directly in the design process to produce stable RC laws for any level of uncertainty. The design approach differs from typical earlier work that used a sharp frequency cutoff, and instead uses a minimal amount of attenuation needed to produce stability.

  12. A synchronous generator stabilizer design using neuro inverse controller and error reduction network

    SciTech Connect

    Park, Y.M.; Hyun, S.H.; Lee, J.H.

    1996-11-01

    A neuro power system stabilizer (PSS) is developed for multimachine power systems. Each machine is identified in its inverse relation by an artificial neural network named Inverse Dynamics Neural Network (IDNN) off line, which is used as a local inverse controller. The control error due to the interactions between generators is predicted and compensated through another network called Error Reduction Network (ERN). The ERN consists of several IDNNs in the linear combination form. In most neuro controllers, two neural nets are required, one for system emulation, the other for control. In the proposed controller, the only network requiring training is the IDNN. Simulations are performed on two typical cases: an unstable single machine power system of non-minimum phase, and a multimachine power system.

  13. Design methodology accounting for fabrication errors in manufactured modified Fresnel lenses for controlled LED illumination.

    PubMed

    Shim, Jongmyeong; Kim, Joongeok; Lee, Jinhyung; Park, Changsu; Cho, Eikhyun; Kang, Shinill

    2015-07-27

    The increasing demand for lightweight, miniaturized electronic devices has prompted the development of small, high-performance optical components for light-emitting diode (LED) illumination. As such, the Fresnel lens is widely used in applications due to its compact configuration. However, the vertical groove angle between the optical axis and the groove inner facets in a conventional Fresnel lens creates an inherent Fresnel loss, which degrades optical performance. Modified Fresnel lenses (MFLs) have been proposed in which the groove angles along the optical paths are carefully controlled; however, in practice, the optical performance of MFLs is inferior to the theoretical performance due to fabrication errors, as conventional design methods do not account for fabrication errors as part of the design process. In this study, the Fresnel loss and the loss area due to microscopic fabrication errors in the MFL were theoretically derived to determine optical performance. Based on this analysis, a design method for the MFL accounting for the fabrication errors was proposed. MFLs were fabricated using an ultraviolet imprinting process and an injection molding process, two representative processes with differing fabrication errors. The MFL fabrication error associated with each process was examined analytically and experimentally to investigate our methodology.

  14. Improvement of the grid-connect current quality using novel proportional-integral controller for photovoltaic inverters.

    PubMed

    Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing

    2014-02-01

    Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.

  15. SEMICONDUCTOR INTEGRATED CIRCUITS A 12-bit current steering DAC with 2-dimensional gradient-error tolerant switching scheme

    NASA Astrophysics Data System (ADS)

    Hao, Chen; Liyuan, Liu; Dongmei, Li; Chun, Zhang; Zhihua, Wang

    2010-10-01

    A 12-bit intrinsic accuracy digital-to-analog converter integrated into standard digital 0.18 μm CMOS technology is proposed. It is based on a current steering segmented 6+6 architecture and requires no calibration. By dividing one most significant bit unary source into 16 elements located in 16 separated regions of the array, the linear gradient errors and quadratic errors can be averaged and eliminated effectively. A novel static performance testing method is proposed. The measured differential nonlinearity and integral nonlinearity are 0.42 and 0.39 least significant bit, respectively. For 12-bit resolution, the converter reaches an update rate of 100 MS/s. The chip operates from a single 1.8 V voltage supply, and the core die area is 0.28 mm2.

  16. A parallel row-based algorithm with error control for standard-cell replacement on a hypercube multiprocessor

    NASA Technical Reports Server (NTRS)

    Sargent, Jeff Scott

    1988-01-01

    A new row-based parallel algorithm for standard-cell placement targeted for execution on a hypercube multiprocessor is presented. Key features of this implementation include a dynamic simulated-annealing schedule, row-partitioning of the VLSI chip image, and two novel new approaches to controlling error in parallel cell-placement algorithms; Heuristic Cell-Coloring and Adaptive (Parallel Move) Sequence Control. Heuristic Cell-Coloring identifies sets of noninteracting cells that can be moved repeatedly, and in parallel, with no buildup of error in the placement cost. Adaptive Sequence Control allows multiple parallel cell moves to take place between global cell-position updates. This feedback mechanism is based on an error bound derived analytically from the traditional annealing move-acceptance profile. Placement results are presented for real industry circuits and the performance is summarized of an implementation on the Intel iPSC/2 Hypercube. The runtime of this algorithm is 5 to 16 times faster than a previous program developed for the Hypercube, while producing equivalent quality placement. An integrated place and route program for the Intel iPSC/2 Hypercube is currently being developed.

  17. Quantization-Based Adaptive Actor-Critic Tracking Control With Tracking Error Constraints.

    PubMed

    Fan, Quan-Yong; Yang, Guang-Hong; Ye, Dan

    2017-02-01

    In this paper, the problem of adaptive actor-critic (AC) tracking control is investigated for a class of continuous-time nonlinear systems with unknown nonlinearities and quantized inputs. Different from the existing results based on reinforcement learning, the tracking error constraints are considered and new critic functions are constructed to improve the performance further. To ensure that the tracking errors keep within the predefined time-varying boundaries, a tracking error transformation technique is used to constitute an augmented error system. Specific critic functions, rather than the long-term cost function, are introduced to supervise the tracking performance and tune the weights of the AC neural networks (NNs). A novel adaptive controller with a special structure is designed to reduce the effect of the NN reconstruction errors, input quantization, and disturbances. Based on the Lyapunov stability theory, the boundedness of the closed-loop signals and the desired tracking performance can be guaranteed. Finally, simulations on two connected inverted pendulums are given to illustrate the effectiveness of the proposed method.

  18. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  19. Direct Adaptive Control Methodologies for Flexible-Joint Space Manipulators with Uncertainties and Modeling Errors

    NASA Astrophysics Data System (ADS)

    Ulrich, Steve

    This work addresses the direct adaptive trajectory tracking control problem associated with lightweight space robotic manipulators that exhibit elastic vibrations in their joints, and which are subject to parametric uncertainties and modeling errors. Unlike existing adaptive control methodologies, the proposed flexible-joint control techniques do not require identification of unknown parameters, or mathematical models of the system to be controlled. The direct adaptive controllers developed in this work are based on the model reference adaptive control approach, and manage modeling errors and parametric uncertainties by time-varying the controller gains using new adaptation mechanisms, thereby reducing the errors between an ideal model and the actual robot system. More specifically, new decentralized adaptation mechanisms derived from the simple adaptive control technique and fuzzy logic control theory are considered in this work. Numerical simulations compare the performance of the adaptive controllers with a nonadaptive and a conventional model-based controller, in the context of 12.6 m xx 12.6 m square trajectory tracking. To validate the robustness of the controllers to modeling errors, a new dynamics formulation that includes several nonlinear effects usually neglected in flexible-joint dynamics models is proposed. Results obtained with the adaptive methodologies demonstrate an increased robustness to both uncertainties in joint stiffness coefficients and dynamics modeling errors, as well as highly improved tracking performance compared with the nonadaptive and model-based strategies. Finally, this work considers the partial state feedback problem related to flexible-joint space robotic manipulators equipped only with sensors that provide noisy measurements of motor positions and velocities. An extended Kalman filter-based estimation strategy is developed to estimate all state variables in real-time. The state estimation filter is combined with an adaptive

  20. Control of noisy quantum systems: Field-theory approach to error mitigation

    NASA Astrophysics Data System (ADS)

    Hipolito, Rafael; Goldbart, Paul M.

    2016-04-01

    We consider the basic quantum-control task of obtaining a target unitary operation (i.e., a quantum gate) via control fields that couple to the quantum system and are chosen to best mitigate errors resulting from time-dependent noise, which frustrate this task. We allow for two sources of noise: fluctuations in the control fields and fluctuations arising from the environment. We address the issue of control-error mitigation by means of a formulation rooted in the Martin-Siggia-Rose (MSR) approach to noisy, classical statistical-mechanical systems. To do this, we express the noisy control problem in terms of a path integral, and integrate out the noise to arrive at an effective, noise-free description. We characterize the degree of success in error mitigation via a fidelity metric, which characterizes the proximity of the sought-after evolution to ones that are achievable in the presence of noise. Error mitigation is then best accomplished by applying the optimal control fields, i.e., those that maximize the fidelity subject to any constraints obeyed by the control fields. To make connection with MSR, we reformulate the fidelity in terms of a Schwinger-Keldysh (SK) path integral, with the added twist that the "forward" and "backward" branches of the time contour are inequivalent with respect to the noise. The present approach naturally and readily allows the incorporation of constraints on the control fields—a useful feature in practice, given that constraints feature in all real experiments. In addition to addressing the noise average of the fidelity, we consider its full probability distribution. The information content present in this distribution allows one to address more complex questions regarding error mitigation, including, in principle, questions of extreme value statistics, i.e., the likelihood and impact of rare instances of the fidelity and how to harness or cope with their influence. We illustrate this MSR-SK reformulation by considering a model

  1. Phantom Effects in School Composition Research: Consequences of Failure to Control Biases Due to Measurement Error in Traditional Multilevel Models

    ERIC Educational Resources Information Center

    Televantou, Ioulia; Marsh, Herbert W.; Kyriakides, Leonidas; Nagengast, Benjamin; Fletcher, John; Malmberg, Lars-Erik

    2015-01-01

    The main objective of this study was to quantify the impact of failing to account for measurement error on school compositional effects. Multilevel structural equation models were incorporated to control for measurement error and/or sampling error. Study 1, a large sample of English primary students in Years 1 and 4, revealed a significantly…

  2. Correlations of control variables for horizontal background error covariance modeling on cubed-sphere grid

    NASA Astrophysics Data System (ADS)

    Kwun, Jihye; Song, Hyo-Jong; Park, Jong-Im

    2013-04-01

    Background error covariance matrix is very important for variational data assimilation system, determining how the information from observed variables is spread to unobserved variables and spatial points. The full representation of the matrix is impossible because of the huge size so the matrix is constructed implicitly by means of a variable transformation. It is assumed that the forecast errors in the control variables chosen are statistically independent. We used the cubed-sphere geometry based on the spectral element method which is better for parallel application. In cubed-sphere grids, the grid points are located at Gauss-Legendre-Lobatto points on each local element of 6 faces on the sphere. The two stages of the transformation were used in this study. The first is the variable transformation from model to a set of control variables whose errors are assumed to be uncorrelated, which was developed on the cubed sphere-using Galerkin method. Winds are decomposed into rotational part and divergent part by introducing stream function and velocity potential as control variables. The dynamical constraint for balance between mass and wind were made by applying linear balance operator. The second is spectral transformation which is to remove the remaining spatial correlation. The bases for the spectral transform were generated for the cubed-sphere grid. 6-hr difference fields of shallow water equation (SWE) model run initialized by variational data assimilation system were used to obtain forecast error statistics. In the horizontal background error covariance modeling, the regression analysis of the control variables was performed to define the unbalanced variables as the difference between full and correlated part. Regression coefficient was used to remove the remaining correlations between variables.

  3. Multivariable current control for electrically and magnetically coupled superconducting magnets. Revision 1

    SciTech Connect

    Owen, E.W.; Shimer, D.W.

    1985-02-08

    Superconducting magnet systems under construction and projected for the future contain magnets that are magnetically coupled and electrically connected with shared power supplies. A change in one power supply voltage affects all of the magnet currents. A current controller for these system must be designed as a multivariable system. The power describes a method, based on decoupling control, for the rational design of these systems. Dynamic decoupling is achieved by cross-feedback of the measured currents. A network of gains at the input decouples the system statically and eliminates the steady-state error. Errors are then due to component variations. The method has been applied to the magnet system of the MFTF-B, at the Lawrence Livermore National Laboratory.

  4. The significance of error dynamics in model-following for flight control design

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.; Anderson, Mark R.

    1987-01-01

    The role of the system error dynamics in model-following control systems is discussed, along with the use of handling quality specifications, actuation bandwidth constraints, stability, and closed-loop performance requirements in flight control design. The model-following problem is formulated using both direct state-space and linear, quadratic, optimization techniques. The results are then demonstrated using several examples involving a generic forward-swept-wing vehicle and a conventional flight vehicle with large parameter uncertainty in order to illustrate the trade-off in closed-loop performance and control law complexity.

  5. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  6. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  7. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  8. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  9. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  10. 49 CFR 192.473 - External corrosion control: Interference currents.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each...

  11. Pain control following inguinal herniorrhaphy: current perspectives

    PubMed Central

    Bjurstrom, Martin F; Nicol, Andrea L; Amid, Parviz K; Chen, David C

    2014-01-01

    Inguinal hernia repair is one of the most common surgeries performed worldwide. With the success of modern hernia repair techniques, recurrence rates have significantly declined, with a lower incidence than the development of chronic postherniorrhaphy inguinal pain (CPIP). The avoidance of CPIP is arguably the most important clinical outcome and has the greatest impact on patient satisfaction, health care utilization, societal cost, and quality of life. The etiology of CPIP is multifactorial, with overlapping neuropathic and nociceptive components contributing to this complex syndrome. Treatment is often challenging, and no definitive treatment algorithm exists. Multidisciplinary management of this complex problem improves outcomes, as treatment must be individualized. Current medical, pharmacologic, interventional, and surgical management strategies are reviewed. PMID:24920934

  12. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  13. Many tests of significance: new methods for controlling type I errors.

    PubMed

    Keselman, H J; Miller, Charles W; Holland, Burt

    2011-12-01

    There have been many discussions of how Type I errors should be controlled when many hypotheses are tested (e.g., all possible comparisons of means, correlations, proportions, the coefficients in hierarchical models, etc.). By and large, researchers have adopted familywise (FWER) control, though this practice certainly is not universal. Familywise control is intended to deal with the multiplicity issue of computing many tests of significance, yet such control is conservative--that is, less powerful--compared to per test/hypothesis control. The purpose of our article is to introduce the readership, particularly those readers familiar with issues related to controlling Type I errors when many tests of significance are computed, to newer methods that provide protection from the effects of multiple testing, yet are more powerful than familywise controlling methods. Specifically, we introduce a number of procedures that control the k-FWER. These methods--say, 2-FWER instead of 1-FWER (i.e., FWER)--are equivalent to specifying that the probability of 2 or more false rejections is controlled at .05, whereas FWER controls the probability of any (i.e., 1 or more) false rejections at .05. 2-FWER implicitly tolerates 1 false rejection and makes no explicit attempt to control the probability of its occurrence, unlike FWER, which tolerates no false rejections at all. More generally, k-FWER tolerates k - 1 false rejections, but controls the probability of k or more false rejections at α =.05. We demonstrate with two published data sets how more hypotheses can be rejected with k-FWER methods compared to FWER control.

  14. Deploying information technology and continuous control monitoring systems in hospitals to prevent medication errors.

    PubMed

    Escobar-Rodríguez, Tomás; Monge-Lozano, Pedro; Romero-Alonso, Ma Mercedes; Bolívar-Raya, Ma Antonia

    2012-01-01

    The serious repercussions of healthcare errors on patient safety have led hospitals to deploy information technology and continuous control monitoring systems to prevent them. Hospitals are moving away from traditional paper-based systems and focusing on designing new systems that prevent errors, using information technologies to catalyse the process re-engineering. This paper presents a case study that analyses the effect of computerised physician order entry and automated unit-based medication storage and distribution systems on the drug ordering and delivery process. It is concluded that information technology and continuous control monitoring systems have led to significant process re-engineering in the sequential stages of the drug ordering and delivery system. The new systems have also provided the opportunity to improve information available. This is an exploratory case study and the conclusions drawn from it offer possible routes for future research in this field.

  15. Using Fast-Steering Mirror Control to Reduce Instrument Pointing Errors Caused by Spacecraft Jitter

    NASA Technical Reports Server (NTRS)

    Antol, Jeffery; Holtz, Ted M.; Cuda, Vince; Johnson, Thomas A.

    1996-01-01

    The scope of this study was to investigate the benefit of using feedback control of a Fast Steering Mirror (FSM) to reduce instrument pointing errors. Initially, the study identified FSM control technologies and categorized them according to their use, range of applicability, and physical requirements. Candidate payloads were then evaluated according to their relevance in use of fast steering minor control technologies. This leads to the mission and instrument selection which served as the candidate mission for numerical modeling. A standard SmallSat was designed in order to accommodate the payload requirements (weight, size, power, etc.). This included sizing the SmallSat bus, sizing the solar array, choosing appropriate antennas, and identifying an attitude control system (ACS). A feedback control system for the FSM compensation was then designed, and the instrument pointing error and SmallSat jitter environment for open-loop and closed-loop FSM control were evaluated for typical SmallSat disturbances. The results were then compared to determine the effectiveness of the FSM feedback control system.

  16. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  17. Many Phenotypes Without Many False Discoveries: Error Controlling Strategies for Multitrait Association Studies

    PubMed Central

    Peterson, Christine B.; Bogomolov, Marina; Benjamini, Yoav

    2015-01-01

    ABSTRACT The genetic basis of multiple phenotypes such as gene expression, metabolite levels, or imaging features is often investigated by testing a large collection of hypotheses, probing the existence of association between each of the traits and hundreds of thousands of genotyped variants. Appropriate multiplicity adjustment is crucial to guarantee replicability of findings, and the false discovery rate (FDR) is frequently adopted as a measure of global error. In the interest of interpretability, results are often summarized so that reporting focuses on variants discovered to be associated to some phenotypes. We show that applying FDR‐controlling procedures on the entire collection of hypotheses fails to control the rate of false discovery of associated variants as well as the expected value of the average proportion of false discovery of phenotypes influenced by such variants. We propose a simple hierarchical testing procedure that allows control of both these error rates and provides a more reliable basis for the identification of variants with functional effects. We demonstrate the utility of this approach through simulation studies comparing various error rates and measures of power for genetic association studies of multiple traits. Finally, we apply the proposed method to identify genetic variants that impact flowering phenotypes in Arabidopsis thaliana, expanding the set of discoveries. PMID:26626037

  18. Apparatus for electrode current control in linear MHD generators

    DOEpatents

    Demirjian, Ara M.; Solbes, Albert

    1984-01-01

    Apparatus for controlling a plurality of opposing, electrode, direct-currents at pre-set locations across a channel that comprises a converter for converting each electrode current into first and second periodic control signals which are 180.degree. out of phase with respect to each other and which have equal magnitudes corresponding to the magnitude of the associated electrode current; and couplers for magnetically coupling individual ones of the first control signals and for magnetically coupling individual ones of the second signals such that the corresponding electrode currents are equalized or rendered proportional by balancing the same in the same or constant ratios in accordance with the locations of the electrode currents.

  19. First-principles-driven model-based current profile control for the DIII-D tokamak via LQI optimal control

    NASA Astrophysics Data System (ADS)

    Boyer, Mark D.; Barton, Justin; Schuster, Eugenio; Luce, Tim C.; Ferron, John R.; Walker, Michael L.; Humphreys, David A.; Penaflor, Ben G.; Johnson, Robert D.

    2013-10-01

    In tokamak fusion plasmas, control of the spatial distribution profile of the toroidal plasma current plays an important role in realizing certain advanced operating scenarios. These scenarios, characterized by improved confinement, magnetohydrodynamic stability, and a high fraction of non-inductively driven plasma current, could enable steady-state reactor operation with high fusion gain. Current profile control experiments at the DIII-D tokamak focus on using a combination of feedforward and feedback control to achieve a targeted current profile during the ramp-up and early flat-top phases of the shot and then to actively maintain this profile during the rest of the discharge. The dynamic evolution of the current profile is nonlinearly coupled with several plasma parameters, motivating the design of model-based control algorithms that can exploit knowledge of the system to achieve desired performance. In this work, we use a first-principles-driven, control-oriented model of the current profile evolution in low confinement mode (L-mode) discharges in DIII-D to design a feedback control law for regulating the profile around a desired trajectory. The model combines the magnetic diffusion equations with empirical correlations for the electron temperature, resistivity, and non-inductive current drive. To improve tracking performance of the system, a nonlinear input transformation is combined with a linear-quadratic-integral (LQI) optimal controller designed to minimize a weighted combination of the tracking error and controller effort. The resulting control law utilizes the total plasma current, total external heating power, and line averaged plasma density as actuators. A simulation study was used to test the controller's performance and ensure correct implementation in the DIII-D plasma control system prior to experimental testing. Experimental results are presented that show the first-principles-driven model-based control scheme's successful rejection of input

  20. Estimation of Aperture Errors with Direct Interferometer-Output Feedback for Spacecraft Formation Control

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Leitner, Jesse A.; Carpenter, Kenneth G.

    2004-01-01

    Long-baseline space interferometers involving formation flying of multiple spacecraft hold great promise as future space missions for high-resolution imagery. The major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to control these spacecraft and their optics payloads in the specified configuration accurately. In this paper, we describe our effort toward fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present an estimation procedure that effectively extracts relative x/y translational exit pupil aperture deviations from the raw interferometric image with small estimation errors.

  1. Improving transient performance of adaptive control architectures using frequency-limited system error dynamics

    NASA Astrophysics Data System (ADS)

    Yucelen, Tansel; De La Torre, Gerardo; Johnson, Eric N.

    2014-11-01

    Although adaptive control theory offers mathematical tools to achieve system performance without excessive reliance on dynamical system models, its applications to safety-critical systems can be limited due to poor transient performance and robustness. In this paper, we develop an adaptive control architecture to achieve stabilisation and command following of uncertain dynamical systems with improved transient performance. Our framework consists of a new reference system and an adaptive controller. The proposed reference system captures a desired closed-loop dynamical system behaviour modified by a mismatch term representing the high-frequency content between the uncertain dynamical system and this reference system, i.e., the system error. In particular, this mismatch term allows the frequency content of the system error dynamics to be limited, which is used to drive the adaptive controller. It is shown that this key feature of our framework yields fast adaptation without incurring high-frequency oscillations in the transient performance. We further show the effects of design parameters on the system performance, analyse closeness of the uncertain dynamical system to the unmodified (ideal) reference system, discuss robustness of the proposed approach with respect to time-varying uncertainties and disturbances, and make connections to gradient minimisation and classical control theory. A numerical example is provided to demonstrate the efficacy of the proposed architecture.

  2. How the credit assignment problems in motor control could be solved after the cerebellum predicts increases in error

    PubMed Central

    Verduzco-Flores, Sergio O.; O'Reilly, Randall C.

    2015-01-01

    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error and distal learning problems. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations. PMID:25852535

  3. Zero-error tracking control of uncertain nonlinear systems in the presence of actuator hysteresis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengqiang; Shen, Hao; Li, Ze; Zhang, Shuzhen

    2015-11-01

    In this paper, the problem of adaptive tracking control is addressed for a class of nonlinear systems with unknown constant parameters and unknown actuator nonlinearity. The actuator nonlinearity is modelled as the backlash-like hysteresis, which is described by a differential model. The prior knowledge on the control gain sign is not required, and only the assumption on the reference signal is made. By combining the adaptive backstepping technique with the Nussbaum gain approach, an adaptive compensation controller design approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop system are bounded, and the tracking error can converge to zero asymptotically despite the presence of the actuator hysteresis. Two simulation examples are included to illustrate the effectiveness of the proposed approach.

  4. Three-dimensional shape optical measurement using constant gap control and error compensation

    SciTech Connect

    Park, Kyihwan; Kim, Sangyoo; Choi, Kyosoon

    2008-03-15

    The optical laser displacement sensor is widely used for noncontact measurement of the three-dimensional (3D) shape profile of the object surface. When the surface of an object has a slope variation, the sensor gain is proportionally varied according to that of the object surface. In order to solve the sensor gain variation problem, the constant gap control method is applied to adjust the gap to the nominal distance. Control error compensation is also proposed to cope with the situation even when the gap is not perfectly controlled to the nominal distance using an additional sensor attached to the actuator. 3D shape measurement applying the proposed constant gap control method shows better performances rather than the constant sensor height method.

  5. Explosive magnetic source of current with controllable output voltage

    NASA Astrophysics Data System (ADS)

    Dudai, P. V.; Zimenkov, A. A.; Ivanov, V. A.; Ivanov, E. I.; Karpov, G. V.; Polyushko, S. M.; Skobelev, A. N.; Fevralev, A. Yu.

    2015-01-01

    The paper describes a small-size explosive current source with controllable output voltage shaping a megaampere current pulse. This energy source comprises a helical explosive magnetic generator and an explosive sectionalized current opening switch and is designed to power gas-discharge chambers of the plasma focus type. Control of the output voltage of the pulsed current source is performed in such a manner that in each of the series-connected sections of the explosive current opening switch, voltage is generated with a given time shift relative to the neighboring section.

  6. Fuzzy Current-Mode Control and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2000-01-01

    In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.

  7. An Adaptive Method of Lines with Error Control for Parabolic Equations of the Reaction-Diffusion Type.

    DTIC Science & Technology

    1984-06-01

    space discretization error . 1. I 3 1. INTRODUCTION Reaction- diffusion processes occur in many branches of biology and physical chemistry. Examples...to model reaction- diffusion phenomena. The primary goal of this adaptive method is to keep a particular norm of the space discretization error less...AD-A142 253 AN ADAPTIVE MET6 OFD LNES WITH ERROR CONTROL FOR 1 INST FOR PHYSICAL SCIENCE AND TECH. I BABUSKAAAO C7 EA OH S UMR AN UNVC EEP R

  8. Quality controls in integrative approaches to detect errors and inconsistencies in biological databases.

    PubMed

    Ghisalberti, Giorgio; Masseroli, Marco; Tettamanti, Luca

    2010-03-25

    Numerous biomolecular data are available, but they are scattered in many databases and only some of them are curated by experts. Most available data are computationally derived and include errors and inconsistencies. Effective use of available data in order to derive new knowledge hence requires data integration and quality improvement. Many approaches for data integration have been proposed. Data warehousing seams to be the most adequate when comprehensive analysis of integrated data is required. This makes it the most suitable also to implement comprehensive quality controls on integrated data. We previously developed GFINDer (http://www.bioinformatics.polimi.it/GFINDer/), a web system that supports scientists in effectively using available information. It allows comprehensive statistical analysis and mining of functional and phenotypic annotations of gene lists, such as those identified by high-throughput biomolecular experiments. GFINDer backend is composed of a multi-organism genomic and proteomic data warehouse (GPDW). Within the GPDW, several controlled terminologies and ontologies, which describe gene and gene product related biomolecular processes, functions and phenotypes, are imported and integrated, together with their associations with genes and proteins of several organisms. In order to ease maintaining updated the GPDW and to ensure the best possible quality of data integrated in subsequent updating of the data warehouse, we developed several automatic procedures. Within them, we implemented numerous data quality control techniques to test the integrated data for a variety of possible errors and inconsistencies. Among other features, the implemented controls check data structure and completeness, ontological data consistency, ID format and evolution, unexpected data quantification values, and consistency of data from single and multiple sources. We use the implemented controls to analyze the quality of data available from several different biological

  9. Cognitive control adjustments in healthy older and younger adults: Conflict adaptation, the error-related negativity (ERN), and evidence of generalized decline with age.

    PubMed

    Larson, Michael J; Clayson, Peter E; Keith, Cierra M; Hunt, Isaac J; Hedges, Dawson W; Nielsen, Brent L; Call, Vaughn R A

    2016-03-01

    Older adults display alterations in neural reflections of conflict-related processing. We examined response times (RTs), error rates, and event-related potential (ERP; N2 and P3 components) indices of conflict adaptation (i.e., congruency sequence effects) a cognitive control process wherein previous-trial congruency influences current-trial performance, along with post-error slowing, correct-related negativity (CRN), error-related negativity (ERN) and error positivity (Pe) amplitudes in 65 healthy older adults and 94 healthy younger adults. Older adults showed generalized slowing, had decreased post-error slowing, and committed more errors than younger adults. Both older and younger adults showed conflict adaptation effects; magnitude of conflict adaptation did not differ by age. N2 amplitudes were similar between groups; younger, but not older, adults showed conflict adaptation effects for P3 component amplitudes. CRN and Pe, but not ERN, amplitudes differed between groups. Data support generalized declines in cognitive control processes in older adults without specific deficits in conflict adaptation.

  10. Detecting errors and anomalies in computerized materials control and accountability databases

    SciTech Connect

    Whiteson, R.; Hench, K.; Yarbro, T.; Baumgart, C.

    1998-12-31

    The Automated MC and A Database Assessment project is aimed at improving anomaly and error detection in materials control and accountability (MC and A) databases and increasing confidence in the data that they contain. Anomalous data resulting in poor categorization of nuclear material inventories greatly reduces the value of the database information to users. Therefore it is essential that MC and A data be assessed periodically for anomalies or errors. Anomaly detection can identify errors in databases and thus provide assurance of the integrity of data. An expert system has been developed at Los Alamos National Laboratory that examines these large databases for anomalous or erroneous data. For several years, MC and A subject matter experts at Los Alamos have been using this automated system to examine the large amounts of accountability data that the Los Alamos Plutonium Facility generates. These data are collected and managed by the Material Accountability and Safeguards System, a near-real-time computerized nuclear material accountability and safeguards system. This year they have expanded the user base, customizing the anomaly detector for the varying requirements of different groups of users. This paper describes the progress in customizing the expert systems to the needs of the users of the data and reports on their results.

  11. Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions.

    PubMed

    Neta, Maital; Schlaggar, Bradley L; Petersen, Steven E

    2014-10-01

    The dorsal anterior cingulate (dACC), along with the closely affiliated anterior insula/frontal operculum, have been demonstrated to show three types of task control signals across a wide variety of tasks. One of these signals, a transient signal that is thought to represent performance feedback, shows greater activity to error than correct trials. Other work has found similar effects for uncertainty/ambiguity or conflict, though some argue that dACC activity is, instead, modulated primarily by other processes more reflected in reaction time. Here, we demonstrate that, rather than a single explanation, multiple information processing operations are crucial to characterizing the function of these brain regions, by comparing operations within a single paradigm. Participants performed two tasks in an fMRI experimental session: (1) deciding whether or not visually presented word pairs rhyme, and (2) rating auditorily presented single words as abstract or concrete. A pilot was used to identify ambiguous stimuli for both tasks (e.g., word pair: BASS/GRACE; single word: CHANGE). We found greater cingulo-opercular activity for errors and ambiguous trials than clear/correct trials, with a robust effect of reaction time. The effects of error and ambiguity remained when reaction time was regressed out, although the differences decreased. Further stepwise regression of response consensus (agreement across participants for each stimulus; a proxy for ambiguity) decreased differences between ambiguous and clear trials, but left error-related differences almost completely intact. These observations suggest that trial-wise responses in cingulo-opercular regions monitor multiple performance indices, including accuracy, ambiguity, and reaction time.

  12. SEPARABLE RESPONSES TO ERROR, AMBIGUITY, AND REACTION TIME IN CINGULO-OPERCULAR TASK CONTROL REGIONS

    PubMed Central

    Neta, Maital; Schlaggar, Bradley L.; Petersen, Steven E.

    2014-01-01

    The dorsal anterior cingulate (dACC), along with the closely affiliated anterior insula/frontal operculum have been demonstrated to show three types of task control signals across a wide variety of tasks. One of these signals, a transient signal that is thought to represent performance feedback, shows greater activity to error than correct trials. Other work has found similar effects for uncertainty/ambiguity or conflict, though some argue that dACC activity is, instead, modulated primarily by other processes more reflected in reaction time. Here, we demonstrate that, rather than a single explanation, multiple information processing operations are crucial to characterizing the function of these brain regions, by comparing operations within a single paradigm. Participants performed two tasks in an fMRI experimental session: (1) deciding whether or not visually presented word pairs rhyme, and (2) rating auditorily presented single words as abstract or concrete. A pilot was used to identify ambiguous stimuli for both tasks (e.g., word pair: BASS/GRACE; single word: CHANGE). We found greater cingulo-opercular activity for errors and ambiguous trials than clear/correct trials, with a robust effect of reaction time. The effects of error and ambiguity remained when reaction time was regressed out, although the differences decreased. Further stepwise regression of response consensus (agreement across participants for each stimulus; a proxy for ambiguity) decreased differences between ambiguous and clear trials, but left error-related differences almost completely intact. These observations suggest that trial-wise responses in cinguloopercular regions monitor multiple performance indices, including accuracy, ambiguity, and reaction time. PMID:24887509

  13. Adaptive control of nonlinear system using online error minimum neural networks.

    PubMed

    Jia, Chao; Li, Xiaoli; Wang, Kang; Ding, Dawei

    2016-11-01

    In this paper, a new learning algorithm named OEM-ELM (Online Error Minimized-ELM) is proposed based on ELM (Extreme Learning Machine) neural network algorithm and the spreading of its main structure. The core idea of this OEM-ELM algorithm is: online learning, evaluation of network performance, and increasing of the number of hidden nodes. It combines the advantages of OS-ELM and EM-ELM, which can improve the capability of identification and avoid the redundancy of networks. The adaptive control based on the proposed algorithm OEM-ELM is set up which has stronger adaptive capability to the change of environment. The adaptive control of chemical process Continuous Stirred Tank Reactor (CSTR) is also given for application. The simulation results show that the proposed algorithm with respect to the traditional ELM algorithm can avoid network redundancy and improve the control performance greatly.

  14. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    SciTech Connect

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  15. Control of rolled edge based on the discrete local error figuring technique

    NASA Astrophysics Data System (ADS)

    Du, Hang; Li, Shengyi; Song, Ci

    2016-10-01

    Computer Controlled Optical Surfacing (CCOS) is an important technology for manufacturing optical aspheric mirrors. Edge effect of small tool manufacturing restricts the machining precision and efficiency of CCOS technology. Edge effect is mainly caused by the polish tool cannot move to the very edge of workpiece and the change of pressure distribution when the tool move to the edge of workpiece. This article corrects the rolled edge effect of CCOS by different dimensions of polishing tool combination process and incorporated with the locality residual error trace contour path planning. Provide feasibility for the rolled edge by different dimensions of polishing tool combination process.

  16. Impact of random and systematic recall errors and selection bias in case--control studies on mobile phone use and brain tumors in adolescents (CEFALO study).

    PubMed

    Aydin, Denis; Feychting, Maria; Schüz, Joachim; Andersen, Tina Veje; Poulsen, Aslak Harbo; Prochazka, Michaela; Klaeboe, Lars; Kuehni, Claudia E; Tynes, Tore; Röösli, Martin

    2011-07-01

    Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.

  17. Comparing tumor rates in current and historical control groups in rodent cancer bioassays.

    PubMed

    Dinse, Gregg E; Peddada, Shyamal D

    2011-02-01

    When evaluating carcinogenicity, tumor rates from the current study are informally assessed within the context of relevant historical control tumor rates. Current rates outside the range of historical rates raise concerns. We propose a statistical procedure that formally compares tumor rates in current and historical control groups. We use a normal approximation for the null distribution of the proposed test when there are at least 5 historical control groups and the average tumor rate is above 0.5%; otherwise, we apply standard bootstrap techniques. For comparison purposes, we show that formally basing decisions on the range of historical control rates would yield unusually high false positive rates. That is, a range-based decision rule would not maintain the nominal 5% significance level and could produce Type I error rates as high as 67%. In other cases, the power could go to zero. The proposed test, however, controls Type I errors while adjusting for survival and extra variability among the historical studies. We illustrate the methods with data from a study of benzophenone. Compared to a range-based decision rule, the proposed test has several important advantages, including operating at the specified level and being applicable with as few as one historical study.

  18. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  19. The definition of the railway position control error in the plane and profile using the optical-electronic system

    NASA Astrophysics Data System (ADS)

    Nikulin, Anton V.; Timofeev, Alexandr N.; Nekrylov, Ivan S.

    2015-05-01

    Continuous development of high-speed railway traffic in the world toughens requirements, including to the accuracy of installation and control of provision of a railway track. For the current technologies of service of a railway track using its absolute coordinates the perspective decision is creation along railway lines of a special fiducial network. In this case by means of optical-electronic systems, concerning reference points, obtaining the objective information on actual position of a railway track in a longitudinal cross-section and the plan with a margin error which isn't exceeding 1,5 mm in rather severe conditions of continuous operation of traveling machines at speeds up to 10 km/h is possible.

  20. A method on error analysis for large-aperture optical telescope control system

    NASA Astrophysics Data System (ADS)

    Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei

    2016-10-01

    For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error

  1. Universal control and error correction in multi-qubit spin registers in diamond.

    PubMed

    Taminiau, T H; Cramer, J; van der Sar, T; Dobrovitski, V V; Hanson, R

    2014-03-01

    Quantum registers of nuclear spins coupled to electron spins of individual solid-state defects are a promising platform for quantum information processing. Pioneering experiments selected defects with favourably located nuclear spins with particularly strong hyperfine couplings. To progress towards large-scale applications, larger and deterministically available nuclear registers are highly desirable. Here, we realize universal control over multi-qubit spin registers by harnessing abundant weakly coupled nuclear spins. We use the electron spin of a nitrogen-vacancy centre in diamond to selectively initialize, control and read out carbon-13 spins in the surrounding spin bath and construct high-fidelity single- and two-qubit gates. We exploit these new capabilities to implement a three-qubit quantum-error-correction protocol and demonstrate the robustness of the encoded state against applied errors. These results transform weakly coupled nuclear spins from a source of decoherence into a reliable resource, paving the way towards extended quantum networks and surface-code quantum computing based on multi-qubit nodes.

  2. Path-tracking control of underactuated ships under tracking error constraints

    NASA Astrophysics Data System (ADS)

    Do, Khac Duc

    2015-12-01

    This paper presents a constructive design of new controllers that force underactuated ships under constant or slow time-varying sea loads to asymptotically track a parameterized reference path, that guarantees the distance from the ship to the reference path always be within a specified value. The control design is based on a global exponential disturbance observer, a transformation of the ship dynamics to an almost spherical form, an interpretation of the tracking errors in an earth-fixed frame, an introduction of dynamic variables to compensate for relaxation of the reference path generation, p-times differentiable step functions, and backstepping and Lyapunov's direct methods. The effectiveness of the proposed results is illustrated through simulations.

  3. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.

  4. Current Trends in Vector Control: Adapting to Selective Pressure

    DTIC Science & Technology

    2008-11-16

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023975 TITLE: Current Trends in Vector Control: Adapting to Selective...ADP023967 thru ADP023976 UNCLASSIFIED Current Trends in Vector Control: Adapting to Selective Pressure Kendra Lawrence MAJ, Medical Service Corps...of Research, is to mitigate the products to the forefront that may fulfill risk posed by arthropods to DoD mission needs. The Department of personnel

  5. Detection and reconstruction of error control codes for engineered and biological regulatory systems.

    SciTech Connect

    May, Elebeoba Eni; Rintoul, Mark Daniel; Johnston, Anna Marie; Pryor, Richard J.; Hart, William Eugene; Watson, Jean-Paul

    2003-10-01

    determining similar parameters for a received, noisy, error-control encoded data set. In addition to these goals, we initiated exploration of algorithmic approaches to determine if a data set could be approximated with an error-control code and performed initial investigations into optimization based methodologies for extracting the encoding algorithm given the coding rate of an encoded noise-free and noisy data stream.

  6. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13-17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD.

  7. Improving Interference Control in ADHD Patients with Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Breitling, Carolin; Zaehle, Tino; Dannhauer, Moritz; Bonath, Björn; Tegelbeckers, Jana; Flechtner, Hans-Henning; Krauel, Kerstin

    2016-01-01

    The use of transcranial direct current stimulation (tDCS) in patients with attention deficit hyperactivity disorder (ADHD) has been suggested as a promising alternative to psychopharmacological treatment approaches due to its local and network effects on brain activation. In the current study, we investigated the impact of tDCS over the right inferior frontal gyrus (rIFG) on interference control in 21 male adolescents with ADHD and 21 age matched healthy controls aged 13–17 years, who underwent three separate sessions of tDCS (anodal, cathodal, and sham) while completing a Flanker task. Even though anodal stimulation appeared to diminish commission errors in the ADHD group, the overall analysis revealed no significant effect of tDCS. Since participants showed a considerable learning effect from the first to the second session, performance in the first session was separately analyzed. ADHD patients receiving sham stimulation in the first session showed impaired interference control compared to healthy control participants whereas ADHD patients who were exposed to anodal stimulation, showed comparable performance levels (commission errors, reaction time variability) to the control group. These results suggest that anodal tDCS of the right inferior frontal gyrus could improve interference control in patients with ADHD. PMID:27147964

  8. In Your Face: Risk of Punishment Enhances Cognitive Control and Error-Related Activity in the Corrugator Supercilii Muscle.

    PubMed

    Lindström, Björn R; Mattsson-Mårn, Isak Berglund; Golkar, Armita; Olsson, Andreas

    2013-01-01

    Cognitive control is needed when mistakes have consequences, especially when such consequences are potentially harmful. However, little is known about how the aversive consequences of deficient control affect behavior. To address this issue, participants performed a two-choice response time task where error commissions were expected to be punished by electric shocks during certain blocks. By manipulating (1) the perceived punishment risk (no, low, high) associated with error commissions, and (2) response conflict (low, high), we showed that motivation to avoid punishment enhanced performance during high response conflict. As a novel index of the processes enabling successful cognitive control under threat, we explored electromyographic activity in the corrugator supercilii (cEMG) muscle of the upper face. The corrugator supercilii is partially controlled by the anterior midcingulate cortex (aMCC) which is sensitive to negative affect, pain and cognitive control. As hypothesized, the cEMG exhibited several key similarities with the core temporal and functional characteristics of the Error-Related Negativity (ERN) ERP component, the hallmark index of cognitive control elicited by performance errors, and which has been linked to the aMCC. The cEMG was amplified within 100 ms of error commissions (the same time-window as the ERN), particularly during the high punishment risk condition where errors would be most aversive. Furthermore, similar to the ERN, the magnitude of error cEMG predicted post-error response time slowing. Our results suggest that cEMG activity can serve as an index of avoidance motivated control, which is instrumental to adaptive cognitive control when consequences are potentially harmful.

  9. Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor.

    PubMed

    Moussa, Osama; Baugh, Jonathan; Ryan, Colm A; Laflamme, Raymond

    2011-10-14

    We report the implementation of a 3-qubit quantum error-correction code on a quantum information processor realized by the magnetic resonance of carbon nuclei in a single crystal of malonic acid. The code corrects for phase errors induced on the qubits due to imperfect decoupling of the magnetic environment represented by nearby spins, as well as unwanted evolution under the internal Hamiltonian. We also experimentally demonstrate sufficiently high-fidelity control to implement two rounds of quantum error correction. This is a demonstration of state-of-the-art control in solid state nuclear magnetic resonance, a leading test bed for the implementation of quantum algorithms.

  10. Bio-inspired adaptive feedback error learning architecture for motor control.

    PubMed

    Tolu, Silvia; Vanegas, Mauricio; Luque, Niceto R; Garrido, Jesús A; Ros, Eduardo

    2012-10-01

    This study proposes an adaptive control architecture based on an accurate regression method called Locally Weighted Projection Regression (LWPR) and on a bio-inspired module, such as a cerebellar-like engine. This hybrid architecture takes full advantage of the machine learning module (LWPR kernel) to abstract an optimized representation of the sensorimotor space while the cerebellar component integrates this to generate corrective terms in the framework of a control task. Furthermore, we illustrate how the use of a simple adaptive error feedback term allows to use the proposed architecture even in the absence of an accurate analytic reference model. The presented approach achieves an accurate control with low gain corrective terms (for compliant control schemes). We evaluate the contribution of the different components of the proposed scheme comparing the obtained performance with alternative approaches. Then, we show that the presented architecture can be used for accurate manipulation of different objects when their physical properties are not directly known by the controller. We evaluate how the scheme scales for simulated plants of high Degrees of Freedom (7-DOFs).

  11. The flexible grinding technology based on the electric current control

    NASA Astrophysics Data System (ADS)

    Peng, Liwen; Yao, Bin; Li, Fei; Wang, Xiao; Yao, Boshi

    2012-01-01

    A flexible grinding technology based on the electric current control is presented to resolve the problem of low rigidity of PCB during grinding, the thickness of which varies from 0.1mm up to 3.5 mm. The comparative results between the real-time current and the setting current in the process of grinding control the frequency and the number of servo pulse, and then the servo motor adjusts the grinding depth of brushing roller at several different rotational speeds, namely, realizing the constant grinding force during grinding. The results show that the PCB can be grinded efficiently and accurately by means of the flexible grinding technology based on the electric current control.

  12. Controlling ultrafast currents by the nonlinear photogalvanic effect

    NASA Astrophysics Data System (ADS)

    Wachter, Georg; Sato, Shunsuke A.; Floss, Isabella; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-12-01

    We investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femtosecond optical laser pulses. Ab initio simulations based on time-dependent density functional theory predict ultrafast direct currents that can be viewed as a nonlinear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity of about {I}{{c}}˜ 3× {10}13 W cm-2. We trace this switching to the transition from nonlinear polarisation currents to the tunnelling excitation regime. The latter is found to be sensitive to the relative orientation between laser polarisation and chemical bonds. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. While two temporally separated laser pulses lead to currents along one direction their temporal overlap can reverse the current. We find the ultrafast current control by the nonlinear photogalvanic effect to be remarkably robust and insensitive to the laser-pulse shape and the carrier-envelope phase.

  13. Error-prone translesion replication of damaged DNA suppresses skin carcinogenesis by controlling inflammatory hyperplasia

    PubMed Central

    Tsaalbi-Shtylik, Anastasia; Verspuy, Johan W. A.; Jansen, Jacob G.; Rebel, Heggert; Carlée, Leone M.; van der Valk, Martin A.; Jonkers, Jos; de Gruijl, Frank R.; de Wind, Niels

    2009-01-01

    The induction of skin cancer involves both mutagenic and proliferative responses of the epidermis to ultraviolet (UV) light. It is believed that tumor initiation requires the mutagenic replication of damaged DNA by translesion synthesis (TLS) pathways. The mechanistic basis for the induction of proliferation, providing tumor promotion, is poorly understood. Here, we have investigated the role of TLS in the initiation and promotion of skin carcinogenesis, using a sensitive nucleotide excision repair-deficient mouse model that carries a hypomorphic allele of the error-prone TLS gene Rev1. Despite a defect in UV-induced mutagenesis, skin carcinogenesis was accelerated in these mice. This paradoxical phenotype was caused by the induction of inflammatory hyperplasia of the mutant skin that provides strong tumor promotion. The induction of hyperplasia was associated with mild and transient replicational stress of the UV-damaged genome, triggering DNA damage signaling and senescence. The concomitant expression of Interleukin-6 (IL-6) is in agreement with an executive role for IL-6 and possibly other cytokines in the autocrine induction of senescence and the paracrine induction of inflammatory hyperplasia. In conclusion, error-prone TLS suppresses tumor-promoting activities of UV light, thereby controlling skin carcinogenesis. PMID:20007784

  14. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  15. The impact of a brief mindfulness meditation intervention on cognitive control and error-related performance monitoring.

    PubMed

    Larson, Michael J; Steffen, Patrick R; Primosch, Mark

    2013-01-01

    Meditation is associated with positive health behaviors and improved cognitive control. One mechanism for the relationship between meditation and cognitive control is changes in activity of the anterior cingulate cortex-mediated neural pathways. The error-related negativity (ERN) and error positivity (Pe) components of the scalp-recorded event-related potential (ERP) represent cingulate-mediated functions of performance monitoring that may be modulated by mindfulness meditation. We utilized a flanker task, an experimental design, and a brief mindfulness intervention in a sample of 55 healthy non-meditators (n = 28 randomly assigned to the mindfulness group and n = 27 randomly assigned to the control group) to examine autonomic nervous system functions as measured by blood pressure and indices of cognitive control as measured by response times, error rates, post-error slowing, and the ERN and Pe components of the ERP. Systolic blood pressure significantly differentiated groups following the mindfulness intervention and following the flanker task. There were non-significant differences between the mindfulness and control groups for response times, post-error slowing, and error rates on the flanker task. Amplitude and latency of the ERN did not differ between groups; however, amplitude of the Pe was significantly smaller in individuals in the mindfulness group than in the control group. Findings suggest that a brief mindfulness intervention is associated with reduced autonomic arousal and decreased amplitude of the Pe, an ERP associated with error awareness, attention, and motivational salience, but does not alter amplitude of the ERN or behavioral performance. Implications for brief mindfulness interventions and state vs. trait affect theories of the ERN are discussed. Future research examining graded levels of mindfulness and tracking error awareness will clarify relationship between mindfulness and performance monitoring.

  16. Online machining error estimation method of numerical control gear grinding machine tool based on data analysis of internal sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Zhang, Chi; Yang, Guilin; Chen, Chinyin

    2016-12-01

    This paper presents an online estimation method of cutting error by analyzing of internal sensor readings. The internal sensors of numerical control (NC) machine tool are selected to avoid installation problem. The estimation mathematic model of cutting error was proposed to compute the relative position of cutting point and tool center point (TCP) from internal sensor readings based on cutting theory of gear. In order to verify the effectiveness of the proposed model, it was simulated and experimented in gear generating grinding process. The cutting error of gear was estimated and the factors which induce cutting error were analyzed. The simulation and experiments verify that the proposed approach is an efficient way to estimate the cutting error of work-piece during machining process.

  17. Method to control depth error when ablating human dentin with numerically controlled picosecond laser: a preliminary study.

    PubMed

    Sun, Yuchun; Yuan, Fusong; Lv, Peijun; Wang, Dangxiao; Wang, Lei; Wang, Yong

    2015-07-01

    A three-axis numerically controlled picosecond laser was used to ablate dentin to investigate the quantitative relationships among the number of additive pulse layers in two-dimensional scans starting from the focal plane, step size along the normal of the focal plane (focal plane normal), and ablation depth error. A method to control the ablation depth error, suitable to control stepping along the focal plane normal, was preliminarily established. Twenty-four freshly removed mandibular first molars were cut transversely along the long axis of the crown and prepared as 48 tooth sample slices with approximately flat surfaces. Forty-two slices were used in the first section. The picosecond laser was 1,064 nm in wavelength, 3 W in power, and 10 kHz in repetition frequency. For a varying number (n = 5-70) of focal plane additive pulse layers (14 groups, three repetitions each), two-dimensional scanning and ablation were performed on the dentin regions of the tooth sample slices, which were fixed on the focal plane. The ablation depth, d, was measured, and the quantitative function between n and d was established. Six slices were used in the second section. The function was used to calculate and set the timing of stepwise increments, and the single-step size along the focal plane normal was d micrometer after ablation of n layers (n = 5-50; 10 groups, six repetitions each). Each sample underwent three-dimensional scanning and ablation to produce 2 × 2-mm square cavities. The difference, e, between the measured cavity depth and theoretical value was calculated, along with the difference, e 1, between the measured average ablation depth of a single-step along the focal plane normal and theoretical value. Values of n and d corresponding to the minimum values of e and e 1, respectively, were obtained. In two-dimensional ablation, d was largest (720.61 μm) when n = 65 and smallest when n = 5 (45.00 μm). Linear regression yielded the quantitative

  18. Design implementation and control of MRAS error dynamics. [Model-Reference Adaptive System

    NASA Technical Reports Server (NTRS)

    Colburn, B. K.; Boland, J. S., III

    1974-01-01

    Use is made of linearized error characteristic equation for model-reference adaptive systems to determine a parameter adjustment rule for obtaining time-invariant error dynamics. Theoretical justification of error stability is given and an illustrative example included to demonstrate the utility of the proposed technique.

  19. Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors

    NASA Technical Reports Server (NTRS)

    Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats

    2012-01-01

    Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.

  20. Analysis of Solar Two Heliostat Tracking Error Sources

    SciTech Connect

    Jones, S.A.; Stone, K.W.

    1999-01-28

    This paper explores the geometrical errors that reduce heliostat tracking accuracy at Solar Two. The basic heliostat control architecture is described. Then, the three dominant error sources are described and their effect on heliostat tracking is visually illustrated. The strategy currently used to minimize, but not truly correct, these error sources is also shown. Finally, a novel approach to minimizing error is presented.

  1. On ion cyclotron current drive for sawtooth control

    NASA Astrophysics Data System (ADS)

    Eriksson, L.-G.; Johnson, T.; Mayoral, M.-L.; Coda, S.; Sauter, O.; Buttery, R. J.; McDonald, D.; Hellsten, T.; Mantsinen, M. J.; Mueck, A.; Noterdaeme, J.-M.; Santala, M.; Westerhof, E.; de Vries, P.; contributors, JET-EFDA

    2006-10-01

    Experiments using ion cyclotron current drive (ICCD) to control sawteeth are presented. In particular, discharges demonstrating shortening of fast ion induced long sawteeth reported in (Eriksson et al 2004 Phys. Rev. Lett. 92 235004) by ICCD have been analysed in detail. Numerical simulations of the ICCD driven currents are shown to be consistent with the experimental observations. They support the hypothesis that an increase in the magnetic shear, due to the driven current, at the surface where the safety factor is unity was the critical factor for the shortening of the sawteeth. In view of the potential utility of ICCD, the mechanisms for the current drive have been further investigated experimentally. This includes the influence of the averaged energy of the resonating ions carrying the current and the spectrum of the launched waves. The results of these experiments are discussed in the light of theoretical considerations.

  2. Switchable spin-current source controlled by magnetic domain walls.

    PubMed

    Savero Torres, W; Laczkowski, P; Nguyen, V D; Rojas Sanchez, J C; Vila, L; Marty, A; Jamet, M; Attané, J P

    2014-07-09

    Using nonlocal spin injection, spin-orbit coupling, or spincaloritronic effects, the manipulation of pure spin currents in nanostructures underlies the development of new spintronic devices. Here, we demonstrate the possibility to create switchable pure spin current sources, controlled by magnetic domain walls. When the domain wall is located at a given point of the magnetic circuit, a pure spin current is injected into a nonmagnetic wire. Using the reciprocal measurement configuration, we demonstrate that the proposed device can also be used as a pure spin current detector. Thanks to its simple geometry, this device can be easily implemented in spintronics applications; in particular, a single current source can be used both to induce the domain wall motion and to generate the spin signal.

  3. Research on controlling middle spatial frequency error of high gradient precise aspheric by pitch tool

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Hou, Xi; Wan, Yongjian; Shi, Chunyan; Zhong, Xianyun

    2016-09-01

    Extreme optical fabrication projects known as EUV and X-ray optic systems, which are representative of today's advanced optical manufacturing technology level, have special requirements for the optical surface quality. In synchroton radiation (SR) beamlines, mirrors of high shape accuracy is always used in grazing incidence. In nanolithograph systems, middle spatial frequency errors always lead to small-angle scattering or flare that reduces the contrast of the image. The slope error is defined for a given horizontal length, the increase or decrease in form error at the end point relative to the starting point is measured. The quality of reflective optical elements can be described by their deviation from ideal shape at different spatial frequencies. Usually one distinguishes between the figure error, the low spatial error part ranging from aperture length to 1mm frequencies, and the mid-high spatial error part from 1mm to 1 μm and from1 μm to some 10 nm spatial frequencies, respectively. Firstly, this paper will disscuss the relationship between slope error and middle spatial frequency error, which both describe the optical surface error along with the form profile. Then, experimental researches will be conducted on a high gradient precise aspheric with pitch tool, which aim to restraining the middle spatial frequency error.

  4. Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures

    NASA Technical Reports Server (NTRS)

    Hamer, H. A.; Johnson, K. G.

    1986-01-01

    An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors.

  5. A Sensorless Predictive Current Controlled Boost Converter by Using an EKF with Load Variation Effect Elimination Function

    PubMed Central

    Tong, Qiaoling; Chen, Chen; Zhang, Qiao; Zou, Xuecheng

    2015-01-01

    To realize accurate current control for a boost converter, a precise measurement of the inductor current is required to achieve high resolution current regulating. Current sensors are widely used to measure the inductor current. However, the current sensors and their processing circuits significantly contribute extra hardware cost, delay and noise to the system. They can also harm the system reliability. Therefore, current sensorless control techniques can bring cost effective and reliable solutions for various boost converter applications. According to the derived accurate model, which contains a number of parasitics, the boost converter is a nonlinear system. An Extended Kalman Filter (EKF) is proposed for inductor current estimation and output voltage filtering. With this approach, the system can have the same advantages as sensored current control mode. To implement EKF, the load value is necessary. However, the load may vary from time to time. This can lead to errors of current estimation and filtered output voltage. To solve this issue, a load variation elimination effect elimination (LVEE) module is added. In addition, a predictive average current controller is used to regulate the current. Compared with conventional voltage controlled system, the transient response is greatly improved since it only takes two switching cycles for the current to reach its reference. Finally, experimental results are presented to verify the stable operation and output tracking capability for large-signal transients of the proposed algorithm. PMID:25928061

  6. Improving Area Control Error Diversity Interchange (ADI) Program by Incorporating Congestion Constraints

    SciTech Connect

    Zhou, Ning; Etingov, Pavel V.; Makarov, Yuri V.; Guttromson, Ross T.; McManus, Bart

    2010-04-30

    The area control error (ACE) determines how much a balancing authority (BA) needs to move its regulating units to meet mandatory control performance standard requirements. Regulation is an expensive resource that could cost several hundred million dollars a year for a BA. The amount of regulation needed in a system is increasing with more intermittent generation resources added to the system. The ACE diversity interchange (ADI) program provides a tool for reducing the regulation requirement by combining ACEs from several participating BAs followed by sharing the total ACE among all participating balancing areas. The effect is achieved as a result of the low statistical correlation between the original ACEs of participating BAs. A rule-based ADI approach has already been put into practice in the US Western Interconnection. The degree of actual ACE sharing is artificially limited because of the unknown redistribution of power flows and possible system congestion (these factors are not monitored in the existing ADI). This paper proposes a two-step linear programming (LP) ADI approach that incorporates congestion constraints. In the first step of the proposed LP ADI, the line transmission limits are enforced by setting up corresponding constraints. In the second step, the business fairness is pursued. Simulation is performed to compare the properties of the proposed LP ADI and the existing rule-based ADI. Favorable features, such as avoiding line limit violations and increasing the degree of possible ACE sharing, are observed for the proposed LP ADI.

  7. Application of parameter estimation to aircraft stability and control: The output-error approach

    NASA Technical Reports Server (NTRS)

    Maine, Richard E.; Iliff, Kenneth W.

    1986-01-01

    The practical application of parameter estimation methodology to the problem of estimating aircraft stability and control derivatives from flight test data is examined. The primary purpose of the document is to present a comprehensive and unified picture of the entire parameter estimation process and its integration into a flight test program. The document concentrates on the output-error method to provide a focus for detailed examination and to allow us to give specific examples of situations that have arisen. The document first derives the aircraft equations of motion in a form suitable for application to estimation of stability and control derivatives. It then discusses the issues that arise in adapting the equations to the limitations of analysis programs, using a specific program for an example. The roles and issues relating to mass distribution data, preflight predictions, maneuver design, flight scheduling, instrumentation sensors, data acquisition systems, and data processing are then addressed. Finally, the document discusses evaluation and the use of the analysis results.

  8. Control of bootstrap current in the pedestal region of tokamaks

    SciTech Connect

    Shaing, K. C.; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  9. 13. VIEW OF CONTROL CONSOLE CURRENTLY USED ON OCCASION FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF CONTROL CONSOLE CURRENTLY USED ON OCCASION FOR AMATUER RADIO AND TO PERIODICALLY ACTIVE STATION KPS. NOTE CLOCK ON WALL. SHADED PORTIONS ON 24HR CLOCK (15-18 AND 45-48 MINUTES) INDICATED MINUTES EACH HOUR WHEN STATIONS WOULD NOT TRANSMIT AND LISTEN FOR WEAK DISTRESS SIGNALS. - Marconi Radio Sites, Receiving, Point Reyes Station, Marin County, CA

  10. Central Neural Control of the Cardiovascular System: Current Perspectives

    ERIC Educational Resources Information Center

    Dampney, Roger A. L.

    2016-01-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system.…

  11. Basic mechanisms controlling the sweeping efficiency of propagating current sheets

    NASA Astrophysics Data System (ADS)

    Berkery, J. W.; Choueiri, E. Y.

    2006-02-01

    The basic mechanisms controlling the sweeping efficiency of propagating current sheets are investigated through experiments and analytical modelling. The sweeping efficiency of a current sheet in a parallel plate gas-fed pulsed plasma accelerator is defined as the ratio of the current sheet mass to the total available propellant mass. Permeability of neutrals through the sheet, and leakage of mass out of the sheet and into a cathode wake, decrease the sweeping efficiency. The sweeping efficiency of current sheets in argon, neon, helium and hydrogen propellants at different initial pressures was determined through measurements of sheet velocity with high speed photography and of sheet mass with laser interferometry. The mechanism that controls the sweeping efficiency of propagating current sheets was found to be an interplay of two processes: the flux of mass entering the sheet and the leakage of mass at the cathode, with the former dependent on the degree of permeability and the latter dependent on the level of ion current as determined by the ion Hall parameter.

  12. An Efficient Silent Data Corruption Detection Method with Error-Feedback Control and Even Sampling for HPC Applications

    SciTech Connect

    Di, Sheng; Berrocal, Eduardo; Cappello, Franck

    2015-01-01

    The silent data corruption (SDC) problem is attracting more and more attentions because it is expected to have a great impact on exascale HPC applications. SDC faults are hazardous in that they pass unnoticed by hardware and can lead to wrong computation results. In this work, we formulate SDC detection as a runtime one-step-ahead prediction method, leveraging multiple linear prediction methods in order to improve the detection results. The contributions are twofold: (1) we propose an error feedback control model that can reduce the prediction errors for different linear prediction methods, and (2) we propose a spatial-data-based even-sampling method to minimize the detection overheads (including memory and computation cost). We implement our algorithms in the fault tolerance interface, a fault tolerance library with multiple checkpoint levels, such that users can conveniently protect their HPC applications against both SDC errors and fail-stop errors. We evaluate our approach by using large-scale traces from well-known, large-scale HPC applications, as well as by running those HPC applications on a real cluster environment. Experiments show that our error feedback control model can improve detection sensitivity by 34-189% for bit-flip memory errors injected with the bit positions in the range [20,30], without any degradation on detection accuracy. Furthermore, memory size can be reduced by 33% with our spatial-data even-sampling method, with only a slight and graceful degradation in the detection sensitivity.

  13. Development of a current-controlled defibrillator for clinical tests.

    PubMed

    Fischer, M; Schönegg, M; Schöchlin, J; Bolz, A

    2002-01-01

    The work presented here is only a part of the development for a new current-controlled defibrillator. In the diploma thesis "Development and construction of a current-controlled defibrillator for clinical tests" the most important part was the control and safety of the defibrillator. To ensure a safe circuit design, a risk-analysis and a Failure Mode and Effects Analysis (FMEA) were necessary. Another major part was the programming of a microcontroller in embedded C and a programmable logic device in Very High Speed Integrated Circuit Description Language (VHDL). The circuit had to be constructed, and the defibrillator was optically decoupled from the laptop for safety reasons. The waveform-data can be transmitted to the microcontroller from the laptop, and the logged data is then transmitted back.

  14. Smart monitoring system based on adaptive current control for superconducting cable test

    NASA Astrophysics Data System (ADS)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  15. Smart monitoring system based on adaptive current control for superconducting cable test

    SciTech Connect

    Arpaia, Pasquale; Ballarino, Amalia; Montenero, Giuseppe; Daponte, Vincenzo; Svelto, Cesare

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  16. Geometrical control of pure spin current induced domain wall depinning

    NASA Astrophysics Data System (ADS)

    Pfeiffer, A.; Reeve, R. M.; Voto, M.; Savero-Torres, W.; Richter, N.; Vila, L.; Attané, J. P.; Lopez-Diaz, L.; Kläui, Mathias

    2017-03-01

    We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of 6\\centerdot {{10}11} A m-2, which is attributed to the optimal control of the position of the domain wall.

  17. Composite Interval Mapping Based on Lattice Design for Error Control May Increase Power of Quantitative Trait Locus Detection

    PubMed Central

    Huang, Zhongwen; Zhao, Tuanjie; Xing, Guangnan; Gai, Junyi; Guan, Rongzhan

    2015-01-01

    Experimental error control is very important in quantitative trait locus (QTL) mapping. Although numerous statistical methods have been developed for QTL mapping, a QTL detection model based on an appropriate experimental design that emphasizes error control has not been developed. Lattice design is very suitable for experiments with large sample sizes, which is usually required for accurate mapping of quantitative traits. However, the lack of a QTL mapping method based on lattice design dictates that the arithmetic mean or adjusted mean of each line of observations in the lattice design had to be used as a response variable, resulting in low QTL detection power. As an improvement, we developed a QTL mapping method termed composite interval mapping based on lattice design (CIMLD). In the lattice design, experimental errors are decomposed into random errors and block-within-replication errors. Four levels of block-within-replication errors were simulated to show the power of QTL detection under different error controls. The simulation results showed that the arithmetic mean method, which is equivalent to a method under random complete block design (RCBD), was very sensitive to the size of the block variance and with the increase of block variance, the power of QTL detection decreased from 51.3% to 9.4%. In contrast to the RCBD method, the power of CIMLD and the adjusted mean method did not change for different block variances. The CIMLD method showed 1.2- to 7.6-fold higher power of QTL detection than the arithmetic or adjusted mean methods. Our proposed method was applied to real soybean (Glycine max) data as an example and 10 QTLs for biomass were identified that explained 65.87% of the phenotypic variation, while only three and two QTLs were identified by arithmetic and adjusted mean methods, respectively. PMID:26076140

  18. Integration of auditory and somatosensory error signals in the neural control of speech movements.

    PubMed

    Feng, Yongqiang; Gracco, Vincent L; Max, Ludo

    2011-08-01

    We investigated auditory and somatosensory feedback contributions to the neural control of speech. In task I, sensorimotor adaptation was studied by perturbing one of these sensory modalities or both modalities simultaneously. The first formant (F1) frequency in the auditory feedback was shifted up by a real-time processor and/or the extent of jaw opening was increased or decreased with a force field applied by a robotic device. All eight subjects lowered F1 to compensate for the up-shifted F1 in the feedback signal regardless of whether or not the jaw was perturbed. Adaptive changes in subjects' acoustic output resulted from adjustments in articulatory movements of the jaw or tongue. Adaptation in jaw opening extent in response to the mechanical perturbation occurred only when no auditory feedback perturbation was applied or when the direction of adaptation to the force was compatible with the direction of adaptation to a simultaneous acoustic perturbation. In tasks II and III, subjects' auditory and somatosensory precision and accuracy were estimated. Correlation analyses showed that the relationships 1) between F1 adaptation extent and auditory acuity for F1 and 2) between jaw position adaptation extent and somatosensory acuity for jaw position were weak and statistically not significant. Taken together, the combined findings from this work suggest that, in speech production, sensorimotor adaptation updates the underlying control mechanisms in such a way that the planning of vowel-related articulatory movements takes into account a complex integration of error signals from previous trials but likely with a dominant role for the auditory modality.

  19. Proprioceptive control of wrist movements in Parkinson's disease. Reduced muscle vibration-induced errors.

    PubMed

    Rickards, C; Cody, F W

    1997-06-01

    The effects upon the trajectories of practised slow (approximately 9 degrees/s) voluntary wrist-extension movements of applying vibration to the tendon of an antagonist muscle (flexor carpi radialis) during the course of the movement have been studied in patients with idiopathic Parkinson's disease and age-matched healthy individuals. In both patient and control groups, flexor vibration elicited undershooting of wrist-extension movements. Wrist extensor and flexor surface EMG recordings indicated that, in patients and controls, such undershooting resulted principally from sustained reductions in extensor (prime mover) activity. Small vibration reflexes were commonly elicited in the wrist flexors which, in both Parkinson's disease and healthy subjects, were usually otherwise virtually quiescent during these slow extension movements. The amplitudes of such vibration reflexes did not differ systematically between patient and control groups and appeared inadequate to have exerted an appreciable braking action upon the extension trajectories. However, the extent of vibration-induced undershooting was, on average, significantly less in the Parkinson's disease group. In a subgroup of patients with asymmetrical parkinsonism the effects of antagonist vibration upon wrist movements of the more and less affected limb were compared. The degree of vibration-induced undershooting was significantly smaller on the more affected side. This finding suggests that disturbed proprioceptive guidance of voluntary movements in Parkinson's disease is related to the severity of clinical motor deficits. A small number Parkinson's disease patients were studied 'ON' and 'OFF' their routine anti-parkinsonian medication. A non-significant tendency was found for vibration-induced errors to be less marked in the 'OFF' state. In a separate series of experiments, under isometric conditions, vibration-induced EMG changes were recorded whilst subjects attempted to maintain a steady (15% maximum

  20. Control of the current density profile with lower hybrid current drive on PBX-M

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Blush, L.; Doerner, R.; Schmitz, L.; Tynan, G.; Dunlap, J.; England, A.; Harris, J.; Hirshman, S.; Isler, R.; Lee, D.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1.

  1. Alterations in Neural Control of Constant Isometric Contraction with the Size of Error Feedback

    PubMed Central

    Hwang, Ing-Shiou; Lin, Yen-Ting; Huang, Wei-Min; Yang, Zong-Ru; Hu, Chia-Ling; Chen, Yi-Ching

    2017-01-01

    Discharge patterns from a population of motor units (MUs) were estimated with multi-channel surface electromyogram and signal processing techniques to investigate parametric differences in low-frequency force fluctuations, MU discharges, and force-discharge relation during static force-tracking with varying sizes of execution error presented via visual feedback. Fourteen healthy adults produced isometric force at 10% of maximal voluntary contraction through index abduction under three visual conditions that scaled execution errors with different amplification factors. Error-augmentation feedback that used a high amplification factor (HAF) to potentiate visualized error size resulted in higher sample entropy, mean frequency, ratio of high-frequency components, and spectral dispersion of force fluctuations than those of error-reducing feedback using a low amplification factor (LAF). In the HAF condition, MUs with relatively high recruitment thresholds in the dorsal interosseous muscle exhibited a larger coefficient of variation for inter-spike intervals and a greater spectral peak of the pooled MU coherence at 13–35 Hz than did those in the LAF condition. Manipulation of the size of error feedback altered the force-discharge relation, which was characterized with non-linear approaches such as mutual information and cross sample entropy. The association of force fluctuations and global discharge trace decreased with increasing error amplification factor. Our findings provide direct neurophysiological evidence that favors motor training using error-augmentation feedback. Amplification of the visualized error size of visual feedback could enrich force gradation strategies during static force-tracking, pertaining to selective increases in the discharge variability of higher-threshold MUs that receive greater common oscillatory inputs in the β-band. PMID:28125658

  2. A control-oriented model of the current profile in tokamak plasma

    NASA Astrophysics Data System (ADS)

    Witrant, E.; Joffrin, E.; Brémond, S.; Giruzzi, G.; Mazon, D.; Barana, O.; Moreau, P.

    2007-07-01

    This paper proposes a control-oriented approach to the tokamak plasma current profile dynamics. It is established based on a consistent set of simplified relationships, in particular for the microwave current drive sources, rather than exact physical modelling. Assuming that a proper model for advanced control schemes can be established using the so-called cylindrical approximation and neglecting the diamagnetic effects, we propose a model that focuses on the flux diffusion (from which the current profile is inferred). Its inputs are some real-time measurements available on modern tokamaks and the effects of some major actuators, such as the magnetic coils, lower hybrid (LHCD), electron and ion cyclotron frequency (ECCD and ICRH) systems, are particularly taken into account. More precisely, the non-inductive current profile sources are modelled as 3-parameters functions of the control inputs derived either from approximate theoretical formulae for the ECCD and bootstrap terms or from experimental scaling laws specifically developed from hard x-ray Tore Supra data for the LHCD influence. The use of scaling laws in this model reflects the fact that the operation of future reactors will certainly depend upon a great number of scaling laws and specific engineering parameters. The discretization issues are also specifically addressed, to ensure robustness with respect to discretisation errors and the efficiency (in terms of computation time) of the associated algorithm. This model is compared with experimental results and the CRONOS solver for tore supra tokamak.

  3. Electric Machine with Boosted Inductance to Stabilize Current Control

    NASA Technical Reports Server (NTRS)

    Abel, Steve

    2013-01-01

    High-powered motors typically have very low resistance and inductance (R and L) in their windings. This makes the pulse-width modulated (PWM) control of the current very difficult, especially when the bus voltage (V) is high. These R and L values are dictated by the motor size, torque (Kt), and back-emf (Kb) constants. These constants are in turn set by the voltage and the actuation torque-speed requirements. This problem is often addressed by placing inductive chokes within the controller. This approach is undesirable in that space is taken and heat is added to the controller. By keeping the same motor frame, reducing the wire size, and placing a correspondingly larger number of turns in each slot, the resistance, inductance, torque constant, and back-emf constant are all increased. The increased inductance aids the current control but ruins the Kt and Kb selections. If, however, a fraction of the turns is moved from their "correct slot" to an "incorrect slot," the increased R and L values are retained, but the Kt and Kb values are restored to the desired values. This approach assumes that increased resistance is acceptable to a degree. In effect, the heat allocated to the added inductance has been moved from the controller to the motor body, which in some cases is preferred.

  4. Prevention and control of schistosomiasis: a current perspective

    PubMed Central

    Inobaya, Marianette T; Olveda, Remigio M; Chau, Thao NP; Olveda, David U; Ross, Allen GP

    2014-01-01

    Schistosomiasis is a neglected tropical disease that ranks second only to malaria in terms of human suffering in the tropics and subtropics. Five species are known to infect man and there are currently over 240 million people infected worldwide. The cornerstone of control to date has been mass drug administration with 40 mg/kg of praziquantel but there are problems with this approach. Human and bovine vaccines are in various stages of development. Integrated control, targeting the life cycle, is the only approach that will lead to sustainability and future elimination. PMID:25400499

  5. Reversible control of current across lipid membranes by local heating

    PubMed Central

    Urban, Patrick; Kirchner, Silke R.; Mühlbauer, Christian; Lohmüller, Theobald; Feldmann, Jochen

    2016-01-01

    Lipid membranes are almost impermeable for charged molecules and ions that can pass the membrane barrier only with the help of specialized transport proteins. Here, we report how temperature manipulation at the nanoscale can be employed to reversibly control the electrical resistance and the amount of current that flows through a bilayer membrane with pA resolution. For this experiment, heating is achieved by irradiating gold nanoparticles that are attached to the bilayer membrane with laser light at their plasmon resonance frequency. We found that controlling the temperature on the nanoscale renders it possible to reproducibly regulate the current across a phospholipid membrane and the membrane of living cells in absence of any ion channels. PMID:26940847

  6. Parallel Transmission Pulse Design with Explicit Control for the Specific Absorption Rate in the Presence of Radiofrequency Errors

    PubMed Central

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L.; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L.; Guerin, Bastien

    2016-01-01

    Purpose A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. Methods The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors (“worst-case SAR”) is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Results Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled “worst-case SAR” in the presence of errors of this magnitude at minor cost of the excitation profile quality. Conclusion Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. PMID:26147916

  7. Evaluating the impact of sequencing error correction for RNA-seq data with ERCC RNA spike-in controls.

    PubMed

    Tong, Li; Yang, Cheng; Wu, Po-Yen; Wang, May D

    2016-02-01

    Sequencing errors are a major issue for several next-generation sequencing-based applications such as de novo assembly and single nucleotide polymorphism detection. Several error-correction methods have been developed to improve raw data quality. However, error-correction performance is hard to evaluate because of the lack of a ground truth. In this study, we propose a novel approach which using ERCC RNA spike-in controls as the ground truth to facilitate error-correction performance evaluation. After aligning raw and corrected RNA-seq data, we characterized the quality of reads by three metrics: mismatch patterns (i.e., the substitution rate of A to C) of reads aligned with one mismatch, mismatch patterns of reads aligned with two mismatches and the percentage increase of reads aligned to reference. We observed that the mismatch patterns for reads aligned with one mismatch are significantly correlated between ERCC spike-ins and real RNA samples. Based on such observations, we conclude that ERCC spike-ins can serve as ground truths for error correction beyond their previous applications for validation of dynamic range and fold-change response. Also, the mismatch patterns for ERCC reads aligned with one mismatch can serve as a novel and reliable metric to evaluate the performance of error-correction tools.

  8. Stray current control in rehabilitating rail transit facilities

    SciTech Connect

    Fitzgerald, J.H. III; Bosma, R.; Paladines, F.

    1999-05-01

    An old Chicago direct current electrified railway yard and shop are being rehabilitated. Modern stray current control techniques are being introduced. Efficient rail operation and safety for the public and operating personnel are paramount. Metra is Chicago's commuter railroad, serving six counties in the metropolitan area. The Electric District, which was electrified in 1926, is a heavy rail system from downtown, serving the south side and suburbs. Operating on the same tracks from Randolph St., to Kensington is America's last electric interurban line, the Chicago South Shore and South Bend Railroad. All trains operate on 1,500-V direct current (DC) propulsion from an overhead catenary system, with the running rails as the negative return.

  9. A genetic assay for transcription errors reveals multilayer control of RNA polymerase II fidelity.

    PubMed

    Irvin, Jordan D; Kireeva, Maria L; Gotte, Deanna R; Shafer, Brenda K; Huang, Ingold; Kashlev, Mikhail; Strathern, Jeffrey N

    2014-09-01

    We developed a highly sensitive assay to detect transcription errors in vivo. The assay is based on suppression of a missense mutation in the active site tyrosine in the Cre recombinase. Because Cre acts as tetramer, background from translation errors are negligible. Functional Cre resulting from rare transcription errors that restore the tyrosine codon can be detected by Cre-dependent rearrangement of reporter genes. Hence, transient transcription errors are captured as stable genetic changes. We used this Cre-based reporter to screen for mutations of Saccharomyces cerevisiae RPB1 (RPO21) that increase the level of misincorporation during transcription. The mutations are in three domains of Rpb1, the trigger loop, the bridge helix, and in sites involved in binding to TFIIS. Biochemical characterization demonstrates that these variants have elevated misincorporation, and/or ability to extend mispaired bases, or defects in TFIIS mediated editing.

  10. Paradigm Shifts in Voluntary Force Control and Motor Unit Behaviors with the Manipulated Size of Visual Error Perception

    PubMed Central

    Chen, Yi-Ching; Lin, Yen-Ting; Chang, Gwo-Ching; Hwang, Ing-Shiou

    2017-01-01

    The detection of error information is an essential prerequisite of a feedback-based movement. This study investigated the differential behavior and neurophysiological mechanisms of a cyclic force-tracking task using error-reducing and error-enhancing feedback. The discharge patterns of a relatively large number of motor units (MUs) were assessed with custom-designed multi-channel surface electromyography following mathematical decomposition of the experimentally-measured signals. Force characteristics, force-discharge relation, and phase-locking cortical activities in the contralateral motor cortex to individual MUs were contrasted among the low (LSF), normal (NSF), and high scaling factor (HSF) conditions, in which the sizes of online execution errors were displayed with various amplification ratios. Along with a spectral shift of the force output toward a lower band, force output with a more phase-lead became less irregular, and tracking accuracy was worse in the LSF condition than in the HSF condition. The coherent discharge of high phasic (HP) MUs with the target signal was greater, and inter-spike intervals were larger, in the LSF condition than in the HSF condition. Force-tracking in the LSF condition manifested with stronger phase-locked EEG activity in the contralateral motor cortex to discharge of the (HP) MUs (LSF > NSF, HSF). The coherent discharge of the (HP) MUs during the cyclic force-tracking predominated the force-discharge relation, which increased inversely to the error scaling factor. In conclusion, the size of visualized error gates motor unit discharge, force-discharge relation, and the relative influences of the feedback and feedforward processes on force control. A smaller visualized error size favors voluntary force control using a feedforward process, in relation to a selective central modulation that enhance the coherent discharge of (HP) MUs. PMID:28348530

  11. [Preliminary Study on Error Control of Medical Devices Test Reports Based on the Analytic Hierarchy Process].

    PubMed

    Huang, Yanhong; Xu, Honglei; Tu, Rong; Zhang, Xu; Huang, Min

    2016-01-01

    In this paper, the common errors in medical devices test reports are classified and analyzed. And then the main 11 influence factors for these inspection report errors are summarized. The hierarchy model was also developed and verified by presentation data using MATLAB. The feasibility of comprehensive weights quantitative comparison has been analyzed by using the analytic hierarchy process. In the end, this paper porspects the further research direction.

  12. Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.

    PubMed

    Bhattacharyya, Saugat; Konar, Amit; Tibarewala, D N

    2014-12-01

    The paper proposes a novel approach toward EEG-driven position control of a robot arm by utilizing motor imagery, P300 and error-related potentials (ErRP) to align the robot arm with desired target position. In the proposed scheme, the users generate motor imagery signals to control the motion of the robot arm. The P300 waveforms are detected when the user intends to stop the motion of the robot on reaching the goal position. The error potentials are employed as feedback response by the user. On detection of error the control system performs the necessary corrections on the robot arm. Here, an AdaBoost-Support Vector Machine (SVM) classifier is used to decode the 4-class motor imagery and an SVM is used to decode the presence of P300 and ErRP waveforms. The average steady-state error, peak overshoot and settling time obtained for our proposed approach is 0.045, 2.8% and 44 s, respectively, and the average rate of reaching the target is 95%. The results obtained for the proposed control scheme make it suitable for designs of prosthetics in rehabilitative applications.

  13. Doubly-Latent Models of School Contextual Effects: Integrating Multilevel and Structural Equation Approaches to Control Measurement and Sampling Error

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Ludtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthen, Bengt; Nagengast, Benjamin

    2009-01-01

    This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2)…

  14. Cross-Language Intrusion Errors in Aging Bilinguals Reveal the Link Between Executive Control and Language Selection

    PubMed Central

    Gollan, Tamar H.; Sandoval, Tiffany; Salmon, David P.

    2013-01-01

    Bilinguals outperform monolinguals on measures of executive control, but it is not known how bilingualism introduces these advantages. To address this question, we investigated whether language-control failures increase with aging-related declines in executive control. Eighteen younger and 18 older Spanish-English bilinguals completed a verbal-fluency task, in which they produced words in 18 categories (9 in each language), and a flanker task. Performance on both tasks exhibited robust effects of aging, but cross-language and within-language errors on the verbal-fluency task differed in a number of ways. Within-language errors occurred relatively often and decreased with higher levels of education in both younger and older bilinguals. In contrast, cross-language intrusions (e.g., inadvertently saying an English word on a Spanish-language trial) were rarely produced, were not associated with education level, and were strongly associated with flanker-task errors in older but not younger bilinguals. These results imply that executive control plays a role in maintaining language selection, but they also suggest the presence of independent forces that prevent language-selection errors. PMID:21775653

  15. Method of alignment error control in free-form surface metrology with the tilted-wave-interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jia; Shen, Hua; Zhu, Rihong

    2016-04-01

    Compared with conventional optical elements, free-form surface optical elements, as a kind of nonrotationally symmetrical shaped component, can provide more freedom in optical design, optimize the structure of the optical system, and improve its performance. However, the difficulties involved in the measurement of free-form elements restrict their manufacture and application. A tilted-wave-interferometer (TWI) can achieve high precision in free-form surface measurement, but it requires higher space attitude error control. We analyze the relation between the alignment error and the measurement error introduced by the misalignment in free-form surface metrology with TWI. The attitude control method in the rotation direction is proposed based on the moire fringe technique. Then, combining it with the five-dimensional space attitude control method of aspherical elements, we put forward an alignment error control process in measuring the free-form surface. An experiment of measuring a free-form surface using TWI shows the effectiveness of our method.

  16. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  17. High-speed current dq PI controller for vector controlled PMSM drive.

    PubMed

    Marufuzzaman, Mohammad; Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era.

  18. High-Speed Current dq PI Controller for Vector Controlled PMSM Drive

    PubMed Central

    Reaz, Mamun Bin Ibne; Rahman, Labonnah Farzana; Chang, Tae Gyu

    2014-01-01

    High-speed current controller for vector controlled permanent magnet synchronous motor (PMSM) is presented. The controller is developed based on modular design for faster calculation and uses fixed-point proportional-integral (PI) method for improved accuracy. Current dq controller is usually implemented in digital signal processor (DSP) based computer. However, DSP based solutions are reaching their physical limits, which are few microseconds. Besides, digital solutions suffer from high implementation cost. In this research, the overall controller is realizing in field programmable gate array (FPGA). FPGA implementation of the overall controlling algorithm will certainly trim down the execution time significantly to guarantee the steadiness of the motor. Agilent 16821A Logic Analyzer is employed to validate the result of the implemented design in FPGA. Experimental results indicate that the proposed current dq PI controller needs only 50 ns of execution time in 40 MHz clock, which is the lowest computational cycle for the era. PMID:24574913

  19. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    NASA Astrophysics Data System (ADS)

    Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua

    2015-10-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).

  20. A constrained-gradient method to control divergence errors in numerical MHD

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-10-01

    In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.

  1. Improved control strategy for PI-R current of DFIG considering voltage and current harmonics compensation

    NASA Astrophysics Data System (ADS)

    Song, S. Y.; Liu, Q. H.; Zhao, Y. N.; Liu, S. Y.

    2016-08-01

    With the rapid development of wind power generation, the related research of wind power control and integration issues has attracted much attention, and the focus of the research are shifting away from the ideal power grid environment to the actual power grid environment. As the main stream wind turbine generator, a doubly-fed induction generator (DFIG) is connected to the power grid directly by its stator, so it is particularly sensitive to the power grid. This paper studies the improvement of DFIG control technology in the power grid harmonic environment. Based on the DFIG dynamic model considering the power grid harmonic environment, this paper introduces the shortcomings of the common control strategy of DFIG, and puts forward the enhanced method. The decoupling control of the system is realized by compensating the coupling between the rotor harmonic voltage and harmonic current, improving the control performance. In addition, the simulation experiments on PSCAD/EMTDC are carried out to verify the correctness and effectiveness of the improved scheme.

  2. Design and control of the phase current of a brushless dc motor to eliminate cogging torque

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Lee, C. J.

    2006-04-01

    This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.

  3. Design of a constant-voltage and constant-current controller with dual-loop and adaptive switching frequency control

    NASA Astrophysics Data System (ADS)

    Yingping, Chen; Zhiqian, Li

    2015-05-01

    A 5.0-V 2.0-A flyback power supply controller providing constant-voltage (CV) and constant-current (CC) output regulation without the use of an optical coupler is presented. Dual-close-loop control is proposed here due to its better regulation performance of tolerance over process and temperature compared with open loop control used in common. At the same time, the two modes, CC and CV, could switch to each other automatically and smoothly according to the output voltage level not sacrificing the regulation accuracy at the switching phase, which overcomes the drawback of the digital control scheme depending on a hysteresis comparator to change the mode. On-chip compensation using active capacitor multiplier technique is applied to stabilize the voltage loop, eliminate an additional package pin, and save on the die area. The system consumes as little as 100 mW at no-load condition without degrading the transient response performance by utilizing the adaptive switching frequency control mode. The proposed controller has been implemented in a commercial 0.35-μm 40-V BCD process, and the active chip area is 1.5 × 1.0 mm2. The total error of the output voltage due to line and load variations is less than ±1.7%.

  4. High-side Digitally Current Controlled Biphasic Bipolar Microstimulator

    PubMed Central

    Hanson, Timothy L.; Ómarsson, Björn; O'Doherty, Joseph E.; Peikon, Ian D.; Lebedev, Mikhail; Nicolelis, Miguel AL.

    2012-01-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware - without active artifact rejection - we are able to observe stimulus artifacts of less than 2 ms in duration. PMID:22328184

  5. High-side digitally current controlled biphasic bipolar microstimulator.

    PubMed

    Hanson, Timothy L; Ómarsson, Björn; O'Doherty, Joseph E; Peikon, Ian D; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2012-05-01

    Electrical stimulation of nervous tissue has been extensively used as both a tool in experimental neuroscience research and as a method for restoring of neural functions in patients suffering from sensory and motor disabilities. In the central nervous system, intracortical microstimulation (ICMS) has been shown to be an effective method for inducing or biasing perception, including visual and tactile sensation. ICMS also holds promise for enabling brain-machine-brain interfaces (BMBIs) by directly writing information into the brain. Here we detail the design of a high-side, digitally current-controlled biphasic, bipolar microstimulator, and describe the validation of the device in vivo. As many applications of this technique, including BMBIs, require recording as well as stimulation, we pay careful attention to isolation of the stimulus channels and parasitic current injection. With the realized device and standard recording hardware-without active artifact rejection-we are able to observe stimulus artifacts of less than 2 ms in duration.

  6. Control of centrifugal blood pump based on the motor current.

    PubMed

    Iijima, T; Inamoto, T; Nogawa, M; Takatani, S

    1997-07-01

    In this study, centrifugal pump performance was examined in a mock circulatory loop to derive an automatic pump rotational speed (rpm) control method. The pivot bearing supported sealless centrifugal pump was placed in the left ventricular apex to aorta bypass mode. The pneumatic pulsatile ventricle was used to simulate the natural ventricle. To simulate the suction effect in the ventricle, a collapsible rubber tube was placed in the inflow port of the centrifugal pump in series with the apex of the simulated ventricle. Experimentally, the centrifugal pump speed (rpm) was gradually increased to simulate the suction effect. The pump flow through the centrifugal pump measured by an electromagnetic flowmeter, the aortic pressure, and the motor current were continuously digitized at 100 Hz and stored in a personal computer. The analysis of the cross-spectral density between the pump flow and motor current waveforms revealed that 2 waveforms were highly correlated at the frequency range between 0 and 4 Hz, with the coherence and phase angles being close to 1.0 and 0 degree, respectively. The fast Fourier transform analysis of the motor current indicated that the second harmonic component of the motor current power density increased with the occurrence of the suction effect in the circuit. The ratio of the fundamental to the second harmonic component decreased less than 1.3 as the suction effect developed in the circuit. It is possible to detect and prevent the suction effect of the centrifugal blood pump in the natural ventricle through analysis of the motor current waveform.

  7. Automatic parameter estimation of multicompartmental neuron models via minimization of trace error with control adjustment

    PubMed Central

    Goeritz, Marie L.; Marder, Eve

    2014-01-01

    We describe a new technique to fit conductance-based neuron models to intracellular voltage traces from isolated biological neurons. The biological neurons are recorded in current-clamp with pink (1/f) noise injected to perturb the activity of the neuron. The new algorithm finds a set of parameters that allows a multicompartmental model neuron to match the recorded voltage trace. Attempting to match a recorded voltage trace directly has a well-known problem: mismatch in the timing of action potentials between biological and model neuron is inevitable and results in poor phenomenological match between the model and data. Our approach avoids this by applying a weak control adjustment to the model to promote alignment during the fitting procedure. This approach is closely related to the control theoretic concept of a Luenberger observer. We tested this approach on synthetic data and on data recorded from an anterior gastric receptor neuron from the stomatogastric ganglion of the crab Cancer borealis. To test the flexibility of this approach, the synthetic data were constructed with conductance models that were different from the ones used in the fitting model. For both synthetic and biological data, the resultant models had good spike-timing accuracy. PMID:25008414

  8. Chaos control by electric current in an enzymatic reaction.

    PubMed

    Lekebusch, A; Förster, A; Schneider, F W

    1996-09-01

    We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.

  9. Strategy to Control Type I Error Increases Power to Identify Genetic Variation Using the Full Biological Trajectory

    PubMed Central

    Benke, K. S.; Wu, Y.; Fallin, D. M.; Maher, B.; Palmer, L. J.

    2013-01-01

    Genome-wide association studies have been successful in identifying loci that underlie continuous traits measured at a single time point. To additionally consider continuous traits longitudinally, it is desirable to look at SNP effects at baseline and over time using linear-mixed effects models. Estimation and interpretation of two coefficients in the same model raises concern regarding the optimal control of type I error. To investigate this issue, we calculate type I error and power under an alternative for joint tests, including the two degree of freedom likelihood ratio test, and compare this to single degree of freedom tests for each effect separately at varying alpha levels. We show which joint tests are the optimal way to control the type I error and also illustrate that information can be gained by joint testing in situations where either or both SNP effects are underpowered. We also show that closed form power calculations can approximate simulated power for the case of balanced data, provide reasonable approximations for imbalanced data, but overestimate power for complicated residual error structures. We conclude that a two degree of freedom test is an attractive strategy in a hypothesis-free genome-wide setting and recommend its use for genome-wide studies employing linear-mixed effects models. PMID:23633177

  10. Strategy to control type I error increases power to identify genetic variation using the full biological trajectory.

    PubMed

    Benke, K S; Wu, Y; Fallin, D M; Maher, B; Palmer, L J

    2013-07-01

    Genome-wide association studies have been successful in identifying loci that underlie continuous traits measured at a single time point. To additionally consider continuous traits longitudinally, it is desirable to look at SNP effects at baseline and over time using linear-mixed effects models. Estimation and interpretation of two coefficients in the same model raises concern regarding the optimal control of type I error. To investigate this issue, we calculate type I error and power under an alternative for joint tests, including the two degree of freedom likelihood ratio test, and compare this to single degree of freedom tests for each effect separately at varying alpha levels. We show which joint tests are the optimal way to control the type I error and also illustrate that information can be gained by joint testing in situations where either or both SNP effects are underpowered. We also show that closed form power calculations can approximate simulated power for the case of balanced data, provide reasonable approximations for imbalanced data, but overestimate power for complicated residual error structures. We conclude that a two degree of freedom test is an attractive strategy in a hypothesis-free genome-wide setting and recommend its use for genome-wide studies employing linear-mixed effects models.

  11. IMPROVEMENT OF SMVGEAR II ON VECTOR AND SCALAR MACHINES THROUGH ABSOLUTE ERROR TOLERANCE CONTROL (R823186)

    EPA Science Inventory

    The computer speed of SMVGEAR II was improved markedly on scalar and vector machines with relatively little loss in accuracy. The improvement was due to a method of frequently recalculating the absolute error tolerance instead of keeping it constant for a given set of chemistry. ...

  12. Error-based adaptive non-linear control and regions of feasibility

    NASA Technical Reports Server (NTRS)

    Teel, Andrew R.

    1992-01-01

    The nonlinear adaptive algorithm of Kanellakopoulos et al. (1991) was modified to produce an error-based algorithm. This permits global stabilizability for a large subset of pure-feedback nonlinear systems. The algorithm was demonstrated on the single-input stabilization problem, but extends easily to the multiple input tracking problems.

  13. Reducing Check-in Errors at Brigham Young University through Statistical Process Control

    ERIC Educational Resources Information Center

    Spackman, N. Andrew

    2005-01-01

    The relationship between the library and its patrons is damaged and the library's reputation suffers when returned items are not checked in. An informal survey reveals librarians' concern for this problem and their efforts to combat it, although few libraries collect objective measurements of errors or the effects of improvement efforts. Brigham…

  14. Error estimates for approximate dynamic systems. [linear and nonlinear control systems of different dimensions

    NASA Technical Reports Server (NTRS)

    Gunderson, R. W.; George, J. H.

    1974-01-01

    Two approaches are investigated for obtaining estimates on the error between approximate and exact solutions of dynamic systems. The first method is primarily useful if the system is nonlinear and of low dimension. The second requires construction of a system of v-functions but is useful for higher dimensional systems, either linear or nonlinear.

  15. Global Positioning System Control/User Segments. Volume II. System Error Performance.

    DTIC Science & Technology

    RADIO NAVIGATION, *NAVIGATION SATELLITES, * POSITION FINDING, *NAVIGATION COMPUTERS, *IONOSPHERIC PROPAGATION, GLOBAL , EPHEMERIDES, TRADE OFF...ANALYSIS, SPACEBORNE, ERRORS, VELOCITY, SYSTEMS ENGINEERING, DIGITAL COMPUTERS, MEMORY DEVICES, TIME SIGNALS, SITE SELECTION, GROUND STATIONS, MOTION, MATHEMATICAL MODELS, ALGORITHMS, PERFORMANCE(ENGINEERING), USER NEEDS, S BAND, L BAND.

  16. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation.

    PubMed

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-06-13

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  17. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation

    PubMed Central

    Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis

    2016-01-01

    Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245

  18. DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive.

    PubMed

    Zaafouri, Abderrahmen; Ben Regaya, Chiheb; Ben Azza, Hechmi; Châari, Abdelkader

    2016-01-01

    This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed.

  19. Current-controlled unidirectional edge-meron motion

    NASA Astrophysics Data System (ADS)

    Xing, Xiangjun; Pong, Philip W. T.; Zhou, Yan

    2016-11-01

    In order to address many of the challenges and bottlenecks currently experienced by traditional charge-based technologies, various alternatives are being actively explored to provide potential solutions of device miniaturization and scaling in the post-Moore's-law era. Amongst these alternatives, spintronic physics and devices have recently attracted rapidly increasing interest by exploiting the additional degree of electrons-spin. For example, magnetic domain-wall racetrack-memory and logic devices have been realized via manipulating domain-wall motion. As compared to domain-wall-based devices, magnetic skyrmions have the advantages of ultrasmall size (typically 5-100 nm in diameter), facile current-driven motion, topological stability, and peculiar emergent electrodynamics, promising for next-generation electronics applications in the post-Moore's-law regime. Here, a magnetic meron device, which behaves similarly to a PN-junction diode, is demonstrated for the first time, by tailoring the current-controlled unidirectional motion of edge-merons (i.e., fractional skyrmions) in a nanotrack with interfacial Dzyaloshinskii-Moriya interaction. The working principles of the meron device, theoretically predicted from the Thiele equation for topological magnetic objects, are further verified using micromagnetic simulations. The present study has revealed the topology-independent transport property of different magnetic objects and is expected to open the vista toward integrated composite circuitry (with unified data storage and processing) based on a single magnetic chip, as the meron device can be used, either as a building block to develop complex logic components or as a signal controller to interconnect skyrmion, domain-wall, and even spin-wave devices.

  20. Medicolegal implications of surgical errors and complications in neck surgery: A review based on the Italian current legislation

    PubMed Central

    Polistena, Andrea; Sanguinetti, Alessandro; Buccelli, Claudio; Conzo, Giovanni; Conti, Adelaide; Niola, Massimo; Avenia, Nicola

    2016-01-01

    Abstract Aim of the present paper is the review of the principal complications associated to endocrine neck surgery considering how expertise, full adoption of guidelines, appropriate technology and proper informed consent may limit the medicolegal claims at the light of the incoming new regulation of the medical professional legal responsibility. A literature search, using the Medline/PubMed database for full-length papers, was used. Postoperative recurrent laryngeal nerve (RLN) palsy and hypoparathy-roidism remain the principal causes of surgical malpractice claims . In the procedure of neck lymphadenctomy intra-operative haemorrhage, thoracic duct injury, injuries to loco-regional nerves can be observed and can be source of claims. After many years of increased medicolegal litigations, the Italian government is proposing a drastic change in the regulations of supposed medical malpractice in order to guarantee the patient’s right to a safe treatment and in the meantime to defend clinicians from often unmotivated and prejudicial legal cases. Surgical errors and complications in neck surgery are a relevant clinical issue. Only the combination of surgical and clinical expertise, application of guidelines, appropriate technology and a routinely use of specific informed consent can contain potential medicolegal implications. PMID:28352812

  1. Water-level controls on macro-tidal rip currents

    NASA Astrophysics Data System (ADS)

    Austin, Martin J.; Masselink, Gerd; Scott, Tim M.; Russell, Paul E.

    2014-03-01

    Field measurements and numerical modelling have been used to investigate the water-level control of rip current dynamics on a macro-tidal beach. Field data collected over 32 complete tidal cycles, spanning a range of wave and tide conditions, demonstrate that rip current strength and behaviour is modulated at the semi-diurnal frequency by tide-induced changes in the water-level over bar/rip morphology. Peak flow speeds in the rip neck correspond to the time of maximum wave breaking 1.5 h before and after low water. Alongshore-directed water surface gradients ∂η/∂y were measured along the feeder channel and around the ends of the inter-tidal bar, with head differences O(0.1 m). The numerical model reproduced ∂η/∂y with a good level of skill and showed that ∂η/∂y and increase with the proportion of breaking waves Qb over the inter-tidal bar; but was maximised during peak Qb, maximum ∂η/∂y occurred when wave breaking moved offshore to the sub-tidal bar and Qb was reduced. Around low water, the forcing of the rip current by the alongshore pressure-driven feeder current was reduced by the decrease in Qb over the bar and feeder regions, but an offshore flow through the rip channel was maintained by a localised intensification of ∂η/∂y around the ends of the inter-tidal bar.

  2. Advanced Techniques for Neoclassical Tearing Mode Control by Electron Cyclotron Current Drive in DIII-D

    NASA Astrophysics Data System (ADS)

    Volpe, F.

    2008-11-01

    Novel techniques have been developed in DIII-D for (1) control of rapidly rotating neoclassical tearing modes (NTMs) and (2) control of NTMs that have locked to a residual error field or the resistive wall. Electron cyclotron current drive (ECCD) has been successful at suppression of NTMs in present tokamaks, but will face new challenges in ITER where NTMs are expected to be more prone to locking. In order to avoid locking, rotating islands must be controlled at small widths that are expected to be narrower than the ECCD deposition. Under these conditions, modulated ECCD is predicted to stabilize more efficiently than continuous current drive. (1) A new technique developed at DIII-D detects the island using oblique electron cyclotron emission with a line of sight equivalent to that of the ECCD. This removes much of the uncertainty in mapping the island structure from the detector to the current drive location. This method was used both to measure the radial alignment between ECCD and the island, and to synchronize the modulation in phase with the island O-point, successfully stabilizing an NTM with mode numbers m/n=3/2. (2) If islands do grow large enough to lock, locked mode control will be necessary for recovery or avoiding disruption in ITER. A potential difficulty associated with locking is that the mode can lock in a position not necessarily accessible to ECCD. To obviate this problem, magnetic perturbations were used for the first time to unlock and reposition a locked m/n=2/1 mode in order to bring it in view of the gyrotron beam, leading to a significant reduction in island size. Once unlocked, magnetic perturbations were also used to sustain and control the mode rotation, which has the potential for easier ECCD modulation

  3. A Bayesian approach to strengthen inference for case-control studies with multiple error-prone exposure assessments.

    PubMed

    Zhang, Jing; Cole, Stephen R; Richardson, David B; Chu, Haitao

    2013-11-10

    In case-control studies, exposure assessments are almost always error-prone. In the absence of a gold standard, two or more assessment approaches are often used to classify people with respect to exposure. Each imperfect assessment tool may lead to misclassification of exposure assignment; the exposure misclassification may be differential with respect to case status or not; and, the errors in exposure classification under the different approaches may be independent (conditional upon the true exposure status) or not. Although methods have been proposed to study diagnostic accuracy in the absence of a gold standard, these methods are infrequently used in case-control studies to correct exposure misclassification that is simultaneously differential and dependent. In this paper, we proposed a Bayesian method to estimate the measurement-error corrected exposure-disease association, accounting for both differential and dependent misclassification. The performance of the proposed method is investigated using simulations, which show that the proposed approach works well, as well as an application to a case-control study assessing the association between asbestos exposure and mesothelioma.

  4. Control Spin Current and Data Recording on Spin Storage Medium

    NASA Astrophysics Data System (ADS)

    Krupa, M. M.

    2014-12-01

    The paper presents the results of experimental studies of the physical mechanisms and dynamics of magnetization reversal of the films Al2O3/Tb25Co5Fe70/Al2O3, Al2O3/Tb22Co5Fe73/Al2O3, Al2O3/Tb19Co5Fe76/Al2O3, Al2O3/Co30Fe70/Al2O3 with a single magnetic layer and the films Al2O3/Tb22Co5Fe73/Pr6O11/Tb19Co5Fe76/Al2O3, Al2O3/Co80Fe20/Pr6O11/Co30Fe70/Al2O3 with two magnetic layers radiated by picosecond (τi ≈ 80 ps) and femtosecond (τi ≈ 130 fs) laser pulses. The experimental samples of spin transistors and data recording devices on the spin storage medium are also described. The results of studies have shown that magnetic switching effects in the nanolayers under femtosecond laser pulses can be used for creation of systems of high-speed controlling of spin currents with the response time τ ≤ 10-11s. Conclusions from the studies are the following: thermomagnetic switching under the influence of an external magnetic field or a demagnetization field, magnetic switching of antiferromagnetic films under the influence of an effective internal field of antiferromagnetic interaction between magnetic sublattices rare-earth and transitive metals, magnetic switching under the influence of a magnetic field of the inverse Faraday effect, or under the influence of a magnetic field of a spin current. The magnetic switching of magnetic layers under action of the magnetic field of a spin current is the most important for practical use in elements of spintronics. This mechanism of magnetic reversal takes place only in multilayer nanofilms and the heterogeneous multilayer magnetic nanofilms are the base material for creation of spintronic devices. The great advantage of the magnetization reversal of magnetic nanolayers of the spin current is that the mechanism of magnetization reversal is working in the films with perpendicular anisotropy and in the films with in-plane anisotropy. The injection of polarized electrons can also be realized using short electrical pulses. That is

  5. Improved current control makes inverters the power sources of choice

    SciTech Connect

    Yamamoto, H.; Harada, S.; Ueyama, T.

    1997-02-01

    It is now generally understood that by increasing the operating or switching frequency of a power source the size of the main transformer and main reactor can be shrunk. Thus, a 300-A DC welding power source weighing well under 100 lb can be produced. This makes the inverter power source an ideal choice for applications requiring equipment maneuverability. It is also generally understood that due to higher switching frequencies, a smoother output is obtained from inverter power sources. In the late 1980s, the company developed a new double-inverter power source by which inverted DC weld output is inverted back to AC weld output. This product was the first of its kind in the world. Again, the small compact size of this product was of great interest. Utilizing current waveform control, it was realized that fast response switching from electrode negative to electrode positive could be accurately controlled, offering benefits such as AC GTA welding with high-frequency start only, even at a low welding current. The primary benefit is the ability to limit the electrode positive half cycle to less than 5%. The electrode positive half cycle is responsible for tungsten erosion, which also creates the balling effect of a tungsten electrode. By limiting the electrode positive portion of the AC cycle to a very low level, a rather sharp point can be maintained on the tungsten, which creates a very concentrated, focused arc column. This ability provides excellent joint penetration in fillet welding of aluminum alloys, especially on thick plate. It also reduces the heat-affected zone in AC GTA welding of aluminum.

  6. Serbia National Poison Control Centre: organization and current activities.

    PubMed

    Jovanović, Dugan; Joksović, Dragan; Vucinić, Savica; Todorović, Veljko; Segrt, Zoran; Kilibarda, Vesna; Bokonjić, Dubravko

    2005-01-01

    Ministry of Health of the former Federal Republic of Yugoslavia established the National Poison Control Centre in 1995. However, that was only the formally solution since clinical, analytical and experimental services in toxicology had worked independently for at least 40 years. Besides the Headquarters, NPCC has currently 2 main units, the Clinic of Emergency and Clinical Toxicology and Pharmacology and the Institute of Toxicology and Pharmacology. The latter is consisted of Toxicological Information Department, Department of Analytical Toxicology and Department of Experimental Toxicology and Pharmacology. The Mobile Toxicological Chemical Unit is a separate department that is activated from personnel of the NPCC in a case of chemical accidents and/or disasters. Clinical, information and analytical parts of NPCC have a 365-day/24-hour working service. The Clinic of Emergency and Clinical Toxicology and Pharmacology is a place where the intoxicated patients are treated, including those that need the intensive care measures. Toxicological Information Department uses the data from a self-made computer Database for different information purposes. Department of Analytical Toxicology is equipped with a lot of contemporary analytical equipment that is giving the opportunity of identification and quantification of chemicals/metabolites/degradation products in biological material, food, water, air and soil. Basic pharmacological and toxicological research of chemicals and pre-clinical investigations of antidotes are realized in the Department of Experimental Toxicology and Pharmacology. In terms of medical prevention and rational treatment of human poison exposures in Serbia, the current organization of NPCC has so far proven to be effective.

  7. Resistive wall mode feedback control in EXTRAP T2R with improved steady-state error and transient response

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Olofsson, K. E. J.; Frassinetti, L.; Drake, J. R.

    2007-10-01

    Experiments in the EXTRAP T2R reversed field pinch [P. R. Brunsell, H. Bergsåker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] on feedback control of m =1 resistive wall modes (RWMs) are compared with simulations using the cylindrical linear magnetohydrodynamic model, including the dynamics of the active coils and power amplifiers. Stabilization of the main RWMs (n=-11,-10,-9,-8,+5,+6) is shown using modest loop gains of the order G ˜1. However, other marginally unstable RWMs (n=-2,-1,+1,+2) driven by external field errors are only partially canceled at these gains. The experimental system stability limit is confirmed by simulations showing that the latency of the digital controller ˜50μs is degrading the system gain margin. The transient response is improved with a proportional-plus-derivative controller, and steady-state error is improved with a proportional-plus-integral controller. Suppression of all modes is obtained at high gain G ˜10 using a proportional-plus-integral-plus-derivative controller.

  8. Historical water control maps - key to understand current challenges?

    NASA Astrophysics Data System (ADS)

    Mészáros, János

    2014-05-01

    The 19th century and post-World War II decades were the main eras of water controlling in former Hungarian Kingdom and Hungary. Due to those large projects, the number and frequency of big floods were minimized but changes caused several other problems what we have to face off in the present. The main help to understand or highlight the fundamentals of those problems can be the flood control maps which, in some cases, show the original, natural riverbed and neighbouring areas of the river. There is other advantage of these maps compared to other surveys: while the main focus of the water control surveys was the river, there was sufficient time to measure the fine differences of land-use and relief in detail. Our sample area is the middle part of Tisza river and three different maps were chosen to show the changes before and after the regulations: Map of the Middle-Tisza, mapping until 1790 by János Lietzner This map is the earliest, known, topographic scale map about the river. Due to its age, the sheets are in bad state, especially their parts close to the edges and corners. A photographed, greyscale copy exists about the sheets, that was used in our research. Despite such bad conditions, it contains lots of information about the river and settlements, as well as detailed land-use before any flood regulation. New survey of Tisza river, mapping until 1932 by the Directorate of Water and Construction Because of the changes, due to time and regulation, several new surveys were ordered at the end of 19th century and between the world wars. During those new surveys, the river was re-triangulated and mapped, although cross and longitudinal section measurements also were carried out. This map clearly shows the results and changes of regulations, especially on populated areas, newly built dykes etc. but before the changes happened between 1950 and 1980. Topographic maps of the Hungarian Defence Forces - Geoinformation Services As a current, base-dataset, topographic maps

  9. Recommendations for choosing an analysis method that controls Type I error for unbalanced cluster sample designs with Gaussian outcomes.

    PubMed

    Johnson, Jacqueline L; Kreidler, Sarah M; Catellier, Diane J; Murray, David M; Muller, Keith E; Glueck, Deborah H

    2015-11-30

    We used theoretical and simulation-based approaches to study Type I error rates for one-stage and two-stage analytic methods for cluster-randomized designs. The one-stage approach uses the observed data as outcomes and accounts for within-cluster correlation using a general linear mixed model. The two-stage model uses the cluster specific means as the outcomes in a general linear univariate model. We demonstrate analytically that both one-stage and two-stage models achieve exact Type I error rates when cluster sizes are equal. With unbalanced data, an exact size α test does not exist, and Type I error inflation may occur. Via simulation, we compare the Type I error rates for four one-stage and six two-stage hypothesis testing approaches for unbalanced data. With unbalanced data, the two-stage model, weighted by the inverse of the estimated theoretical variance of the cluster means, and with variance constrained to be positive, provided the best Type I error control for studies having at least six clusters per arm. The one-stage model with Kenward-Roger degrees of freedom and unconstrained variance performed well for studies having at least 14 clusters per arm. The popular analytic method of using a one-stage model with denominator degrees of freedom appropriate for balanced data performed poorly for small sample sizes and low intracluster correlation. Because small sample sizes and low intracluster correlation are common features of cluster-randomized trials, the Kenward-Roger method is the preferred one-stage approach.

  10. Is a "loss of balance" a control error signal anomaly? Evidence for three-sigma failure detection in young adults.

    PubMed

    Ahmed, Alaa A; Ashton-Miller, James A

    2004-06-01

    Given that a physical definition for a loss of balance (LOB) is lacking, the hypothesis was tested that a LOB is actually a loss of effective control, as evidenced by a control error signal anomaly (CEA). A model-reference adaptive controller and failure-detection algorithm were used to represent central nervous system decision-making based on input and output signals obtained during a challenging whole-body planar balancing task. Control error was defined as the residual generated when the actual system output is compared with the predicted output of the simple first-order polynomial system model. A CEA was hypothesized to occur when the model-generated control error signal exceeded three standard deviations (3sigma) beyond the mean calculated across a 2-s trailing window. The primary hypothesis tested was that a CEA is indeed observable in 20 healthy young adults (ten women) performing the following experiment. Seated subjects were asked to balance a high-backed chair for as long as possible over its rear legs. Each subject performed ten trials. The ground reaction force under the dominant foot, which constituted the sole input to the system, was measured using a two-axis load cell. Angular acceleration of the chair represented the one degree-of-freedom system output. The results showed that the 3sigma algorithm detected a CEA in 94% of 197 trials. A secondary hypothesis was supported in that a CEA was followed in 93% of the trials by an observable compensatory response, occurring at least 100 ms later, and an average of 479 ms, later. Longer reaction times were associated with low velocities at CEA, and vice versa. It is noteworthy that this method of detecting CEA does not rely on an external positional or angular reference, or knowledge of the location of the system's center of mass.

  11. Reducing current reversal time in electric motor control

    DOEpatents

    Bredemann, Michael V

    2014-11-04

    The time required to reverse current flow in an electric motor is reduced by exploiting inductive current that persists in the motor when power is temporarily removed. Energy associated with this inductive current is used to initiate reverse current flow in the motor.

  12. Errors in force generation and changes in controlling patterns following agonist muscle fatigue.

    PubMed

    Huang, Yi-Ming; Chang, Ya-Ju; Hsu, Miao-Ju; Chen, Chia-Ling; Fang, Chia-Ying; Wong, Alice May-Kuen

    2009-11-01

    The purpose of this study was to evaluate whether agonist muscle fatigue changed the coactivation time and the co-contraction magnitude of the agonist and antagonist muscle, and if the agonist muscle fatigue produced bias (constant error: CE) and inconsistency (variable error: VE) of the force. Subjects are 10 healthy people and one person with impaired proprioception. EMG and force for fast (0.19 +/- 0.06 s) and slow (1.20 +/- 0.44 s) targeted isometric dorsiflexions were recorded before and after fatigue of the dorsiflexors. The results revealed that the coactivation time increased after fatigue only in the slow contractions but the co-contraction magnitude did not change. The postfatigue increment of the CE was greater in the fast contractions than in the slow ones. We conclude that the postfatigue compensatory strategy can reduce the fatigue-induced bias. The change of muscles activation level after fatigue might be under the influence of the common drive. Impaired proprioception is a possible cause of the fatigue-related increase in bias and inconsistency.

  13. Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model-free approach

    PubMed Central

    Onaran, H. Ongun; Ambrosio, Caterina; Uğur, Özlem; Madaras Koncz, Erzsebet; Grò, Maria Cristina; Vezzi, Vanessa; Rajagopal, Sudarshan; Costa, Tommaso

    2017-01-01

    Discovering biased agonists requires a method that can reliably distinguish the bias in signalling due to unbalanced activation of diverse transduction proteins from that of differential amplification inherent to the system being studied, which invariably results from the non-linear nature of biological signalling networks and their measurement. We have systematically compared the performance of seven methods of bias diagnostics, all of which are based on the analysis of concentration-response curves of ligands according to classical receptor theory. We computed bias factors for a number of β-adrenergic agonists by comparing BRET assays of receptor-transducer interactions with Gs, Gi and arrestin. Using the same ligands, we also compared responses at signalling steps originated from the same receptor-transducer interaction, among which no biased efficacy is theoretically possible. In either case, we found a high level of false positive results and a general lack of correlation among methods. Altogether this analysis shows that all tested methods, including some of the most widely used in the literature, fail to distinguish true ligand bias from “system bias” with confidence. We also propose two novel semi quantitative methods of bias diagnostics that appear to be more robust and reliable than currently available strategies. PMID:28290478

  14. Systematic errors in detecting biased agonism: Analysis of current methods and development of a new model-free approach.

    PubMed

    Onaran, H Ongun; Ambrosio, Caterina; Uğur, Özlem; Madaras Koncz, Erzsebet; Grò, Maria Cristina; Vezzi, Vanessa; Rajagopal, Sudarshan; Costa, Tommaso

    2017-03-14

    Discovering biased agonists requires a method that can reliably distinguish the bias in signalling due to unbalanced activation of diverse transduction proteins from that of differential amplification inherent to the system being studied, which invariably results from the non-linear nature of biological signalling networks and their measurement. We have systematically compared the performance of seven methods of bias diagnostics, all of which are based on the analysis of concentration-response curves of ligands according to classical receptor theory. We computed bias factors for a number of β-adrenergic agonists by comparing BRET assays of receptor-transducer interactions with Gs, Gi and arrestin. Using the same ligands, we also compared responses at signalling steps originated from the same receptor-transducer interaction, among which no biased efficacy is theoretically possible. In either case, we found a high level of false positive results and a general lack of correlation among methods. Altogether this analysis shows that all tested methods, including some of the most widely used in the literature, fail to distinguish true ligand bias from "system bias" with confidence. We also propose two novel semi quantitative methods of bias diagnostics that appear to be more robust and reliable than currently available strategies.

  15. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1994-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  16. Active control of aircraft engine inlet noise using compact sound sources and distributed error sensors

    NASA Technical Reports Server (NTRS)

    Burdisso, Ricardo (Inventor); Fuller, Chris R. (Inventor); O'Brien, Walter F. (Inventor); Thomas, Russell H. (Inventor); Dungan, Mary E. (Inventor)

    1996-01-01

    An active noise control system using a compact sound source is effective to reduce aircraft engine duct noise. The fan noise from a turbofan engine is controlled using an adaptive filtered-x LMS algorithm. Single multi channel control systems are used to control the fan blade passage frequency (BPF) tone and the BPF tone and the first harmonic of the BPF tone for a plane wave excitation. A multi channel control system is used to control any spinning mode. The multi channel control system to control both fan tones and a high pressure compressor BPF tone simultaneously. In order to make active control of turbofan inlet noise a viable technology, a compact sound source is employed to generate the control field. This control field sound source consists of an array of identical thin, cylindrically curved panels with an inner radius of curvature corresponding to that of the engine inlet. These panels are flush mounted inside the inlet duct and sealed on all edges to prevent leakage around the panel and to minimize the aerodynamic losses created by the addition of the panels. Each panel is driven by one or more piezoelectric force transducers mounted on the surface of the panel. The response of the panel to excitation is maximized when it is driven at its resonance; therefore, the panel is designed such that its fundamental frequency is near the tone to be canceled, typically 2000-4000 Hz.

  17. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    SciTech Connect

    Fernandez-Gutierrez, Sulmer; Browning, Jim; Lin, Ming-Chieh; Smithe, David N.; Watrous, Jack

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  18. Error control in the set-up of stereo camera systems for 3d animal tracking

    NASA Astrophysics Data System (ADS)

    Cavagna, A.; Creato, C.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Viale, M.

    2015-12-01

    Three-dimensional tracking of animal systems is the key to the comprehension of collective behavior. Experimental data collected via a stereo camera system allow the reconstruction of the 3d trajectories of each individual in the group. Trajectories can then be used to compute some quantities of interest to better understand collective motion, such as velocities, distances between individuals and correlation functions. The reliability of the retrieved trajectories is strictly related to the accuracy of the 3d reconstruction. In this paper, we perform a careful analysis of the most significant errors affecting 3d reconstruction, showing how the accuracy depends on the camera system set-up and on the precision of the calibration parameters.

  19. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  20. Overview of current development in patient-controlled analgesia.

    PubMed

    Lindley, C

    1994-09-01

    Over the past two decades, numerous trials have assessed the safety and efficacy of patient-controlled analgesia (PCA). Advantages over conventional parenteral narcotics reported from these trials include equivalent to superior pain relief, superior patient satisfaction, decreased sedation and anxiety, faster return to normal functional status, and reduction in nursing time and hospitalization. The majority of these trials have been conducted in the postoperative patient population. In the mid to late 1980s, interest arose in applying PCA technology to the management of cancer pain. Factors that served as an impetus for the use of PCA in cancer pain included favorable reports from the postoperative setting and the often-cited statistics regarding the magnitude of the cancer pain problem. Advances in PCA technology coupled with advances in vascular access technology that allow the placement of long-term ports and catheters to facilitate intravenous, epidural, or intrathecal administration of opioid analgesics have made the applicability of PCA in ambulatory cancer patients an attractive option. The greatest breakthrough in PCA technology came with the introduction of devices making it possible to choose between intermittent (demand bolus) and continuous administration (continuous infusion) or both intermittent and continuous modes. A comparison of these types of PCA devices is described. The limitations of the literature involving PCA therapy in cancer patients make it difficult to identify optimal patient selection criteria, PCA administration schedules, drug selection and dosing, and optimal route of administration. The current status and pertinent issues related to these topics are addressed.

  1. Central neural control of the cardiovascular system: current perspectives.

    PubMed

    Dampney, Roger A L

    2016-09-01

    This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system. Such cardiovascular regulatory mechanisms do not operate in isolation but are closely coordinated with respiratory and other regulatory mechanisms to maintain homeostasis. The brain regulates the cardiovascular system by two general means: 1) feedforward regulation, often referred to as "central command," and 2) feedback or reflex regulation. In most situations (e.g., during exercise, defensive behavior, sleep, etc.), both of these general mechanisms contribute to overall cardiovascular homeostasis. The review first describes the mechanisms and central circuitry subserving the baroreceptor, chemoreceptor, and other reflexes that work together to regulate an appropriate level of blood pressure and blood oxygenation and then considers the brain mechanisms that defend the body against more complex environmental challenges, using dehydration and cold and heat stress as examples. The last section of the review considers the central mechanisms regulating cardiovascular function associated with different behaviors, with a specific focus on defensive behavior and exercise.

  2. Current profile control experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Malmberg, J. A.; Marrelli, L.; Martin, P.; Spizzo, G.

    2002-11-01

    EXTRAP T2R is a high aspect ratio (R=1.24 m, a = 0.183 m) reversed-field pinch device, characterised by a double, thin shell system. The simultaneous presence of many m=1, |n| > 11 tearing modes is responsible for a magnetic field turbulence, which is believed to produce the rather high energy and particle transport that is observed in this type of magnetic configuration. In this paper first results from current profile control experiments (PPCD) in a thin shell device are shown. When an edge poloidal electric field is transiently applied, an increase of the electron temperature and of the electron density is seen, which is consistent with an increase of the thermal content of the plasma. At the same time, the soft x-ray emission, measured with a newly installed miniaturised camera, shows a peaking of the profile in the core. Furthermore, the amplitudes of the m=1 tearing modes are reduced and and the rotation velocities increase during PPCD, which is also consistent with a reduction of magnetic turbulence and a heating of the plasma

  3. Macroscopic strain controlled ion current in an elastomeric microchannel

    SciTech Connect

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael; Li, Yongxue; Esser-Kahn, Aaron P.; Valdevit, Lorenzo; Sun, Lizhi; Siwy, Zuzanna

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  4. Force to rebalance control of HRG and suppression of its errors on the basis of FPGA.

    PubMed

    Wang, Xu; Wu, Wenqi; Luo, Bing; Fang, Zhen; Li, Yun; Jiang, Qingan

    2011-01-01

    A novel design of force to rebalance control for a hemispherical resonator gyro (HRG) based on FPGA is demonstrated in this paper. The proposed design takes advantage of the automatic gain control loop and phase lock loop configuration in the drive mode while making full use of the quadrature control loop and rebalance control loop in controlling the oscillating dynamics in the sense mode. First, the math model of HRG with inhomogeneous damping and frequency split is theoretically analyzed. In addition, the major drift mechanisms in the HRG are described and the methods that can suppress the gyro drift are mentioned. Based on the math model and drift mechanisms suppression method, four control loops are employed to realize the manipulation of the HRG by using a FPGA circuit. The reference-phase loop and amplitude control loop are used to maintain the vibration of primary mode at its natural frequency with constant amplitude. The frequency split is readily eliminated by the quadrature loop with a DC voltage feedback from the quadrature component of the node. The secondary mode response to the angle rate input is nullified by the rebalance control loop. In order to validate the effect of the digital control of HRG, experiments are carried out with a turntable. The experimental results show that the design is suitable for the control of HRG which has good linearity scale factor and bias stability.

  5. Variational quality control of hydrographic profile data with non-Gaussian errors for global ocean variational data assimilation systems

    NASA Astrophysics Data System (ADS)

    Storto, Andrea

    2016-08-01

    Quality control procedures aiming at identifying observations suspected of gross errors are an important component of modern ocean data assimilation systems. On the one hand, assimilating observations whose departures from the background state are large may result in detrimental analyses and compromise the stability of the ocean analysis system. On the other hand, the rejection of these observations may prevent the analysis from ingesting useful information, especially in areas of large variability. In this work, we investigate the quality control of in-situ hydrographic profiles through modifying the probability density function (PDF) of the observational errors and relaxing the assumption of Gaussian PDF. The new PDF is heavier-tailed than Gaussian, thus accommodating the assimilation of observations with large misfits, albeit with smaller weight given to them in the analysis. This implies a different observational term in the analysis equation, and an adaptive quality control procedure based on the innovation statistics themselves. Implemented in a global ocean variational data assimilation system at moderate horizontal resolution, the scheme proves robust and successful in assimilating more observations with respect to the simpler background quality check scheme. This leads to better skill scores against both conventional and satellite observing systems. This approach proves superior also to the case where no quality control is considered. Furthermore, the implementation considers switching on the modified cost function at the 10th iteration of the minimization so that innovation statistics are based on a good approximation of the analysis. Neglecting this strategy and turning on the variational quality control since the beginning of the minimization exhibits worse scores, qualitatively similar to those of the experiment without quality control, suggesting that in this case quality control procedures are too gentle. A specific study investigating the upper

  6. Doubly-Latent Models of School Contextual Effects: Integrating Multilevel and Structural Equation Approaches to Control Measurement and Sampling Error.

    PubMed

    Marsh, Herbert W; Lüdtke, Oliver; Robitzsch, Alexander; Trautwein, Ulrich; Asparouhov, Tihomir; Muthén, Bengt; Nagengast, Benjamin

    2009-11-30

    This article is a methodological-substantive synergy. Methodologically, we demonstrate latent-variable contextual models that integrate structural equation models (with multiple indicators) and multilevel models. These models simultaneously control for and unconfound measurement error due to sampling of items at the individual (L1) and group (L2) levels and sampling error due the sampling of persons in the aggregation of L1 characteristics to form L2 constructs. We consider a set of models that are latent or manifest in relation to sampling items (measurement error) and sampling of persons (sampling error) and discuss when different models might be most useful. We demonstrate the flexibility of these 4 core models by extending them to include random slopes, latent (single-level or cross-level) interactions, and latent quadratic effects. Substantively we use these models to test the big-fish-little-pond effect (BFLPE), showing that individual student levels of academic self-concept (L1-ASC) are positively associated with individual level achievement (L1-ACH) and negatively associated with school-average achievement (L2-ACH)-a finding with important policy implications for the way schools are structured. Extending tests of the BFLPE in new directions, we show that the nonlinear effects of the L1-ACH (a latent quadratic effect) and the interaction between gender and L1-ACH (an L1 × L1 latent interaction) are not significant. Although random-slope models show no significant school-to-school variation in relations between L1-ACH and L1-ASC, the negative effects of L2-ACH (the BFLPE) do vary somewhat with individual L1-ACH. We conclude with implications for diverse applications of the set of latent contextual models, including recommendations about their implementation, effect size estimates (and confidence intervals) appropriate to multilevel models, and directions for further research in contextual effect analysis.

  7. Steam generator degradation: Current mitigation strategies for controlling corrosion

    SciTech Connect

    Millett, P.

    1997-02-01

    Steam Generator degradation has caused substantial losses of power generation, resulted in large repair and maintenance costs, and contributed to significant personnel radiation exposures in Pressurized Water Reactors (PWRs) operating throughout the world. EPRI has just published the revised Steam Generator Reference Book, which reviews all of the major forms of SG degradation. This paper discusses the types of SG degradation that have been experienced with emphasis on the mitigation strategies that have been developed and implemented in the field. SG degradation is presented from a world wide perspective as all countries operating PWRs have been effected to one degree or another. The paper is written from a US. perspective where the utility industry is currently undergoing tremendous change as a result of deregulation of the electricity marketplace. Competitive pressures are causing utilities to strive to reduce Operations and Maintenance (O&M) and capital costs. SG corrosion is a major contributor to the O&M costs of PWR plants, and therefore US utilities are evaluating and implementing the most cost effective solutions to their corrosion problems. Mitigation strategies developed over the past few years reflect a trend towards plant specific solutions to SG corrosion problems. Since SG degradation is in most cases an economic problem and not a safety problem, utilities can focus their mitigation strategies on their unique financial situation. Accordingly, the focus of R&D has shifted from the development of more expensive, prescriptive solutions (e.g. reduced impurity limits) to corrosion problems to providing the utilities with a number of cost effective mitigation options (e.g. molar ratio control, boric acid treatment).

  8. Preventing (impulsive) errors: Electrophysiological evidence for online inhibitory control over incorrect responses

    PubMed Central

    van den Wildenberg, Wery P. M.; Spieser, Laure; Ridderinkhof, K. Richard

    2016-01-01

    Abstract In a rich environment, with multiple action affordances, selective action inhibition is critical in preventing the execution of inappropriate responses. Here, we studied the origin and the dynamics of incorrect response inhibition and how it can be modulated by task demands. We used EEG in a conflict task where the probability of compatible and incompatible trials was varied. This allowed us to modulate the strength of the prepotent response, and hence to increase the risk of errors, while keeping the probability of the two responses equal. The correct response activation and execution was not affected by compatibility or by probability. In contrast, incorrect response inhibition in the primary motor cortex ipsilateral to the correct response was more pronounced on incompatible trials, especially in the condition where most of the trials were compatible, indicating a modulation of inhibitory strength within the course of the action. Two prefrontal activities, one medial and one lateral, were also observed before the response, and their potential links with the observed inhibitory pattern observed are discussed. PMID:27005956

  9. Biometrics based key management of double random phase encoding scheme using error control codes

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2013-08-01

    In this paper, an optical security system has been proposed in which key of the double random phase encoding technique is linked to the biometrics of the user to make it user specific. The error in recognition due to the biometric variation is corrected by encoding the key using the BCH code. A user specific shuffling key is used to increase the separation between genuine and impostor Hamming distance distribution. This shuffling key is then further secured using the RSA public key encryption to enhance the security of the system. XOR operation is performed between the encoded key and the feature vector obtained from the biometrics. The RSA encoded shuffling key and the data obtained from the XOR operation are stored into a token. The main advantage of the present technique is that the key retrieval is possible only in the simultaneous presence of the token and the biometrics of the user which not only authenticates the presence of the original input but also secures the key of the system. Computational experiments showed the effectiveness of the proposed technique for key retrieval in the decryption process by using the live biometrics of the user.

  10. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  11. Random and systematic errors in case-control studies calculating the injury risk of driving under the influence of psychoactive substances.

    PubMed

    Houwing, Sjoerd; Hagenzieker, Marjan; Mathijssen, René P M; Legrand, Sara-Ann; Verstraete, Alain G; Hels, Tove; Bernhoft, Inger Marie; Simonsen, Kirsten Wiese; Lillsunde, Pirjo; Favretto, Donata; Ferrara, Santo D; Caplinskiene, Marija; Movig, Kris L L; Brookhuis, Karel A

    2013-03-01

    Between 2006 and 2010, six population based case-control studies were conducted as part of the European research-project DRUID (DRiving Under the Influence of Drugs, alcohol and medicines). The aim of these case-control studies was to calculate odds ratios indicating the relative risk of serious injury in car crashes. The calculated odds ratios in these studies showed large variations, despite the use of uniform guidelines for the study designs. The main objective of the present article is to provide insight into the presence of random and systematic errors in the six DRUID case-control studies. Relevant information was gathered from the DRUID-reports for eleven indicators for errors. The results showed that differences between the odds ratios in the DRUID case-control studies may indeed be (partially) explained by random and systematic errors. Selection bias and errors due to small sample sizes and cell counts were the most frequently observed errors in the six DRUID case-control studies. Therefore, it is recommended that epidemiological studies that assess the risk of psychoactive substances in traffic pay specific attention to avoid these potential sources of random and systematic errors. The list of indicators that was identified in this study is useful both as guidance for systematic reviews and meta-analyses and for future epidemiological studies in the field of driving under the influence to minimize sources of errors already at the start of the study.

  12. Control and alignment of segmented-mirror telescopes: matrices, modes, and error propagation.

    PubMed

    Chanan, Gary; MacMartin, Douglas G; Nelson, Jerry; Mast, Terry

    2004-02-20

    Starting from the successful Keck telescope design, we construct and analyze the control matrix for the active control system of the primary mirror of a generalized segmented-mirror telescope, with up to 1000 segments and including an alternative sensor geometry to the one used at Keck. In particular we examine the noise propagation of the matrix and its consequences for both seeing-limited and diffraction-limited observations. The associated problem of optical alignment of such a primary mirror is also analyzed in terms of the distinct but related matrices that govern this latter problem.

  13. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials

    PubMed Central

    Iturrate, Iñaki; Grizou, Jonathan; Omedes, Jason; Oudeyer, Pierre-Yves; Lopes, Manuel; Montesano, Luis

    2015-01-01

    This paper presents a new approach for self-calibration BCI for reaching tasks using error-related potentials. The proposed method exploits task constraints to simultaneously calibrate the decoder and control the device, by using a robust likelihood function and an ad-hoc planner to cope with the large uncertainty resulting from the unknown task and decoder. The method has been evaluated in closed-loop online experiments with 8 users using a previously proposed BCI protocol for reaching tasks over a grid. The results show that it is possible to have a usable BCI control from the beginning of the experiment without any prior calibration. Furthermore, comparisons with simulations and previous results obtained using standard calibration hint that both the quality of recorded signals and the performance of the system were comparable to those obtained with a standard calibration approach. PMID:26131890

  14. Relationship of Air Traffic Control Specialist Age to En Route Operational Errors

    DTIC Science & Technology

    2005-12-01

    to the preservation of human life. This calls for recognition of the highly important fact that early retirement is not solely a matter of fairness...increased with age. This finding casts doubt on the explicit characterization of the mandatory early retirement of controllers as “primarily a safety

  15. Failing to Forget: Prospective Memory Commission Errors Can Result from Spontaneous Retrieval and Impaired Executive Control

    ERIC Educational Resources Information Center

    Scullin, Michael K.; Bugg, Julie M.

    2013-01-01

    Prospective memory (PM) research typically examines the ability to remember to execute delayed intentions but often ignores the ability to forget finished intentions. We had participants perform (or not perform; control group) a PM task and then instructed them that the PM task was finished. We later (re)presented the PM cue. Approximately 25% of…

  16. Wave-current interaction, experiments with controlled uniform shear

    NASA Astrophysics Data System (ADS)

    Simon, Bruno; Touboul, Julien; Rey, Vincent

    2016-04-01

    Vertically varying currents have a non negligible impact on the propagation of waves. Even though the analytical aspect of the interaction between wave and sheared current is being an active subject of research, experimental data remain rare. Here, the effects of a uniformly shear were investigated in the 10 m long by 0.3 m wide wave flume of the Université de Toulon, France. The main difficulty of the study was to produce several conditions of current with constant shear (du/dz = cst) that would persist along the channel. This was achieved by using curved wire screens upstream the channel (Dunn and Tavoularis, 2007). The geometry and properties of the screens were adjusted to deflect the streamline towards the channel bed or the free surface in order to change the velocity profile. The study focused on regular wave propagating against the current for several wave frequencies and amplitudes. Properties of the free surface and flow velocity are discussed for current with positive and negative shear in order to quantify the influence of the current on the waves. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.

  17. Acceptance Control Charts with Stipulated Error Probabilities Based on Poisson Count Data

    DTIC Science & Technology

    1973-01-01

    Richard L / Scheaffer ’.* Richard S eavenwort December,... 198 *Department of Industrial and Systems Engineering University of Florida Gainesville...L. Scheaffer N00014-75-C-0783 Richard S. Leavenworth 9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT. PROJECT, TASK Industrial and...PROBABILITIES BASED ON POISSON COUNT DATA by Suresh 1Ihatre Richard L. Scheaffer S..Richard S. Leavenworth ABSTRACT An acceptance control charting

  18. Error processing network dynamics in schizophrenia.

    PubMed

    Becerril, Karla E; Repovs, Grega; Barch, Deanna M

    2011-01-15

    Current theories of cognitive dysfunction in schizophrenia emphasize an impairment in the ability of individuals suffering from this disorder to monitor their own performance, and adjust their behavior to changing demands. Detecting an error in performance is a critical component of evaluative functions that allow the flexible adjustment of behavior to optimize outcomes. The dorsal anterior cingulate cortex (dACC) has been repeatedly implicated in error-detection and implementation of error-based behavioral adjustments. However, accurate error-detection and subsequent behavioral adjustments are unlikely to rely on a single brain region. Recent research demonstrates that regions in the anterior insula, inferior parietal lobule, anterior prefrontal cortex, thalamus, and cerebellum also show robust error-related activity, and integrate into a functional network. Despite the relevance of examining brain activity related to the processing of error information and supporting behavioral adjustments in terms of a distributed network, the contribution of regions outside the dACC to error processing remains poorly understood. To address this question, we used functional magnetic resonance imaging to examine error-related responses in 37 individuals with schizophrenia and 32 healthy controls in regions identified in the basic science literature as being involved in error processing, and determined whether their activity was related to behavioral adjustments. Our imaging results support previous findings showing that regions outside the dACC are sensitive to error commission, and demonstrated that abnormalities in brain responses to errors among individuals with schizophrenia extend beyond the dACC to almost all of the regions involved in error-related processing in controls. However, error related responses in the dACC were most predictive of behavioral adjustments in both groups. Moreover, the integration of this network of regions differed between groups, with the

  19. Quantitative analysis of the reconstruction errors of the currently popular algorithm of magnetic resonance electrical property tomography at the interfaces of adjacent tissues.

    PubMed

    Duan, Song; Xu, Chao; Deng, Guanhua; Wang, Jiajia; Liu, Feng; Xin, Sherman Xuegang

    2016-06-01

    This work quantitatively analyzed the reconstruction errors (REs) of electrical property (EP) images using a currently popular algorithm of magnetic resonance electrical property tomography (MREPT), which occurred along the tissue interfaces. Transmitted magnetic fields B1+ were acquired at 3 T using a birdcage coil loaded with a phantom consisting of various adjacent tissues. Homogeneous Helmholtz was employed to calculate the EP maps by Laplacian computation of central differences. The maps of absolute REs (aREs) and relative REs (rREs) were calculated. The maximum and mean rREs, in addition to rRE distributions at the interfaces, were presented. Reconstructed EP maps showed various REs along different interface boundaries. Among all the investigated tissue interfaces, the kidney-fat interface presented the maximum mean rREs for both conductivity and relative permittivity. The minimum mean rRE of conductivity was observed at the spleen-muscle interface, and the minimum mean rRE of relative permittivity was detected along the lung-heart interface. The mean rREs ranged from 0.3986 to 36.11 for conductivity and 0.2218 to 11.96 for relative permittivity. Overall, this research indicates that different REs occur at various tissue boundaries, as shown by the currently popular algorithm of MREPT. Thus, REs should be considered when applying MREPT to reconstruct the EP distributions inside the human body. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Empathy and error processing.

    PubMed

    Larson, Michael J; Fair, Joseph E; Good, Daniel A; Baldwin, Scott A

    2010-05-01

    Recent research suggests a relationship between empathy and error processing. Error processing is an evaluative control function that can be measured using post-error response time slowing and the error-related negativity (ERN) and post-error positivity (Pe) components of the event-related potential (ERP). Thirty healthy participants completed two measures of empathy, the Interpersonal Reactivity Index (IRI) and the Empathy Quotient (EQ), and a modified Stroop task. Post-error slowing was associated with increased empathic personal distress on the IRI. ERN amplitude was related to overall empathy score on the EQ and the fantasy subscale of the IRI. The Pe and measures of empathy were not related. Results remained consistent when negative affect was controlled via partial correlation, with an additional relationship between ERN amplitude and empathic concern on the IRI. Findings support a connection between empathy and error processing mechanisms.

  1. A systematic review of current and emergent manipulator control approaches

    NASA Astrophysics Data System (ADS)

    Ajwad, Syed Ali; Iqbal, Jamshed; Ullah, Muhammad Imran; Mehmood, Adeel

    2015-06-01

    Pressing demands of productivity and accuracy in today's robotic applications have highlighted an urge to replace classical control strategies with their modern control counterparts. This recent trend is further justified by the fact that the robotic manipulators have complex nonlinear dynamic structure with uncertain parameters. Highlighting the authors' research achievements in the domain of manipulator design and control, this paper presents a systematic and comprehensive review of the state-of-the-art control techniques that find enormous potential in controlling manipulators to execute cuttingedge applications. In particular, three kinds of strategies, i.e., intelligent proportional-integral-derivative (PID) scheme, robust control and adaptation based approaches, are reviewed. Future trend in the subject area is commented. Open-source simulators to facilitate controller design are also tabulated. With a comprehensive list of references, it is anticipated that the review will act as a firsthand reference for researchers, engineers and industrialinterns to realize the control laws for multi-degree of freedom (DOF) manipulators.

  2. Control of Hall angle of Skyrmion driven by electric current

    NASA Astrophysics Data System (ADS)

    Gao-Bin, Liu; Da, Li; de Chatel, P. F.; Jian, Wang; Wei, Liu; Zhi-Dong, Zhang

    2016-06-01

    Skyrmions are very promising for applications in spintronics and magnetic memory. It is desired to manipulate and operate a single skyrmion. Here we report on the thermal effect on the motion of current-driven magnetic Skyrmions in magnetic metal. The results show that the magnon current induced by the thermal gradient acts on Skyrmions via magnonic spin-transfer torque, an effect of the transverse and longitudinal Skyrmions drift velocities, thus leading to the effective manipulation of the Hall angle through the ratio of thermal gradient to electric current density, which can be used as a Skyrmion valve. Project supported by the National Natural Science Foundation of China (Grant No. 51331006) and the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).

  3. Controlling charge current through a DNA based molecular transistor

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Fathizadeh, S.; Ziaei, J.

    2017-01-01

    Molecular electronics is complementary to silicon-based electronics and may induce electronic functions which are difficult to obtain with conventional technology. We have considered a DNA based molecular transistor and study its transport properties. The appropriate DNA sequence as a central chain in molecular transistor and the functional interval for applied voltages is obtained. I-V characteristic diagram shows the rectifier behavior as well as the negative differential resistance phenomenon of DNA transistor. We have observed the nearly periodic behavior in the current flowing through DNA. It is reported that there is a critical gate voltage for each applied bias which above it, the electrical current is always positive.

  4. Current profile control experiments with LHCD on TdeV

    NASA Astrophysics Data System (ADS)

    Côté, A.; Côté, C.; Demers, Y.; Fuchs, V.; Litaudon, X.; Abel, G.; Lachambre, J.-L.; Mercier, J.-F.; Michaud, D.; Quirion, B.; Shkarofsky, I. P.; Shoucri, M.; St-Onge, M.

    1997-04-01

    Large current profile modifications (-0.4current drive efficiency with residual electrical field using a power scan method is used to model these discharges with CRONOS. CRONOS modelling of TdeV discharges with LHCD and ECRH predicts steady state reversed shear.

  5. Measles: Current Status and Outbreak Control on Campus.

    ERIC Educational Resources Information Center

    Amler, Robert W.; Orenstein, Walter A.

    1984-01-01

    The current effort to eliminate measles in the United States has caused record low levels of the disease. This strategy must continue to be applied in order to break the transmission of measles on college campuses through high immunization levels, promotion of rapid reporting of cases, and quick responses to outbreaks. (Author/DF)

  6. Mammalian biodiversity on Madagascar controlled by ocean currents.

    PubMed

    Ali, Jason R; Huber, Matthew

    2010-02-04

    Madagascar hosts one of the world's most unusual, endemic, diverse and threatened concentrations of fauna. To explain its unique, imbalanced biological diversity, G. G. Simpson proposed the 'sweepstakes hypothesis', according to which the ancestors of Madagascar's present-day mammal stock rafted there from Africa. This is an important hypothesis in biogeography and evolutionary theory for how animals colonize new frontiers, but its validity is questioned. Studies suggest that currents were inconsistent with rafting to Madagascar and that land bridges provided the migrants' passage. Here we show that currents could have transported the animals to the island and highlight evidence inconsistent with the land-bridge hypothesis. Using palaeogeographic reconstructions and palaeo-oceanographic modelling, we find that strong surface currents flowed from northeast Mozambique and Tanzania eastward towards Madagascar during the Palaeogene period, exactly as required by the 'sweepstakes process'. Subsequently, Madagascar advanced north towards the equatorial gyre and the regional current system evolved into its modern configuration with flows westward from Madagascar to Africa. This may explain why no fully non-aquatic land mammals have colonized Madagascar since the arrival of the rodents and carnivorans during the early-Miocene epoch. One implication is that rafting may be the dominant means of overseas dispersal in the Cenozoic era when palaeocurrent directions are properly considered.

  7. A differential-delay control for ramped magnet current

    SciTech Connect

    Murray, J. . Dept. of Electrical Engineering); Olsen, R. )

    1992-01-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  8. A differential-delay control for ramped magnet current

    SciTech Connect

    Murray, J.; Olsen, R.

    1992-11-01

    A differential-delay control system has been designed and implemented for the main dipole magnet power supply of the booster ring at the National Synchrotron Light Source at Brookhaven National Lab. The control algorithm was implemented on a floating-point digital signal processor; in tests, the use of digital signal-processing techniques gave a factor of ten improvement in the tracking response time, together with a modest improvement in tracking accuracy.

  9. ALTIMETER ERRORS,

    DTIC Science & Technology

    CIVIL AVIATION, *ALTIMETERS, FLIGHT INSTRUMENTS, RELIABILITY, ERRORS , PERFORMANCE(ENGINEERING), BAROMETERS, BAROMETRIC PRESSURE, ATMOSPHERIC TEMPERATURE, ALTITUDE, CORRECTIONS, AVIATION SAFETY, USSR.

  10. (abstract) Experimental Results From Internetworking Data Applications Over Various Wireless Networks Using a Single Flexible Error Control Protocol

    NASA Technical Reports Server (NTRS)

    Kanai, T.; Kramer, M.; McAuley, A. J.; Nowack, S.; Pinck, D. S.; Ramirez, G.; Stewart, I.; Tohme, H.; Tong, L.

    1995-01-01

    This paper describes results from several wireless field trials in New Jersey, California, and Colorado, conducted jointly by researchers at Bellcore, JPL, and US West over the course of 1993 and 1994. During these trials, applications communicated over multiple wireless networks including satellite, low power PCS, high power cellular, packet data, and the wireline Public Switched Telecommunications Network (PSTN). Key goals included 1) designing data applications and an API suited to mobile users, 2) investigating internetworking issues, 3) characterizing wireless networks under various field conditions, and 4) comparing the performance of different protocol mechanisms over the diverse networks and applications. We describe experimental results for different protocol mechanisms and parameters, such as acknowledgment schemes and packet sizes. We show the need for powerful error control mechanisms such as selective acknowledgements and combining data from multiple transmissions. We highlight the possibility of a common protocol for all wireless networks, from micro-cellular PCS to satellite networks.

  11. A Novel Current Angle Control Scheme in a Current Source Inverter Fed Permanent Magnet Synchronous Motor Drive for Automotive Applications

    SciTech Connect

    Tang, Lixin; Su, Gui-Jia

    2011-01-01

    This paper describes a novel speed control scheme to operate a current source inverter (CSI) driven surface-mounted permanent magnet synchronous machine (SPMSM) for hybrid electric vehicles (HEVs) applications. The idea is to use the angle of the current vector to regulate the rotor speed while keeping the two dc-dc converter power switches on all the time to boost system efficiency. The effectiveness of the proposed scheme was verified with a 3 kW CSI-SPMSM drive prototype.

  12. Space-charge-controlled field emission model of current conduction through Al2O3 films

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Kawarada, Hiroshi

    2016-02-01

    This study proposes a model for current conduction in metal-insulator-semiconductor (MIS) capacitors, assuming the presence of two sheets of charge in the insulator, and derives analytical formulae of field emission (FE) currents under both negative and positive bias. Since it is affected by the space charge in the insulator, this particular FE differs from the conventional FE and is accordingly named the space-charge-controlled (SCC) FE. The gate insulator of this study was a stack of atomic-layer-deposition Al2O3 and underlying chemical SiO2 formed on Si substrates. The current-voltage (I-V) characteristics simulated using the SCC-FE formulae quantitatively reproduced the experimental results obtained by measuring Au- and Al-gated Al2O3/SiO2 MIS capacitors under both biases. The two sheets of charge in the Al2O3 films were estimated to be positive and located at a depth of greater than 4 nm from the Al2O3/SiO2 interface and less than 2 nm from the gate. The density of the former is approximately 1 × 1013 cm-2 in units of electronic charge, regardless of the type of capacitor. The latter forms a sheet of dipoles together with image charges in the gate and hence causes potential jumps of 0.4 V and 1.1 V in the Au- and Al-gated capacitors, respectively. Within a margin of error, this sheet of dipoles is ideally located at the gate/Al2O3 interface and effectively reduces the work function of the gate by the magnitude of the potential jumps mentioned above. These facts indicate that the currents in the Al2O3/SiO2 MIS capacitors are enhanced as compared to those in ideal capacitors and that the currents in the Al-gated capacitors under negative bias (electron emission from the gate) are more markedly enhanced than those in the Au-gated capacitors. The larger number of gate-side dipoles in the Al-gated capacitors is possibly caused by the reaction between the Al and Al2O3, and therefore gate materials that do not react with underlying gate insulators should be chosen

  13. Current Issues in Human Spacecraft Thermal Control Technology

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.

    2008-01-01

    Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.

  14. BVD control in Europe: current status and perspectives.

    PubMed

    Moennig, Volker; Houe, Hans; Lindberg, Ann

    2005-06-01

    For several decades after the first description of bovine viral diarrhea and its causative agent (BVDV) the economic impact of the infection was underestimated and in addition there were no suitable diagnostics and procedures for a systematic control at hand. Today, there are several estimates on the real economic impact of the infection and during the last 15 years the serological and virological laboratory diagnosis of BVDV infections has improved. Also, successful procedures aimed at eradicating BVDV infections by using a strict test and removal policy for animals persistently infected (PI) with BVDV accompanied by movement restrictions for infected herds have been implemented in the Scandinavian countries. The success of these efforts has encouraged other European countries to follow the same procedures. However, the Scandinavian control strategy might-for a number of reasons-not be acceptable for all European countries. In such cases, the test and removal strategy, with its fundamental elements of biosecurity, removal of PI animals and monitoring of herd status, in combination with systematic vaccination, might be an acceptable compromise. The impact of the BVDV-free status of regions and nations on international trade is not yet clear. In any case, biosecurity measures will be of utmost importance for individual control programs as well as multiple control programs to co-exist in Europe.

  15. RNAi for insect control: current perspective and future challenges.

    PubMed

    Katoch, Rajan; Sethi, Amit; Thakur, Neelam; Murdock, Larry L

    2013-10-01

    The research on the RNA interference (RNAi) for the control of insect pests has made significant growth in recent years. The availability of the genomic sequences of insects has further widened the horizons for the testing of this technology to various insect groups. Different modes of application of double-stranded RNA (dsRNA) have been tested; however, the practicability of delivery of dsRNA in insects still remains the biggest challenge. Till date, the oral delivery of dsRNA in insects is one of the efficient approaches for the practical application of this technique. The uptake of dsRNA from the insect gut is mediated either by SID-1/SID-2 transmembrane proteins or by endocytosis; however, the systemic RNAi machinery still remains to be revealed in insect species. The RNAi-mediated gene knockdown has shown striking results in different insect groups, pointing it to be the upcoming technique for insect control. However, before the successful application of this technique for insect control, some potential issues need to be resolved. This review presents the account of prospects and challenges for the use of this technology for insect control.

  16. Alternating current-generated plasma discharges for the controlled direct current charging of ferroelectrets

    NASA Astrophysics Data System (ADS)

    Cury Basso, Heitor; Monteiro, José Roberto B. de A.; Baladelli Mazulquim, Daniel; Teixeira de Paula, Geyverson; Gonçalves Neto, Luiz; Gerhard, Reimund

    2013-09-01

    The standard charging process for polymer ferroelectrets, e.g., from polypropylene foams or layered film systems involves the application of high DC fields either to metal electrodes or via a corona discharge. In this often-used process, the DC field triggers the internal breakdown and limits the final charge densities inside the ferroelectret cavities and, thus, the final polarization. Here, an AC + DC charging procedure is proposed and demonstrated in which a high-voltage high-frequency (HV-HF) wave train is applied together with a DC poling voltage. Thus, the internal dielectric-barrier discharges in the ferroelectret cavities are induced by the HV-HF wave train, while the final charge and polarization level is controlled separately through the applied DC voltage. In the new process, the frequency and the amplitude of the HV-HF wave train must be kept within critical boundaries that are closely related to the characteristics of the respective ferroelectrets. The charging method has been tested and investigated on a fluoropolymer-film system with a single well-defined cylindrical cavity. It is found that the internal electrical polarization of the cavity can be easily controlled and increases linearly with the applied DC voltage up to the breakdown voltage of the cavity. In the standard charging method, however, the DC voltage would have to be chosen above the respective breakdown voltage. With the new method, control of the HV-HF wave-train duration prevents a plasma-induced deterioration of the polymer surfaces inside the cavities. It is observed that the frequency of the HV-HF wave train during ferroelectret charging and the temperature applied during poling of ferroelectrics serve an analogous purpose. The analogy and the similarities between the proposed ferroelectret charging method and the poling of ferroelectric materials or dipole electrets at elevated temperatures with subsequent cooling under field are discussed.

  17. Current status of patient-controlled analgesia in cancer patients.

    PubMed

    Ripamonti, C; Bruera, E

    1997-03-01

    Patient-controlled analgesia (PCA) is a relatively new technique in which patients are able to self-administer small doses of opioid analgesics when needed. Many different devices are available for opioid infusion, including a syringe pump, disposable plastic cylinder, and battery-operated computer-driven pump. These devices allow patients to choose an intermittent (demand) bolus, continuous infusion, or both modes of administration. Parameters, such as route, drug concentration dose, frequency, and maximum daily or hourly dose, are programmed by the physician. The patient decides whether or not to take a dose. Devices can be used to deliver the drug into a running intravenous infusion, the epidural space, or subcutaneously. Controlled trials indicate that PCA is probably superior to regular opioid administration in postoperative pain. Reported advantages include greater patient satisfaction, decreased sedation and anxiety, and reduced nursing time and hospitalization. Preliminary experience suggests that PCA is also useful and safe for cancer pain, but further research is greatly needed.

  18. Report of the Subpanel on Error Characterization and Error Budgets

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The state of knowledge of both user positioning requirements and error models of current and proposed satellite systems is reviewed. In particular the error analysis models for LANDSAT D are described. Recommendations are given concerning the geometric error model for the thematic mapper; interactive user involvement in system error budgeting and modeling and verification on real data sets; and the identification of a strawman mission for modeling key error sources.

  19. Current status of hypertension control around the world.

    PubMed

    Erdine, Serap; Aran, Sinan Nazif

    2004-01-01

    It is well established that hypertension is an important risk factor for cardiovascular disease. Data from epidemiological and observational studies have demonstrated increasing risk of stroke, myocardial infarction, cardiovascular death and all cause mortality associated with high blood pressure. Despite the significance of the problem with respect to overall health, control of high blood pressure is far from being optimal. Data from the National Health and Nutrition Survey have shown that those achieving target blood pressure values less than 140/90 mmHg are only 34% of the hypertensive population. The situation is no better in the rest of the world and even worse in the developing countries. Epidemiological transition taking place in developing countries with a decline in communicable diseases and an increase in noncommunicable have resulted in an improvement in life expectancy, thus causing predictable shifts in causes of death. Aging of the populations, urbanization and socioeconomic changes in the developing world have led to an increase in the prevalence of hypertension, with low control rates due to scarce health resources and insufficient health infrastructure. Thus prevention, detection, treatment and control of hypertension play a crucial role in protection of cardiovascular disease, not only in the developed countries but also in the developing world and implementation of hypertension guidelines should be reinforced around the world.

  20. Adaptation to random and systematic errors: Comparison of amputee and non-amputee control interfaces with varying levels of process noise

    PubMed Central

    Kording, Konrad P.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2017-01-01

    The objective of this study was to understand how people adapt to errors when using a myoelectric control interface. We compared adaptation across 1) non-amputee subjects using joint angle, joint torque, and myoelectric control interfaces, and 2) amputee subjects using myoelectric control interfaces with residual and intact limbs (five total control interface conditions). We measured trial-by-trial adaptation to self-generated errors and random perturbations during a virtual, single degree-of-freedom task with two levels of feedback uncertainty, and evaluated adaptation by fitting a hierarchical Kalman filter model. We have two main results. First, adaptation to random perturbations was similar across all control interfaces, whereas adaptation to self-generated errors differed. These patterns matched predictions of our model, which was fit to each control interface by changing the process noise parameter that represented system variability. Second, in amputee subjects, we found similar adaptation rates and error levels between residual and intact limbs. These results link prosthesis control to broader areas of motor learning and adaptation and provide a useful model of adaptation with myoelectric control. The model of adaptation will help us understand and solve prosthesis control challenges, such as providing additional sensory feedback. PMID:28301512

  1. Current and Future Developments in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Jackson, Joseph; Green, Steven M.

    1999-01-01

    Current and future energy demands, end uses, and cost used to characterize typical applications services in the industrial sector of the United States are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research market suitability analysis; (2) market development; (3) end use matching; (4) industrial application studies; and (5) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2, 3, and 4 digit SIC, primary fuel. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed.

  2. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    SciTech Connect

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignment of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors

  3. Sensor-based control in eddy current separation of incinerator bottom ash.

    PubMed

    Rahman, Md Abdur; Bakker, M C M

    2013-06-01

    A sensor unit was placed online in the particle stream produced by an eddy current separator (ECS) to investigate its functionality in non-ferrous metals recovery. The targeted feed was the 1-6mm size fraction bottom ash from a municipal waste incinerator. The sensor unit was attached to the ECS splitter, where it counted in real-time metal and mineral particles and accurately measured the grade of the stream in the metals product. Influence of segregation (e.g. due to particle size or density) on the metals concentrate were detected and studied using the sensor data collected at different splitter distances. Tests were performed in the laboratory and in a bottom ash processing plant with two different types of ECS and two sources of bottom ash with different moisture content. The measured metal grades matched the manual analyses with errors 0%, 1.5% and 3.1% for moist, dry and very wet feed, respectively. For very wet feed the ECS metals recovery dropped, which was observed from the strongly reduced particle counts and the large changes in cumulative particle properties. The measured sample proved representative for the whole metals concentrate if it is collected at a representative position within the metals particle trajectory fan produced by the ECS. ECS-performance proved sensitively dependent on splitter distance, since a 10mm shift may result in 10% change in metal recovery and 18% change in grade. The main functionalities of the sensor unit are determined as online quality control and facilitation of automatic control over the ECS splitter distance. These functionalities translate in significant improvements in ECS metals recovery which in turn is linked to economic benefits, increased recycling rate of scrap metals and a further reduction of the ecological drawbacks of incinerator bottom ash.

  4. ANTERIOR CHAMBER DEPTH, LENS THICKNESS, AND RELATED MEASURES IN AFRICAN-AMERICAN FEMALES WITH LONG ANTERIOR ZONULES: A MATCHED STUDY WITH CONTROL FOR REFRACTIVE ERROR

    PubMed Central

    Roberts, Daniel K.; Teitelbaum, Bruce A.; Castells, David D.; Winters, Janis E.; Wilensky, Jacob T.

    2014-01-01

    Purpose To investigate anterior chamber depth (ACD), lens thickness (LT), vitreous body length (VBL), and axial length (AL) in African-American females with long anterior zonules (LAZ) while controlling for refractive error. Methods The eyes of 50 African-American females with LAZ were compared to 50 controls matched on age, race, sex, and refractive error. Central ACD, LT, VBL, and AL measurements were obtained in a masked fashion using a-scan ultrasonography. Results LAZ cases had a mean age ± SD (range) = 67.1 ± 7.6 years (52–85 years) and a mean refractive error = +1.85 ± 1.41D (−1.75 to +4.75D). Parameters were similar for controls. Mean ACD for cases was 2.45 ± 0.34 mm and 2.57 ± 0.38 mm for controls. Mean LT for cases was 4.94 ± 0.43 mm and 4.83 ± 0.45 mm for controls. Mean VBL for cases was 15.00 ± 0.72 mm and 15.17 ± 0.76 mm for controls. Mean AL for cases was 22.39 ± 0.82 mm and 22.57 ± 0.76 mm for controls. Using multiple logistic regression to control for any residual differences in age and refractive error, no significant differences were present between LAZ eyes and control eyes relative to the a-scan variables (P>0.1). Conclusions When refractive error was controlled for, this group of African-American females with LAZ did not exhibit clinically significant differences in ACD, LT, VBL, and AL as compared to controls. PMID:25093521

  5. Chemopreventive opportunities to control basal cell carcinoma: Current perspectives.

    PubMed

    Tilley, Cynthia; Deep, Gagan; Agarwal, Rajesh

    2015-09-01

    Basal cell carcinoma (BCC) is a major health problem with approximately 2.8 million new cases diagnosed each year in the United States. BCC incidences have continued to rise due to lack of effective chemopreventive options. One of the key molecular characteristics of BCC is the sustained activation of hedgehog signaling through inactivating mutations in the tumor suppressor gene patch (Ptch) or activating mutations in Smoothened. In the past, several studies have addressed targeting the activated hedgehog pathway for the treatment and prevention of BCC, although with toxic effects. Other studies have attempted BCC chemoprevention through targeting the promotional phase of the disease especially the inflammatory component. The compounds that have been utilized in pre-clinical and/or clinical studies include green and black tea, difluoromethylornithine, thymidine dinucleotide, retinoids, non-steroidal anti-inflammatory drugs, vitamin D3, and silibinin. In this review, we have discussed genetic and epigenetic modifications that occur during BCC development as well as the current state of BCC pre-clinical and clinical chemoprevention studies.

  6. Air gun wounding and current UK laws controlling air weapons.

    PubMed

    Bruce-Chwatt, Robert Michael

    2010-04-01

    Air weapons whether rifles or pistols are, potentially, lethal weapons. The UK legislation is complex and yet little known to the public. Hunting with air weapons and the laws controlling those animals that are permitted to be shot with air weapons is even more labyrinthine due to the legal power limitations on the possession of air weapons. Still relatively freely available by mail order or on the Internet, an increasing number of deaths have been reported from the misuse of air weapons or accidental discharges. Ammunition for air weapons has become increasingly sophisticated, effective and therefore increasingly dangerous if misused, though freely available being a mere projectile without a concomitant cartridge containing a propellant and an initiator.

  7. Turbine Engine Clearance Control Systems: Current Practices and Future Directions

    NASA Technical Reports Server (NTRS)

    Lattime, Scott B.; Steinetz, Bruce M.

    2002-01-01

    Improved blade tip sealing in the high pressure compressor (HPC) and high pressure turbine (HPT) can provide dramatic reductions in specific fuel consumption (SFC), time-on-wing, compressor stall margin, and engine efficiency as well as increased payload and mission range capabilities. Maintenance costs to overhaul large commercial gas turbine engines can easily exceed $1M. Engine removal from service is primarily due to spent exhaust gas temperature (EGT) margin caused mainly by the deterioration of HPT components. Increased blade tip clearance is a major factor in hot section component degradation. As engine designs continue to push the performance envelope with fewer parts and the market drives manufacturers to increase service life, the need for advanced sealing continues to grow. A review of aero gas turbine engine HPT performance degradation and the mechanisms that promote these losses are discussed. Benefits to the HPT due to improved clearance management are identified. Past and present sealing technologies are presented along with specifications for next generation engine clearance control systems.

  8. Science, practice, and human errors in controlling Clostridium botulinum in heat-preserved food in hermetic containers.

    PubMed

    Pflug, Irving J

    2010-05-01

    The incidence of botulism in canned food in the last century is reviewed along with the background science; a few conclusions are reached based on analysis of published data. There are two primary aspects to botulism control: the design of an adequate process and the delivery of the adequate process to containers of food. The probability that the designed process will not be adequate to control Clostridium botulinum is very small, probably less than 1.0 x 10(-6), based on containers of food, whereas the failure of the operator of the processing equipment to deliver the specified process to containers of food may be of the order of 1 in 40, to 1 in 100, based on processing units (retort loads). In the commercial food canning industry, failure to deliver the process will probably be of the order of 1.0 x 10(-4) to 1.0 x 10(-6) when U.S. Food and Drug Administration (FDA) regulations are followed. Botulism incidents have occurred in food canning plants that have not followed the FDA regulations. It is possible but very rare to have botulism result from postprocessing contamination. It may thus be concluded that botulism incidents in canned food are primarily the result of human failure in the delivery of the designed or specified process to containers of food that, in turn, result in the survival, outgrowth, and toxin production of C. botulinum spores. Therefore, efforts in C. botulinum control should be concentrated on reducing human errors in the delivery of the specified process to containers of food.

  9. Current knowledge on groundwater microbial pathogens and their control

    NASA Astrophysics Data System (ADS)

    Macler, Bruce A.; Merkle, Jon C.

    Those who drink groundwater that has not been disinfected are at increased risk of infection and disease from pathogenic microorganisms. Recent studies have shown that up to half of all US drinking-water wells tested had evidence of fecal contamination. A significant fraction of all waterborne disease outbreaks is associated with groundwater. An estimated 750,000 to 5.9million illnesses per year result from contaminated groundwaters in the US. Mortality from these illnesses may be 1400-9400 deaths per year. Control of these pathogens starts with source-water protection activities to prevent fecal contamination of aquifers and wells. These include assessment of wellhead vulnerability to fecal contamination and correction of identified deficiencies. Correction may include control of sources or rehabilitation of the well itself. Disinfection can serve as a useful barrier and is recommended as a prudent public-health policy for all groundwater systems. Ceux qui boivent une eau souterraine non désinfectée présentent un risque accru d'infection et de maladie par des germes pathogènes. De récentes études ont montré que près de la moitié de tous les puits américains testés, captés pour l'eau potable, sont soumis à une contamination fécale. Une fraction significative de l'ensemble des premières manifestations de maladies liées à l'eau est associée aux eaux souterraines. On estime qu'entre 750 000 et 5,9millions de personnes sont malades chaque année aux États-Unis à cause d'eaux souterraines polluées. La mortalité parmi ces malades doit ètre de l'ordre de 1400 à 9400 décès par an. La protection contre ces germes pathogènes commence avec des mesures prises au niveau du captage pour empècher la pollution des aquifères et des puits. Celles-ci comprennent une évaluation de la vulnérabilité des tètes de puits à la pollution fécale et une correction des insuffisances mises en évidence. Cette correction peut comprendre une maîtrise des sources

  10. Medication Errors

    MedlinePlus

    ... common links HHS U.S. Department of Health and Human Services U.S. Food and Drug Administration A to Z Index Follow ... Practices National Patient Safety Foundation To Err is Human: ... Errors: Quality Chasm Series National Coordinating Council for Medication Error ...

  11. Error Analysis

    NASA Astrophysics Data System (ADS)

    Scherer, Philipp O. J.

    Input data as well as the results of elementary operations have to be represented by machine numbers, the subset of real numbers which is used by the arithmetic unit of today's computers. Generally this generates rounding errors. This kind of numerical error can be avoided in principle by using arbitrary precision arithmetics or symbolic algebra programs. But this is unpractical in many cases due to the increase in computing time and memory requirements. Results from more complex operations like square roots or trigonometric functions can have even larger errors since series expansions have to be truncated and iterations accumulate the errors of the individual steps. In addition, the precision of input data from an experiment is limited. In this chapter we study the influence of numerical errors on the uncertainties of the calculated results and the stability of simple algorithms.

  12. Error coding simulations

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1993-01-01

    There are various elements such as radio frequency interference (RFI) which may induce errors in data being transmitted via a satellite communication link. When a transmission is affected by interference or other error-causing elements, the transmitted data becomes indecipherable. It becomes necessary to implement techniques to recover from these disturbances. The objective of this research is to develop software which simulates error control circuits and evaluate the performance of these modules in various bit error rate environments. The results of the evaluation provide the engineer with information which helps determine the optimal error control scheme. The Consultative Committee for Space Data Systems (CCSDS) recommends the use of Reed-Solomon (RS) and convolutional encoders and Viterbi and RS decoders for error correction. The use of forward error correction techniques greatly reduces the received signal to noise needed for a certain desired bit error rate. The use of concatenated coding, e.g. inner convolutional code and outer RS code, provides even greater coding gain. The 16-bit cyclic redundancy check (CRC) code is recommended by CCSDS for error detection.

  13. Software error detection

    NASA Technical Reports Server (NTRS)

    Buechler, W.; Tucker, A. G.

    1981-01-01

    Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.

  14. Building a World-Class Safety Culture: The National Ignition Facility and the Control of Human and Organizational Error

    SciTech Connect

    Bennett, C T; Stalnaker, G

    2002-12-06

    Accidents in complex systems send us signals. They may be harbingers of a catastrophe. Some even argue that a ''normal'' consequence of operations in a complex organization may not only be the goods it produces, but also accidents and--inevitably--catastrophes. We would like to tell you the story of a large, complex organization, whose history questions the argument ''that accidents just happen.'' Starting from a less than enviable safety record, the National Ignition Facility (NIF) has accumulated over 2.5 million safe hours. The story of NIF is still unfolding. The facility is still being constructed and commissioned. But the steps NIF has taken in achieving its safety record provide a principled blueprint that may be of value to others. Describing that principled blueprint is the purpose of this paper. The first part of this paper is a case study of NIF and its effort to achieve a world-class safety record. This case study will include a description of (1) NIF's complex systems, (2) NIF's early safety history, (3) factors that may have initiated its safety culture change, and (4) the evolution of its safety blueprint. In the last part of the paper, we will compare NIF's safety culture to what safety industry experts, psychologists, and sociologists say about how to shape a culture and control organizational error.

  15. Current control of magnetic anisotropy via stress in a ferromagnetic metal waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Ma, Xin; Pai, Chi-Feng; Yang, Jusang; Olsson, Kevin S.; Erskine, James L.; Ralph, Daniel C.; Buhrman, Robert A.; Li, Xiaoqin

    2016-04-01

    We demonstrate that in-plane charge current can effectively control the spin precession resonance in an A l2O3/CoFeB /Ta heterostructure. Brillouin light scattering was used to detect the ferromagnetic resonance field under microwave excitation of spin waves at fixed frequencies. The current control of spin precession resonance originates from modification of the in-plane uniaxial magnetic anisotropy field Hk, which changes symmetrically with respect to the current direction. Numerical simulation suggests that the anisotropic stress introduced by joule heating plays an important role in controlling Hk. These results provide new insight into current manipulation of magnetic properties and have broad implications for spintronic devices.

  16. Research on transient hysteresis current control strategy of DC-DC converter

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Wang, Zu-liang; Zhao, Yu-kai

    2017-01-01

    In order to improve the dynamic performance of DC-DC converter, transient hysteresis current control strategy is proposed which is based on parallel computing and combinational logic. By making a comparison between the real-time inductor current and the threshold inductor current, the switch is controlled more accurately. Under the Matlab/Simulink environment, the process of the Buck-Boost converter was simulated. The simulation results show that the transient hysteresis current control strategy can effectively overcome the disadvantages when load changes or input voltage disturbance occurs, it posses high load regulation and short dynamic response time, and it verifies the feasibility of the proposed strategy.

  17. 37 CFR 1.419 - Display of currently valid control number under the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Display of currently valid... CASES International Processing Provisions General Information § 1.419 Display of currently valid control... that collection of information displays a currently valid Office of Management and Budget...

  18. 37 CFR 1.419 - Display of currently valid control number under the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Display of currently valid... CASES International Processing Provisions General Information § 1.419 Display of currently valid control... that collection of information displays a currently valid Office of Management and Budget...

  19. 37 CFR 1.419 - Display of currently valid control number under the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false Display of currently valid... CASES International Processing Provisions General Information § 1.419 Display of currently valid control... that collection of information displays a currently valid Office of Management and Budget...

  20. Slowing after Observed Error Transfers across Tasks

    PubMed Central

    Wang, Lijun; Pan, Weigang; Tan, Jinfeng; Liu, Congcong; Chen, Antao

    2016-01-01

    After committing an error, participants tend to perform more slowly. This phenomenon is called post-error slowing (PES). Although previous studies have explored the PES effect in the context of observed errors, the issue as to whether the slowing effect generalizes across tasksets remains unclear. Further, the generation mechanisms of PES following observed errors must be examined. To address the above issues, we employed an observation-execution task in three experiments. During each trial, participants were required to mentally observe the outcomes of their partners in the observation task and then to perform their own key-press according to the mapping rules in the execution task. In Experiment 1, the same tasksets were utilized in the observation task and the execution task, and three error rate conditions (20%, 50% and 80%) were established in the observation task. The results revealed that the PES effect after observed errors was obtained in all three error rate conditions, replicating and extending previous studies. In Experiment 2, distinct stimuli and response rules were utilized in the observation task and the execution task. The result pattern was the same as that in Experiment 1, suggesting that the PES effect after observed errors was a generic adjustment process. In Experiment 3, the response deadline was shortened in the execution task to rule out the ceiling effect, and two error rate conditions (50% and 80%) were established in the observation task. The PES effect after observed errors was still obtained in the 50% and 80% error rate conditions. However, the accuracy in the post-observed error trials was comparable to that in the post-observed correct trials, suggesting that the slowing effect and improved accuracy did not rely on the same underlying mechanism. Current findings indicate that the occurrence of PES after observed errors is not dependent on the probability of observed errors, consistent with the assumption of cognitive control account

  1. Performance Assessment of Model-Based Optimal Feedforward and Feedback Current Profile Control in NSTX-U using the TRANSP Code

    NASA Astrophysics Data System (ADS)

    Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.

    2015-11-01

    Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.

  2. Methods, systems and apparatus for controlling operation of two alternating current (AC) machines

    DOEpatents

    Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA

    2012-06-05

    A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.

  3. Current harmonics elimination control method for six-phase PM synchronous motor drives.

    PubMed

    Yuan, Lei; Chen, Ming-liang; Shen, Jian-qing; Xiao, Fei

    2015-11-01

    To reduce the undesired 5th and 7th stator harmonic current in the six-phase permanent magnet synchronous motor (PMSM), an improved vector control algorithm was proposed based on vector space decomposition (VSD) transformation method, which can control the fundamental and harmonic subspace separately. To improve the traditional VSD technology, a novel synchronous rotating coordinate transformation matrix was presented in this paper, and only using the traditional PI controller in d-q subspace can meet the non-static difference adjustment, the controller parameter design method is given by employing internal model principle. Moreover, the current PI controller parallel with resonant controller is employed in x-y subspace to realize the specific 5th and 7th harmonic component compensation. In addition, a new six-phase SVPWM algorithm based on VSD transformation theory is also proposed. Simulation and experimental results verify the effectiveness of current decoupling vector controller.

  4. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  5. Velocity controlled anodization nanolithography with an atomic force microscope using Faradaic current feedback

    NASA Astrophysics Data System (ADS)

    Johannes, Matthew S.; Cole, Daniel G.; Clark, Robert L.

    2007-03-01

    A technique, called velocity controlled anodization nanolithography, is presented that ensures line continuity during atomic force microscope based local anodic oxidation on silicon. Spontaneous current spikes disrupt the generation of uniform silicon oxide patterns during lithography at low humidity. Varying the translational speed during lithography in response to the current fluctuations enables the formation of a more complete and continuous oxide layer. The velocity corrections as a result of control are able to maintain constant current flow through the tip-sample interface. The authors demonstrate that this method is effective for in situ quality control.

  6. A low noise modular current source for stable magnetic field control

    NASA Astrophysics Data System (ADS)

    Biancalana, Valerio; Bevilacqua, Giuseppe; Chessa, Piero; Dancheva, Yordanka; Cecchi, Roberto; Stiaccini, Leonardo

    2017-03-01

    A low cost, stable, programmable, unipolar current source is described. The circuit is designed in view of a modular arrangement, suitable for applications where several DC sources must be controlled at once. A hybrid switching/linear design helps in improving the stability and in reducing the power dissipation and cross-talking. Multiple units can be supplied by a single DC power supply, while allowing for a variety of maximal current values and compliance voltages at the outputs. The circuit is analogically controlled by a unipolar voltage, enabling current programmability and control through commercial digital-to-analogue conversion cards.

  7. Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Spitzer, Cary R.

    1992-01-01

    Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.

  8. HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Abler, M. C.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Rhodes, D. J.; Hansen, C. J.

    2016-10-01

    The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. A GPU-based low latency control system uses 96 inputs and 64 outputs to control the plasma boundary. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A quasi-linear sharp-boundary model is developed to study effects of toroidal curvature and plasma shaping on beta limits with resistive plasmas and walls. Measurement of currents between vessel sections reveals currents running from the plasma to the wall during wall-touching kink modes and disruptions. Asymmetries in plasma current are observed using segmented Rogowski coils. Biased electrodes in the plasma are used to control rotation of external kinks and drive currents in the SOL. An extensive array of SOL current monitors and edge drive electrodes will be installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  9. An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance

    SciTech Connect

    Wang, Panbao; Lu, Xiaonan; Yang, Xu; Wang, Wei; Xu, Dianguo

    2016-09-01

    This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportional load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.

  10. Particle-in-cell simulations of electron beam control using an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V.

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.

  11. Particle-in-cell simulations of electron beam control using an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; ...

    2015-11-18

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam’s return current. The current divider concept was proposed and studied theoretically in a previous publication [Phys. Plasmas 22, 023107 (2015)] A central post carries a portion of the return current (I1) while the outer conductor carries the remainder (I2) with the injected beam current given by Ib=I1+I2. The simulations are in agreement with the theory which predicts that the total forcemore » on the beam trajectory is proportional to (I2-I1) and the force on the beam envelope is proportional to Ib. For a fixed central post, the beam trajectory is controlled by varying the outer conductor radius which changes the inductance in the return-current path. The simulations show that the beam emittance is approximately constant as the beam propagates through the current divider to the target. As a result, independent control over both the current density and the beam angle at the target is possible by choosing the appropriate return-current geometry.« less

  12. Current and Future Research in Active Control of Lightweight, Flexible Structures Using the X-56 Aircraft

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Bosworth, John T.; Burken, John J.; Suh, Peter M.

    2014-01-01

    The X-56 Multi-Utility Technology Testbed aircraft system is a versatile experimental research flight platform. The system was primarily designed to investigate active control of lightweight flexible structures, but is reconfigurable and capable of hosting a wide breadth of research. Current research includes flight experimentation of a Lockheed Martin designed active control flutter suppression system. Future research plans continue experimentation with alternative control systems, explore the use of novel sensor systems, and experiments with the use of novel control effectors. This paper describes the aircraft system, current research efforts designed around the system, and future planned research efforts that will be hosted on the aircraft system.

  13. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1997-01-01

    An apparatus and method for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived.

  14. Controlling electrode gap during vacuum arc remelting at low melting current

    DOEpatents

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1997-04-15

    An apparatus and method are disclosed for controlling electrode gap in a vacuum arc remelting furnace, particularly at low melting currents. Spectrographic analysis is performed of the metal vapor plasma, from which estimates of electrode gap are derived. 5 figs.

  15. Instantaneous Project Controls: Current Status, State of the Art, Benefits, and Strategies

    ERIC Educational Resources Information Center

    Abbaszadegan, Amin

    2016-01-01

    Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In…

  16. Stability synthesis of control system in current fed inverter driven induction motor

    SciTech Connect

    Veda, R.; Irisa, T.; Ito, T.; Mochizuki, T.; Sonoda, T.

    1983-01-01

    This paper presents a new method of synthesizing a stabilizing control system in current fed inverter driven induction motor (CFIDIM). The method is focused on rotor dynamics and a concept of ''damping torque coefficient (DTC)'' is introduced concerning the electrical torque. At first the control system is synthesized on the assumption that an induction motor is driven by an ideally controllable current source. Then perturbed linearized technique indicates that the system can be stabilized if the stator current or frequency is controlled so as to make the DTC positive by feeding back a signal composed of rotor speed. Next, based on this fact, an approach of synthesizing the converter output voltage is presented under a fixed stator frequency. This result clarifies that the stable operation can be achieved by controlling the voltage in proportion to the acceleration of rotor speed or the deviation of electrical torque. These analytical results are verified with laboratory field tests.

  17. Backstepping Control of the Current Profile in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Barton, J.; Schuster, E.; Walker, M. L.; Humphreys, D. A.

    2011-10-01

    Control of the spatial profile of the plasma current in tokamaks has been demonstrated to be a key condition for advanced scenarios with improved confinement and steady-state operation. Non-model-based controllers tested at DIII-D have shown limitations, motivating the design of model-based controllers that account for the dynamics of the q profile. In this work, we utilize a control-oriented model of the current profile evolution in DIII-D to design a backstepping boundary control law for regulating the current profile around a desired feed-forward trajectory. The control scheme makes use of the total plasma current, total power, and line averaged density as actuators. A simulation study is done to test the control law against uncertainties in the model parameters and initial conditions, as well as input disturbances. Finally, the implementation of the controller in the DIII-D plasma control system is discussed and experimental results are presented. Supported by the NSF CAREER award program ECCS-0645086 and the US DOE under DE-FG02-09ER55064 and DE-FC02-04ER54698.

  18. Robust Control of the Spatial Current Profile in the DIII-D Tokamak

    NASA Astrophysics Data System (ADS)

    Barton, J.; Schuster, E.; Walker, M. L.; Humphreys, D. A.

    2011-10-01

    Advanced tokamak operating scenarios, characterized by large noninductively driven plasma currents, typically require active regulation of a specific current density profile. Non-model-based control of the q profile has been tested at DIII-D. However, some present limitations of the controller motivate the design of a model-based controller that accounts for the dynamics of the whole q profile in response to the control actuators. A control-oriented model of the current profile evolution in DIII-D was recently developed and used to design feedforward control schemes. In order to reject the effects of external disturbances to the system, a feedback control input needs to be added to the feedforward input. In this work, we report on the design of a robust feedback controller, on the implementation of the combined model-based feedforward + feedback controller in the DIII-D Plasma Control System, and on the experimental validation of the combined controller in the DIII-D tokamak. Supported by the NSF CAREER award program ECCS-0645086 and the US DOE under DE-FG02-09ER55064 and DE-FC02-04ER54698.

  19. New connectors coming for enteral feeding tubes; marqibo and risk of errors; angeliq is not a birth control pill.

    PubMed

    Cohen, Michael R; Smetzer, Judy L

    2014-07-01

    These medication errors have occurred in health care facilities at least once. They will happen again-perhaps where you work. Through education and alertness of personnel and procedural safeguards, they can be avoided. You should consider publishing accounts of errors in your newsletters and/or presenting them at your inservice training programs. Your assistance is required to continue this feature. The reports described here were received through the Institute for Safe Medication Practices (ISMP) Medication Errors Reporting Program. Any reports published by ISMP will be anonymous. Comments are also invited; the writers' names will be published if desired. ISMP may be contacted at the address shown below. Errors, close calls, or hazardous conditions may be reported directly to ISMP through the ISMP Web site (www.ismp.org), by calling 800-FAIL-SAFE, or via e-mail at ismpinfo@ismp.org. ISMP guarantees the confidentiality and security of the information received and respects reporters' wishes as to the level of detail included in publications.

  20. Development and validation of the control variable transformation operators using the cubed-sphere grid system to represent a background error covariance

    NASA Astrophysics Data System (ADS)

    Kwun, Jihye; Song, Hyo-Jong; Ha, Ji-Hyun

    2014-05-01

    A background error covariance matrix is essential in a data assimilation system in terms of its spreading out dynamically balanced increments to the horizontal model grid points and the vertical levels. The full representation of the matrix is impossible because of its huge size, the matrix is therefore constructed implicitly by means of a control variable transformation. It is assumed that the forecast errors in the control variables are statistically independent. We utilized two approaches to dividing the unbalanced and the balanced parts; a method is using balance operators derived based on numerical discretization of partial differential equations, and the other is a regression-based approach. We used the spectral element method accompanying the cubed-sphere grid system, which guarantees a scalable performance in the configuration of using multiple CPUs. To model the background error covariance matrix, horizontal wind was decomposed into a rotational component and a divergent component by introducing stream function and velocity potential as control variables. The dynamical constraint of a balance between mass and wind was imposed by applying the linear balance operator and the nonlinear balance operator including cyclonic wind terms. The unbalanced velocity potential and the unbalanced mass variable is defined by using regression coefficients. The experimental background error statistics has been calculated by exploiting the ensemble samples of the Community Atmosphere Model (CAM) - Local Ensemble Transform Kalman Filter (LETKF). In order to understand the structure of the background error covariance, we performed single observation experiments using a three-dimensional variational data assimilation system on the cubed-sphere grid with the spectral transformation that was developed by Korea Institute of Atmospheric Prediction Systems(KIAPS) of which results will be presented.

  1. Current Control in ITER Steady State Plasmas With Neutral Beam Steering

    SciTech Connect

    R.V. Budny

    2009-09-10

    Predictions of quasi steady state DT plasmas in ITER are generated using the PTRANSP code. The plasma temperatures, densities, boundary shape, and total current (9 - 10 MA) anticipated for ITER steady state plasmas are specified. Current drive by negative ion neutral beam injection, lower-hybrid, and electron cyclotron resonance are calculated. Four modes of operation with different combinations of current drive are studied. For each mode, scans with the NNBI aimed at differing heights in the plasma are performed to study effects of current control on the q profile. The timeevolution of the currents and q are calculated to evaluate long duration transients. Quasi steady state, strongly reversed q profiles are predicted for some beam injection angles if the current drive and bootstrap currents are sufficiently large.

  2. The control of the upstream movement of fish with pulsated direct current

    USGS Publications Warehouse

    McLain, Alberton L.

    1957-01-01

    In the Silver River, 78,648 fish comprising 21 species were taken from the trap of the direct-current diversion device. The total kill of fish moving upstream, including 289 sea lampreys, was 1,016, or 1.3 percent. This river had presented a serious problem in the operation of an alternating-current control device during previous seasons. In 1955, 85.5 percent of three important species of fish were killed at the control structure. During 1956, this mortality was reduced to 8.1 percent by the operation of the direct-current equipment.

  3. Rotor Current Control of DFIG for Improving Fault Ride - Through Using a Novel Sliding Mode Control Approach

    NASA Astrophysics Data System (ADS)

    Cai, Guowei; Liu, Cheng; Yang, Deyou

    2013-11-01

    The doubly fed induction generators (DFIG) have been recognized as the dominant technology used in wind power generation systems with the rapid development of wind power. However, continuous operation of DFIG may cause a serious wind turbine generators tripping accident, due to destructive over-current in the rotor winding which is caused by the power system fault or inefficient fault ride-through (FRT) strategy. A new rotor current control scheme in the rotor-side converter (RSC) ispresented to enhance FRT capacities of grid-connected DFIG. Due to the strongly nonlinear nature of DFIG and insensitive to DFIG parameter's variations, a novel sliding mode controller was designed. The controller combines extended state observer (ESO) with sliding model variable structure control theory. The simulation is carried out to verify the effectiveness of the proposed control approach under various types of grid disturbances. It is shown that the proposed controller provides enhanced transient features than the classic proportional-integral control. The proposed control method can effectively reduce over-current in the RSC, and the transient pulse value of electromagnetic torque is too large under power grid fault.

  4. Error Sources in Asteroid Astrometry

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.

    2000-01-01

    Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.

  5. Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage

    NASA Astrophysics Data System (ADS)

    Khutoryan, E. M.; Idehara, T.; Kuleshov, A. N.; Ueda, K.

    2014-12-01

    To provide stable output power of a gyrotron during long operation time the power stabilization was achieved by two schemes with PID feedback control of heater current and anode voltage. It was based on the dependence of the output power on both the anode voltage and the beam current and also on the dependence of the beam current on the gun heater current. Both schemes provided decrease of the power standard deviation to 0.3-0.5%. The comparison between parameters of both schemes is discussed in the paper.

  6. Generation and coherent control of pure spin currents via terahertz pulses

    NASA Astrophysics Data System (ADS)

    Schüler, Michael; Berakdar, Jamal

    2014-04-01

    We inspect the time and spin-dependent, inelastic tunneling in engineered semiconductor-based double quantum well driven by time-structured terahertz pulses. An essential ingredient is an embedded spin-active structure with vibrational modes that scatter the pulse driven carriers. Due to the different time scales of the charge and spin dynamics, the spin-dependent electron-vibron coupling may result in pure net spin current (with negligible charge current). Heating the vibrational site may affect the resulting spin current. Furthermore, by controlling the charge dynamics, the spin dynamics and the generated spin current can be manipulated and switched on and off coherently.

  7. Controllable quantum valley pumping with high current in a silicene junction

    NASA Astrophysics Data System (ADS)

    Khani, H.; Esmaeilzadeh, M.; Kanjouri, F.

    2016-12-01

    We propose an efficient scheme for the generation and control of both pure and fully polarized valley currents in a silicene-based junction, using adiabatic quantum pumping. The pure and fully polarized valley currents are induced using ferromagnetic proximity and the application of a perpendicular electric field. We show that the valley polarized current can easily be switched from valley K to valley K\\prime and vice versa, simply by reversing the direction of the electric field. Thus, the valley current is controllable electrically. Compared to the methods proposed for generation of valley current by quantum pumping in graphene, which are based on inducing strain on its sheet, our method is very simple and can be easily utilized in practical applications. Also, we show that the magnitude of pumped current in a silicene-based junction is roughly one order of magnitude greater than that of graphene. In addition to valley-related currents, our pump scheme can be used on its own to generate pure and fully polarized spin currents. A comparison between weak and strong adiabatic regimes is given, and the effects of some structural parameters that can significantly affect the pumping currents and polarizations are discussed.

  8. A robust approach to correct for pronounced errors in temperature measurements by controlling radiation damping feedback fields in solution NMR.

    PubMed

    Wolahan, Stephanie M; Li, Zhao; Hsu, Chao-Hsiung; Huang, Shing-Jong; Clubb, Robert; Hwang, Lian-Pin; Lin, Yung-Ya

    2014-11-01

    Accurate temperature measurement is a requisite for obtaining reliable thermodynamic and kinetic information in all NMR experiments. A widely used method to calibrate sample temperature depends on a secondary standard with temperature-dependent chemical shifts to report the true sample temperature, such as the hydroxyl proton in neat methanol or neat ethylene glycol. The temperature-dependent chemical shift of the hydroxyl protons arises from the sensitivity of the hydrogen-bond network to small changes in temperature. The frequency separation between the alkyl and the hydroxyl protons are then converted to sample temperature. Temperature measurements by this method, however, have been reported to be inconsistent and incorrect in modern NMR, particularly for spectrometers equipped with cryogenically-cooled probes. Such errors make it difficult or even impossible to study chemical exchange and molecular dynamics or to compare data acquired on different instruments, as is frequently done in biomolecular NMR. In this work, we identify the physical origins for such errors to be unequal amount of dynamical frequency shifts on the alkyl and the hydroxyl protons induced by strong radiation damping (RD) feedback fields. Common methods used to circumvent RD may not suppress such errors. A simple, easy-to-implement solution was demonstrated that neutralizes the RD effect on the frequency separation by a "selective crushing recovery" pulse sequence to equalize the transverse magnetization of both spin species. Experiments using cryoprobes at 500 MHz and 800 MHz demonstrated that this approach can effectively reduce the errors in temperature measurements from about ±4.0 K to within ±0.4 K in general.

  9. Rapid mapping of volumetric errors

    SciTech Connect

    Krulewich, D.; Hale, L.; Yordy, D.

    1995-09-13

    This paper describes a relatively inexpensive, fast, and easy to execute approach to mapping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) modeling the relationship between the volumetric error and the current state of the machine; (2) acquiring error data based on length measurements throughout the work volume; and (3) optimizing the model to the particular machine.

  10. Estimation of Model Error Variances During Data Assimilation

    NASA Technical Reports Server (NTRS)

    Dee, Dick

    2003-01-01

    Data assimilation is all about understanding the error characteristics of the data and models that are used in the assimilation process. Reliable error estimates are needed to implement observational quality control, bias correction of observations and model fields, and intelligent data selection. Meaningful covariance specifications are obviously required for the analysis as well, since the impact of any single observation strongly depends on the assumed structure of the background errors. Operational atmospheric data assimilation systems still rely primarily on climatological background error covariances. To obtain error estimates that reflect both the character of the flow and the current state of the observing system, it is necessary to solve three problems: (1) how to account for the short-term evolution of errors in the initial conditions; (2) how to estimate the additional component of error caused by model defects; and (3) how to compute the error reduction in the analysis due to observational information. Various approaches are now available that provide approximate solutions to the first and third of these problems. However, the useful accuracy of these solutions very much depends on the size and character of the model errors and the ability to account for them. Model errors represent the real-world forcing of the error evolution in a data assimilation system. Clearly, meaningful model error estimates and/or statistics must be based on information external to the model itself. The most obvious information source is observational, and since the volume of available geophysical data is growing rapidly, there is some hope that a purely statistical approach to model error estimation can be viable. This requires that the observation errors themselves are well understood and quantifiable. We will discuss some of these challenges and present a new sequential scheme for estimating model error variances from observations in the context of an atmospheric data

  11. Scrape-off-layer current and EUV diagnostics and control on the HBT-EP tokamak

    NASA Astrophysics Data System (ADS)

    Levesque, J. P.; Mauel, M. E.; Bialek, J.; Navratil, G. A.; Delgado-Aparicio, L.; Hansen, C. J.

    2015-11-01

    Non-axisymmetric currents in the scrape-off-layer (SOL) and conducting structure of a tokamak can produce severe forces at high plasma performance, compromising the device's structural integrity. Diagnosing these currents during disruptions is important for extrapolating forces in future machines including ITER. Progress on designing components to measure and control SOL and vessel currents in the HBT-EP tokamak is presented. Movable tiles positioned around limiting surfaces will measure SOL and vessel currents during mode activity and disruptions. Biasable plates at divertor strike points will allow control of field-aligned SOL currents for kink mode control studies and will drive convection in the plasma edge. In-vessel Rogowski coils will measure currents in wall components with high spatial resolution. A planned EUV diagnostic upgrade is also presented. Four sets of 16 poloidal views will allow tomographic reconstruction of plasma emissivity and internal kink mode structure. A separate two-color, 16-chord tangential system will allow reconstruction of temperature profiles versus time. Measurements will be input to HBT-EP's GPU-based feedback system, providing active feedback for kink modes using only optical sensors and both magnetic and edge current actuators. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  12. Error Analysis and Propagation in Metabolomics Data Analysis.

    PubMed

    Moseley, Hunter N B

    2013-01-01

    Error analysis plays a fundamental role in describing the uncertainty in experimental results. It has several fundamental uses in metabolomics including experimental design, quality control of experiments, the selection of appropriate statistical methods, and the determination of uncertainty in results. Furthermore, the importance of error analysis has grown with the increasing number, complexity, and heterogeneity of measurements characteristic of 'omics research. The increase in data complexity is particularly problematic for metabolomics, which has more heterogeneity than other omics technologies due to the much wider range of molecular entities detected and measured. This review introduces the fundamental concepts of error analysis as they apply to a wide range of metabolomics experimental designs and it discusses current methodologies for determining the propagation of uncertainty in appropriate metabolomics data analysis. These methodologies include analytical derivation and approximation techniques, Monte Carlo error analysis, and error analysis in metabolic inverse problems. Current limitations of each methodology with respect to metabolomics data analysis are also discussed.

  13. Current quality assurance concepts and considerations for quality control of in-clinic biochemistry testing.

    PubMed

    Lester, Sally; Harr, K E; Rishniw, Mark; Pion, Paul

    2013-01-15

    Quality assurance is an implied concept inherent in every consumer's purchase of a product or service. In laboratory testing, quality assurance encompasses preanalytic (sampling, transport, and handling prior to testing), analytic (measurement), and postanalytic (reporting and interpretation) factors. Quality-assurance programs require that procedures are in place to detect errors in all 3 components and that the procedures are characterized by both documentation and correction of errors. There are regulatory bodies that provide mandatory standards for and regulation of human medical laboratories. No such regulations exist for veterinary laboratory testing. The American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards Committee was formed in 1996 in response to concerns of ASVCP members about quality assurance and quality control in laboratories performing veterinary testing. Guidelines for veterinary laboratory testing have been developed by the ASVCP. The purpose of this report was to provide an overview of selected quality-assurance concepts and to provide recommendations for quality control for in-clinic biochemistry testing in general veterinary practice.

  14. Advances in tokamak control: from multi-actuator MHD control to model-based current profile tailoring

    NASA Astrophysics Data System (ADS)

    Felici, Federico

    2012-10-01

    Recent experiments on TCV have demonstrated integrated control of the sawtooth and Neoclassical Tearing Mode (NTM) instabilities in a combined preemption-suppression strategy. This strategy is enabled by new sawtooth control methods (sawtooth pacing) in which modulation of sawtooth-stabilizing electron cyclotron power during the sawtooth cycle stimulates the advent of the crash. Rather than controlling the average sawtooth period, the precise timing of each individual crash can now be prescribed. Using this knowledge, efficient preemptive stabilization of NTMs becomes possible by applying power on the rational surface only at the instant of the crash-generating seed island. TCV experiments demonstrate that this approach, reinforced by NTM stabilization as a backup strategy, is effectively failsafe. This opens the road to inductive H-mode scenarios with long sawteeth providing longer inter-crash periods of high density and temperature. Also Edge Localized Modes are susceptible to EC modulation and it is shown that individual ELM events can be controlled using similar techniques. For advanced tokamak scenarios, MHD control is to be combined with optimization and control of the plasma kinetic and magnetic profile evolution in time. Real-time simulation of a physical model (RAPTOR) of current transport, including bootstrap current, neoclassical conductivity and auxiliary current drive, yields complete knowledge of the relevant profiles at any given time. The pilot implementation on TCV shows that these calculations can indeed be done in real-time and the resulting profiles have been included in feedback control schemes. Integration of this model with time-varying equilibria and internal current profile diagnostics provides a new framework for real-time interpretation of diagnostic data for plasma prediction, scenario monitoring, disruption prevention and feedback control.

  15. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1 and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  16. Controlling hollow relativistic electron beam orbits with an inductive current divider

    DOE PAGES

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; ...

    2015-02-06

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I1), while the outer conductor carries the remainder (I2). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I2-I1), while the average force on the envelope (the beam width) is proportional to the beam current Ib = (I2 + I1). The values of I1more » and I2 depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. As a result, solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.« less

  17. Controlling hollow relativistic electron beam orbits with an inductive current divider

    SciTech Connect

    Swanekamp, S. B.; Richardson, A. S.; Angus, J. R.; Cooperstein, G.; Hinshelwood, D. D.; Ottinger, P. F.; Rittersdorf, I. M.; Schumer, J. W.; Weber, B. V.; Zier, J. C.

    2015-02-15

    A passive method for controlling the trajectory of an intense, hollow electron beam is proposed using a vacuum structure that inductively splits the beam's return current. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}). An envelope equation appropriate for a hollow electron beam is derived and applied to the current divider. The force on the beam trajectory is shown to be proportional to (I{sub 2}-I{sub 1}), while the average force on the envelope (the beam width) is proportional to the beam current I{sub b} = (I{sub 2} + I{sub 1}). The values of I{sub 1} and I{sub 2} depend on the inductances in the return-current path geometries. Proper choice of the return-current geometries determines these inductances and offers control over the beam trajectory. Solutions using realistic beam parameters show that, for appropriate choices of the return-current-path geometry, the inductive current divider can produce a beam that is both pinched and straightened so that it approaches a target at near-normal incidence with a beam diameter that is on the order of a few mm.

  18. Model Predictive Control with Integral Action for Current Density Profile Tracking in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ilhan, Z. O.; Wehner, W. P.; Schuster, E.; Boyer, M. D.

    2016-10-01

    Active control of the toroidal current density profile may play a critical role in non-inductively sustained long-pulse, high-beta scenarios in a spherical torus (ST) configuration, which is among the missions of the NSTX-U facility. In this work, a previously developed physics-based control-oriented model is embedded in a feedback control scheme based on a model predictive control (MPC) strategy to track a desired current density profile evolution specified indirectly by a desired rotational transform profile. An integrator is embedded into the standard MPC formulation to reject various modeling uncertainties and external disturbances. Neutral beam powers, electron density, and total plasma current are used as actuators. The proposed MPC strategy incorporates various state and actuator constraints directly into the control design process by solving a constrained optimization problem in real-time to determine the optimal actuator requests. The effectiveness of the proposed controller in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Supported by the US DOE under DE-AC02-09CH11466.

  19. A comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?

    PubMed

    Mumford, Jeanette A

    2017-02-15

    Even after thorough preprocessing and a careful time series analysis of functional magnetic resonance imaging (fMRI) data, artifact and other issues can lead to violations of the assumption that the variance is constant across subjects in the group level model. This is especially concerning when modeling a continuous covariate at the group level, as the slope is easily biased by outliers. Various models have been proposed to deal with outliers including models that use the first level variance or that use the group level residual magnitude to differentially weight subjects. The most typically used robust regression, implementing a robust estimator of the regression slope, has been previously studied in the context of fMRI studies and was found to perform well in some scenarios, but a loss of Type I error control can occur for some outlier settings. A second type of robust regression using a heteroscedastic autocorrelation consistent (HAC) estimator, which produces robust slope and variance estimates has been shown to perform well, with better Type I error control, but with large sample sizes (500-1000 subjects). The Type I error control with smaller sample sizes has not been studied in this model and has not been compared to other modeling approaches that handle outliers such as FSL's Flame 1 and FSL's outlier de-weighting. Focusing on group level inference with a continuous covariate over a range of sample sizes and degree of heteroscedasticity, which can be driven either by the within- or between-subject variability, both styles of robust regression are compared to ordinary least squares (OLS), FSL's Flame 1, Flame 1 with outlier de-weighting algorithm and Kendall's Tau. Additionally, subject omission using the Cook's Distance measure with OLS and nonparametric inference with the OLS statistic are studied. Pros and cons of these models as well as general strategies for detecting outliers in data and taking precaution to avoid inflated Type I error rates are

  20. Personal digital assistants to collect tuberculosis bacteriology data in Peru reduce delays, errors, and workload, and are acceptable to users: cluster randomized controlled trial

    PubMed Central

    Blaya, Joaquín A.; Cohen, Ted; Rodríguez, Pablo; Kim, Jihoon; Fraser, Hamish S.F.

    2009-01-01

    Summary Objectives To evaluate the effectiveness of a personal digital assistant (PDA)-based system for collecting tuberculosis test results and to compare this new system to the previous paper-based system. The PDA- and paper-based systems were evaluated based on processing times, frequency of errors, and number of work-hours expended by data collectors. Methods We conducted a cluster randomized controlled trial in 93 health establishments in Peru. Baseline data were collected for 19 months. Districts (n = 4) were then randomly assigned to intervention (PDA) or control (paper) groups, and further data were collected for 6 months. Comparisons were made between intervention and control districts and within-districts before and after the introduction of the intervention. Results The PDA-based system had a significant effect on processing times (p < 0.001) and errors (p = 0.005). In the between-districts comparison, the median processing time for cultures was reduced from 23 to 8 days and for smears was reduced from 25 to 12 days. In that comparison, the proportion of cultures with delays >90 days was reduced from 9.2% to 0.1% and the number of errors was decreased by 57.1%. The intervention reduced the work-hours necessary to process results by 70% and was preferred by all users. Conclusions A well-designed PDA-based system to collect data from institutions over a large, resource-poor area can significantly reduce delays, errors, and person-hours spent processing data. PMID:19097925

  1. From trial and error to trial simulation. Part 2: an appraisal of current beliefs in the design and analysis of clinical trials for antidepressant drugs.

    PubMed

    Santen, G; Horrigan, J; Danhof, M; Della Pasqua, O

    2009-09-01

    Study design factors are partly to blame for the high failure rate in trials with antidepressant drugs. Clinical trial simulation (CTS) allows the investigation of the influence of design characteristics on important aspects of clinical trials such as power and type I error. Using CTS scenarios, we evaluated the impact of population size, randomization ratio, frequency of assessments, dropout mechanisms, clinical end point, and statistical method on the outcome of clinical trials with antidepressant drugs. The results reveal that (i) an increase in the frequency of visits does not increase statistical power, (ii) a skewed randomization for a placebo or comparator arm may decrease statistical power, and (iii) analysis of the percentage of responders should be avoided. CTS should become best practice in the optimization of study design. To date, no other statistical approach has enabled such comprehensive evaluation of the factors contributing to study failure in depression.

  2. Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity.

    PubMed

    Kastl, Christoph; Karnetzky, Christoph; Karl, Helmut; Holleitner, Alexander W

    2015-03-26

    In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators.

  3. New Current Control Method of DC Power Supply for Magnetic Perturbation Coils on J-TEXT

    NASA Astrophysics Data System (ADS)

    Zeng, Wubing; Ding, Yonghua; Yi, Bin; Xu, Hangyu; Rao, Bo; Zhang, Ming; Liu, Minghai

    2014-11-01

    In order to advance the research on suppressing tearing modes and driving plasma rotation, a DC power supply (PS) system has been developed for dynamic resonant magnetic perturbation (DRMP) coils and applied in the J-TEXT experiment. To enrich experimental phenomena in the J-TEXT tokamak, applying the circulating current four-quadrant operation mode in the DRMP DC PS system is proposed. By using the circulating current four-quadrant operation, DRMP coils can be smoothly controlled without the dead-time when the current polarity reverses. Essential circuit analysis, control optimization and simulation of desired scenarios have been performed for normal current. Relevant simulation and test results are also presented.

  4. Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity

    PubMed Central

    Kastl, Christoph; Karnetzky, Christoph; Karl, Helmut; Holleitner, Alexander W.

    2015-01-01

    In recent years, a class of solid-state materials, called three-dimensional topological insulators, has emerged. In the bulk, a topological insulator behaves like an ordinary insulator with a band gap. At the surface, conducting gapless states exist showing remarkable properties such as helical Dirac dispersion and suppression of backscattering of spin-polarized charge carriers. The characterization and control of the surface states via transport experiments is often hindered by residual bulk contributions. Here we show that surface currents in Bi2Se3 can be controlled by circularly polarized light on a picosecond timescale with a fidelity near unity even at room temperature. We reveal the temporal separation of such ultrafast helicity-dependent surface currents from photo-induced thermoelectric and drift currents in the bulk. Our results uncover the functionality of ultrafast optoelectronic devices based on surface currents in topological insulators. PMID:25808213

  5. Current Control of Magnetic Anisotropy via Strain in a CoFeB Waveguide

    NASA Astrophysics Data System (ADS)

    An, Kyongmo; Ma, Xin; Pai, Chi-Feng; Yang, Jusang; Olsson, Kevin; Erskine, James; MacDonald, Allan; Ralph, Daniel; Buhrman, Robert; Li, Xiaoqin

    We demonstrate that in-plane charge current can effectively control the spin precession resonance in an Al2O3/CoFeB/Ta heterostructure. Brillouin Light Scattering (BLS) was used to detect the ferromagnetic resonance field under microwave excitation of spin waves at fixed frequencies. Such control originates from the modified in-plane uniaxial magnetic anisotropy field Hk, which changes symmetrically with respect to the current direction. Numerical simulation suggests that the anisotropic stressintroduced by Joule heating plays an important role in controlling Hk. The results provide new insights into current manipulation of magnetic properties and have broad implications on spintronic devices. This work is supported by SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy (DoE), Office of Science, Basic Energy Science (BES) under Award # DE-SC0012670.

  6. Joystick control for powered mobility: current state of technology and future directions.

    PubMed

    Dicianno, Brad E; Cooper, Rory A; Coltellaro, John

    2010-02-01

    Recent advancements in control interface technology have made the use of end devices such as power wheelchairs easier for individuals with disabilities, especially persons with movement disorders. In this article, we discuss the current state of control interface technology and the devices available clinically for power wheelchair control. We also discuss our research on novel hardware and software approaches that are revolutionizing joystick interface technology and allowing more customizability for individual users with special needs and abilities. Finally, we discuss the future of control interfaces and what research gaps remain.

  7. Optimal current control strategies for surface-mounted permanent-magnet synchronous machine drives

    SciTech Connect

    Chapman, P.L.; Sudhoff, S.D.; Whitcomb, C.A.

    1999-12-01

    The current waveforms for optimal excitation of surface-mounted permanent-magnet synchronous machines are set forth. Four different modes are considered, involving varying degrees of minimization of rms current and torque ripple. The optimized waveforms are markedly different than the traditional sinusoidal or rectangular excitation schemes. Inclusion of cogging torque and arbitrary degree of torque ripple minimization generalize this work over that of previous authors. An experimental drive and a detailed computer simulation verify the proposed control schemes.

  8. New computer control system for the high current ion implanter PR-80

    NASA Astrophysics Data System (ADS)

    Sunouchi, T.; Sasaki, M.; Sato, S.; Harada, M.

    1989-02-01

    For a current semiconductor fabrication line, an ion implanter should have the versatility to handle different types of process menus and it should be FA compatible. An optical loopway linked microprocessor control system has been developed for our high current ion implanter. The system is compatible with SECS-II, and its preventive maintenance program is a powerful tool for efficient operation of the implanter.

  9. Inductively Coupled Plasma Mass Spectrometry Uranium Error Propagation

    SciTech Connect

    Hickman, D P; Maclean, S; Shepley, D; Shaw, R K

    2001-07-01

    The Hazards Control Department at Lawrence Livermore National Laboratory (LLNL) uses Inductively Coupled Plasma Mass Spectrometer (ICP/MS) technology to analyze uranium in urine. The ICP/MS used by the Hazards Control Department is a Perkin-Elmer Elan 6000 ICP/MS. The Department of Energy Laboratory Accreditation Program requires that the total error be assessed for bioassay measurements. A previous evaluation of the errors associated with the ICP/MS measurement of uranium demonstrated a {+-} 9.6% error in the range of 0.01 to 0.02 {micro}g/l. However, the propagation of total error for concentrations above and below this level have heretofore been undetermined. This document is an evaluation of the errors associated with the current LLNL ICP/MS method for a more expanded range of uranium concentrations.

  10. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    PubMed Central

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X.; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-01

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved. PMID:26751448

  11. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors.

    PubMed

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-06

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  12. Voltage-controllable generator of pure spin current: A three-terminal model

    SciTech Connect

    Ma, Zheng; Wu, Reng-Lai; Yu, Ya-Bin Wang, Miao

    2014-07-28

    Three-terminal devices have been frequently proposed to generate the pure spin current. However, the controllability and stability of pure spin current still needs to be improved. In this paper, a three-terminal device, composed of a ferromagnetic metallic lead and two nonmagnetic semiconductor leads coupled with a quantum dot, is employed to study the properties of electron spin transport. The results show that when the external voltage on one of nonmagnetic semiconductor leads is adjusted to a proper range, a pure spin current plateau or a fully spin-polarized current plateau appears in another nonmagnetic semiconductor lead. In a wide range of external voltage, the pure spin current or the spin-polarized current is kept unchanged. Since the change of temperature may considerably influence the spin-polarization of current and is inevitable actually, we studied the corresponding compensation to keep the pure spin current unchanged. Furthermore, the effect of device parameters on the pure spin current is also investigated.

  13. Inrush Current Suppression Circuit and Method for Controlling When a Load May Be Fully Energized

    NASA Technical Reports Server (NTRS)

    Schwerman, Paul (Inventor)

    2017-01-01

    A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.

  14. Controlling cell migration and adhesion into a scaffold by external electric currents.

    PubMed

    Jaatinen, Leena; Vörös, Janos; Hyttinen, Jari

    2015-08-01

    Fabrication of more complex tissue-engineered structures, resembling the tissues and organs in vivo requires combining more than one cell type within the same construct. This can be achieved by designing and fabricating complex scaffolds with asymmetric properties but controlled arrangement of cells within the scaffold could also be realized by using electric current. External electric currents are able to modify cell adhesion, orientation and migration and this can be used for influencing cell location within a scaffold. In this paper we studied the effect of an electric current on cell migration and adhesion into a three-dimensional scaffold through a conductive mesh.

  15. Control of scrape-off layer currents in HBT-EP using biased electrodes

    NASA Astrophysics Data System (ADS)

    Brooks, J. W.; Abler, M. C.; Bialek, J.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.

    2016-10-01

    Scrape-off layer (SOL) currents and their paths through tokamaks are not well understood, but their control may prove crucial to the success of ITER and future fusion energy devices. We extend Columbia University High Beta Tokamak-Extended Pulse's (HBT-EP) diagnostics and feedback system to study the SOL and control MHD instabilities - typically around 7 kHz - by actively controlling these currents. We conduct these experiments in two phases: first with a single probe, then with multiple, independent probes. With a single probe, we have shown that active feedback alters the rotation and magnitude of slowly growing kink instabilities. Present work focuses on multiple probes in both a net-zero current configuration and independent configurations with an active GPU feedback system to control the magnitude and phase of MHD instabilities. In addition to the biased electrodes, two triple-probes are placed in the SOL to help us better-understand SOL density and temperature. This research also provides insight into the next phase of research, a multi-element SOL control upgrade of HBT-EP currently underway. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  16. Model Predictive Control of the Current Profile and the Internal Energy of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    Lauret, M.; Wehner, W.; Schuster, E.

    2015-11-01

    For efficient and stable operation of tokamak plasmas it is important that the current density profile and the internal energy are jointly controlled by using the available heating and current-drive (H&CD) sources. The proposed approach is a version of nonlinear model predictive control in which the input set is restricted in size by the possible combinations of the H&CD on/off states. The controller uses real-time predictions over a receding-time horizon of both the current density profile (nonlinear partial differential equation) and the internal energy (nonlinear ordinary differential equation) evolutions. At every time instant the effect of every possible combination of H&CD sources on the current profile and internal energy is evaluated over the chosen time horizon. The combination that leads to the best result, which is assessed by a user-defined cost function, is then applied up until the next time instant. Simulations results based on a control-oriented transport code illustrate the effectiveness of the proposed control method. Supported by the US DOE under DE-FC02-04ER54698 & DE-SC0010661.

  17. Tests for gene-environment interaction from case-control data: a novel study of type I error, power and designs.

    PubMed

    Mukherjee, Bhramar; Ahn, Jaeil; Gruber, Stephen B; Rennert, Gad; Moreno, Victor; Chatterjee, Nilanjan

    2008-11-01

    To evaluate the risk of a disease associated with the joint effects of genetic susceptibility and environmental exposures, epidemiologic researchers often test for non-multiplicative gene-environment effects from case-control studies. In this article, we present a comparative study of four alternative tests for interactions: (i) the standard case-control method; (ii) the case-only method, which requires an assumption of gene-environment independence for the underlying population; (iii) a two-step method that decides between the case-only and case-control estimators depending on a statistical test for the gene-environment independence assumption and (iv) a novel empirical-Bayes (EB) method that combines the case-control and case-only estimators depending on the sample size and strength of the gene-environment association in the data. We evaluate the methods in terms of integrated Type I error and power, averaged with respect to varying scenarios for gene-environment association that are likely to appear in practice. These unique studies suggest that the novel EB procedure overall is a promising approach for detection of gene-environment interactions from case-control studies. In particular, the EB procedure, unlike the case-only or two-step methods, can closely maintain a desired Type I error under realistic scenarios of gene-environment dependence and yet can be substantially more powerful than the traditional case-control analysis when the gene-environment independence assumption is satisfied, exactly or approximately. Our studies also reveal potential utility of some non-traditional case-control designs that samples controls at a smaller rate than the cases. Apart from the simulation studies, we also illustrate the different methods by analyzing interactions of two commonly studied genes, N-acetyl transferase type 2 and glutathione s-transferase M1, with smoking and dietary exposures, in a large case-control study of colorectal cancer.

  18. The surveillance error grid.

    PubMed

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  19. Haplotype-Based Regression Analysis and Inference of Case–Control Studies with Unphased Genotypes and Measurement Errors in Environmental Exposures

    PubMed Central

    Lobach, Iryna; Carroll, Raymond J.; Spinka, Christine; Gail, Mitchell H.; Chatterjee, Nilanjan

    2009-01-01

    Summary. It is widely believed that risks of many complex diseases are determined by genetic susceptibilities, environmental exposures, and their interaction. Chatterjee and Carroll (2005, Biometrika 92, 399–418) developed an efficient retrospective maximum-likelihood method for analysis of case–control studies that exploits an assumption of gene–environment independence and leaves the distribution of the environmental covariates to be completely nonparametric. Spinka, Carroll, and Chatterjee (2005, Genetic Epidemiology 29, 108–127) extended this approach to studies where certain types of genetic information, such as haplotype phases, may be missing on some subjects. We further extend this approach to situations when some of the environmental exposures are measured with error. Using a polychotomous logistic regression model, we allow disease status to have K + 1 levels. We propose use of a pseudolikelihood and a related EM algorithm for parameter estimation. We prove consistency and derive the resulting asymptotic covariance matrix of parameter estimates when the variance of the measurement error is known and when it is estimated using replications. Inferences with measurement error corrections are complicated by the fact that the Wald test often behaves poorly in the presence of large amounts of measurement error. The likelihood-ratio (LR) techniques are known to be a good alternative. However, the LR tests are not technically correct in this setting because the likelihood function is based on an incorrect model, i.e., a prospective model in a retrospective sampling scheme. We corrected standard asymptotic results to account for the fact that the LR test is based on a likelihood-type function. The performance of the proposed method is illustrated using simulation studies emphasizing the case when genetic information is in the form of haplotypes and missing data arises from haplotype-phase ambiguity. An application of our method is illustrated using a

  20. Open problems of magnetic island control by electron cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Grasso, D.; Lazzaro, E.; Borgogno, D.; Comisso, L.

    2016-12-01

    This paper reviews key aspects of the problem of magnetic islands control by electron cyclotron current drive in fusion devices. On the basis of the ordering of the basic spatial and time scales of the magnetic reconnection physics, we present the established results, highlighting some of the open issues posed by the small-scale structures that typically accompany the nonlinear evolution of the magnetic islands and constrain the effect of the control action.

  1. Controlling fluctuations and transport in the reversed field pinch with edge current drive and plasma biasing

    SciTech Connect

    Craig, Darren J.G.

    1998-09-01

    Two techniques are employed in the Madison Symmetric Torus (MST) to test and control different aspects of fluctuation induced transport in the Reversed Field Pinch (RFP). Auxiliary edge currents are driven along the magnetic field to modify magnetic fluctuations, and the particle and energy transport associated with them. In addition, strong edge flows are produced by plasma biasing. Their effect on electrostatic fluctuations and the associated particle losses is studied. Both techniques are accomplished using miniature insertable plasma sources that are biased negatively to inject electrons. This type of emissive electrode is shown to reliably produce intense, directional current without significant contamination by impurities. The two most important conclusions derived from these studies are that the collective modes resonant at the reversal surface play a role in global plasma confinement, and that these modes can be controlled by modifying the parallel current profile outside of the reversal surface. This confirms predictions based on magnetohydrodynamic (MHD) simulations that auxiliary current drive in the sense to flatten the parallel current profile can be successful in controlling magnetic fluctuations in the RFP. However, these studies expand the group of magnetic modes believed to cause transport in MST and suggest that current profile control efforts need to address both the core resonant magnetic modes and those resonant at the reversal surface. The core resonant modes are not significantly altered in these experiments; however, the distribution and/or amplitude of the injected current is probably not optimal for affecting these modes. Plasma biasing generates strong edge flows with shear and particle confinement likely improves in these discharges. These experiments resemble biased H modes in other magnetic configurations in many ways. The similarities are likely due to the common role of electrostatic fluctuations in edge transport.

  2. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  3. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    NASA Astrophysics Data System (ADS)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  4. Parallel systems of error processing in the brain.

    PubMed

    Yordanova, Juliana; Falkenstein, Michael; Hohnsbein, Joachim; Kolev, Vasil

    2004-06-01

    Major neurophysiological principles of performance monitoring are not precisely known. It is a current debate in cognitive neuroscience if an error-detection neural system is involved in behavioral control and adaptation. Such a system should generate error-specific signals, but their existence is questioned by observations that correct and incorrect reactions may elicit similar neuroelectric potentials. A new approach based on a time-frequency decomposition of event-related brain potentials was applied to extract covert sub-components from the classical error-related negativity (Ne) and correct-response-related negativity (Nc) in humans. A unique error-specific sub-component from the delta (1.5-3.5 Hz) frequency band was revealed only for Ne, which was associated with error detection at the level of overall performance monitoring. A sub-component from the theta frequency band (4-8 Hz) was associated with motor response execution, but this sub-component also differentiated error from correct reactions indicating error detection at the level of movement monitoring. It is demonstrated that error-specific signals do exist in the brain. More importantly, error detection may occur in multiple functional systems operating in parallel at different levels of behavioral control.

  5. A Controlled Evaluation of Reminiscence and Current Topics Discussion Groups in a Nursing Home Context.

    ERIC Educational Resources Information Center

    Rattenbury, Christine; Stones, M. J.

    1989-01-01

    Compared psychological well-being of elderly nursing home residents who participated in reminiscence and current topics group discussions with control group of residents. Rated participants' happiness/depression, activity, mood, and functional levels before and after intervention. Intervention had significant effect only on happiness/depression…

  6. The Current Status of Unsteady CFD Approaches for Aerodynamic Flow Control

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Singer, Bart A.; Yamaleev, Nail; Vatsa, Veer N.; Viken, Sally A.; Atkins, Harold L.

    2002-01-01

    An overview of the current status of time dependent algorithms is presented. Special attention is given to algorithms used to predict fluid actuator flows, as well as other active and passive flow control devices. Capabilities for the next decade are predicted, and principal impediments to the progress of time-dependent algorithms are identified.

  7. Quality Control Analysis of Selected Aspects of Programs Administered by the Bureau of Student Financial Assistance. Task 1 and Quality Control Sample; Error-Prone Modeling Analysis Plan.

    ERIC Educational Resources Information Center

    Saavedra, Pedro; And Others

    Parameters and procedures for developing an error-prone model (EPM) to predict financial aid applicants who are likely to misreport on Basic Educational Opportunity Grant (BEOG) applications are introduced. Specifications to adapt these general parameters to secondary data analysis of the Validation, Edits, and Applications Processing Systems…

  8. Modeling the Spin Motor Current of the International Space Station's Control Moment Gyroscopes

    NASA Technical Reports Server (NTRS)

    Pereira, Miguel A.

    2008-01-01

    The International Space Station (ISS) attitude control is provided by two means: The Russian Segment uses thrusters and the U.S. Segment uses double-gimbaled control moment gyroscopes (CMG). CMGs are used as momentum exchange devices, providing non propulsive attitude control for the vehicle. The CMGs are very important for the ISS program because, first, they save propellant - which needs to be transferred to the Station in special cargo vehicles - and, second, they provide the microgravity environment on the Station - which is necessary for scientific experiments planned for the ISS mission. Since 2002, when one of the CMG on the ISS failed, all CMGs are closely monitored. High gimbal rates, vibration spikes, unusual variations of spin motor current and bearing temperatures are of great concern, since these parameters are the CMG health indicators. The telemetry analysis of these and some other CMG parameters is used to determine constrains and make changes to the CMGs operation on board. These CMG limitations, in turn, may limit the ISS attitude control capabilities and may be critical to ISS operation. Therefore, it is important to know whether the CMG parameter is nominal or out of family, and why. The goal of this project is to analyze an important CMG parameter - spin motor current. Some operational decisions are made now based on the spin motor current signatures. The spin motor current depends on gimbal rates, ISS rates, and spin bearing friction. The spin bearing friction in turn depends on the bearing temperatures, wheel rates, normal load - which is a function of gimbal and wheel rates - lubrication, etc. The first task of this project is to create a spin motor current mathematical model based on CMG dynamics model and the current knowledge on bearing friction in microgravity.

  9. Filtering and Control of High Speed Motor Current in a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Kenny, Barbara H.; Santiago, Walter

    2004-01-01

    The NASA Glenn Research Center has been developing technology to enable the use of high speed flywheel energy storage units in future spacecraft for the last several years. An integral part of the flywheel unit is the three phase motor/generator that is used to accelerate and decelerate the flywheel. The motor/generator voltage is supplied from a pulse width modulated (PWM) inverter operating from a fixed DC voltage supply. The motor current is regulated through a closed loop current control that commands the necessary voltage from the inverter to achieve the desired current. The current regulation loop is the innermost control loop of the overall flywheel system and, as a result, must be fast and accurate over the entire operating speed range (20,000 to 60,000 rpm) of the flywheel. The voltage applied to the motor is a high frequency PWM version of the DC bus voltage that results in the commanded fundamental value plus higher order harmonics. Most of the harmonic content is at the switching frequency and above. The higher order harmonics cause a rapid change in voltage to be applied to the motor that can result in large voltage stresses across the motor windings. In addition, the high frequency content in the motor causes sensor noise in the magnetic bearings that leads to disturbances for the bearing control. To alleviate these problems, a filter is used to present a more sinusoidal voltage to the motor/generator. However, the filter adds additional dynamics and phase lag to the motor system that can interfere with the performance of the current regulator. This paper will discuss the tuning methodology and results for the motor/generator current regulator and the impact of the filter on the control. Results at speeds up to 50,000 rpm are presented.

  10. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  11. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  12. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-12-14

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.

  13. RF current profile control studies in the alcator C-mod tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Porkolab, M.; Wukitch, S. J.; Bernabei, S.; Kaita, R.; Mikkelsen, D.; Phillips, C. K.; Schilling, G.

    1999-09-01

    Time dependent calculations of lower hybrid (LH) current profile control in Alcator C-Mod have been done using the TRANSP [1], FPPRF [2], and LSC [3] codes. Up to 3 MW of LH current drive power was applied in plasmas with high power ICRF minority heating (PICH=1.8-3 MW) and fast current ramp up. Using the experimentally measured temperature profiles, off-axis current generation resulted in nonmonotonic q-profiles with qmin~=1.6. Self-consistent effects of off-axis electron heating by the LH power were also included in the analysis and significant broadening of the electron temperature profile was found with qmin>~2 and a larger shear reversal radius.

  14. Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores

    PubMed Central

    Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.

    2014-01-01

    Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685

  15. Computation of stationary 3D halo currents in fusion devices with accuracy control

    SciTech Connect

    Bettini, Paolo; Specogna, Ruben

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  16. Unity power factor converter based on a fuzzy controller and predictive input current.

    PubMed

    Bouafassa, Amar; Rahmani, Lazhar; Kessal, Abdelhalim; Babes, Badreddine

    2014-11-01

    This paper proposes analysis and control of a single-phase power factor corrector (PFC). The proposed control is capable of achieving a unity power factor for each DC link voltage or load fluctuation. The method under study is composed of two intelligent approaches, a fuzzy logic controller to ensure an output voltage at a suitable value and predictive current control. The fuzzy controller is used with minimum rules to attain a low cost. The method is verified and discussed through simulation on the MATLAB/Simulink platform. It presents high dynamic performance under various parameter changes. Moreover, in order to examine and evaluate the method in real-time, a test bench is built using dSPACE 1104. The implantation of the proposed method is very easy and flexible and allows for operation under parameter variations. Additionally, the obtained results are very significant.

  17. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    SciTech Connect

    Cochems, P.; Kirk, A. T.; Bunert, E.; Runge, M.; Goncalves, P.; Zimmermann, S.

    2015-06-15

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron current due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.

  18. Adaptive Control of Fast-Scale Bifurcation in Peak Current Controlled Buck-Boost Inverter via One-Cycle Compensation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Dong, Shuai; Guan, Weimin; Yi, Chuanzhi; He, Bo

    In this paper, one-cycle compensation (OCC) method is proposed to realize adaptive control of fast-scale bifurcation in the peak current controlled buck-boost inverter because the proposed control method can adjust the slope of the integrator’s output voltage automatically through extracting a sinusoidal signal from the absolute value of the reference voltage. In order to reveal their underlying mechanisms of fast-scale bifurcations, a modified averaged model which can capture the sample-and-hold effect is derived in detail to describe the fast-scale dynamics of the buck-boost inverter. Based on the proposed model, a theoretical analysis is performed to identify both the fast-scale period-doubling bifurcation and the fast-scale Hopf one by judging in what way the poles loci move. It has been shown that the OCC method can be used not only to discover the unknown dynamical behaviors (i.e. fast-scale Hopf bifurcation), but also to enlarge the stable region in peak current controlled buck-boost inverter. In addition, the critical bifurcation angles and the parameter behavior boundary are given to verify the effectiveness of the adaptive bifurcation control method. Finally, PSpice circuit experiments are performed to verify the above theoretical and numerical results.

  19. Methods and apparatus for controlling respective load currents of multiple series-connected loads

    DOEpatents

    Datta, Michael; Lys, Ihor

    2014-05-27

    A lighting apparatus (100) includes one or more first LEDs (202) for generating a first spectrum of radiation (503), and one or more second LEDs (204) for generating a second different spectrum radiation (505). The first and second LEDs are electrically connected in series between a first node (516A) and a second node (516B), between which a series current (550) flows with the application of an operating voltage (516) across the nodes. A controllable current path (518) is connected in parallel with one or both of the first and second LEDs so as to at least partially divert the series current, such that a first current (552) through the first LED(s) and a second current (554) through the second LED(s) are different. Such current diversion techniques may be employed to compensate for shifts in color or color temperature of generated light during thermal transients, due to different temperature-dependent current-to-flux relationships for different types of LEDs.

  20. Lumbar repositioning error in sitting: healthy controls versus people with sitting-related non-specific chronic low back pain (flexion pattern).

    PubMed

    O'Sullivan, Kieran; Verschueren, Sabine; Van Hoof, Wannes; Ertanir, Faik; Martens, Lien; Dankaerts, Wim

    2013-12-01

    Studies examining repositioning error (RE) in non-specific chronic low back pain (NSCLBP) demonstrate contradictory results, with most studies not correlating RE deficits with measures of pain, disability or fear. This study examined if RE deficits exist among a subgroup of patients with NSCLBP whose symptoms are provoked by flexion, and how such deficits relate to measures of pain, disability, fear-avoidance and kinesiophobia. 15 patients with NSCLBP were matched (age, gender, and body mass index) with 15 painfree participants. Lumbo-pelvic RE, pain, functional disability, fear-avoidance and kinesiophobia were evaluated. Participants were asked to reproduce a target position (neutral lumbo-pelvic posture) after 5 s of slump sitting. RE in each group was compared by evaluating constant error (CE), absolute error (AE) and variable error (VE). Both AE (p = 0.002) and CE (p = 0.006) were significantly larger in the NSCLBP group, unlike VE (p = 0.165) which did not differ between the groups. There were significant, moderate correlations in the NSCLBP group between AE and functional disability (r = 0.601, p = 0.018), and between CE and fear-avoidance (r = -0.577, p = 0.0024), but all other correlations were weak (r < 0.337, rs < 0.377) or non-significant (p > 0.05). The results demonstrate increased lumbo-pelvic RE in a subgroup of NSCLBP patients, with the selected subgroup undershooting the target position. Overall, RE was only weakly to moderately correlated with measures of pain, disability or fear. The deficits observed are consistent with findings of altered motor control in patients with NSCLBP. The mechanisms underlying these RE deficits, and the most effective method of addressing these deficits, require further study.

  1. A Mobile Device App to Reduce Time to Drug Delivery and Medication Errors During Simulated Pediatric Cardiopulmonary Resuscitation: A Randomized Controlled Trial

    PubMed Central

    Combescure, Christophe; Lacroix, Laurence; Haddad, Kevin; Sanchez, Oliver; Gervaix, Alain; Lovis, Christian; Manzano, Sergio

    2017-01-01

    Background During pediatric cardiopulmonary resuscitation (CPR), vasoactive drug preparation for continuous infusion is both complex and time-consuming, placing children at higher risk than adults for medication errors. Following an evidence-based ergonomic-driven approach, we developed a mobile device app called Pediatric Accurate Medication in Emergency Situations (PedAMINES), intended to guide caregivers step-by-step from preparation to delivery of drugs requiring continuous infusion. Objective The aim of our study was to determine whether the use of PedAMINES reduces drug preparation time (TDP) and time to delivery (TDD; primary outcome), as well as medication errors (secondary outcomes) when compared with conventional preparation methods. Methods The study was a randomized controlled crossover trial with 2 parallel groups comparing PedAMINES with a conventional and internationally used drugs infusion rate table in the preparation of continuous drug infusion. We used a simulation-based pediatric CPR cardiac arrest scenario with a high-fidelity manikin in the shock room of a tertiary care pediatric emergency department. After epinephrine-induced return of spontaneous circulation, pediatric emergency nurses were first asked to prepare a continuous infusion of dopamine, using either PedAMINES (intervention group) or the infusion table (control group), and second, a continuous infusion of norepinephrine by crossing the procedure. The primary outcome was the elapsed time in seconds, in each allocation group, from the oral prescription by the physician to TDD by the nurse. TDD included TDP. The secondary outcome was the medication dosage error rate during the sequence from drug preparation to drug injection. Results A total of 20 nurses were randomized into 2 groups. During the first study period, mean TDP while using PedAMINES and conventional preparation methods was 128.1 s (95% CI 102-154) and 308.1 s (95% CI 216-400), respectively (180 s reduction, P=.002). Mean

  2. Combining principles of Cognitive Load Theory and diagnostic error analysis for designing job aids: Effects on motivation and diagnostic performance in a process control task.

    PubMed

    Kluge, Annette; Grauel, Britta; Burkolter, Dina

    2013-03-01

    Two studies are presented in which the design of a procedural aid and the impact of an additional decision aid for process control were assessed. In Study 1, a procedural aid was developed that avoids imposing unnecessary extraneous cognitive load on novices when controlling a complex technical system. This newly designed procedural aid positively affected germane load, attention, satisfaction, motivation, knowledge acquisition and diagnostic speed for novel faults. In Study 2, the effect of a decision aid for use before the procedural aid was investigated, which was developed based on an analysis of diagnostic errors committed in Study 1. Results showed that novices were able to diagnose both novel faults and practised faults, and were even faster at diagnosing novel faults. This research contributes to the question of how to optimally support novices in dealing with technical faults in process control.

  3. Birth Control in Clinical Trials: Industry Survey of Current Use Practices, Governance, and Monitoring.

    PubMed

    Stewart, J; Breslin, W J; Beyer, B K; Chadwick, K; De Schaepdrijver, L; Desai, M; Enright, B; Foster, W; Hui, J Y; Moffat, G J; Tornesi, B; Van Malderen, K; Wiesner, L; Chen, C L

    2016-03-01

    The Health and Environmental Sciences Institute (HESI) Developmental and Reproductive Toxicology Technical Committee sponsored a pharmaceutical industry survey on current industry practices for contraception use during clinical trials. The objectives of the survey were to improve our understanding of the current industry practices for contraception requirements in clinical trials, the governance processes set up to promote consistency and/or compliance with contraception requirements, and the effectiveness of current contraception practices in preventing pregnancies during clinical trials. Opportunities for improvements in current practices were also considered. The survey results from 12 pharmaceutical companies identified significant variability among companies with regard to contraception practices and governance during clinical trials. This variability was due primarily to differences in definitions, areas of scientific uncertainty or misunderstanding, and differences in company approaches to enrollment in clinical trials. The survey also revealed that few companies collected data in a manner that would allow a retrospective understanding of the reasons for failure of birth control during clinical trials. In this article, suggestions are made for topics where regulatory guidance or scientific publications could facilitate best practice. These include provisions for a pragmatic definition of women of childbearing potential, guidance on how animal data can influence the requirements for male and female birth control, evidence-based guidance on birth control and pregnancy testing regimes suitable for low- and high-risk situations, plus practical methods to ascertain the risk of drug-drug interactions with hormonal contraceptives.

  4. Effective variable switching point predictive current control for ac low-voltage drives

    NASA Astrophysics Data System (ADS)

    Stolze, Peter; Karamanakos, Petros; Kennel, Ralph; Manias, Stefanos; Endisch, Christian

    2015-07-01

    This paper presents an effective model predictive current control scheme for induction machines driven by a three-level neutral point clamped inverter, called variable switching point predictive current control. Despite the fact that direct, enumeration-based model predictive control (MPC) strategies are very popular in the field of power electronics due to their numerous advantages such as design simplicity and straightforward implementation procedure, they carry two major drawbacks. These are the increased computational effort and the high ripples on the controlled variables, resulting in a limited applicability of such methods. The high ripples occur because in direct MPC algorithms the actuating variable can only be changed at the beginning of a sampling interval. A possible remedy for this would be to change the applied control input within the sampling interval, and thus to apply it for a shorter time than one sample. However, since such a solution would lead to an additional overhead which is crucial especially for multilevel inverters, a heuristic preselection of the optimal control action is adopted to keep the computational complexity at bay. Experimental results are provided to verify the potential advantages of the proposed strategy.

  5. RHIC 12x150A current lead temperature controller: design and implementation

    SciTech Connect

    Mi, C.; Seberg, S.; Ganetis, Hamdi, K.; Louie, W.; Heppner, G.; Jamilkowski, J.; Bruno, D.; DiLieto, A.; Sirio, C.; Tuozzolo, J.; Sandberg, J.; Unger, K.

    2011-03-28

    There are 60 12 x 150A current leads distributed in six RHIC service buildings; each lead delivers power supply current from room temperature to cryogenic temperature in RHIC. Due to the humid environment, condensation occurs frequently and ice forms quickly during operation, especially during an extensive storage period. These conditions generate warnings and alarms to which personnel must respond and establish temporary solutions to keep the machine operating. In here, we designed a temperature control system to avoid such situations. This paper discusses its design, implementation, and some results. There are six service buildings in the RHIC complex; each building has two valve boxes that transfer room-temperature current cables from the power supplies into superconducting leads, and then transport them into the RHIC tunnel. In there, the transition between the room-temperature lead into superconducting lead is critical and essential; smooth running during the physics store is crucial for the machine's continuing operation. One of the problems that often occurred previously was the icing of these current leads that could result in a potential leakage current onto ground, thereby preventing a continuous supply of physics store. Fig. 1 illustrates a typical example on a power lead. Among the modifications of the design of the valve box, we list below the new requirements for designing the temperature controller to prevent icing occurring: (1) Remotely control, monitor, and record each current lead's temperature in real time. Prevent icing or overheating of a power lead. (2) Include a temperature alarm for the high/low level threshold. In this paper we discuss the design, implementation, upgrades to, and operation of this new system.

  6. Mapping transmission risk of Lassa fever in West Africa: the importance of quality control, sampling bias, and error weighting.

    PubMed

    Peterson, A Townsend; Moses, Lina M; Bausch, Daniel G

    2014-01-01

    Lassa fever is a disease that has been reported from sites across West Africa; it is caused by an arenavirus that is hosted by the rodent M. natalensis. Although it is confined to West Africa, and has been documented in detail in some well-studied areas, the details of the distribution of risk of Lassa virus infection remain poorly known at the level of the broader region. In this paper, we explored the effects of certainty of diagnosis, oversampling in well-studied region, and error balance on results of mapping exercises. Each of the three factors assessed in this study had clear and consistent influences on model results, overestimating risk in southern, humid zones in West Africa, and underestimating risk in drier and more northern areas. The final, adjusted risk map indicates broad risk areas across much of West Africa. Although risk maps are increasingly easy to develop from disease occurrence data and raster data sets summarizing aspects of environments and landscapes, this process is highly sensitive to issues of data quality, sampling design, and design of analysis, with macrogeographic implications of each of these issues and the potential for misrepresenting real patterns of risk.

  7. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  8. Neural network evaluation of tokamak current profiles for real time control

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated.

  9. Neural network evaluation of tokamak current profiles for real time control

    SciTech Connect

    Wroblewski, D.

    1997-02-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, {ital q}{sub 0}, minimum value of {ital q}, {ital q}{sub min}, and the location of {ital q}{sub min}. Very good performance of the trained neural network both for simulated test data and for experimental datais demonstrated. {copyright} {ital 1997 American Institute of Physics.}

  10. Neural network evaluation of tokamak current profiles for real time control (abstract)

    SciTech Connect

    Wroblewski, D.

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q{sub 0}, minimum value of q, q{sub min}, and the location of q{sub min}. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated. {copyright} {ital 1997 American Institute of Physics.}

  11. Neural network evaluation of tokamak current profiles for real time control (abstract)

    NASA Astrophysics Data System (ADS)

    Wróblewski, Dariusz

    1997-01-01

    Active feedback control of the current profile, requiring real-time determination of the current profile parameters, is envisioned for tokamaks operating in enhanced confinement regimes. The distribution of toroidal current in a tokamak is now routinely evaluated based on external (magnetic probes, flux loops) and internal (motional Stark effect) measurements of the poloidal magnetic field. However, the analysis involves reconstruction of magnetohydrodynamic equilibrium and is too intensive computationally to be performed in real time. In the present study, a neural network is used to provide a mapping from the magnetic measurements (internal and external) to selected parameters of the safety factor profile. The single-pass, feedforward calculation of output of a trained neural network is very fast, making this approach particularly suitable for real-time applications. The network was trained on a large set of simulated equilibrium data for the DIII-D tokamak. The database encompasses a large variety of current profiles including the hollow current profiles important for reversed central shear operation. The parameters of safety factor profile (a quantity related to the current profile through the magnetic field tilt angle) estimated by the neural network include central safety factor, q0, minimum value of q, qmin, and the location of qmin. Very good performance of the trained neural network both for simulated test data and for experimental data is demonstrated.

  12. Is single room hospital accommodation associated with differences in healthcare-associated infection, falls, pressure ulcers or medication errors? A natural experiment with non-equivalent controls

    PubMed Central

    Maben, Jill; Murrells, Trevor; Griffiths, Peter

    2016-01-01

    Objectives A wide range of patient benefits have been attributed to single room hospital accommodation including a reduction in adverse patient safety events. However, studies have been limited to the US with limited evidence from elsewhere. The aim of this study was to assess the impact on safety outcomes of the move to a newly built all single room acute hospital. Methods A natural experiment investigating the move to 100% single room accommodation in acute assessment, surgical and older people’s wards. Move to 100% single room accommodation compared to ‘steady state’ and ‘new build’ control hospitals. Falls, pressure ulcer, medication error, meticillin-resistant Staphylococcus aureus and Clostridium difficile rates from routine data sources were measured over 36 months. Results Five of 15 time series in the wards that moved to single room accommodation revealed changes that coincided with the move to the new all single room hospital: specifically, increased fall, pressure ulcer and Clostridium difficile rates in the older people’s ward, and temporary increases in falls and medication errors in the acute assessment unit. However, because the case mix of the older people’s ward changed, and because the increase in falls and medication errors on the acute assessment ward did not last longer than six months, no clear effect of single rooms on the safety outcomes was demonstrated. There were no changes to safety events coinciding with the move at the new build control site. Conclusion For all changes in patient safety events that coincided with the move to single rooms, we found plausible alternative explanations such as case-mix change or disruption as a result of the re-organization of services after the move. The results provide no evidence of either benefit or harm from all single room accommodation in terms of safety-related outcomes, although there may be short-term risks associated with a move to single rooms. PMID:26811373

  13. Postural Control Impairments in Individuals With Autism Spectrum Disorder: A Critical Review of Current Literature

    PubMed Central

    Memari, Amir Hossein; Ghanouni, Parisa; Shayestehfar, Monir; Ghaheri, Banafsheh

    2014-01-01

    Context: Motor impairments in individuals with autism spectrum disorder (ASD) have been frequently reported. In this review, we narrow our focus on postural control impairments to summarize current literature for patterns, underlying mechanisms, and determinants of posture in this population. Evidence Acquisition: A literature search was conducted through Medline, ISI web of Knowledge, Scopus and Google Scholar to include studies between 1992 and February 2013. Results: Individuals with ASD have problems in maintaining postural control in infancy that well persists into later years. However, the patterns and underlying mechanisms are still unclear. Conclusions: Examining postural control as an endophenotype or early diagnostic marker of autism is a conceptual premise which should be considered in future investigations. At the end of the review, methodological recommendations on the assessment of postural control have also been provided. PMID:25520765

  14. Passive transdermal systems whitepaper incorporating current chemistry, manufacturing and controls (CMC) development principles.

    PubMed

    Van Buskirk, Glenn A; Arsulowicz, Daniel; Basu, Prabir; Block, Lawrence; Cai, Bing; Cleary, Gary W; Ghosh, Tapash; González, Mario A; Kanios, David; Marques, Margareth; Noonan, Patrick K; Ocheltree, Terrance; Schwarz, Peter; Shah, Vinod; Spencer, Thomas S; Tavares, Lino; Ulman, Katherine; Uppoor, Rajendra; Yeoh, Thean

    2012-03-01

    In this whitepaper, the Manufacturing Technical Committee (MTC) of the Product Quality Research Institute has updated the 1997 Transdermal Drug Delivery Systems Scale-Up and Post Approval Change workshop report findings to add important new product development and control principles. Important topics reviewed include ICH harmonization, quality by design, process analytical technologies, product and process validation, improvements to control of critical excipients, and discussion of Food and Drug Administration's Guidance on Residual Drug in Transdermal and Related Drug Delivery Systems as well as current thinking and trends on in vitro-in vivo correlation considerations for transdermal systems.

  15. Skills, rules and knowledge in aircraft maintenance: errors in context

    NASA Technical Reports Server (NTRS)

    Hobbs, Alan; Williamson, Ann

    2002-01-01

    Automatic or skill-based behaviour is generally considered to be less prone to error than behaviour directed by conscious control. However, researchers who have applied Rasmussen's skill-rule-knowledge human error framework to accidents and incidents have sometimes found that skill-based errors appear in significant numbers. It is proposed that this is largely a reflection of the opportunities for error which workplaces present and does not indicate that skill-based behaviour is intrinsically unreliable. In the current study, 99 errors reported by 72 aircraft mechanics were examined in the light of a task analysis based on observations of the work of 25 aircraft mechanics. The task analysis identified the opportunities for error presented at various stages of maintenance work packages and by the job as a whole. Once the frequency of each error type was normalized in terms of the opportunities for error, it became apparent that skill-based performance is more reliable than rule-based performance, which is in turn more reliable than knowledge-based performance. The results reinforce the belief that industrial safety interventions designed to reduce errors would best be directed at those aspects of jobs that involve rule- and knowledge-based performance.

  16. Dataset on coherent control of fields and induced currents in nonlinear multiphoton processes in a nanosphere

    PubMed Central

    McArthur, Duncan; Hourahine, Ben; Papoff, Francesco

    2015-01-01

    We model a scheme for the coherent control of light waves and currents in metallic nanospheres which applies independently of the nonlinear multiphoton processes at the origin of waves and currents. Using exact mathematical formulae, we calculate numerically with a custom fortran code the effect of an external control field which enable us to change the radiation pattern and suppress radiative losses or to reduce absorption, enabling the particle to behave as a perfect scatterer or as a perfect absorber. Data are provided in tabular, comma delimited value format and illustrate narrow features in the response of the particles that result in high sensitivity to small variations in the local environment, including subwavelength spatial shifts. PMID:26601699

  17. Current market for industrial minerals in SO sub 2 emission control in Kentucky

    SciTech Connect

    Dever, G.R. Jr. )

    1989-01-01

    During 1989 and 1990 Congress is expected to consider proposed amendments of the Federal Clean Air Act. One proposal seeks to cut sulfur dioxide (SO{sub 2}) emissions by almost 50 percent from current levels. The enactment of more stringent SO{sub 2} emission standards would affect Kentucky's coal industry and many coal-fired plants in the state. Depending upon selected or legislated emission-control strategies, industrial mineral producers may experience an increased demand for limestone, lime and dolomite. This article outlines the current use of industrial minerals for SO{sub 2} emission control in Kentucky. Flue-gas desulfurization and atmospheric fluidized-bed combustion systems have been installed at 13 coal and gas-fired plants and one research laboratory in the state. Limestone, lime, and dolomite, produced in Kentucky and adjacent states, are the principal SO{sub 2} sorbents in these systems.

  18. Controlling the HIV/AIDS epidemic: current status and global challenges

    PubMed Central

    Demberg, Thorsten; Robert-Guroff, Marjorie

    2012-01-01

    This review provides an overview of the current status of the global HIV pandemic and strategies to bring it under control. It updates numerous preventive approaches including behavioral interventions, male circumcision (MC), pre- and post-exposure prophylaxis (PREP and PEP), vaccines, and microbicides. The manuscript summarizes current anti-retroviral treatment options, their impact in the western world, and difficulties faced by emerging and resource-limited nations in providing and maintaining appropriate treatment regimens. Current clinical and pre-clinical approaches toward a cure for HIV are described, including new drug compounds that target viral reservoirs and gene therapy approaches aimed at altering susceptibility to HIV infection. Recent progress in vaccine development is summarized, including novel approaches and new discoveries. PMID:22912636

  19. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  20. Controlling Type I Error Rate in Evaluating Differential Item Functioning for Four DIF Methods: Use of Three Procedures for Adjustment of Multiple Item Testing

    ERIC Educational Resources Information Center

    Kim, Jihye

    2010-01-01

    In DIF studies, a Type I error refers to the mistake of identifying non-DIF items as DIF items, and a Type I error rate refers to the proportion of Type I errors in a simulation study. The possibility of making a Type I error in DIF studies is always present and high possibility of making such an error can weaken the validity of the assessment.…

  1. Effects of the preventive and corrective adjustments in economical designs for online process control for attributes with misclassification errors

    NASA Astrophysics Data System (ADS)

    Quinino, Roberto C.; Ho, Linda Lee

    2010-01-01

    The procedure for online process control by attributes consists of inspecting a single item at every m produced items. It is decided on the basis of the inspection result whether the process is in-control (the conforming fraction is stable) or out-of-control (the conforming fraction is decreased, for example). Most articles about online process control have cited the stoppage of the production process for an adjustment when the inspected item is non-conforming (then the production is restarted in-control, here denominated as corrective adjustment). Moreover, the articles related to this subject do not present semi-economical designs (which may yield high quantities of non-conforming items), as they do not include a policy of preventive adjustments (in such case no item is inspected), which can be more economical, mainly if the inspected item can be misclassified. In this article, the possibility of preventive or corrective adjustments in the process is decided at every m produced item. If a preventive adjustment is decided upon, then no item is inspected. On the contrary, the m-th item is inspected; if it conforms, the production goes on, otherwise, an adjustment takes place and the process restarts in-control. This approach is economically feasible for some practical situations and the parameters of the proposed procedure are determined minimizing an average cost function subject to some statistical restrictions (for example, to assure a minimal level-fixed in advance-of conforming items in the production process). Numerical examples illustrate the proposal.

  2. 42 CFR 400.310 - Display of currently valid OMB control numbers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of Information § 400.310 Display of currently valid OMB control numbers. Sections in 42 CFR that... 0938—0008 405.2112, 405.2123, 405.2134, 405.2136-405.2140, 405.2171 0938—0386 409.43 0938—0365 410.105....47 0938—0266 and 0938—0506 417.126 0938—0472 417.436, 417.801 0938—0610 418.22, 418.24, 418.28,...

  3. Control of plasma process by use of harmonic frequency components of voltage and current

    DOEpatents

    Miller, Paul A.; Kamon, Mattan

    1994-01-01

    The present invention provides for a technique for taking advantage of the intrinsic electrical non-linearity of processing plasmas to add additional control variables that affect process performance. The technique provides for the adjustment of the electrical coupling circuitry, as well as the electrical excitation level, in response to measurements of the reactor voltage and current and to use that capability to modify the plasma characteristics to obtain the desired performance.

  4. Precision control of high temperature furnaces using an auxiliary power supply and charged practice current flow

    DOEpatents

    Pollock, George G.

    1997-01-01

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved.

  5. Precision control of high temperature furnaces using an auxiliary power supply and charged particle current flow

    DOEpatents

    Pollock, G.G.

    1997-01-28

    Two power supplies are combined to control a furnace. A main power supply heats the furnace in the traditional manner, while the power from the auxiliary supply is introduced as a current flow through charged particles existing due to ionized gas or thermionic emission. The main power supply provides the bulk heating power and the auxiliary supply provides a precise and fast power source such that the precision of the total power delivered to the furnace is improved. 5 figs.

  6. Is one technology best? Control strategies to meet current and future regulations

    SciTech Connect

    Altin, C.A.; Bustard, C.J.; Gelfand, P.; Sloat, D.G.; Belba, V.H.

    1994-12-31

    A slide presentation is given that discusses control strategies to meet current and future regulations. Most new regulations will require incremental reductions in specific emissions creating a market for technologies that can be retrofitted to existing systems. Since most metals are associated with particulate matter, improving particle collection will lead to reduced metal emissions and the disposal of sorbents used for capturing vapor phase pollutants, e.g., SO{sub 2} and Hg, can dominate the economics of the process.

  7. Detecting and Correcting Errors in Rapid Aiming Movements: Effects of Movement Time, Distance, and Velocity

    ERIC Educational Resources Information Center

    Sherwood, David E.

    2010-01-01

    According to closed-loop accounts of motor control, movement errors are detected by comparing sensory feedback to an acquired reference state. Differences between the reference state and the movement-produced feedback results in an error signal that serves as a basis for a correction. The main question addressed in the current study was how…

  8. Milestone report: Status report on time-dependent modeling for current profile feedback control

    SciTech Connect

    Casper, T.A.; Crotinger, J.; Haney, S.

    1995-09-29

    During the past year, LLNL efforts in the DIII-D experimental program have expanded to include time-dependent modeling of advanced tokamak (AT) operating modes. Consistent with our involvement in experimental operations, we have directed our initial efforts at modeling the negative central shear (NCS) configuration, an important and attractive mode of operation for reducing the size and cost of future tokamak experiments without sacrificing performance. In this endeavor, we have brought into use the Corsica modeling code as a tool for investigating the time-dependent evolution and control of various operating modes. In our current efforts, we are contributing to the analysis of the NCS experimental data using analysis tools such as the EFIT equilibrium code and the ONETWO and TRANSP transport codes. Results of these analyses are being used for comparisons with the Corsica modeling. Future directions include the modeling of startup and sustaining of NCS (and other AT) configurations, the understanding of current drive effects, the development of current drive scenarios and control algorithms, and the design of experiments and prediction of experimental results. We are currently in the early stages of applying this powerful modeling tool to the DIII-D experimental program.

  9. Slow walking on a treadmill desk does not negatively affect executive abilities: an examination of cognitive control, conflict adaptation, response inhibition, and post-error slowing

    PubMed Central

    Larson, Michael J.; LeCheminant, James D.; Carbine, Kaylie; Hill, Kyle R.; Christenson, Edward; Masterson, Travis; LeCheminant, Rick

    2015-01-01

    An increasing trend in the workplace is for employees to walk on treadmills while working to attain known health benefits; however, the effect of walking on a treadmill during cognitive control and executive function tasks is not well known. We compared the cognitive control processes of conflict adaptation (i.e., congruency sequence effects—improved performance following high-conflict relative to low-conflict trials), post-error slowing (i.e., Rabbitt effect), and response inhibition during treadmill walking (1.5 mph) relative to sitting. Understanding the influence of treadmill desks on these cognitive processes may have implications for worker health and productivity. Sixty-nine individuals were randomized to either a sitting (n = 35) or treadmill-walking condition (n = 34). Groups did not differ in age or body mass index. All participants completed a computerized Eriksen flanker task and a response-inhibition go/no-go task in random order while either walking on a treadmill or seated. Response times (RTs) and accuracy were analyzed separately for each task using mixed model analysis of variance. Separate ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-error slowing, and response inhibition effects when collapsed across sitting and treadmill groups (all Fs > 78.77, Ps < 0.001). There were no main effects or interactions as a function of group for any analyses (Fs < 0.79, Ps > 0.38), suggesting no decrements or enhancements in conflict-related control and adjustment processes or response inhibition for those walking on a treadmill versus sitting. We conclude that cognitive control performance remains relatively unaffected during slow treadmill walking relative to sitting. PMID:26074861

  10. Slow walking on a treadmill desk does not negatively affect executive abilities: an examination of cognitive control, conflict adaptation, response inhibition, and post-error slowing.

    PubMed

    Larson, Michael J; LeCheminant, James D; Carbine, Kaylie; Hill, Kyle R; Christenson, Edward; Masterson, Travis; LeCheminant, Rick

    2015-01-01

    An increasing trend in the workplace is for employees to walk on treadmills while working to attain known health benefits; however, the effect of walking on a treadmill during cognitive control and executive function tasks is not well known. We compared the cognitive control processes of conflict adaptation (i.e., congruency sequence effects-improved performance following high-conflict relative to low-conflict trials), post-error slowing (i.e., Rabbitt effect), and response inhibition during treadmill walking (1.5 mph) relative to sitting. Understanding the influence of treadmill desks on these cognitive processes may have implications for worker health and productivity. Sixty-nine individuals were randomized to either a sitting (n = 35) or treadmill-walking condition (n = 34). Groups did not differ in age or body mass index. All participants completed a computerized Eriksen flanker task and a response-inhibition go/no-go task in random order while either walking on a treadmill or seated. Response times (RTs) and accuracy were analyzed separately for each task using mixed model analysis of variance. Separate ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-error slowing, and response inhibition effects when collapsed across sitting and treadmill groups (all Fs > 78.77, Ps < 0.001). There were no main effects or interactions as a function of group for any analyses (Fs < 0.79, Ps > 0.38), suggesting no decrements or enhancements in conflict-related control and adjustment processes or response inhibition for those walking on a treadmill versus sitting. We conclude that cognitive control performance remains relatively unaffected during slow treadmill walking relative to sitting.

  11. Controlling Gilbert damping in a YIG film using nonlocal spin currents

    NASA Astrophysics Data System (ADS)

    Haidar, M.; Dürrenfeld, P.; Ranjbar, M.; Balinsky, M.; Fazlali, M.; Dvornik, M.; Dumas, R. K.; Khartsev, S.; Åkerman, J.

    2016-11-01

    We demonstrate the control of Gilbert damping in 65-nm-thick yttrium iron garnet (YIG) films using a spin-polarized current generated by a direct current through a nanocontact, spin filtered by a thin Co layer. The magnetodynamics of both the YIG and the Co layers can be excited by a pulse-modulated microwave current injected through the nanocontact and the response detected as a lock-in amplified voltage over the device. The spectra show three clear peaks, two associated with the ferromagnetic resonance (FMR) in each layer, and an additional Co mode with a higher wave vector proportional to the inverse of the nanocontact diameter. By varying the sign and magnitude of the direct nanocontact current, we can either increase or decrease the linewidth of the YIG FMR peak consistent with additional positive or negative damping being exerted by the nonlocal spin current injected into the YIG film. Our nanocontact approach thus offers an alternative route in the search for auto-oscillations in YIG films.

  12. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  13. Three-dimensional deployment of electro-dynamic tether via tension and current control with constraints

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Jin, Dongping; Hu, Haiyan

    2016-12-01

    The concept of space tether has found a great deal of promising applications in space engineering. A prerequisite of any space tether mission is to deploy its tether to a commanded length. This paper aims to achieving the three-dimensional deployment of an electro-dynamic tether system in a propellant-free manner via the feedback control of the tension and electric current in the tether. The proposed controller is formulated in an analytical form with an extremely low level of computational load, and can explicitly account for the physical bounds of the tether tension and electric current by using a pair of strictly increasing saturation functions. In addition, the Lyapunov analysis is made to gain an insight into the stability characteristics of the proposed control strategy. To facilitate the theoretical analysis, the dynamic model of the system is developed under the widely used dumbbell assumption, along with the geomagnetic field modeled using a tilted dipole approximation. Finally, numerical case studies on a representative electro-dynamic tether system are conducted to evaluate the performance of the proposed controller and the influence of the actuating conditions and orbital inclinations.

  14. Sensorless Sinusoidal Wave Drive for Control of Power Factor of PM Motor by Detection of Inverter Bus Current

    NASA Astrophysics Data System (ADS)

    Matsushita, Motoshi; Kameyama, Hiroyuki; Ikeboh, Yasuhiro; Morimoto, Shigeo

    Permanent-magnet synchronous motors (PMSMs) with a sinusoidal back EMF are widely used in domestic appliances for reduction of acoustic noises and energy consumption. PMSMs are generally controlled with a sinusoidal waveform current. Typically, PMSMs are controlled by vector-controlled sinusoidal drives, which require powerful computational resources. Hence, simpler sinusoidal wave drives such as V/f drives, which control the phase difference between the voltage and the current (power factor of PM Motor) have been proposed for controlling PMSMs. This paper presents a new method that does not require current sensors but can be used to estimate the phase difference by sampling the voltage of the shunt register, which is used to detect the over current supplied to the inverter. This method enables detection of current and accurate estimation and appropriate control of the phase difference. Using this method, we could control the phase difference and achieve high efficiency, cost reduction, and high reliability.

  15. The African swine fever control zone in South Africa and its current relevance.

    PubMed

    Magadla, Noluvuyo R; Vosloo, Wilna; Heath, Livio; Gummow, Bruce

    2016-05-23

    African swine fever (ASF) has been reported in South Africa since the early 20th century. The disease has been controlled and confined to northern South Africa over the past 80 years by means of a well-defined boundary line, with strict control measures and movement restrictions north of this line. In 2012, the first outbreak of ASF outside the ASF control zone since 1996 occurred. The objective of this study was to evaluate the current relevance of the ASF control line as a demarcation line between endemic ASF (north) areas and ASF-free (south) area and to determine whether there was a need to realign its trajectory, given the recent outbreaks of ASF, global climate changes and urban development since the line's inception. A study of ASF determinants was conducted in an area 20 km north and 20 km south of the ASF control line, in Limpopo, Mpumalanga, North West and Gauteng provinces between May 2008 and September 2012. The study confirmed that warthogs, warthog burrows and the soft tick reservoir, Ornithodoros moubata, are present south of the ASF control line, but no virus or viral DNA was detected in these ticks. There appears to be an increasing trend in the diurnal maximum temperature and a decrease in humidity along the line, but the impact of these changes is uncertain. No discernible changes in minimum temperatures and average rainfall along the disease control line were observed between 1992 and 2014. Even though the reservoirs were found south of the ASF boundary line, the study concluded that there was no need to realign the trajectory of the ASF disease control line, with the exception of Limpopo Province. However, the provincial surveillance programmes for the reservoir, vector and ASF virus south of this line needs to be maintained and intensified as changing farming practices may favour the spread of ASF virus beyond the control line.

  16. Quality assurance and control issues for HF radar wave and current measurements

    NASA Astrophysics Data System (ADS)

    Wyatt, Lucy

    2015-04-01

    HF radars are now widely used to provide surface current measurements over wide areas of the coastal ocean for scientific and operational applications. In general data quality is acceptable for these applications but there remain issues that impact on the quantity and quality of the data. These include problems with calibration and interference which impact on both phased array (e.g. WERA, Pisces) and direction-finding (e.g. SeaSonde) radars. These same issues and others (e.g. signal-to-noise, in-cell current variability, antenna sidelobes) also impact on the quality and quantity of wave data that can be obtained. These issues will be discussed in this paper, illustrated with examples from deployments of WERA, Pisces and SeaSonde radars in the UK, Europe, USA and Australia. These issues involve both quality assurance (making sure the radars perform to spec and the software is fully operational) and in quality control (identifying problems with the data due to radar hardware or software performance issues and flagging these in the provided data streams). Recommendations for the former, and current practice (of the author and within the Australian Coastal Ocean Radar Network, ACORN*) for the latter, will be discussed. The quality control processes for wave measurement are not yet as well developed as those for currents and data from some deployments can be rather noisy. Some new methods, currently under development by SeaView Sensing Ltd and being tested with ACORN data, will be described and results presented. *ACORN is a facility of the Australian Integrated Marine Observing System, IMOS. IMOS is a national collaborative research infrastructure, supported by Australian Government. It is led by University of Tasmania in partnership with the Australian marine and climate science community.

  17. Current status of DIII-D real-time digital plasma control

    SciTech Connect

    Penaflor, B.G.; Piglowski, D.A.; Ferron, J.R.; Walker, M.L.

    1999-06-01

    This paper describes the current status of real-time digital plasma control for the DIII-D tokamak. The digital plasma control system (PCS) has been in place at DIII-D since the early 1990s and continues to expand and improve in its capabilities to monitor and control plasma parameters for DIII-D fusion science experiments. The PCs monitors over 200 tokamak parameters from the DIII-D experiment using a real-time data acquisition system that acquires a new set of samples once every 60 {micro}s. This information is then used in a number of feedback control algorithms to compute and control a variety of parameters including those affecting plasma shape and position. A number of system related improvements has improved the usability and flexibility of the DIII-D PCS. These include more graphical user interfaces to assist in entering and viewing the large and ever growing number of parameters controlled by the PCS, increased interaction and accessibility from other DIII-D applications, and upgrades to the computer hardware and vended software. Future plans for the system include possible upgrades of the real-time computers, further links to other DIII-D diagnostic measurements such as real-time Thomson scattering analysis, and joint collaborations with other tokamak experiments including the NSTX at Princeton.

  18. Control of resonant frequency by currents in graphene: Effect of Dirac field on deflection

    SciTech Connect

    Soodchomshom, Bumned E-mail: fscibns@ku.ac.th

    2014-09-21

    To construct Lagrangian based on plate theory and tight-binding model, deflection-field coupling to Dirac fermions in graphene can be investigated. As have been known, deflection-induced strain may cause an effect on motion of electron, like a pseudo gauge field. In the work, we will investigate the effect of the Dirac field on the motion of the deflection-field in graphene derived from Lagrangian density. Due to the interaction of the deflection- and Dirac-fields, the current-induced surface-tension up to about 4×10⁻³ N/m in graphene membrane is predicted. This result may lead to controllable resonant frequency by currents in graphene. The high resonant frequency is found to be perfectly linearly controlled by both charge and valley currents. Our work reveals the potential of graphene for application of nano-electro-mechanical device and the physics of interaction of electron and deflection-filed in graphene system is investigated.

  19. Method and apparatus for controlling current in inductive loads such as large diameter coils

    DOEpatents

    Riveros, Carlos A.

    1981-01-01

    A method and apparatus for controlling electric current in loads that are essentially inductive, such that sparking and "ringing" current problems are reduced or eliminated. The circuit apparatus employs a pair of solid state switches (each of which switch may be an array of connected or parallel solid state switching devices such as transistors) and means for controlling those switches such that a power supply supplying two d.c. voltages (e.g. positive 150 volts d.c. and negative 150 volts d.c.) at low resistance may be connected across an essentially inductive load (e.g. a 6 gauge wire loop one hundred meters in diameter) alternatively and such that the first solid state switch is turned off and the second is turned on such that both are not on at the same time but the first turned on and the other on in less time than the inductive time constant (L/R) so that the load is essentially always presented with a low resistance path across its input. In this manner a steady AC current may be delivered to the load at a frequency desired. Shut-off problems are avoided by gradually shortening the period of switching to less than the time constant so that the maximum energy contained in the inductive load is reduced to approximately zero and dissipated in the inherent resistance. The invention circuit may be employed by adjusting the timing of switching to deliver a desired waveform (such as sinusoidal) to the load.

  20. Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges.

    PubMed

    Coutinho-Abreu, Iliano V; Zhu, Kun Yan; Ramalho-Ortigao, Marcelo

    2010-03-01

    Insect-borne diseases cause significant human morbidity and mortality. Current control and preventive methods against vector-borne diseases rely mainly on insecticides. The emergence of insecticide resistance in many disease vectors highlights the necessity to develop new strategies to control these insects. Vector transgenesis and paratransgenesis are novel strategies that aim at reducing insect vectorial capacity, or seek to eliminate transmission of pathogens such as Plasmodium sp., Trypanosoma sp., and Dengue virus currently being developed. Vector transgenesis relies on direct genetic manipulation of disease vectors making them incapable of functioning as vectors of a given pathogen. Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit. Despite the many successes achieved in developing such techniques in the last several years, many significant barriers remain and need to be overcome prior to any of these approaches become a reality. Here, we highlight the current status of these strategies, pointing out advantages and constraints, and also explore issues that need to be resolved before the establishment of transgenesis and paratransgenesis as tools to prevent vector-borne diseases.

  1. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching dc-dc converters with ramp compensation

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan

    2010-06-01

    The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D < 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.

  2. Differential effects of primary motor cortex and cerebellar transcranial direct current stimulation on motor learning in healthy individuals: A randomized double-blind sham-controlled study.

    PubMed

    Ehsani, F; Bakhtiary, A H; Jaberzadeh, S; Talimkhani, A; Hajihasani, A

    2016-11-01

    The purpose of study was to compare the effect of primary motor cortex (M1) and cerebellar anodal transcranial direct current stimulation (a-tDCS) on online and offline motor learning in healthy individuals. Fifty-nine healthy volunteers were randomly divided into three groups (n=20 in two experimental groups and n=19 in sham-control group). One experimental group received M1a-tDCSand another received cerebellar a-tDCS. The main outcome measure were response time (RT) and number of errors during serial response time test (SRTT) which were assessed prior, 35min and 48h after the interventions. Reduction of response time (RT) and error numbers at last block of the test compared to the first block was considered online learning. Comparison of assessments during retention tests was considered as short-term and long-term offline learning. Online RT reduction was not different among groups (P>0.05), while online error reduction was significantly greater in cerebellar a-tDCS than sham-control group (P<0.017). Moreover, a-tDCS on both M1 and cerebellar regions produced more long-term offline learning as compared to sham tDCS (P<0.01), while short-term offline RT reduction was significantly greater in M1a-tDCS than sham-control group (P<0.05). The findings indicated that although cerebellar a-tDCS enhances online learning and M1a-tDCS has more effect on short-term offline learning, both M1 and cerebellar a-tDCS can be used as a boosting technique for improvement of offline motor learning in healthy individuals.

  3. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  4. On a two-level multiclassifier system with error correction applied to the control of bioprosthetic hand.

    PubMed

    Kurzynski, Marek

    2013-01-01

    The paper presents an advanced method of recognition of patient's intention to move of hand prosthesis. The proposed method is based on two-level multiclassifier system (MCS) with homogeneous base classifiers dedicated to EEG, EMG and MMG biosignals and with combining mechanism using a dynamic ensemble selection (DES) scheme and probabilistic competence function. Additionally, the feedback signal derived from the prosthesis sensors is applied to the correction of classification algorithm. The performance of MCS with proposed competence function and combining procedure were experimentally compared against three benchmark MCSs using real data concerning the recognition of six types of grasping movements. The systems developed achieved the highest classification accuracies demonstrating the potential of multiple classifier systems with multimodal biosignals for the control of bioprosthetic hand.

  5. Control of Josephson current by Aharonov-Casher phase in a Rashba ring

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Borunda, M. F.; Liu, Xiong-Jun; Sinova, Jairo

    2009-11-01

    We study the interference effect induced by the Aharonov-Casher phase on the Josephson current through a semiconducting ring attached to superconducting leads. Using a one-dimensional model that incorporates spin-orbit coupling in the semiconducting ring, we calculate the Andreev levels analytically and numerically, and predict oscillations of the Josephson current due to the AC phase. This result is valid from the point-contact limit to the long channel-length case, as defined by the ratio of the junction length and the BCS healing length. We show in the long channel-length limit that the impurity scattering has no effect on the oscillation of the Josephson current, in contrast to the case of conductivity oscillations in a spin-orbit-coupled ring system attached to normal leads where impurity scattering reduces the amplitude of oscillations. Our results suggest a scheme to measure the AC phase with, in principle, higher sensitivity. In addition, this effect allows for control of the Josephson current through the gate-voltage-tuned AC phase.

  6. 3D nanopore shape control by current-stimulus dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ying, Cuifeng; Zhang, Yuechuan; Feng, Yanxiao; Zhou, Daming; Wang, Deqiang; Xiang, Yinxiao; Zhou, Wenyuan; Chen, Yongsheng; Du, Chunlei; Tian, Jianguo

    2016-08-01

    We propose a simple and cost-effect method, current-stimulus dielectric breakdown, to manipulate the 3D shapes of the nanochannels in 20-nm-thick SiNx membranes. Besides the precise control of nanopore size, the cone orientation can be determined by the pulse polarity. The cone angle of nanopores can be systematically tuned by simply changing the stimulus pulse waveform, allowing the gradual shape control from conical to obconical. After they are formed, the cone angle of these nanopores can be further tuned in a certain range by adjusting the widening pulse. Such size and 3D shape controllable abiotic nanopores can construct a constriction in the nanochannel and hence produce a sub-nm "sensing zone" to suit any desired bio-sensing or precise DNA sequencing. Using these conical nanopores, 20-nt ssDNA composed of homopolymers (poly(dA)20, poly(dC)20, and poly(dT)20) can be clearly differentiated by their ionic current signals.

  7. Spacecraft Hybrid Control At NASA: A Look Back, Current Initiatives, and Some Future Considerations

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.

  8. The adequacy of current import and export controls on sealed radioactive sources.

    SciTech Connect

    Longley, Susan W.; Cochran, John Russell; Price, Laura L.; Lipinski, Kendra J.

    2003-10-01

    Millions of sealed radioactive sources (SRSs) are being used for a wide variety of beneficial purposes throughout the world. Security experts are now concerned that these beneficial SRSs could be used in a radiological dispersion device to terrorize and disrupt society. The greatest safety and security threat is from those highly radioactive Category 1 and 2 SRSs. Without adequate controls, it may be relatively easy to legally purchase a Category 1 or 2 SRS on the international market under false pretenses. Additionally, during transfer, SRSs are particularly susceptible to theft since the sources are in a shielded and mobile configuration, transportation routes are predictable, and shipments may not be adequately guarded. To determine if government controls on SRS are adequate, this study was commissioned to review the current SRS import and export controls of six countries. Canada, the Russian Federation, and South Africa were selected as the exporting countries, and Egypt, the Philippines, and the United States were selected as importing countries. A detailed review of the controls in each country is presented. The authors found that Canada and Russia are major exporters, and are exporting highly radioactive SRSs without first determining if the recipient is authorized by the receiving country to own and use the SRSs. Available evidence was used to estimate that on average there are tens to possibly hundreds of intercountry transfers of highly radioactive SRSs each day. Based on these and other findings, this reports recommends stronger controls on the export and import of highly radioactive SRSs.

  9. Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications

    PubMed Central

    Ipatov, Mihail; Zhukova, Valentina; Zhukov, Arkady; Gonzalez, Julian

    2016-01-01

    We present a concept and prototype of a memory element based on current driven magneto-impedance (MI) effect that stores the binary data (0, 1) as the orientation of the magnetization. The magnetization orientation in the surface layer with tilted anisotropy easy axis can be switched controllably between two stable states by applying current pulses of the appropriate sign, and can be detected by sensing the impedance. We demonstrated the functioning of a non-volatile magnetic memory with a read speed performance up to and above 2 GHz. A prototype of a memory element was realized on a short piece of amorphous microwire, as this material exhibits the highest MI effect, and the required anisotropy can be quite easily obtained. Nevertheless, this concept can be extended to other materials and geometries exhibiting MI effect and possessing a required magnetic anisotropy. PMID:27782190

  10. Current status and perspectives of Clonorchis sinensis and clonorchiasis: epidemiology, pathogenesis, omics, prevention and control.

    PubMed

    Tang, Ze-Li; Huang, Yan; Yu, Xin-Bing

    2016-07-06

    Clonorchiasis, caused by Clonorchis sinensis (C. sinensis), is an important food-borne parasitic disease and one of the most common zoonoses. Currently, it is estimated that more than 200 million people are at risk of C. sinensis infection, and over 15 million are infected worldwide. C. sinensis infection is closely related to cholangiocarcinoma (CCA), fibrosis and other human hepatobiliary diseases; thus, clonorchiasis is a serious public health problem in endemic areas. This article reviews the current knowledge regarding the epidemiology, disease burden and treatment of clonorchiasis as well as summarizes the techniques for detecting C. sinensis infection in humans and intermediate hosts and vaccine development against clonorchiasis. Newer data regarding the pathogenesis of clonorchiasis and the genome, transcriptome and secretome of C. sinensis are collected, thus providing perspectives for future studies. These advances in research will aid the development of innovative strategies for the prevention and control of clonorchiasis.

  11. Universal serial bus powered and controlled isolated constant-current physiological stimulator

    PubMed Central

    Holcomb, Mark R.; Bekele, Robel Y.; Lima, Eduardo A.; Wikswo, John P.

    2008-01-01

    We have developed a compact, isolated, physiological, constant-current stimulator that is powered and controlled by a universal serial bus (USB) interface. The stimulator is designed to be used in ex vivo cardiac experiments but is suitable for a wide variety of settings. The cost and features compare very favorably with commercial stimulators usually used in research and student laboratories. In addition to being USB powered, other novel aspects of our stimulator include the ability to produce large currents, up to 100 mA through a typical 1 kΩ load, by means of a single high-voltage dc-to-dc converter; user-specified variable period, magnitude, and duration of complex monophasic or biphasic sequences; and easy integration via hardware or software into existing experimental setups. PMID:19123594

  12. Current controlled switching of impedance in magnetic conductor with tilted anisotropy easy axis and its applications

    NASA Astrophysics Data System (ADS)

    Ipatov, Mihail; Zhukova, Valentina; Zhukov, Arkady; Gonzalez, Julian

    2016-10-01

    We present a concept and prototype of a memory element based on current driven magneto-impedance (MI) effect that stores the binary data (0, 1) as the orientation of the magnetization. The magnetization orientation in the surface layer with tilted anisotropy easy axis can be switched controllably between two stable states by applying current pulses of the appropriate sign, and can be detected by sensing the impedance. We demonstrated the functioning of a non-volatile magnetic memory with a read speed performance up to and above 2 GHz. A prototype of a memory element was realized on a short piece of amorphous microwire, as this material exhibits the highest MI effect, and the required anisotropy can be quite easily obtained. Nevertheless, this concept can be extended to other materials and geometries exhibiting MI effect and possessing a required magnetic anisotropy.

  13. Passive eddy-current damping as a means of vibration control in cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E.

    1986-01-01

    Lateral shaft vibrations produced by a rotating unbalance weight were damped by means of eddy currents generated in copper conductors that were precessing cyclicly in the gap formed by the pole faces of C-shaped, permanent magnets. The damper assembly, which was located at the lower bearing support of a vertically oriented rotor was completely immersed in liquid nitrogen during the test run. The test rotor was operated over a speed range from 800 to 10,000 rpm. Three magnet/conductor designs were evaluated. Experimental damping coefficients varied from 180 to 530 N sec/m. Reasonable agreement was noted for theoretical values of damping for these same assemblies. Values of damping coefficients varied from 150 to 780 N sec/m. The results demonstrate that passive eddy-current damping is a viable candidate for vibration control in cryogenic turbomachinery.

  14. Study of geopotential error models used in orbit determination error analysis

    NASA Technical Reports Server (NTRS)

    Yee, C.; Kelbel, D.; Lee, T.; Samii, M. V.; Mistretta, G. D.; Hart, R. C.

    1991-01-01

    The uncertainty in the geopotential model is currently one of the major error sources in the orbit determination of low-altitude Earth-orbiting spacecraft. The results of an investigation of different geopotential error models and modeling approaches currently used for operational orbit error analysis support at the Goddard Space Flight Center (GSFC) are presented, with emphasis placed on sequential orbit error analysis using a Kalman filtering algorithm. Several geopotential models, known as the Goddard Earth Models (GEMs), were developed and used at GSFC for orbit determination. The errors in the geopotential models arise from the truncation errors that result from the omission of higher order terms (omission errors) and the errors in the spherical harmonic coefficients themselves (commission errors). At GSFC, two error modeling approaches were operationally used to analyze the effects of geopotential uncertainties on the accuracy of spacecraft orbit determination - the lumped error modeling and uncorrelated error modeling. The lumped error modeling approach computes the orbit determination errors on the basis of either the calibrated standard deviations of a geopotential model's coefficients or the weighted difference between two independently derived geopotential models. The uncorrelated error modeling approach treats the errors in the individual spherical harmonic components as uncorrelated error sources and computes the aggregate effect using a combination of individual coefficient effects. This study assesses the reasonableness of the two error modeling approaches in terms of global error distribution characteristics and orbit error analysis results. Specifically, this study presents the global distribution of geopotential acceleration errors for several gravity error models and assesses the orbit determination errors resulting from these error models for three types of spacecraft - the Gamma Ray Observatory, the Ocean Topography Experiment, and the Cosmic

  15. Tailoring the optimal control cost function to a desired output: application to minimizing phase errors in short broadband excitation pulses.

    PubMed

    Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J

    2005-01-01

    The de facto standard cost function has been used heretofore to characterize the performance of pulses designed using optimal control theory. The freedom to choose new, creative quality factors designed for specific purposes is demonstrated. While the methodology has more general applicability, its utility is illustrated by comparison to a consistently chosen example--broadband excitation. The resulting pulses are limited to the same maximum RF amplitude used previously and tolerate the same variation in RF homogeneity deemed relevant for standard high-resolution NMR probes. Design criteria are unchanged: transformation of I(z)--> I(x) over resonance offsets of +/-20 kHz and RF variability of +/-5%, with a peak RF amplitude equal to 17.5 kHz. However, the new cost effectively trades a small increase in residual z magnetization for improved phase in the transverse plane. Compared to previous broadband excitation by optimized pulses (BEBOP), significantly shorter pulses are achievable, with only marginally reduced performance. Simulations transform I(z) to greater than 0.98 I(x), with phase deviations of the final magnetization less than 2 degrees, over the targeted ranges of resonance offset and RF variability. Experimental performance is in excellent agreement with the simulations.

  16. A novel deletion/insertion caused by a replication error in the β-globin gene locus control region.

    PubMed

    Joly, Philippe; Lacan, Philippe; Garcia, Caroline; Meley, Roland; Pondarré, Corinne; Francina, Alain

    2011-01-01

    Deletions in the β-globin locus control region (β-LCR) lead to (εγδβ)(0)-thalassemia [(εγδβ)(0)-thal]. In patients suffering from these rare deletions, a normal hemoglobin (Hb), phenotype is found, contrasting with a hematological thalassemic phenotype. Multiplex-ligation probe amplification (MLPA) is an efficient tool to detect β-LCR deletions combined with long-range polymerase chain reaction (PCR) and DNA sequencing to pinpoint deletion breakpoints. We present here a novel 11,155 bp β-LCR deletion found in a French Caucasian patient which removes DNase I hypersensitive site 2 (HS2) to HS4 of the β-LCR. Interestingly, a 197 bp insertion of two inverted sequences issued from the HS2-HS3 inter-region is present and suggests a complex rearrangement during replication. Carriers of this type of thalassemia can be misdiagnosed as an α-thal trait. Consequently, a complete α- and β-globin gene cluster analysis is required to prevent a potentially damaging misdiagnosis in genetic counselling.

  17. Diagnosis of the Computer-Controlled Milling Machine, Definition of the Working Errors and Input Corrections on the Basis of Mathematical Model

    NASA Astrophysics Data System (ADS)

    Starikov, A. I.; Nekrasov, R. Yu; Teploukhov, O. J.; Soloviev, I. V.; Narikov, K. A.

    2016-10-01

    Manufactures, machinery and equipment improve of constructively as science advances and technology, and requirements are improving of quality and longevity. That is, the requirements for surface quality and precision manufacturing, oil and gas equipment parts are constantly increasing. Production of oil and gas engineering products on modern machine tools with computer numerical control - is a complex synthesis of technical and electrical equipment parts, as well as the processing procedure. Technical machine part wears during operation and in the electrical part are accumulated mathematical errors. Thus, the above-mentioned disadvantages of any of the following parts of metalworking equipment affect the manufacturing process of products in general, and as a result lead to the flaw.

  18. Demonstration of effective control of fast-ion-stabilized sawteeth by electron-cyclotron current drive.

    PubMed

    Lennholm, M; Eriksson, L-G; Turco, F; Bouquey, F; Darbos, C; Dumont, R; Giruzzi, G; Jung, M; Lambert, R; Magne, R; Molina, D; Moreau, P; Rimini, F; Segui, J-L; Song, S; Traisnel, E

    2009-03-20

    In a tokamak plasma, sawtooth oscillations in the central temperature, caused by a magnetohydrodynamic instability, can be partially stabilized by fast ions. The resulting less frequent sawtooth crashes can trigger unwanted magnetohydrodynamic activity. This Letter reports on experiments showing that modest electron-cyclotron current drive power, with the deposition positioned by feedback control of the injection angle, can reliably shorten the sawtooth period in the presence of ions with energies >or=0.5 MeV. Certain surprising elements of the results are evaluated qualitatively in terms of existing theory.

  19. Control and Calibration of a Staubli RX130 Robotic Arm for Construction of Surface Current Coils

    NASA Astrophysics Data System (ADS)

    Vanmeter, Patrick; Crawford, Christopher; Guler, Emre; Fugal, Mario; Irvin, Bradley

    2013-10-01

    Precision low energy neutron experiments require extremely uniform magnetic fields for manipulating the neutron spin. Such fields can be generated with surface current coils-precision 3-dimensional printed circuits. We are developing a facility to etch out these circuits on copper-plated curved forms using a high-speed spindle attached to the end-effector of a Staubli RX130 six-axis robotic arm. We describe our mathematical model of the robotic links and the software system we designed to control the motion of the arm and to prevent collisions during actuations. We developed a calibration procedure to achieve accuracy of 30 microns in the position of drill.

  20. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.