Sample records for current forest management

  1. Forest Fuels Management in Europe

    Treesearch

    Gavriil Xanthopoulos; David Caballero; Miguel Galante; Daniel Alexandrian; Eric Rigolot; Raffaella Marzano

    2006-01-01

    Current fuel management practices vary considerably between European countries. Topography, forest and forest fuel characteristics, size and compartmentalization of forests, forest management practices, land uses, land ownership, size of properties, legislation, and, of course, tradition, are reasons for these differences.Firebreak construction,...

  2. Considerations for restoring temperate forests of tomorrow: Forest restoration, assisted migration, and bioengineering

    Treesearch

    Kas Dumroese; Mary I. Williams; John A. Stanturf; Brad St. Clair

    2015-01-01

    Tomorrow’s forests face extreme pressures from contemporary climate change, invasive pests, and anthropogenic demands for other land uses. These pressures, collectively, demand land managers to reassess current and potential forest management practices. We discuss three considerations, functional restoration, assisted migration, and bioengineering, which are currently...

  3. NED Software for Forest Management: Much More Than Cruising

    Treesearch

    Mark J. Twery; H. Michael Rauscher

    2002-01-01

    The term NED describes a set of computer programs intended to help resource managers and landowners develop goals, assess current and potential conditions, and produce sustainable management plans for forest properties. NED-l helps analyze forest inventory data from the perspective of various forest resources for management areas up to several thousand acres. The...

  4. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure. Schematic diagram of complete modelled forest system including ecological and technological components, showing major flows of carbon.

  5. Meeting current and future conservation challenges through the synthesis of long-term silviculture and range management research

    Treesearch

    Mary Beth Adams; Joe NcNeel

    2010-01-01

    The Experimental Forests and Ranges (EFRs) of the Forest Service, U.S. Department of Agriculture were established to represent major forest vegetation types of the United States, to provide guidelines for management of those forests and ranges, and to serve as "outdoor classrooms" for land managers to learn how to better manage their forests. Research data...

  6. 78 FR 49723 - Humboldt-Toiyabe National Forests; Ely Ranger District; Ely Westside Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Month (AUM) production for the Humboldt National Forest while improving the gap between existing and...: 1. Current Management Alternative: Continue current grazing management. 2. No Grazing Alternative... documents. (Authority: 40 CFR 1501.7 and 1508.22; Forest Service Handbook 1909.15, Section 21) Dated: August...

  7. The sensitivity of current and future forest managers to climate-induced changes in ecological processes.

    PubMed

    Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard

    2016-05-01

    Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.

  8. Forest Management as an Element of Environment Development

    NASA Astrophysics Data System (ADS)

    Jaszczak, Roman; Gołojuch, Piotr; Wajchman-Świtalska, Sandra; Miotke, Mariusz

    2017-12-01

    The implementation of goals of modern forestry requires a simultaneous consideration of sustainable development of forests, protection, needs of the environment development, as well as maintaining a balance between functions of forests. In the current multifunctional forest model, rational forest management assumes all of its tasks as equally important. Moreover, its effects are important factors in the nature and environment protection. The paper presents legal conditions related to the definitions of forest management concepts and sustainable forest management. Authors present a historical outline of human's impact on the forest and its consequences for the environment. The selected aspects of forest management (eg. forest utilization, afforestation, tourism and recreation) and their role in the forest environment have been discussed.

  9. Rapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon-sequestration capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  10. Forest management in Northeast China: history, problems, and challenges.

    PubMed

    Yu, Dapao; Zhou, Li; Zhou, Wangming; Ding, Hong; Wang, Qingwei; Wang, Yue; Wu, Xiaoqing; Dai, Limin

    2011-12-01

    Studies of the history and current status of forest resources in Northeast China have become important in discussions of sustainable forest management in the region. Prior to 1998, excessive logging and neglected cultivation led to a series of problems that left exploitable forest reserves in the region almost exhausted. A substantial decrease in the area of natural forests was accompanied by severe disruption of stand structure and serious degradation of overall forest quality and function. In 1998, China shifted the primary focus of forest management in the country from wood production to ecological sustainability, adopting ecological restoration and protection as key foci of management. In the process, China launched the Natural Forest Conversion Program and implemented a new system of Classification-based Forest Management. Since then, timber harvesting levels in Northeast China have decreased, and forest area and stocking levels have slowly increased. At present, the large area of low quality secondary forest lands, along with high levels of timber production, present researchers and government agencies in China with major challenges in deciding on management models and strategies that will best protect, restore and manage so large an area of secondary forest lands. This paper synthesizes information from a number of sources on forest area, stand characteristics and stocking levels, and forest policy changes in Northeastern China. Following a brief historical overview of forest harvesting and ecological research in Northeast China, the paper discusses the current state of forest resources and related problems in forest management in the region, concluding with key challenges in need of attention in order to meet the demands for multi-purpose forest sustainability and management in the future.

  11. Changing Forest Values and Ecosystem Management

    Treesearch

    David N. Bengston

    1994-01-01

    There is substantial evidence that we are currently in a period of rapid and significant change in forest values. Some have charged that managing forests in ways that are responsive to diverse and changing forest values is the main challenge faced by public forest managers. To tackle this challenge, we need to address the following questions: (1) What is the nature of...

  12. Managing burned landscapes: Evaluating future management strategies for resilient forests under a warming climate

    Treesearch

    K. L. Shive; P. Z. Fule; C. H. Sieg; B. A. Strom; M. E. Hunter

    2014-01-01

    Climate change effects on forested ecosystems worldwide include increases in drought-related mortality, changes to disturbance regimes and shifts in species distributions. Such climate-induced changes will alter the outcomes of current management strategies, complicating the selection of appropriate strategies to promote forest resilience. We modelled forest growth in...

  13. Assessing sustainability using data from the Forest Inventory and Analysis Program of the United States Forest Service

    Treesearch

    Ronald E. McRoberts; William H. McWilliams; Gregory A. Reams; Thomas L. Schmidt; Jennifer C. Jenkins; Katherine P. O' Neill; Patrick D. Miles; Gary J. Brand

    2004-01-01

    Forest sustainability has emerged as a crucial component of all current issues related to forest management. The seven Montreal Process Criteria are well accepted as categories of processes for evaluating forest management with respect to sustainability, and data collected.

  14. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    PubMed

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen. Our analysis suggests that joint production possibilities under forest management regimes currently typical on industrial forest lands (e.g., 40- to 80-yr rotations with some tree retention for wildlife) represent but a small fraction of joint production outcomes possible in the region. Although the theoretical boundaries of the production possibilities sets we developed are probably unachievable in the current management environment, they arguably define the long-term potential of managing forests to produce multiple ecosystem services within and across multiple forest ownerships. © 2016 by the Ecological Society of America.

  15. Herbaceous-layer and overstory species in clear-cut and mature central Appalachian hardwood forests

    Treesearch

    Frank S. Gilliam; Nicole L. Turrill; Mary Beth Adams

    1995-01-01

    The current interest among resource managers in ecosystem management necessitates a better understanding of the response of plant species diversity to forest management practices. This study attempted to assess the effects of one forest management practice—clear-cutting—on plant biodiversity in a mid-Appalachian hardwood forest by comparing species composition and...

  16. 76 FR 67130 - Bridger-Teton National Forest; Big Piney Ranger District; Wyoming; Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact... current levels is appropriate, and to determine if current livestock management practices are sufficient for achieving and maintaining compliance with the 1990 Bridger-Teton Land and Resource Management Plan...

  17. An approach to quantifying long-term habitat change on managed forest lands

    Treesearch

    Paul B. Hamel; John B. Dunning

    2000-01-01

    Forest land managers must determine the effects of their management on nontarget resources, resources for which no current inventory is available, and for which no current inventory information exists. The tools available to managers to make these determinations consist of the inventory information gathered for those commodities desired to be produced, i.e.,...

  18. Forest management for mitigation and adaptation: insights from long-term silvicultural experiments

    Treesearch

    Anthony W. D' Amato; John B. Bradford; Shawn Fraver; Brian J. Palik

    2011-01-01

    Developing management strategies for addressing global climate change has become an increasingly important issue influencing forest management around the globe. Currently, management approaches are being proposed that intend to (1) mitigate climate change by enhancing forest carbon stores and (2) foster adaptation by maintaining compositionally and structurally complex...

  19. Adaptations to climate change: Colville and Okanogan-Wenatchee National Forests

    Treesearch

    William L. Gaines; David W. Peterson; Cameron A. Thomas; Richy J. Harrod

    2012-01-01

    Forest managers are seeking practical guidance on how to adapt their current practices and, if necessary, their management goals, in response to climate change. Science-management collaboration was initiated on national forests in eastern Washington where resource managers showed a keen interest in science-based options for adapting to climate change at a 2-day...

  20. Planted forests and biodiversity

    Treesearch

    Jean-Michel Carnus; John Parrotta; Eckehard G. Brockerhoff; Michel Arbez; Hervé Jactel; Antoine Kremer; David Lamb; Kevin O’Hara; Bradley Walters

    2006-01-01

    Expansion of planted forests and intensification of their management has raised concerns among forest managers and the public over the implications of these trends for sustainable production and conservation of forest biological diversity. We review the current state of knowledge on the impacts of plantation forestry on genetic and species diversity at different...

  1. Science in the city: Urban trees, forests, and people

    Treesearch

    Kathleen L. Wolf

    2016-01-01

    The article, intended for professional and manager audiences, is an overview of current research in urban forestry. Topics include tree science, forest risks, forest management and assessment, ecosystem services, and urban socio-ecological systems (including governance and stewardship).

  2. Optimal regeneration planning for old-growth forest: addressing scientific uncertainty in endangered species recovery through adaptive management

    USGS Publications Warehouse

    Moore, C.T.; Conroy, M.J.

    2006-01-01

    Stochastic and structural uncertainties about forest dynamics present challenges in the management of ephemeral habitat conditions for endangered forest species. Maintaining critical foraging and breeding habitat for the endangered red-cockaded woodpecker (Picoides borealis) requires an uninterrupted supply of old-growth forest. We constructed and optimized a dynamic forest growth model for the Piedmont National Wildlife Refuge (Georgia, USA) with the objective of perpetuating a maximum stream of old-growth forest habitat. Our model accommodates stochastic disturbances and hardwood succession rates, and uncertainty about model structure. We produced a regeneration policy that was indexed by current forest state and by current weight of evidence among alternative model forms. We used adaptive stochastic dynamic programming, which anticipates that model probabilities, as well as forest states, may change through time, with consequent evolution of the optimal decision for any given forest state. In light of considerable uncertainty about forest dynamics, we analyzed a set of competing models incorporating extreme, but plausible, parameter values. Under any of these models, forest silviculture practices currently recommended for the creation of woodpecker habitat are suboptimal. We endorse fully adaptive approaches to the management of endangered species habitats in which predictive modeling, monitoring, and assessment are tightly linked.

  3. 77 FR 21522 - Lake Tahoe Basin Management Unit and Tahoe National Forest, CA; Calpeco 625 and 650 Electrical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... DEPARTMENT OF AGRICULTURE Forest Service Lake Tahoe Basin Management Unit and Tahoe National... hereby given that the USDA Forest Service (USFS), Lake Tahoe Basin Management Unit (LTBMU), together with... reliable electrical transmission system for the north Lake Tahoe area, while accommodating currently...

  4. Forest ecology

    Treesearch

    Malcolm North

    2014-01-01

    Building on information summaries in two previous general technical reports (PSW-GTR-220 and PSW-GTR-237), this chapter focuses on four topics raised by forest managers and stakeholders as relevant to current forest management issues. Recent studies suggest that the gap size in lower and mid-elevation historical forests with active fire regimes was often about 0.12 to...

  5. Integrating forest products with ecosystem services: a global perspective

    Treesearch

    Robert L. Deal; Rachel White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  6. How forest context influences the acceptability of prescribed burning and mechanical thinning

    Treesearch

    Alan D. Bright; Peter Newman

    2006-01-01

    We examined how forest factors influenced public perceptions of three fuels management alternatives: prescribed burns, mechanical thinning, or no artificial fire management. The factors included the forest?s proximity to urban areas, primary use, wildfire history, and current fire conditions. Surveying three study strata with different wildfire histories and...

  7. Interactive effects of environmental change and management strategies on regional forest carbon emissions.

    PubMed

    Hudiburg, Tara W; Luyssaert, Sebastiaan; Thornton, Peter E; Law, Beverly E

    2013-11-19

    Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.

  8. Proposed wildland fire amendment to the Coronado National Forest Land and Resource Management Plan

    Treesearch

    Sherry A. Tune; Erin M. Boyle

    2005-01-01

    The Coronado National Forest proposed amending its 1986 Land and Resource Management Plan to conform to the 2001 Federal Wildland Fire Management Policy. This Policy emphasizes fire’s essential role in maintaining natural ecosystems and allows a broader range of management options for wildland fires. Under the current Forest Plan, fires must be suppressed in areas...

  9. Evidence supporting the need for a common soil monitoring protocol

    Treesearch

    Derrick A. Reeves; Mark D. Coleman; Deborah S. Page-Dumroese

    2013-01-01

    Many public land management agencies monitor forest soils for levels of disturbance related to management activities. Although several soil disturbance monitoring protocols based on visual observation have been developed to assess the amount and types of disturbance caused by forest management, no common method is currently used on National Forest lands in the United...

  10. Proceedings of the symposium on the ecology and management of dead wood in western forests

    Treesearch

    William F. Laudenslayer; Patrick J. Shea; Bradley E. Valentine; C. Phillip Weatherspoon; Thomas E. Lisle

    2002-01-01

    Dead trees, both snags (standing dead trees) and logs (downed dead trees), are critical elements of healthy and productive forests. The “Symposium on the Ecology and Management of Dead Wood in Western Forests” was convened to bring together forest researchers and managers to share the current state of knowledge relative to the values and interactions of dead wood to...

  11. Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.

    PubMed

    Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna

    2018-07-01

    A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.

  12. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    PubMed

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal values, particularly in drier forest types. However, opportunities to create more disturbance-adapted systems are finite, all values likely cannot be sustained at current levels, and levels of resilience success will likely vary by dry province forest type. Land managers planning for a future without climate change may be assuming a future that is unlikely to exist.

  13. Forest Insect Pest Management and Forest Management in China: An Overview

    NASA Astrophysics Data System (ADS)

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations— Eucalyptus, poplar and Masson pine plantations—with respect to their insect diversity, pest problems and pest management measures.

  14. Forest insect pest management and forest management in China: an overview.

    PubMed

    Ji, Lanzhu; Wang, Zhen; Wang, Xiaowei; An, Linli

    2011-12-01

    According to the Seventh National Forest Inventory (2004-2008), China's forests cover an area of 195.45 million ha, or 20.36% of the total land area. China has the most rapidly increasing forest resources in the world. However, China is also a country with serious forest pest problems. There are more than 8,000 species of potential forest pests in China, including insects, plant diseases, rodents and lagomorphs, and hazardous plants. Among them, 300 species are considered as economically or ecologically important, and half of these are serious pests, including 86 species of insects. Forest management and utilization have a considerable influence on the stability and sustainability of forest ecosystems. At the national level, forestry policies always play a major role in forest resource management and forest health protection. In this paper, we present a comprehensive overview of both achievements and challenges in forest management and insect pest control in China. First, we summarize the current status of forest resources and their pests in China. Second, we address the theories, policies, practices and major national actions on forestry and forest insect pest management, including the Engineering Pest Management of China, the National Key Forestry Programs, the Classified Forest Management system, and the Collective Forest Tenure Reform. We analyze and discuss three representative plantations-Eucalyptus, poplar and Masson pine plantations-with respect to their insect diversity, pest problems and pest management measures.

  15. Forest management strategies for reducing carbon emissions, the French case

    NASA Astrophysics Data System (ADS)

    Valade, Aude; Luyssaert, Sebastiaan; Bellassen, Valentin; Vallet, Patrick; Martin, Manuel

    2015-04-01

    International agreements now recognize the role of forest in the mitigation of climate change through the levers of in-situ sequestration, storage in products and energy and product substitution. These three strategies of carbon management are often antagonistic and it is still not clear which strategy would have the most significant impact on atmospheric carbon concentrations. With a focus on France, this study compares several scenarios of forest management in terms of their effect on the overall carbon budget from trees to wood-products. We elaborated four scenarios of forest management that target different wood production objectives. One scenario is 'Business as usual' and reproduces the current forest management and wood production levels. Two scenarios target an increase in bioenergy wood production, with either long-term or short-term goals. One scenario aims at increasing the production of timber for construction. For this, an empirical regression model was developed building on the rich French inventory database. The model can project the current forest resource at a time horizon of 20 years for characteristic variables diameter, standing volume, above-ground biomass, stand age. A simplified life-cycle analysis provides a full carbon budget for each scenario from forest management to wood use and allows the identification of the scenario that most reduces carbon emissions.

  16. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    NASA Astrophysics Data System (ADS)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource. We examine the effects of a mobilization of this resource versus an intensification of the current harvest on the age structure, the productivity and the stocking volume of the French forest and derive the related impacts on C emissions and C-related services provided by forests.

  17. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape

    Treesearch

    Jeff Kline; Mark E. Harmon; Thomas A. Spies; Anita T. Morzillo; Robert J. Pabst; Brenda C. McComb; Frank Schnekenburger; Keith A. Olsen; Blair Csuti; Jody C. Vogeler

    2016-01-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production...

  18. How extreme weather events can influence the way of thinking about forest management?

    NASA Astrophysics Data System (ADS)

    Ziemblińska, Klaudia; Merbold, Lutz; Urbaniak, Marek; Haeni, Matthias; Olejnik, Janusz

    2014-05-01

    One third of the total area of Poland, which is covered by forests, is currently managed by "The State National Forest Holding" - the biggest organization in Europe managing forests. Common management practice is based on clear-cutting the vegetation to maintaining forests and ensuring regrowth. While sufficient information exists on the quantity of harvested biomass and particularly its economic value, little knowledge exists on the overall environmental impact of such management including the carbon budgets of forests in Poland. At the same time these forests are very vulnerable to extreme events such as wind throws. Large wind throws can be used as an experimental platform to study both, the effects of extreme events itself but also the effects of management such as clear-cuts, due to the fact that after such kind of natural disasters similar steps then following clear-cuts are implemented. These activities include the removal of whole trees, collection of branches and pulling out stems with heavy machinery, causing additional disturbance. In this study, we aim at providing information to fill the current knowledge gap of changing C budget after clear-cuts and wind throws. We hypothesize large C losses after clear-cuts and ask whether one can improve current forest management to "save" C and/or enhance C sequestration? To answer this specific question we used the eddy covariance (EC) method to adequately measure the net ecosystem exchange of carbon dioxide (NEE) between a deforested area and the atmosphere (treatment) and compare it to measurements from an intact forest of the same type (control). Both sites have the same soil type (brunic arenosoil - after FAO classification) which is sandy and relatively not fertile. Moreover, main species and composition were similar. The treatment area was chosen after the occurrence of a 20min-lasting tornado in July 2012 in Western Poland. The storm resulted in the destruction of more than 500 ha of 75-year old pine forest and provided a unique situation to assess the C budget of a pine forest after wind throw leading to the construction of the Trzebciny EC tower (treatment site). Measurements of CO2 and H2O exchange continue since the beginning of 2013. Measurements from both sites were directly compared to an already established monitoring station (65-year old Tuczno forest, control). We observed a huge difference in NEE between an intact middle age coniferous forest (control site, net gain of 463 g(C-CO2) m-2 in 2013) and an area of similar forest that was destroyed by a tornado and cleared thereafter (treatment site, net loss of about 518 g(C-CO2) m-2 in 2013). Our results provide a great opportunity to re-evaluate current forest management in Poland and will provide a first step towards adjusting forestry management and policy to become less susceptible to climate change (especially extreme events).

  19. Research gaps related to forest management and stream sediment in the United States.

    PubMed

    Anderson, Christopher J; Lockaby, B Graeme

    2011-02-01

    Water quality from forested landscapes tends to be very high but can deteriorate during and after silvicultural activities. Practices such as forest harvesting, site preparation, road construction/use, and stream crossings have been shown to contribute sediment, nutrients, and other pollutants to adjacent streams. Although advances in forest management accompanied with Best Management Practices (BMPs) have been very effective at reducing water quality impacts from forest operations, projected increases in demand for forest products may result in unintended environmental degradation. Through a review of the pertinent literature, we identified several research gaps related to water yield, aquatic habitat, sediment source and delivery, and BMP effectiveness that should be addressed for streams in the United States to better understand and address the environmental ramifications of current and future levels of timber production. We explored the current understanding of these topics based on relevant literature and the possible implications of increased demand for forest products in the United States.

  20. [A review on fundamental studies of secondary forest management].

    PubMed

    Zhu, Jiaojun

    2002-12-01

    Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.

  1. Relationships of three species of bats impacted by white-nose syndrome to forest condition and management

    USGS Publications Warehouse

    Silvis, Alexander; Perry, Roger W.; Ford, W. Mark

    2016-01-01

    Forest management activities can have substantial effects on forest structure and community composition and response of wildlife therein. Bats can be highly influenced by these structural changes, and understanding how forest management affects day-roost and foraging ecology of bats is currently a paramount conservation issue. With populations of many cave-hibernating bat species in eastern North America declining as a result of white-nose syndrome (WNS), it is increasingly critical to understand relationships among bats and forest-management activities. Herein, we provide a comprehensive literature review and synthesis of: (1) responses of northern long-eared (Myotis septentrionalis) and tri-colored (Perimyotis subflavus) bats—two species affected by WNS that use forests during summer—to forest management, and (2) an update to a previous review on the ecology of the endangered Indiana bat (Myotis sodalis).

  2. Below-cost timber sales and the political marketplace

    NASA Astrophysics Data System (ADS)

    Cortner, Hanna J.; Schweitzer, Dennis L.

    1993-01-01

    Political pressures exist to increase the economic efficiency of timber management and production on the national forests managed by the USDA Forest Service. There is growing belief both outside and within the Forest Service that current levels of timber production, and most particularly uneconomic timber production, should be reduced. Many argue that eliminating uneconomic timber management programs will both save money and reduce environmental degradation. This article traces the political evolution of the focus on economic efficiency in timber production and explores the political-institutional factors that are shaping the current policy debate. The below-cost issue is less about economic efficiency than it is about political advantage and alternative political visions of the societal role of the nation's national forests now and in the future.

  3. A framework for evaluating forest restoration alternatives and their outcomes, over time, to inform monitoring: Bioregional inventory originated simulation under management

    Treesearch

    Jeremy S. Fried; Theresa B. Jain; Sara Loreno; Robert F. Keefe; Conor K. Bell

    2017-01-01

    The BioSum modeling framework summarizes current and prospective future forest conditions under alternative management regimes along with their costs, revenues and product yields. BioSum translates Forest Inventory and Analysis (FIA) data for input to the Forest Vegetation Simulator (FVS), summarizes FVS outputs for input to the treatment operations cost model (OpCost...

  4. Carbon stocks on forestland of the United States, with emphasis on USDA Forest Service ownership

    Treesearch

    Linda S. Heath; James E. Smith; Christopher W. Woodall; David L. Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  5. Carbon stocks on forestland of the United States, with emphaisis on USDA Forest Service ownership

    Treesearch

    Linda S. Heath; James E. Smith; Christopher W. Woodall; Dave Azuma; Karen L. Waddell

    2011-01-01

    The U.S. Department of Agriculture Forest Service (USFS) manages one-fifth of the area of forestland in the United States. The Forest Service Roadmap for responding to climate change identified assessing and managing carbon stocks and change as a major element of its plan. This study presents methods and results of estimating current forest carbon stocks and change in...

  6. Evolving the policy framework: Budget strategies, legislative authorities, and management strategies to facilitate federal forest adaptation and collaborative partnerships

    Treesearch

    Christopher Topik; Paige Lewis

    2014-01-01

    Some of the greatest challenges to the management of federal forests in the Unites States result from inadequate public and private investment in proactive forest restoration projects. This situation has been exacerbated by the growing fiscal and logistical demands of wildfire suppression activities, which currently consume at least 40 percent of the U.S. Forest...

  7. Early-seral stand age and forest structural changes in public and private forestlands in Western Oregon and Washington

    Treesearch

    Robert L Deal; Sharon Stanton; Matthew Betts; Zhiqiang. Yang

    2015-01-01

    Federal forests in the Pacific Northwest region have undergone exceptional changes in management over the past 20 years, and these changes have led to a reduction in regional timber production and significant changes in the management and current age structure of forests. Public lands include large areas of older forests with relatively little younger early-seral...

  8. Assessing management effects on Oak forests in Austria

    NASA Astrophysics Data System (ADS)

    Gautam, Sishir; Pietsch, Stephan A.; Hasenauer, Hubert

    2010-05-01

    Historic land use as well as silvicultural management practices have changed the structures and species composition of central European forests. Such changes have effects on the growth of forests and contribute to global warming. As insufficient information on historic forest management is available it is hard to explain the effect of management on forests growth and its possible consequences to the environment. In this situation, the BIOME-BGC model, which integrates the main physical, biological and physiological processes based on current understanding of ecophysiology is an option for assessing the management effects through tracking the cycling of energy, water, carbon and nutrients within a given ecosystems. Such models are increasingly employed to simulate current and future forest dynamics. This study first compares observed standing tree volume, carbon and nitrogen content in soil in the high forests and coppice with standards stands of Oak forests in Austria. Biome BGC is then used to assess the effects of management on forest growth and to explain the differences with measured parameters. Close positive correlations and unbiased results and statistically insignificant differences between predicted and observed volumes indicates the application of the model as a diagnostic tool to assess management effects in oak forests. The observed data in 2006 and 2009 was further compared with the results of respective model runs. Further analysis on simulated data shows that thinning leads to an increase in growth efficiency (GE), nitrogen use efficiency (NUE) and water use efficiency (WUE), and to a decrease in the radiation use efficiency (RUE) in both forests. Among all studied growth parameters, only the difference in the NUE was statistically significant. This indicates that the difference in the yield of forests is mainly governed by the NUE difference in stands due to thinning. The coppice with standards system produces an equal amount of net primary production while consuming significantly less nitrogen compared to the high forests.

  9. Managing for old-growth forests: a moving target

    Treesearch

    Thomas A. Spies; Robert J. Pabst

    2013-01-01

    Presentation Abstract Old-growth Douglas-fi r (Pseudotsuga menziesii) forests are a goal for conservation and restoration across millions of acres of federal forest lands in western Oregon and Washington. Where old growth currently exists, management is typically focused on protecting stands and watersheds from logging and high-severity wildfi re. Where old growth was...

  10. Three studies on ponderosa pine management on the Warm Springs Indian Reservation: stocking control in uneven-aged stands, forest products from fire-damage trees, and fuels reduction

    Treesearch

    John V. Arena

    2005-01-01

    Over 60,000 acres of ponderosa pine (Pinus ponderosa P. and C. Lawson) forest on the Warm Springs Indian Reservation (WSIR) in Oregon are managed using an uneven-age system. Three on-going studies on WSIR address current issues in the management of pine forests: determining levels of growing stock for uneven-age management, fire effects on wood...

  11. Integrated management of timber and deer: coastal forests of British Columbia and Alaska.

    Treesearch

    J.B. Nyberg; R.S. McNay; M.D. [and others] Kirchhoff

    1989-01-01

    Current techniques for integrating timber and deer management in coastal British Columbia and Alaska are reviewed and evaluated. Integration can be improved by setting objectives for deer habitat and timber, improving managers' knowledge of interactions, and providing planning tools to analyze alternative programs of forest management. A handbook designed to...

  12. Managed forest reserves: preserving diversity

    USGS Publications Warehouse

    Tappeiner, John; Poage, Nathan; Erickson, Janet L.

    2003-01-01

    As part of the Northwest Forest Plan, large areas have been designated on many federal forests in western Oregon to provide critical habitat for plants and animals that are associated with old-growth habitat. Some of the structural characteristics often considered typical of old forests include large-diameter overstory trees, large standing and fallen dead trees, and one or more understory layers (Figure 1). However, not all of these areas are currently in old-growth conditions. Many of them contain young (<40 years), uniformly dense Douglas-fir stands that regenerated after timber harvest. The original management goal for these stands was to produce high yields of timber and associated wood products. With implementation of the Northwest Forest Plan in 1994, the management objective shifted to accelerating development of old-growth characteristics by enhancing structural and biological diversity of these areas.A major challenge today is how to promote these structural characteristics in younger stands. Researchers have been asking if lessons can be learned from the development of our current old growth and applied to management of younger stands. Dr. John Tappeiner and his university and agency research partners are helping to answer this question by examining the differences in development between old-growth and young stands in western Oregon. Understanding how the structure of these old forests developed may provide a model for management of young stands, especially when the management goal is to provide habitat for species associated with older forests.

  13. Does increasing rotation length lead to greater forest carbon storage?

    NASA Astrophysics Data System (ADS)

    Ter-Mikaelian, M. T.; Colombo, S. J.; Chen, J.

    2016-12-01

    Forest management is a key factor affecting climate change mitigation by forests. Increasing the age of harvesting (also referred to as rotation length) is a management practice that has been proposed as a means of increasing forest carbon sequestration and storage. However, studies of the effects of increasing harvest age on forest carbon stocks have mostly been limited to forest plantations. In contrast, this study assesses the effects of increased harvest age of managed natural forests of Ontario (Canada) at two scales. At the stand level, we assess merchantable volume yield curves to differentiate those for which increasing the age of harvest results in an increase in total forest carbon stocks versus those for which increased harvest age reduces carbon stocks. The stand level results are then applied to forest landscapes to demonstrate that the effect of increasing the age of harvest on forest carbon storage is specific to the forest growth rates for a given forest landscape and depends on the average age at which forests are harvested under current (business-as-usual) management practice. We discuss the implications of these results for forest management aimed at mitigating climate change.

  14. The sustainable management and protection of forests: analysis of the current position globally.

    PubMed

    Freer-Smith, Peter; Carnus, Jean-Michel

    2008-06-01

    The loss of forest area globally due to change of land use, the importance of forests in the conservation of biodiversity and in carbon and other biogeochemical cycles, together with the threat to forests from pollution and from the impacts of climate change, place forestry policy and practice at the center of global environmental and sustainability strategy. Forests provide important economic, environmental, social, and cultural benefits, so that in forestry, as in other areas of environmental policy and management, there are tensions between economic development and environmental protection. In this article we review the current information on global forest cover and condition, examine the international processes that relate to forest protection and to sustainable forest management, and look at the main forest certification schemes. We consider the link between the international processes and certification schemes and also their combined effectiveness. We conclude that in some regions of the world neither mechanism is achieving forest protection, while in others local or regional implementation is occurring and is having a significant impact. Choice of certification scheme and implementation of management standards are often influenced by a consideration of the associated costs, and there are some major issues over the monitoring of agreed actions and of the criteria and indicators of sustainability. There are currently a number of initiatives seeking to improve the operation of the international forestry framework (e.g., The Montreal Process, the Ministerial Convention of the Protection of Forests in Europe and European Union actions in Europe, the African Timber Organisation and International Tropical Timber Organisation initiative for African tropical forest, and the development of a worldwide voluntary agreement on forestry in the United Nations Forum on Forests). We suggest that there is a need to improve the connections between scientific understanding, policy development, and forestry practice, and also the cooperation between the various international initiatives and processes, so that the international framework is more effective and its influence is extended geographically.

  15. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions. Copyright © 2015, American Association for the Advancement of Science.

  16. Hyperspectral sensing of forests

    NASA Astrophysics Data System (ADS)

    Goodenough, David G.; Dyk, Andrew; Chen, Hao; Hobart, Geordie; Niemann, K. Olaf; Richardson, Ash

    2007-11-01

    Canada contains 10% of the world's forests covering an area of 418 million hectares. The sustainable management of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of new and improved information products to resource managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory, forest health, foliar biochemistry, biomass, and aboveground carbon than are currently available. This paper surveys recent methods and results in hyperspectral sensing of forests and describes space initiatives for hyperspectral sensing.

  17. The influence of trade associations and group certification programs on the hardwood certification movement

    Treesearch

    Iris B. Montague

    2013-01-01

    Forest certification has gained momentum around the world over the past two decades. Although there are advantages to being certified, many forest landowners and forest products manufacturers consider forest certification of U.S. forest and forest products unnecessary. Many believe that U.S. forests are already sustainably managed, the current certification systems are...

  18. Stand development patterns in southern bottomland hardwoods: Management considerations and research needs

    Treesearch

    Brian R. Lockhart; James S. Meadows; John D. Hodges

    2005-01-01

    Stand development invloves changes in stand structure over time. Knowledge of stand dvelopment patterns is crucial for effective forest managment, especially of southern botomland hardwood forests. These forests contain more than 70 tree species, many of which ahve commercial timber and wildlife habitat value. In this paper, current techniques in stand development...

  19. Applications of satellite-derived disturbance information in support of sustainable forest management

    Treesearch

    Sean Healey; Warren Cohen; Gretchen Moisen

    2007-01-01

    The need for current information about the effects of fires, harvest, and storms is evident in many areas of sustainable forest management. While there are several potential sources of this information, each source has its limitations. Generally speaking, the statistical rigor associated with traditional forest sampling is an important asset in any monitoring effort....

  20. An annotated bibliography of scientific literature on research and management activities conducted in Manitou Experimental Forest

    Treesearch

    Ilana Abrahamson

    2012-01-01

    The Manitou Experimental Forest (MEF) is part of the USDA Forest Service Rocky Mountain Research Station. Established in 1936, its early research focused on range and watershed management. Currently, the site is home to several meteorological, ecological and biological research initiatives. Our collaborators include the University of Colorado, Colorado State University...

  1. NED-1: integrated analyses for forest stewardship decisions

    Treesearch

    Mark J. Twery; H. Michael Rauscher; Deborah J. Bennett; Scott A. Thomasma; Susan L. Stout; James F. Palmer; Robin E. Hoffman; David S. DeCalesta; Eric Gustafson; J. Morgan Grove; Donald Nute; Geneho Kim; R. Peter Kollasch

    2000-01-01

    NED is a collective term for a set of software intended to help resource managers develop goals, assess current and potential conditions, and produce sustainable management plans for forest properties. The software tools are being developed by the USDA Forest Service, Northeastern and Southern Research Stations, in cooperation with many other collaborators. NED-1 is a...

  2. Efficient silvicultural practices for eastern hardwood management

    Treesearch

    Gary W. Miller; John E. Baumgras

    1994-01-01

    Eastern hardwood forests are now managed to meet a wide range of objectives, resulting in the need for silvicultural alternatives that provide timber, wildlife, aesthetics, recreation, and other benefits. However, forest management practices must continue to be efficient in terms of profiting from current harvests, protecting the environment, and sustaining production...

  3. Climate change response framework overview: Chapter 1

    Treesearch

    Chris Swanston; Maria Janowiak; Patricia Butler

    2012-01-01

    Managers currently face the immense challenge of anticipating the effects of climate change on forest ecosystems and then developing and applying management responses for adapting forests to future conditions. The Climate Change Response Framework (CCRF) is a highly collaborative approach to helping land managers understand the potential effects of climate change on...

  4. An ecosystem management strategy for Sierran mixed-conifer forests

    Treesearch

    Malcolm North; Peter Stine; Kevin O' Hara; William Zielinski; Scott Stephens

    2009-01-01

    Current Sierra Nevada forest management is often focused on strategically reducing fuels without an explicit strategy for ecological restoration across the landscape matrix. Summarizing recent scientific literature, we suggest managers produce different stand structures and densities across the landscape using topographic variables (i.e., slope shape, aspect, and slope...

  5. 77 FR 62214 - Travel Management Supplemental Environmental Impact Statement (SEIS), Eldorado National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... with the National Forest Management Act (``NFMA'') in connection with its analysis and designation of... motorized travel that have some segment(s) that go through meadows. The purpose of the current analysis is...

  6. Fragmentation and Management of Ethiopian Moist Evergreen Forest Drive Compositional Shifts of Insect Communities Visiting Wild Arabica Coffee Flowers

    NASA Astrophysics Data System (ADS)

    Berecha, Gezahegn; Aerts, Raf; Muys, Bart; Honnay, Olivier

    2015-02-01

    Coffea arabica is an indigenous understorey shrub of the moist evergreen Afromontane forest of SW Ethiopia. Coffee cultivation here occurs under different forest management intensities, ranging from almost no intervention in the `forest coffee' system to far-reaching interventions that include the removal of competing shrubs and selective thinning of the upper canopy in the `semi-forest coffee' system. We investigated whether increasing forest management intensity and fragmentation result in impacts upon potential coffee pollination services through examining shifts in insect communities that visit coffee flowers. Overall, we netted 2,976 insect individuals on C. arabica flowers, belonging to sixteen taxonomic groups, comprising 10 insect orders. Taxonomic richness of the flower-visiting insects significantly decreased and pollinator community changed with increasing forest management intensity and fragmentation. The relative abundance of honey bees significantly increased with increasing forest management intensity and fragmentation, likely resulting from the introduction of bee hives in the most intensively managed forests. The impoverishment of the insect communities through increased forest management intensity and fragmentation potentially decreases the resilience of the coffee production system as pollination increasingly relies on honey bees alone. This may negatively affect coffee productivity in the long term as global pollination services by managed honey bees are expected to decline under current climate change scenarios. Coffee agroforestry management practices should urgently integrate pollinator conservation measures.

  7. Effects of forest management on streamflow, sediment yield, and erosion, Caspar Creek Experimental Watersheds

    Treesearch

    Elizabeth T. Keppeler; Jack Lewis; Thomas E. Lisle

    2003-01-01

    Abstract - Caspar Creek Experimental Watersheds were established in 1962 to research the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of...

  8. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management.

    PubMed

    Kellomäki, Seppo; Peltola, Heli; Nuutinen, Tuula; Korhonen, Kari T; Strandman, Harri

    2008-07-12

    This study investigated the sensitivity of managed boreal forests to climate change, with consequent needs to adapt the management to climate change. Model simulations representing the Finnish territory between 60 and 70 degrees N showed that climate change may substantially change the dynamics of managed boreal forests in northern Europe. This is especially probable at the northern and southern edges of this forest zone. In the north, forest growth may increase, but the special features of northern forests may be diminished. In the south, climate change may create a suboptimal environment for Norway spruce. Dominance of Scots pine may increase on less fertile sites currently occupied by Norway spruce. Birches may compete with Scots pine even in these sites and the dominance of birches may increase. These changes may reduce the total forest growth locally but, over the whole of Finland, total forest growth may increase by 44%, with an increase of 82% in the potential cutting drain. The choice of appropriate species and reduced rotation length may sustain the productivity of forest land under climate change.

  9. Current Status and Problems in Certification of Sustainable Forest Management in China

    NASA Astrophysics Data System (ADS)

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US0.66-86.63 million while the economic benefits for the forestry business sector could exceed US150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  10. Current status and problems in certification of sustainable forest management in China.

    PubMed

    Zhao, Jingzhu; Xie, Dongming; Wang, Danyin; Deng, Hongbing

    2011-12-01

    Forest certification is a mechanism involving the regulation of trade of forest products in order to protect forest resources and improve forest management. Although China had a late start in adopting this process, the country has made good progress in recent years. As of July 31, 2009, 17 forest management enterprises and more than one million hectares of forests in China have been certified by the Forest Stewardship Council (FSC). Several major factors affect forest certification in China. The first set is institutional in nature. Forest management in China is based on centralized national plans and therefore lacks flexibility. A second factor is public awareness. The importance and value of forest certification are not widely understood and thus consumers do not make informed choices regarding certified forest products. The third major factor is the cost of certification. Together these factors have constrained the development of China's forest certification efforts. However, the process does have great potential. According to preliminary calculations, if 50% of China's commercial forests were certified, the economic cost of forest certification would range from US$0.66-86.63 million while the economic benefits for the forestry business sector could exceed US$150 million. With continuing progress in forest management practices and the development of international trade in forest products, it becomes important to improve the forest certification process in China. This can be achieved by improving the forest management system, constructing and perfecting market access mechanisms for certificated forest products, and increasing public awareness of environmental protection, forest certification, and their interrelationship.

  11. Integrating climate change considerations into forest management tools and training

    Treesearch

    Linda M. Nagel; Christopher W. Swanston; Maria K. Janowiak

    2010-01-01

    Silviculturists are currently facing the challenge of developing management strategies that meet broad ecological and social considerations in spite of a high degree of uncertainty in future climatic conditions. Forest managers need state-of-the-art knowledge about climate change and potential impacts to facilitate development of silvicultural objectives and...

  12. NED-2 User's Guide

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; Donald E. Nute

    2011-01-01

    This is the user's guide for NED-2, which is the latest version of NED, a forest ecosystem management decision support system. This software is part of a family of software products intended to help resource managers develop goals, assess current and future conditions, and produce sustainable management plans for forest properties. Designed for stand-alone Windows...

  13. NED-2 reference guide

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; Donald E. Nute

    2012-01-01

    This is the reference guide for NED-2, which is the latest version of NED, a forest ecosystem management decision support system. This software is part of a family of software products intended to help resource managers develop goals, assess current and future conditions, and produce sustainable management plans for forest properties. Designed for stand-alone Windows-...

  14. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO): Science at Your Fingertips

    NASA Astrophysics Data System (ADS)

    Jennings, L. N.; Treasure, E.; Moore Myers, J.; McNulty, S.

    2012-12-01

    There is an ever-increasing volume of useful scientific knowledge about climate change effects and management options for natural ecosystems. Agencies such as the USDA Forest Service have been charged with the need to evaluate this body of knowledge and if necessary adapt to the impacts of climate change in their forest planning and management. However, the combined volume of existing information and rate of development of new information, lack of climate change specialists, and limited technology transfer mechanisms make efficient access and use difficult. The Template for Assessing Climate Change Impacts and Management Options (TACCIMO) addresses this difficulty through its publically accessible web-based tool that puts current and concise climate change science at the fingertips of forest planners and managers. A collaborative product of the USDA Forest Service Research Stations and the National Forest System, TACCIMO integrates peer-reviewed research with management and planning options through search and reporting tools that connect land managers with information they can trust. TACCIMO highlights elements from the wealth of climate change science with attention to what natural resource planners and managers need through a searchable repository of over 4,000 effects of climate change and close to 1,000 adaptive management options, all excerpted from a growing body of peer-reviewed scientific literature. A geospatial mapping application provides downscaled climate data for the nation and other spatially explicit models relevant to evaluating climate change impacts on forests. Report generators assist users in capturing outputs specific to a given location and resource area in a consistent and organized manner. For USDA Forest Service users, science findings can be readily linked with management conditions and capabilities from national forest management plans. The development of TACCIMO was guided by interactions with natural resource professionals, resulting in a flexible framework that allows new information to be added routinely and existing information to be reorganized as new science emerges and management needs change. TACCIMO is currently being used to support climate change science assessments for national forest land and management plan revisions in El Yunque National Forest in Puerto Rico, the Southern Sierra national forests in California, and Francis Marion National Forest in South Carolina. The tool is also being actively used by state, extension, and private natural resource professionals for climate change education and outreach. For all users, TACCIMO provides a fast, concise, and creditable starting point to guide critical thinking, additional analysis, and expert consultation to support all aspects of natural resource management decision making.

  15. Climate change and forest diseases

    Treesearch

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  16. Long-Term Field Data and Climate-Habitat Models Show That Orangutan Persistence Depends on Effective Forest Management and Greenhouse Gas Mitigation

    PubMed Central

    Gregory, Stephen D.; Brook, Barry W.; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N.; Fordham, Damien A.

    2012-01-01

    Background Southeast Asian deforestation rates are among the world’s highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Methodology/Principal Findings Using a long time-series of orangutan nest counts for Sabah (2000–10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. Conclusions/Significance We find strong quantitative support for the Sabah government’s proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests. PMID:22970145

  17. Long-term field data and climate-habitat models show that orangutan persistence depends on effective forest management and greenhouse gas mitigation.

    PubMed

    Gregory, Stephen D; Brook, Barry W; Goossens, Benoît; Ancrenaz, Marc; Alfred, Raymond; Ambu, Laurentius N; Fordham, Damien A

    2012-01-01

    Southeast Asian deforestation rates are among the world's highest and threaten to drive many forest-dependent species to extinction. Climate change is expected to interact with deforestation to amplify this risk. Here we examine whether regional incentives for sustainable forest management will be effective in improving threatened mammal conservation, in isolation and when combined with global climate change mitigation. Using a long time-series of orangutan nest counts for Sabah (2000-10), Malaysian Borneo, we evaluated the effect of sustainable forest management and climate change scenarios, and their interaction, on orangutan spatial abundance patterns. By linking dynamic land-cover and downscaled global climate model projections, we determine the relative influence of these factors on orangutan spatial abundance and use the resulting statistical models to identify habitat crucial for their long-term conservation. We show that land-cover change the degradation of primary forest had the greatest influence on orangutan population size. Anticipated climate change was predicted to cause reductions in abundance in currently occupied populations due to decreased habitat suitability, but also to promote population growth in western Sabah by increasing the suitability of presently unoccupied regions. We find strong quantitative support for the Sabah government's proposal to implement sustainable forest management in all its forest reserves during the current decade; failure to do so could result in a 40 to 80 per cent regional decline in orangutan abundance by 2100. The Sabah orangutan is just one (albeit iconic) example of a forest-dependent species that stands to benefit from sustainable forest management, which promotes conservation of existing forests.

  18. New technology for using meteorological information in forest insect pest forecast and warning systems.

    PubMed

    Qin, Jiang-Lin; Yang, Xiu-Hao; Yang, Zhong-Wu; Luo, Ji-Tong; Lei, Xiu-Feng

    2017-12-01

    Near surface air temperature and rainfall are major weather factors affecting forest insect dynamics. The recent developments in remote sensing retrieval and geographic information system spatial analysis techniques enable the utilization of weather factors to significantly enhance forest pest forecasting and warning systems. The current study focused on building forest pest digital data structures as a platform of correlation analysis between weather conditions and forest pest dynamics for better pest forecasting and warning systems using the new technologies. The study dataset contained 3 353 425 small polygons with 174 defined attributes covering 95 counties of Guangxi province of China currently registering 292 forest pest species. Field data acquisition and information transfer systems were established with four software licences that provided 15-fold improvement compared to the systems currently used in China. Nine technical specifications were established including codes of forest districts, pest species and host tree species, and standard practices of forest pest monitoring and information management. Attributes can easily be searched using ArcGIS9.3 and/or the free QGIS2.16 software. Small polygons with pest relevant attributes are a new tool of precision farming and detailed forest insect pest management that are technologically advanced. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Using existing thinning studies to investigate the carbon consequences of thinning: learning from the past to craft the future

    Treesearch

    Coeli M. Hoover

    2010-01-01

    Although long-term research is a critical tool for answering forest management questions, managers must often make decisions before results from such experiments are available. One way to meet those information needs is to reanalyze existing long-term data sets to address current research questions; the Forest Service Experimental Forests and Ranges (EFRs) network...

  20. Forest pricing and concession policies: Managing the high forest of west and Central Africa. World Bank Technical Paper 143; Politique de redevances et de concessions forestires: gestion des futaies en afrique occidentale et centrale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grut, M.; Gray, J.A.; Egli, N.

    1993-12-01

    This French edition of Forest Pricing and Concession Policies: Managing the High Forest of West and Central Africa describes forest revenue systems and concession policies in the tropical moist hardwood forests of West and Central Africa. Virtually all the forests of Africa are publicly owned by central governments or local communities. Revenues from these forests are generally very low due to low forest fees and low collection rates. The lack of concession fees encourages acquisition and waste rather than management and conservation, leading to the allocation of large areas as logging concessions. This paper reviews current issues in silviculture, tenure,more » concession management, and biological and financial sustainable development. Until the fledgling forestry departments of governments in West and Central Africa are strengthened, the report concludes that a simple system of forest fees should be implemented. The report recommends that such a system emphasize bidding and concession fees. Three specific options in forest pricing are examined for a proposed system; annual concession rent; annual concession rent set by competitive bidding; logging concessions replaced by forest management concessions.« less

  1. The development of oak reproduction following soil scarification - implications for riparian forest management

    Treesearch

    John M. Lhotka; James J. Zaczek

    2003-01-01

    With the current emphasis and interest in riparian forest management, it is necessary to develop management strategies that enhance and regenerate bottomland hardwoods in these biologically important areas. However, the regeneration of bottomland oaks has been problematic across much of the eastern United States. Two ongoing studies presented in this paper suggest that...

  2. The timber-supply potential of intensive management in upland oak forests of Ohio

    Treesearch

    David A. Gansner; Owen W. Herrick; Owen W. Herrick

    1973-01-01

    Two alternative programs of intensive timber management were defined for Ohio's oak-hickory forests. Their potentials were evaluated by comparing the expected yields and yield values of each program with those expected from a continuation of current management practices. Neither program would produce large increases in timber yield. But the expected gains in yield...

  3. Remote sensing and today's forestry issues

    NASA Technical Reports Server (NTRS)

    Sayn-Wittgenstein, L.

    1977-01-01

    The actual and the desirable roles of remote sensing in dealing with current forestry issues, such as national forest policy, supply and demand for forest products and competing demands for forest land are discussed. Topics covered include wood shortage, regional timber inventories, forests in tropical and temperate zones, Skylab photography, forest management and protection, available biomass studies, and monitoring.

  4. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    USGS Publications Warehouse

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  5. Forest Management in Earth System Modelling: a Vertically Discretised Canopy Description for ORCHIDEE and Effects on European Climate Since 1750

    NASA Astrophysics Data System (ADS)

    McGrath, M.; Luyssaert, S.; Naudts, K.; Chen, Y.; Ryder, J.; Otto, J.; Valade, A.

    2015-12-01

    Forest management has the potential to impact surface physical characteristics to the same degree that changes in land cover do. The impacts of land cover changes on the global climate are well-known. Despite an increasingly detailed understanding of the potential for forest management to affect climate, none of the current generation of Earth system models account for forest management through their land surface modules. We addressed this gap by developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management. Through vertical discretization of the forest canopy and corresponding modifications to the energy budget, radiation transfer, and carbon allocation, forest management can now be simulated much more realistically on the global scale. This model was used to explore the effect of forest management on European climate since 1750. Reparameterization was carried out to replace generic forest plant functional types with real tree species, covering the most dominant species across the continent. Historical forest management and land cover maps were created to run the simulations from 1600 until the present day. The model was coupled to the atmospheric model LMDz to explore differences in climate between 1750 and 2010 and attribute those differences to changes in atmospheric carbon dioxide concentrations and concurrent warming, land cover, species composition, and wood extraction. Although Europe's forest are considered a carbon sink in this century, our simulations show the modern forests are still experiencing carbon debt compared to their historical values.

  6. Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Ryan, Robert E.; McKellip, Rodney

    2008-01-01

    The Healthy Forest Restoration Act of 2003 mandated that a national forest threat Early Warning System (EWS) be developed. The USFS (USDA Forest Service) is currently building this EWS. NASA is helping the USFS to integrate remotely sensed data into the EWS, including MODIS data for monitoring forest disturbance at broad regional scales. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for contribution to the EWS. In doing so, the RPC project employed multitemporal simulated VIIRS and MODIS data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria despar). Gypsy moth is an invasive species threatening eastern U.S. hardwood forests. It is one of eight major forest insect threats listed in the Healthy Forest Restoration Act of 2003. This RPC experiment is relevant to several nationally important mapping applications, including carbon management, ecological forecasting, coastal management, and disaster management

  7. Did 250 years of forest management in Europe cool the climate?

    NASA Astrophysics Data System (ADS)

    Naudts, Kim; Chen, Yiying; McGrath, Matthew; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-04-01

    Over the past two centuries European forest has evolved from being an over-exploited source of timber to a sustainably managed provider of diverse ecosystem services. Although this transition is often perceived as exemplary in resources management, the loss of unmanaged forest, the progressive shift from traditional coppice forestry to the current production-oriented management and the massive conversion of broadleaved to coniferous species are typically overlooked when assessing the impact of land-use change on climate. Here we present a study that addressed this gap by: (1) developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management, (2) reconstructing the land-use history of Europe, accounting for changes in forest management and land cover. The model was coupled to the atmospheric model LMDz in a factorial simulation experiment to attribute climate change to global anthropogenic greenhouse gas emission and European land-use change since 1750 (i.e., afforestation, wood extraction and species conversion). We find that, despite considerable afforestation, Europe's forests failed to realize a net removal of CO2 from the atmosphere due to wood extraction. Moreover, biophysical changes due to the conversion of deciduous forest into coniferous forest have offset mitigation through the carbon cycle. Thus, two and a half centuries of forest management in Europe did not mitigate climate warming (Naudts et al., 2016). Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S, Europe's forest management did not mitigate climate warming, Science, Accepted.

  8. Forest pricing and concession policies: Managing the high forest of west and central Africa. World Bank technical paper; Politique de redevances et de concessions forestieres: gestion des futaies en afrique occidentale et centrale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grut, M.; Gray, J.A.; Egli, N.

    1993-12-01

    This French edition describes forest revenue systems and concession policies in the tropical moist hardwood forests of West and Central Africa. The paper reviews current issues in silviculture, tenure, concession management, and biological and financial sustainable development. Until the fledgling forestry departments of governments in West and Central Africa are strengthened, the report concludes that a simple system of forest fees should be implemented. The report recommends that such a system emphasize bidding and concession fees.

  9. Snag densities in relation to human access and associated management factors in forests of Northeastern Oregon, USA

    Treesearch

    Lisa J. Bate; Michael J. Wisdom; Barbara C. Wales

    2007-01-01

    A key element of forest management is the maintenance of sufficient densities of snags (standing dead trees) to support associated wildlife. Management factors that influence snag densities, however, are numerous and complex. Consequently, accurate methods to estimate and model snag densities are needed. Using data collected in 2002 and Current Vegetation Survey (CVS)...

  10. Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA

    Treesearch

    Ana M. G. Barros; Alan A. Ager; Michelle A. Day; Haiganoush K. Preisler; Thomas A. Spies; Eric White; Robert J. Pabst; Keith A. Olsen; Emily Platt; John D. Bailey; John P. Bolte

    2017-01-01

    We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and...

  11. Development of a web-based tool for projecting costs of managing emerald ash borer in municipal forests

    Treesearch

    Clifford S. Sadof

    2009-01-01

    City managers faced with the invasion of emerald ash borer into their urban forests need to plan for the invasion in order to obtain the resources they need to protect the public from harm caused by dying ash trees. Currently, city...

  12. Nitrogen dynamics in managed boreal forests: Recent advances and future research directions.

    PubMed

    Sponseller, Ryan A; Gundale, Michael J; Futter, Martyn; Ring, Eva; Nordin, Annika; Näsholm, Torgny; Laudon, Hjalmar

    2016-02-01

    Nitrogen (N) availability plays multiple roles in the boreal landscape, as a limiting nutrient to forest growth, determinant of terrestrial biodiversity, and agent of eutrophication in aquatic ecosystems. We review existing research on forest N dynamics in northern landscapes and address the effects of management and environmental change on internal cycling and export. Current research foci include resolving the nutritional importance of different N forms to trees and establishing how tree-mycorrhizal relationships influence N limitation. In addition, understanding how forest responses to external N inputs are mediated by above- and belowground ecosystem compartments remains an important challenge. Finally, forestry generates a mosaic of successional patches in managed forest landscapes, with differing levels of N input, biological demand, and hydrological loss. The balance among these processes influences the temporal patterns of stream water chemistry and the long-term viability of forest growth. Ultimately, managing forests to keep pace with increasing demands for biomass production, while minimizing environmental degradation, will require multi-scale and interdisciplinary perspectives on landscape N dynamics.

  13. Structure and dynamics of an upland old-growth forest at Redwood National Park, California

    Treesearch

    Phillip J. van Mantgem; John D. Stuart

    2012-01-01

    Many current redwood forest management targets are based on old-growth conditions, so it is critical that we understand the variability and range of conditions that constitute these forests. Here we present information on the structure and dynamics from six one-hectare forest monitoring plots in an upland old-growth forest at Redwood National Park, California. We...

  14. Forest Health in North America: Some Perspectives on Actual and Potential Roles of Climate and Air Pollution

    Treesearch

    S. McLaughlin; K. Percy

    1999-01-01

    The perceived health of forest ecosystems over large temporal and spatial scales can be strongly influenced by the frames of reference chosen to evaluate both forest condition and the functional integrity of sustaining forest processes. North American forests are diverse in range, species composition, past disturbance history, and current management practices....

  15. Forest inventories generate scientifically sound information on the forest resource, but do our data and information really matter?

    Treesearch

    Christoph Keinn; Goran Stahl

    2009-01-01

    Current research in forest inventory focuses very much on technical-statistical problems geared mainly to the optimization of data collection and information generation. The basic assumption is that better information leads to better decisions and, therefore, to better forest management and forest policy. Not many studies, however, strive to explicitly establish the...

  16. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    USGS Publications Warehouse

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  17. Approaches to monitoring changes in carbon stocks for REDD+

    Treesearch

    Richard Birdsey; Gregorio Angeles-Perez; Werner A Kurz; Andrew Lister; Marcela Olguin; Yude Pan; Craig Wayson; Barry Wilson; Kristofer Johnson

    2013-01-01

    Reducing emissions from deforestation and forest degradation plus improving forest-management (REDD+) is a mechanism to facilitate tropical countries' participation in climate change mitigation. In this review we focus on the current state of monitoring systems to support implementing REDD+. The main elements of current monitoring systems - Landsat satellites and...

  18. Designing Forest Adaptation Experiments through Manager-Scientist Partnerships

    NASA Astrophysics Data System (ADS)

    Nagel, L. M.; Swanston, C.; Janowiak, M.

    2014-12-01

    Three common forest adaptation options discussed in the context of an uncertain future climate are: creating resistance, promoting resilience, and enabling forests to respond to change. Though there is consensus on the broad management goals addressed by each of these options, translating these concepts into management plans specific for individual forest types that vary in structure, composition, and function remains a challenge. We will describe a decision-making framework that we employed within a manager-scientist partnership to develop a suite of adaptation treatments for two contrasting forest types as part of a long-term forest management experiment. The first, in northern Minnesota, is a red pine-dominated forest with components of white pine, aspen, paper birch, and northern red oak, with a hazel understory. The second, in southwest Colorado, is a warm-dry mixed conifer forest dominated by ponderosa pine, white fir, and Douglas-fir, with scattered aspen and an understory of Gambel oak. The current conditions at both sites are characterized by overstocking with moderate-to-high fuel loading, vulnerability to numerous forest health threats, and are generally uncharacteristic of historic structure and composition. The desired future condition articulated by managers for each site included elements of historic structure and natural range of variability, but were greatly tempered by known vulnerabilities and projected changes to climate and disturbance patterns. The resultant range of treatments we developed are distinct for each forest type, and address a wide range of management objectives.

  19. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    PubMed

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).

  20. Family forest landowners' interest in forest carbon offset programs: focus group findings from the lake States, USA.

    PubMed

    Miller, Kristell A; Snyder, Stephanie A; Kilgore, Mike A; Davenport, Mae A

    2014-12-01

    In 2012, focus groups were organized with individuals owning 20+ acres in the Lake States region of the United States (Michigan, Minnesota, and Wisconsin) to discuss various issues related to forest carbon offsetting. Focus group participants consisted of landowners who had responded to an earlier mail-back survey (2010) on forest carbon offsets. Two focus groups were held per state with an average of eight participants each (49 total). While landowner participant types varied, overall convergence was reached on several key issues. In general, discussion results found that the current payment amounts offered for carbon credits are not likely, on their own, to encourage participation in carbon markets. Landowners are most interested in other benefits they can attain through carbon management (e.g., improved stand species mix, wildlife, and trails). Interestingly, landowner perceptions about the condition of their own forest land were most indicative of prospective interest in carbon management. Landowners who felt that their forest was currently in poor condition, or did not meet their forest ownership objectives, were most interested in participating. While the initial survey sought landowner opinions about carbon markets, a majority of focus group participants expressed interest in general carbon management as a means to achieve reduced property taxes.

  1. Family Forest Landowners' Interest in Forest Carbon Offset Programs: Focus Group Findings from the Lake States, USA

    NASA Astrophysics Data System (ADS)

    Miller, Kristell A.; Snyder, Stephanie A.; Kilgore, Mike A.; Davenport, Mae A.

    2014-12-01

    In 2012, focus groups were organized with individuals owning 20+ acres in the Lake States region of the United States (Michigan, Minnesota, and Wisconsin) to discuss various issues related to forest carbon offsetting. Focus group participants consisted of landowners who had responded to an earlier mail-back survey (2010) on forest carbon offsets. Two focus groups were held per state with an average of eight participants each (49 total). While landowner participant types varied, overall convergence was reached on several key issues. In general, discussion results found that the current payment amounts offered for carbon credits are not likely, on their own, to encourage participation in carbon markets. Landowners are most interested in other benefits they can attain through carbon management (e.g., improved stand species mix, wildlife, and trails). Interestingly, landowner perceptions about the condition of their own forest land were most indicative of prospective interest in carbon management. Landowners who felt that their forest was currently in poor condition, or did not meet their forest ownership objectives, were most interested in participating. While the initial survey sought landowner opinions about carbon markets, a majority of focus group participants expressed interest in general carbon management as a means to achieve reduced property taxes.

  2. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    T.A. Kennaway; E.H. Helmer; M.A. Lefsky; T.A. Brandeis; K.R. Sherill

    2008-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researchers for accurate forest inventory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  3. Mapping land cover and estimating forest structure using satellite imagery and coarse resolution lidar in the Virgin Islands

    Treesearch

    Todd Kennaway; Eileen Helmer; Michael Lefsky; Thomas Brandeis; Kirk Sherrill

    2009-01-01

    Current information on land cover, forest type and forest structure for the Virgin Islands is critical to land managers and researachers for accurate forest inverntory and ecological monitoring. In this study, we use cloud free image mosaics of panchromatic sharpened Landsat ETM+ images and decision tree classification software to map land cover and forest type for the...

  4. NED-2: A decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  5. NED-2: a decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  6. Communicating the value and benefits of silviculture through partnerships and collaborative stewardship

    Treesearch

    1997-01-01

    Opening comments to this session share observations on the current management climate within the USDA Forest Service. Partnerships and collaborative stewardship as agency philosophy are discussed. Silviculturists roles, as scientists and managers are compared, and the need for internal and external cooperation stressed as we strive to meet forest stewardship goals....

  7. Conservation assessment for the northern goshawk in southeast Alaska.

    Treesearch

    George C. Iverson; Gregory D. Hayward; Kimberly Titus; Eugene DeGayner; Richard E. Lowell; D. Coleman Crocker-Bedford; Philip F. Schempf; John Lindell

    1996-01-01

    The conservation status of northern goshawks in southeast Alaska is examined through developing an understanding of goshawk ecology in relation to past, present, and potential future habitat conditions in the region under the current Tongass land management plan. Forest ecosystem dynamics are described, and a history of forest and goshawk management in the Tongass...

  8. Forests and water: effects of forest management on floods, sedimentation, and water supply

    Treesearch

    Henry W. Anderson; Marvin D. Hoover; Kenneth G. Reinhart

    1976-01-01

    From the background of more than 100 years' collective experience in watershed research and from comprehensive review of the literature of forest hydrology, the authors summarize what is known about the forest's influence on the water resource, particularly the effects of current forestry practices. They first examine the fundamental hydrologic processes in...

  9. Productivity and diversity of morel mushrooms in healthy, burned, and insect damaged forests of northeastern Oregon.

    Treesearch

    David Pilz; Nancy S. Weber; M. Carol Carter; Catherine G. Parks; Randy. Molina

    2004-01-01

    Large commercial crops of morels are harvested annually from montane coniferous forests of the Northwestern United States. Although some morels fruit annually in nondisturbed forests, others fruit copiously in areas experiencing fire, insect infestations, tree mortality, and soil disturbance. Many forest managers currently use thinning and prescribed fire to re-create...

  10. Silvicultural systems for the major forest types of the United States

    Treesearch

    Russell M. Burns

    1983-01-01

    The current trend toward the establishment and care of forests for a wide combination of uses requires flexibility in forest culture and a knowledge of the silvicultural choices available to the resource manager. This publication summarizes the silvicultural systems that appear biologically feasible, on the basis of present knowledge, for each of 48 major forest types...

  11. Forest management and water in the United States [Chapter 13

    Treesearch

    Daniel G. Neary

    2017-01-01

    This chapter outlines a brief history of the United States native forests and forest plantations. It describes the past and current natural and plantation forest distribution (map, area, main species), as well as main products produced (timber, pulp, furniture, etc.). Integrated into this discussion is a characterization of the water resources of the United States and...

  12. Adapting to climate change in United States national forests

    Treesearch

    G. M. Blate; L. A. Joyce; J. S. Littell; S. G. McNulty; C. I. Millar; S. C. Moser; R. P. Neilson; K. O’Halloran; D. L. Peterson

    2009-01-01

    Climate change is already affecting forests and other ecosystems, and additional, potentially more severe impacts are expected (IPCC, 2007; CCSP, 2008a, 2008b). As a result, forest managers are seeking practical guidance on how to adapt their current practices and, if necessary, their goals. Adaptations of forest ecosystems, which in this context refer to adjustments...

  13. [A review on disturbance ecology of forest].

    PubMed

    Zhu, Jiaojun; Liu, Zugen

    2004-10-01

    More than 80% of terrestrial ecosystems have been influenced by natural disasters, human activities and the combination of both natural and human disturbances. Forest ecosystem, as one of the most important terrestrial ecosystems, has also been disturbed without exception. Under the disturbance from natural disasters and human activities, particularly from the unreasonable activities of human beings, forest decline or forest degradation has become more and more severe. For this reason, sustaining or recovering forest service functions is one of the current purposes for managing forest ecosystems. In recent decades, the studies on disturbed ecosystems have been carried out frequently, especially on their ecological processes and their responses to the disturbances. These studies play a very important role in the projects of natural forest conservation and the construction of ecological environment in China. Based on a wide range of literatures collection on forest disturbance research, this paper discussed the fundamental concepts of disturbance ecology, the relationships between forest management and disturbance, and the study contents of forest disturbance ecology. The major research topics of forest disturbance ecology may include: 1) the basic characteristics of disturbed forests; 2) the processes of natural and human disturbances; 3) the responses of forests ecosystem to the disturbances; 4) the main ecological processes or the consequential results of disturbed forests, including the change of biodiversity, soil nutrient and water cycle, eco-physiology and carbon cycle, regeneration mechanism of disturbed forests and so on; 5) the relationships between disturbances and forest management; and 6) the principles and techniques for the management of disturbed forests. This review may be helpful to the management of disturbed forest ecosystem, and to the projects of natural forest conservation in China.

  14. Structural and compositional differences between old-growth and mature second-growth forests in the Missouri Ozarks

    Treesearch

    Stephen R. Shifley; Lynn M. Roovers; Brian L. Brookshire

    1995-01-01

    There are currently only about 7,900 acres (3,200 ha) of remnant old-growth forest in Missouri, but public land management plans call for old-growth acreage to increase to more than 200,000 acres (81,000 ha). To develop a better quantitative understanding of the transitions that are likely as current forests mature to an old-growth state, we compared a number of...

  15. Riparian adaptive management symposium: a conversation between scientists and management

    Treesearch

    Douglas F. Ryan; John M. Calhoun

    2010-01-01

    Scientists, land managers and policy makers discussed whether riparian (stream side) forest management and policy for state, federal and private lands in western Washington are consistent with current science. Answers were mixed: some aspects of riparian policy and management have a strong basis in current science, while other aspects may not. Participants agreed that...

  16. Chapter 3. Current management situation: Flammulated owls

    Treesearch

    Jon Verner

    1994-01-01

    The flammulated owl (Otus flammeolus) is a western mountain species associated mainly with ponderosa (Pinus ponderosa) and Jeffrey pine (Pinus jefferyi) forests in the United States and Canada (see Chapter 4). As a neotropical migrant, this small forest owl occurs on national forests in the United States during...

  17. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    PubMed

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the process of analyzing the environmental effects of alternative actions.

  18. Research Natural Areas on National Forest System lands in Idaho, Montana, Nevada, Utah, and Western Wyoming: A guidebook for scientists, managers, and educators

    Treesearch

    Angela G. Evenden; Melinda Moeur; J. Stephen Shelly; Shannon F. Kimball; Charles A. Wellner

    2001-01-01

    This guidebook is intended to familiarize land resource managers, scientists, educators, and others with Research Natural Areas (RNAs) managed by the USDA Forest Service in the Northern Rocky Mountains and Intermountain West. This guidebook facilitates broader recognition and use of these valuable natural areas by describing the RNA network, past and current research...

  19. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2007-01-01

    Reliable predictions of how changing climate and disturbance regimes will affect forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals, methods,...

  20. Research agenda for integrated landscape modeling

    Treesearch

    Samuel A. Cushman; Donald McKenzie; David L. Peterson; Jeremy Littell; Kevin S. McKelvey

    2006-01-01

    Reliable predictions of the effects changing climate and disturbance regimes will have on forest ecosystems are crucial for effective forest management. Current fire and climate research in forest ecosystem and community ecology offers data and methods that can inform such predictions. However, research in these fields occurs at different scales, with disparate goals,...

  1. Current and emerging operational uses of remote sensing in Swedish forestry

    Treesearch

    Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>

    2007-01-01

    Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...

  2. Management and protection of peri-urban forests of three towns in Greece

    NASA Astrophysics Data System (ADS)

    Georgi, J.; Zigkiris, S.; Ftika, Z.; Konstantinidou, E.

    2016-08-01

    The satisfaction of continuous leisure demand in suburban forest requires a proper management of space so as on the one hand to provide better services to visitors and on the other hand to protect against excessive and improper use by guests. In the present study we investigated and analyzed the current situation of the suburban forests of Drama, Limni and Elassona and proposed the appropriate future management. The views of residents are reflected in primary research using a questionnaire (personal interview). The results focus, regardless of the region, to the multiple roles played by suburban forests for urban and suburban areas. The integration of suburban forests and especially of all the urban green as key elements of spatial planning and urban reconstruction of large and small urban centers, are the means that will create favorable conditions for future upgrading of suburban forests in order to sufficiently accomplish a modern triple role; productive, ecological and social.

  3. Sustainable carbon uptake - important ecosystem service within sustainable forest management

    NASA Astrophysics Data System (ADS)

    Zorana Ostrogović Sever, Maša; Anić, Mislav; Paladinić, Elvis; Alberti, Giorgio; Marjanović, Hrvoje

    2016-04-01

    Even-aged forest management with natural regeneration under continuous cover (i.e. close to nature management) is considered to be sustainable regarding the yield, biodiversity and stability of forest ecosystems. Recently, in the context of climate change, there is a raising question of sustainable forest management regarding carbon uptake. Aim of this research was to explore whether current close to nature forest management approach in Croatia can be considered sustainable in terms of carbon uptake throughout the life-time of Pedunculate oak forest. In state-owned managed forest a chronosequence experiment was set up and carbon stocks in main ecosystem pools (live biomass, dead wood, litter and mineral soil layer), main carbon fluxes (net primary production, soil respiration (SR), decomposition) and net ecosystem productivity were estimated in eight stands of different age (5, 13, 38, 53, 68, 108, 138 and 168 years) based on field measurements and published data. Air and soil temperature and soil moisture were recorded on 7 automatic mini-meteorological stations and weekly SR measurements were used to parameterize SR model. Carbon balance was estimated at weekly scale for the growing season 2011 (there was no harvesting), as well as throughout the normal rotation period of 140 years (harvesting was included). Carbon stocks in different ecosystem pools change during a stand development. Carbon stocks in forest floor increase with stand age, while carbon stocks in dead wood are highest in young and older stands, and lowest in middle-aged, mature stands. Carbon stocks in mineral soil layer were found to be stable across chronosequence with no statistically significant age-dependent trend. Pedunculate Oak stand, assuming successful regeneration, becomes carbon sink very early in a development phase, between the age of 5 and 13 years, and remains carbon sink even after the age of 160 years. Greatest carbon sink was reached in the stand aged 53 years. Obtained results indicate that current harvesting practice has no detrimental effect on carbon stored in forest soil. Observed early and long-lasting carbon sink suggest that close to nature forest management can be considered sustainable in terms of carbon uptake. Also, observed carbon sink in the oldest stand is valuable information for potential debate on prolonging rotation period in this type of forest ecosystems.

  4. Use of state-and-transition simulation modeling in National Forest planning in the Pacific Northwest, U.S.A

    Treesearch

    Ayn J. Shlisky; Don Vandendriesche

    2012-01-01

    Effective national forest planning depends on scientifically sound analyses of land management alternatives relative to desired future conditions and environmental effects. The USDA Forest Service Pacific Northwest Region is currently using state-and-transition simulation models (STMs) to simulate changes in forest composition and structure for the revisions of five...

  5. US Forest Service experimental forests and ranges: an untapped resource for social science

    Treesearch

    Susan Charnley; Lee K. Cerveny

    2011-01-01

    For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....

  6. Conservation value of Mount Rushmore National Memorial's forest

    USGS Publications Warehouse

    Symstad, Amy J.; Bynum, Michael R.

    2007-01-01

    Justifying the maintenance of small natural areas requires understanding their contribution to the conservation of specific natural resources. Mount Rushmore National Memorial (MORU) is a small portion of the Black Hills of western South Dakota and eastern Wyoming. Because it has been protected from logging since the late 1930s, it may serve as an important part of the Black Hills forest as a whole. To understand this role, we investigated the extent and degree of logging activities in the memorial and compared the current structure of the MORU forest to that in the rest of the Black Hills today and before Euro-American settlement. Our results suggest that approximately 29% of the park has had no tree harvesting activity, 18% of the park has had only selective cutting of trees, and 66% (344 ha) of the park's area is covered by old-growth forest. Based on current estimates of similar forest in the remainder of the Black Hills, the forest at MORU constitutes the second-largest area of old-growth ponderosa pine forest in the Black Hills. Although the current structure of the forest does not appear to be outside the range of natural variability for this ecosystem, some components of the forest are near the edge of this range. Conservation of this important natural resource will most likely require more active management than has occurred in the past, but this management will require careful consideration because of the rarity of this resource in the region.

  7. The Blue Mountains Natural Resources Institute: partnerships that demonstrate the role of silviculture in forest management

    Treesearch

    James McIver; Andrew Youngblood

    1997-01-01

    The research program of the Blue Mountains Natural Resources Institute (BMNRI) aims to understand the ecological effects of current management practices. In forest systems, this amounts to silvicultural research. We describe how the BMNRl fosters partnerships to carry out and showcase silvicultural research leading to information that allows assessment of economic/...

  8. Distribution and Habitat Use of Swainson's Warblers in Eastern and Northern Arkansas

    Treesearch

    James C. Bednarz; Petra Stiller-Krehel; Brian Cannon

    2005-01-01

    Systematic surveys of hardwood forests along the Buffalo National River, the St. Francis Sunken Lands Wildlife Management Area, St. Francis National Forest, Bayou Meto Wildlife Management Area, and the White River National Wildlife Refuge in eastern and northern Arkansas were undertaken between 5 April and 30 June 2000 and 2001 to document current status, distribution...

  9. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    Treesearch

    Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...

  10. Dead wood all around us: think regionally to manage locally.

    Treesearch

    Sally Duncan

    2002-01-01

    Dead wood is a crucial component of healthy, biologically diverse forests. Yet basic information about the distribution and characteristics of snags and down trees in forest of the Pacific Northwest is lacking. Such information is needed to assess wildlife habitat, carbon stores, fuel conditions, and site productivity. Current guidelines for dead wood management are...

  11. Soil Quality Standards Monitoring Program administration and implementation

    Treesearch

    Randy L. Davis; Felipe Sanchez; Sharon DeHart

    2010-01-01

    Forest managers and resource scientists and specialists are engaged in a partnership to sustain the natural resource value of our national forests. Managers are faced with deciding which activities provide the best resource benefits with the least resource damage. Many, but not all, aspects of the decision process must be based on the science supporting our current...

  12. Chapter 9. Data Management, Storage, and Reporting

    Treesearch

    Linda A. Spencer; Mary M. Manning; Bryce Rickel

    2013-01-01

    Data collected for a habitat monitoring program must be managed and stored to be accessible for current and future use inside and outside the Forest Service. Information maintenance and dissemination are important to the Forest Service; they are part of the U.S. Department of Agriculture (USDA) guidelines for information quality (USDA 2002) under the Data Quality Act...

  13. Moving forward: Responding to and mitigating effects of the MPB epidemic [Chapter 8

    Treesearch

    Claudia Regan; Barry Bollenbacher; Rob Gump; Mike Hillis

    2014-01-01

    The final webinar in the Future Forest Webinar Series provided an example of how managers utilized available science to address questions about post-epidemic forest conditions. Assessments of current conditions and projected trends, and how these compare with historical patterns, provide important information for land management planning. Large-scale disturbance events...

  14. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    PubMed

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology.

  15. Evaluating the Impact of Abrupt Changes in Forest Policy and Management Practices on Landscape Dynamics: Analysis of a Landsat Image Time Series in the Atlantic Northern Forest

    PubMed Central

    Legaard, Kasey R.; Sader, Steven A.; Simons-Legaard, Erin M.

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging <15 ha) and a correspondingly large amount of edge. Management regimes impacted different areas to different degrees, producing different trajectories of landscape change that should be recognized when studying the impact of policy and management practices on forest ecology. PMID:26106893

  16. A Survery of Timberland Investment Management Organizations Forestland Management in the South

    Treesearch

    Jacek Siry; Frederick W. Cubbage

    2001-01-01

    The assets of Timberland Investment Management Organizations (TIMOS) have rapidly grown over the past two decades. indicating their increasing importance for timber supply in the South. A TIMOS survey was conducted to assess their current and future investments and forest management approaches. The results indicate that TIMOS currently hold about 4.2 million acres of...

  17. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  18. Community perceptions of state forest ownership and management: a case study of the Sundarbans Mangrove Forest in Bangladesh.

    PubMed

    Roy, Anjan Kumer Dev; Alam, Khorshed; Gow, Jeff

    2013-03-15

    The Sundarbans Mangrove Forest (SMF) is the world's largest mangrove forest and it provides livelihoods to 3.5 million forest-dependent people in coastal Bangladesh. The first study aim was to analyse the efficacy of the state property regime in managing the forest through a close examination of the relationship between property rights and mangrove conservation practices. The second study aim was to explore forest-dependent communities' (FDCs) perceptions about their participation in management and conservation practices. The Schlager and Ostrom theoretical framework was adopted to examine the role of potential ownership variations in a common property resource regime. A survey of 412 FDC households was undertaken. Current management by the Bangladesh Forest Department (BFD) does not result in implementation of mandated mangrove conservation practices. It was found that allocation of property rights to FDCs would be expected to increase conservation practices. 92% of respondents expressed the view that the evidenced rapid degradation over the past 30 years was due primarily to corruption in the BFD. About half of FDCs (46%) surveyed are willing to participate in mangrove conservation through involvement in management as proprietors. Consistent with Schlager and Ostrom's theory, the results indicate the necessity for de facto and de jure ownership and management change from a state to common property regime to ensure FDCs' participation in conservation practices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Considering departures from current timber harvesting policies: case studies of four communities in the Pacific Northwest.

    Treesearch

    Con H Schallau; Paul E. Polzin

    1983-01-01

    U.S. Department of Agriculture regulations permit departures from current National Forest timber harvesting policies when "implementation of base harvest schedules.., would cause a substantial adverse impact upon a community .... " This paper describes the kinds of information needed for forest managers to adequately assess the relevance of the departure...

  20. Historical and current roles of insects and pathogens in eastern Oregon and Washington forested landscapes.

    Treesearch

    P.F. Hessburg; R.G. Mitchell; G.M. Filip

    1994-01-01

    This paper examines by climax conifer series, historical and current roles of many important pathogens and insects of interior Northwest coniferous forests, and their unique responses to changing successional conditions resulting from management. Insects and pathogens of the subalpine fir and mountain hemlock series historically reduced inter-tree competition for site...

  1. Ecological responses to el Niño-induced surface fires in central Brazilian Amazonia: management implications for flammable tropical forests.

    PubMed Central

    Barlow, Jos; Peres, Carlos A

    2004-01-01

    Over the past 20 years the combined effects of El Niño-induced droughts and land-use change have dramatically increased the frequency of fire in humid tropical forests. Despite the potential for rapid ecosystem alteration and the current prevalence of wildfire disturbance, the consequences of such fires for tropical forest biodiversity remain poorly understood. We provide a pan-tropical review of the current state of knowledge of these fires, and include data from a study in a seasonally dry terra firme forest of central Brazilian Amazonia. Overall, this study supports predictions that rates of tree mortality and changes in forest structure are strongly linked to burn severity. The potential consequences for biomass loss and carbon emissions are explored. Despite the paucity of data on faunal responses to tropical forest fires, some trends are becoming apparent; for example, large canopy frugivores and understorey insectivorous birds appear to be highly sensitive to changes in forest structure and composition during the first 3 years after fires. Finally, we appraise the management implications of fires and evaluate the viability of techniques and legislation that can be used to reduce forest flammability, prevent anthropogenic ignition sources from coming into contact with flammable forests and aid the post-fire recovery process. PMID:15212091

  2. Climate-Soil-Vegetation Interactions: A Case-Study from the Forest Fire Phenomenon in Southern Switzerland

    NASA Astrophysics Data System (ADS)

    Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.

    2003-04-01

    In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.

  3. National Detection Surveys for Sudden Oak Death

    Treesearch

    B. M. Tkacz; S. W. Oak; W. D. Smith

    2006-01-01

    The Forest Health Monitoring program, a partnership of Federal and State forest management agencies, has developed and tested protocols for identifying and surveying forest ecosystems that may be vulnerable to invasion by Phytophthora ramorum, the cause of Sudden Oak Death in California and Oregon. This detection survey is targeting areas outside the currently known...

  4. Modeling Forest Timber Productivity in the South: Where Are We Today?

    Treesearch

    V. Clark Baldwin; Quang V. Cao

    1999-01-01

    The current southern species growth and yield prediction capability, new techniques utilized, and modeling trends over the last 17 years, were examined. Changing forest management objectives that emphasize more non-timber resources may have contributed to the continuing genetii lack of emphasis in modeling the timber productivity of the South's largest forest...

  5. Managing Water Quality in Wetlands with Foresty BMP's

    Treesearch

    Bob Rummer

    2004-01-01

    Forested wetlands are uniquely critical areas in forest operations that present special challenges to protect water quality. These locations are a direct interface between the impacts of forest operations and water. BMP's are designed to minimize nonpoint source pollution, but much of the science behind current guidelines is based on an understanding of erosion...

  6. 75 FR 75183 - Notice of Proposed Withdrawal and Opportunity for Public Meeting; Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-02

    ... public land adjacent to the Clearwater National Forest from mining to protect the Lenore Tree Improvement...: The Forest Service (FS) has filed an application with the Bureau of Land Management (BLM) requesting... will remain open to mineral leasing and to all activities currently consistent with applicable Forest...

  7. Current adaptation measures and policies

    Treesearch

    Geoff Roberts; John A. Parrotta; Anita Wreford

    2009-01-01

    As stated in earlier chapters, the possible impacts of climate change on forests and the forest sector are considerable, and many impacts have already been observed. As forest conditions change, there is an inherent need to change management and policy measures to minimise negative impacts and to exploit the benefits derived from climate change. This chapter highlights...

  8. Test of localized nanagement for reducing deer browsing in forest regeneration areas

    Treesearch

    Brad F. Miller; Tyler A. Campbell; Ben R. Laseter; W.Mark Ford; Karl V. Miller

    2010-01-01

    White-tailed deer (Odocoileus virginianus) browsing in forest regeneration sites can affect current and future stand structure and species composition. Removal of deer social units (localized management) has been proposed as a strategy to alleviate deer overbrowsing in forest systems. We conducted an experimental localized removal in a high-density...

  9. Mitigating Anthropocene influences in forests in the United States

    Treesearch

    Chadwick Dearing Oliver

    2014-01-01

    Anthropogenic and other climate changes, land use changes, forest structure changes, and introduced organisms are difficult to isolate with respect to their cumulative consequences. Similar changes have occurred before with undesirable effects and the currently high human population could suffer greatly if they happen again. Active forest management can help avoid...

  10. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Treesearch

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  11. Geostatistical Evaluation of Natural Tree Regeneration of a Disturbed Forest

    Treesearch

    José Germán Flores Garnica; David Arturo Moreno Gonzalez; Juan de Dios Benavides Solorio

    2006-01-01

    The implementation of silvicultural strategies in a forest management has to guaranty forest sustainability, which is supported by an adequate regeneration. Therefore, quality and intensity of silvicultural practices is based on an accurate knowledge of the current spatial distribution of regeneration. At the same time, this regeneration is determined by the spatial...

  12. Using wood-based structural products as forest management tools to improve forest health, sustainability and reduce forest fuels : a research program of the USDA Forest Service under the National Fire Plan

    Treesearch

    John F. Hunt; Jerrold E. Winandy

    2002-01-01

    Currently, after logging or thinning operations much of the low value timber is either left standing or is felled and left on the ground, chipped, or burned because most North American mills are not equipped to handle this material. In many areas of Western U.S., this forest residue does not decompose if felled and it soon becomes susceptible to forest insect or...

  13. Forest treatment residues for thermal energy compared with disposal by onsite burning: Emissions and energy return

    Treesearch

    Greg Jones; Dan Loeffler; David Calkin; Woodam Chung

    2010-01-01

    Mill residues from forest industries are the source for most of the current wood-based energy in the US, approximately 2.1% of the nation's energy use in 2007. Forest residues from silvicultural treatments, which include limbs, tops, and small non-commercial trees removed for various forest management objectives, represent an additional source of woody biomass for...

  14. US strategy for forest management adaptation to climate change: building a framework for decision making

    Treesearch

    V. Alaric Sample; Jessica E. Halofsky; David L. Peterson

    2014-01-01

    This paper describes methods developed to (1) assess current risks, vulnerabilities, and gaps in knowledge; (2) engage internal agency resources and external partners in the development of options and solutions; and (3) manage forest resources for resilience, not just in terms of natural ecosystems but in affected human communities as well. We describe an approach...

  15. Tax Tips for Forest Landowners for the 2006 Tax Year

    Treesearch

    Linda Wang; John L. Greene

    2006-01-01

    This bulletin summarizes key federal income tax provisions related to owning and managing forest land. It is current as of December 1, 2006, and supercedes Management Bulletin R8-MB 126. But it is only an introduction. Consult the references for more complete information on the topics, and consult your tax and legal advisers for advice on your particular tax situation...

  16. Sustaining northern red oak forests: managing oak from regeneration to canopy dominance in mature stands

    Treesearch

    Daniel C. Dey; Gary W. Miller; John M. Kabrick

    2008-01-01

    Across the range of northern red oak, managers have problems sustaining current stocking of northern red oak in forests. Oak species are adapted to frequent stand disturbances that reduce the abundance of shade tolerant competitors and control fast-growing pioneer species. A widely recommended approach to regenerating northern red oak is to develop relatively large...

  17. Two-age silviculture on the Monongahela National Forest - managers and scientists assess 17 years of communication

    Treesearch

    Gary Miller; James E. Johnson; John E. Baumgras; R. Gary Bustamente

    1997-01-01

    This report describes the development of two-age silviculture on the Monongahela National Forest and provides an assessment of the practice as it is applied today. Silviculturists at each ranger district provided a chronology of the communication process between managers and scientists that led to current stand treatment prescriptions. In addition, data were collected...

  18. Historical forest patterns of Oregon's central Coast Range

    USGS Publications Warehouse

    Ripple, W.J.; Hershey, K.T.; Anthony, R.G.

    2000-01-01

    To describe the composition and pattern of unmanaged forestland in Oregon's central Coast Range, we analyzed forest conditions from a random sample of 18 prelogging (1949 and earlier) landscapes. We also compared the amount and variability of old forest (conifer-dominated stands > 53 cm dbh) in the prelogging landscapes with that in the current landscapes. Sixty-three percent of the prelogging landscape comprised old forest, approximately 21% of which also had a significant (> 20% cover) hardwood component. The proportions of forest types across the 18 prelogging landscapes varied greatly for both early seral stages (cv = 81194) and hardwoods (cv = 127) and moderately for old forest (cv = 39). With increasing distance from streams, the amount of hardwoods and nonforest decreased, whereas the amount of seedling/sapling/pole and young conifers increased. The amount of old forest was significantly greater (p < 0.002) in prelogging forests than in current landscapes. Old-forest patterns also differed significantly (p < 0.015) between prelogging and current landscapes; patch density, coefficient of variation of patch size, edge density, and fragmentation were greater in current landscapes and mean patch size, largest patch size, and core habitat were greater in prelogging forests. Generally, old-forest landscape pattern variables showed a greater range in prelogging landscapes than in current landscapes. Management strategies designed to increase the amount of old forest and the range in landscape patterns would result in a landscape more closely resembling that found prior to intensive logging. (C) 2000 Elsevier Science Ltd.

  19. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  20. Emerging themes in the ecology and management of North American forests

    USGS Publications Warehouse

    Sharik, Terry L.; Adair, William; Baker, Fred A.; Battaglia, Michael; Comfort, Emily J.; D'Amato, Anthony W.; Delong, Craig; DeRose, R. Justin; Ducey, Mark J.; Harmon, Mark; Levy, Louise; Logan, Jesse A.; O'Brien, Joseph; Palik, Brian J.; Roberts, Scott D.; Rogers, Paul C.; Shinneman, Douglas J.; Spies, Thomas; Taylor, Sarah L.; Woodall, Christopher; Youngblood, Andrew

    2010-01-01

    The 7th North American Forest Ecology Workshop, consisting of 149 presentations in 16 oral sessions and a poster session, reflected a broad range of topical areas currently under investigation in forest ecology and management. There was an overarching emphasis on the role of disturbance, both natural and anthropogenic, in the dynamics of forest ecosystems, and the recognition that legacies from past disturbances strongly influence future trajectories. Climate was invoked as a major driver of ecosystem change. An emphasis was placed on application of research findings for predicting system responses to changing forest management initiatives. Several “needs” emerged from the discussions regarding approaches to the study of forest ecosystems, including (1) consideration of variable spatial and temporal scales, (2) long-term monitoring, (3) development of universal databases more encompassing of time and space to facilitate meta-analyses, (4) combining field studies and modeling approaches, (5) standardizing methods of measurement and assessment, (6) guarding against oversimplification or overgeneralization from limited site-specific results, (7) greater emphasis on plant-animal interactions, and (8) better alignment of needs and communication of results between researchers and managers.

  1. Geomorphology and forest management in New Zealand's erodible steeplands: An overview

    NASA Astrophysics Data System (ADS)

    Phillips, Chris; Marden, Michael; Basher, Les R.

    2018-04-01

    In this paper we outline how geomorphological understanding has underpinned forest management in New Zealand's erodible steeplands, where it contributes to current forest management, and suggest where it will be of value in the future. We focus on the highly erodible soft-rock hill country of the East Coast region of North Island, but cover other parts of New Zealand where appropriate. We conclude that forestry will continue to make a significant contribution to New Zealand's economy, but several issues need to be addressed. The most pressing concerns are the incidence of post-harvest, storm-initiated landslides and debris flows arising from steepland forests following timber harvesting. There are three areas where geomorphological information and understanding are required to support the forest industry - development of an improved national erosion susceptibility classification to support a new national standard for plantation forestry; terrain analysis to support improved hazard and risk assessment at detailed operational scales; and understanding of post-harvest shallow landslide-debris flows, including their prediction and management.

  2. Comparing effects of climate warming, fire, and timber harvesting on a boreal forest landscape in northeastern China.

    PubMed

    Li, Xiaona; He, Hong S; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1-40 years), early stage (41-80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest.

  3. Climate and Management Controls on Forest Growth and Forest Carbon Balance in the Western United States

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine Cashman

    Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both current and future changes in forest carbon balance as a consequence of climate change and forest management in the western US.

  4. Current challenges and realities for forest-based businesses adjacent to public lands in the United States

    Treesearch

    Emily J. Davis; Jesse Abrams; Eric M. White; Cassandra Moseley

    2018-01-01

    Through contracting and timber sales, the private sector is engaged in management of national forest lands and local community economies in the United States. But there is little recent research about current relationships between these lands and timber purchasers that could better inform future timber and biomass sale and business assistance policies and programs. We...

  5. Current Status and Trends in Timber Severence Tax Legislation in the South

    Treesearch

    Terry K. Haines

    1995-01-01

    Severance tax programs currently exist in eight States in the South. These laws have been enacted primarily to encourage better forest management and to provide revenues for a variety of forestry initiatives. In most States, either the severer or the primary processor of forest products is designated as the taxpayer. Severance tax rates are established as either: (1) a...

  6. NASA LCLUC Program: An Integrated Forest Monitoring System for Central Africa

    NASA Technical Reports Server (NTRS)

    Laporte, Nadine; LeMoigne, Jacqueline; Elkan, Paul; Desmet, Olivier; Paget, Dominique; Pumptre, Andrew; Gouala, Patrice; Honzack, Miro; Maisels, Fiona

    2004-01-01

    Central Africa has the second largest unfragmented block of tropical rain forest in the world; it is also one of the largest carbon and biodiversity reservoirs. With nearly one-third of the forest currently allocated for logging, the region is poised to undergo extensive land-use change. Through the mapping of the forests, our Integrated Forest Monitoring System for Central Africa (INFORMS) project aims to monitor habitat alteration, support biodiversity conservation, and promote better land-use planning and forest management. Designed as an interdisciplinary project, its goal is to integrate data acquired from satellites with field observations from forest inventories, wildlife surveys, and socio-economic studies to map and monitor forest resources. This project also emphasizes on collaboration and coordination with international, regional, national, and local partners-including non-profit, governmental, and commercial sectors. This project has been focused on developing remote sensing products for the needs of forest conservation and management, insuring that research findings are incorporated in forest management plans at the national level. The societal impact of INFORMS can be also appreciated through the development of a regional remote sensing network in central Africa. With a regional office in Kinshasa, (www.OSFAC.org), the contribution to the development of forest management plans for 1.5 million hectares of forests in northern Republic of Congo (www.tt-timber.com), and the monitoring of park encroachments in the Albertine region (Uganda and DRC) (www.albertinerift.org).

  7. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  8. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina

    Treesearch

    J.W. Campbell; J.L. Hanula; T.A. Waldrop

    2007-01-01

    Pollination by insects in forests is an extremely important process that should be conserved. Not only do pollinating insects help to maintain a diversity of plants within forests, but they also aid in pollinating crops found near forested land. Currently, the effects of various forest management practices on floral visiting insect abundance or diversity is unknown, so...

  9. Caspar Creek watershed study--a current status report

    Treesearch

    F. B. Tilley; R. M. Rice

    1977-01-01

    For 16 years Jackson State Forest, managed by the California Department of Forestry, has been the site of a comprehensive watershed experiment. This experiment, on Caspar Creek five miles south of Fort Bragg on the Mendocino coast, is a cooperative project between the California Department of Forestry and the U. S. Forest Service Pacific Southwest Forest and Range...

  10. Special Forest Products: A Southern Strategy for Research & Technology Transfer

    Treesearch

    Rod Sallee; Wayne Owen; Karen Kenna; Gary Kauffman; Marla Emery; Tony Johnson; Phil Araman; Dan Stratton; Ray Sheffield; Vic Rudis; Susan Loeb; David White; Jim Chamberlain

    2004-01-01

    Increasing levels of collection of special forest products (SFPs) have tirggered concerns about the long-term social, ecological, and economic sustainability of the resources from which these products orginate. At this time, there is too little information to assess the current situation and to make informed decisions about managing the forest resources for these...

  11. The invasion of southern forests by nonnative plants: current and future occupation, with impacts, management strategies, and mitigation approaches

    Treesearch

    James H. Miller; Dawn Lemke; John Coulston

    2013-01-01

    Key FindingsInvasive plants continue to escape into and spread through southern forests to eventually form exclusive infestations, and replace native communities to the detriment of forest productivity, biodiversity, ecosystem services, and human use potential.Over a 300-year period, invasive plants have been increasingly...

  12. Financial and ecological indicators of reduced impact logging performance in the eastern Amazon

    Treesearch

    Thomas P. Holmes; Geoffrey M. Blate; Johan C. Zweede; Rodrigo Pereira; Paulo Barreto; Frederick Boltz; Roberto Bauch

    2002-01-01

    Reduced impact logging (RIL) systems are currently being promoted in Brazil and other tropical countries in response to domestic and international concern over the ecological and economic sustainability of harvesting natural tropical forests. RIL systems are necessary, but not sufficient, for sustainable forest management because they reduce damage to the forest...

  13. Influence of forest structure on the abundance of snowshoe hares in western Wyoming

    Treesearch

    Nathan D. Berg; Eric M. Gese; John R. Squires; Lise M. Aubry

    2012-01-01

    Snowshoe hares (Lepus americanus) are a primary prey species for Canada lynx (Lynx canadensis) in western North America. Lynx management plans require knowledge of potential prey distribution and abundance in the western United States. Whether even-aged regenerating forests or multi-storied forests contain more snowshoe hares is currently unknown. During 2006-...

  14. Dead and lying trees: essential for life in the forest.

    Treesearch

    Sally Duncan

    1999-01-01

    Twenty years after publication of a report on wildlife habitat in managed east-side forests, Pacific Northwest Research Station scientists Evelyn Bull, Catherine Parks, and Torolf Torgersen, are updating that report and discovering that the current direction for providing wildlife habitat on public forest lands does not reflect findings from research since 1979. More...

  15. Assessing pathogen and insect succession functions in forest ecosystems

    Treesearch

    Susan K. Hagle; Sandra J. Kegley; Stephen B. Williams

    1995-01-01

    The pilot test of a method to assess the ecological function of pathogens and insects in forests is reported. The analysis is a practical application of current ecosystem management theory.The influences of pathogens and insects on forest succession are measured by relating successional transition rates and types to conditions for pathogen and insect activities which...

  16. Tax Tips for Forest Landowners for the 2012 Tax Year

    Treesearch

    Linda Wang; John L. Greene

    2012-01-01

    Federal income tax law contains provisions to encourage stewardship and management of private forest land. The primary goal of this bulletin is to assist forest landowners and their advisors with timber tax information they can use to file their 2012 in-come tax returns. The information presented here is current as of Sept. 15, 2012.

  17. Interim definitions for old growth Douglas-fir and mixed-conifer forests in the Pacific Northwest and California.

    Treesearch

    J.F. Franklin; F. Hall; W. Laudenslayer; C. Maser; J. Nunan; J. Poppino; C.J. Ralph; T. Spies

    1986-01-01

    Interim definitions of old-growth forests are provided to guide efforts in land-management planning until comprehensive definitions based on research that is currently underway can be formulated. The basic criteria for identifying old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and mixed-conifer forests in western Washington and...

  18. Values, beliefs, and attitudes technical guide for Forest Service land and resource management, planning, and decision-making

    Treesearch

    Stewart D. Allen; Denise A. Wickwar; Fred P. Clark; Robert R. Dow; Robert Potts; Stephanie A. Snyder

    2009-01-01

    In recent years, the Forest Service and the public have placed increasing priority on making sure that management of public lands takes into account the needs of nearby communities, regional residents, national residents, and even members of the public who may not currently visit public lands. As awareness and commitment to this wide range of stakeholders grows, so...

  19. Optimal uneven-aged stocking guides: an application to spruce-fir stands in New England

    Treesearch

    Jeffrey H. Gove; Mark J. Ducey

    2014-01-01

    Management guides for uneven-aged forest stands periodically need to be revisited and updated based on new information and methods. The current silvicultural guide for uneven-aged spruce-fir management in Maine and the northeast (Frank, R.M. and Bjorkbom, J.C. 1973 A silvicultural guide for spruce-fir in the northeast. General Technical Report NE-6, Forest Service. U.S...

  20. Understanding the effects of fire management practices on forest health: implications for weeds and vegetation structure

    Treesearch

    Anne E. Black; Peter Landres

    2012-01-01

    Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA Forest Service and U.S. Department of the Interior 2000). Yet some fire management (such as building fire line, spike camps, or helispots) potentially causes both short- and longterm...

  1. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Treesearch

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  2. Saproxylic and non-saproxylic beetle assemblages in boreal spruce forests of different age and forestry intensity.

    PubMed

    Stenbacka, Fredrik; Hjältén, Joakim; Hilszczański, Jacek; Dynesius, Mats

    2010-12-01

    Current clear-cutting forestry practices affect many boreal organisms negatively, and those dependent on dead wood (saproxylics) are considered as particularly vulnerable. The succession of species assemblages in managed forest habitats regenerating after clear-cutting is, however, poorly known. We compared beetle assemblages in three successional stages of managed boreal spruce forests established after clear-cutting and two types of older spruce forests that had not been clear-cut. We also assessed whether saproxylic and non-saproxylic beetle assemblages show similar biodiversity patterns among these forest types. Beetles were collected in window traps in nine study areas, each encompassing a protected old-growth forest (mean forest age approximately 160 years, mean dead wood volume 34 m3/ha), an unprotected mature forest (approximately 120 years old, 15 m3/ha), a middle-aged commercially thinned forest (53 years old, 3 m3/ha), a young unthinned forest (30 years old, 4 m3/ha), and a clearcut (5-7 years after harvest, 11 m3/ha). Saproxylic beetles, in particular red-listed species, were more abundant and more species rich in older forest types, whereas no significant differences among forest types in these variables were detected for non-saproxylics. The saproxylic assemblages were clearly differentiated; with increasing forest age, assemblage compositions gradually became more similar to those of protected old-growth forests, but the assemblage composition in thinned forests could not be statistically distinguished from those of the two oldest forest types. Many saproxylic beetles adapted to late-successional stages were present in thinned middle-aged forests but absent from younger unthinned forests. In contrast, non-saproxylics were generally more evenly distributed among the five forest types, and the assemblages were mainly differentiated between clearcuts and forested habitats. The saproxylic beetle assemblages of unprotected mature forests were very similar to those of protected old-growth forests. This indicates a relatively high conservation value of mature boreal forests currently subjected to clear-cutting and raises the question of whether future mature forests will have the same qualities. Our results suggest a high beetle conservation potential of developing managed forests, provided that sufficient amounts and qualities of dead wood are made available (e.g., during thinning operations). Confirming studies of beetle reproduction in dead wood introduced during thinning are, however, lacking.

  3. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    PubMed Central

    Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.

    2017-01-01

    Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288

  4. Projecting treatment opportunities for current Minnesota forest conditions.

    Treesearch

    W. Brad Smith; Pamela J. Jakes

    1981-01-01

    Reviews opportunities for treatment of timber stands in Minnesota for the decade of 1977-1986. Under the assumptions and management guides specified, 27% of Minnesota's commercial forest land would require timber harvest or some other form of treatment during the decade.

  5. A synthesis of current knowledge on forests and carbon storage in the United States.

    PubMed

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.

  6. Operational approaches to managing forests of the future in Mediterranean regions within a context of changing climates

    NASA Astrophysics Data System (ADS)

    Stephens, Scott L.; Millar, Constance I.; Collins, Brandon M.

    2010-04-01

    Many US forest managers have used historical ecology information to assist in the development of desired conditions. While there are many important lessons to learn from the past, we believe that we cannot rely on past forest conditions to provide us with blueprints for future management. To respond to this uncertainty, managers will be challenged to integrate adaptation strategies into plans in response to changing climates. Adaptive strategies include resistance options, resilience options, response options, and realignment options. Our objectives are to present ideas that could be useful in developing plans under changing climates that could be applicable to forests with Mediterranean climates. We believe that managing for species persistence at the broad ecoregion scale is the most appropriate goal when considering the effects of changing climates. Such a goal relaxes expectations that current species ranges will remain constant, or that population abundances, distribution, species compositions and dominances should remain stable. Allowing fundamental ecosystem processes to operate within forested landscapes will be critical. Management and political institutions will have to acknowledge and embrace uncertainty in the future since we are moving into a time period with few analogs and inevitably, there will be surprises.

  7. Using canonical correlation analysis to identify environmental attitude groups: considerations for national forest planning in the southwestern U.S.

    PubMed

    Prera, Alejandro J; Grimsrud, Kristine M; Thacher, Jennifer A; McCollum, Dan W; Berrens, Robert P

    2014-10-01

    As public land management agencies pursue region-specific resource management plans, with meaningful consideration of public attitudes and values, there is a need to characterize the complex mix of environmental attitudes in a diverse population. The contribution of this investigation is to make use of a unique household, mail/internet survey data set collected in 2007 in the Southwestern United States (Region 3 of the U.S. Forest Service). With over 5,800 survey responses to a set of 25 Public Land Value statements, canonical correlation analysis is able to identify 7 statistically distinct environmental attitudinal groups. We also examine the effect of expected changes in regional demographics on overall environmental attitudes, which may help guide in the development of socially acceptable long-term forest management policies. Results show significant support for conservationist management policies and passive environmental values, as well as a greater role for stakeholder groups in generating consensus for current and future forest management policies.

  8. Forest carbon sink: A potential forest investment

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng; Zhang, Yi; Cheng, Dongxiang

    2017-01-01

    A major problem being confronted to our human society currently is that the global temperature is undoubtedly considered to be rising significantly year by year due to abundant human factors releasing carbon dioxide to around atmosphere. The problem of increasing atmospheric carbon dioxide can be addressed in a number of ways. One of these is forestry and forest management. Hence, this paper investigates a number of current issues related to mitigating the global warming problem from the point of forestry view previous to discussion on ongoing real-world activities utilizing forestry specifically to sequester carbon.

  9. Projections of timber harvest in western Oregon and Washington by county, owner, forest type, and age class.

    Treesearch

    Xiaoping Zhou; Richard W. Haynes; R. James. Barbour

    2005-01-01

    The Pacific Northwest forest resource is highly dynamic. Expected changes over the next 50 years will greatly challenge some current perceptions of resource managers and various stakeholders. This report describes the current and expected future timberland conditions of western Oregon and Washington and presents the results at the county level. About 50 percent of the...

  10. Applications of turbidity monitoring to forest management in California.

    PubMed

    Harris, Richard R; Sullivan, Kathleen; Cafferata, Peter H; Munn, John R; Faucher, Kevin M

    2007-09-01

    Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.

  11. The Rise and Fall of Traditional Forest Management in Southern Moravia: A History of the Past 700 Years

    PubMed Central

    Müllerová, Jana; Szabó, Péter; Hédl, Radim

    2017-01-01

    European broadleaved forests have been influenced by humans for centuries. Historical management practices are related to environmental conditions but the role of socio-economic factors is also important. For the successful restoration of traditional management for conservation purposes, detailed knowledge on management history and on the driving forces of historical forest changes is necessary. In order to reconstruct long-term spatio-temporal dynamics in forest management, we chose the Pálava Protected Landscape Area, Czech Republic and analyzed archival sources spanning the past seven centuries. Forests in the study area comprise two relatively large woods (Děvín and Milovice) with different environmental conditions. Historical forest management in both woods was coppicing. The coppice cycle was lengthened from 7 years (14th century) to more than 30 years (19th century) with a fluctuating density of standards. After WWII, coppicing was completely abandoned. This led to pronounced changes in forest age structure accompanied by stand unification indicated by a sharp decrease in the Shannon index of age diversity. To study local attributes responsible for spatial patterns in coppice abandonment, we constructed a regression model with the date of abandonment as a dependent variable and three groups of explanatory variables: i) remoteness of forest parcels, (ii) morphometric environmental factors and iii) site productivity. In Děvín Wood, coppicing was abandoned gradually with the pattern of abandonment related significantly to slope steepness and forest productivity. Poorly accessible upper slopes and low productive forest sites were abandoned earlier. By contrast, in Milovice Wood, where no clear topographic gradient is present, the abandonment of coppicing was not related to any of the variables we studied. Our study brings insights into the history and consequences of past management practices, and can be used in current attempts to re-establish coppice management for conservation purposes and as a source of sustainable energy. PMID:28529404

  12. Future Wildfire and Managed Fire Interactions in the Lake Tahoe Basin

    NASA Astrophysics Data System (ADS)

    Scheller, R.; Kretchun, A.

    2017-12-01

    Managing large forested landscape in the context of a changing climate and altered disturbance regimes presents new challenges and require integrated assessments of forest disturbance, management, succession, and the carbon cycle. Successful management under these circumstances will require information about trade-offs among multiple objectives and opportunities for spatially optimized landscape-scale management. Improved information about the effects of climate on forest communities, disturbance feedbacks, and the effectiveness of mitigation strategies enables actionable options for landscape managers. We evaluated the effects of fire suppression, wildfires, and forest fuel (thinning) treatments on the long-term carbon storage potential for Lake Tahoe Basin (LTB) forests under various climate futures. We simulated management scenarios that encompass fuel treatments across the larger landscape, beyond the Wildland Urban Interface. We improved upon current fire modeling under climate change via an integrated fire modeling module that, a) explicitly captures the influence of climate, fuels, topography, active fire management (e.g., fire suppression), and fuel treatments, and b) can be parameterized from available data, e.g., remote sensing, field reporting, fire databases, expert opinion. These improvements increase geographic flexibility and decrease reliance on broad historical fire regime statistics - imperfect targets for a no analog future and require minimal parameterization and calibration. We assessed the interactions among fuel treatments, prescribe fire, fire suppression, and stochastically recurring wildfires. Predicted changes in climate and ignition patterns in response to future climatic conditions, vegetation dynamics, and fuel treatments indicate larger potential long-term effects on C emissions, forest structure, and forest composition than prior studies.

  13. Shrub removal in reforested post-fire areas increases native plant species richness

    Treesearch

    Gabrielle N. Bohlman; Malcolm North; Hugh D. Safford

    2016-01-01

    Large, high severity fires are becoming more prevalent in Sierra Nevada mixed-conifer forests, largely due to heavy fuel loading and forest densification caused by past and current management practices. In post-fire areas distant from seed trees, conifers are often planted to re-establish a forest and to prevent a potential type-conversion to shrub fields. Typical...

  14. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools

    Treesearch

    Carl P.J. Mitchell; Randall K. Kolka; Shawn Fraver

    2012-01-01

    A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...

  15. Chapter 17: Forecasting wildfire suppression expenditures for the United States Forest Service

    Treesearch

    Karen L. Abt; Jeffrey P. Prestemon; Krista Gebert

    2008-01-01

    The wildland fire management organization of the United States Forest Service (USFS) operates under policy and budget legacies that began nearly 100 years ago and a forest fuel situation that is all too current. The confluence of these three factors contributes to increased burning and fire fighting costs for the agency, and increased concern from both the U.S....

  16. Forecasting wildfire suppression expenditures for the United States Forest Service

    Treesearch

    Karen L. Abt; Jeffrey P. Prestemon; Krista Gebert

    2008-01-01

    The wildland fire management organization of the United States Forest Service (USFS) operates under policy and budget legacies that began nearly -100 years ago and a forest fuel situation that is all too current. The confluence of these three factors contributes to increased burning and firefighting costs for the agency, and increased concern from both the U.S....

  17. Potential effects of forest policies on terrestrial biodiversity in a multiownership province.

    Treesearch

    T.A. Spies; B.C. McComb; R. Kennedy; M.T. McGrath; K. Olsen; R.J. Pabst

    2007-01-01

    We used spatial simulation models to evaluate how current and two alternative policies might affect potential biodiversity over 100 years in the Coast Ranges Physiographic Province of Oregon. This 2.3-million-ha province is characterized by a diversity of public and private forest owners, and a wide range of forest policy and management objectives. We evaluated habitat...

  18. An alternative incentive structure for wildfire management on national forest land.

    Treesearch

    Geoffrey H. Donovan; Thomas C. Brown

    2005-01-01

    Wildfire suppression expenditures on national forest land have increased over the last 35 years, exceeding US $l billion in 2000 and 2002. These increases in expenditure have been attributed, in part, to a century of aggressive wildfire suppression, resulting in a buildup of fuel on the nation's forests. The efficiency of the current incentive structure faced by...

  19. A synthesis of current knowledge on forests and carbon storage in the United States

    Treesearch

    Duncan C. McKinley; Michael G. Ryan; Richard A. Birdsey; Christian P. Giardina; Mark E. Harmon; Linda S. Heath; Richard A. Houghton; Robert B. Jackson; James F. Morrison; Brian C. Murray; Diane E. Pataki; Kenneth E. Skog

    2011-01-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in...

  20. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States

    Treesearch

    Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D' Amato

    2015-01-01

    Background: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using...

  1. Nontimber forest products in the United States: Montreal Process indicators as measures of current conditions and sustainability

    Treesearch

    Susan J. Alexander; Sonja N. Oswalt; Marla R. Emery

    2011-01-01

    The United States, in partnership with 11 other countries, participates in the Montreal Process. Each country assesses national progress toward the sustainable management of forest resources by using a set of criteria and indicators agreed on by all member countries. Several indicators focus on nontimber forest products (NTFPs). In the United States, permit and...

  2. Water resource use and management by the United States forest products industry.

    PubMed

    Wiegand, P S; Flinders, C A; Ice, G G; Malmberg, B J; Fisher, R P

    2009-01-01

    The connections between forest products operations and water resources in the United States is considered and, where possible, quantified. Manufacture of wood, pulp, and paper products and the influences of forest management and forest products manufacture on water quality are discussed. Most fresh water in the US originates in forested areas. Responsible harvesting strategies, best management practices, and forest re-growth combine to minimize or eliminate changes in water availability and degradation of water quality due to harvesting. Relative to alternative land uses and large-scale disturbance events, forested areas produce the highest quality of fresh water. Water inputs for the manufacture of forest products total about 5.8 billion m(3) per year, an amount equal about 0.4% of the surface and groundwater yield from timberland. Approximately 88% of water used in manufacturing is treated and returned directly to surface waters, about 11% is converted to water vapor and released during the manufacturing process, and 1% is imparted to products or solid residuals. Extensive study and continued monitoring of treated effluents suggest few or no concerns regarding the compatibility of current effluents with healthy aquatic systems.

  3. Scaling Forest Management Practices in Earth System Models: Case Study of Southeast and Pacific Northwest Forests

    NASA Astrophysics Data System (ADS)

    Pourmokhtarian, A.; Becknell, J. M.; Hall, J.; Desai, A. R.; Boring, L. R.; Duffy, P.; Staudhammer, C. L.; Starr, G.; Dietze, M.

    2014-12-01

    A wide array of human-induced disturbances can alter the structure and function of forests, including climate change, disturbance and management. While there have been numerous studies on climate change impacts on forests, interactions of management with changing climate and natural disturbance are poorly studied. Forecasts of the range of plausible responses of forests to climate change and management are need for informed decision making on new management approaches under changing climate, as well as adaptation strategies for coming decades. Terrestrial biosphere models (TBMs) provide an excellent opportunity to investigate and assess simultaneous responses of terrestrial ecosystems to climatic perturbations and management across multiple spatio-temporal scales, but currently do not represent a wide array of management activities known to impact carbon, water, surface energy fluxes, and biodiversity. The Ecosystem Demography model 2 (ED2) incorporates non-linear impacts of fine-scale (~10-1 km) heterogeneity in ecosystem structure both horizontally and vertically at a plant level. Therefore it is an ideal candidate to incorporate different forest management practices and test various hypotheses under changing climate and across various spatial scales. The management practices that we implemented were: clear-cut, conversion, planting, partial harvest, low intensity fire, restoration, salvage, and herbicide. The results were validated against observed data across 8 different sites in the U.S. Southeast (Duke Forest, Joseph Jones Ecological Research Center, North Carolina Loblolly Pine, and Ordway-Swisher Biological Station) and Pacific Northwest (Metolius Research Natural Area, H.J. Andrews Experimental Forest, Wind River Field Station, and Mount Rainier National Park). These sites differ in regards to climate, vegetation, soil, and historical land disturbance as well as management approaches. Results showed that different management practices could successfully and realistically be implemented in the ED2 model at a site level. Moreover, sensitivity analyses determined the most important processes at different spatial scales, and also those which could be ignored while minimizing overall error.

  4. Comparing Effects of Climate Warming, Fire, and Timber Harvesting on a Boreal Forest Landscape in Northeastern China

    PubMed Central

    Li, Xiaona; He, Hong S.; Wu, Zhiwei; Liang, Yu; Schneiderman, Jeffrey E.

    2013-01-01

    Forest management under a changing climate requires assessing the effects of climate warming and disturbance on the composition, age structure, and spatial patterns of tree species. We investigated these effects on a boreal forest in northeastern China using a factorial experimental design and simulation modeling. We used a spatially explicit forest landscape model (LANDIS) to evaluate the effects of three independent variables: climate (current and expected future), fire regime (current and increased fire), and timber harvesting (no harvest and legal harvest). Simulations indicate that this forested landscape would be significantly impacted under a changing climate. Climate warming would significantly increase the abundance of most trees, especially broadleaf species (aspen, poplar, and willow). However, climate warming would have less impact on the abundance of conifers, diversity of forest age structure, and variation in spatial landscape structure than burning and harvesting. Burning was the predominant influence in the abundance of conifers except larch and the abundance of trees in mid-stage. Harvesting impacts were greatest for the abundance of larch and birch, and the abundance of trees during establishment stage (1–40 years), early stage (41–80 years) and old- growth stage (>180 years). Disturbance by timber harvesting and burning may significantly alter forest ecosystem dynamics by increasing forest fragmentation and decreasing forest diversity. Results from the simulations provide insight into the long term management of this boreal forest. PMID:23573209

  5. Modeling Forest Management Strategies for Hydrological Climate Change Adaptation in the upper Columbia

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Sun, N.; Wigmosta, M. S.; Hessburg, P. F., Sr.; Coleman, A. M.; Salter, B.

    2017-12-01

    Management of forest lands in the Upper Columbia River basin is necessary to ensure the sustainability of natural ecosystems and enhance protection and recovery of fish and wildlife populations. By 2030, summertime surface water demand is expected to significantly exceed supply in most years in many Upper Columbia tributaries; in some years, a portion of these tributaries will exceed supply even outside the summer months. Forest restoration (i.e., timber harvest, prescribed burning, thinning) reduces canopy cover and, subsequently, has been shown in many cases to increase snow accumulation and total runoff volume. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) to predict hydrologic properties and changes associated with realistic forest restoration scenarios prescribed in high spatial detail (90 m) within snow-dominated watersheds of the upper Columbia under current and future climate conditions. We consider changes in hydrological processes related to snowpack, stream discharge, and water temperature. Model results suggest forest restoration will impact annual water yield under both current and future climate conditions and the impact of forest restoration on the timing of snowmelt and streamflow varies from year to year and is highly dependent on local meteorological conditions and particular forest restoration scenarios. Corresponding changes in water temperature will also be discussed.

  6. Timber production assessment of a plantation forest: An integrated framework with field-based inventory, multi-source remote sensing data and forest management history

    NASA Astrophysics Data System (ADS)

    Gao, Tian; Zhu, Jiaojun; Deng, Songqiu; Zheng, Xiao; Zhang, Jinxin; Shang, Guiduo; Huang, Liyan

    2016-10-01

    Timber production is the purpose for managing plantation forests, and its spatial and quantitative information is critical for advising management strategies. Previous studies have focused on growing stock volume (GSV), which represents the current potential of timber production, yet few studies have investigated historical process-harvested timber. This resulted in a gap in a synthetical ecosystem service assessment of timber production. In this paper, we established a Management Process-based Timber production (MPT) framework to integrate the current GSV and the harvested timber derived from historical logging regimes, trying to synthetically assess timber production for a historical period. In the MPT framework, age-class and current GSV determine the times of historical thinning and the corresponding harvested timber, by using a ;space-for-time; substitution. The total timber production can be estimated by the historical harvested timber in each thinning and the current GSV. To test this MPT framework, an empirical study on a larch plantation (LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current GSV of LP. The random forest model with PALSAR backscatter intensity channels and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa coefficient of 0.59 for age-class classification. The regression model using PALSAR data produced a root mean square error (RMSE) of 36.5 m3 ha-1. The total timber production of LP was estimated to be 7.27 × 106 m3, with 4.87 × 106 m3 in current GSV and 2.40 × 106 m3 in harvested timber through historical thinning. The historical process-harvested timber accounts to 33.0% of the total timber production, which component has been neglected in the assessments for current status of plantation forests. Synthetically considering the RMSE for predictive GSV and misclassification of age-class, the error in timber production were supposed to range from -55.2 to 56.3 m3 ha-1. The MPT framework can be used to assess timber production of other tree species at a larger spatial scale, providing crucial information for a better understanding of forest ecosystem service.

  7. Adapting land management to emergence of novel site conditions on the continental lowlands of SE Europe

    NASA Astrophysics Data System (ADS)

    Mátyás, Csaba; Berki, Imre; Bidlo, Andras; Czimber, Kornel.; Gálos, Borbala; Gribovszki, Zoltan; Lakatos, Ferenc; Borovics, Attila; Csóka, György; Führer, Ernő; Illés, Gábor; Rasztovits, Ervin; Somogyi, Zoltán; Bartholy, Judit

    2017-04-01

    The rapid progress of site potential change, caused by the shift of climate zones is a serious problem of lowland management in Southeast Europe. In forestry, the resilience potential of main, climate-dependent tree species (e.g. spruce, beech, sessile oak) and ecosystems is limited at their lower (xeric) limits of distribution. A conventional mitigation measure for adaptive forest management is the return to nature-close management. Severe drought- and biotic impacts in forests indicate however the urgency of fundamental changes in forest policy. To provide assistance in selecting climate-tolerant provenances, species and adaptive technologies for future site conditions is therefore critical. A simplified Decision Support System has been developed for Hungary, keeping conventional elements of site potential assessment. Projections are specified for discrete site types. Processing forest inventory, landcover and geodata, the System provides GIS-supported site information and projections for individual forest compartments, options for tree species better tolerating future climate scenarios as well as their expected yield and risks. Data respectively projections are available for recent and current conditions, and for future reference periods until 2100. Also non-forest site conditions in the novel grassland (steppe) climate zone appear in projections. Experiences for proper management on these sites are however scarce.

  8. A decision support system for managing forest fire casualties.

    PubMed

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.

  9. China's Classification-Based Forest Management: Procedures, Problems, and Prospects

    NASA Astrophysics Data System (ADS)

    Dai, Limin; Zhao, Fuqiang; Shao, Guofan; Zhou, Li; Tang, Lina

    2009-06-01

    China’s new Classification-Based Forest Management (CFM) is a two-class system, including Commodity Forest (CoF) and Ecological Welfare Forest (EWF) lands, so named according to differences in their distinct functions and services. The purposes of CFM are to improve forestry economic systems, strengthen resource management in a market economy, ease the conflicts between wood demands and public welfare, and meet the diversified needs for forest services in China. The formative process of China’s CFM has involved a series of trials and revisions. China’s central government accelerated the reform of CFM in the year 2000 and completed the final version in 2003. CFM was implemented at the provincial level with the aid of subsidies from the central government. About a quarter of the forestland in China was approved as National EWF lands by the State Forestry Administration in 2006 and 2007. Logging is prohibited on National EWF lands, and their landowners or managers receive subsidies of about 70 RMB (US10) per hectare from the central government. CFM represents a new forestry strategy in China and its implementation inevitably faces challenges in promoting the understanding of forest ecological services, generalizing nationwide criteria for identifying EWF and CoF lands, setting up forest-specific compensation mechanisms for ecological benefits, enhancing the knowledge of administrators and the general public about CFM, and sustaining EWF lands under China’s current forestland tenure system. CFM does, however, offer a viable pathway toward sustainable forest management in China.

  10. 78 FR 17183 - Information Collection: Grey Towers Visitor Comment Card

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Information Collection: Grey Towers Visitor Comment Card... request: (1) An extension from the Office of Management and Budget; and (2) to merge the currently approved information collection 0596- 0222, ``Grey Towers Visitor Comment Card'' with 0596-0226, ``Forest...

  11. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  12. Semantic World Modelling and Data Management in a 4d Forest Simulation and Information System

    NASA Astrophysics Data System (ADS)

    Roßmann, J.; Hoppen, M.; Bücken, A.

    2013-08-01

    Various types of 3D simulation applications benefit from realistic forest models. They range from flight simulators for entertainment to harvester simulators for training and tree growth simulations for research and planning. Our 4D forest simulation and information system integrates the necessary methods for data extraction, modelling and management. Using modern methods of semantic world modelling, tree data can efficiently be extracted from remote sensing data. The derived forest models contain position, height, crown volume, type and diameter of each tree. This data is modelled using GML-based data models to assure compatibility and exchangeability. A flexible approach for database synchronization is used to manage the data and provide caching, persistence, a central communication hub for change distribution, and a versioning mechanism. Combining various simulation techniques and data versioning, the 4D forest simulation and information system can provide applications with "both directions" of the fourth dimension. Our paper outlines the current state, new developments, and integration of tree extraction, data modelling, and data management. It also shows several applications realized with the system.

  13. Bringing Together Users and Developers of Forest Biomass Maps

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Macauley, Molly

    2011-01-01

    Forests store carbon and thus represent important sinks for atmospheric carbon dioxide. Reducing uncertainty in current estimates of the amount of carbon in standing forests will improve precision of estimates of anthropogenic contributions to carbon dioxide in the atmosphere due to deforestation. Although satellite remote sensing has long been an important tool for mapping land cover, until recently aboveground forest biomass estimates have relied mostly on systematic ground sampling of forests. In alignment with fiscal year 2010 congressional direction, NASA has initiated work toward a carbon monitoring system (CMS) that includes both maps of forest biomass and total carbon flux estimates. A goal of the project is to ensure that the products are useful to a wide community of scientists, managers, and policy makers, as well as to carbon cycle scientists. Understanding the needs and requirements of these data users is helpful not just to the NASA CMS program but also to the entire community working on carbon-related activities. To that end, this meeting brought together a small group of natural resource managers and policy makers who use information on forests in their work with NASA scientists who are working to create aboveground forest biomass maps. These maps, derived from combining remote sensing and ground plots, aim to be more accurate than current inventory approaches when applied at local and regional scales.

  14. Application of China's National Forest Continuous Inventory database.

    PubMed

    Xie, Xiaokui; Wang, Qingli; Dai, Limin; Su, Dongkai; Wang, Xinchuang; Qi, Guang; Ye, Yujing

    2011-12-01

    The maintenance of a timely, reliable and accurate spatial database on current forest ecosystem conditions and changes is essential to characterize and assess forest resources and support sustainable forest management. Information for such a database can be obtained only through a continuous forest inventory. The National Forest Continuous Inventory (NFCI) is the first level of China's three-tiered inventory system. The NFCI is administered by the State Forestry Administration; data are acquired by five inventory institutions around the country. Several important components of the database include land type, forest classification and ageclass/ age-group. The NFCI database in China is constructed based on 5-year inventory periods, resulting in some of the data not being timely when reports are issued. To address this problem, a forest growth simulation model has been developed to update the database for years between the periodic inventories. In order to aid in forest plan design and management, a three-dimensional virtual reality system of forest landscapes for selected units in the database (compartment or sub-compartment) has also been developed based on Virtual Reality Modeling Language. In addition, a transparent internet publishing system for a spatial database based on open source WebGIS (UMN Map Server) has been designed and utilized to enhance public understanding and encourage free participation of interested parties in the development, implementation, and planning of sustainable forest management.

  15. Assessing the effects of management on forest growth across France: insights from a new functional-structural model.

    PubMed

    Guillemot, Joannès; Delpierre, Nicolas; Vallet, Patrick; François, Christophe; Martin-StPaul, Nicolas K; Soudani, Kamel; Nicolas, Manuel; Badeau, Vincent; Dufrêne, Eric

    2014-09-01

    The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.

  16. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    NASA Astrophysics Data System (ADS)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  17. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    PubMed

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  18. Reconciling certification and intact forest landscape conservation.

    PubMed

    Kleinschroth, Fritz; Garcia, Claude; Ghazoul, Jaboury

    2018-05-29

    In 2014, the Forest Stewardship Council (FSC) added a new criterion to its principles that requires protection of intact forest landscapes (IFLs). An IFL is an extensive area of forest that lacks roads and other signs of human activity as detected through remote sensing. In the Congo basin, our analysis of road networks in formally approved concessionary logging areas revealed greater loss of IFL in certified than in noncertified concessions. In areas of informal (i.e., nonregulated) extraction, road networks are known to be less detectable by remote sensing. Under the current definition of IFL, companies certified under FSC standards are likely to be penalized relative to the noncertified as well as the informal logging sector on account of their planned road networks, despite an otherwise better standard of forest management. This could ultimately undermine certification and its wider adoption, with implications for the future of sustainable forest management.

  19. The Kyoto Protocol and forestry practices in the United States

    Treesearch

    Bov B. Eav; Richard A. Birdsey; Linda S. Heath

    2000-01-01

    Forestry may play an important if not critical role in the ability of the U.S. to meet its greenhouse gas emissions target under the terms of the Kyoto Protocol. Given the low rate of change in the U.S. forest land area, the major anthropogenic influences on the current net forest carbon flux are forest management and protection activities that have resulted in...

  20. Historical and current landscape-scale ponderosa pine and mixed conifer forest structure in the Southern Sierra Nevada

    Treesearch

    Scott L. Stephens; Jamie M. Lydersen; Brandon M. Collins; Danny L. Fry; Marc D. Meyer

    2015-01-01

    Many managers today are tasked with restoring forests to mitigate the potential for uncharacteristically severe fire. One challenge to this mandate is the lack of large-scale reference information on forest structure prior to impacts from Euro-American settlement. We used a robust 1911 historical dataset that covers a large geographic extent (>10,000 ha) and has...

  1. Historical framework to explain long-term coupled human and natural system feedbacks: application to a multiple-ownership forest landscape in the northern Great Lakes region, USA

    Treesearch

    Michelle M. Steen-Adams; Nancy Langston; Mark D. O. Adams; David J. Mladenoff

    2015-01-01

    Current and future human and forest landscape conditions are influenced by the cumulative, unfolding history of socialecological interactions. Examining past system responses, especially unintended consequences, can reveal valuable insights that promote learning and adaptation in forest policy and management. Temporal couplings are complex, however; they can be...

  2. Proceedings of a Symposium on the Kings River Sustainable Forest Ecosystem Project: Progress and Current Status

    Treesearch

    Jared Verner

    2002-01-01

    Ecosystem management aligns different uses of the land with ecological parameters and goals of environmental quality. An important USDA Forest Service mission is to balance the multiple uses of its lands in an ecologically sustainable way. This objective has been particularly challenging for National Forests of the Sierra Nevada in the face of heated controversies over...

  3. Ecological and biological considerations for sustainable management of non-timber forest products in northern forests

    Treesearch

    Luc C. Duchesne; John C. Zasada; Iain Davidson-Hunt

    2001-01-01

    With a current output of over $241 million per year, non-timber forest products (NTFPs) contribute significantly to the welfare of rural and First Nations communities in Canada. Maple sap products, wild mushrooms, and wild fruits are the most important NTFPs for consumption both in Canada and abroad. However, because of increased access to international markets by...

  4. 76 FR 56145 - Clearwater National Forest; ID; Upper Lochsa Land Exchange EIS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... for timber production. For the most part these lands currently meet State Best Management Practices... River drainage to provide more efficient and effective resource management. This purpose can be achieved... years, differing management practices on the private lands has influenced resource management decision...

  5. 36 CFR 1210.21 - Standards for financial management systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Program Management § 1210.21 Standards for financial management systems. (a) The NHPRC shall require.... (b) Recipients' financial management systems shall provide for the following. (1) Accurate, current... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Standards for financial...

  6. Visitor diversity through the recreation manager lens: comparing Forest Service Regions 8 (U S South) and 5 (California)

    Treesearch

    Cassandra Johnson Gaither; Nina S. Roberts; Kristin L. Hanula

    2015-01-01

    In response to changing demographics and cultural shifts in the U.S. population, the Forest Service, U.S. Department of Agriculture has initiated a range of “culturally transforming” management practices and priorities aimed at better reflecting both the current and future U.S. population (USDA 2011). This makeover also calls attention to the various publics served by...

  7. Understanding the effects of fire management practices on forest health: Implications for weeds and vegetation structure (Project INT-F-04-01) [Chapter 14

    Treesearch

    Anne E. Black; Peter Landres

    2011-01-01

    Current fire policy to restore ecosystem function and resiliency and reduce buildup of hazardous fuels implies a larger future role for fire (both natural and human ignitions) (USDA and USDOI 2000). Yet some fire management (such as building fire line, spike camps, or heli-spots) potentially causes both short- and long-term impacts to forest health. In the short run,...

  8. Climatic-Induced Shifts in the Distribution of Teak ( Tectona grandis) in Tropical Asia: Implications for Forest Management and Planning

    NASA Astrophysics Data System (ADS)

    Deb, Jiban Chandra; Phinn, Stuart; Butt, Nathalie; McAlpine, Clive A.

    2017-09-01

    Modelling the future suitable climate space for tree species has become a widely used tool for forest management planning under global climate change. Teak ( Tectona grandis) is one of the most valuable tropical hardwood species in the international timber market, and natural teak forests are distributed from India through Myanmar, Laos and Thailand. The extents of teak forests are shrinking due to deforestation and the local impacts of global climate change. However, the direct impacts of climate changes on the continental-scale distributions of native and non-native teak have not been examined. In this study, we developed a species distribution model for teak across its entire native distribution in tropical Asia, and its non-native distribution in Bangladesh. We used presence-only records of trees and twelve environmental variables that were most representative for current teak distributions in South and Southeast Asia. MaxEnt (maximum entropy) models were used to model the distributions of teak under current and future climate scenarios. We found that land use/land cover change and elevation were the two most important variables explaining the current and future distributions of native and non-native teak in tropical Asia. Changes in annual precipitation, precipitation seasonality and annual mean actual evapotranspiration may result in shifts in the distributions of teak across tropical Asia. We discuss the implications for the conservation of critical teak habitats, forest management planning, and risks of biological invasion that may occur due to its cultivation in non-native ranges.

  9. Using expert judgments to explore robust alternatives for forest management under climate change.

    PubMed

    McDaniels, Timothy; Mills, Tamsin; Gregory, Robin; Ohlson, Dan

    2012-12-01

    We develop and apply a judgment-based approach to selecting robust alternatives, which are defined here as reasonably likely to achieve objectives, over a range of uncertainties. The intent is to develop an approach that is more practical in terms of data and analysis requirements than current approaches, informed by the literature and experience with probability elicitation and judgmental forecasting. The context involves decisions about managing forest lands that have been severely affected by mountain pine beetles in British Columbia, a pest infestation that is climate-exacerbated. A forest management decision was developed as the basis for the context, objectives, and alternatives for land management actions, to frame and condition the judgments. A wide range of climate forecasts, taken to represent the 10-90% levels on cumulative distributions for future climate, were developed to condition judgments. An elicitation instrument was developed, tested, and revised to serve as the basis for eliciting probabilistic three-point distributions regarding the performance of selected alternatives, over a set of relevant objectives, in the short and long term. The elicitations were conducted in a workshop comprising 14 regional forest management specialists. We employed the concept of stochastic dominance to help identify robust alternatives. We used extensive sensitivity analysis to explore the patterns in the judgments, and also considered the preferred alternatives for each individual expert. The results show that two alternatives that are more flexible than the current policies are judged more likely to perform better than the current alternatives on average in terms of stochastic dominance. The results suggest judgmental approaches to robust decision making deserve greater attention and testing. © 2012 Society for Risk Analysis.

  10. Land-use history as a major driver for long-term forest dynamics in the Sierra de Guadarrama National Park (central Spain) during the last millennia: implications for forest conservation and management

    NASA Astrophysics Data System (ADS)

    Morales-Molino, César; Colombaroli, Daniele; Valbuena-Carabaña, María; Tinner, Willy; Salomón, Roberto L.; Carrión, José S.; Gil, Luis

    2017-05-01

    In the Mediterranean Basin, long-lasting human activities have largely resulted in forest degradation or destruction. Consequently, conservation efforts aimed at preserving and restoring Mediterranean forests often lack well-defined targets when using current forest composition and structure as a reference. In the Iberian mountains, the still widespread Pinus sylvestris and Quercus pyrenaica woodlands have been heavily impacted by land-use. To assess future developments and as a baseline for planning, forest managers are interested in understanding the origins of present ecosystems to disclose effects on forest composition that may influence future vegetation trajectories. Quantification of land-use change is particularly interesting to understand vegetation responses. Here we use three well-dated multi-proxy palaeoecological sequences from the Guadarrama Mountains (central Spain) to quantitatively reconstruct changes occurred in P. sylvestris forests and the P. sylvestris-Q. pyrenaica ecotone at multi-decadal to millennial timescales, and assess the driving factors. Our results show millennial stability of P. sylvestris forests under varying fire and climate conditions, with few transient declines caused by the combined effects of fire and grazing. The high value of pine timber in the past would account for long-lasting pine forest preservation and partly for the degradation of native riparian vegetation (mostly composed of Betula and Corylus). Pine forests further spread after planned forest management started at 1890 CE. In contrast, intensive coppicing and grazing caused Q. pyrenaica decline some centuries ago (ca. 1500-1650 CE), with unprecedented grazing during the last decades seriously compromising today's oak regeneration. Thus, land-use history played a major role in determining vegetation changes. Finally, we must highlight that the involvement of forest managers in this work has guaranteed a practical use of palaeoecological data in conservation and management practice.

  11. A Niche-Based Framework to Assess Current Monitoring of European Forest Birds and Guide Indicator Species' Selection

    PubMed Central

    Wade, Amy S. I.; Barov, Boris; Burfield, Ian J.; Gregory, Richard D.; Norris, Ken; Vorisek, Petr; Wu, Taoyang; Butler, Simon J.

    2014-01-01

    Concern that European forest biodiversity is depleted and declining has provoked widespread efforts to improve management practices. To gauge the success of these actions, appropriate monitoring of forest ecosystems is paramount. Multi-species indicators are frequently used to assess the state of biodiversity and its response to implemented management, but generally applicable and objective methodologies for species' selection are lacking. Here we use a niche-based approach, underpinned by coarse quantification of species' resource use, to objectively select species for inclusion in a pan-European forest bird indicator. We identify both the minimum number of species required to deliver full resource coverage and the most sensitive species' combination, and explore the trade-off between two key characteristics, sensitivity and redundancy, associated with indicators comprising different numbers of species. We compare our indicator to an existing forest bird indicator selected on the basis of expert opinion and show it is more representative of the wider community. We also present alternative indicators for regional and forest type specific monitoring and show that species' choice can have a significant impact on the indicator and consequent projections about the state of the biodiversity it represents. Furthermore, by comparing indicator sets drawn from currently monitored species and the full forest bird community, we identify gaps in the coverage of the current monitoring scheme. We believe that adopting this niche-based framework for species' selection supports the objective development of multi-species indicators and that it has good potential to be extended to a range of habitats and taxa. PMID:24819734

  12. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    PubMed

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Using ecological forecasting of future vegetation transition and fire frequency change in the Sierra Nevada to assess fire management strategies

    NASA Astrophysics Data System (ADS)

    Thorne, J. H.; Schwartz, M. W.; Holguin, A. J.; Moritz, M.; Batllori, E.; Folger, K.; Nydick, K.

    2013-12-01

    Ecological systems may respond in complex manners as climate change progresses. Among the responses, site-level climate conditions may cause a shift in vegetation due to the physiological tolerances of plant species, and the fire return interval may change. Natural resource managers challenged with maintaining ecosystem health need a way to forecast how these processes may affect every location, in order to determine appropriate management actions and prioritize locations for interventions. We integrated climate change-driven vegetation type transitions with projected change in fire frequency for 45,203 km2 of the southern Sierra Nevada, California, containing over 10 land management agencies as well as private lands. This Magnitude of Change (MOC) approach involves classing vegetation types in current time according to their climate envelopes, and identifying which sites will in the future have climates beyond what that vegetation currently occurs in. Independently, fire models are used to determine the change in fire frequency for each site. We examined 82 vegetation types with >50 grid cell occurrences. We found iconic resources such as the giant sequoia, lower slope oak woodlands, and high elevation conifer forests are projected as highly vulnerable by models that project a warmer drier future, but not as much by models that project a warmer future that is not drier than current conditions. Further, there were strongly divergent vulnerabilities of these forest types across land ownership (National Parks versus US Forest Service lands), and by GCM. For example, of 50 giant sequoia (Sequoiadendron giganteum) groves and complexes, all but 3 (on Sierra National Forest) were in the 2 highest levels of risk of climate and fire under the GFDL A2 projection, while 15 groves with low-to-moderate risk were found on both the National Parks and National Forests 18 in the 2 under PCM A2. Landscape projections of potential MOC suggest that the region is likely to experience strong upslope shifting of open grassland, chaparral and hardwood types, which may be initiated by increased fire frequencies, particularly where fires have not recently burned within normal fire recurrence interval departures (FRID). An evaluation of four fire management strategies (business as usual; resist change; foster orderly change; protect vital resources) across four combinations of future climate and fire frequency found that no single management strategy was uniformly successful in protecting critical resources across the range of future conditions examined. This limitation is somewhat driven by current management constraints on the amount of management available to resource managers, which suggests management will need to use a triage approach to application of proactive fire management strategies, wherein MOC landscape projections can be used in decision support.

  14. Wildfire exposure and fuel management on western US national forests.

    PubMed

    Ager, Alan A; Day, Michelle A; McHugh, Charles W; Short, Karen; Gilbertson-Day, Julie; Finney, Mark A; Calkin, David E

    2014-12-01

    Substantial investments in fuel management activities on national forests in the western US are part of a national strategy to reduce human and ecological losses from catastrophic wildfire and create fire resilient landscapes. Prioritizing these investments within and among national forests remains a challenge, partly because a comprehensive assessment that establishes the current wildfire risk and exposure does not exist, making it difficult to identify national priorities and target specific areas for fuel management. To gain a broader understanding of wildfire exposure in the national forest system, we analyzed an array of simulated and empirical data on wildfire activity and fuel treatment investments on the 82 western US national forests. We first summarized recent fire data to examine variation among the Forests in ignition frequency and burned area in relation to investments in fuel reduction treatments. We then used simulation modeling to analyze fine-scale spatial variation in burn probability and intensity. We also estimated the probability of a mega-fire event on each of the Forests, and the transmission of fires ignited on national forests to the surrounding urban interface. The analysis showed a good correspondence between recent area burned and predictions from the simulation models. The modeling also illustrated the magnitude of the variation in both burn probability and intensity among and within Forests. Simulated burn probabilities in most instances were lower than historical, reflecting fire exclusion on many national forests. Simulated wildfire transmission from national forests to the urban interface was highly variable among the Forests. We discuss how the results of the study can be used to prioritize investments in hazardous fuel reduction within a comprehensive multi-scale risk management framework. Published by Elsevier Ltd.

  15. The Northern Goshawk: Ecology and management: Proceedings of a symposium of the Cooper Ornithological Society

    Treesearch

    William M. Block; Michael L. Morrison; Hildegard Reiser

    1994-01-01

    This collection of 22 papers summarizes the current state of knowledge on Northern Goshawks (Accipiter gentilis) within the scientific and management communities. The proceedings are presented in three sections. Research Approaches and Management Concepts contains overviews of research and management for goshawks, forest management to provide goshawk...

  16. Tax Tips for Forest Landowners for the 2007 Tax Year

    Treesearch

    Linda Wang; John L. Greene

    2007-01-01

    This guide is designed to assist owners of forest land with timber tax information. It is current as of October 1, 2007, and supercedes Management Bulletin R8-MB 128. It is strictly for educational purposes; consult your legal and tax professionals for advice on a specific tax situation.

  17. Forest health and bark beetles

    Treesearch

    C. J. Fettig

    2012-01-01

    In recent years, bark beetles have caused significant tree mortality in the Sierra Nevada, rivaling mortality caused by wildfire in some locations. This chapter addresses two important questions: How can managers prepare for and influence levels of bark beetle-caused tree mortality given current forest conditions and future climate uncertainties? and How would the...

  18. Assessing the benefits and economic values of trees

    Treesearch

    David J. Nowak

    2017-01-01

    Understanding the environmental, economic, and social/community benefits of nature, in particular trees and forests, can lead to better vegetation management and designs to optimize environmental quality and human health for current and future generations. Computer models have been developed to assess forest composition and its associated effects on environmental...

  19. Aboveground tree biomass for Pinus ponderosa in northeastern California

    Treesearch

    Martin W. Ritchie; Jianwei Zhang; Todd A. Hamilton

    2013-01-01

    Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa) commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for...

  20. Verbenone flakes may help slow mountain pine beetle's spread

    Treesearch

    Nancy (featured scientist) Gillette

    2009-01-01

    According to "Aerially Applied Verbenone-Releasing Laminated Flakes Protect Pinus contorta Stands from Attack by Dendroctonus ponderosae (mountain pine beetle) in California and Idaho," a US Forest Service–funded study appearing in the February issue of Forest Ecology and Management, not only has the "current...

  1. Natural resource accounting for the National Forests: a conceptual framework.

    Treesearch

    Zhi Xu; Dennis P. Bradley; Pamela J. Jakes

    1994-01-01

    Summarizes the shortcomings of current natural resource accounting systems, outlines some of the features needed, and proposes an accounting framework that would help integrate economic and ecological factors. Such a system of forest resource accounting is urgently needed to achieve the sustainable goals of ecosystem management.

  2. Active nursery projects at the Missoula Technology and Development Center

    Treesearch

    Brian Vachowski

    2005-01-01

    The USDA Forest Service Missoula Technology and Development Center (MTDC) provides technical expertise, new equipment prototypes, and technology transfer services to Federal, State, and cooperator forest tree seedling nursery managers. Current projects at MTDC include a nursery soil moisture meter, remote data collection systems, low cost weather stations, soil...

  3. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  4. An interdisciplinary, outcome-based approach to astmospheric CO2 mitigation with planted southern pine forests

    NASA Astrophysics Data System (ADS)

    Martin, T.; Fox, T.; Peter, G.; Monroe, M.

    2012-12-01

    The Pine Integrated Network: Education, Mitigation and Adaptation Project ("PINEMAP") was funded by National Institute of Food and Agriculture to produce outcomes of enhanced climate change mitigation and adaptation in planted southern pine ecosystems. The PINEMAP project leverages a strong group of existing networks to produce synergy and cooperation on applied forestry research in the region. Over the last 50 years, cooperative research on planted southern pine management among southeastern U.S. universities, government agencies, and corporate forest landowners has developed and facilitated the widespread implementation of improved genetic and silvicultural technology. The impact of these regional research cooperatives is difficult to overstate, with current members managing 55% of the privately owned planted pine forestland, and producing 95% of the pine seedlings planted each year. The PINEMAP team includes the eight major forestry cooperative research programs, scientists from eleven land grant institutions, the US Forest Service, and climate modeling and adaptation specialists associated with the multi-state SE Climate Consortium and state climate offices. Our goal is to create and disseminate the knowledge that enables landowners to: harness planted pine forest productivity to mitigate atmospheric CO2; more efficiently use nitrogen and other fertilizer inputs; and adapt their forest management to increase resilience in the face of changing climate. We integrate our team's infrastructure and expertise to: 1) develop breeding, genetic deployment and innovative management systems to increase C sequestration and resilience to changing climate of planted southern pine forests ; 2) understand interactive effects of policy, biology, and climate change on sustainable management; 3) transfer new management and genetic technologies to private industrial and non-industrial landowners; and 4) educate a diverse cross-section of the public about the relevance of forests, forest management, and climate change. These efforts will enable our stakeholders to enhance the productivity of southern pine forests, while maintaining social, economic, and ecological sustainability.

  5. Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration.

    PubMed

    Imai, Nobuo; Samejima, Hiromitsu; Langner, Andreas; Ong, Robert C; Kita, Satoshi; Titin, Jupiri; Chung, Arthur Y C; Lagan, Peter; Lee, Ying Fah; Kitayama, Kanehiro

    2009-12-11

    Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha(-1) on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest. The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems.

  6. Co-Benefits of Sustainable Forest Management in Biodiversity Conservation and Carbon Sequestration

    PubMed Central

    Imai, Nobuo; Samejima, Hiromitsu; Langner, Andreas; Ong, Robert C.; Kita, Satoshi; Titin, Jupiri; Chung, Arthur Y. C.; Lagan, Peter; Lee, Ying Fah; Kitayama, Kanehiro

    2009-01-01

    Background Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. Methodology/Principal Findings We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha-1 on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest. Conclusions/Significance The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems. PMID:20011516

  7. Consider the source: the impact of media and authority in outreach to private forest and rangeland owners.

    PubMed

    Ferranto, Shasta; Huntsinger, Lynn; Stewart, William; Getz, Christy; Nakamura, Gary; Kelly, Maggi

    2012-04-30

    Over half of the United States is privately owned. Improving environmental sustainability requires that the scientific and management communities provide effective outreach to the many landowners making decisions about land use and management practices on these lands. We surveyed California forest and rangeland owners in ten counties throughout the state to assess the impact of existing outreach and identify gaps in information distribution and content. Although a number of organizations provide land management advice highly-ranked by landowners, no individual organization currently reaches more than 30% of forest and rangeland owners, and these groups together reach less than 60% of landowners. The lowest ranked advice came from wildlife and land management agencies, whereas the highest ranked advice came from private consultants and advisory organizations. The ecosystem services provided by forests and rangelands are strongly influenced by conservation scale, and this appears to be recognized in current outreach efforts. Owners of large properties (>200 ha) were substantially more likely to have received land management advice than smaller-sized properties, and from a broader group of organizations. As ownerships become increasingly fragmented, outreach focus and methods will need to shift to more effectively target the owners of smaller properties. On the other hand, some major outreach goals, such as conservation of wildlife, ranchland, or agricultural communities, will continue to rely on effective outreach to owners of larger properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Salamander abundance along road edges and within abandoned logging roads in Appalachian forests.

    PubMed

    Semlitsch, Raymond D; Ryan, Travis J; Hamed, Kevin; Chatfield, Matt; Drehman, Bethany; Pekarek, Nicole; Spath, Mike; Watland, Angie

    2007-02-01

    Roads may be one of the most common disturbances in otherwise continuous forested habitat in the southern Appalachian Mountains. Despite their obvious presence on the landscape, there is limited data on the ecological effects along a road edge or the size of the "road-effect zone." We sampled salamanders at current and abandoned road sites within the Nantahala National Forest, North Carolina (U.S.A.) to determine the road-effect zone for an assemblage of woodland salamanders. Salamander abundance near the road was reduced significantly, and salamanders along the edges were predominantly large individuals. These results indicate that the road-effect zone for these salamanders extended 35 m on either side of the relatively narrow, low-use forest roads along which we sampled. Furthermore, salamander abundance was significantly lower on old, abandoned logging roads compared with the adjacent upslope sites. These results indicate that forest roads and abandoned logging roads have negative effects on forest-dependent species such as plethodontid salamanders. Our results may apply to other protected forests in the southern Appalachians and may exemplify a problem created by current and past land use activities in all forested regions, especially those related to road building for natural-resource extraction. Our results show that the effect of roads reached well beyond their boundary and that abandonment or the decommissioning of roads did not reverse detrimental ecological effects; rather, our results indicate that management decisions have significant repercussions for generations to come. Furthermore, the quantity of suitable forested habitat in the protected areas we studied was significantly reduced: between 28.6% and 36.9% of the area was affected by roads. Management and policy decisions must use current and historical data on land use to understand cumulative impacts on forest-dependent species and to fully protect biodiversity on national lands.

  9. Riparian Ecosystem Management at Military Installations: Determination of Impacts and Evaluation of Restoration and Enhancement Strategies

    DTIC Science & Technology

    2007-06-01

    forests , and the water filtration function performed by these ecosystems may be at risk . Maloney, K. O. and J. W. Feminella. 2006. Evaluation of...additions to perennial streams. Phase 1 – Effects of Disturbance In our studies of sedimentation effects on riparian forests , vegetation...riparian forests associated with ephemeral streams. We determined thresholds beyond which both long-term and current rates of sedimentation

  10. Developing strategies to initialize landscape-scale vegetation maps from FIA data to enhance resolution of individual species-size cohort representation in the landscape disturbance model SIMPPLLE

    Treesearch

    Jacob John Muller

    2014-01-01

    The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...

  11. Lessons from 72 years of monitoring a once-cut pine-hardwood stand on the Crossett Experimental Forest, Arkansas, U.S.A

    Treesearch

    Don C. Bragg; Michael G. Shelton

    2011-01-01

    The Crossett Experimental Forest was established in 1934 to provide landowners in the Upper West Gulf Coastal Plain with reliable, science-based advice on how to manage their loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests. A key component of this program was the establishment of an unmanaged control, currently known as the Russell R....

  12. Fate of residual canopy trees following harvesting to underplant longleaf pine seedlings in loblolly pine stands in Georgia

    Treesearch

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Robert N. Addington

    2016-01-01

    Over the past few decades, reports of forest health problems have concerned scientists and forest managers in loblolly pine forests of the southeastern United States. Several interacting factors likely contribute to observed reductions in loblolly pine health, including low resource availability on many upland sites that were once dominated by longleaf pine. Currently...

  13. Relationship between Tree Value, Diameter, and Age in High-Quality Sugar Maple (Acer saccharum) on the Menominee Reservation, Wisconsin

    Treesearch

    Daniel C. Dey; John Dwyer; Jan Wiedenbeck

    2017-01-01

    Guidelines for managing sugar maple-dominated forests by the single-tree selection method are well established and widely adopted. The forests of the Menominee Tribe in Wisconsin provide an opportunity to validate current guidelines by testing tree value and size/age relationships in forests that have substantially older and larger high-quality trees than can be found...

  14. Forest management to protect Colorado’s water resources: A synthesis report to support House Bill 16-1255

    Treesearch

    Niah B. H. Venable; Ryan Lockwood; Joseph DiMaria; Joseph Duda; Chuck Rhoades; Lisa Mason

    2017-01-01

    The Colorado Water Plan is a collaborative framework that sets forth objectives, goals and actions by which Coloradans can collectively address current and future water challenges through feasible and innovative solutions. As a majority of the state’s water supply flows from forested watersheds, the Colorado State Forest Service (CSFS), a service and outreach agency of...

  15. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    USGS Publications Warehouse

    Mitchell, M.S.; Rutzmoser, S.H.; Wigley, T.B.; Loehle, C.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Perry, R.W.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D.; Wood, P.B.

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.

  16. A Near Real-time Decision Support System Improving Forest Management in the Tropics

    NASA Astrophysics Data System (ADS)

    Tabor, K.; Musinsky, J.; Ledezma, J.; Rasolohery, A.; Mendoza, E.; Kistler, H.; Steininger, M.; Morton, D. C.; Melton, F. S.; Manwell, J.; Koenig, K.

    2013-12-01

    Conservation International (CI) has a decade of experience developing near real-time fire and deforestation monitoring and forecasting systems that channel monitoring information from satellite observations directly to national and sub-national government agencies, Non-Government Organizations (NGOs), and local communities. These systems are used to strengthen forest surveillance and monitoring, fire management and prevention, protected areas management and sustainable land use planning. With support from a NASA Wildland Fires grant, in September 2013 CI will launch a brand new near real-time alert system (FIRECAST) to better meet the outstanding needs and challenges users face in addressing ecosystem degradation from wildland fire and illegal forest activities. Outreach efforts and user feedback have indicated the need for seasonal fire forecasts for effective land use planning, faster alert delivery to enhance response to illegal forest activities, and expanded forest monitoring capabilities that enable proactive responses and that strengthen forest conservation and sustainable development actions. The new FIRECAST system addresses these challenges by integrating the current fire alert and deforestation systems and adding improved ecological forecasting of fire risk; expanding data exchange capabilities with mobile technologies; and delivering a deforestation alert product that can inform policies related to land use management and Reduced Emissions from Deforestation and forest Degradation (REDD+). In addition to demonstrating the capabilities of this new real-time alert system, we also highlight how coordination with host-country institutions enhances the system's capacity to address the implementation needs of REDD+ forest carbon projects, improve tropical forest management, strengthen environmental law enforcement, and facilitate the uptake of near real-time satellite monitoring data into business practices of these national/sub-national institutions.

  17. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    PubMed Central

    2012-01-01

    Background Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and industrial forest carbon cycles are rarely studied in a whole-system structure. The forest system carbon balance is the difference between the biological (net ecosystem production) and industrial (net emissions from forest industry) forest carbon cycles, but to date this critical whole system analysis is lacking. This study presents a model of the forest system, uses it to compute the carbon balance, and outlines a methodology to maximize future carbon uptake in a managed forest region. Results We used a coupled forest ecosystem process and forest products life cycle inventory model for a regional temperate forest in the Midwestern U.S., and found the net system carbon balance for this 615,000 ha forest was positive (2.29 t C ha-1 yr-1). The industrial carbon budget was typically less than 10% of the biological system annually, and averaged averaged 0.082 t C ha-1 yr-1. Net C uptake over the next 100-years increased by 22% or 0.33 t C ha-1 yr-1 relative to the current harvest rate in the study region under the optized harvest regime. Conclusions The forest’s biological ecosystem current and future carbon uptake capacity is largely determined by forest harvest practices that occurred over a century ago, but we show an optimized harvesting strategy would increase future carbon sequestration, or wood production, by 20-30%, reduce long transportation chain emissions, and maintain many desirable stand structural attributes that are correlated to biodiversity. Our results for this forest region suggest that increasing harvest over the next 100 years increases the strength of the carbon sink, and that carbon sequestration and wood production are not conflicting for this particular forest ecosystem. The optimal harvest strategy found here may not be the same for all forests, but the methodology is applicable anywhere sufficient forest inventory data exist. PMID:22713794

  18. Introduction to synthesis of current science

    Treesearch

    Douglas F. Ryan; Russell LaFayette

    2012-01-01

    Preparation of this report was commissioned to a group of scientists and land managers by the U.S. Department of Agriculture Forest Service, for the purpose of synthesizing current scientific literature to answer an important question facing the managers of Federal, State, and private lands in many parts of the country: At the watershed scale, what potential cumulative...

  19. The role of the landscape architect in applied forest landscape management: a case study on process

    Treesearch

    Wayne Tlusty

    1979-01-01

    Land planning allocations are often multi-resource concepts, with visual quality objectives addressing the appropriate level of visual resource management. Current legislation and/or regulations often require interdisciplinary teams to implement planning decisions. A considerable amount of information is currently avail-able on visual assessment techniques both for...

  20. Climate change implications of shifting forest management strategy in a boreal forest ecosystem of Norway.

    PubMed

    Bright, Ryan M; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Strømman, Anders H

    2014-02-01

    Empirical models alongside remotely sensed and station measured meteorological observations are employed to investigate both the local and global direct climate change impacts of alternative forest management strategies within a boreal ecosystem of eastern Norway. Stand-level analysis is firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across conifer, deciduous, and clear-cut sites. Relative to a conifer site, a slight local cooling of −0.13 °C at a deciduous site and −0.25 °C at a clear-cut site were observed over a 6-year period, which were mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes – despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies jointly promoted an enhanced material supply over business-as-usual levels. Expressed in terms of an equivalent CO2 emission pulse at the start of the simulation, the net climate response at the end of the 21st century spanned −8 to −159 Tg-CO2-eq., depending on whether near-term harvest levels increased or followed current trends, respectively. This magnitude equates to approximately −20 to −300% of Norway's annual domestic (production) emission impact. Our analysis supports the assertion that a carbon-only focus in the design and implementation of forest management policy in boreal and other climatically similar regions can be counterproductive – and at best – suboptimal if boreal forests are to be used as a tool to mitigate global warming.

  1. Hope for the Forests? Habitat Resiliency Illustrated in the Face of Climate Change Using Fine-Scale Modeling

    NASA Astrophysics Data System (ADS)

    Flint, L. E.; Flint, A. L.; Weiss, S. B.; Micheli, E. R.

    2010-12-01

    In the face of rapid climate change, fine-scale predictions of landscape change are of extreme interest to land managers that endeavor to develop long term adaptive strategies for maintaining biodiversity and ecosystem services. Global climate model (GCM) outputs, which generally focus on estimated increases in air temperature, are increasingly applied to species habitat distribution models. For sensitive species subject to climate change, habitat models predict significant migration (either northward or towards higher elevations), or complete extinction. Current studies typically rely on large spatial scale GCM projections (> 10 km) of changes in precipitation and air temperature: at this scale, these models necessarily neglect subtleties of topographic shading, geomorphic expression of the landscape, and fine-scale differences in soil properties - data that is readily available at meaningful local scales. Recent advances in modeling take advantage of available soils, geology, and topographic data to construct watershed-scale scenarios using GCM inputs and result in improved correlations of vegetation distribution with temperature. For this study, future climate projections were downscaled to 270-m and applied to a physically-based hydrologic model to calculate future changes in recharge, runoff, and climatic water deficit (CWD) for basins draining into the northern San Francisco Bay. CWD was analyzed for mapped vegetation types to evaluate the range of CWD for historic time periods in comparison to future time periods. For several forest communities (including blue oak woodlands, montane hardwoods, douglas-fir, and coast redwood) existing landscape area exhibiting suitable CWD diminishes by up 80 percent in the next century, with a trend towards increased CWD throughout the region. However, no forest community loses all suitable habitat, with islands of potential habitat primarily remaining on north facing slopes and deeper soils. Creation of new suitable habitat is also predicted throughout the region. Results have direct application to management issues of habitat connectivity, forest land protection and acquisition, and active management solutions such as transplanting or assisted migration. Although this analysis considers only one driver of forest habitat distribution, consideration of hydrologic derivatives at a fine scale explains current forest community distributions and provides a far more informed perspective on potential future forest distributions. Results demonstrate the utility of fine-scale modeling and provide landscape managers and conservation agencies valuable management tools in fine-scale future forest scenarios and a framework for evaluating forest resiliency in a changing climate.

  2. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    NASA Astrophysics Data System (ADS)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  3. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management?

    PubMed

    Lindner, Marcus; Fitzgerald, Joanne B; Zimmermann, Niklaus E; Reyer, Christopher; Delzon, Sylvain; van der Maaten, Ernst; Schelhaas, Mart-Jan; Lasch, Petra; Eggers, Jeannette; van der Maaten-Theunissen, Marieke; Suckow, Felicitas; Psomas, Achilleas; Poulter, Benjamin; Hanewinkel, Marc

    2014-12-15

    The knowledge about potential climate change impacts on forests is continuously expanding and some changes in growth, drought induced mortality and species distribution have been observed. However despite a significant body of research, a knowledge and communication gap exists between scientists and non-scientists as to how climate change impact scenarios can be interpreted and what they imply for European forests. It is still challenging to advise forest decision makers on how best to plan for climate change as many uncertainties and unknowns remain and it is difficult to communicate these to practitioners and other decision makers while retaining emphasis on the importance of planning for adaptation. In this paper, recent developments in climate change observations and projections, observed and projected impacts on European forests and the associated uncertainties are reviewed and synthesised with a view to understanding the implications for forest management. Current impact assessments with simulation models contain several simplifications, which explain the discrepancy between results of many simulation studies and the rapidly increasing body of evidence about already observed changes in forest productivity and species distribution. In simulation models uncertainties tend to cascade onto one another; from estimating what future societies will be like and general circulation models (GCMs) at the global level, down to forest models and forest management at the local level. Individual climate change impact studies should not be uncritically used for decision-making without reflection on possible shortcomings in system understanding, model accuracy and other assumptions made. It is important for decision makers in forest management to realise that they have to take long-lasting management decisions while uncertainty about climate change impacts are still large. We discuss how to communicate about uncertainty - which is imperative for decision making - without diluting the overall message. Considering the range of possible trends and uncertainties in adaptive forest management requires expert knowledge and enhanced efforts for providing science-based decision support. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    PubMed

    Ashraf, M Irfan; Meng, Fan-Rui; Bourque, Charles P-A; MacLean, David A

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2) 5-year(-1) and volume: 0.0008 m(3) 5-year(-1)). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm(2) 5-year(-1) and 0.0393 m(3) 5-year(-1) in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling.

  5. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change

    PubMed Central

    Ashraf, M. Irfan; Meng, Fan-Rui; Bourque, Charles P.-A.; MacLean, David A.

    2015-01-01

    Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA) and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model). Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS) of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence technology has substantial potential in forest modelling. PMID:26173081

  6. Large-scale interdisciplinary experiments inform current and future forestry management options in the U.S

    Treesearch

    C.E. Peterson; P.D. Anderson

    2009-01-01

    Over the last 20 years, changing public values and increased ecological understanding have led to a paradigm shift in forestry from timber management to sustainable ecosystem management on U.S. federal lands. Forest managers are now seeking alternative management approaches that simultaneously meet socio-cultural, ecological and economic goals. Consequently, many field...

  7. Forest Succession and Maternity Day roost selection by Myotis septentrionalis in a mesophytic hardwood forest

    USGS Publications Warehouse

    Silvis, Alexander; Ford, W. Mark; Eric R. Britzke,; Nathan R. Beane,; Joshua B. Johnson,

    2012-01-01

    Conservation of summer maternity roosts is considered critical for bat management in North America, yet many aspects of the physical and environmental factors that drive roost selection are poorly understood. We tracked 58 female northern bats (Myotis septentrionalis) to 105 roost trees of 21 species on the Fort Knox military reservation in north-central Kentucky during the summer of 2011. Sassafras (Sassafras albidum) was used as a day roost more than expected based on forest stand-level availability and accounted for 48.6% of all observed day roosts. Using logistic regression and an information theoretic approach, we were unable to reliably differentiate between sassafras and other roost species or between day roosts used during different maternity periods using models representative of individual tree metrics, site metrics, topographic location, or combinations of these factors. For northern bats, we suggest that day-roost selection is not a function of differences between individual tree species per se, but rather of forest successional patterns, stand and tree structure. Present successional trajectories may not provide this particular selected structure again without management intervention, thereby suggesting that resource managers take a relatively long retrospective view to manage current and future forest conditions for bats.

  8. Effects of logging on streamflow, sedimentation, fish life, and fish habitat in the north coast redwood-Douglas-fir type - Jackson State Forest, Fort Bragg, California

    Treesearch

    Robert R. Ziemer; Eugene Kojan; Robert B. Thomas

    1965-01-01

    In 1961, cooperative watershed management research in the Lower Conifer Zone of California was started. Currently, the research is being conducted by the Pacific Southwest Forest and Range Experiment Station of the U. S. Forest Service with the cooperation of the State of California, Department of Water Resources, and the Division of Forestry. Recently, the Station...

  9. Thermogravimetric analysis of forest understory grasses

    Treesearch

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  10. The state of the system and steps toward resilience of distrubance-dependent oak forests

    Treesearch

    Tricia G. Knoot; Lisa A. Schulte; John C. Tyndall; Brian J. Palik

    2010-01-01

    Current ecological, economic, and social conditions present unique challenges to natural resource managers seeking to maintain the resilience of disturbance-dependent ecosystems, such as oak (Quercus spp.) forests. Oak-dominated ecosystems throughout the U.S. have historically been perpetuated through periodic disturbance, such as fire, but more...

  11. Sediment transport and channel morphology of small, forested streams.

    Treesearch

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  12. Lengthened cold stratification improves bulk whitebark pine germination

    Treesearch

    Nathan Robertson; Kent Eggleston; Emily Overton; Marie McLaughlin

    2013-01-01

    Crucial to the restoration of whitebark pine (Pinus albicaulis) ecosystems is the ability of forest managers to locate, propagate, and reintroduce viable, disease-resistant populations to these jeopardized systems. Currently, one of the most limiting steps in this process is the slow, labor-in - tensive, and expensive process of producing whitebark seedlings at forest...

  13. Fire and logging history at Huckleberry Hallow, Shannon County, Missouri

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    1997-01-01

    Disturbances such as windthrow, fire and timber harvest significantly effect how forest ecosystems develop. We have and continue to modify the nature of our forests through anthropogenic fire, fire suppression, and resource exploitation and management. Past disturbance histories, as well as current cultural practices and ecological processes, must be considered in...

  14. Songbird ecology in southwestern ponderosa pine forests: A literature review

    Treesearch

    William M. Block; Deborah M. Finch

    1997-01-01

    This publication reviews and synthesizes the literature about ponderosa pine forests of the Southwest, with emphasis on the biology, ecology, and conservation of songbirds. Critical bird-habitat management issues related to succession, snags, old growth, fire, logging, grazing, recreation, and landscape scale are addressed. Overviews of the ecology, current use, and...

  15. History of Piedmont Forests: Implications For Current Pine Management

    Treesearch

    D.H. Van Lear; R.A. Harper; P.R. Kapeluck; W.D. Carroll

    2004-01-01

    Piedmont forests were maintained for millennia in an open condition by anthropogenic- and lightning-ignited fires. After European settlement, row-crop agriculture caused serious soil erosion, making Piedmont soils less capable of supplying moisture and nutrients during drought periods. Dense stands of pine, both naturally and artificially regenerated over the past 70...

  16. 78 FR 79004 - Notice of Availability of the Wyoming Greater Sage-Grouse Draft Land Use Plan Amendments and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., and Thunder Basin National Grassland Planning Units and by this notice is announcing the opening of... the Thunder Basin National Grassland. Current management decisions for resources are described in the... Forest LRMP (1990) Medicine Bow National Forest LRMP (2003) Thunder Basin National Grassland LRMP (2002...

  17. Adaptive forest management for drinking water protection under climate change

    NASA Astrophysics Data System (ADS)

    Koeck, R.; Hochbichler, E.

    2012-04-01

    Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water resources. Forest stands which are formed by a tree species set which conforms to the potential natural forest community are more stable than the currently wide-spread mono-species Norway spruce plantations, especially in times of climate change, where e.g. bark beetle infestations threat spruce with increased intensity. FoHyM also provides the relevant ecological boundary conditions for any estimation of climate change adaptations. The adaptation of the tree species distribution within each forest hydrotope to climate change conditions was fulfilled by the integration of climate change scenarios and the estimation of the eco-physiological characteristics of related tree species. Hence it was possible to define the tree species distribution related to a specific climate change scenario for each forest hydrotope. The silvicultural concepts and measures to accomplish the defined tree species distribution and forest stand structure for each forest hydrotope were defined and elaborated by taking the specific requirements of drinking water protection areas into account, what e.g. comprised the prohibition of the clear cut technique and the application of continuous cover forest management concepts. The overall purpose of these adaptive silvicultural concepts and techniques which were based on the application of FoHyM was the improvement of the water protection functionality of forest stands within drinking water protection zones.

  18. Capacity of US Forests to Maintain Existing Carbon Sequestration will be affected by Changes in Forest Disturbances and to a greater extent, the Economic and Societal Influences on Forest Management and Land Use

    NASA Astrophysics Data System (ADS)

    Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.

    2012-12-01

    Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast-growing planting stock and shorter rotations, and weed, disease, and insect control, and increasing the interval between harvests or decreasing harvest intensity. Economic drivers will affect future carbon cycle of forests such as shifts in forest age class structure in response to markets, land-use changes such as urbanization, and forest type changes. Future changes in forestland objectives include the potential for bioenergy based on forestland resources, which is as large as 504 million acres of timberland and 91 million acres of other forest land out of the 751 million acres of U.S. forestland. Implications of forest product use for bioenergy depend on the context of specific locations such as feedstock type and prior management, land conditions, transport and storage logistics, conversion processes used to produce energy, distribution and use. Markets for energy from biomass appear to be ready to grow in response to energy pricing, policy and demand, although recent increases in the supply of natural gas have reduced urgency for new biomass projects. Beyond use in the forest industry and some residences, biopower is not a large-scale enterprise in the United States. Societal choices about forest policy will also affect the carbon cycles on public and private forestland.

  19. Interactive effects of historical logging and fire exclusion on ponderosa pine forest structure in the northern Rockies.

    PubMed

    Naficy, Cameron; Sala, Anna; Keeling, Eric G; Graham, Jon; DeLuca, Thomas H

    2010-10-01

    Increased forest density resulting from decades of fire exclusion is often perceived as the leading cause of historically aberrant, severe, contemporary wildfires and insect outbreaks documented in some fire-prone forests of the western United States. Based on this notion, current U.S. forest policy directs managers to reduce stand density and restore historical conditions in fire-excluded forests to help minimize high-severity disturbances. Historical logging, however, has also caused widespread change in forest vegetation conditions, but its long-term effects on vegetation structure and composition have never been adequately quantified. We document that fire-excluded ponderosa pine forests of the northern Rocky Mountains logged prior to 1960 have much higher average stand density, greater homogeneity of stand structure, more standing dead trees and increased abundance of fire-intolerant trees than paired fire-excluded, unlogged counterparts. Notably, the magnitude of the interactive effect of fire exclusion and historical logging substantially exceeds the effects of fire exclusion alone. These differences suggest that historically logged sites are more prone to severe wildfires and insect outbreaks than unlogged, fire-excluded forests and should be considered a high priority for fuels reduction treatments. Furthermore, we propose that ponderosa pine forests with these distinct management histories likely require distinct restoration approaches. We also highlight potential long-term risks of mechanical stand manipulation in unlogged forests and emphasize the need for a long-term view of fuels management.

  20. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.

    2011-01-01

    This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.

  1. Spatial occurrence of a habitat-tracking saproxylic beetle inhabiting a managed forest landscape.

    PubMed

    Schroeder, L Martin; Ranius, Thomas; Ekbom, Barbara; Larsson, Stig

    2007-04-01

    Because of the dynamic nature of many managed habitats, proper evaluation of conservation efforts calls for models that take into account both spatial and temporal habitat dynamics. We develop a metapopulation model for successional-type systems, in which habitat quality changes over time in a predictable fashion. The occupancy and recruitment of the predatory saproxylic (dependent on dead wood) beetle Harminius undulatus was studied in a managed boreal forest landscape, covering 24,449 ha, in central Sweden. In a first step, we analyzed the beetle's occupancy pattern in relation to stand characteristics, and the amounts of present and past habitat in the surrounding landscape. Managed forest is suitable habitat when > or =60 years old, and immediately after cutting, but not between the ages of 10 and 60 years. The observed occupancy of H. undulatus was positively correlated with the stand's age as habitat. We used a metapopulation model to predict the current probability of occurrence in each forest stand, given the spatiotemporal distribution of suitable forest stands during the last 50 years. Metapopulation parameters were estimated by matching predicted spatial distributions with observed spatial distributions. The model predicted observed spatial distributions better than a similar model that assumed constant habitat quality of each forest stand. Thus, metapopulation models for successional-type systems, such as dead wood dependent organisms in managed forest landscapes, should include habitat dynamics. An estimated 82% of the landscape-wide recruitment took place in managed stands, which covered 87% of the forest area, in comparison with 18% in unmanaged stands, which covered 13% of the forest area. Among the managed stand types, > or =60-year-old stands and 3-7-year-old clear-cuttings contributed to 79% of the total recruitment while 8-59-year-old stands only contributed 3%. The results suggest the following guidelines to improve conditions for H. undulatus and other species with similar habitat requirements: (1) the proportion of the landscape constituted by younger stands should not be allowed to grow too large, (2) the rotation period of managed stands should not be allowed to be too short, and (3) dead wood should be retained and created at final cutting.

  2. Assess and Adapt: Coordinated Ecoregional Forest Vulnerability Assessments Covering the Upper Midwest and Northeast in Support of Climate-informed Decision-making

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Handler, S.; Butler, P.; Brandt, L.; Iverson, L.; Thompson, F.; Ontl, T.; Shannon, D.

    2016-12-01

    Forest ecosystem vulnerability assessments are rapidly becoming an integral component of forest management planning, in which there is increasing public expectation that even near-term activities explicitly incorporate information about anticipated climate impacts and risks. There is a clear desire among forest managers for targeted assessments that address critical questions about species and ecosystem vulnerabilities while delivering this information in an accessible format. We developed the Ecosystem Vulnerability Assessment Approach (EVAA), which combines multiple quantitative models, expert elicitation from scientists and land managers, and a templated report structure oriented to natural resource managers. The report structure includes relevant information on the contemporary landscape, past climate, future climate projections, impact model results, and a transparent vulnerability assessment of species and ecosystems. We have used EVAA in seven ecoregional assessments covering 246 million acres of forestland across the upper Midwest and Northeast (www.forestadaptation.org; five published, two in review). We convened a panel of local forest ecology and management experts in each assessment area to examine projected climate effects on system drivers, stressors, and dominant species, as well as the current adaptive capacity of the major ecoregional forest ecosystems. The panels provided a qualitative assessment of the vulnerability of forest ecosystems to climate change over the next century. Over 130 authors from dozens of organizations collaborated on these peer-reviewed assessment publications, which are delivered to thousands of stakeholders through live and recorded webinars, online briefs, and in-person trainings and seminars. The assessments are designed to be used with the Adaptation Workbook (www.adaptationworkbook.org), a planning tool that works at multiple scales and has generated more than 200 real-world forest adaptation demonstration projects.

  3. Modeling the Complex Impacts of Timber Harvests to Find Optimal Management Regimes for Amazon Tidal Floodplain Forests

    PubMed Central

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation. PMID:26322896

  4. Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests

    USGS Publications Warehouse

    Fortini, Lucas B.; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine-tuned management guidelines could make management more attractive, thus bridging the currently prevalent gap between tropical timber management practice and regulation.

  5. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  6. Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia.

    PubMed

    Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San

    2017-09-15

    Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Changing Forest Land Use in the Pacific Northwest and Implications for Ecosystem Processes (Invited)

    NASA Astrophysics Data System (ADS)

    Law, B. E.; Hudiburg, T. W.; Yang, Z.

    2013-12-01

    Human use of forests in the Pacific Northwest US has evolved from underburning for wildlife habitat, to clearing for subsistence living, and an emphasis on timber production. In Oregon, forests older than 200 years now occupy less than 1 percent of private land that accounts for half the forest area, and ranges from 15 to almost 60 percent of public lands depending on the ecoregion. The Northwest Forest Plan (NWFP) was implemented on public lands in 1993 as a region-wide forest management regime intended to conserve species at risk from extensive harvest of older forests. The result was an 82 percent reduction in harvest removals on public forest lands, and subsequently, public forestland became a carbon sink while private forest remained near carbon neutral. Currently, forest management on public lands in the PNW emphasizes widespread thinning of forests to reduce wildfire risk, and thinning and slash removal for bioenergy production. In addition, several states have set ambitious GHG reduction targets. These policies are being implemented even though many aspects have not been adequately assessed for the effects on forests. CLM4 simulations over Oregon show that by the year 2100, net carbon uptake increases by 32-68% depending on the climate and CO2 scenario, suggesting that enhanced productivity from a warmer climate and CO2 fertilization compensates for disturbance losses if business-as-usual management continues. Water cycle implications are also considered. Simulated repeat thinnings were applied in areas susceptible to fire to reduce mortality and fire emissions, and clearcut rotations were applied in productive forests to provide biomass for both wood products and bioenergy. CLM input to a Life Cycle Assessment, which tracks emissions off-site, shows that none of the scenarios reduce regional net CO2 emissions to the atmosphere by the end of the 21st century. Thinning dry forests to reduce potential fire emissions led to no net change in emissions from BAU management by 2100, while the management scenarios in mesic forests increased emissions, driving state-level emissions estimates. Mesic forests in the Coast Range and West Cascades have the potential to hold significantly more carbon (maximum observed live mass of 33 and 27 kg C/m^2 reached at ages 310 and 430, respectively) and can live 400 to 700 years. Climate mitigation will require place-based management, such as maintaining mature and old coastal rainforests for carbon sequestration, watershed protection, and biodiversity, and thinning some dry forests that are susceptible to mortality.

  8. Bringing Together Users and Developers of Forest Biomass Maps

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Macauley, Molly K.

    2012-01-01

    Forests store carbon and thus represent important sinks for atmospheric carbon dioxide. Reducing uncertainty in current estimates of the amount of carbon in standing forests will improve precision of estimates of anthropogenic contributions to carbon dioxide in the atmosphere due to deforestation. Although satellite remote sensing has long been an important tool for mapping land cover, until recently aboveground forest biomass estimates have relied mostly on systematic ground sampling of forests. In alignment with fiscal year 2010 congressional direction, NASA has initiated work toward a carbon monitoring system (CMS) that includes both maps of forest biomass and total carbon flux estimates. A goal of the project is to ensure that the products are useful to a wide community of scientists, managers, and policy makers, as well as to carbon cycle scientists. Understanding the needs and requirements of these data users is helpful not just to the NASA CMS program but also to the entire community working on carbon-related activities. To that end, this meeting brought together a small group of natural resource managers and policy makers who use information on forests in their work with NASA scientists who are working to create aboveground forest biomass maps. These maps, derived from combining remote sensing and ground plots, aim to be more accurate than current inventory approaches when applied at local and regional scales. Meeting participants agreed that users of biomass information will look to the CMS effort not only to provide basic data for carbon or biomass measurements but also to provide data to help serve a broad range of goals, such as forest watershed management for water quality, habitat management for biodiversity and ecosystem services, and potential use for developing payments for ecosystem service projects. Participants also reminded the CMS group that potential users include not only public sector agencies and nongovernmental organizations but also the private sector because much forest acreage in the United States is privately held and needs data for forest management. Additional key outcomes identified by meeting participants include the following: (1) Priority should be given to building into the biomass product ease of use and low costs (including costs of hardware, software, and analysis requirements), (2) CMS products should also be relevant to other biomass measures for forest watershed management, habitat protection for biodiversity, and assessment of markets for ecosystem services, (3) CMS leadership should engage with the Subsidiary Body for Scientific and Technological Advice of the United Nations Framework Convention on Climate Change as they establish measuring, reporting, and verification standards, and (4) CMS leadership should continue to keep sister agencies and other organizations informed as CMS develops, particularly via the agencies active in the U.S. Global Change Research Program Carbon Cycle Interagency Working Group (U.S. Geological Survey, U.S. Department of Agriculture, and National Oceanic and Atmospheric Administration) and nongovernmental organizations.

  9. Large-scale interdisciplinary experiments inform current and future forestry management options in the U.S. Pacific Northwest

    Treesearch

    Charles E. Peterson; Paul D. Anderson

    2009-01-01

    Over the last 20 years, changing public values and increased ecological understanding have led to a paradigm shift in forestry from timber management to sustainable ecosystem management on U.S. federal lands. Forest managers are now seeking alternative management approaches that simultaneously meet socio-cultural, ecological and economic goals. Consequently, many field...

  10. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts

    NASA Astrophysics Data System (ADS)

    Williams, Christopher A.; Gu, Huan; MacLean, Richard; Masek, Jeffrey G.; Collatz, G. James

    2016-08-01

    Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures. Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y- 1 in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y- 1), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US forests, tradeoffs with other values and uses are likely to significantly limit practical implementation. Continued and expanded remote sensing and field-based monitoring capabilities and manipulative experimentation are needed to improve understanding of the US forest carbon sink, and assess how disturbance processes are responding to the pressures of global environmental change. In addition, continued development and application of holistic, decision support tools that consider a range of forest values are needed to enable managers and policy makers to use the best available information for guiding forest resources now and into the future.

  11. Disturbance and the Carbon Balance of US Forests: A Quantitative Review of Impacts from Harvests, Fires, Insects, and Droughts

    NASA Technical Reports Server (NTRS)

    Williams, Christopher A.; Gu, Huan; MacLean, Richard; Masek, Jeffrey G.; Collatz, G. James

    2016-01-01

    Disturbances are a major determinant of forest carbon stocks and uptake. They generally reduce land carbon stocks but also initiate a regrowth legacy that contributes substantially to the contemporary rate of carbon stock increase in US forestlands. As managers and policy makers increasingly look to forests for climate protection and mitigation, and because of increasing concern about changes in disturbance intensity and frequency, there is a need for synthesis and integration of current understanding about the role of disturbances and other processes in governing forest carbon cycle dynamics, and the likely future of this and other sinks for atmospheric carbon. This paper aims to address that need by providing a quantitative review of the distribution, extent and carbon impacts of the major disturbances active in the US. We also review recent trends in disturbances, climate, and other global environmental changes and consider their individual and collective contributions to the US carbon budget now and in the likely future. Lastly, we identify some key challenges and opportunities for future research needed to improve current understanding, advance predictive capabilities, and inform forest management in the face of these pressures. Harvest is found to be the most extensive disturbance both in terms of area and carbon impacts, followed by fire, windthrow and bark beetles, and lastly droughts. Collectively these lead to the gross loss of about 200 Tg C y(exp -1) in live biomass annually across the conterminous US. At the same time, the net change in forest carbon stocks is positive (190 Tg C y(exp -1)), indicating not only forest resilience but also an apparently large response to growth enhancements such as fertilization by CO2 and nitrogen. Uncertainty about disturbance legacies, disturbance interactions, likely trends, and global change factors make the future of the US forest carbon sink unclear. While there is scope for management to enhance carbon sinks in US forests, tradeoffs with other values and uses are likely to significantly limit practical implementation. Continued and expanded remote sensing and field-based monitoring capabilities and manipulative experimentation are needed to improve understanding of the US forest carbon sink, and assess how disturbance processes are responding to the pressures of global environmental change. In addition, continued development and application of holistic, decision support tools that consider a range of forest values are needed to enable managers and policy makers to use the best available information for guiding forest resources now and into the future.

  12. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting.

    PubMed

    Wilhelm, Roland C; Cardenas, Erick; Leung, Hilary; Maas, Kendra; Hartmann, Martin; Hahn, Aria; Hallam, Steven; Mohn, William W

    2017-01-01

    The scarcity of long-term data on soil microbial communities in the decades following timber harvesting limits current understanding of the ecological problems associated with maintaining the productivity of managed forests. The high complexity of soil communities and the heterogeneity of forest and soil necessitates a comprehensive approach to understand the role of microbial processes in managed forest ecosystems. Here, we describe a curated collection of well replicated, multi-faceted data from eighteen reforested sites in six different North American ecozones within the Long-term Soil Productivity (LTSP) Study, without detailed analysis of results or discussion. The experiments were designed to contrast microbial community composition and function among forest soils from harvested treatment plots with varying intensities of organic matter removal. The collection includes 724 bacterial (16S) and 658 fungal (ITS2) amplicon libraries, 133 shotgun metagenomic libraries as well as stable isotope probing amplicon libraries capturing the effects of harvesting on hemicellulolytic and cellulolytic populations. This collection serves as a foundation for the LTSP Study and other studies of the ecology of forest soil and forest disturbance.

  13. A metagenomic survey of forest soil microbial communities more than a decade after timber harvesting

    PubMed Central

    Wilhelm, Roland C.; Cardenas, Erick; Leung, Hilary; Maas, Kendra; Hartmann, Martin; Hahn, Aria; Hallam, Steven; Mohn, William W.

    2017-01-01

    The scarcity of long-term data on soil microbial communities in the decades following timber harvesting limits current understanding of the ecological problems associated with maintaining the productivity of managed forests. The high complexity of soil communities and the heterogeneity of forest and soil necessitates a comprehensive approach to understand the role of microbial processes in managed forest ecosystems. Here, we describe a curated collection of well replicated, multi-faceted data from eighteen reforested sites in six different North American ecozones within the Long-term Soil Productivity (LTSP) Study, without detailed analysis of results or discussion. The experiments were designed to contrast microbial community composition and function among forest soils from harvested treatment plots with varying intensities of organic matter removal. The collection includes 724 bacterial (16S) and 658 fungal (ITS2) amplicon libraries, 133 shotgun metagenomic libraries as well as stable isotope probing amplicon libraries capturing the effects of harvesting on hemicellulolytic and cellulolytic populations. This collection serves as a foundation for the LTSP Study and other studies of the ecology of forest soil and forest disturbance. PMID:28765786

  14. Trade-off between light availability and soil fertility determine refugial conditions for the relict light-demanding species in lowland forests

    NASA Astrophysics Data System (ADS)

    Kiedrzyński, Marcin; Kurowski, Józef Krzysztof; Kiedrzyńska, Edyta

    2017-11-01

    Identifying potential refugial habitats in the face of rapid environmental change is a challenge faced by scientists and nature conservation managers. Relict populations and refugial habitats are the model objects in those studies. Based on the example of Actaea europaea from Central Poland, we analyse the habitat factors influencing relict populations of continental, light-demanding species in lowland forests and examine which habitats of studied species corresponding most closely to ancient vegetation. Our results indicate that the current refugial habitats of Actaea europaea include not only communities which are very similar to ancient open forest but also forests with a closed canopy. Although the populations are influenced by nitrogen and light availability, the co-occurrence of these two factors in forest communities is limited by dense canopy formation by hornbeam and beech trees on fertile soils and in more humid conditions. Our findings indicate that the future survival of relict, light-demanding communities in lowland forests requires low-intensity disturbances to be performed in tree-stands, according to techniques, which imitate traditional forests management.

  15. 75 FR 45089 - Rogue River-Siskiyou National Forest, Oregon; Motorized Vehicle Use on the Rogue River-Siskiyou...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-02

    ... Establishing and Designating a System of Roads, Trails and Areas for Wheeled Motorized Vehicles AGENCY: Forest... Management Rule requires designation of those roads, trails, and areas that are open to motor vehicle use by... completed an inventory of existing open roads and trails. Currently, there are approximately 4,620 road...

  16. Quantifying density-independent mortality of temperate tree species

    Treesearch

    Heather E Lintz; Andrew N. Gray; Andrew Yost; Richard Sniezko; Chris Woodall; Matt Reilly; Karen Hutten; Mark Elliott

    2016-01-01

    Forest resilience to climate change is a topic of national concern as our standing assets and future forestsare important to our livelihood. Many tree species are predicted to decline or disappear while othersmay be able to adapt or migrate. Efforts to quantify and disseminate the current condition of forests areurgently needed to guide management and policy. Here, we...

  17. Conservation and development of nontimber forest products in the Pacific Northwest: an annotated bibliography.

    Treesearch

    Bettina Von Hagen; James F. Weigand; Rebecca McLain; Roger Fight; Harriet H. Christensen

    1996-01-01

    This bibliography encompasses literature on the historic and current scope of nontimber forest product industries in the Pacific Northwest and includes references on international markets and trade that bear on these industries. Key themes in the bibliography are biological and socioeconomic aspects of resource management for sustainable production; procedures for...

  18. 75 FR 11107 - Revision of Land Management Plan for the George Washington National Forest, Virginia and West...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... additional information. Finally, this notice briefly describes the applicable planning rule and how work done..., or recorded at past public meetings, related to the revision of the GW Forest Plan since 2007 will be..., environmental stresses and threats, societal demands and our current state of scientific knowledge. Also since...

  19. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States

    Treesearch

    James S. Clark; Louis Iverson; Christopher W. Woodall; Craig D. Allen; David M. Bell; Don C. Bragg; Anthony W. D' Amato; Frank W. Davis; Michelle H. Hersh; Ines Ibanez; Stephen T. Jackson; Stephen Matthews; Neil Pederson; Matthew Peters; Mark W. Schwartz; Kristen M. Waring; Niklaus E. Zimmermann

    2016-01-01

    We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition...

  20. Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Treesearch

    Paul F. Hessburg; Thomas A. Spies; David A. Perry; Carl N. Skinner; Alan H. Taylor; Peter M. Brown; Scott L. Stephens; Andrew J. Larson; Derek J. Churchill; Nicholas A. Povak; Peter H. Singleton; Brenda McComb; William J. Zielinski; Brandon M. Collins; R. Brion Salter; John J. Keane; Jerry F. Franklin; Greg Riegel

    2016-01-01

    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland...

  1. Estimating historical snag density in dry forests east of the Cascade Range

    Treesearch

    Richy J. Harrod; William L. Gaines; William E. Hartl; Ann. Camp

    1998-01-01

    Estimating snag densities in pre-European settlement landscapes (i.e., historical conditions) provides land managers with baseline information for comparing current snag densities. We propose a method for determining historical snag densities in the dry forests east of the Cascade Range. Basal area increase was calculated from tree ring measurements of old ponderosa...

  2. Protecting Oregon old-growth forests from fires: how much is it worth?

    Treesearch

    Armando González-Cabán; John Loomis; Robin Gregory

    1995-01-01

    Current fire management policies in the USDA Forest Service includes traditional multiple uses, but these policies do not adequately incorporate non-traditional uses such as preservation of biodiversity and related nongame and endangered animals. A contingent valuation methodology was used for valuing the general public's desire to know that rare and unique...

  3. Survival rates of female white-tailed deer on an industrial forest following a decline in population density

    Treesearch

    Shawn M. Crimmins; John W. Edwards; Patrick D. Keyser; James M. Crum; W. Mark Ford; Brad F. Miller; Tyler A. Campbell; Karl V. Miller

    2013-01-01

    With white-tailed deer (Odocoileus virginianus) populations at historically high levels throughout many North American forests, many current management activities are aimed at reducing deer populations. However, very little information exists on the ecology of low-density white-tailed deer populations or populations that have declined in density. We...

  4. Quantifying the missing link between forest albedo and productivity in the boreal zone

    NASA Astrophysics Data System (ADS)

    Hovi, Aarne; Liang, Jingjing; Korhonen, Lauri; Kobayashi, Hideki; Rautiainen, Miina

    2016-11-01

    Albedo and fraction of absorbed photosynthetically active radiation (FAPAR) determine the shortwave radiation balance and productivity of forests. Currently, the physical link between forest albedo and productivity is poorly understood, yet it is crucial for designing optimal forest management strategies for mitigating climate change. We investigated the relationships between boreal forest structure, albedo and FAPAR using a radiative transfer model called Forest Reflectance and Transmittance model FRT and extensive forest inventory data sets ranging from southern boreal forests to the northern tree line in Finland and Alaska (N = 1086 plots). The forests in the study areas vary widely in structure, species composition, and human interference, from intensively managed in Finland to natural growth in Alaska. We show that FAPAR of tree canopies (FAPARCAN) and albedo are tightly linked in boreal coniferous forests, but the relationship is weaker if the forest has broadleaved admixture, or if canopies have low leaf area and the composition of forest floor varies. Furthermore, the functional shape of the relationship between albedo and FAPARCAN depends on the angular distribution of incoming solar irradiance. We also show that forest floor can contribute to over 50 % of albedo or total ecosystem FAPAR. Based on our simulations, forest albedos can vary notably across the biome. Because of larger proportions of broadleaved trees, the studied plots in Alaska had higher albedo (0.141-0.184) than those in Finland (0.136-0.171) even though the albedo of pure coniferous forests was lower in Alaska. Our results reveal that variation in solar angle will need to be accounted for when evaluating climate effects of forest management in different latitudes. Furthermore, increasing the proportion of broadleaved trees in coniferous forests is the most important means of maximizing albedo without compromising productivity: based on our findings the potential of controlling forest density (i.e., basal area) to increase albedo may be limited compared to the effect of favoring broadleaved species.

  5. Mathematical model of forest succession and land use for the North Carolina Piedmont

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, W.C.

    1977-01-01

    A linear, constant-coefficient compartment model was constructed to simulate temporal changes in the areal extent of major forest types in the North Carolina Piedmont. Model structure and transfer coefficients were derived from published ecological literature and available USDA Forest Service statistical summaries. The results show the importance of old-field abandonment to the perpetuation of extensive loblolly pine (Pinus taeda) forests in the Piedmont. Should abandonment cease, post-harvest treatment and planting of loblolly pine would have to be increased considerably over current levels to maintain an extensive loblolly pine forest type. Extrapolation of current rates of change forward 250 years wouldmore » result in a sizeable increase in the area of loblolly pine and loblolly pine-oak types, a slight increase in oak-hickory, a sizeable decline in shortleaf and Virginia pine (Pinus echinata, Pinus virginiana, resp.) types and a slight decline for other mixed pine-hardwood and lowland and dry upland hardwood categories compared to current conditions. The technique can be a useful tool either to assess some long-term effects of present management and use trends or to suggest strategies necessary to obtain a desired regional mixture of forest types.« less

  6. 75 FR 39038 - Tamarac National Wildlife Refuge and Wetland Management District, Minnesota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... forest birds and their habitats. Alternative 4: Current Management Direction of Conservation, Restoration... Service, Interior. ACTION: Notice of Availability: draft comprehensive conservation plan and environmental... availability of a draft comprehensive conservation plan (CCP) and draft environmental assessment (EA) for...

  7. Remote sensing applied to resource management

    Treesearch

    Henry M. Lachowski

    1998-01-01

    Effective management of forest resources requires access to current and consistent geospatial information that can be shared by resource managers and the public. Geospatial information describing our land and natural resources comes from many sources and is most effective when stored in a geospatial database and used in a geographic information system (GIS). The...

  8. Forest ecosystems of temperate climatic regions: from ancient use to climate change.

    PubMed

    Gilliam, Frank S

    2016-12-01

    871 I. 871 II. 874 III. 875 IV. 878 V. 882 884 References 884 SUMMARY: Humans have long utilized resources from all forest biomes, but the most indelible anthropogenic signature has been the expanse of human populations in temperate forests. The purpose of this review is to bring into focus the diverse forests of the temperate region of the biosphere, including those of hardwood, conifer and mixed dominance, with a particular emphasis on crucial challenges for the future of these forested areas. Implicit in the term 'temperate' is that the predominant climate of these forest regions has distinct cyclic, seasonal changes involving periods of growth and dormancy. The specific temporal patterns of seasonal change, however, display an impressive variability among temperate forest regions. In addition to the more apparent current anthropogenic disturbances of temperate forests, such as forest management and conversion to agriculture, human alteration of temperate forests is actually an ancient phenomenon, going as far back as 7000 yr before present (bp). As deep-seated as these past legacies are for temperate forests, all current and future perturbations, including timber harvesting, excess nitrogen deposition, altered species' phenologies, and increasing frequency of drought and fire, must be viewed through the lens of climate change. © 2016 The Author. New Phytologist © 2016 New Phytologist Trust.

  9. Global environmental change effects on plant community composition trajectories depend upon management legacies.

    PubMed

    Perring, Michael P; Bernhardt-Römermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L; De Lombaerde, Emiel; Carón, Maria Mercedes; Vellend, Mark; Brunet, Jörg; Chudomelová, Markéta; Decocq, Guillaume; Diekmann, Martin; Dirnböck, Thomas; Dörfler, Inken; Durak, Tomasz; De Frenne, Pieter; Gilliam, Frank S; Hédl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J; Kopecký, Martin; Lenoir, Jonathan; Li, Daijiang; Máliš, František; Mitchell, Fraser J G; Naaf, Tobias; Newman, Miles; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Świerkosz, Krzysztof; Van Calster, Hans; Vild, Ondřej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris

    2018-04-01

    The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change. © 2017 John Wiley & Sons Ltd.

  10. i-Tree: Tools to assess and manage structure, function, and value of community forests

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Nowak, D.; Endreny, T. A.; Kroll, C.; Maco, S.

    2011-12-01

    Trees in urban communities can mitigate many adverse effects associated with anthropogenic activities and climate change (e.g. urban heat island, greenhouse gas, air pollution, and floods). To protect environmental and human health, managers need to make informed decisions regarding urban forest management practices. Here we present the i-Tree suite of software tools (www.itreetools.org) developed by the USDA Forest Service and their cooperators. This software suite can help urban forest managers assess and manage the structure, function, and value of urban tree populations regardless of community size or technical capacity. i-Tree is a state-of-the-art, peer-reviewed Windows GUI- or Web-based software that is freely available, supported, and continuously refined by the USDA Forest Service and their cooperators. Two major features of i-Tree are 1) to analyze current canopy structures and identify potential planting spots, and 2) to estimate the environmental benefits provided by the trees, such as carbon storage and sequestration, energy conservation, air pollution removal, and storm water reduction. To cover diverse forest topologies, various tools were developed within the i-Tree suite: i-Tree Design for points (individual trees), i-Tree Streets for lines (street trees), and i-Tree Eco, Vue, and Canopy (in the order of complexity) for areas (community trees). Once the forest structure is identified with these tools, ecosystem services provided by trees can be estimated with common models and protocols, and reports in the form of texts, charts, and figures are then created for users. Since i-Tree was developed with a client/server architecture, nationwide data in the US such as location-related parameters, weather, streamflow, and air pollution data are stored in the server and retrieved to a user's computer at run-time. Freely available remote-sensed images (e.g. NLCD and Google maps) are also employed to estimate tree canopy characteristics. As the demand for i-Tree grows internationally, environmental databases from more countries will be coupled with the software suite. Two more i-Tree applications, i-Tree Forecast and i-Tree Landscape are now under development. i-Tree Forecast simulates canopy structures for up to 100 years based on planting and mortality rates and adds capabilities for other i-Tree applications to estimate the benefits of future canopy scenarios. While most i-Tree applications employ a spatially lumped approach, i-Tree landscape employs a spatially distributed approach that allows users to map changes in canopy cover and ecosystem services through time and space. These new i-Tree tools provide an advanced platform for urban managers to assess the impact of current and future urban forests. i-Tree allows managers to promote effective urban forest management and sound arboricultural practices by providing information for advocacy and planning, baseline data for making informed decisions, and standardization for comparisons with other communities.

  11. Simulating adaptive wood harvest in a changing climate

    NASA Astrophysics Data System (ADS)

    Yousefpour, Rasoul; Nabel, Julia; Pongratz, Julia

    2016-04-01

    The world's forest experience substantial carbon exchange fluxes between land and atmosphere. Large carbon sinks occur in response to changes in environmental conditions (such as climate change and increased atmospheric CO2 concentrations), removing about one quarter of current anthropogenic CO2-emissions. Large sinks also occur due to regrowth of forest on areas of agricultural abandonment or forest management. Forest management, on the other hand, also leads to substantial amounts of carbon being eventually released to the atmosphere. Both sinks and sources attributable to forests are therefore dependent on the intensity of management. Forest management in turn depends on the availability of resources, which is influenced by environmental conditions and sustainability of management systems applied. Estimating future carbon fluxes therefore requires accounting for the interaction of environmental conditions, forest growth, and management. However, this interaction is not fully captured by current modeling approaches: Earth system models depict in detail interactions between climate, the carbon cycle, and vegetation growth, but use prescribed information on management. Resource needs and land management, however, are simulated by Integrated Assessment Models that typically only have coarse representations of the influence of environmental changes on vegetation growth and are typically based on the demand for wood driven by regional population growth and energy needs. Here we present a study that provides the link between environmental conditions, forest growth and management. We extend the land component JSBACH of the Max Planck Institute's Earth system model (MPI-ESM) to simulate potential wood harvest in response to altered growth conditions and thus as adaptive to changing climate and CO2 conditions. We apply the altered model to estimate potential wood harvest for future climates (representative concentration pathways, RCPs) for the management scenario of "sustained yields" (SY), i.e. that wood harvest is not allowed to reduce wood carbon stocks below their present-day average state. We find that the potentials for SY range from about 420 to 610 PgC cumulatively until 2100 depending on assumed future climate (RCPs 2.6, 4.5 or 8.5). They are thus substantially higher than the harvest prescribed in the context of the same RCPs for the coupled model intercomparison project (CMIP5), which ranged from about 130 to 210 PgC. The underlying drivers of the higher potentials of SY as compared to the RCP harvest are in all scenarios foremost avoided natural mortality, followed by avoided losses due to fire and windbreak. Further, usage of the increase in forest carbon stocks simulated with time under RCP harvest plays a large role in the first decades of the 21st century. The potential wood harvest that we simulate accounting for environmental changes does not include considerations on biodiversity and other ecosystem services or technical feasibility. However, the substantially higher simulated harvest from SY as compared to that prescribed from the RCPs and the difference found between climate scenarios highlights the need to account for effects of environmental changes on vegetation growth also in socio-economic models and thus the need for a consistent representation of climate-landuse interactions.

  12. Linking Science and Management in an Interactive Geospatial, Mutli-Criterion, Structured Decision Support Framework: Use Case Studies of the "Future Forests Geo-visualization and Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Pontius, J.; Duncan, J.

    2017-12-01

    Land managers are often faced with balancing management activities to accomplish a diversity of management objectives, in systems faced with many stress agents. Advances in ecosystem modeling provide a rich source of information to inform management. Coupled with advances in decision support techniques and computing capabilities, interactive tools are now accessible for a broad audience of stakeholders. Here we present one such tool designed to capture information on how climate change may impact forested ecosystems, and how that impact varies spatially across the landscape. This tool integrates empirical models of current and future forest structure and function in a structured decision framework that allows users to customize weights for multiple management objectives and visualize suitability outcomes across the landscape. Combined with climate projections, the resulting products allow stakeholders to compare the relative success of various management objectives on a pixel by pixel basis and identify locations where management outcomes are most likely to be met. Here we demonstrate this approach with the integration of several of the preliminary models developed to map species distributions, sugar maple health, forest fragmentation risk and hemlock vulnerability to hemlock woolly adelgid under current and future climate scenarios. We compare three use case studies with objective weightings designed to: 1) Identify key parcels for sugarbush conservation and management, 2) Target state lands that may serve as hemlock refugia from hemlock woolly adelgid induced mortality, and 3) Examine how climate change may alter the success of managing for both sugarbush and hemlock across privately owned lands. This tool highlights the value of flexible models that can be easily run with customized weightings in a dynamic, integrated assessment that allows users to hone in on their potentially complex management objectives, and to visualize and prioritize locations across the landscape. It also demonstrates the importance of including climate considerations for long-term management. This merging of scientific knowledge with the diversity of stakeholder needs is an important step towards using science to inform management and policy decisions.

  13. Status and prospects for renewable energy using wood pellets from the southeastern United States

    DOE PAGES

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.; ...

    2017-04-20

    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less

  14. Status and prospects for renewable energy using wood pellets from the southeastern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Kline, Keith L.; Parish, Esther S.

    The ongoing debate about costs and benefits of wood-pellet based bioenergy production in the southeastern United States (SE USA) requires an understanding of the science and context influencing market decisions associated with its sustainability. Production of pellets has garnered much attention as US exports have grown from negligible amounts in the early 2000s to 4.6 million metric tonnes in 2015. Currently, 98% of these pellet exports are shipped to Europe to displace coal in power plants. We ask, 'How is the production of wood pellets in the SE USA affecting forest systems and the ecosystem services they provide?' To addressmore » this question, we review current forest conditions and the status of the wood products industry, how pellet production affects ecosystem services and biodiversity, and what methods are in place to monitor changes and protect vulnerable systems. Scientific studies provide evidence that wood pellets in the SE USA are a fraction of total forestry operations and can be produced while maintaining or improving forest ecosystem services. Ecosystem services are protected by the requirement to utilize loggers trained to apply scientifically based best management practices in planning and implementing harvest for the export market. Bioenergy markets supplement incomes to private rural landholders and provide an incentive for forest management practices that simultaneously benefit water quality and wildlife and reduce risk of fire and insect outbreaks. Bioenergy also increases the value of forest land to landowners, thereby decreasing likelihood of conversion to nonforest uses. Monitoring and evaluation are essential to verify that regulations and good practices are achieving goals and to enable timely responses if problems arise. Conducting rigorous research to understand how conditions change in response to management choices requires baseline data, monitoring, and appropriate reference scenarios. Furthermore, long-term monitoring data on forest conditions should be publicly accessible and utilized to inform adaptive management.« less

  15. Vegetation and non-native ungulate monitoring at the Big Island National Wildlife Refuge Complex 2010–2014.

    USGS Publications Warehouse

    Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.

    2015-01-01

    The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral cattle (Bos taurus) and pigs (Sus scrofa) and monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. We: 1) provide results from recent ungulate surveys at HFU to determine current feral pig abundance and distribution; 2) present results of surveys of ungulate presence and distribution at the Kona Forest Unit (KFU); 3) present results of surveys of weed presence and cover at both refuge units; and 4) present baseline results from long-term vegetation monitoring plots at KFU. Overall pig abundance appears to have decreased at HFU, although not significantly, over the period from 2010 to 2014. Management units 2 and 4 contained the majority of pigs at HFU. Pig density outside of adjacent managed areas has declined significantly from 2010 to 2014 for unknown reasons. Ungulate sign occurred in > 50% of plots at KFU during the November 2012 and September 2013 surveys, but ungulate sign occurred in < 28% of plots during three other surveys. The ability to differentiate sign of ungulate species remains problematic at KFU. Changes in weed cover do not yet demonstrate any strong temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers’ abilities to recognize less common weeds. Nonetheless, the distribution and cover of fireweed (Senecio madagascariensis) at KFU may have increased over the study period. Vegetation surveys documented baseline floristic composition and forest structure at KFU. It is not known if this current amount of emerging cover is sufficient for long-term self-sustaining forest canopy regeneration; however, numerous ‘ōhi‘a seedlings were found in the wet forest and mesic ‘ōhi‘a habitats, indicating an ample viable seed source and robust potential for forest regeneration.

  16. Potential effects of forest management on surface albedo

    NASA Astrophysics Data System (ADS)

    Otto, J.; Bréon, F.-M.; Schelhaas, M.-J.; Pinty, B.; Luyssaert, S.

    2012-04-01

    Currently 70% of the world's forests are managed and this figure is likely to rise due to population growth and increasing demand for wood based products. Forest management has been put forward by the Kyoto-Protocol as one of the key instruments in mitigating climate change. For temperate and boreal forests, the effects of forest management on the stand-level carbon balance are reasonably well understood, but the biophysical effects, for example through changes in the albedo, remain elusive. Following a modeling approach, we aim to quantify the variability in albedo that can be attributed to forest management through changes in canopy structure and density. The modelling approach chains three separate models: (1) a forest gap model to describe stand dynamics, (2) a Monte-Carlo model to estimate the probability density function of the optical path length of photons through the canopy and (3) a physically-based canopy transfer model to estimate the interaction between photons and leaves. The forest gap model provides, on a monthly time step the position, height, diameter, crown size and leaf area index of individual trees. The Monte-Carlo model computes from this the probability density function of the distance a photon travels through crown volumes to determine the direct light reaching the forest floor. This information is needed by the canopy transfer model to calculate the effective leaf area index - a quantity that allows it to correctly represent a 3D process with a 1D model. Outgoing radiation is calculated as the result of multiple processes involving the scattering due to the canopy layer and the forest floor. Finally, surface albedo is computed as the ratio between incident solar radiation and calculated outgoing radiation. The study used two time series representing thinning from below of a beech and a Scots pine forest. The results show a strong temporal evolution in albedo during stand establishment followed by a relatively stable albedo once the canopy is closed. During this period, albedo is affected for a short time by forest operations. The modelling approach allowed us to estimate the importance of ground vegetation in the stand albedo. Given that ground vegetation depends on the light reaching the forest floor, ground vegetation could act as a natural buffer to dampen changes in albedo, allowing the stand to maintain optimal leaf temperature. Consequently, accounting for only the carbon balance component of forest management ignores albedo impacts and is thus likely to yield biased estimates of the climate benefits of forest ecosystems.

  17. Forest management could counteract distribution retractions forced by climate change.

    PubMed

    Mair, Louise; Harrison, Philip J; Räty, Minna; Bärring, Lars; Strandberg, Gustav; Snäll, Tord

    2017-07-01

    Climate change is expected to drive the distribution retraction of northern species. However, particularly in regions with a history of intensive exploitation, changes in habitat management could facilitate distribution expansions counter to expectations under climate change. Here, we test the potential for future forest management to facilitate the southward expansion of an old-forest species from the boreal region into the boreo-nemoral region, contrary to expectations under climate change. We used an ensemble of species distribution models based on citizen science data to project the response of Phellinus ferrugineofuscus, a red-listed old-growth indicator, wood-decaying fungus, to six forest management and climate change scenarios. We projected change in habitat suitability across the boreal and boreo-nemoral regions of Sweden for the period 2020-2100. Scenarios varied in the proportion of forest set aside from production, the level of timber extraction, and the magnitude of climate change. Habitat suitabilities for the study species were projected to show larger relative increases over time in the boreo-nemoral region compared to the boreal region, under all scenarios. By 2100, mean suitabilities in set-aside forest in the boreo-nemoral region were similar to the suitabilities projected for set-aside forest in the boreal region in 2020, suggesting that occurrence in the boreo-nemoral region could be increased. However, across all scenarios, consistently higher projected suitabilities in set-aside forest in the boreal region indicated that the boreal region remained the species stronghold. Furthermore, negative effects of climate change were evident in the boreal region, and projections suggested that climatic changes may eventually counteract the positive effects of forest management in the boreo-nemoral region. Our results suggest that the current rarity of this old-growth indicator species in the boreo-nemoral region may be due to the history of intensive forestry. Forest management therefore has the potential to compensate for the negative effects of climate change. However, increased occurrence at the southern range edge would depend on the dispersal and colonization ability of the species. An increase in the amount of set-aside forest across both the boreal and boreo-nemoral regions is therefore likely to be required to prevent the decline of old-forest species under climate change. © 2017 by the Ecological Society of America.

  18. Estimating the carbon budget and maximizing future carbon uptake for a temperate forest region in the U.S.

    Treesearch

    Scott D. Peckham; Stith T. Gower; Joseph Buongiorno

    2012-01-01

    Forests of the Midwest U.S. provide numerous ecosystem services. Two of these, carbon sequestration and wood production, are often portrayed as conflicting. Currently, carbon management and biofuel policies are being developed to reduce atmospheric CO2 and national dependence on foreign oil, and increase carbon storage in ecosystems. However, the biological and...

  19. Biotic resistance to exotic invasions: its role in forest ecosystems, confounding artifacts, and future directions

    Treesearch

    Gabriela C. Nunez-Mir; Andrew M. Liebhold; Qinfeng Guo; Eckehard G. Brockerhoff; Insu Jo; Kimberly Ordonez; Songlin Fei

    2017-01-01

    Biotic resistance, the ability of communities to resist exotic invasions, has long attracted interest in the research and management communities. However, inconsistencies exist in various biotic resistance studies and less is known about the current status and knowledge gaps of biotic resistance in forest ecosystems. In this paper, we provide a brief review of the...

  20. The gypsy moth in the central hardwoods: research and management needs

    Treesearch

    Robert Lawrence; Susan Burks; Dennis Haugen; Marc Linit

    1997-01-01

    The gypsy moth, Lymantria dispar (L.), is the most serious insect defoliator of trees in the Eastern United States. It is currently established in the area northeast of a line from Michigan to Virginia, and occupies most of the Adirondack and Laurentian Mixed Forest Provinces dominated by northern hardwood, spruce and fir forests. The range of the...

  1. Variability in nest density, occupancy, and home range size of western bluebirds after forest treatments

    Treesearch

    Sarah Hurteau; Thomas Sisk; Brett Dickson; William Block

    2010-01-01

    Complex land use and fuels management histories have resulted in significant changes in composition, structure, and function of southwestern forests and subsequent changes in the extent and quality of wildlife habitats. We evaluated how several currently used fuel reduction treatments (e.g., mechanical thinning and prescribed fire alone and in combination) affect nest...

  2. Fuel treatment guidebook: illustrating treatment effects on fire hazard

    Treesearch

    Morris Johnson; David L. Peterson; Crystal Raymond

    2009-01-01

    The Guide to Fuel Treatments (Johnson and others 2007) analyzes potential fuel treatments and the potential effects of those treatments for dry forest lands in the Western United States. The guide examines low- to mid-elevation dry forest stands with high stem densities and heavy ladder fuels, which are currently common due to fire exclusion and various land management...

  3. Surface compaction estimates and soil sensitivity in Aspen stands of the Great Lakes States

    Treesearch

    Aaron Steber; Ken Brooks; Charles H. Perry; Randy Kolka

    2007-01-01

    Aspen forests in the Great Lakes States support much of the regional timber industry. Management-induced soil compaction is a concern because it affects forest health and productivity and soil erosion. Soil compaction increases bulk density and soil strength and can also decrease air and water movement into and through the soil profile. Currently, most inventories, and...

  4. Economic analysis of the gypsy moth problem in the northeast: I. applied to commercial forest stands

    Treesearch

    Roger E. McCay; William B. White

    1973-01-01

    A method of calculating immediate and future losses caused by the gypsy moth is presented, using examples of pulpwood and sawtimber stands. Discounting of future losses to evaluate their cost in terms of current expenditure is explained. The effect of infestation on forest management is discussed and a format is given for considering control decisions.

  5. Near real-time monitoring systems for adaptive management and improved forest governance

    NASA Astrophysics Data System (ADS)

    Musinsky, J.; Tabor, K.; Cano, A.

    2012-12-01

    The destruction and degradation of the world's forests from deforestation, illegal logging and fire has wide-ranging environmental and economic impacts, including biodiversity loss, the degradation of ecosystem services and the emission of greenhouse gases. In an effort to strengthen local capacity to respond to these threats, Conservation International has developed a suite of near real-time satellite monitoring systems generating daily alerts, maps and reports of forest fire, fire risk, deforestation and degradation that are used by national and sub-national government agencies, NGO's, scientists, communities, and the media to respond to and report on threats to forest resources. Currently, the systems support more than 1000 subscribers from 45 countries, focusing on Madagascar, Indonesia, Bolivia and Peru. This presentation will explore the types of innovative applications users have found for these data, challenges they've encountered in data acquisition and accuracy, and feedback they've given on the usefulness of these systems for REDD+ implementation, protected areas management and improved forest governance.;

  6. Novel and Lost Forests in the Upper Midwestern United States, from New Estimates of Settlement-Era Composition, Stem Density, and Biomass

    PubMed Central

    Mladenoff, David J.; Cogbill, Charles V.; Record, Sydne; Paciorek, Christopher J.; Jackson, Stephen T.; Dietze, Michael C.; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S.; Williams, John W.

    2016-01-01

    Background EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. Changes in Forest Structure We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management. PMID:27935944

  7. Forest carbon research in Inner Mongolia: current knowledge, opportunity and challenge

    NASA Astrophysics Data System (ADS)

    Shuyong, Li; Mei, Huang; Shenggong, Li

    2014-03-01

    Carbon storage in forests in Inner Mongolia Autonomous Region plays a significant role in the terrestrial carbon budget due to its largest forest coverage and forest growing stock among all the provinces in China. Nevertheless, scientific research on forest carbon is comparatively less as compared with the research on the main ecosystem, steppe in this area. We are still short of knowledge of forest carbon sequestration's rate, mechanism and potential in the area. Now we are conducting a research program aiming at making clear the above scientific issues. So knowing well previous research work and key findings is essential and helpful for our underway study. In this paper we reviewed the current knowledge, opportunity and challenges of forest carbon research in Inner Mongolia. The total carbon storage in forest of this region increased significantly from 0.417Pg carbon in 1949 to 0.719Pg carbon in 2008 with an annual increase of 2.842Tg~5.226Tg carbon and a dramatically increment of carbon storage in shrub. Carbon storage varied with dominant tree species, forest age and forest growth situation with an average forest carbon density of 42.68 t-C.hm-2, displaying a downtrend before 1980 and later a slow smooth uptrend. It is suggested that increase in vegetation carbon sequestration potential be achieved through selection of plant species and forest management.

  8. The nantucket pine tip moth (Lepidoptera: Torticidae): a literature review with management implications

    Treesearch

    Christopher Asaro; Christopher J. Fettig; Kenneth W. McCravy; John T. Nowak; C. Wayne Berisford

    2003-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock), an important pest of intensively-managed loblolly pine, Pinus taeda L., was first noted in the scientific literature in 1879. This pest gained notoriety with the establishment of loblolly pine monocultures throughout the southeastern United States during the 1950s. Current intensive forest management...

  9. Survey of Root and Shoot Cultural Practices for Hardwood Seedlings

    Treesearch

    Harry L. Vanderveer

    2005-01-01

    A telephone survey of selected forest seedling nursery managers was conducted in early 2004. About 2 dozen managers were contacted and asked to respond during a brief (15 to 30 minute) conversation about the current practices they employ to manage root and shoot growth of hardwood seedlings. The participants involved were evenly split between public agencies (...

  10. Aligning smoke management with ecological and public health goals

    Treesearch

    Jonathan W. Long; Leland W. Tarnay; Malcolm P. North

    2017-01-01

    Past and current forest management affects wildland fire smoke impacts on downwind human populations. However, mismatches between the scale of benefits and risks make it difficult to proactively manage wildland fires to promote both ecological and public health. Building on recent literature and advances in modeling smoke and health effects, we outline a framework to...

  11. Biological and Management Implications of Fire-Pathogen Interactions in the Giant Sequoia Ecosystem

    Treesearch

    Douglas D. Piirto; John R. Parmeter; Fields W. Cobb; Kevin L. Piper; Amy C. Workinger; William J. Otrosina

    1998-01-01

    An overriding management goal for national parks is the maintenance or, where necessary, the restoration of natural ecological processes. In Sequoia-Kings Canyon and Yosemite National Parks, there is concern about the effects of fire suppression on the giant sequoia-mixed conifer forest ecosystem. The National Park Service is currently using prescribed fire management...

  12. Fire history of a western Montana ponderosa pine grassland: A pilot study

    Treesearch

    Don V. Gayton; Marc H. Weber; Mick Harrington; Emily K. Heyerdahl; Elaine K. Sutherland; Bob Brett; Cindy Hall; Micahel Hartman; Liesl Peterson; Carolynne Merrel

    2006-01-01

    A primary goal in the management of forests and grasslands is to maintain community structure and disturbance processes within their historical range of variation. If, within a managed ecosystem, either is found to lie outside that range, restoration may be necessary. Both maintenance and restoration are currently guided by the principles of ecosystem management, which...

  13. Are current efforts sufficient to ensure healthy fish populations?

    Treesearch

    Bob Danehy; Andy Dolloff

    2013-01-01

    The maintenance and conservation of fish and wildlife populations in landscapes managed for timber production is a contemporary stewardship requirement and a challenge for forest managers. Best management practices (BMPs) have been developed to meet these challenges. Most BMPs were developed starting in the 1970s so the full impact and the success of those BMPs are not...

  14. Lewis and Clark National Forests Plan, Middle Fork Judith and Big Snowies wilderness study report, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-07-01

    A draft environmental impact statement (EPA No. 820505D) on a proposed land and resources management plan for 1.8 million acres of land in Montana describes the effects of increasing the development of forest resources and dispersed recreational activities and limiting oil and gas leases. The plan would increase employment and expand timber and grazing industries of the area, which would benefit economic growth and productivity. It would assure continuation of the current method for handling oil and gas leases. Negative impacts would result from a decline in forest and primitive camping capacity, a decrease in big game populations and huntingmore » opportunities, and their would be a loss of habitat. The Montana Wilderness Study Act of 1977, Forest Management Act of 1976, and Wilderness Act of 1964 require the impact study.« less

  15. Novel and Lost Forests in the Upper Midwestern United States, from New Estimates of Settlement-Era Composition, Stem Density, and Biomass.

    PubMed

    Goring, Simon J; Mladenoff, David J; Cogbill, Charles V; Record, Sydne; Paciorek, Christopher J; Jackson, Stephen T; Dietze, Michael C; Dawson, Andria; Matthes, Jaclyn Hatala; McLachlan, Jason S; Williams, John W

    2016-01-01

    EuroAmerican land-use and its legacies have transformed forest structure and composition across the United States (US). More accurate reconstructions of historical states are critical to understanding the processes governing past, current, and future forest dynamics. Here we present new gridded (8x8km) reconstructions of pre-settlement (1800s) forest composition and structure from the upper Midwestern US (Minnesota, Wisconsin, and most of Michigan), using 19th Century Public Land Survey System (PLSS), with estimates of relative composition, above-ground biomass, stem density, and basal area for 28 tree types. This mapping is more robust than past efforts, using spatially varying correction factors to accommodate sampling design, azimuthal censoring, and biases in tree selection. We compare pre-settlement to modern forests using US Forest Service Forest Inventory and Analysis (FIA) data to show the prevalence of lost forests (pre-settlement forests with no current analog), and novel forests (modern forests with no past analogs). Differences between pre-settlement and modern forests are spatially structured owing to differences in land-use impacts and accompanying ecological responses. Modern forests are more homogeneous, and ecotonal gradients are more diffuse today than in the past. Novel forest assemblages represent 28% of all FIA cells, and 28% of pre-settlement forests no longer exist in a modern context. Lost forests include tamarack forests in northeastern Minnesota, hemlock and cedar dominated forests in north-central Wisconsin and along the Upper Peninsula of Michigan, and elm, oak, basswood and ironwood forests along the forest-prairie boundary in south central Minnesota and eastern Wisconsin. Novel FIA forest assemblages are distributed evenly across the region, but novelty shows a strong relationship to spatial distance from remnant forests in the upper Midwest, with novelty predicted at between 20 to 60km from remnants, depending on historical forest type. The spatial relationships between remnant and novel forests, shifts in ecotone structure and the loss of historic forest types point to significant challenges for land managers if landscape restoration is a priority. The spatial signals of novelty and ecological change also point to potential challenges in using modern spatial distributions of species and communities and their relationship to underlying geophysical and climatic attributes in understanding potential responses to changing climate. The signal of human settlement on modern forests is broad, spatially varying and acts to homogenize modern forests relative to their historic counterparts, with significant implications for future management.

  16. Introduced species and management of a Nothofagus/Austrocedrus forest.

    PubMed

    Simberloff, Daniel; Relva, Maria Andrea; Nunez, Martin

    2003-02-01

    Isla Victoria (Nahuel Huapi National Park, Argentina), a large island dominated by native Nothofagus and Austrocedrus forest, has old plantations of many introduced tree species, some of which are famed invaders of native ecosystems elsewhere. There are also large populations of introduced deer and shrubs that may interact in a complex way with the introduced trees, as well as a recently arrived population of wild boar. Long-standing concern that the introduced trees will invade and transform native forest may be unwarranted, as there is little evidence of progressive invasion, even close to the plantations, despite over 50 years of opportunity. Introduced and native shrubs allow scattered introduced trees to achieve substantial size in abandoned pastures, but in almost all areas neither the trees nor the shrubs appear to be spreading beyond these sites. These shrub communities may be stable rather than successional, but the technology for restoring them to native forest is uncertain and probably currently impractical. Any attempt to remove the exotic tree seedlings and saplings from native forest would probably create the very conditions that would favor colonization by exotic plants rather than native trees, while simply clear-cutting the plantations would be unlikely to lead to regeneration of Nothofagus or Austrocedrus. The key to maintaining native forest is preventing catastrophic fire, as several introduced trees and shrubs would be favored over native dominant trees in recolonization. Deer undoubtedly interact with both native and introduced trees and shrubs, but their net effect on native forest is not yet clear, and specific management of deer beyond the current hunting by staff is unwarranted, at least if preventing tree invasion is the goal. The steep terrain and shallow soil make the recently arrived boar a grave threat to the native forest. Eradication is probably feasible and should be attempted quickly.

  17. Fire risk and adaptation strategies in Northern Eurasian forests

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry

    2013-04-01

    On-going climatic changes substantially accelerate current fire regimes in Northern Eurasian ecosystems, particularly in forests. During 1998-2012, wildfires enveloped on average ~10.5 M ha year-1 in Russia with a large annual variation (between 3 and 30 M ha) and average direct carbon emissions at ~150 Tg C year-1. Catastrophic fires, which envelope large areas, spread in usually incombustible wetlands, escape from control and provide extraordinary negative impacts on ecosystems, biodiversity, economics, infrastructure, environment, and health of population, become a typical feature of the current fire regimes. There are new evidences of correlation between catastrophic fires and large-scale climatic anomalies at a continental scale. While current climatic predictions suggest the dramatic warming (at the average at 6-7 °C for the country and up to 10-12°C in some northern continental regions), any substantial increase of summer precipitation does not expected. Increase of dryness and instability of climate will impact fire risk and severity of consequences. Current models suggest a 2-3 fold increase of the number of fires by the end of this century in the boreal zone. They predict increases of the number of catastrophic fires; a significant increase in the intensity of fire and amount of consumed fuel; synergies between different types of disturbances (outbreaks of insects, unregulated anthropogenic impacts); acceleration of composition of the gas emissions due to enhanced soil burning. If boreal forests would become a typing element, the mass mortality of trees would increase fire risk and severity. Permafrost melting and subsequent change of hydrological regimes very likely will lead to the degradation and destruction of boreal forests, as well as to the widespread irreversible replacement of forests by other underproductive vegetation types. A significant feedback between warming and escalating fire regimes is very probable in Russia and particularly in the permafrost areas. Overall, Russia should expect a disproportionate escalation of fire regimes compared to increasing climatic fire danger. Thus, development and implementation of an efficient adaptation strategy is a pressing problem of current forest management of the country. An appropriate system of forest fire protection which would be able to meet challenges of future climates is a corner stone of such a strategy. We consider possible systems solutions of this complex problem including (1) integrated ecological and socio-economic analysis of current and future fire regimes; (2) regional requirements to and specific features of a new paradigm of forest fire protection in the boreal zone of Northern Eurasia; (3) anticipatory strategy of the prevention of large-scale disturbances in forests, including adaptation of forest landscapes to the future climates (regulation of tree composition; setup of relevant spatial structure of forest landscapes; etc.); (4) implementation of an effective system of forest monitoring as part of integrated observing systems; (5) transition to ecologically-friendly systems of industrial development of northern territories; (6) development of new/ improvement of existing legislation and institutional frameworks of forest management which would be satisfactory to react on challenges of climate change; and (6) international cooperation.

  18. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates assessment of current and future consequences of a changing climate, emphasizes regional differences in biophysical factors, and points to linkages that may exist but that currently lack supporting research. The framework also serves as a visual tool for resource managers and policy makers to develop regional and global management strategies and to inform policies related to climate mitigation and adaptation.

  19. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    PubMed Central

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests was also affected by finer scale topographic conditions associated with sheltered sites. Past wildfires only had a small influence on current ALC density, which may be a result of long times since fire and/or prevalence of non-stand replacing fire. Our results indicate that forest ALC density depends on a suite of multi-scale environmental drivers mediated by complex mountain topography, and that these relationships are dependent on stand age. The high and context-dependent spatial variability of forest ALC density has implications for quantifying forest carbon stores, establishing upper bounds of potential carbon sequestration, and scaling field data to landscape and regional scales. PMID:27041818

  20. Holocene Vegetation and Fire Dynamics for Ecosystem Management in the Spruce-Moss Domain in Northwestern Québec

    NASA Astrophysics Data System (ADS)

    Andy, H.; Blarquez, O.; Grondin, P.

    2017-12-01

    Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.

  1. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking.

    PubMed

    Duchesne, Louis; Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km(2) of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha(-1), which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec's managed forests MSAC may increase by 20% by 2041-2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec's forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests.

  2. Ecology and management of commercially harvested chanterelle mushrooms.

    Treesearch

    David Pilz; Lorelei Norvell; Eric Danell; Randy Molina

    2003-01-01

    During the last two decades, the chanterelle mushroom harvest from Pacific Northwest forests has become a multimillion dollar industry, yet managers, harvesters, and scientists lack a current synthesis of information about chanterelles. We define chanterelles and then discuss North American species, their place among chanterelle species around the world, international...

  3. Desired future conditions for pinon-juniper ecosystems

    Treesearch

    Douglas W. Shaw; Earl. F. Aldon; Carol LoSapio

    1995-01-01

    The purpose of this symposium was to assist the USDA Forest Service, other federal land management agencies, and the Arizona State Land Office in managing pinon-juniper ecosystems in the Southwest. Authors assessed the current state of knowledge about the pinon-juniper resource and helped develop desired future conditions.

  4. Influence of forest and rangeland management on anadromous fish habitat in Western North America: effects of livestock grazing.

    Treesearch

    William S. Platts

    1981-01-01

    This paper documents current knowledge on interactions of livestock and fish habitat. Included are discussions of incompatibility and compatibility between livestock grazing and fisheries, present management guidelines, information needed for problem solving, information available for problem solving, and future research needs.

  5. Upland hardwood silviculture DVD

    Treesearch

    Claire Payne; Donna Burnett

    2010-01-01

    The Upland Hardwood Ecology and Management unit of the Southern Research Station offers a week-long course that provides practicing foresters with information about current silvicultural practices and emerging issues based on scientific research and applied techniques that affect managing upland hardwoods. This DVD captures the course that took place in July 2007....

  6. Linking landscape characteristics to mineral site use by band-tailed pigeons in Western Oregon: Coarse-filter conservation with fine-filter tuning

    USGS Publications Warehouse

    Overton, C.T.; Schmitz, R.A.; Casazza, Michael L.

    2006-01-01

    Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.

  7. Comparing Life-Cycle Carbon and Energy Impacts for Biofuel, Wood Product, and Forest Management

    Treesearch

    Bruce Lippke; Richard Gustafson; Richard Venditti; Philip Steele; Timothy A. Volk; Elaine Oneil; Leonard Johnson; Maureen E. Puettmann; Kenneth Skog

    2012-01-01

    The different uses of wood result in a hierarchy of carbon and energy impacts that can be characterized by their efficiency in displacing carbon emissions and/or in displacing fossil energy imports, both being current national objectives. When waste wood is used for biofuels (forest or mill residuals and thinnings) fossil fuels and their emissions are reduced without...

  8. Structuring institutional analysis for urban ecosystems: A key to sustainable urban forest management

    Treesearch

    Sarah K. Mincey; Miranda Hutten; Burnell C. Fischer; Tom P. Evans; Susan I. Stewart; Jessica M. Vogt

    2013-01-01

    A decline in urban forest structure and function in the United States jeopardizes the current focus on developing sustainable cities. A number of social dilemmas—for example, free-rider problems—restrict the sustainable production of ecosystem services and the stock of urban trees from which they flow. However, institutions, or the rules, norms, and strategies that...

  9. Review of fuel treatment effectiveness in forests and rangelands and a case study from the 2007 megafires in central, Idaho, USA

    Treesearch

    Andrew T. Hudak; Ian Rickert; Penelope Morgan; Eva Strand; Sarah A. Lewis; Peter R. Robichaud; Chad Hoffman; Zachary A. Holden

    2011-01-01

    This report provides managers with the current state of knowledge regarding the effectiveness of fuel treatments for mitigating severe wildfire effects. A literature review examines the effectiveness of fuel treatments that had been previously applied and were subsequently burned through by wildfire in forests and rangelands. A case study focuses on WUI fuel treatments...

  10. Using silvicultural practices to regulate competition, resource availability, and growing conditions for Pinus palustris seedlings underplanted in Pinus taeda forests

    Treesearch

    Benjamin O. Knapp; G. Geoff Wang; Joan L. Walker; Huifeng Hu

    2016-01-01

    In the southeastern United States, many forest managers are interested in restoring longleaf pine (Pinus palustris Mill.) to upland sites that currently support loblolly pine (Pinus taeda L.). We quantified the effects of four canopy treatments (uncut Control; MedBA, harvest to 9 m2·ha−1...

  11. Assessment of the potential of urban organic carbon dynamics to off-set urban anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.

    2010-12-01

    The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.

  12. Integrating spatial modeling, climate change scenarios, invasive species risk, and public perceptions to inform sustainable management in mixed hemlock-hardwood forests in Maine

    NASA Astrophysics Data System (ADS)

    Dunckel, Kathleen Lois

    Introduced invasive pests and climate change are perhaps the most important and persistent catalyst for changes in forest composition. Infestation and outbreak of the hemlock woolly adelgid (HWA, Adelges tsugae) along the eastern coast of the USA, has led to widespread loss of hemlock (Tsuga canadensis (L.) Carr.), and a shift in tree species composition towards hardwood stands. Maine's forest dominated landscape and position at the leading edge of the HWA invasion provides an excellent opportunity to inform sustainable forest management (SFM) practices by using spatially explicit models to predict current tree species distribution, future range shifts, and solicit broad based feedback from Maine residents about forest management goals and preferences. This paper describes an interdisciplinary study of the ecological and social implications of changes in mixed northern hardwood forests due to disturbance. A two stage mapping approach was used where presence/absence of eastern hemlock is predicted with an overall accuracy of 85% and the continuous distribution (% basal area) was predicted with an accuracy of 83%. Given the importance of climate variables in predicting eastern hemlock, forecasts of future range shifts are possible using data generated through climate scenarios. The NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset was used to model future shifts in the geographic range of eastern hemlock throughout the state of Maine. The results clearly describe a significant shift in eastern hemlock range with gains in total geographic area that is suitable habitat. Sustaining forest systems across the landscape requires not only ecological knowledge, but also the integration of multiple socio-economic criteria as well, including data obtained through broad-based public participation approaches. Here, 3000 Maine residents were surveyed and asked how they: (1) value local forests; (2) view forest management goals and threats to forest ecosystems; and (3) evaluate alternative treatment options for the control of invasive species - in this case, HWA. Results suggest that despite Maine's historic dependence on forest products, resident values regarding forests are complex and display agreement with both psycho-spiritual and anthropocentric motivations.

  13. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition.

    PubMed

    Janda, Pavel; Trotsiuk, Volodymyr; Mikoláš, Martin; Bače, Radek; Nagel, Thomas A; Seidl, Rupert; Seedre, Meelis; Morrissey, Robert C; Kucbel, Stanislav; Jaloviar, Peter; Jasík, Marián; Vysoký, Juraj; Šamonil, Pavel; Čada, Vojtěch; Mrhalová, Hana; Lábusová, Jana; Nováková, Markéta H; Rydval, Miloš; Matějů, Lenka; Svoboda, Miroslav

    2017-03-15

    In order to gauge ongoing and future changes to disturbance regimes, it is necessary to establish a solid baseline of historic disturbance patterns against which to evaluate these changes. Further, understanding how forest structure and composition respond to variation in past disturbances may provide insight into future resilience to climate-driven alterations of disturbance regimes. We established 184 plots (mostly 1000 m 2 ) in 14 primary mountain Norway spruce forests in the Western Carpathians. On each plot we surveyed live and dead trees and regeneration, and cored around 25 canopy trees. Disturbance history was reconstructed by examining individual tree growth trends. The study plots were further aggregated into five groups based on disturbance history (severity and timing) to evaluate and explain its influence on forest structure. These ecosystems are characterized by a mixed severity disturbance regime with high spatiotemporal variability in severity and frequency. However, periods of synchrony in disturbance activity were also found. Specifically, a peak of canopy disturbance was found for the mid-19th century across the region (about 60% of trees established), with the most important periods of disturbance in the 1820s and from the 1840s to the 1870s. Current stand size and age structure were strongly influenced by past disturbance activity. In contrast, past disturbances did not have a significant effect on current tree density, the amount of coarse woody debris, and regeneration. High mean densities of regeneration with height >50 cm (about 1400 individuals per ha) were observed. Extensive high severity disturbances have recently affected Central European forests, spurring a discussion about the causes and consequences. We found some evidence that forests in the Western Carpathians were predisposed to recent severe disturbance events as a result of synchronized past disturbance activity, which partly homogenized size and age structure and made recent stands more vulnerable to bark beetle outbreak. Our data suggest that these events are still part of the range of natural variability. The finding that regeneration density and volume of coarse woody debris were not influenced by past disturbance illustrates that vastly different past disturbance histories are not likely to change the future trajectories of these forests. These ecosystems currently have high ecological resilience to disturbance. In conclusion, we suggest that management should recognize disturbances as a natural part of ecosystem dynamics in the mountain forests of Central Europe, account for their stochastic occurrence in management planning, and mimic their patterns to foster biodiversity in forest landscapes.

  14. Long-term response of yellow-poplar to thinning in the southern Appalachian Mountains

    Treesearch

    Tara L. Keyser; Peter M. Brown

    2014-01-01

    As the focus of forest management on many public lands shifts away from timber production and extraction to habitat, restoration, and diversity-related objectives, it is important to understand the long-term effects that previous management activities have on structure and composition to better inform current management decisions. In this paper, we analyzed 40 years of...

  15. 25 CFR 163.11 - Forest management planning and sustained yield management.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... GENERAL FORESTRY REGULATIONS Forest Management and Operations § 163.11 Forest management planning and... 25 Indians 1 2011-04-01 2011-04-01 false Forest management planning and sustained yield management... management planning for Indian forest land shall be carried out through participation in the development and...

  16. Spatially quantifying and attributing 17 years of land cover change to examine post-agricultural forest transition in Hawai`i

    NASA Astrophysics Data System (ADS)

    Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.

    2017-12-01

    The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These results directly link land management history to land cover outcomes using an innovative approach to quantify change. It is also the first study to quantify forest transition dynamics in Hawaii and points to the need for similar assessments in post-agricultural landscapes on other oceanic islands.

  17. Linking Attitudes, Policy, and Forest Cover Change in Buffer Zone Communities of Chitwan National Park, Nepal

    NASA Astrophysics Data System (ADS)

    Stapp, Jared R.; Lilieholm, Robert J.; Leahy, Jessica; Upadhaya, Suraj

    2016-06-01

    Deforestation in Nepal threatens the functioning of complex social-ecological systems, including rural populations that depend on forests for subsistence, as well as Nepal's biodiversity and other ecosystem services. Nepal's forests are particularly important to the nation's poorest inhabitants, as many depend upon them for daily survival. Two-thirds of Nepal's population relies on forests for sustenance, and these pressures are likely to increase in the future. This, coupled with high population densities and growth rates, highlights the importance of studying the relationship between human communities, forest cover trends through time, and forest management institutions. Here, we used surveys to explore how household attitudes associated with conservation-related behaviors in two rural communities—one that has experienced significant forest loss, and the other forest gain—compare with forest cover trends as indicated by satellite-derived forest-loss and -regeneration estimates between 2005 and 2013. Results found a significant difference in attitudes in the two areas, perhaps contributing to and reacting from current forest conditions. In both study sites, participation in community forestry strengthened support for conservation, forest conservation-related attitudes aligned with forest cover trends, and a negative relationship was found between economic status and having supportive forest conservation-related attitudes. In addition, on average, respondents were not satisfied with their district forest officers and did not feel that the current political climate in Nepal supported sustainable forestry. These findings are important as Nepal's Master Plan for the Forestry Sector has expired and the country is in the process of structuring a new Forestry Sector Strategy.

  18. Linking Attitudes, Policy, and Forest Cover Change in Buffer Zone Communities of Chitwan National Park, Nepal.

    PubMed

    Stapp, Jared R; Lilieholm, Robert J; Leahy, Jessica; Upadhaya, Suraj

    2016-06-01

    Deforestation in Nepal threatens the functioning of complex social-ecological systems, including rural populations that depend on forests for subsistence, as well as Nepal's biodiversity and other ecosystem services. Nepal's forests are particularly important to the nation's poorest inhabitants, as many depend upon them for daily survival. Two-thirds of Nepal's population relies on forests for sustenance, and these pressures are likely to increase in the future. This, coupled with high population densities and growth rates, highlights the importance of studying the relationship between human communities, forest cover trends through time, and forest management institutions. Here, we used surveys to explore how household attitudes associated with conservation-related behaviors in two rural communities-one that has experienced significant forest loss, and the other forest gain-compare with forest cover trends as indicated by satellite-derived forest-loss and -regeneration estimates between 2005 and 2013. Results found a significant difference in attitudes in the two areas, perhaps contributing to and reacting from current forest conditions. In both study sites, participation in community forestry strengthened support for conservation, forest conservation-related attitudes aligned with forest cover trends, and a negative relationship was found between economic status and having supportive forest conservation-related attitudes. In addition, on average, respondents were not satisfied with their district forest officers and did not feel that the current political climate in Nepal supported sustainable forestry. These findings are important as Nepal's Master Plan for the Forestry Sector has expired and the country is in the process of structuring a new Forestry Sector Strategy.

  19. Managing pinon-juniper ecosystems for sustainability and social needs; proceedings of the symposium 1993 April 26-30; Sante Fe, New Mexico

    Treesearch

    Earl F. Aldon; Douglas W. Shaw

    1993-01-01

    The purpose of this symposium was to assist the USDA Forest Service, other federal land management agencies, and the New Mexico State Land Office in the future development and management of the pinon-juniper ecosystem in the Southwest. Authors assessed the current state of knowledge about the pinon-juniper resource and helped develop future research and management...

  20. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Gasser, J.; Smoot, J.; Kuper, P.

    2011-12-01

    This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of a web-based national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. The FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each of our forest change products in FCAV is based on current versus historical 24 day composites of NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI for a given 24 day period. Change products are computed according to previous year, previous 3 year and previous 8 year historical baselines. The use of multiple baselines enables apparent forest disturbance anomalies to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service constructed and maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to view and monitor forest hazards at regional scales throughout the year and across the nation.

  1. Selective Cutting Impact on Carbon Storage in Fremont-Winema National Forest, Oregon

    NASA Astrophysics Data System (ADS)

    Huybrechts, C.; Cleve, C. T.

    2004-12-01

    Management personnel of the Fremont-Winema National Forest in southern Oregon were interested in investigating how selective cutting or fuel load reduction treatments affect forest carbon sinks and as an ancillary product, fire risk. This study was constructed with the objective of providing this information to the forest administrators, as well as to satisfy a directive to study carbon management, a component of the 2004 NASA's Application Division Program Plan. During the summer of 2004, a request for decision support tools by the forest management was addressed by a NASA sponsored student-led, student-run internship group called DEVELOP. This full-time10-week program was designed to be an introduction to work done by earth scientists, professional business / client relationships and the facilities available at NASA Ames. Four college and graduate students from varying educational backgrounds designed the study and implementation plan. The team collected data for five consecutive days in Oregon throughout the Fremont-Winema forest and the surrounding terrain, consisting of soil sampling for underground carbon dynamics, fire model and vegetation map validation. The goal of the carbon management component of the project was to model current carbon levels, then to gauge the effect of fuel load reduction treatments. To study carbon dynamics, MODIS derived fraction photosynthetically active radiation (FPAR) maps, regional climate data, and Landsat 5 generated dominant vegetation species and land cover maps were used in conjunction with the NASA - Carnegie-Ames-Stanford-Approach (CASA) model. To address fire risk the dominant vegetation species map was used to estimate fuel load based on species biomass in conjunction with a mosaic of digital elevation models (DEMs) as components to the creation of an Anderson-inspired fuel map, a rate of spread in meters/minute map and a flame length map using ArcMap 9 and FlamMap. Fire risk results are to be viewed qualitatively as maps output spatial distribution of data rather then quantitative assessment of risk. For the first time ever, the resource managers at the Fremont-Winema forest will be taking into consideration the value of carbon as a resource in their decision making process for the 2005 Fremont-Winema forest management plan.

  2. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have implications for the connection between current wetland management practices and the goals of wetland stewardship and conservation of wetland-dependent species.

  3. Nest survival of forest birds in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Twedt, D.J.; Wilson, R.R.; Henne-Kerr, J.L.; Hamilton, R.B.

    2001-01-01

    In the Mississippi Alluvial Valley, flood control has led to a drastic reduction in the area of forest habitat and altered the patchwork of forest cover types. Silvicultural management of the remaining fragmented forests has changed to reflect the altered hydrology of the forests, current economic conditions of the area, and demand for forest products. Because forest type and silvicultural management impact forest birds, differences in avian productivity within these forests directly impact bird conservation. To assist in conservation planning, we evaluated daily nest survival, nest predation rates, and brood parasitism rates of forest birds in relation to different forest cover types and silvicultural management strategies within this floodplain. Within bottomland hardwood forests, nest success of blue-gray gnatcatcher (Polioptila caerulea, 13%), eastern towhee (Pipilo erythrophthalmus, 28%), indigo bunting (Passerina cyanea, 18%), northern cardinal (Cardinalis cardinalis, 22%), and yellow-billed cuckoo (Coccyzus americanus, 18%) did not differ from that within intensively managed cottonwood plantations. However, average daily survival of 542 open-cup nests of 19 bird species in bottomland hardwoods (0.9516 + 0.0028, -27% nest success) was greater than that of 543 nests of 18 species in cotlonwood plantations (0.9298 + 0.0035, -15% nest success). Differences in daily nest survival rates likely resulted from a combination of differences in the predator community--particularly fire ants (Solenopsis invicta)--and a marked difference in species composition of birds breeding within these 2 forest types. At least 39% of nests in bottomland hardwood forests and 65% of nests in cottonwood plantations were depredated. Rates of parasitism by brown-headed cowbirds (Molothrus ater) were greater in managed cottonwoods (24%) than in bottomland hardwoods (9%). Nest success in planted cottonwood plantations for 18 species combined (-14%), and for yellow-breasted chat (Icteria vimns, 7%), eastern towhee (14%), indigo bunting (14%), and northern cardinal (17%) did not differ from nest success in cottonwood plantations that were coppiced from root sprouts following pulpwood harvest. Within bottomland hardwood forests, uneven-aged group-selection timber harvest reduced the combined daily nest survival of all species from 0.958 to 0.938, which reduced nest success by about 14%. Specifically, timber harvest reduced nest success of species that nest in the forest midstory and canopy, such as Acadian flycatcher (Empidonax virescens)--from 32% before harvest to 14% after harvest. Conversely, those species that nest primarily in the shrubby understory--such as northern cardinal--were not affected by timber harvest and maintained an overall nest success of about 33%. Thus, birds nesting in the understory of bottomland hardwood forests are not adversely impacted by selective timber harvest, but there is a short-term reduction in nest success for birds that nest in the canopy and midstory.

  4. Lesser used species of Bolivia and their relevance to sustainable forest management

    Treesearch

    Marc Barany; A. L. Hammett; Philip A. Araman

    2003-01-01

    Bolivia has extensive forest resources and potential to become one of the world’s largest producers of tropical wood. However, this potential is currently constrained due to the depletion of Bolivia’s top commercial timber species (mahogany, Spanish cedar, and South American oak). To insure that Bolivia’s forestry sector contributes to the growth of the national...

  5. Parameterization of the 3-PG model for Pinus elliottii stands using alternative methods to estimate fertility rating, biomass partitioning and canopy closure

    Treesearch

    Carlos A. Gonzalez-Benecke; Eric J. Jokela; Wendell P. Cropper; Rosvel Bracho; Daniel J. Leduc

    2014-01-01

    The forest simulation model, 3-PG, has been widely applied as a useful tool for predicting growth of forest species in many countries. The model has the capability to estimate the effects of management, climate and site characteristics on many stand attributes using easily available data. Currently, there is an increasing interest in estimating biomass and assessing...

  6. Contribution of Near Real Time MODIS-Based Forest Disturbance Detection Products to a National Forest Threat Early Warning System

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Glasser, Jerry; Kuper, Philip D.

    2011-01-01

    This presentation discusses an effort to compute and post weekly MODIS forest change products for the conterminous US (CONUS), as part of national forest threat early warning system (EWS) known as the U.S. Forest Change Assessment Viewer (FCAV). The US Forest Service, NASA, USGS, and ORNL are working collaboratively to contribute weekly change products to this EWS. Large acreages of the nation's forests are being disturbed by a growing multitude of biotic and abiotic threats that can act either singularly or in combination. When common at regional scales, such disturbances can pose hazards and threats to floral and faunal bio-diversity, ecosystem sustainability, ecosystem services, and human settlements across the conterminous US. Regionally evident forest disturbances range from ephemeral periodic canopy defoliation to stand replacement mortality events due to insects, disease, fire, hurricanes, tornadoes, ice, hail, and drought. Mandated by the Healthy Forest Restoration Act of 2003, this forest threat EWS has been actively developed since 2006 and on-line since 2010. This FCAV system employs 250-meter MODIS NDVI-based forest change products as a key element of the system, providing regional and CONUS scale products in near real time every 8 days. Each forest change product in FCAV is based on current versus historical 24 day composite NDVI data gridded at 231.66 meter resolution. Current NDVI is derived from USGS eMODIS expedited products. MOD13 NDVI is used for constructing historical baselines. CONUS change products are computed for all forests as % change in the current versus historical NDVI. Change products are computed according to previous year, previous 3 years and previous 8 year historical baselines. The use of multiple baselines enables disturbance anomaly phenology to be more fully assessed. CONUS forest change products are posted each week on the FCAV, a web mapping service maintained by the National Environmental Modeling and Analysis Center. The FCAV EWS has been used to aid multiple Federal and State agency forest management activities, including aerial disturbance detection surveys, as well as rapid response preliminary assessments of timber loss due to tornadoes, regional drought studies, and fire damage assessments. The FCAV allows end-users to assess the context of apparent forest vegetation change with respect to ancillary data, such as land cover, topography, hydrology, climate variables, and administrative boundaries. Such change products are being evaluated through case studies involving comparison with higher spatial resolution satellite, aerial, and field data. The presentation will include multiple examples in which regionally evident forest disturbances were successfully detected and monitored with the MODIS-based change products, as part of the FCAV. FCAV's MODIS forest change products enable end-users (e.g., resource managers) to monitor forest hazards at regional scales throughout the year and across the nation.

  7. Current state and prospects of carbon management in high latitudes of Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Schepaschenko, Dmitry; Shvidenko, Anatoly

    2010-05-01

    The current state and trajectories of future development of natural landscapes in high latitudes of Northern Eurasia are defined inter alia by (1) current unsatisfactory social and economic situation in boreal Northern Eurasia; (2) the dramatic magnitude of on-going and expected climatic change (warming up to 10-12oC under global warming at 4oC); (3) increasing anthropogenic pressure, particularly in regions of intensive oil and gas exploration and extraction; (4) large areas of sparsely populated and practically unmanaged land; (5) vulnerability of northern ecosystems which historically developed under cold climates and buffering capacity of which is not well known; (6) risk of catastrophic natural disturbances (fire, insect outbreaks) whose frequency and severity have accelerated during recent decades; and (7) high probability of irreversible changes of vegetation cover. These specifics are overlapped with insufficient governance of natural renewable resources (e.g., forests) and destructed practice of industrial development of new territories (oil and gas extraction and exploration, metallurgy etc.). Based on a full carbon account for terrestrial vegetation ecosystems of Northern Eurasia, we analyze the relative impacts of major drivers on magnitude and uncertainty of the Net Ecosystem Carbon Balance (NECB) under current and expected climate and environment. Dynamic trends and interannual variability of NECB are mostly dependent on weather conditions during growth seasons of individual years, regimes of natural disturbances, and anthropogenic impacts on ecosystems. In a short term, disturbances and human impacts cause a theoretically 'manageable' part of the full carbon account, which on average is estimated to be of about 20% of annual net primary production. In a long term, thawing of permafrost and change of hydrological regimes of vast territories may result in a catastrophic decline of the forested area and wide distribution of 'green desertification'. The paradigm of sustainable forest management (SFM) is a cornerstone of integrated landscape management in boreal regions and a basic prerequisite of proper management of the terrestrial carbon cycle. Basic drivers which generate major threats for terrestrial ecosystems and particularly for forests are increasing aridity of climate over major part of Asian Russia (the trend already clearly observed during the last 50 years), intra-seasonal variability of weather and irreversible changes of the hydrological regime. Development of an efficient system of forest protection is a crucial prerequisite. Current fire protection requires principal improvement of all its components (monitoring; technical and financial capacity; education of population; etc). Preparation of boreal landscape structure against the increasing threat of catastrophic fire is an urgent today's problem. However, transition to SFM is hindered by economic stagnation of vast territories (outside of areas of intensively exploited natural resources) and unsatisfactory demographic processes. Introduction of ecologically friendly methods of industrial development and integrated land management on a landscape basis is one of the very few ways to introduce proper carbon management in the region. A number of socio-economic and land use - land cover scenarios for such development indicate the existence of possible methods to do so if appropriate national policies will be developed and implemented.

  8. Throughfall Monitoring Of Old Growth, Second Growth, And Cleared Vegetation Plots On Prince of Wales Island, Alaska

    NASA Astrophysics Data System (ADS)

    Prussian, K. M.

    2006-12-01

    The density of forest canopy affects the amount of rain reaching the forest floor in forested environments of Southeast Alaska. Less throughfall occurs in the second growth sites than in the old growth site and greater throughfall occurs in the clear-cut sites. More specifically, preliminary data show that SG sites received between 38 and 87% of the OG throughfall and the clear-cut sites experienced between 145 and 248% of the OG throughfall. Precipitation gages were used to monitor throughfall in each of the forested vegetation sites on Prince of Wales Island, Alaska, as an indicator of the amount of water reaching the forest floor in these different forest types. Data collected during 2004 and 2005 included 23 storms ranging from 0.2 to 10.6 inches of rain in the clear-cut forest. This monitoring is an effort to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. Site selection focused on similarities in location, elevation, aspect, and accessibility while accounting for the three varying vegetation conditions. Data collected during 2004 and 2005 sampling seasons were in the same sampling plots, while data collected in 2006 is a duplicate set of sites. Twenty-three storms were used to determine the affect, if any, that forest management could have on throughfall, and furthermore, lend information to forest management effects on the water balance within a watershed. The second growth stand was harvested in 1979 and is currently in stem re-initiation phase with thick conifer regeneration. The clear-cut site was harvested in 1999 and contains conifer vegetation, blueberry, and salmonberry vegetation less than five feet in height. Storms were defined as events that were clearly delineated by lack of rainfall for a period of time, or similar antecedent conditions, and totaled at least .2 inches of rain at the CC site. Analysis of a storm event began prior to rainfall (in the CC site) and terminated post throughfall in the SG sites.

  9. Fire ecology and management of the major ecosystems of southern Utah

    Treesearch

    Sharon M. Hood; Melanie Miller

    2007-01-01

    This document provides managers with a literature synthesis of the historical conditions, current conditions, fire regime condition classes (FRCC), and recommended treatments for the major ecosystems in southern Utah. Sections are by ecosystems and include: 1) coniferous forests (ponderosa pine, mixed conifer, and Engelmann spruce-subalpine fir), 2) aspen, 3) pinyon-...

  10. Industrial operations and current land use.

    Treesearch

    John I. Blake; John J. Mayer; John C. Kilgo

    2005-01-01

    The management of natural resources at the Savannah River Site (SRS) has been variously executed over the years to meet conservation and restoration objectives, to provide research and educational opportunities, and to generate revenue from the sale of forest products. However, these management activities have been implemented under the constraints imposed by the Site...

  11. Status and potential of terrestrial carbon sequestration in West Virginia

    Treesearch

    Benktesh D. Sharma; Jingxin Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  12. Proceedings: national workshop on recreation research and management.

    Treesearch

    Linda E. Kruger; Rhonda Mazza; Kelly Lawrence

    2007-01-01

    Given increasing need and decreasing capacity, the Forest Service outdoor recreation research program must strategize how best to address current and future priorities. The papers compiled here were presented at the National Workshop on Recreation Research and Management held in Portland, Oregon, February 8-10, 2005. Papers are organized around four themes:...

  13. The U.S. Forest Service's analysis of cumulative effects to wildlife: A study of legal standards, current practice, and ongoing challenges on a National Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Courtney A., E-mail: courtney.schultz@colostate.edu

    Cumulative effects analysis (CEA) allows natural resource managers to understand the status of resources in historical context, learn from past management actions, and adapt future activities accordingly. U.S. federal agencies are required to complete CEA as part of environmental impact assessment under the National Environmental Policy Act (NEPA). Past research on CEA as part of NEPA has identified significant deficiencies in CEA practice, suggested methodologies for handling difficult aspects of CEA, and analyzed the rise in litigation over CEA in U.S. courts. This article provides a review of the literature and legal standards related to CEA as it is donemore » under NEPA and then examines current practice on a U.S. National Forest, utilizing qualitative methods in order to provide a detailed understanding of current approaches to CEA. Research objectives were to understand current practice, investigate ongoing challenges, and identify impediments to improvement. Methods included a systematic review of a set of NEPA documents and semi-structured interviews with practitioners, scientists, and members of the public. Findings indicate that the primary challenges associated with CEA include: issues of both geographic and temporal scale of analysis, confusion over the purpose of the requirement, the lack of monitoring data, and problems coordinating and disseminating data. Improved monitoring strategies and programmatic analyses could support improved CEA practice.« less

  14. Plant management and biodiversity conservation in Náhuatl homegardens of the Tehuacán Valley, Mexico.

    PubMed

    Larios, Carolina; Casas, Alejandro; Vallejo, Mariana; Moreno-Calles, Ana Isabel; Blancas, José

    2013-11-06

    The Tehuacán Valley is one of the areas of Mesoamerica with the oldest history of plant management. Homegardens are among the most ancient management systems that currently provide economic benefits to people and are reservoirs of native biodiversity. Previous studies estimated that 30% of the plant richness of homegardens of the region are native plant species from wild populations. We studied in Náhuatl communities the proportion of native plant species maintained in homegardens, hypothesizing to find a proportion similar to that estimated at regional level, mainly plant resources maintained for edible, medicinal and ornamental purposes. We analysed the composition of plant species of homegardens and their similarity with surrounding Cloud Forest (CF), Tropical Rainforest (TRF), Tropical Dry forest (TDF), and Thorn-Scrub Forest (TSF). We determined density, frequency and biomass of plant species composing homegardens and forests through vegetation sampling of a total of 30 homegardens and nine plots of forests, and documented ethnobotanical information on use, management, and economic benefits from plants maintained in homegardens. A total of 281 plant species was recorded with 12 use categories, 115 ornamental, 92 edible, and 50 medicinal plant species. We recorded 49.8 ± 23.2 (average ± S.D.) woody plant species (shrubs and trees) per homegarden. In total, 34% species are native to the Tehuacán Valley and nearly 16% are components of the surrounding forests. A total of 176 species were cultivated through seeds, vegetative propagules or transplanted entire individual plants, 71 tolerated, and 23 enhanced. The highest species richness and diversity were recorded in homegardens from the CF zone (199 species), followed by those from the TRF (157) and those from the TDF (141) zones. Homegardens provide a high diversity of resources for subsistence of local households and significantly contribute to conservation of native biodiversity. The highest diversity was recorded in homegardens where the neighbouring forests had the least diversity, suggesting that management of homegardens aims at compensating scarcity of naturally available plant resources. Cultivated species were markedly more abundant than plants under other management forms. Diversity harboured and management techniques make homegardens keystones in strategies for regional biodiversity conservation.

  15. 76 FR 9537 - Sequoia National Forest; California; Piute Mountains Travel Management Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... camping, hunting, sightseeing, horseback riding, hiking, rock climbing, rock hounding, and vegetation and... providing benefits equal to or better than the current condition. Alternatives being considered at this time...

  16. Estimation and modeling of forest attributes across large spatial scales using BiomeBGC, high-resolution imagery, LiDAR data, and inventory data

    NASA Astrophysics Data System (ADS)

    Golinkoff, Jordan Seth

    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.

  17. Comparison of USDA Forest Service and Stakeholder Motivations and Experiences in Collaborative Federal Forest Governance in the Western United States

    NASA Astrophysics Data System (ADS)

    Davis, Emily Jane; White, Eric M.; Cerveny, Lee K.; Seesholtz, David; Nuss, Meagan L.; Ulrich, Donald R.

    2017-11-01

    In the United States, over 191 million acres of land is managed by the United States Department of Agriculture Forest Service, a federal government agency. In several western U.S. states, organized collaborative groups have become a de facto governance approach to providing sustained input on management decisions on much public land. This is most extensive in Oregon, where at least 25 "forest collaboratives" currently exist. This affords excellent opportunities for studies of many common themes in collaborative governance, including trust, shared values, and perceptions of success. We undertook a statewide survey of participants in Oregon forest collaboratives to examine differences in motivations, perceptions of success, and satisfaction among Forest Service participants ("agency participants"), who made up 31% of the sample, and other respondents ("non-agency") who represent nonfederal agencies, interest groups, citizens, and non-governmental groups. We found that agency participants differed from non-agency participants. They typically had higher annual incomes, and were primarily motivated to participate to build trust. However, a majority of all respondents were similar in not indicating any other social or economic motivations as their primary reason for collaborating. A majority also reported satisfaction with their collaborative—despite not ranking collaborative performance on a number of specific potential outcomes highly. Together, this suggests that collaboration in Oregon is currently perceived as successful despite not achieving many specific outcomes. Yet there were significant differences in socioeconomic status and motivation that could affect the ability of agency and nonagency participants to develop and achieve mutually-desired goals.

  18. Comparison of USDA Forest Service and Stakeholder Motivations and Experiences in Collaborative Federal Forest Governance in the Western United States.

    PubMed

    Davis, Emily Jane; White, Eric M; Cerveny, Lee K; Seesholtz, David; Nuss, Meagan L; Ulrich, Donald R

    2017-11-01

    In the United States, over 191 million acres of land is managed by the United States Department of Agriculture Forest Service, a federal government agency. In several western U.S. states, organized collaborative groups have become a de facto governance approach to providing sustained input on management decisions on much public land. This is most extensive in Oregon, where at least 25 "forest collaboratives" currently exist. This affords excellent opportunities for studies of many common themes in collaborative governance, including trust, shared values, and perceptions of success. We undertook a statewide survey of participants in Oregon forest collaboratives to examine differences in motivations, perceptions of success, and satisfaction among Forest Service participants ("agency participants"), who made up 31% of the sample, and other respondents ("non-agency") who represent nonfederal agencies, interest groups, citizens, and non-governmental groups. We found that agency participants differed from non-agency participants. They typically had higher annual incomes, and were primarily motivated to participate to build trust. However, a majority of all respondents were similar in not indicating any other social or economic motivations as their primary reason for collaborating. A majority also reported satisfaction with their collaborative-despite not ranking collaborative performance on a number of specific potential outcomes highly. Together, this suggests that collaboration in Oregon is currently perceived as successful despite not achieving many specific outcomes. Yet there were significant differences in socioeconomic status and motivation that could affect the ability of agency and nonagency participants to develop and achieve mutually-desired goals.

  19. Assessment of Peruvian biofuel resources and alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regionalmore » production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.« less

  20. Resilience landscapes for Congo basin rainforests vs. climate and management impacts

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan Alexander; Gautam, Sishir; Elias Bednar, Johannes; Stanzl, Patrick; Mosnier, Aline; Obersteiner, Michael

    2015-04-01

    Past climate change caused severe disturbances of the Central African rainforest belt, with forest fragmentation and re-expansion due to drier and wetter climate conditions. Besides climate, human induced forest degradation affected biodiversity, structure and carbon storage of Congo basin rainforests. Information on climatically stable, mature rainforest, unaffected by human induced disturbances, provides means of assessing the impact of forest degradation and may serve as benchmarks of carbon carrying capacity over regions with similar site and climate conditions. BioGeoChemical (BGC) ecosystem models explicitly consider the impacts of site and climate conditions and may assess benchmark levels over regions devoid of undisturbed conditions. We will present a BGC-model validation for the Western Congolian Lowland Rainforest (WCLRF) using field data from a recently confirmed forest refuge, show model - data comparisons for disturbed und undisturbed forests under different site and climate conditions as well as for sites with repeated assessment of biodiversity and standing biomass during recovery from intensive exploitation. We will present climatic thresholds for WCLRF stability, and construct resilience landscapes for current day conditions vs. climate and management impacts.

  1. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus)

    USGS Publications Warehouse

    Margolis, Ellis; Malevich, Steven B.

    2016-01-01

    Anthropogenic alteration of ecosystem processes confounds forest management and conservation of rare, declining species. Restoration of forest structure and fire hazard reduction are central goals of forest management policy in the western United States, but restoration priorities and treatments have become increasingly contentious. Numerous studies have documented changes in fire regimes, forest stand structure and species composition following a century of fire exclusion in dry, frequent-fire forests of the western U.S. (e.g., ponderosa pine and dry mixed-conifer). In contrast, wet mixed-conifer forests are thought to have historically burned infrequently with mixed- or high-severity fire—resulting in reduced impacts from fire exclusion and low restoration need—but data are limited. In this study we quantified the current forest habitat of the federally endangered, terrestrial Jemez Mountains salamander (Plethodon neomexicanus) and compared it to dendroecological reconstructions of historical habitat (e.g., stand structure and composition), and fire regime parameters along a gradient from upper ponderosa pine to wet mixed-conifer forests. We found that current fire-free intervals in Jemez Mountains salamander habitat (116–165 years) are significantly longer than historical intervals, even in wet mixed-conifer forests. Historical mean fire intervals ranged from 10 to 42 years along the forest gradient. Low-severity fires were historically dominant across all forest types (92 of 102 fires). Although some mixed- or highseverity fire historically occurred at 67% of the plots over the last four centuries, complete mortality within 1.0 ha plots was rare, and asynchronous within and among sites. Climate was an important driver of temporal variability in fire severity, such that mixed- and high-severity fires were associated with more extreme drought than low-severity fires. Tree density in dry conifer forests historically ranged from open (90 trees/ha) to moderately dense (400 trees/ha), but has doubled on average since fire exclusion. Infill of fire-sensitive tree species has contributed to the conversion of historically dry mixedconifer to wet mixed-conifer forest. We conclude that low-severity fire, which has been absent for over a century, was a critical ecosystem process across the forest gradient in Jemez Mountains salamander habitat, and thus is an important element of ecosystem restoration, resilience, and rare species recovery.

  2. Missouri Ozark Forest Ecosystem Project: the experiment

    Treesearch

    Steven L. Sheriff

    2002-01-01

    Missouri Ozark Forest Ecosystem Project (MOFEP) is a unique experiment to learn about the impacts of management practices on a forest system. Three forest management practices (uneven-aged management, even-aged management, and no-harvest management) as practiced by the Missouri Department of Conservation were randomly assigned to nine forest management sites using a...

  3. Seeing the future impacts of climate change and forest management: a landscape visualization system for forest managers

    Treesearch

    Eric J. Gustafson; Melissa Lucash; Johannes Liem; Helen Jenny; Rob Scheller; Kelly Barrett; Brian R. Sturtevant

    2016-01-01

    Forest managers are increasingly considering how climate change may alter forests' capacity to provide ecosystem goods and services. But identifying potential climate change effects on forests is difficult because interactions among forest growth and mortality, climate change, management, and disturbances are complex and uncertain. Although forest landscape models...

  4. Mapping discourses using Q methodology in Matang Mangrove Forest, Malaysia.

    PubMed

    Hugé, Jean; Vande Velde, Katherine; Benitez-Capistros, Francisco; Japay, Jan Harold; Satyanarayana, Behara; Nazrin Ishak, Mohammad; Quispe-Zuniga, Melissa; Mohd Lokman, Bin Husain; Sulong, Ibrahim; Koedam, Nico; Dahdouh-Guebas, Farid

    2016-12-01

    The sustainable management of natural resources requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts do manage natural resources in a particular way is needed. Focusing on mangroves, highly productive tropical intertidal forests, this study's first aim is to map the diversity of subjective viewpoints among a range of stakeholders on the management of Matang Mangrove Forest in peninsular Malaysia. Secondly, this study aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of mangroves in Malaysia and beyond. The use of the semi-quantitative Q methodology allowed us to identify three main discourses on mangrove management: i. the optimization discourse, stressing the need to improve the current overall satisfactory management regime; ii. the 'change for the better' discourse, which focuses on increasingly participatory management and on ecotourism; and iii. the conservative 'business as usual' discourse. The existence of common points of connection between the discourses and their respective supporters provides opportunities for modifications of mangrove management regimes. Acknowledging this diversity of viewpoints, reflecting how different stakeholders see and talk about mangrove management, highlights the need to develop pro-active and resilient natural resource management approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Continuing Climate Warming Will Result in Failure of Post-Harvest Natural Regeneration across the Landscape in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Morimoto, M.; Juday, G. P.; Huettmann, F.

    2016-12-01

    Following forest disturbance, the stand initiation stage decisively influences future forest structure. Understanding post-harvest regeneration, especially under climate change, is essential to predicting future carbon stores in this extensive forest biome. We apply IPCC B1, A1B, and A2 climate scenarios to generate plausible future forest conditions under different management. We recorded presence of white spruce, birch, and aspen in 726 plots on 30 state forest white spruce harvest units. We built spatially explicit models and scenarios of species presence/absence using TreeNet (Stochastic Gradient Boosting). Post-harvest tree regeneration predictions in calibration data closely matched the validation set, indicating tree regeneration scenarios are reliable. Early stage post-harvest regeneration is similar to post-fire regeneration and matches the pattern of long-term natural vegetation distribution, confirming that site environmental factors are more important than management practices. Post-harvest natural regeneration of tree species increases under moderate warming scenarios, but fails under strong warming scenarios in landscape positions with high temperatures and low precipitation. Under all warming scenarios, the most successful regenerating species following white spruce harvest is white spruce. Birch experiences about 30% regeneration failure under A2 scenario by 2050. White spruce and aspen are projected to regenerate more successfully when site preparation is applied. Although white spruce has been the major managed species, birch may require more intensive management. Sites likely to experience regeneration failure of current tree species apparently will experience biome shift, although adaptive migration of existing or new species might be an option. Our scenario modeling tool allows resource managers to forecast tree regeneration on productive managed sites that have made a disproportionate contribution to carbon flux in a critical region.

  6. Implications for local and global climate of alternative forest management strategies in Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Hammer Strømman, Anders

    2014-05-01

    We applied a mix of observation and empirical models to evaluate both local and global climate effects of three realistic alternative forest management scenarios in the boreal forests of Norway's largest logging region. The alternative management scenarios embraced strategies aimed at increasing harvest intensities and allowing harvested conifer sites to regenerate naturally with broadleaved species. Stand-level analysis was firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across coniferous, deciduous, and clear-cut sites. Relative to a coniferous site, we observed a slight local cooling of 0.13 °C at a deciduous site and 0.25 °C at a clear-cut site over a 6-year period which was mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes - despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies simultaneously promoted an enhanced material supply over business-as-usual levels. While additional climate impact linked to changes in life-cycle emissions and to changes in the global supply and demand of timber products ought to be factored into any mitigation-oriented climate policy involving the forestry sector, our analysis demonstrates that - within the boundaries of the managed forest ecosystem - excluding important biogeophysical considerations like surface albedo change may lead to sub-optimal climate policy.

  7. Dynamics and pattern of a managed coniferous forest landscape in Oregon

    NASA Technical Reports Server (NTRS)

    Spies, Thomas A.; Ripple, William J.; Bradshaw, G. A.

    1995-01-01

    We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km(exp 2) managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, greater than 60% conifer cover) and other forest and nonforest types (OT) (typically, less than 40 yr old or deciduous forest). The percentage of CF declined from 71 to 58% between 1972 and 1988. Declines were greatest on private land, least in wilderness, and intermediate in public nonwilderness. High elevations (greater than 914 m) maintained a greater percentage of CF than lower elevations (less than 914 m). The percentage of the area at the edge of the two cover types increased on all ownerships and in both elevational zones, whereas the amount of interior habitat (defined as CF at least 100 m from OT) decreased on all ownerships and elevational zones. By 1988 public lands contained approximately 45% interior habitat while private lands had 12% interior habitat. Mean interior patch area declined from 160 to 62 ha. The annual rate of disturbance (primarily clear-cutting) for the entire area including the wilderness was 1.19%, which corresponds to a cutting rotation of 84 yr. The forest landscape was not in a steady state or regulated condition which is not projected to occur for at least 40 yr under current forest plans. Variability in cutting rates within ownerships was higher on private land than on nonreserve public land. However, despite the use of dispersed cutting patterns on public land, spatial patterns of cutting and remnant forest patches were nonuniform across the entire public ownership. Large remaining patches (less than 5000 ha) of contiguous interior forest were restricted to public lands designated for uses other than timber production such as wilderness areas and research natural areas.

  8. Management and conservation of migratory landbirds overwintering in the neotropics

    Treesearch

    Daniel R. Petit; James F. Lynch; Richard L. Hutto; John G. Blake; Robert B. Waide

    1993-01-01

    Loss of tropical broadleaved forests and concurrent population declines of long-distance migratory birds in temperate breeding areas have been closely linked in both scientific and popular literature; however, little evidence of a causal association currently exists. We review the current land use situation in the neotropics, the projected outcome of deforestation...

  9. A comment on “Management for mountain pine beetle outbreak suppression: Does relevant science support current policy?"

    Treesearch

    Christopher J. Fettig; Kenneth E. Gibson; A. Steven Munson; Jose F. Negrón

    2014-01-01

    There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests...

  10. Integrating Nutrient Enrichment and Forest Management Experiments in Sweden to Constrain the Process-Based Land Surface Model ORCHIDEE

    NASA Astrophysics Data System (ADS)

    Resovsky, A.; Luyssaert, S.; Guenet, B.; Peylin, P.; Lansø, A. S.; Vuichard, N.; Messina, P.; Smith, B.; Ryder, J.; Naudts, K.; Chen, Y.; Otto, J.; McGrath, M.; Valade, A.

    2017-12-01

    Understanding coupling between carbon (C) and nitrogen (N) cycling in forest ecosystems is key to predicting global change. Numerous experimental studies have demonstrated the positive response of stand-level photosynthesis and net primary production (NPP) to atmospheric CO2 enrichment, while N availability has been shown to exert an important control on the timing and magnitude of such responses. However, several factors complicate efforts to precisely represent ecosystem-level C and N cycling in the current generation of land surface models (LSMs), including sparse in-situ data, uncertainty with regard to key state variables and disregard for the effects of natural and anthropogenic forest management. In this study, we incorporate empirical data from N-fertilization experiments at two long-term manipulation sites in Sweden to improve the representation of C and N interaction in the ORCHIDEE land surface model. Our version of the model represents the union of two existing ORCHIDEE branches: 1) ORCHIDEE-CN, which resolves processes related to terrestrial C and N cycling, and 2) ORCHIDEE-CAN, which integrates a multi-layer canopy structure and includes representation of forest management practices. Using this new model branch (referred to as ORCHIDEE-CN-CAN), we aim to replicate the growth patterns of managed forests both with and without N limitations. Our hope is that the results, in combination with measurements of various ecosystem parameters (such as soil N) will facilitate LSM optimization, inform future model development, and reduce structural uncertainty in global change predictions.

  11. Remote Assessment of Forest Ecosystem Stress (RAFES): Development of a Real Time Decision Support Tool for the Eastern U.S

    NASA Astrophysics Data System (ADS)

    Clinton, B.; Vose, J.; Novick, K.; Liu, Y.

    2011-12-01

    Drier and warmer conditions predicted with climate change models are likely to significantly impact forest ecosystems over the next several decades. The U.S. has experienced significant droughts over the past several years that have increased the susceptibility of forests to insect outbreaks, disease, and wildfire. Weather data collected with traditional approaches provide an indirect measure of drought or temperature stress; however, the significance of short-term or prolonged climate-related stress varies considerably across the landscape as topography, elevations, edaphic condition and antecedent conditions vary. This limits the capacity of land managers to anticipate and initiate management activities that could offset the impacts of climate-related forest stress. Decision support tools are needed that allow fine scale monitoring of stress conditions in forest ecosystems in real time to help land managers evaluate response strategies. To assist land managers in managing the impacts of climate change, we are developing a stress monitoring and decision support system across multiple sites in the eastern U.S. that (1) provides remote data capture of environmental parameters that quantify climate-related forest stress, (2) links remotely captured data with physiologically-based indices of tree water stress, and (3) provides a PC-based analytical tool for land managers to monitor and assess the severity of climate-related stress. Currently the network represents southern coastal plain pine plantation, Atlantic coastal flatwoods mixed pine-hardwood, southern piedmont upland mixed pine-hardwood, southern Appalachian dry ridge and mesic riparian, southern Arkansas managed mature pine, and northern Minnesota mature aspen. The strategy for selecting additional sites for the network will be a focus on at-risk ecosystems deemed particularly vulnerable to the affects of predicted climate change such as those in ecotonal transition regions, or those at the fringes of their ranges. The sensor arrays at each site detect water and temperature stress variables and transmit those data to a field office. Sensors include air and soil temperature, relative humidity, fuel moisture and temperature, xylem sap flux density, soil moisture and matric potential, precipitation, and solar radiation. Data are transmitted in real-time to the NOAA Geostationary Operational Environmental Satellite (GOES). A PC-based software program that downloads monitoring data from the GOES satellite, analyzes the data, and provides the land manager with an assessment of climate-related stress conditions and potential forest health threat levels in real time is under development. Data collection began in early 2010 on most sites, and we have at least one year of data from all nine sites within the network. We are currently comparing estimates of stress levels on our sites with estimates of stress from common drought indices. For this presentation, we are comparing and contrasting four sites representing an environmental gradient within the network.

  12. Looking back to move forward: collaborative planning to revise the Green Mountain and Finger Lakes National Forests land and resource management plans

    Treesearch

    Michael J. Dockry

    2015-01-01

    The United States Department of Agriculture Forest Service (Forest Service) manages 154 national forests and 20 grasslands in 44 states and Puerto Rico. National Forest Land and Resource Management Plans (forest plans) form the basis for land and resource management of national forests in the United States. For more than a decade the Forest Service has been attempting...

  13. Modeling the Effects of Drought, Fire, Beetles, and Management on Future Carbon Cycling in the Western US

    NASA Astrophysics Data System (ADS)

    Buotte, P.; Law, B. E.; Hicke, J. A.; Hudiburg, T. W.; Levis, S.; Kent, J.

    2017-12-01

    Fire and beetle outbreaks can have substantial impacts on forest structure, composition, and function and these types of disturbances are expected to increase in the future. Therefore understanding the ecological impacts of these disturbances into the future is important. We used ecosystem process modeling to estimate the future occurrence of fire and beetle outbreaks and their impacts on forest resilience and carbon sequestration. We modified the Community Land Model (CLM4.5) to better represent forest growth and mortality in the western US through multiple avenues: 1) we increased the ecological resolution to recognize 14 forest types common to the region; 2) we improved CLM4.5's ability to handle drought stress by adding forest type-specific controls on stomatal conductance and increased rates of leaf shed during periods of low soil moisture; 3) we developed and implemented a mechanistic model of beetle population growth and subsequent tree mortality; 4) we modified the current fire module to account for more refined forest types; and 5) we developed multiple scenarios of harvest based on past harvest rates and proposed changes in land management policies. We ran CLM4.5 in offline mode with climate forcing data. We compare future forest growth rates and carbon sequestration with historical metrics to estimate the combined influence of future disturbances on forest composition and carbon sequestration in the western US.

  14. Abundance and distribution of feral pigs at Hakalau Forest National Wildlife Refuge, 2010-2013

    USGS Publications Warehouse

    Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.

    2013-01-01

    The Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex has intensively managed feral pigs (Sus scrofa) and monitored feral pig presence with surveys of all managed areas since 1988. Results of all available data regarding pig management activities through 2004 were compiled and analyzed, but no further analyses had been conducted since then. The objective of this report was to analyze recent feral ungulate surveys at the Hakalau Forest Unit to determine current pig abundance and distribution. Activity indices for feral pigs, consisting of the presence of fresh or intermediate sign at 422 stations, each with approximately 20 sample plots, were compiled for years 2010–2013. A calibrated model based on the number of pigs removed from one management unit and concurrent activity surveys was applied to estimate pig abundance in other management units. Although point estimates appeared to decrease from 489.1 (±105.6) in 2010 to 407.6 (±88.0) in 2013, 95% confidence intervals overlapped, indicating no significant change in pig abundance within all management units. Nonetheless, there were significant declines in pig abundance over the four-year period within management units 1, 6, and 7. Areas where pig abundance remained high include the southern portion of Unit 2. Results of these surveys will be useful for directing management actions towards specific management units.

  15. Forest inventory: Peter T. Johnson Wildlife Mitigation Unit, Craig Mountain, Idaho. Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narolski, Steven W.

    The primary objective of this report is to determine the quantity and quality of existing forest habitat types on the 59,991-acre Peter T. Johnson Wildlife Mitigation Unit (WMU). Products from this effort include a description of the ecological condition, a map of habitat types, and an inventory of forest resources on the WMU lands. The purpose of this and other resource inventories (plant and wildlife) is to assess the current resources condition of the WMU and to provide necessary information to generate a long-term management for this area.

  16. ForWarn: A Cross-Cutting Forest Resource Management and Decision Support System Providing the Capacity to Identify and Track Forest Disturbances Nationally

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.; Norman, S.; Christie, W.; Hoffman, F. M.

    2012-12-01

    The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. It has operated as a prototype since January 2010 and has provided useful information about the location and extent of disturbances detected during the 2011 growing season, including tornadoes, wildfires, and extreme drought. The ForWarn system had an official unveiling and rollout in March 2012, initiated by a joint NASA and USDA press release. The ForWarn home page has had 2,632 unique visitors since rollout in March 2012, with 39% returning visits. ForWarn was used to map tornado scars from the historic April 27, 2011 tornado outbreak, and detected timber damage within more than a dozen tornado tracks across northern Mississippi, Alabama, and Georgia. ForWarn is the result of an ongoing, substantive cooperation among four different government agencies: USDA, NASA, USGS, and DOE. Disturbance maps are available on the web through the ForWarn Change Assessment Viewer at http://forwarn.forestthreats.org/fcav. No user id or password is required, and there is no cost. The Assessment Viewer operates within any popular web browser using nearly any type of computer. It lets users pan, zoom, and scroll around within ForWarn maps, and also contains an up-to-date library of co-registered, near real-time ancillary maps from diverse sources that allows users to assess the nature of particular forest disturbances and ascribe their most-likely causes. Users can check the current week's U.S. Drought Monitor, USGS VegDRI maps, FHM Historical Aerial Disturbance Surveys, MODIS Cumulative Current Year Fire Detections, and many others. A "Share this map" feature lets users save the current map view and extent into a web URL, so that users can easily share what they are looking at inside the Assessment Viewer with others via an email, a document, or a web page. The ForWarn Rapid National Assessment Team examined more than 60 ForWarn forest disturbance events in 2011-2012, and issued over 30 alerts. We hope to automate forest disturbance alerts and supply them through various subscription services. Forest owners and managers would only be alerted to disturbances occurring near their own forest resources.

  17. 25 CFR 163.25 - Forest management deductions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Forest management deductions. 163.25 Section 163.25... Forest Management and Operations § 163.25 Forest management deductions. (a) Pursuant to the provisions of 25 U.S.C. 413 and 25 U.S.C. 3105, a forest management deduction shall be withheld from the gross...

  18. 25 CFR 163.25 - Forest management deductions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Forest management deductions. 163.25 Section 163.25... Forest Management and Operations § 163.25 Forest management deductions. (a) Pursuant to the provisions of 25 U.S.C. 413 and 25 U.S.C. 3105, a forest management deduction shall be withheld from the gross...

  19. Understanding the hydrologic consequences of timber-harvest and roading: four decades of streamflow and sediment results from the Caspar Creek experimental watersheds

    Treesearch

    Elizabeth Keppeler; Jack Lewis

    2007-01-01

    The Caspar Creek Experimental Watersheds were established in 1962 to study the effects of forest management on streamflow, sedimentation, and erosion in the rainfall-dominated, forested watersheds of north coastal California. Currently, 21 stream sites are gaged in the North Fork (473 ha) and South Fork (424 ha) of Caspar Creek. From 1971 to 1973, 65% of the timber...

  20. Long-term modeling of the forest-grassland ecotone in the French Alps: implications for land management and conservation.

    PubMed

    Carlson, Bradley Z; Renaud, Julien; Biron, Pierre Eymard; Choler, Philippe

    2014-07-01

    Understanding decadal-scale land-cover changes has the potential to inform current conservation policies. European mountain landscapes that include numerous protected areas provide a unique opportunity to weigh the long-term influences of land-use practices and climate on forest-grassland ecotone dynamics. Aerial photographs from four dates (1948, 1978, 1993, and 2009) were used to quantify the extent of forest and grassland cover at 5-m resolution across a 150-km2 area in a protected area of the southwestern French Alps. The study area included a grazed zone and a nongrazed zone that was abandoned during the 1970s. We estimated time series of a forestation index (FI) and analyzed the effects of elevation and grazing on FI using a hierarchical linear mixed effect model. Forest extent (composed primarily of mountain pine, Pinus uncinata) expanded from 50.6 km2 in 1948 to 85.5 km2 in 2009, i.e., a 23% increase in relative cover at the expense of grassland communities. Over the sixty-year period, the treeline rose by 118 m, from 1564 to 1682 m. Rapid forest expansion within the nongrazed zone followed the cessation of logging activities and was likely accelerated by climate warming during the 1980s. Within the grazed zone, the maintained presence of sheep did not fully counteract mountain pine expansion and led to highly contrasting rates of land-cover change based on the location of shepherds' cabins and water sources. Projections of FI for 2030 showed remnant patches of intensively used grasslands interspersed in a densely forested matrix. Our analysis of mountain land-cover dynamics provided strong evidence for forest encroachment into grassland habitat despite consistent grazing pressure. This pattern may be attributed to the disappearance of traditional land-use practices such as shrub burning and removal. Our findings prompt land managers to reconsider their initial conservation priority (i.e., the protection of a renowned mountain pine forest) and to implement proactive management strategies in order to preserve landscape heterogeneity and biological diversity. Projecting historical trends in the forest-grassland ecotone to 2030 provides stakeholders with a policy relevant tool for near-term land management.

  1. Messages, limitations and future needs of research into environmental impacts and mitigating and remediation measures of oil palm and forest land-use and land management in SE Asia

    NASA Astrophysics Data System (ADS)

    Walsh, Rory; Bidin, Kawi; Nurhidayu, Siti; Nainar, Anand; Annammala, Kogilavani; Blake, William; Higton, Sam; Wall, Katy; Darling, Isabella

    2017-04-01

    Oil palm and forest logging land-uses have expanded immensely in recent decades in SE Asia and other parts of the humid tropics - and increasingly into steeplands where adverse biophysical in situ and downstream impacts are particularly severe. With a focus on recent and current projects in Sabah (Malaysian Borneo) and Peninsular Malaysia, this paper examines the changing nature of research foci and approaches of research projects to assess impacts and develop and test mitigation strategies. Early projects focussed on comparing slope- and catchment-scale hydrology and erosion of selectively logged forest and primary forest and on ways of reducing logging impacts. The second phase of research focussed increasingly on (1) longer-term recovery from logging and (2) the likely impacts of climate change. With repeat logging and conversion of areas of forest to oil palm (and conservation of remaining primary forest was secured), the focus of attention has moved to (1) assessing impacts of oil palm conversion and land management practices, (2) testing existing (and potentially more effective) Roundtable for Sustainable Palm Oil (RSPO) guidelines and Government Regulations aimed at reducing impacts and (3) developing and testing ways of restoring and rehabilitating forest within both badly degraded logged forest areas and largely oil palm landscapes - with attention focussed on the landscape scale, the long-term, downstream as well as in situ impacts and the more vulnerable steepland areas. Two multidisciplinary umbrella projects - the SAFE (Stability of Altered Forest Ecosystems) Project and the SEnSOR Programme - have formed the backbone of this latest phase. The SAFE Project is a ten-year programme assessing the effectiveness of retention of differing widths of riparian forest buffers and different- sized forest 'islands' within converted oil palm landscapes in reducing their adverse ecological, emissions, hydrological, erosional and water pollution impacts. The SEnSOR Programme is specifically testing the effectiveness of RSPO guidelines and possible improved land management measures. After a brief overview of some of the approaches and key findings of these studies, the paper focuses on some of the advantages, limitations and future needs of these studies. Important features of the projects are (1) the involvement of industry, Government and local people from the start in the projects, (2) the focus on the landscape scale and long-term (for example with use of current monitoring as well as a historical approach involving sediment dating and fingerprinting), (3) simultaneous consideration of impacts on a wide variety of environmental impacts, as impacts of land management practices can be beneficial to some but adverse to others. Key limitations and needs are then identified and discussed. The most important of these include how to reconcile the sometimes conflicting impacts of land management practices (and remedial measures) on different environmental parameters and concerns - what is good for Peter is sometimes very bad for Paul. A key need identified, therefore, is for methodologies to evaluate comparative environmental and socioeconomic benefits and costs of sometimes conflicting or alternative land management practices and options that emerge from usually separate scientific investigations of how to reduce impacts of, for example, soil erosion, landslide risk, streamwater pollution, atmospheric emissions, river ecology and landscape biodiversity (and its components). There is also a key need for involvement of social scientists in projects.

  2. Adopting public values and climate change adaptation strategies in urban forest management: A review and analysis of the relevant literature.

    PubMed

    Ordóñez Barona, Camilo

    2015-12-01

    Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Impacts of forest and land management on biodiversity and carbon

    Treesearch

    Valerie Kapos; Werner A. Kurz; Toby Gardner; Joice Ferreira; Manuel Guariguata; Lian Pin Koh; Stephanie Mansourian; John A. Parrotta; Nokea Sasaki; Christine B. Schmitt; Jos Barlow; Markku Kanninen; Kimiko Okabe; Yude Pan; Ian D. Thompson; Nathalie van Vliet

    2012-01-01

    Changes in the management of forest and non-forest land can contribute significantly to reducing emissions from deforestation and forest degradation. Such changes can include both forest management actions - such as improving the protection and restoration of existing forests, introducing ecologically responsible logging practices and regenerating forest on degraded...

  4. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    USGS Publications Warehouse

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  5. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some ecoregions, harvest reductions below current levels will sequester more carbon than additional harvest removals for bioenergy. References: Hudiburg, T., B. E. Law, D. P. Turner, J. Campbell, D. Donato, and M. Duane. 2009. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecological Applications 19:163-180. Waring, R. H., and J. F. Franklin. 1979. Evergreen Coniferous Forests of the Pacific Northwest. Science 204:1380-1386.

  6. Proceedings: guidelines for managing immature Appalachian hardwood stands

    Treesearch

    H Clay Smith; Maxine C. Eye

    1986-01-01

    How to do it, that is what this workshop is all about. This proceedings will provide field foresters and landowners with an update of current available information for managing immature Appalachian hardwood stands. We all have dozens of questions and concerns and though several of these will be answered, some will not. Basically, guidelines are "guides" and...

  7. Be careful what you wish for: The legacy of Smokey Bear

    Treesearch

    Geoffrey H. Donovan; Thomas C. Brown

    2007-01-01

    A century of wildfire suppression in the United States has led to increased fuel loading and large-scale ecological change across some of the nation's forests. Land management agencies have responded by increasing the use of prescribed fire and thinning. However, given the continued emphasis on fire suppression, current levels of funding for such fuel management...

  8. Climate change effects in El Yunque National Forest, Puerto Rico, and the Caribbean region

    Treesearch

    Lisa Nicole Jennings; Jamison Douglas; Emrys Treasure; Grizelle González

    2014-01-01

    Understanding the current and expected future conditions of natural resources under a changing climate is essential to making informed management decisions. However, the ever increasing volume of useful scientific information about climate change makes it difficult for managers and planners to effectively sort through and apply the emerging science. This report...

  9. Chapter 6: The scientific basis for conserving forest carnivores: considerations for management

    Treesearch

    L. Jack Lyon; Keith B. Aubry; William J. Zielinski; Steven W. Buskirk; Leonard F. Ruggiero

    1994-01-01

    The reviews presented in previous chapters reveal substantial gaps in our knowledge about marten, fisher, lynx, and wolverine. These gaps severely constrain our ability to design reliable conservation strategies. This problem will be explored in depth in Chapter 7. In this chapter, our objective is to discuss management considerations resulting from what we currently...

  10. Simulating Timber and Deer Food Potential In Loblolly Pine Plantations

    Treesearch

    Clifford A. Myers

    1977-01-01

    This computer program analyzes both timber and deer food production on managed forests, providing estimates of the number of acres required per deer for each week or month, yearly timber cuts, and current timber growing stock, as well as a cost and return analysis of the timber operation. Input variables include stand descriptors, controls on management, stumpage...

  11. Simulating Pacific Northwest Forest Response to Climate Change: How We Made Model Results Useful for Vulnerability Assessments

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Kerns, B. K.; Halofsky, J.

    2014-12-01

    GCM-based climate projections and downscaled climate data proliferate, and there are many climate-aware vegetation models in use by researchers. Yet application of fine-scale DGVM based simulation output in national forest vulnerability assessments is not common, because there are technical, administrative and social barriers for their use by managers and policy makers. As part of a science-management climate change adaptation partnership, we performed simulations of vegetation response to climate change for four national forests in the Blue Mountains of Oregon using the MC2 dynamic global vegetation model (DGVM) for use in vulnerability assessments. Our simulation results under business-as-usual scenarios suggest a starkly different future forest conditions for three out of the four national forests in the study area, making their adoption by forest managers a potential challenge. However, using DGVM output to structure discussion of potential vegetation changes provides a suitable framework to discuss the dynamic nature of vegetation change compared to using more commonly available model output (e.g. species distribution models). From the onset, we planned and coordinated our work with national forest managers to maximize the utility and the consideration of the simulation results in planning. Key lessons from this collaboration were: (1) structured and strategic selection of a small number climate change scenarios that capture the range of variability in future conditions simplified results; (2) collecting and integrating data from managers for use in simulations increased support and interest in applying output; (3) a structured, regionally focused, and hierarchical calibration of the DGVM produced well-validated results; (4) simple approaches to quantifying uncertainty in simulation results facilitated communication; and (5) interpretation of model results in a holistic context in relation to multiple lines of evidence produced balanced guidance. This latest point demonstrates the importance of using model out as a forum for discussion along with other information, rather than using model output in an inappropriately predictive sense. These lessons are being applied currently to other national forests in the Pacific Northwest to contribute in vulnerability assessments.

  12. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more susceptible to fire damage and subsequent loss of carbon sequestration.

  13. Simulating post-wildfire forest trajectories under alternative climate and management scenarios

    Treesearch

    Alicia Azpeleta Tarancon; Peter Z. Fule; Kristen L. Shive; Carolyn H. Sieg; Andrew Sanchez Meador; Barbara Strom

    2014-01-01

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned...

  14. Using soil quality indicators for monitoring sustainable forest management

    Treesearch

    James A. Burger; Garland Gray; D. Andrew Scott

    2010-01-01

    Most private and public forest land owners and managers are compelled to manage their forests sustainably, which means management that is economically viable,environmentally sound, and socially acceptable. To meet this mandate, the USDA Forest Service protects the productivity of our nation’s forest soils by monitoring and evaluating management activities to ensure...

  15. Small mammals in managed, naturally young, and old-growth forests.

    Treesearch

    A.B. Carey; M.L. Johnson

    1995-01-01

    Forest managers in the Pacific Northwest are faced with new challenges of providing for all wildlife in managed forests. Our objective was to elucidate the factors governing the composition and biomass of forest floor mammal communities that are amenable to management. We sampled small mammal communities in forests of various management histories on the Olympic...

  16. Information system of forest growth and productivity by site quality type and elements of forest

    NASA Astrophysics Data System (ADS)

    Khlyustov, V.

    2012-04-01

    Information system of forest growth and productivity by site quality type and elements of forest V.K. Khlustov Head of the Forestry Department of Russian State Agrarian University named after K.A.Timiryazev doctor of agricultural sciences, professor The efficiency of forest management can be improved substantially by development and introduction of principally new models of forest growth and productivity dynamics based on regionalized site specific parameters. Therefore an innovative information system was developed. It describes the current state and gives a forecast for forest stand parameters: growth, structure, commercial and biological productivity depend on type of site quality. In contrast to existing yield tables, the new system has environmental basis: site quality type. The information system contains set of multivariate statistical models and can work at the level of individual trees or at the stand level. The system provides a graphical visualization, as well as export of the emulation results. The System is able to calculate detailed description of any forest stand based on five initial indicators: site quality type, site index, stocking, composition, and tree age by elements of the forest. The results of the model run are following parameters: average diameter and height, top height, number of trees, basal area, growing stock (total, commercial with distribution by size, firewood and residuals), live biomass (stem, bark, branches, foliage). The system also provides the distribution of mentioned above forest stand parameters by tree diameter classes. To predict the future forest stand dynamics the system require in addition the time slot only. Full set of forest parameters mention above will be provided by the System. The most conservative initial parameters (site quality type and site index) can be kept in the form of geo referenced polygons. In this case the system would need only 3 dynamic initial parameters (stocking, composition and age) to simulate forest parameters and their dynamics. The system can substitute traditional processing of forest inventory field data and provide users with detailed information on the current state of forest and give a prediction. Implementation of the proposed system in combination with high resolution remote sensing is able to increase significantly the quality of forest inventory and at the same time reduce the costs. The system is a contribution to site oriented forest management. The System is registered in the Russian State Register of Computer Programs 12.07.2011, No 2011615418.

  17. Climate change impacts on forest fires: the stakeholders' perspective

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.

  18. Aboveground carbon in Quebec forests: stock quantification at the provincial scale and assessment of temperature, precipitation and edaphic properties effects on the potential stand-level stocking

    PubMed Central

    Houle, Daniel; Ouimet, Rock; Lambert, Marie-Claude; Logan, Travis

    2016-01-01

    Biological carbon sequestration by forest ecosystems plays an important role in the net balance of greenhouse gases, acting as a carbon sink for anthropogenic CO2 emissions. Nevertheless, relatively little is known about the abiotic environmental factors (including climate) that control carbon storage in temperate and boreal forests and consequently, about their potential response to climate changes. From a set of more than 94,000 forest inventory plots and a large set of spatial data on forest attributes interpreted from aerial photographs, we constructed a fine-resolution map (∼375 m) of the current carbon stock in aboveground live biomass in the 435,000 km2 of managed forests in Quebec, Canada. Our analysis resulted in an area-weighted average aboveground carbon stock for productive forestland of 37.6 Mg ha−1, which is lower than commonly reported values for similar environment. Models capable of predicting the influence of mean annual temperature, annual precipitation, and soil physical environment on maximum stand-level aboveground carbon stock (MSAC) were developed. These models were then used to project the future MSAC in response to climate change. Our results indicate that the MSAC was significantly related to both mean annual temperature and precipitation, or to the interaction of these variables, and suggest that Quebec’s managed forests MSAC may increase by 20% by 2041–2070 in response to climate change. Along with changes in climate, the natural disturbance regime and forest management practices will nevertheless largely drive future carbon stock at the landscape scale. Overall, our results allow accurate accounting of carbon stock in aboveground live tree biomass of Quebec’s forests, and provide a better understanding of possible feedbacks between climate change and carbon storage in temperate and boreal forests. PMID:26966680

  19. Terrestrial forest management plan for Palmyra Atoll

    USGS Publications Warehouse

    Hathaway, Stacie A.; McEachern, Kathryn; Fisher, Robert N.

    2011-01-01

    This 'Terrestrial Forest Management Plan for Palmyra Atoll' was developed by the U.S. Geological Survey (USGS) for The Nature Conservancy (TNC) Palmyra Program to refine and expand goals and objectives developed through the Conservation Action Plan process. It is one in a series of adaptive management plans designed to achieve TNC's mission toward the protection and enhancement of native wildlife and habitat. The 'Terrestrial Forest Management Plan for Palmyra Atoll' focuses on ecosystem integrity and specifically identifies and addresses issues related to assessing the status and distribution of resources, as well as the pressures acting upon them, most specifically nonnative and potentially invasive species. The plan, which presents strategies for increasing ecosystem integrity, provides a framework to implement and track the progress of conservation and restoration goals related to terrestrial resources on Palmyra Atoll. The report in its present form is intended to be an overview of what is known about historical and current forest resources; it is not an exhaustive review of all available literature relevant to forest management but an attempt to assemble as much information specific to Palmyra Atoll as possible. Palmyra Atoll is one of the Northern Line Islands in the Pacific Ocean southwest of the Hawai`ian Islands. It consists of many heavily vegetated islets arranged in a horseshoe pattern around four lagoons and surrounded by a coral reef. The terrestrial ecosystem consists of three primary native vegetation types: Pisonia grandis forest, coastal strand forest, and grassland. Among these vegetation types, the health and extent of Pisonia grandis forest is of particular concern. Overall, the three vegetation types support 25 native plant species (two of which may be extirpated), 14 species of sea birds, six shore birds, at least one native reptile, at least seven native insects, and six native land crabs. Green and hawksbill turtles forage at Palmyra Atoll, and though rarely documented, beach nesting could be affected by terrestrial management actions. There are various nonnative or invasive species throughout the terrestrial ecosystem. The most notable examples of terrestrial invasive species include coconut palms (Cocos nucifera) and black rats (Rattus rattus). Although it is unclear whether they are nonnative, coconut palms are currently the most dominant plant across Palmyra Atoll. They compete with native plant species for space and resources and are potentially detrimental to sea birds dependent on native vegetation for roosting and nesting habitat. This competition in turn impacts nutrient resource availability, thereby reshaping energy flow in the ecosystem. Black rats are known to prey on ground-nesting sea birds and are likely responsible for the lack of burrowing sea bird reproduction at Palmyra Atoll. In addition, they may be facilitating the invasion of other nonnative species and negatively impacting other native fauna. Although the extent and impacts of these and other nonnative and (or) invasive species are not fully understood, the extent and impacts are clearly a threat to the native species and one of the most urgent threats to the overall ecosystem integrity of Palmyra Atoll. This 'Terrestrial Forest Management Plan for Palmyra Atoll' addresses issues related to invasive species and other problems. Priority goals are established as are associated objectives and strategies. The overarching goal is to perpetuate and where possible restore terrestrial ecosystem integrity through the following techniques: 1. Habitat management: Maintain and enhance habitat to the extent possible to sustain thriving Pisonia grandis forest, coastal strand forest, endemic grassland, self-sustaining populations of sea birds, shore birds, coconut crabs, native lizards, and native insects. 2. Monitoring and assessment: Acquire information on distribution and abundance as needed for conservation of each resour

  20. Forest disturbances, deforestation and timber harvest patterns in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Huo, L. Z.

    2016-12-01

    Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, forest management and deforestation. The total change in forest cover (Gross Forest Cover Loss, GFCL) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest)(Kurtz et al, 2010). We developed a multitemporal, object-oriented methodology to classify GFCL as either (a) deforestation, (b) fire and insect disturbances (c) forest management practices. The Landsat-derived University of Maryland Global Forest Change product (Hansen, 2013) is used to identify all the areas forest cover loss: those areas are subsequently converted to objects, and used to extract temporal profiles of spectral reflectances and spectral indices from the Landsat WELD dataset. Finally, the temporal profiles and descriptive parameters of shapes, textures, and spatial relationships of the objects are used in a rule-based classifier to identify the type of disturbance. To pathfind a global disturbance type classification, the methods are demonstrated by wall-to-wall classification of the forest cover loss in the conterminous United States for the 2002-2011 period. The results show that deforestation accounts for a small percentage (approximately 2%) of the GFCL in the CONUS, and are in agreement with the known patterns of logging activity, fire and insect damage. The time series of timber harvest clearcut is also in agreement with the national timber extraction statistics, showing reduced harvesting following the 2008 economic crisis. The results also highlight the different management practices on private and public lands: 36% of the US forests are publicly owned (federal, state and local institutions) but account only for 12% of the clearcuts, whereas private lands (64% of the total) account for 88% of the clearcut area. Conversely, stand replacing fire and insect disturbances affect primarily public lands (85% versus 15% on private lands).

  1. How to reconcile wood production and biodiversity conservation? The Pan-European boreal forest history gradient as an "experiment".

    PubMed

    Naumov, Vladimir; Manton, Michael; Elbakidze, Marine; Rendenieks, Zigmars; Priednieks, Janis; Uhlianets, Siarhei; Yamelynets, Taras; Zhivotov, Anton; Angelstam, Per

    2018-07-15

    There are currently competing demands on Europe's forests and the finite resources and services that they can offer. Forestry intensification that aims at mitigating climate change and biodiversity conservation is one example. Whether or not these two objectives compete can be evaluated by comparative studies of forest landscapes with different histories. We test the hypothesis that indicators of wood production and biodiversity conservation are inversely related in a gradient of long to short forestry intensification histories. Forest management data containing stand age, volume and tree species were used to model the opportunity for wood production and biodiversity conservation in five north European forest regions representing a gradient in landscape history from very long in the West and short in the East. Wood production indicators captured the supply of coniferous wood and total biomass, as well as current accessibility by transport infrastructure. Biodiversity conservation indicators were based on modelling habitat network functionality for focal bird species dependent on different combinations of stand age and tree species composition representing naturally dynamic forests. In each region we randomly sampled 25 individual 100-km 2 areas with contiguous forest cover. Regarding wood production, Sweden's Bergslagen region had the largest areas of coniferous wood, followed by Vitebsk in Belarus and Zemgale in Latvia. NW Russia's case study regions in Pskov and Komi had the lowest values, except for the biomass indicator. The addition of forest accessibility for transportation made the Belarusian and Swedish study region most suitable for wood and biomass production, followed by Latvia and two study regions in NW Russian. Regarding biodiversity conservation, the overall rank among regions was opposite. Mixed and deciduous habitats were functional in Russia, Belarus and Latvia. Old Scots pine and Norway spruce habitats were only functional in Komi. Thus, different regional forest histories provide different challenges in terms of satisfying both wood production and biodiversity conservation objectives in a forest management unit. These regional differences in northern Europe create opportunities for exchanging experiences among different regional contexts about how to achieve both objectives. We discuss this in the context of land-sharing versus land-sparing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Forest Management

    Treesearch

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  3. Can we reliably estimate managed forest carbon dynamics using remotely sensed data?

    NASA Astrophysics Data System (ADS)

    Smallman, Thomas Luke; Exbrayat, Jean-Francois; Bloom, A. Anthony; Williams, Mathew

    2015-04-01

    Forests are an important part of the global carbon cycle, serving as both a large store of carbon and currently as a net sink of CO2. Forest biomass varies significantly in time and space, linked to climate, soils, natural disturbance and human impacts. This variation means that the global distribution of forest biomass and their dynamics are poorly quantified. Terrestrial ecosystem models (TEMs) are rarely evaluated for their predictions of forest carbon stocks and dynamics, due to a lack of knowledge on site specific factors such as disturbance dates and / or managed interventions. In this regard, managed forests present a valuable opportunity for model calibration and improvement. Spatially explicit datasets of planting dates, species and yield classification, in combination with remote sensing data and an appropriate data assimilation (DA) framework can reduce prediction uncertainty and error. We use a Baysian approach to calibrate the data assimilation linked ecosystem carbon (DALEC) model using a Metropolis Hastings-Markov Chain Monte Carlo (MH-MCMC) framework. Forest management information is incorporated into the data assimilation framework as part of ecological and dynamic constraints (EDCs). The key advantage here is that DALEC simulates a full carbon balance, not just the living biomass, and that both parameter and prediction uncertainties are estimated as part of the DA analysis. DALEC has been calibrated at two managed forests, in the USA (Pinus taeda; Duke Forest) and UK (Picea sitchensis; Griffin Forest). At each site DALEC is calibrated twice (exp1 & exp2). Both calibrations (exp1 & exp2) assimilated MODIS LAI and HWSD estimates of soil carbon stored in soil organic matter, in addition to common management information and prior knowledge included in parameter priors and the EDCs. Calibration exp1 also utilises multiple site level estimates of carbon storage in multiple pools. By comparing simulations we determine the impact of site-level observations on uncertainty and error on predictions, and which observations are key to constraining ecosystem processes. Preliminary simulations indicate that DALEC calibration exp1 accurately simulated the assimilated observations for forest and soil carbon stock estimates including, critically for forestry, standing wood stocks (R2 = 0.92, bias = -4.46 MgC ha-1, RMSE = 5.80 MgC ha-1). The results from exp1 indicate the model is able to find parameters that are both consistent with EDC and observations. In the absence of site-level stock observations (exp2) DALEC accurately estimates foliage and fine root pools, while the median estimate of above ground litter and wood stocks (R2 = 0.92, bias = -48.30 MgC ha-1, RMSE = 50.30 MgC ha-1) are over- and underestimated respectively, site-level observations are within model uncertainty. These results indicate that we can estimate managed forests dynamics using remotely sensed data, particularly as remotely sensed above ground biomass maps become available to provide constraint to correct biases in woody accumulation.

  4. Monitoring of visually graded structural lumber

    Treesearch

    David E. Kretschmann; James W. Evans; Linda Brown

    To satisfy the increased demand for forest products, much of the future timber supply is expected to be derived from improved trees grown on managed plantations. This fast-grown resource will tend to be harvested in short-age rotations and will contain higher proportions of juvenile wood compared with wood in current harvests. As a result, current allowable properties...

  5. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Mansuy, N. R.; Paré, D.; Thiffault, E.

    2015-12-01

    Large-scale mapping of soil properties is increasingly important for environmental resource management. Whileforested areas play critical environmental roles at local and global scales, forest soil maps are typically at lowresolution.The objective of this study was to generate continuous national maps of selected soil variables (C, N andsoil texture) for the Canadian managed forest landbase at 250 m resolution. We produced these maps using thekNN method with a training dataset of 538 ground-plots fromthe National Forest Inventory (NFI) across Canada,and 18 environmental predictor variables. The best predictor variables were selected (7 topographic and 5 climaticvariables) using the Least Absolute Shrinkage and Selection Operator method. On average, for all soil variables,topographic predictors explained 37% of the total variance versus 64% for the climatic predictors. Therelative root mean square error (RMSE%) calculated with the leave-one-out cross-validation method gave valuesranging between 22% and 99%, depending on the soil variables tested. RMSE values b 40% can be considered agood imputation in light of the low density of points used in this study. The study demonstrates strong capabilitiesfor mapping forest soil properties at 250m resolution, compared with the current Soil Landscape of CanadaSystem, which is largely oriented towards the agricultural landbase. The methodology used here can potentiallycontribute to the national and international need for spatially explicit soil information in resource managementscience.

  6. 50 CFR 35.8 - Forest management.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  7. 50 CFR 35.8 - Forest management.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  8. 50 CFR 35.8 - Forest management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  9. 50 CFR 35.8 - Forest management.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  10. 50 CFR 35.8 - Forest management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Forest management. 35.8 Section 35.8... NATIONAL WILDLIFE REFUGE SYSTEM WILDERNESS PRESERVATION AND MANAGEMENT General Rules § 35.8 Forest management. Forest management activities in a wilderness unit will be directed toward allowing natural...

  11. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Treesearch

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  12. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    USGS Publications Warehouse

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands, timber harvest for local use, fire suppression, bark beetle attack, and fuels reduction activities. Results from this study offer land managers within the Lake Tahoe basin and in similar regions a basis for making better informed land-use and management decisions to potentially minimize detrimental ecological impacts of landscape change. The perspective to be gained is based on quantitative retrospection of the effects of human-driven changes and the impacts of management action or inaction to the forested landscape. ?? 2008 Elsevier B.V. All rights reserved.

  13. Using a decision support system to estimate departures of present forest landscape patterns from historical reference condition—an example from the inland Northwest region of the United States.

    Treesearch

    P.F. Hessburg; K.M. Reynolds; R.B. Salter; M.B. Richmond

    2004-01-01

    Human settlement and management activities have altered the patterns and processes of forest landscapes across the inland northwest region of the United States (Hessburg et al. 2000C; Hessburg and Agee in press). As a consequence, many attributes of current disturbance regimes (e.g., the frequency, duration, severity, and extent of fires) differ markedly from those of...

  14. Ecological modeling for forest management in the Shawnee National Forest

    Treesearch

    Richard G. Thurau; J.F. Fralish; S. Hupe; B. Fitch; A.D. Carver

    2008-01-01

    Land managers of the Shawnee National Forest in southern Illinois are challenged to meet the needs of a diverse populace of stakeholders. By classifying National Forest holdings into management units, U.S. Forest Service personnel can spatially allocate resources and services to meet local management objectives. Ecological Classification Systems predict ecological site...

  15. Rare Plants of the Redwood Forest and Forest Management Effects

    Treesearch

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  16. A Special Issue of the Journal of Forestry—Tribal Forest Management: Innovations for Sustainable Forest Management

    Treesearch

    Michael J. Dockry; Serra J. Hoagland

    2017-01-01

    Native American forests and tribal forest management practices have sustained indigenous communities, economies, and resources for millennia. These systems provide a wealth of knowledge and successful applications of long-term environmental stewardship and integrated, sustainable forest management. Tribal forestry has received an increasing amount of attention from...

  17. Spatial and Temporal Analysis of Industrial Forest Clearcuts in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Huo, L. Z.; Boschetti, L.

    2015-12-01

    Remote sensing has been widely used for mapping and characterizing changes in forest cover, but the available remote sensing forest change products are not discriminating between deforestation (permanent transition from forest to non forest) and industrial forest management (logging followed by regrowth, with no land cover/ land use class change) (Hansen et al, 2010). Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, and forest management. The total change in forest cover (Gross Forest Cover Loss, GFLC) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non/forest)(Kurtz et al, 2010). This paper presents the methodology used to classify the forest loss detected by the University of Maryland Global Forest Change product (Hansen, 2013) into deforestation, disturbances (fires, insect outbreaks) and industrial forest clearcuts. The industrial forest clearcuts were subsequently analysed by converting the pixel based detections into objects, and applying patch level metrics (e.g. size, compactness, straightness of boundaries) and contextual measures. The analysis is stratified by region and by dominant forest specie, to highlight changes in the rate of forest resource utilization in the 2003-2013 period covered by the Maryland Forest Cover Change Product. References Hansen, M.C., Stehman, S.V., & Potapov, P.V. (2010). Reply to Wernick et al.: Global scale quantification of forest change. Proceedings of the National Academy of Sciences, 107, E148-E148 Hansen, M.C., Potapov, P.V., Moore, R et al., (2013), "High resolution Global Maps for the 21stCentury Forest Cover Change", Science 342: 850-853 Kurz, W.A. (2010). An ecosystem context for global gross forest cover loss estimates. Proceedings of the National Academy of Sciences, 107, 9025-9026 van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jackson, R.B., Collatz, G.J., & Randerson, J. (2009). CO2 emissions from forest loss. Nature Geoscience, 2, 737-738

  18. Forest Management.

    ERIC Educational Resources Information Center

    Weicherding, Patrick J.; And Others

    This bulletin deals with forest management and provides an overview of forestry for the non-professional. The bulletin is divided into six sections: (1) What Is Forestry Management?; (2) How Is the Forest Measured?; (3) What Is Forest Protection?; (4) How Is the Forest Harvested?; (5) What Is Forest Regeneration?; and (6) What Is Forest…

  19. 75 FR 8645 - Public Meetings on the Development of the Forest Service Land Management Planning Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... DEPARTMENT OF AGRICULTURE Forest Service Public Meetings on the Development of the Forest Service Land Management Planning Rule AGENCY: Forest Service, USDA. ACTION: Notice of meetings. SUMMARY: The USDA Forest Service is committed to developing a new Forest Service Land Management Planning Rule...

  20. Predicting bird response to alternative management scenarios on a ranch in Campeche, Mexico

    USGS Publications Warehouse

    Wood, P.A.; Dawson, D.K.; Sauer, J.R.; Wilson, M.H.; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    We developed models to predict the potential response of wintering Neotropical migrant and resident bird species to alternative management scenarios, using data from point counts of birds along with habitat variables measured or estimated from remotely sensed data in a Geographic Information System. Expected numbers of occurrences at points were calculated for 100 species of birds, under current habitat conditions and under habitat conditions that would result from seven alternative management scenarios for Rancho Sandoval, a cattle ranch and private nature reserve in Campeche, Mexico. Most bird species of conservation concern would benefit from management scenarios that increase the amount of forest, but the highest priority resident species would not. To balance the somewhat conflicting habitat needs of these species and the concerns of ranch managers, we recommend that forest area and connectivity be increased, and pastures be maintained but more efficiently managed to support cattle and the priority resident and migrant birds that require open habitats.

  1. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  2. Models for Forest Ecosystem Management: A European Perspective

    PubMed Central

    Pretzsch, H.; Grote, R.; Reineking, B.; Rötzer, Th.; Seifert, St.

    2008-01-01

    Background Forest management in Europe is committed to sustainability. In the face of climate change and accompanying risks, however, planning in order to achieve this aim becomes increasingly challenging, underlining the need for new and innovative methods. Models potentially integrate a wide range of system knowledge and present scenarios of variables important for any management decision. In the past, however, model development has mainly focused on specific purposes whereas today we are increasingly aware of the need for the whole range of information that can be provided by models. It is therefore assumed helpful to review the various approaches that are available for specific tasks and to discuss how they can be used for future management strategies. Scope Here we develop a concept for the role of models in forest ecosystem management based on historical analyses. Five paradigms of forest management are identified: (1) multiple uses, (2) dominant use, (3) environmentally sensitive multiple uses, (4) full ecosystem approach and (5) eco-regional perspective. An overview of model approaches is given that is dedicated to this purpose and to developments of different kinds of approaches. It is discussed how these models can contribute to goal setting, decision support and development of guidelines for forestry operations. Furthermore, it is shown how scenario analysis, including stand and landscape visualization, can be used to depict alternatives, make long-term consequences of different options transparent, and ease participation of different stakeholder groups and education. Conclusions In our opinion, the current challenge of forest ecosystem management in Europe is to integrate system knowledge from different temporal and spatial scales and from various disciplines. For this purpose, using a set of models with different focus that can be selected from a kind of toolbox according to particular needs is more promising than developing one overarching model, covering ecological, production and landscape issues equally well. PMID:17954471

  3. ForWarn Forest Disturbance Change Detection System Provides a Weekly Snapshot of US Forest Conditions to Aid Forest Managers

    NASA Astrophysics Data System (ADS)

    Hargrove, W. W.; Spruce, J.; Kumar, J.; Hoffman, F. M.

    2012-12-01

    The Eastern Forest Environmental Threat Assessment Center and Western Wildland Environmental Assessment Center of the USDA Forest Service have collaborated with NASA Stennis Space Center to develop ForWarn, a forest monitoring tool that uses MODIS satellite imagery to produce weekly snapshots of vegetation conditions across the lower 48 United States. Forest and natural resource managers can use ForWarn to rapidly detect, identify, and respond to unexpected changes in the nation's forests caused by insects, diseases, wildfires, severe weather, or other natural or human-caused events. ForWarn detects most types of forest disturbances, including insects, disease, wildfires, frost and ice damage, tornadoes, hurricanes, blowdowns, harvest, urbanization, and landslides. It also detects drought, flood, and temperature effects, and shows early and delayed seasonal vegetation development. Operating continuously since January 2010, results show ForWarn to be a robust and highly capable tool for detecting changes in forest conditions. To help forest and natural resource managers rapidly detect, identify, and respond to unexpected changes in the nation's forests, ForWarn produces sets of national maps showing potential forest disturbances at 231m resolution every 8 days, and posts the results to the web for examination. ForWarn compares current greenness with the "normal," historically seen greenness that would be expected for healthy vegetation for a specific location and time of the year, and then identifies areas appearing less green than expected to provide a strategic national overview of potential forest disturbances that can be used to direct ground and aircraft efforts. In addition to forests, ForWarn also tracks potential disturbances in rangeland vegetation and agriculural crops. ForWarn is the first national-scale system of its kind based on remote sensing developed specifically for forest disturbances. The ForWarn system had an official unveiling and rollout in March 2012, initiated by a joint NASA and USDA press release, and followed by a series of training webinars. Almost 60 early-adopter state and federal forest managers attended at least one of the ForWarn rollout webinars. The ForWarn home page has had 2,632 unique visitors since rollout in March 2012, with 39% returning visits. ForWarn was used to map tornado scars from the historic April 27, 2011 tornado outbreak, and detected timber damage within more than a dozen tornado tracks across northern Mississippi, Alabama, and Georgia. ForWarn is the result of an ongoing, substantive cooperation among four different government agencies: USDA, NASA, USGS, and DOE. Disturbance maps are available on the web through the ForWarn Change Assessment Viewer at http://forwarn.forestthreats.org/fcav.

  4. Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure.

    PubMed

    Svensson, Johan; Andersson, Jon; Sandström, Per; Mikusiński, Grzegorz; Jonsson, Bengt-Gunnar

    2018-06-08

    Loss of natural forests has been identified as a critical conservation challenge worldwide. This loss impede the establishment of a functional green infrastructure as a spatiotemporally connected landscape-scale network of habitats enhancing biodiversity, favorable conservation status and ecosystem services. In many regions this loss is caused by forest clearcutting. Through retrospective satellite images analysis we assessed a 50-60 year spatiotemporal clearcutting impact trajectory on natural and near-natural boreal forests across a sizable and representative region from the Gulf of Bothnia to the Scandinavian Mountain Range in northern Fennoscandia. Our analysis broadly covers the whole forest clearcutting period and thus our study approach and results can be applied for comprehensive impact assessment of industrial forest management. Our results demonstrate profound disturbance on natural forest landscape configuration. The whole forest landscape is in a late phase in a transition from a natural or near-natural to a land-use modified state. Our results provide evidence of natural forest loss and spatial polarization at the regional scale, with a pre-dominant share of valuable habitats left in the mountain area, whereas the inland area has been more severely impacted. We highlight the importance of interior forest areas as most valuable biodiversity hotspots and the central axis of green infrastructure. Superimposing the effects of edge disturbance on forest fragmentation, the loss of interior forest entities further aggravate the conservation premises. Our results also show a loss of large contiguous forest patches and indicate patch size homogenization. The current forest protection share is low in the region and with geographical imbalance as the absolute majority is located in remote and low productive sites in the mountain area. Our approach provides possibilities to identify forest areas for directed conservation actions in the form of new protection, restoration and nature conservation oriented forest management, for implementing a functional green infrastructure. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    PubMed

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that ensure stable land tenure and integrate local-livelihood benefits with forest conservation result in the best forest outcomes. © 2017 Society for Conservation Biology.

  6. A tool to analyze environmental impacts of roads on forest watersheds

    Treesearch

    Ajay Prasad

    2007-01-01

    The construction and use of forest roads can have impacts on geomorphic processes and erosion patterns in forested basins. Analyzing these impacts will help forest managers to effectively manage road and road drainage system and hence minimize the negative impacts of forest roads. To manage forest roads effectively the USDA Forest Service (USFS) has developed a road...

  7. Proceedings of the National Silviculture Workshop: Hardwood Management; Roanoke, Virginia; June 1-5, 1981

    Treesearch

    Robert Gillespie; Dan Cramsey; Dick Miller; Dennis Hamel; Carl Puuri; F. Bryan Clark; John Erickson; Nelson Loftus; Lloyd Casey; H. Clay Smith; Bob Marquis; Martin Dale; Charles E. McGee; Robert D. Williams; Gayne G. Erdmann; R. M. Godman; Stephen G. Boyce; Paul A. Schrauder; DonaId E. Beck; David A. Marquis; James L. McConnell; Paul S. Debald; David R. Houston; Walter Knapp; Tom Turpin; Warren Bacon; Arnold Schulz

    1981-01-01

    This year's National Silviculture Workshop was held in Roanoke, Virginia and the Monongahela National Forest. The purpose of the meetings were to discuss current silvicultural issues affecting all Regions and to review in detail the state-of-the-art application of hardwood management in the United States. These proceedings include the presentations of individuals...

  8. Primary screening of forestry herbicides for control of Chinese privet (Ligustrum sinense), Chinese wisteria (Wisteria sinensis), and trumpetcreeper (Campsis radicans) [Abstract

    Treesearch

    James H. Miller

    1998-01-01

    Exotic and native invasive plants increasingly hinder land management, use, and restoration projects. Chinese and Japanese privet are rapidly becoming major threats to future hardwood culture and currently hinder ROW management throughout the southeastern region. Chinese wisteria occurs as severe, dense isolated infestations in forest stands. Native trumpetcreeper can...

  9. Senator Craig's Public Lands Management Imporvement Act of 1997

    Treesearch

    Joseph E. de Steiguer

    1998-01-01

    There are currently some 50 bills before the US Congress that deal with forestry. Among the most important of these is the one introduced on October 3, 1997, by Sen. Larry Craig (R-ID). This bill, S 1253, titled the Public Lands Management Improvement Act of 1997, would have far-reaching effects on the national forests and multiple-use public lands.

  10. Influence of mountain pine beetle epidemic on winter habitat conditions for Merriam's turkeys: Management implications for current and future condition

    Treesearch

    Chadwick P. Lehman; Mark A. Rumble; Michael A. Battaglia; Todd R. Mills; Lance A. Asherin

    2016-01-01

    Understanding response of ponderosa pine (Pinus ponderosa) forest development following a mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has important management implications for winter habitat conditions for Merriam’s wild turkeys (Meleagris gallopavo merriami; hereafter, turkeys). Therefore, we quantified habitat changes over time for turkeys...

  11. Slow the Spread: a national program to manage the gypsy moth

    Treesearch

    Patrick C. Tobin; Laura M. Blackburn

    2007-01-01

    The gypsy moth is a destructive, nonindigenous pest of forest, shade, and fruit trees that was introduced into the United States in 1869, and is currently established throughout the Northeast and upper Midwest. The Slow the Spread Program is a regional integrated pest management strategy that aims to minimize the rate of gypsy moth spread into uninfested areas. The...

  12. Quantifying Carbon Consequences of Recent Land Management and Disturbances in the Greater Yellowstone Ecosystems (GYE) by linking inventory data, remote sensing and carbon modeling

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Huang, C.; Healey, S. P.; McCarter, J. B.; Garrard, C.; Zhu, Z.

    2015-12-01

    Natural disturbances and land management directly change C stored in biomass and soil pools, and can have indirect impacts on long-term C balance. The Greater Yellowstone Ecosystem (GYE), located in Central Rocky Mountains of United States, is of different land ownerships within similar environmental settings, making it an ideal site to examine the impacts of management and disturbances on regional carbon dynamics. Recent advances in the remote sensing of vegetation condition and change, along with new techniques linking remote sensing with inventory records, have allowed investigations that are much more tightly constrained to actual landscape environment, instead of hypothetical or generalized conditions. These new capabilities are built into the Forest Carbon Management Framework (ForCaMF), which is being used by the National Forest System to not only model, but to monitor across very specific management units, the impact of different kinds of disturbance on carbon storage. In this study, we used the ForCaMF approach to evaluate carbon effects of natural disturbances (e.g. wildfire) and land management (e.g. harvests) in GYE National Parks, Wilderness Area and National Forests. As might be expected, wildfire has been the dominant disturbance factor in the carbon cycle of GYE's administratively protected areas since the mid-1980s, while harvests have dominated storage trends on the managed land in the region's National Forests. Moving beyond this monitoring result but maintaining the same fidelity to historical vegetation patterns, we are also able to simulate alternative disturbance scenarios to provide landscape-specific insights to forest managers. We can estimate likely carbon storage impacts in GYE protected areas, for example, if more active fire suppression had been pursued since the mid-1980s. Likewise, we can identify differences in current carbon storage on managed lands if high harvest rates during the same period had been moderated. We discuss emerging links between carbon storage and management in GYE, and we consider the potential for expanding this kind of analysis using globally available satellite resources and nationally available inventory data.

  13. Negative emissions from stopping deforestation and forest degradation, globally.

    PubMed

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  14. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  15. Plant management and biodiversity conservation in Náhuatl homegardens of the Tehuacán Valley, Mexico

    PubMed Central

    2013-01-01

    Background The Tehuacán Valley is one of the areas of Mesoamerica with the oldest history of plant management. Homegardens are among the most ancient management systems that currently provide economic benefits to people and are reservoirs of native biodiversity. Previous studies estimated that 30% of the plant richness of homegardens of the region are native plant species from wild populations. We studied in Náhuatl communities the proportion of native plant species maintained in homegardens, hypothesizing to find a proportion similar to that estimated at regional level, mainly plant resources maintained for edible, medicinal and ornamental purposes. Methods We analysed the composition of plant species of homegardens and their similarity with surrounding Cloud Forest (CF), Tropical Rainforest (TRF), Tropical Dry forest (TDF), and Thorn-Scrub Forest (TSF). We determined density, frequency and biomass of plant species composing homegardens and forests through vegetation sampling of a total of 30 homegardens and nine plots of forests, and documented ethnobotanical information on use, management, and economic benefits from plants maintained in homegardens. Results A total of 281 plant species was recorded with 12 use categories, 115 ornamental, 92 edible, and 50 medicinal plant species. We recorded 49.8 ± 23.2 (average ± S.D.) woody plant species (shrubs and trees) per homegarden. In total, 34% species are native to the Tehuacán Valley and nearly 16% are components of the surrounding forests. A total of 176 species were cultivated through seeds, vegetative propagules or transplanted entire individual plants, 71 tolerated, and 23 enhanced. The highest species richness and diversity were recorded in homegardens from the CF zone (199 species), followed by those from the TRF (157) and those from the TDF (141) zones. Conclusion Homegardens provide a high diversity of resources for subsistence of local households and significantly contribute to conservation of native biodiversity. The highest diversity was recorded in homegardens where the neighbouring forests had the least diversity, suggesting that management of homegardens aims at compensating scarcity of naturally available plant resources. Cultivated species were markedly more abundant than plants under other management forms. Diversity harboured and management techniques make homegardens keystones in strategies for regional biodiversity conservation. PMID:24195962

  16. Updating beliefs and combining evidence in adaptive forest management under climate change: a case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany.

    PubMed

    Yousefpour, Rasoul; Temperli, Christian; Bugmann, Harald; Elkin, Che; Hanewinkel, Marc; Meilby, Henrik; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2013-06-15

    We study climate uncertainty and how managers' beliefs about climate change develop and influence their decisions. We develop an approach for updating knowledge and beliefs based on the observation of forest and climate variables and illustrate its application for the adaptive management of an even-aged Norway spruce (Picea abies L. Karst) forest in the Black Forest, Germany. We simulated forest development under a range of climate change scenarios and forest management alternatives. Our analysis used Bayesian updating and Dempster's rule of combination to simulate how observations of climate and forest variables may influence a decision maker's beliefs about climate development and thereby management decisions. While forest managers may be inclined to rely on observed forest variables to infer climate change and impacts, we found that observation of climate state, e.g. temperature or precipitation is superior for updating beliefs and supporting decision-making. However, with little conflict among information sources, the strongest evidence would be offered by a combination of at least two informative variables, e.g., temperature and precipitation. The success of adaptive forest management depends on when managers switch to forward-looking management schemes. Thus, robust climate adaptation policies may depend crucially on a better understanding of what factors influence managers' belief in climate change. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. The ecological sustainability of tropical forest management: evaluation of the national forest management standards of Costa Rica and Nicaragua, with emphasis on the need for adaptive. management

    Treesearch

    Kathleen McGinleya; Bryan Fineganb

    2003-01-01

    From a conceptual point of view, national forest management standards in Latin American countries have progressed significantly in recent years.Examples include the Costa Rican Standards and Procedures for Sustainable Forest Management and Certification, developed by the National Commission for Forest Certification and in Nicaragua, the National Institute of Forestry...

  18. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes

    PubMed Central

    de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5–21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies. PMID:27478706

  19. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    PubMed

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies.

  20. The status of forest management research in the United States.

    Treesearch

    Donald G. Hodges; Pamela J. Jakes; Frederick W. Cubbage

    1988-01-01

    In 1985, the USDA Forest Service invested nearly $30 million in forest management research, forest industry invested $19 million, and universities invested at least $17 million. Investments in this research have been declining since then. Forest Service data indicate that the public sector is the largest beneficiary of forest management research.

  1. 36 CFR 221.3 - Disposal of national forest timber according to management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Disposal of national forest timber according to management plans. 221.3 Section 221.3 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE TIMBER MANAGEMENT PLANNING § 221.3 Disposal of national forest timber...

  2. Forest structure and development: implications for forest management

    Treesearch

    Kevin L. O' Hara

    2004-01-01

    A general premise of forest managers is that modern silviculture should be based, in large part, on natural disturbance patterns and species' adaptations to these disturbances. An understanding of forest stand dynamics is therefore a prerequisite to sound forest management. This paper provides a brief overview of forest stand development, stand structures, and...

  3. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model.

    PubMed

    Mao, Fangjie; Zhou, Guomo; Li, Pingheng; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2017-04-15

    The selective cutting method currently used in Moso bamboo forests has resulted in a reduction of stand productivity and carbon sequestration capacity. Given the time and labor expense involved in addressing this problem manually, simulation using an ecosystem model is the most suitable approach. The BIOME-BGC model was improved to suit managed Moso bamboo forests, which was adapted to include age structure, specific ecological processes and management measures of Moso bamboo forest. A field selective cutting experiment was done in nine plots with three cutting intensities (high-intensity, moderate-intensity and low-intensity) during 2010-2013, and biomass of these plots was measured for model validation. Then four selective cutting scenarios were simulated by the improved BIOME-BGC model to optimize the selective cutting timings, intervals, retained ages and intensities. The improved model matched the observed aboveground carbon density and yield of different plots, with a range of relative error from 9.83% to 15.74%. The results of different selective cutting scenarios suggested that the optimal selective cutting measure should be cutting 30% culms of age 6, 80% culms of age 7, and all culms thereafter (above age 8) in winter every other year. The vegetation carbon density and harvested carbon density of this selective cutting method can increase by 74.63% and 21.5%, respectively, compared with the current selective cutting measure. The optimized selective cutting measure developed in this study can significantly promote carbon density, yield, and carbon sink capacity in Moso bamboo forests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A study of Minnesota forests and lakes using data from Earth Resources Technology Satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Highlights of research and practical benefits are discussed for the following projects which utilized ERTS 1 data to provide municipal, state, federal, and industrial users with environmental resource information for the state of Minnesota: (1) forest disease detection and control; (2) evaluation of water quality by remote sensing techniques; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) snowmelt flood prediction; (6) remote sensing applications to hydrology; (7) Rice Creek watershed project; (8) water quality in Lake Superior and the Duluth Superior Harbor; and (9) determination of Lake Superior currents from turbidity patterns.

  5. Uav and GIS Based Tool for Collection and Propagation of Seeds Material - First Results

    NASA Astrophysics Data System (ADS)

    Stereńczak, K.; Mroczek, P.; Jastrzębowski, S.; Krok, G.; Lisańczuk, M.; Klisz, M.; Kantorowicz, W.

    2016-06-01

    Seed management carried out by The State Forests National Forest Holding is an integral part of rational forest management. Seed collection takes place mainly from stands belonging to first category of forest reproductive material, which is the largest seed base in Poland. In smaller amount, seeds are collected in selective objects of highest forest reproductive material category (selected seed stands, seed orchards). The previous estimation methods of seed crop were based on visual assessment of cones in the stands for their harvest. Following the rules of FRM transfer is additional difficulty of rational seed management which limits the possibility of the use of planting material in Poland. Statements concerning forecast of seed crop and monitoring of seed quality is based on annual reports from the State Forest Service. Forest Research Institute is responsible for preparing and publishing above-mentioned statements. A small extent of its automatization and optimization is a large disadvantage of this procedure. In order to make this process more effective web-based GIS application was designed. Its main performance will give a possibility to upload present-day information on seed efficiency, their spatial pattern and availability. Currently this system is under preparation. As a result, the project team will get a possibility to increase participation of seed material collected from selected seed base and to share good practices on this issue in more efficient way. In the future this will make it possible to obtain greater genetic gain of selection strategy. Additionally, first results presented in literature showed possible use of unmanned aerial system/vehicle (UAS/V) for supporting of seed crop forecast procedure.

  6. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    PubMed

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Representative landscapes in the forested area of Canada.

    PubMed

    Cardille, Jeffrey A; White, Joanne C; Wulder, Mike A; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative-or "exemplar"-from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  8. Representative Landscapes in the Forested Area of Canada

    NASA Astrophysics Data System (ADS)

    Cardille, Jeffrey A.; White, Joanne C.; Wulder, Mike A.; Holland, Tara

    2012-01-01

    Canada is a large nation with forested ecosystems that occupy over 60% of the national land base, and knowledge of the patterns of Canada's land cover is important to proper environmental management of this vast resource. To this end, a circa 2000 Landsat-derived land cover map of the forested ecosystems of Canada has created a new window into understanding the composition and configuration of land cover patterns in forested Canada. Strategies for summarizing such large expanses of land cover are increasingly important, as land managers work to study and preserve distinctive areas, as well as to identify representative examples of current land-cover and land-use assemblages. Meanwhile, the development of extremely efficient clustering algorithms has become increasingly important in the world of computer science, in which billions of pieces of information on the internet are continually sifted for meaning for a vast variety of applications. One recently developed clustering algorithm quickly groups large numbers of items of any type in a given data set while simultaneously selecting a representative—or "exemplar"—from each cluster. In this context, the availability of both advanced data processing methods and a nationally available set of landscape metrics presents an opportunity to identify sets of representative landscapes to better understand landscape pattern, variation, and distribution across the forested area of Canada. In this research, we first identify and provide context for a small, interpretable set of exemplar landscapes that objectively represent land cover in each of Canada's ten forested ecozones. Then, we demonstrate how this approach can be used to identify flagship and satellite long-term study areas inside and outside protected areas in the province of Ontario. These applications aid our understanding of Canada's forest while augmenting its management toolbox, and may signal a broad range of applications for this versatile approach.

  9. Gap Models as Tools for Sustainable Development under Environmental Changes in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Shugart, H. H., Jr.; Wang, B.; Brazhnik, K.; Armstrong, A. H.; Foster, A.

    2017-12-01

    Agent-based models of complex systems or as used in this review, Individual-based Models (IBMs), emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. IBMs arose from a deeply embedded ecological tradition of understanding the dynamics of ecosystems from a "bottom-up" accounting of the interactions of the parts. In this case, individual trees are principal among the parts. Because they are computationally demanding, these models have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. Forest IBMs are no longer computationally bound from developing continental- or global-scale simulations of responses of forests to climate and other changes. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on small plots of land that in summation comprise a forest (or set of sample plots on a forested landscape or region). Currently, gap models have grown from continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. These predictions are valuable in the planning and anticipatory decision-making needed to sustainably manage a vast region such as Northern Eurasia. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. These disturbances have significant exogenous drivers, notably weather variables, but their effects are also a function of the endogenous conditions involving the structure of forest itself. This feedback between the forest and its environment can in some cases produce hysteresis and multiple-stable operating-regimes for forests. Such responses, often characterized as "tipping points" could play a significant role in increasing risk under environmental change, notably global warming. Such dynamics in a management context imply regional systems that could be "unforgiving" of management mistakes.

  10. Determinants of the process and outcomes of household participation in collaborative forest management in Ghana: a quantitative test of a community resilience model.

    PubMed

    Akamani, Kofi; Hall, Troy Elizabeth

    2015-01-01

    This study tested a proposed community resilience model by investigating the role of institutions, capital assets, community and socio-demographic variables as determinants of households' participation in Ghana's collaborative forest management (CFM) program and outcomes of the program. Quantitative survey data were gathered from 209 randomly selected households from two forest-dependent communities. Regression analysis shows that households' participation in the CFM program was predicted by community location, past connections with institutions, and past bonding social capital. Community location and past capitals were the strongest predictors of the outcomes of the CFM program as judged by current levels of capitals. Participation in the CFM program also had a positive effect on human capital but had minimal impact on the other capitals influencing household well-being and resilience, suggesting that the impact of co-management on household resilience may be modest. In all, the findings highlight the need for co-management policies to pay attention to the historical context of community interaction processes influencing access to capital assets and local institutions to successfully promote equitable resilience. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. 76 FR 75860 - National Forest System Invasive Species Management Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ..., scope, roles, principles, and responsibilities associated with NFS invasive species management for... threatening the National Forest System. Final Policy or Principles The management of aquatic and terrestrial...-AC77 National Forest System Invasive Species Management Policy AGENCY: Forest Service, USDA. ACTION...

  12. 76 FR 5397 - Bureau of Land Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management DEPARTMENT OF AGRICULTURE Forest Service...; California AGENCY: Bureau of Land Management, Interior; and Forest Service, USDA. ACTION: Notice of public... Land Management (BLM) and U.S. Department of Agriculture, Forest Service (Forest Service) Santa Rosa...

  13. Pioneer forest - a half century of sustainable uneven-aged forest management in the Missouri Ozarks

    Treesearch

    James M. Guldin; Greg F. Iffrig; Susan L. Flader

    2008-01-01

    This collection of papers analyzes the Pioneer Forest, a privately owned 150,000-acre working forest in the Missouri Ozarks, on which the science and art of forest management has been practiced for more than 50 years. The papers discuss how this half century of management has contributed to forest restoration and sustainability on the forest itself and, through its...

  14. Estimating Forest Species Composition Using a Multi-Sensor Approach

    NASA Astrophysics Data System (ADS)

    Wolter, P. T.

    2009-12-01

    The magnitude, duration, and frequency of forest disturbance caused by the spruce budworm and forest tent caterpillar has increased over the last century due to a shift in forest species composition linked to historical fire suppression, forest management, and pesticide application that has fostered the increase in dominance of host tree species. Modeling approaches are currently being used to understand and forecast potential management effects in changing insect disturbance trends. However, detailed forest composition data needed for these efforts is often lacking. Here, we used partial least squares (PLS) regression to integrate satellite sensor data from Landsat, Radarsat-1, and PALSAR, as well as pixel-wise forest structure information derived from SPOT-5 sensor data (Wolter et al. 2009), to estimate species-level forest composition of 12 species required for modeling efforts. C-band Radarsat-1 data and L-band PALSAR data were frequently among the strongest predictors of forest composition. Pixel-level forest structure data were more important for estimating conifer rather than hardwood forest composition. The coefficients of determination for species relative basal area (RBA) ranged from 0.57 (white cedar) to 0.94 (maple) with RMSE of 8.88 to 6.44 % RBA, respectively. Receiver operating characteristic (ROC) curves were used to determine the effective lower limits of usefulness of species RBA estimates which ranged from 5.94 % (jack pine) to 39.41 % (black ash). These estimates were then used to produce a dominant forest species map for the study region with an overall accuracy of 78 %. Most notably, this approach facilitated discrimination of aspen from birch as well as spruce and fir from other conifer species which is crucial for the study of forest tent caterpillar and spruce budworm dynamics, respectively, in the Upper Midwest. Thus, use of PLS regression as a data fusion strategy has proven to be an effective tool for regional characterization of forest composition within spatially heterogeneous forests using large-format satellite sensor data.

  15. U.S. National forests adapt to climate change through science-management partnerships

    Treesearch

    Jeremy S. Littell; David L. Peterson; Constance I. Millar; Kathy A. O' Halloran

    2011-01-01

    Developing appropriate management options for adapting to climate change is a new challenge for land managers, and integration of climate change concepts into operational management and planning on United States national forests is just starting. We established science-management partnerships on the Olympic National Forest (Washington) and Tahoe National Forest (...

  16. Trends in management of the world's forests and impacts on carbon stocks

    Treesearch

    Richard Birdsey; Yude Pan

    2015-01-01

    Global forests are increasingly affected by land-use change, fragmentation, changing management objectives, and degradation. In this paper we broadly characterize trends in global forest area by intensity of management, and provide an overview of changes in global carbon stocks associated with managed forests. We discuss different interpretations of "management...

  17. Forest edge disturbance increases rattan abundance in tropical rain forest fragments.

    PubMed

    Campbell, Mason J; Edwards, Will; Magrach, Ainhoa; Laurance, Susan G; Alamgir, Mohammed; Porolak, Gabriel; Laurance, William F

    2017-07-20

    Human-induced forest fragmentation poses one of the largest threats to global diversity yet its impact on rattans (climbing palms) has remained virtually unexplored. Rattan is arguably the world's most valuable non-timber forest product though current levels of harvesting and land-use change place wild populations at risk. To assess rattan response to fragmentation exclusive of harvesting impacts we examined rattan abundance, demography and ecology within the forests of northeastern, Australia. We assessed the community abundance of rattans, and component adult (>3 m) and juvenile (≤3 m) abundance in five intact forests and five fragments (23-58 ha) to determine their response to a range of environmental and ecological parameters. Fragmented forests supported higher abundances of rattans than intact forests. Fragment size and edge degradation significantly increased adult rattan abundance, with more in smaller fragments and near edges. Our findings suggest that rattan increase within fragments is due to canopy disturbance of forest edges resulting in preferential, high-light habitat. However, adult and juvenile rattans may respond inconsistently to fragmentation. In managed forest fragments, a rattan abundance increase may provide economic benefits through sustainable harvesting practices. However, rattan increases in protected area forest fragments could negatively impact conservation outcomes.

  18. Examining the Role of Voluntary Associations in Environmental Management: The Case of the Sam Houston National Forest

    NASA Astrophysics Data System (ADS)

    Lu, Jiaying; Schuett, Michael A.

    2012-02-01

    The purpose of this study was to gain a better understanding of voluntary associations involved in forest management. The specific areas examined in this study include organizational attributes, membership profile, attitudes toward forest-management priorities, and concerns about forest-management issues. To achieve this purpose, data were collected using a case study approach with mixed-methods (document reviews, personal interviews, and a Web survey) at a national forest in Texas, USA. Overall, the voluntary associations in this study can be described as place-based, small to moderate in scale, activity-oriented, and active groups that are adaptive to sociopolitical and environmental changes. General group members placed high importance on aesthetic, ecological, and recreation management of the national forest. In addition, this study showed five key forest management issues: (1) limited recreation access; (2) financial challenges for forest management; (3) conflict among recreation user groups; (4) inadequate communication by the United States Forest Service to the general public, and (5) sustainability of the forest. Theoretical and managerial implications of the results are discussed.

  19. Radiocaesium accumulation in stemwood: integrated approach at the scale of forest stands for contaminated Scots pine in Belarus.

    PubMed

    Goor, François; Thiry, Yves; Delvaux, Bruno

    2007-10-01

    Twenty years after the Chernobyl accident, root uptake from the surface layers of contaminated forest soils plays a major role in radiocaesium ((137)Cs) transfer to the trees and accumulation in perennial compartments, including stemwood. Trustworthy long-term predictions (modelling) of stemwood contamination with (137)Cs should accordingly be based on a reliable picture of this source-sink relationship. Considering the complexity of the processes involved in (137)Cs cycling in forest stands, elementary ratios like transfer factors (TF) were shown to be not very relevant for that purpose. At the tree level, alternatives like the wood immobilisation potential (WIP) have therefore been proposed in order to quantify the current net (137)Cs accumulation in stemwood. Our objective was here to compare WIP values determined for a series of contaminated forest stands in Belarus with the corresponding pools of (137)Cs available in the soil for root uptake. The comparison reveals that both indices are quite proportional, whatever the forest ecosystem features. This corroborates the relevancy of WIP as an indicator of the current (137)Cs root uptake by the trees, which could accordingly help to improve the existing models of (137)Cs cycling and the long-term management of contaminated forest ecosystems.

  20. Current and potential carbon stocks in Moso bamboo forests in China.

    PubMed

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Burger; J. Galbraith; T. Fox

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3more » factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Relative to carbon value, our analysis this quarter shows that although short-rotation hardwood management on reclaimed surface mined lands may have higher LEVs than traditional long-rotation hardwood management, it is only profitable in a limited set of circumstances.« less

  2. Managing forests because carbon matters: integrating energy, products, and land management policy

    Treesearch

    Robert W. Malmsheimer; James L. Bowyer; Jeremy S. Fried; Edmund Gee; Robert Izlar; Reid A. Miner; Ian A. Munn; Elaine Oneil; William C. Stewart

    2011-01-01

    The United States needs many different types of forests: some managed for wood products plus other benefits, and some managed for nonconsumptive uses and benefits. The objective of reducing global greenhouse gases (GHG) requires increasing carbon storage in pools other than the atmosphere. Growing more forests and keeping forests as forests are only part of the...

  3. Projecting Forest Policy and Management Effects across Ownerships in Coastal Oregon

    Treesearch

    Thomas A. Spies; K. Norman Johnson

    2007-01-01

    Two of the most fundamental questions in forest ecosystem management are: (1) What are the consequences of different forest management practices? and (2) How do they vary with spatial and temporal scale? The forest management controversies of the 1990s in the Pacific Northwest revolved around these questions and led to major new forest polices in the region for federal...

  4. Relationship of various factors affecting the sustainable private forest management at Pajangan District, Special Regions Yogyakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Widayanto, B.; Karsidi, R.; Kusnandar; Sutrisno, J.

    2018-03-01

    Forests have a role and function in providing good atmosphere with stable oxygen content and affecting global climate stability. Good forest management will provide stable climatic conditions in global climate change. A good forest is managed to provide a sustainable environment condition. This study aims to analyze the relationship of various factors affecting the sustainability of private forests management. This research is a quantitative research with survey method and determination of sampling are was by purposive sampling. Sampling method using multiple stage cluster sampling with 60 samples. From the results it was found that the successful sustainable private forest management influenced by various factors, such as group dynamics, stakeholder support, community institutions, and farmer participation. The continuity of private forest management is determined by the fulfillment of economic, social and environmental dimensions. The most interesting finding is that the group dynamics conditions are very good, whereas the sense of togetherness among community is very strong under limited resources managing private forests. The sense of togetherness resulted creativity to diversify business and thus reduced the pressure in exploiting the forest. Some people think that managing the people's forest as a culture so that its existence can be more sustainable.

  5. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  6. Nontimber forest products management on national forests in the United States.

    Treesearch

    Rebecca J. McLain; Eric T. Jones

    2005-01-01

    This study provides an overview of nontimber forest products (NTFP) programs on national forests in the United States. We conducted an email survey in 2003 to obtain data on NTFP management activities on national forests across the country. Program characteristics examined in the study included important NTFPs managed on national forests, presence of NTFP coordinators...

  7. 77 FR 44144 - National Forest System Land Management Planning; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-27

    ... Management Planning; Correction AGENCY: Forest Service, USDA. ACTION: Correcting amendments. SUMMARY: The Department of Agriculture (USDA) published a National Forest System land management planning rule in the... document may be sent to the Director, Ecosystem Management Coordination Staff, USDA Forest Service, 1400...

  8. Overview of Contemporary Issues of Forest Research and Management in China

    NASA Astrophysics Data System (ADS)

    He, Hong S.; Shifley, Stephen R.; Thompson, Frank R.

    2011-12-01

    With 207 million ha of forest covering 22% of its land area, China ranks fifth in the world in forest area. Rapid economic growth, climate change, and forest disturbances pose new, complex challenges for forest research and management. Progress in meeting these challenges is relevant beyond China, because China's forests represent 34% of Asia's forests and 5% of the worlds' forests. To provide a broader understanding of these management challenges and of research and policies that address them, we organized this special issue on contemporary forest research and management issues in China. At the national level, papers review major forest types and the evolution of sustainable forestry, the development of China's forest-certification efforts, the establishment of a forest inventory system, and achievements and challenges in insect pest control in China. Papers focused on Northern China address historical, social, and political factors that have shaped the region's forests; the use of forest landscape models to assess how forest management can achieve multiple objectives; and analysis and modeling of fuels and fire behavior. Papers addressing Central and South China describe the "Grain for Green" program, which converts low productivity cropland to grassland and woodland to address erosion and soil carbon sequestration; the potential effects of climate change on CO2 efflux and soil respiration; and relationships between climate and net primary productivity. China shares many forest management and research issues with other countries, but in other cases China's capacity to respond to forest management challenges is unique and bears watching by the rest of the world.

  9. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment.

    PubMed

    Ameztegui, Aitor; Solarik, Kevin A; Parkins, John R; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province.

  10. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment

    PubMed Central

    Parkins, John R.; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province. PMID:29897977

  11. The Impact of Nature-Based Tourism on Bird Communities: A Case Study in Pallas-Yllästunturi National Park

    NASA Astrophysics Data System (ADS)

    Huhta, Esa; Sulkava, Pekka

    2014-05-01

    Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.

  12. The impact of nature-based tourism on bird communities: a case study in Pallas-Yllästunturi National Park.

    PubMed

    Huhta, Esa; Sulkava, Pekka

    2014-05-01

    Nature-based tourism and recreation within and close to protected areas may have negative environmental impacts on biodiversity due to urban development, landscape fragmentation, and increased disturbance. We conducted a 3-year study of disturbances of birds induced by nature-based tourism over a recreational gradient in the Pallas-Yllästunturi National Park and its surroundings in northern Finland. Bird assemblages were studied in highly disturbed areas close to the park (a ski resort, villages, and accommodation areas) and in campfire sites, along hiking routes (recreational areas) and in a forest (control area) within the park. Compared with the forest, the disturbed urbanized areas had higher abundances of human-associated species, corvid species, cavity and building nesters, and edge species. The abundances of managed forest species were higher in campfire sites than in the forest. Hiking trails and campfire sites did not have a negative impact on open-nesting bird species. The most likely reason for this outcome is that most campfire sites were situated at forest edges; this species group prefers managed forests and forest edge as a breeding habitat. The abundances of virgin forest species did not differ among the areas studied. The results of the study suggest that the current recreation pressure has not caused substantial changes in the forest bird communities within the National Park. We suggest that the abundances of urban exploiter species could be used as indicators to monitor the level and changes of urbanization and recreational pressure at tourist destinations.

  13. Historical and current forest and range landscapes in the interior Columbia River basin and portions of the Klamath and Great Basins. Part 1: Linking vegetation patterns and landscape vulnerability to potential insect and pathogen disturbances.

    Treesearch

    Paul F. Hessburg; Bradley G. Smith; Scott D. Kreiter; Craig A. Miller; R. Brion Salter; Cecilia H. McNicoll; Wendel J. Hann

    1999-01-01

    Management activities of the 20th century, especially fire exclusion, timber harvest, and domestic livestock grazing, have significantly modified vegetation spatial patterns of forests and ranges in the interior Columbia basin. Compositional patterns as well as patterns of living and dead structure have changed. Dramatic change in vital ecosystem processes such as fire...

  14. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  15. Perceptions of social and environmental changes in a Mediterranean forest during the last 100 years: the Gavarres Massif.

    PubMed

    Rodríguez-Carreras, Roser; Ubeda, Xavier; Outeiro, Luís; Asperó, Francesc

    2014-06-01

    During the last century the landscape of the mid-Mediterranean mountains has undergone major transformations. The precipitous decline in the economic viability of forest products has engendered ever-thickening forests and agricultural lands have reverted to forest land cover. The related exodus of existing inhabitants since 1960 has led to new styles of occupancy: residential and touristic land uses have emerged while the primary and secondary sectors have largely disappeared. The object of the present study is to review how these transformations have developed in a specific area of north-eastern of Catalonia, known as the Gavarres Massif. The study applies a qualitative approach, based on interviews with stakeholders including active members of the local community and others who utilize or visit the area, all of whom are representatives of different social groups with a wide range of interests and points of view with regard to the massif. The information collected from the perspectives and opinions of the participants is coupled with objective data about the area. The result of this investigation is a rich variety of perceptions on landscape and social transformation and its current functional dynamics. Analyzing the information obtained allows us to understand the fact that the disappearance of the rural world is directly related to the collapse of an entire economic system that relied on the environment. In this study, two divergent points of view arise, one which supports recovering past landscapes and another which favours managing changes, conserving the existing landscape. Proposals for the current and future territorial management of Les Gavarres are presented. The diversity of opinions which emerges with regard to managing necessary changes in the massif emphasizes the importance of increased social dialogue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Evaluating land-use and private forest management responses to a potential forest carbon offset sales program in western Oregon (USA)

    Treesearch

    Gregory S. Latta; Darius M. Adams; Kathleen P. Bell; Jeff Kline

    2016-01-01

    We describe the use of linked land-use and forest sector models to simulate the effects of carbon offset sales on private forest owners' land-use and forest management decisions inwestern Oregon (USA). Our work focuses on forest management decisions rather than afforestation, allows full forest sector price adjustment to land-use changes, and incorporates time-...

  17. Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests

    PubMed Central

    Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling. PMID:24699676

  18. Influence of different forest system management practices on leaf litter decomposition rates, nutrient dynamics and the activity of ligninolytic enzymes: a case study from central European forests.

    PubMed

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Schulz, Elke; Schloter, Michael; Buscot, François; Hofrichter, Martin; Krüger, Dirk

    2014-01-01

    Leaf litter decomposition is the key ecological process that determines the sustainability of managed forest ecosystems, however very few studies hitherto have investigated this process with respect to silvicultural management practices. The aims of the present study were to investigate the effects of forest management practices on leaf litter decomposition rates, nutrient dynamics (C, N, Mg, K, Ca, P) and the activity of ligninolytic enzymes. We approached these questions using a 473 day long litterbag experiment. We found that age-class beech and spruce forests (high forest management intensity) had significantly higher decomposition rates and nutrient release (most nutrients) than unmanaged deciduous forest reserves (P<0.05). The site with near-to-nature forest management (low forest management intensity) exhibited no significant differences in litter decomposition rate, C release, lignin decomposition, and C/N, lignin/N and ligninolytic enzyme patterns compared to the unmanaged deciduous forest reserves, but most nutrient dynamics examined in this study were significantly faster under such near-to-nature forest management practices. Analyzing the activities of ligninolytic enzymes provided evidence that different forest system management practices affect litter decomposition by changing microbial enzyme activities, at least over the investigated time frame of 473 days (laccase, P<0.0001; manganese peroxidase (MnP), P = 0.0260). Our results also indicate that lignin decomposition is the rate limiting step in leaf litter decomposition and that MnP is one of the key oxidative enzymes of litter degradation. We demonstrate here that forest system management practices can significantly affect important ecological processes and services such as decomposition and nutrient cycling.

  19. Forest Management Expenses of Mississippi's Nonindustrial Private Forest Landowners

    Treesearch

    Kathryn G. Arano; Tamara L. Cushing; Ian A. Munn

    2002-01-01

    Detailed information about the forest management expenditures incurred by nonindustrial private forest (NIPF) landowners over time provides a wealth of information about costs associated with forestland ownership, management practices implemented hv NIPF landowners, and changes in management intensity over time. A survey of Mississippi's nonindustrial private...

  20. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    PubMed

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.

Top