Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin
2017-01-01
Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.
Scientific Achievements of Global ENA Imaging and Future Outlook
NASA Astrophysics Data System (ADS)
Brandt, P. C.; Stephens, G. K.; Hsieh, S. Y. W.; Demajistre, R.; Gkioulidou, M.
2017-12-01
Energetic Neutral Atom (ENA) imaging is the only technique that can capture the instantaneous global state of energetic ion distributions in planetary magnetospheres and from the heliosheath. In particular at Earth, ENA imaging has been used to diagnose the morphology and dynamics of the ring current and plasma sheet down to several minutes time resolution and is therefore a critical tool to validate global ring current physics models. However, this requires a detailed understanding for how ENAs are produced from the ring current and inversion techniques that are thoroughly validated against in-situ measurements. To date, several missions have carried out planetary and heliospheric ENA imaging including Cassini, JUICE, IBEX of the heliosphere, and POLAR, Astrid-1, Double Star, TWINS and IMAGE of the terrestrial magnetosphere. Because of their path-finding successes, a future global-imaging mission concept, MEDICI, has been recommended in the Heliophysics Decadal Survey. Its core mission consists of two satellites in one circular, near-polar orbit beyond the radiation belts at around 8 RE, with ENA, EUV and FUV cameras. This recommendation has driven the definition of smaller mission concepts that address specific science aspects of the MEDICI concept. In this presentation, we review the past scientific achievements of ENA imaging with a focus on the terrestrial magnetosphere from primarily the NASA IMAGE and the TWINS missions. The highlighted achievements include the storm, sub-storm and quiet-time morphology, dynamics and pitch-angle distributions of the ring current, global differential acceleration of protons versus O+ ions, the structure of the global electrical current systems associated with the plasma pressure of protons and O+ ions up to around 200 keV, and the relation between ring current and plasmasphere. We discuss the need for future global observations of the ring current, plasma sheet and magnetosheath ion distributions based and derive their measurement requirements, of which high-angular resolution (≤2˚) is critical. A significant aspect of the future science definition is the stability and accessibility of inversion algorithms that retrieve the 3D distribution from the 2D ENA images, that will also be discussed.
The effects of variable biome distribution on global climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noever, D.A.; Brittain, A.; Matsos, H.C.
1996-12-31
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. The authors develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed trend and order of magnitude change in global temperature. Once backtested in this way on historical data, the model is then used to generate an optimized future biome distribution which minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search anmore » artificial intelligence method, the genetic algorithm, was employed. The genetic algorithm assigns various biome distributions to the planet, then adjusts their percentage area and albedo effects to regulate or moderate temperature changes.« less
Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites
NASA Technical Reports Server (NTRS)
Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)
2001-01-01
The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.
A quasi-static model of global atmospheric electricity. I - The lower atmosphere
NASA Technical Reports Server (NTRS)
Hays, P. B.; Roble, R. G.
1979-01-01
A quasi-steady model of global lower atmospheric electricity is presented. The model considers thunderstorms as dipole electric generators that can be randomly distributed in various regions and that are the only source of atmospheric electricity and includes the effects of orography and electrical coupling along geomagnetic field lines in the ionosphere and magnetosphere. The model is used to calculate the global distribution of electric potential and current for model conductivities and assumed spatial distributions of thunderstorms. Results indicate that large positive electric potentials are generated over thunderstorms and penetrate to ionospheric heights and into the conjugate hemisphere along magnetic field lines. The perturbation of the calculated electric potential and current distributions during solar flares and subsequent Forbush decreases is discussed, and future measurements of atmospheric electrical parameters and modifications of the model which would improve the agreement between calculations and measurements are suggested.
Global Distributions of Ionospheric Electrostatic Potentials for Various Interplanetary Conditions
NASA Astrophysics Data System (ADS)
Kartalev, M.; Papitashvili, V.; Keremidarska, V.; Grigorov, K.; Romanov, D.
2001-12-01
We report on a study of the global ionospheric electrostatic potential distributions obtained from combining two algorithms used for the mapping of high-latitude and middle-latitude ionospheric electrodynamics; that is, the LiMIE (http://www.sprl.umich.edu/mist/) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes the LiMIE high-latitude field-aligned current distributions for various IMF conditions and different seasons (summer, winter, equinox). The IMEH model is a mathematical tool, allowing us to study conjugacy (or non-conjugacy) of the ionospheric electric fields on a global scale, from the northern and southern polar regions to the middle- and low-latitudes. The proposed numerical scheme permits testing of different mechanisms of the interhemispheric coupling and mapping to the ionosphere through the appropriate current systems. The scheme is convenient for determining self-consistently the separatrices in both the northern and southern hemispheres. In this study we focus on the global ionospheric electrostatic field distributions neglecting other possible electric field sources. Considering some implications of the proposed technique for the space weather specification and forecasting, we developed a Web-based interface providing global distributions of the ionospheric electrostatic potentials in near-real time from the ACE upstream solar wind observations at L1.
Globalization and the distribution of income: The economic arguments
Jones, Ronald W.
2003-01-01
One of the issues currently being debated in the ongoing discussion of the pros and cons of today's globalization concerns the effects of greater world trade as well as of the changes in technology on a country's internal distribution of income, especially on skilled versus unskilled wage rates. In this article, I attempt to spell out some of the arguments concerning internal income distribution that have been put forth both by labor economists and international trade theorists. The impact of globalization on the wage premium between the skilled and unskilled may not be as obvious as is first imagined. PMID:12960390
Parallel Electric Field on Auroral Magnetic Field Lines.
NASA Astrophysics Data System (ADS)
Yeh, Huey-Ching Betty
1982-03-01
The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
NASA Astrophysics Data System (ADS)
Li, Zishen; Wang, Ningbo; Li, Min; Zhou, Kai; Yuan, Yunbin; Yuan, Hong
2017-04-01
The Earth's ionosphere is part of the atmosphere stretching from an altitude of about 50 km to more than 1000 km. When the Global Navigation Satellite System (GNSS) signal emitted from a satellite travels through the ionosphere before reaches a receiver on or near the Earth surface, the GNSS signal is significantly delayed by the ionosphere and this delay bas been considered as one of the major errors in the GNSS measurement. The real-time global ionospheric map calculated from the real-time data obtained by global stations is an essential method for mitigating the ionospheric delay for real-time positioning. The generation of an accurate global ionospheric map generally depends on the global stations with dense distribution; however, the number of global stations that can produce the real-time data is very limited at present, which results that the generation of global ionospheric map with a high accuracy is very different when only using the current stations with real-time data. In view of this, a new approach is proposed for calculating the real-time global ionospheric map only based on the current stations with real-time data. This new approach is developed on the basis of the post-processing and the one-day predicted global ionospheric map from our research group. The performance of the proposed approach is tested by the current global stations with the real-time data and the test results are also compared with the IGS-released final global ionospheric map products.
Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images
NASA Astrophysics Data System (ADS)
Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.
2015-12-01
Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.
Magnetospheric electric fields and currents
NASA Technical Reports Server (NTRS)
Mauk, B. H.; Zanetti, L. J.
1987-01-01
The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.
Global marine bacterial diversity peaks at high latitudes in winter
Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S
2013-01-01
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781
Seasonal influenza vaccine dose distribution in 157 countries (2004-2011).
Palache, Abraham; Oriol-Mathieu, Valerie; Abelin, Atika; Music, Tamara
2014-11-12
Globally there are an estimated 3-5 million cases of severe influenza illness every year, resulting in 250,000-500,000 deaths. At the World Health Assembly in 2003, World Health Organization (WHO) resolved to increase influenza vaccine coverage rates (VCR) for high-risk groups, particularly focusing on at least 75% of the elderly by 2010. But systematic worldwide data have not been available to assist public health authorities to monitor vaccine uptake and review progress toward vaccination coverage targets. In 2008, the International Federation of Pharmaceutical Manufacturers and Associations Influenza Vaccine Supply task force (IFPMA IVS) developed a survey methodology to assess global influenza vaccine dose distribution. The current survey results represent 2011 data and demonstrate the evolution of the absolute number distributed between 2004 and 2011 inclusive, and the evolution in the per capita doses distributed in 2008-2011. Global distribution of IFPMA IVS member doses increased approximately 86.9% between 2004 and 2011, but only approximately 12.1% between 2008 and 2011. The WHO's regions in Eastern Mediterranean (EMRO), Southeast Asian (SEARO) and Africa (AFRO) together account for about 47% of the global population, but only 3.7% of all IFPMA IVS doses distributed. While distributed doses have globally increased, they have decreased in EURO and EMRO since 2009. Dose distribution can provide a reasonable proxy of vaccine utilization. Based on the dose distribution, we conclude that seasonal influenza VCR in many countries remains well below the WHA's VCR targets and below the recommendations of the Council of the European Union in EURO. Inter- and intra-regional disparities in dose distribution trends call into question the impact of current vaccine recommendations at achieving coverage targets. Additional policy measures, particularly those that influence patients adherence to vaccination programs, such as reimbursement, healthcare provider knowledge, attitudes, practices, and communications, are required for VCR targets to be met and benefit public health. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
The effects of variable biome distribution on global climate.
Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D
1996-01-01
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.
Global Pyrogeography: the Current and Future Distribution of Wildfire
Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine
2009-01-01
Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494
Dryland photoautotrophic soil surface communities endangered by global change
Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina
2018-01-01
Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.
Dryland photoautotrophic soil surface communities endangered by global change
NASA Astrophysics Data System (ADS)
Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina
2018-03-01
Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.
NASA Astrophysics Data System (ADS)
Thran, Amanda C.; Dutkiewicz, Adriana; Spence, Paul; Müller, R. Dietmar
2018-05-01
Contourite drifts are anomalously high sediment accumulations that form due to reworking by bottom currents. Due to the lack of a comprehensive contourite database, the link between vigorous bottom water activity and drift occurrence has yet to be demonstrated on a global scale. Using an eddy-resolving ocean model and a new georeferenced database of 267 contourites, we show that the global distribution of modern contourite drifts strongly depends on the configuration of the world's most powerful bottom currents, many of which are associated with global meridional overturning circulation. Bathymetric obstacles frequently modify flow direction and intensity, imposing additional finer-scale control on drift occurrence. Mean bottom current speed over contourite-covered areas is only slightly higher (2.2 cm/s) than the rest of the global ocean (1.1 cm/s), falling below proposed thresholds deemed necessary to re-suspend and redistribute sediments (10-15 cm/s). However, currents fluctuate more frequently and intensely over areas with drifts, highlighting the role of intermittent, high-energy bottom current events in sediment erosion, transport, and subsequent drift accumulation. We identify eddies as a major driver of these bottom current fluctuations, and we find that simulated bottom eddy kinetic energy is over three times higher in contourite-covered areas in comparison to the rest of the ocean. Our work supports previous hypotheses which suggest that contourite deposition predominantly occurs due to repeated acute events as opposed to continuous reworking under average-intensity background flow conditions. This suggests that the contourite record should be interpreted in terms of a bottom current's susceptibility to experiencing periodic, high-speed current events. Our results also highlight the potential role of upper ocean dynamics in contourite sedimentation through its direct influence on deep eddy circulation.
NASA Technical Reports Server (NTRS)
Lipatov, A. S.; Sibeck, D. G.
2016-01-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, waveparticle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert
1993-01-01
This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.
A TRMM/GPM retrieval of the total mean generator current for the global electric circuit
NASA Astrophysics Data System (ADS)
Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina
2017-09-01
A specialized satellite version of the passive microwave electric field retrieval algorithm (Peterson et al., 2015) is applied to observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) satellites to estimate the generator current for the Global Electric Circuit (GEC) and compute its temporal variability. By integrating retrieved Wilson currents from electrified clouds across the globe, we estimate a total mean current of between 1.4 kA (assuming the 7% fraction of electrified clouds producing downward currents measured by the ER-2 is representative) to 1.6 kA (assuming all electrified clouds contribute to the GEC). These current estimates come from all types of convective weather without preference, including Electrified Shower Clouds (ESCs). The diurnal distribution of the retrieved generator current is in excellent agreement with the Carnegie curve (RMS difference: 1.7%). The temporal variability of the total mean generator current ranges from 110% on semi-annual timescales (29% on an annual timescale) to 7.5% on decadal timescales with notable responses to the Madden-Julian Oscillation and El Nino Southern Oscillation. The geographical distribution of current includes significant contributions from oceanic regions in addition to the land-based tropical chimneys. The relative importance of the Americas and Asia chimneys compared to Africa is consistent with the best modern ground-based observations and further highlights the importance of ESCs for the GEC.
Solar-terrestrial coupling through atmospheric electricity
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
There are a number of measurements of electrical variations that suggest a solar-terrestrial influence on the global atmospheric electrical circuit. The measurements show variations associated with solar flares, solar magnetic sector boundary crossings, geomagnetic activity, aurorae, differences between ground current and potential gradients at high and low latitudes, and solar cycle variations. The evidence for each variation is examined. Both the experimental evidence and the calculations made with a global model of atmospheric electricity indicate that there is solar-terrestrial coupling through atmospheric electricity which operates by altering the global electric current and field distribution. A global redistribution of currents and fields can be caused by large-scale changes in electrical conductivity, by alteration of the columnar resistance between thunderstorm cloud tops and the ionosphere, or by both. If the columnar resistance is altered above thunderstorms, more current will flow in the global circuit, changing the ionospheric potential and basic circuit variables such as current density and electric fields. The observed variations of currents and fields during solar-induced disturbances are generally less than 50% of mean values near the earth's surface.
A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.
Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E
2015-09-01
Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Evolution of the Global Space Geodesy Network
NASA Astrophysics Data System (ADS)
Pearlman, Michael R.; Bianco, Giuseppe; Ipatov, Alexander; Ma, Chopo; Neilan, Ruth; Noll, Carey; Park, Jong Uk; Pavlis, Erricos; Wetzel, Scott
2013-04-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the scientific Services has been encouraging current groups to upgrade and new groups to join the activity. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.
The Global Space Geodesy Network and the Essential Role of Latin America Sites
NASA Astrophysics Data System (ADS)
Pearlman, M. R.; Ma, C.; Neilan, R.; Noll, C. E.; Pavlis, E. C.; Wetzel, S.
2013-05-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network, and new technologies are implemented at current and new sites, thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS, through its Call for Participation, bi-lateral and multi-lateral discussions, and work through the scientific Services have been encouraging current groups to upgrade and new groups to join the activity. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years based on discussions and planning that has already occurred. We will also discuss some of the historical contributions to the reference frame from sites in Latin America and need for new sites in the future.
Patricia A. Flebbe
1997-01-01
Current distributions of native brook trout (Salvelinus fontinalis) in the Southern Appalachians are restricted to upper elevations by multiple factors, including habitat requirements, introduced rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout, and other human activities. Present-day distribution of brook trout habitat is already fragmented. Increased...
Origin, dispersal and current global distribution of cacao genetic diversity
USDA-ARS?s Scientific Manuscript database
Cacao (Theobroma cacao L.) is cultivated globally as the unique source of cocoa butter and powder for the confectionery industries. In spite of its economical importance, cocoa was and continues to be dominantly produced in low-input and low-output systems. Production constraints, including depletio...
Does Titan's Landscape Betray the Late Acquisitions of Its Current Atmosphere?
NASA Technical Reports Server (NTRS)
Moore, Jeffrey M.; Nimmo, F.
2012-01-01
Titan may have acquired its massive atmosphere relatively recently in solar system history. The sudden appearance of a thick atmosphere may have changed Titan's global topography. This change in global topography may be expressed in the latitudinal distribution of landform types across its surface.
Production of NOx by Lightning and its Effects on Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.
2009-01-01
Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.
The Joint Distribution Process Analysis Center (JDPAC): Background and Current Capability
2007-06-12
Systems Integration and Data Management JDDE Analysis/Global Distribution Performance Assessment Futures/Transformation Analysis Balancing Operational Art ... Science JDPAC “101” USTRANSCOM Future Operations Center SDDC – TEA Army SES (Dual Hat) • Transportability Engineering • Other Title 10
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Papitashvili, V. O.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.
2002-03-01
We report a study of global climatology in the ionospheric electric potentials obtained from combining two algorithms used for mapping of high- and middle/low latitude ionospheric electrodynamics: the LiMIE (http://www.sprl.umich.edu/mist/limie.html) and IMEH (http://geospace.nat.bg) models, respectively. In this combination, the latter model utilizes high-latitude field-aligned current distributions provided by LiMIE for various IMF conditions and different seasons (summer, winter, equinox). For the testing purposes, we developed a Web-based interface which provides global distributions of the ionospheric electric potential in near-real time utilizing solar wind observations made onboard the NASA's ACE spacecraft upstream at L1. We discuss the electric potential global modeling over both the northern and southern hemispheres and consider some implications for the solar cycle studies and space weather forecasting.
Aljaryian, Rasha; Kumar, Lalit; Taylor, Subhashni
2016-10-01
The sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae), is an economically significant pest throughout Western Asia and Eastern Europe. This study was conducted to examine the possible risk posed by the influence of climate change on its spread. CLIMEX software was used to model its current global distribution. Future invasion potential was investigated using two global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), under A1B and A2 emission scenarios for 2030, 2070 and 2100. Dry to temperate climatic areas favour sunn pests. The potential global range for E. integriceps is expected to extend further polewards between latitudes 60° N and 70° N. Northern Europe and Canada will be at risk of sunn pest invasion as cold stress boundaries recede under the emission scenarios of these models. However, current highly suitable areas, such as South Africa and central Australia, will contract where precipitation is projected to decrease substantially with increased heat stress. Estimating the sunn pest's potential geographic distribution and detecting its climatic limits can provide useful information for management strategies and allow biosecurity authorities to plan ahead and reduce the expected harmful economic consequences by identifying the new areas for pest invasion. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
ERIC Educational Resources Information Center
Lansford, Henry
1983-01-01
Discusses the nature of and research related to a theory explaining the earth's electric budget. The theory suggests a global electric circuit completed by a positive current flowing up into thunderstorm clouds, from clouds to ionosphere, distributed around the globe, and down to earth through the lower atmosphere in fair-weather regions. (JN)
GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR
2017-04-06
Mr. Kevin S. Williams, LeMay Center Intelligence Directorate, United States Air Force 6 April 2017 DISTRIBUTION A. Approved for public...E-8 intelligence , surveillance, and reconnaissance (ISR) aircraft it refers to as Low Density/High Demand (LD/HD). Current worldwide demand for LD...management GFMAP Global Force Management Allocation Plan GIISR global integrated intelligence , surveillance, and reconnaissance ISIS Islamic
Historical and Current U.S. Strategies for Boosting Distributed Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowder, Travis; Schwabe, Paul; Zhou, Ella
2015-10-29
This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.
Mapping the Philippines' mangrove forests using Landsat imagery
Long, Jordan; Giri, Chandra
2011-01-01
Current, accurate, and reliable information on the areal extent and spatial distribution of mangrove forests in the Philippines is limited. Previous estimates of mangrove extent do not illustrate the spatial distribution for the entire country. This study, part of a global assessment of mangrove dynamics, mapped the spatial distribution and areal extent of the Philippines’ mangroves circa 2000. We used publicly available Landsat data acquired primarily from the Global Land Survey to map the total extent and spatial distribution. ISODATA clustering, an unsupervised classification technique, was applied to 61 Landsat images. Statistical analysis indicates the total area of mangrove forest cover was approximately 256,185 hectares circa 2000 with overall classification accuracy of 96.6% and a kappa coefficient of 0.926. These results differ substantially from most recent estimates of mangrove area in the Philippines. The results of this study may assist the decision making processes for rehabilitation and conservation efforts that are currently needed to protect and restore the Philippines’ degraded mangrove forests.
Climate forcing by anthropogenic aerosols
NASA Technical Reports Server (NTRS)
Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.
1992-01-01
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
Climate forcing by anthropogenic aerosols.
Charlson, R J; Schwartz, S E; Hales, J M; Cess, R D; Coakley, J A; Hansen, J E; Hofmann, D J
1992-01-24
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity
Darcy, John L.; Lynch, Ryan C.; King, Andrew J.; Robeson, Michael S.; Schmidt, Steven K.
2011-01-01
Bacteria from the genus Polaromonas are dominant phylotypes in clone libraries and culture collections from polar and high-elevation environments. Although Polaromonas has been found on six continents, we do not know if the same phylotypes exist in all locations or if they exhibit genetic isolation by distance patterns. To examine their biogeographic distribution, we analyzed all available, long-read 16S rRNA gene sequences of Polaromonas phylotypes from glacial and periglacial environments across the globe. Using genetic isolation by geographic distance analyses, including Mantel tests and Mantel correlograms, we found that Polaromonas phylotypes are globally distributed showing weak isolation by distance patterns at global scales. More focused analyses using discrete, equally sampled distances classes, revealed that only two distance classes (out of 12 total) showed significant spatial structuring. Overall, our analyses show that most Polaromonas phylotypes are truly globally distributed, but that some, as yet unknown, environmental variable may be selecting for unique phylotypes at a minority of our global sites. Analyses of aerobiological and genomic data suggest that Polaromonas phylotypes are globally distributed as dormant cells through high-elevation air currents; Polaromonas phylotypes are common in air and snow samples from high altitudes, and a glacial-ice metagenome and the two sequenced Polaromonas genomes contain the gene hipA, suggesting that Polaromonas can form dormant cells. PMID:21897856
NASA Astrophysics Data System (ADS)
Deb, Jiban Chandra; Phinn, Stuart; Butt, Nathalie; McAlpine, Clive A.
2017-09-01
Modelling the future suitable climate space for tree species has become a widely used tool for forest management planning under global climate change. Teak ( Tectona grandis) is one of the most valuable tropical hardwood species in the international timber market, and natural teak forests are distributed from India through Myanmar, Laos and Thailand. The extents of teak forests are shrinking due to deforestation and the local impacts of global climate change. However, the direct impacts of climate changes on the continental-scale distributions of native and non-native teak have not been examined. In this study, we developed a species distribution model for teak across its entire native distribution in tropical Asia, and its non-native distribution in Bangladesh. We used presence-only records of trees and twelve environmental variables that were most representative for current teak distributions in South and Southeast Asia. MaxEnt (maximum entropy) models were used to model the distributions of teak under current and future climate scenarios. We found that land use/land cover change and elevation were the two most important variables explaining the current and future distributions of native and non-native teak in tropical Asia. Changes in annual precipitation, precipitation seasonality and annual mean actual evapotranspiration may result in shifts in the distributions of teak across tropical Asia. We discuss the implications for the conservation of critical teak habitats, forest management planning, and risks of biological invasion that may occur due to its cultivation in non-native ranges.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Remer, Lorraine A.
2006-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Instruments that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that measure in the visible, near-infrared, and thermal infrared. The availability of thermal channels to enhance detection of cloud when estimating aerosol properties is an important improvement. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud particle effective radius) and highlight the global/regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective particle radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles (in cloud free regions) that are currently available from space-based observations, and show the latitudinal distribution of aerosol optical properties over both land and ocean surfaces.
NASA Astrophysics Data System (ADS)
Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz
2017-02-01
Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.
An online mineral dust model within the global/regional NMMB: current progress and plans
NASA Astrophysics Data System (ADS)
Perez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Baldasano, J. M.; Black, T.; Nickovic, S.
2008-12-01
While mineral dust distribution and effects are important on global scales, they strongly depend on dust emissions that are occurring on small spatial and temporal scales. Indeed, the accuracy of surface wind speed used in dust models is crucial. Due to the high-order power dependency on wind friction velocity and the threshold behaviour of dust emissions, small errors in surface wind speed lead to large dust emission errors. Most global dust models use prescribed wind fields provided by major meteorological centres (e.g., NCEP and ECMWF) and their spatial resolution is currently about 1 degree x 1 degree . Such wind speeds tend to be strongly underestimated over arid and semi-arid areas and do not account for mesoscale systems responsible for a significant fraction of dust emissions regionally and globally. Other significant uncertainties in dust emissions resulting from such approaches are related to the misrepresentation of high subgrid-scale spatial heterogeneity in soil and vegetation boundary conditions, mainly in semi-arid areas. In order to significantly reduce these uncertainties, the Barcelona Supercomputing Center is currently implementing a mineral dust model coupled on-line with the new global/regional NMMB atmospheric model using the ESMF framework under development in NOAA/NCEP/EMC. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales, and including non-hydrostatic option and improved tracer advection. This model is planned to become the next-generation NCEP mesoscale model for operational weather forecasting in North America. Current implementation is based on the well established regional dust model and forecast system Eta/DREAM (http://www.bsc.es/projects/earthscience/DREAM/). First successful global simulations show the potentials of such an approach and compare well with DREAM regionally. Ongoing developments include improvements in dust size distribution representation, sedimentation, dry deposition, wet scavenging and dust-radiation feedback, as well as the efficient implementation of the model on High Performance Supercomputers for global simulations and forecasts at high resolution.
Plume characteristics of MPD thrusters: A preliminary examination
NASA Technical Reports Server (NTRS)
Myers, Roger M.
1989-01-01
A diagnostics facility for MPD thruster plume measurements was built and is currently undergoing testing. The facility includes electrostatic probes for electron temperature and density measurements, Hall probes for magnetic field and current distribution mapping, and an imaging system to establish the global distribution of plasma species. Preliminary results for MPD thrusters operated at power levels between 30 and 60 kW with solenoidal applied magnetic fields show that the electron density decreases exponentially from 1x10(2) to 2x10(18)/cu m over the first 30 cm of the expansion, while the electron temperature distribution is relatively uniform, decreasing from approximately 2.5 eV to 1.5 eV over the same distance. The radiant intensity of the ArII 4879 A line emission also decays exponentially. Current distribution measurements indicate that a significant fraction of the discharge current is blown into the plume region, and that its distribution depends on the magnitudes of both the discharge current and the applied magnetic field.
The earth's ring current - Present situation and future thrusts
NASA Technical Reports Server (NTRS)
Williams, D. J.
1987-01-01
Particle distributions, currents, and the ring current situation prior to the August 1984 launch of the AMPTE Charge Composition Explorer (CCE) are discussed. CCE results which demonstrate the capability of these new measurements to pursue questions of ring current sources, energization, and transport are presented. Consideration is given to various ring current generation mechanisms which have been discussed in the literature, and a two-step generation process which to a certain extent unifies the previous mechanisms is presented. The first in-situ global observations of ring current decay as obtained through the detection of energetic neutral atoms generated by charge exchange interactions between the ring current and hydrogen geocorona are discussed, as well as the possibility of using the detection of energetic neutral atoms to obtain global images of the earth's ring current.
The structure, distribution, and biomass of the world's forests
Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Robert B. Jackson
2013-01-01
Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures...
Teachers' Reflections on Distributive Leadership in Public Primary Schools in Soweto
ERIC Educational Resources Information Center
Naicker, Suraiya R.; Mestry, Raj
2013-01-01
Schooling has become increasingly complex in purpose and structure and therefore requires appropriate forms of leadership to address this challenge. One current leadership approach that is receiving national and global attention is distributive leadership. A qualitative approach was employed to investigate teachers' experiences and perceptions of…
Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network
NASA Technical Reports Server (NTRS)
Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)
2001-01-01
Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.
Nathan, Lisa M; Banks, Erika H; Conroy, Erin M; McGinn, Aileen P; Ghartey, Jeny P; Wagner, Sarah A; Merkatz, Irwin R
2015-12-01
Benefits of exposure to global health training during medical education are well documented and residents' demand for this training is increasing. Despite this, it is offered by few US obstetrics and gynaecology (OBGYN) residency training programmes. To evaluate interest, perceived importance, predictors of global health interest and barriers to offering global health training among prospective OBGYN residents, current OBGYN residents and US OGBYN residency directors. We designed two questionnaires using Likert scale questions to assess perceived importance of global health training. The first was distributed to current and prospective OBGYN residents interviewing at a US residency programme during 2012-2013. The second questionnaire distributed to US OBGYN programme directors assessed for existing global health programmes and global health training barriers. A composite Global Health Interest/Importance score was tabulated from the Likert scores. Multivariable linear regression was performed to assess for predictors of Global Health Interest/Importance. A total of 159 trainees (77%; 129 prospective OBGYN residents and 30 residents) and 69 (28%) programme directors completed the questionnaires. Median Global Health Interest/Importance score was 7 (IQR 4-9). Prior volunteer experience was predictive of a 5-point increase in Global Health Interest/Importance score (95% CI -0.19 to 9.85; p=0.02). The most commonly cited barriers were cost and time. Interest and perceived importance of global health training in US OBGYN residency programmes is evident among trainees and programme directors; however, significant financial and time barriers prevent many programmes from offering opportunities to their trainees. Prior volunteer experience predicts global health interest. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Guareschi, Simone; Coccia, Cristina; Sánchez-Fernández, David; Carbonell, José Antonio; Velasco, Josefa; Boyero, Luz; Green, Andy J.; Millán, Andrés
2013-01-01
Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales. PMID:23555771
Current status of Marek's disease in the united states and worldwide
USDA-ARS?s Scientific Manuscript database
A questionnaire was widely distributed in 2011 to estimate the global prevalence of Marek’s disease and gain a better understanding of current control strategies and future concerns. A total of 104 questionnaires were returned representing 108 countries from sources including national branch secret...
Electron–Positron Pair Flow and Current Composition in the Pulsar Magnetosphere
NASA Astrophysics Data System (ADS)
Brambilla, Gabriele; Kalapotharakos, Constantinos; Timokhin, Andrey N.; Harding, Alice K.; Kazanas, Demosthenes
2018-05-01
We perform ab initio particle-in-cell (PIC) simulations of a pulsar magnetosphere with electron–positron plasma produced only in the regions close to the neutron star surface. We study how the magnetosphere transitions from the vacuum to a nearly force-free configuration. We compare the resulting force-free-like configuration with those obtained in a PIC simulation where particles are injected everywhere as well as with macroscopic force-free simulations. We find that, although both PIC solutions have similar structure of electromagnetic fields and current density distributions, they have different particle density distributions. In fact, in the injection from the surface solution, electrons and positrons counterstream only along parts of the return current regions and most of the particles leave the magnetosphere without returning to the star. We also find that pair production in the outer magnetosphere is not critical for filling the whole magnetosphere with plasma. We study how the current density distribution supporting the global electromagnetic configuration is formed by analyzing particle trajectories. We find that electrons precipitate to the return current layer inside the light cylinder and positrons precipitate to the current sheet outside the light cylinder by crossing magnetic field lines, contributing to the charge density distribution required by the global electrodynamics. Moreover, there is a population of electrons trapped in the region close to the Y-point. On the other hand, the most energetic positrons are accelerated close to the Y-point. These processes can have observational signatures that, with further modeling effort, would help to distinguish this particular magnetosphere configuration from others.
Moncrieff, Glenn R; Scheiter, Simon; Bond, William J; Higgins, Steven I
2014-02-01
The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Pandey, P. C.
1982-01-01
Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.
NASA Astrophysics Data System (ADS)
Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.
2003-11-01
The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.
Potential distribution of dengue fever under scenarios of climate change and economic development.
Aström, Christofer; Rocklöv, Joacim; Hales, Simon; Béguin, Andreas; Louis, Valerie; Sauerborn, Rainer
2012-12-01
Dengue fever is the most important viral vector-borne disease with ~50 million cases per year globally. Previous estimates of the potential effect of global climate change on the distribution of vector-borne disease have not incorporated the effect of socioeconomic factors, which may have biased the results. We describe an empirical model of the current geographic distribution of dengue, based on the independent effects of climate and gross domestic product per capita (GDPpc, a proxy for socioeconomic development). We use the model, along with scenario-based projections of future climate, economic development, and population, to estimate populations at risk of dengue in the year 2050. We find that both climate and GDPpc influence the distribution of dengue. If the global climate changes as projected but GDPpc remained constant, the population at risk of dengue is estimated to increase by about 0.28 billion in 2050. However, if both climate and GDPpc change as projected, we estimate a decrease of 0.12 billion in the population at risk of dengue in 2050. Empirically, the geographic distribution of dengue is strongly dependent on both climatic and socioeconomic variables. Under a scenario of constant GDPpc, global climate change results in a modest but important increase in the global population at risk of dengue. Under scenarios of high GDPpc, this adverse effect of climate change is counteracted by the beneficial effect of socioeconomic development.
Self-consistent current sheet structures in the quiet-time magnetotail
NASA Technical Reports Server (NTRS)
Holland, Daniel L.; Chen, James
1993-01-01
The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.
Map of Life - A Dashboard for Monitoring Planetary Species Distributions
NASA Astrophysics Data System (ADS)
Jetz, W.
2016-12-01
Geographic information about biodiversity is vital for understanding the many services nature provides and their potential changes, yet remains unreliable and often insufficient. By integrating a wide range of knowledge about species distributions and their dynamics over time, Map of Life supports global biodiversity education, monitoring, research and decision-making. Built on a scalable web platform geared for large biodiversity and environmental data, Map of Life endeavors provides species range information globally and species lists for any area. With data and technology provided by NASA and Google Earth Engine, tools under development use remote sensing-based environmental layers to enable on-the-fly predictions of species distributions, range changes, and early warning signals for threatened species. The ultimate vision is a globally connected, collaborative knowledge- and tool-base for regional and local biodiversity decision-making, education, monitoring, and projection. For currently available tools, more information and to follow progress, go to MOL.org.
Water in the Global Environment. Pathways in Geography Series, Title No. 3.
ERIC Educational Resources Information Center
Waterstone, Marvin
This report deals with the importance of water to life. The physical characteristics of water, its distribution, and a number of current water-related problems are examined. The issue of water management is discussed, along with the ways water is made available for our many uses in life. The introductory essay, "Water in the Global Environment,"…
Utilizing Google Earth to Teach Students about Global Oil Spill Disasters
ERIC Educational Resources Information Center
Guertin, Laura; Neville, Sara
2011-01-01
The United States is currently experiencing its worst man-made environmental disaster, the BP Deepwater Horizon oil leak. The Gulf of Mexico oil spill is severe in its impact, but it is only one of several global oil spill disasters in history. Students can utilize the technology of Google Earth to explore the spatial and temporal distribution of…
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
Current status of Marek’s disease in the United States & worldwide based on a questionnaire survey
USDA-ARS?s Scientific Manuscript database
A questionnaire was widely distributed in 2011 to estimate the global prevalence of Marek’s disease (MD) and gain a better understanding of current control strategies and future concerns. A total of 112 questionnaires were returned representing 116 countries from sources including national branch s...
La Sorte, Frank A; Fink, Daniel; Blancher, Peter J; Rodewald, Amanda D; Ruiz-Gutierrez, Viviana; Rosenberg, Kenneth V; Hochachka, Wesley M; Verburg, Peter H; Kelling, Steve
2017-12-01
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Waldrop, L.; Cucho-Padin, G.; Ilie, R.
2017-12-01
Charge exchange collisions between ring current ions and hydrogen (H) atoms in the outer exosphere serve to dissipate magnetospheric energy, particularly during the slow recovery phase of geomagnetic storms, through the generation of energetic neutral atoms (ENAs) which escape the system. As a result, knowledge of the spatial distribution and temporal variability of exospheric H density is critical for reliable interpretation of ENA flux measurements as well as for accurate modeling of the ring current. Although numerous theoretical, numerical, and empirical H distributions have been used for such analyses, their reliance on ad hoc or unphysical assumptions, together with their inherently static formulations, is a source of significant uncertainty. Our recent development of a robust tomographic technique for the model-independent estimation of global exospheric H density from optical remote sensing data overcomes the limitations of past analysis and enables an unprecedented investigation of global exospheric and ring current dynamics. Here, we present sample results of our 3D, time-dependent reconstructions of exospheric structure, derived from measurements of resonantly scattered solar Lyman-alpha (121.6 nm) photons acquired by the Lyman-alpha detectors (LADs) onboard NASA's Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission. We use the Hot Electron and Ion Drift Integrator (HEIDI) kinetic model of the ring current to investigate the charge exchange interactions between the resulting H density distribution and ring current ions and generate synthetic images of ENA flux for comparison with those measured by TWINS.
ERIC Educational Resources Information Center
Hartong, Sigrid
2016-01-01
This article focuses on the growing development towards new forms of '"distributed" governance within current large-scale educational reforms. The emphasis is on so-called "governance through standards" as a transformative reform complex which manifests itself in a simultaneous process of regulative destabilisation and (global)…
Determining suitable locations for seed transfer under climate change: a global quantitative method
Kevin M. Potter; William W. Hargrove
2012-01-01
Changing climate conditions will complicate efforts to match seed sources with the environments to which they are best adapted. Tree species distributions may have to shift to match new environmental conditions, potentially requiring the establishment of some species entirely outside of their current distributions to thrive. Even within the portions of tree species...
NASA Astrophysics Data System (ADS)
Yumoto, K.; Chi, P. J.; Angelopoulos, V.; Connors, M. G.; Engebretson, M. J.; Fraser, B. J.; Mann, I. R.; Milling, D. K.; Moldwin, M. B.; Russell, C. T.; Stolle, C.; Tanskanen, E.; Vallante, M.; Yizengaw, E.; Zesta, E.
2012-12-01
ULTIMA (Ultra Large Terrestrial International Magnetic Array) is an international consortium that aims at promoting collaborative research on the magnetosphere, ionosphere, and upper atmosphere through the use of ground-based magnetic field observatories. ULTIMA is joined by individual magnetometer arrays in different countries/regions, and the current regular-member arrays are Australian, AUTUMN, CARISMA, DTU Space, Falcon, IGPP-LANL, IMAGE, MACCS, MAGDAS, McMAC, MEASURE, THEMIS, and SAMBA. The Chair of ULTIMA has been K. Yumoto (MAGDAS), and its Secretary has been P. Chi (McMAC, Falcon). In this paper we perform case studies in which we estimate the global patterns of (1) near-Earth currents and (2) magnetic pulsations; these phenomena are observed over wide areas on the ground, thus suitable for the aims of ULTIMA. We analyze these two phenomena during (a) quiet period and (b) magnetic storm period. We compare the differences between these two periods by drawing the global maps of the ionospheric equivalent currents (which include the effects of all the near-Earth currents) and pulsation amplitudes. For ionospheric Sq currents at low latitudes during quiet periods, MAGDAS data covering an entire solar cycle has yielded a detailed statistical model, and we can use it as a reference for the aforementioned comparison. We also estimate the azimuthal wave numbers of pulsations and compare the amplitude distribution of pulsations with the distribution of highly energetic (in MeV range) particles simultaneously observed at geosynchronous satellites.
Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowder, Travis; Schwabe, Paul; Zhou, Ella
2015-08-01
This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.
Dehumanization and Irregular Warfare
2013-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited DEHUMANIZATION AND......200 words) In the current global environment the practice of dehumanization —the stripping away of common attributes among people that call for
Suwannatrai, A; Pratumchart, K; Suwannatrai, K; Thinkhamrop, K; Chaiyos, J; Kim, C S; Suwanweerakamtorn, R; Boonmars, T; Wongsaroj, T; Sripa, B
2017-01-01
Global climate change is now regarded as imposing a significant threat of enhancing transmission of parasitic diseases. Maximum entropy species distribution modeling (MaxEnt) was used to explore how projected climate change could affect the potential distribution of the carcinogenic liver fluke, Opisthorchis viverrini, in Thailand. A range of climate variables was used: the Hadley Global Environment Model 2-Earth System (HadGEM2-ES) climate change model and also the IPCC scenarios A2a for 2050 and 2070. Occurrence data from surveys conducted in 2009 and 2014 were obtained from the Department of Disease Control, Ministry of Public Health, Thailand. The MaxEnt model performed better than random for O. viverrini with training AUC values greater than 0.8 under current and future climatic conditions. The current distribution of O. viverrini is significantly affected by precipitation and minimum temperature. According to current conditions, parts of Thailand climatically suitable for O. viverrini are mostly in the northeast and north, but the parasite is largely absent from southern Thailand. Under future climate change scenarios, the distribution of O. viverrini in 2050 should be significantly affected by precipitation, maximum temperature, and mean temperature of the wettest quarter, whereas in 2070, significant factors are likely to be precipitation during the coldest quarter, maximum, and minimum temperatures. Maps of predicted future distribution revealed a drastic decrease in presence of O. viverrini in the northeast region. The information gained from this study should be a useful reference for implementing long-term prevention and control strategies for O. viverrini in Thailand.
Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata.
Galdino, Tarcísio Visintin da Silva; Kumar, Sunil; Oliveira, Leonardo S S; Alfenas, Acelino C; Neven, Lisa G; Al-Sadi, Abdullah M; Picanço, Marcelo C
2016-01-01
The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs.
Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata
Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.
2016-01-01
The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625
Current Issues and Challenges in Global Analysis of Parton Distributions
NASA Astrophysics Data System (ADS)
Tung, Wu-Ki
2007-01-01
A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed.
Energetic Electron Transport in the Inner Magnetosphere During Geomagnetic Storms and Substorms
NASA Technical Reports Server (NTRS)
McKenzie, D. L.; Anderson, P. C.
2005-01-01
We propose to examine the relationship of geomagnetic storms and substorms and the transport of energetic particles in the inner magnetosphere using measurements of the auroral X-ray emissions by PIXIE. PIXIE provides a global view of the auroral oval for the extended periods of time required to study stormtime phenomena. Its unique energy response and global view allow separation of stormtime particle transport driven by strong magnetospheric electric fields from substorm particle transport driven by magnetic-field dipolarization and subsequent particle injection. The relative importance of substorms in releasing stored magnetospheric energy during storms and injecting particles into the inner magnetosphere and the ring current is currently hotly debated. The distribution of particles in the inner magnetosphere is often inferred from measurements of the precipitating auroral particles. Thus, the global distributions of the characteristics of energetic precipitating particles during storms and substorms are extremely important inputs to any description or model of the geospace environment and the Sun-Earth connection. We propose to use PIXIE observations and modeling of the transport of energetic electrons to examine the relationship between storms and substorms.
NASA Astrophysics Data System (ADS)
Yiran, P.; Li, J.; von Salzen, K.; Dai, T.; Liu, D.
2014-12-01
Mineral dust is a significant contributor to global and Asian aerosol burden. Currently, large uncertainties still exist in simulated aerosol processes in global climate models (GCMs), which lead to a diversity in dust mass loading and spatial distribution of GCM projections. In this study, satellite measurements from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) and observed aerosol data from Asian stations are compared with modelled aerosol in the Canadian Atmospheric Global Climate Model (CanAM4.2). Both seasonal and annual variations in Asian dust distribution are investigated. Vertical profile of simulated aerosol in troposphere is evaluated with CALIOP Level 3 products and local observed extinction for dust and total aerosols. Physical processes in GCM such as horizontal advection, vertical mixing, dry and wet removals are analyzed according to model simulation and available measurements of aerosol. This work aims to improve current understanding of Asian dust transport and vertical exchange on a large scale, which may help to increase the accuracy of GCM simulation on aerosols.
Global wetlands: Potential distribution, wetland loss, and status.
Hu, Shengjie; Niu, Zhenguo; Chen, Yanfen; Li, Lifeng; Zhang, Haiying
2017-05-15
Even though researchers have paid a great deal of attention to wetland loss and status, the actual extent of wetland loss on a global scale, especially the loss caused directly by human activities, and the actual extent of currently surviving wetlands remains uncertain. This paper simulated the potential distribution of global wetlands by employing a new Precipitation Topographic Wetness Index (PTWI) and global remote sensing training samples. The results show earth would have approximately 29.83millionkm 2 of wetlands, if humans did not interfere with wetland ecosystems. By combining datasets related to global wetlands, we found that at least 33% of global wetlands had been lost as of 2009, including 4.58millionkm 2 of non-water wetlands and 2.64millionkm 2 of open water. The areal extent of wetland loss has been greatest in Asia, but Europe has experienced the most serious losses. Wetland-related datasets suffer from major inconsistencies, and estimates of the areal extent of the remaining global wetlands ranged from 1.53 to 14.86millionkm 2 . Therefore, although it is challenging, thematic mapping of global wetlands is necessary and urgently needed. Copyright © 2017 Elsevier B.V. All rights reserved.
A framework for global river flood risk assessment
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Bouwman, A.; Ward, P. J.; Jongman, B.
2012-04-01
There is an increasing need for strategic global assessments of flood risks. Such assessments may be required by: (a) International Financing Institutes and Disaster Management Agencies to evaluate where, when, and which investments in flood risk mitigation are most required; (b) (re-)insurers, who need to determine their required coverage capital; and (c) large companies to account for risks of regional investments. In this contribution, we propose a framework for global river flood risk assessment. The framework combines coarse scale resolution hazard probability distributions, derived from global hydrological model runs (typical scale about 0.5 degree resolution) with high resolution estimates of exposure indicators. The high resolution is required because floods typically occur at a much smaller scale than the typical resolution of global hydrological models, and exposure indicators such as population, land use and economic value generally are strongly variable in space and time. The framework therefore estimates hazard at a high resolution ( 1 km2) by using a) global forcing data sets of the current (or in scenario mode, future) climate; b) a global hydrological model; c) a global flood routing model, and d) importantly, a flood spatial downscaling routine. This results in probability distributions of annual flood extremes as an indicator of flood hazard, at the appropriate resolution. A second component of the framework combines the hazard probability distribution with classical flood impact models (e.g. damage, affected GDP, affected population) to establish indicators for flood risk. The framework can be applied with a large number of datasets and models and sensitivities of such choices can be evaluated by the user. The framework is applied using the global hydrological model PCR-GLOBWB, combined with a global flood routing model. Downscaling of the hazard probability distributions to 1 km2 resolution is performed with a new downscaling algorithm, applied on a number of target regions. We demonstrate the use of impact models in these regions based on global GDP, population, and land use maps. In this application, we show sensitivities of the estimated risks with regard to the use of different climate input datasets, decisions made in the downscaling algorithm, and different approaches to establish distributed estimates of GDP and asset exposure to flooding.
Marine algal toxins: origins, health effects, and their increased occurrence.
Van Dolah, F M
2000-01-01
Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729
Global Land Carbon Uptake from Trait Distributions
NASA Astrophysics Data System (ADS)
Butler, E. E.; Datta, A.; Flores-Moreno, H.; Fazayeli, F.; Chen, M.; Wythers, K. R.; Banerjee, A.; Atkin, O. K.; Kattge, J.; Reich, P. B.
2016-12-01
Historically, functional diversity in land surface models has been represented through a range of plant functional types (PFTs), each of which has a single value for all of its functional traits. Here we expand the diversity of the land surface by using a distribution of trait values for each PFT. The data for these trait distributions is from a sub-set of the global database of plant traits, TRY, and this analysis uses three leaf traits: mass based nitrogen and phosphorus content and specific leaf area, which influence both photosynthesis and respiration. The data are extrapolated into continuous surfaces through two methodologies. The first, a categorical method, classifies the species observed in TRY into satellite estimates of their plant functional type abundances - analogous to how traits are currently assigned to PFTs in land surface models. Second, a Bayesian spatial method which additionally estimates how the distribution of a trait changes in accord with both climate and soil covariates. These two methods produce distinct patterns of diversity which are incorporated into a land surface model to estimate how the range of trait values affects the global land carbon budget.
Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.
NASA Astrophysics Data System (ADS)
Persad, G.; Caldeira, K.
2017-12-01
The global distribution of anthropogenic aerosol emissions has evolved continuously since the preindustrial era - from 20th century North American and Western European emissions hotspots to present-day South and East Asian ones. With this comes a relocation of the regional radiative, dynamical, and hydrological impacts of aerosol emissions, which may influence global climate differently depending on where they occur. A lack of understanding of this relationship between aerosol emissions' location and their global climate effects, however, obscures the potential influence that aerosols' evolving geographic distribution may have on global and regional climate change—a gap which we address in this work. Using a novel suite of experiments in the CESM CAM5 atmospheric general circulation model coupled to a slab ocean, we systematically test and analyze mechanisms behind the relative climate impact of identical black carbon and sulfate aerosol emissions located in each of 8 past, present, or projected future major emissions regions. Results indicate that historically high emissions regions, such as North America and Western Europe, produce a stronger cooling effect than current and projected future high emissions regions. Aerosol emissions located in Western Europe produce 3 times the global mean cooling (-0.34 °C) as those located in East Africa or India (-0.11 °C). The aerosols' in-situ radiative effects remain relatively confined near the emissions region, but large distal cooling results from remote feedback processes - such as ice albedo and cloud changes - that are excited more strongly by emissions from certain regions than others. Results suggest that aerosol emissions from different countries should not be considered equal in the context of climate mitigation accounting, and that the evolving geographic distribution of aerosol emissions may have a substantial impact on the magnitude and spatial distribution of global climate change.
NASA Technical Reports Server (NTRS)
Mueller, Robert L.
1987-01-01
Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.
On the Role of Global Magnetic Field Configuration in Affecting Ring Current Dynamics
NASA Technical Reports Server (NTRS)
Zheng, Y.; Zaharia, S. G.; Fok, M. H.
2010-01-01
Plasma and field interaction is one important aspect of inner magnetospheric physics. The magnetic field controls particle motion through gradient, curvature drifts and E cross B drift. In this presentation, we show how the global magnetic field affects dynamics of the ring current through simulations of two moderate geomagnetic storms (20 November 2007 and 8-9 March 2008). Preliminary results of coupling the Comprehensive Ring Current Model (CRCM) with a three-dimensional plasma force balance code (to achieve self-consistency in both E and B fields) indicate that inclusion of self-consistency in B tends to mitigate the intensification of the ring current as other similar coupling efforts have shown. In our approach, self-consistency in the electric field is already an existing capability of the CRCM. The magnetic self-consistency is achieved by computing the three-dimensional magnetic field in force balance with anisotropic ring current ion distributions. We discuss the coupling methodology and its further improvement. In addition, comparative studies by using various magnetic field models will be shown. Simulation results will be put into a global context by analyzing the morphology of the ring current, its anisotropy and characteristics ofthe interconnected region 2 field-aligned currents.
Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J
2018-01-01
Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.
The GGOS Global Space Geodesy Network and its Evolution
NASA Astrophysics Data System (ADS)
Pearlman, M. R.; Pavlis, E. C.; Ma, C.; Noll, C. E.; Neilan, R. E.; Stowers, D. A.; Wetzel, S.
2013-12-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the IAG Services has been encouraging current groups to upgrade and new groups to join the activity. Simulations examine the projected accuracy and stability of the network that would exist in five- and ten-years time, were the proposed expansion to fully materialize by then. Over the last year additional sites have joined the GGOS network, and ground techniques have continued to make progress in new technology systems. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.
Participatory Sensing Marine Debris: Current Trends and Future Opportunities
NASA Astrophysics Data System (ADS)
Jambeck, J.; Johnsen, K.
2016-02-01
The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.
Stainton, Daisy; Martin, Darren P.; Muhire, Brejnev M.; Lolohea, Samiuela; Halafihi, Mana’ia; Lepoint, Pascale; Blomme, Guy; Crew, Kathleen S.; Sharman, Murray; Kraberger, Simona; Dayaram, Anisha; Walters, Matthew; Collings, David A.; Mabvakure, Batsirai; Lemey, Philippe; Harkins, Gordon W.; Thomas, John E.; Varsani, Arvind
2015-01-01
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years. PMID:27774281
Stainton, Daisy; Martin, Darren P; Muhire, Brejnev M; Lolohea, Samiuela; Halafihi, Mana'ia; Lepoint, Pascale; Blomme, Guy; Crew, Kathleen S; Sharman, Murray; Kraberger, Simona; Dayaram, Anisha; Walters, Matthew; Collings, David A; Mabvakure, Batsirai; Lemey, Philippe; Harkins, Gordon W; Thomas, John E; Varsani, Arvind
2015-01-01
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus ) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.
NASA Astrophysics Data System (ADS)
Bellacicco, Marco; Volpe, Gianluca; Colella, Simone; Pitarch, Jaime; Brando, Vittorio; Marullo, Salvatore; Santoleri, Rosalia
2016-04-01
Phytoplankton, heterotrophic bacteria and viruses contribute to the definition of the trophic regime of the oceans. While phytoplankton has been extensively studied from space, satellite studies of the autochthonous non-algal particles (NAP, i.e. bacteria and viruses) are relatively recent. Dedicated studies of the NAP distribution and dynamics can help to improve the understanding of marine ecosystem change, globally. Using the 18 years of Glob-Colour monthly satellite data, from the satellite particulate backscattering coefficient (bbp) the NAP global climatology was derived. High NAP values were found in productive regions like polar seas, the North Atlantic and the equatorial Pacific, as well as shelf regions affected by upwelling currents. In contrast, oligotrophic areas like the sub-tropical gyres displayed low NAP values. The annual and seasonal distribution as well as the temporal evolution will be discussed. In the future, improved understanding of the phytoplankton dynamics and physiology will benefit from accurate NAP calculations for different regions and seasons in relation to climate change studies.
GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms.
Bennett, Joanne M; Calosi, Piero; Clusella-Trullas, Susana; Martínez, Brezo; Sunday, Jennifer; Algar, Adam C; Araújo, Miguel B; Hawkins, Bradford A; Keith, Sally; Kühn, Ingolf; Rahbek, Carsten; Rodríguez, Laura; Singer, Alexander; Villalobos, Fabricio; Ángel Olalla-Tárraga, Miguel; Morales-Castilla, Ignacio
2018-03-13
How climate affects species distributions is a longstanding question receiving renewed interest owing to the need to predict the impacts of global warming on biodiversity. Is climate change forcing species to live near their critical thermal limits? Are these limits likely to change through natural selection? These and other important questions can be addressed with models relating geographical distributions of species with climate data, but inferences made with these models are highly contingent on non-climatic factors such as biotic interactions. Improved understanding of climate change effects on species will require extensive analysis of thermal physiological traits, but such data are both scarce and scattered. To overcome current limitations, we created the GlobTherm database. The database contains experimentally derived species' thermal tolerance data currently comprising over 2,000 species of terrestrial, freshwater, intertidal and marine multicellular algae, plants, fungi, and animals. The GlobTherm database will be maintained and curated by iDiv with the aim to keep expanding it, and enable further investigations on the effects of climate on the distribution of life on Earth.
Gill, Stephen; Benatar, Solomon R
2016-08-29
Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Globalization and health care: global justice and the role of physicians.
Toumi, Rabee
2014-02-01
In today's globalized world, nations cannot be totally isolated from or indifferent to their neighbors, especially in regards to medicine and health. While globalization has brought prosperity to millions, disparities among nations and nationals are growing raising once again the question of justice. Similarly, while medicine has developed dramatically over the past few decades, health disparities at the global level are staggering. Seemingly, what our humanity could achieve in matters of scientific development is not justly distributed to benefit everyone. In this paper, it will be argued that a global theoretical agreement on principles of justice may prove unattainable; however, a grass-roots change is warranted to change the current situation. The UNESCO Declaration on Bioethics and Human Rights will be considered as a starting point to achieve this change through extracting the main values embedded in its principles. These values, namely, respecting human dignity and tending to human vulnerability with a hospitable attitude, should then be revived in medical practice. Medical education will be one possible venue to achieve that, especially through role models. Future physicians will then become the fervent advocates for a global and just distribution of health care.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Remote sensing of cloud and aerosol optical properties is routinely obtained using the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites. Techniques that are being used to enhance our ability to characterize the global distribution of cloud and aerosol properties include well-calibrated multispectral radiometers that rely on visible, near-infrared, and thermal infrared channels. The availability of thermal channels to aid in cloud screening for aerosol properties is an important additional piece of information that has not always been incorporated into sensor designs. In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the world. In addition, we will illustrate the radiative and microphysical properties of aerosol particles that are currently available from space-based observations, and show selected cases in which aerosol particles are observed to modify the cloud optical properties.
Graham, Jim; Jarnevich, Catherine; Young, Nick; Newman, Greg; Stohlgren, Thomas
2011-01-01
Habitat suitability models have been used to predict the present and future potential distribution of a variety of species. Eurasian tree sparrows Passer montanus, native to Eurasia, have established populations in other parts of the world. In North America, their current distribution is limited to a relatively small region around its original introduction to St. Louis, Missouri. We combined data from the Global Biodiversity Information Facility with current and future climate data to create habitat suitability models using Maxent for this species. Under projected climate change scenarios, our models show that the distribution and range of the Eurasian tree sparrow could increase as far as the Pacific Northwest and Newfoundland. This is potentially important information for prioritizing the management and control of this non-native species.
Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps
NASA Technical Reports Server (NTRS)
Chandler, William S.; Hoell, James M.; Westberg, David J.; Whitlock, Charles H.; Zhang, Taiping; Stackhouse, P. W.
2011-01-01
The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly.
Geographical distribution of Musa gracilis Holttum in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Norfazlina, B.; Wickneswari, R.; Choong, C. Y.
2016-11-01
Musa gracilis (Musaceae) is placed under section Callimusa and was considered endemic to Peninsular Malaysia. The objective of this study was to evaluate the current occurrence of Musa gracilis in Peninsular Malaysia. The coordinates of each population was recorded using the Global Positioning System (GPS) and mapped to show the geographical distribution of Musa gracilis. This study revealed that Musa gracilis exhibits specific pattern of distribution, which exists only in a lowland areas on the eastern and southern part of Peninsular Malaysia.
Accurate Realization of GPS Vertical Global Reference Frame
NASA Technical Reports Server (NTRS)
Elosegui, Pedro
2005-01-01
The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.
Defining and Enforcing Hardware Security Requirements
2011-12-01
Computer-Aided Design CPU Central Processing Unit CTL Computation Tree Logic DARPA The Defense Advanced Projects Research Agency DFF D-type Flip-Flop DNF...They too have no global knowledge of what is going on, nor any meaning to attach to any bit, whether storage or gating . . . it is we who attach...This option is prohibitively ex- pensive with the current trends in the global distribution of the steps in IC design and fabrication. The second option
Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050
NASA Astrophysics Data System (ADS)
Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun
2015-11-01
This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from varied continents and countries in the future.
Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632
Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects
Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex
2013-01-01
Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411
Land Cover and Climate Change May Limit Invasiveness of Rhododendron ponticum in Wales.
Manzoor, Syed A; Griffiths, Geoffrey; Iizuka, Kotaro; Lukac, Martin
2018-01-01
Invasive plant species represent a serious threat to biodiversity precipitating a sustained global effort to eradicate or at least control the spread of this phenomenon. Current distribution ranges of many invasive species are likely to be modified in the future by land cover and climate change. Thus, invasion management can be made more effective by forecasting the potential spread of invasive species. Rhododendron ponticum (L.) is an aggressive invasive species which appears well suited to western areas of the UK. We made use of MAXENT modeling environment to develop a current distribution model and to assess the likely effects of land cover and climatic conditions (LCCs) on the future distribution of this species in the Snowdonia National park in Wales. Six global circulation models (GCMs) and two representative concentration pathways (RCPs), together with a land cover simulation for 2050 were used to investigate species' response to future environmental conditions. Having considered a range of environmental variables as predictors and carried out the AICc-based model selection, we find that under all LCCs considered in this study, the range of R. ponticum in Wales is likely to contract in the future. Land cover and topographic variables were found to be the most important predictors of the distribution of R. ponticum . This information, together with maps indicating future distribution trends will aid the development of mitigation practices to control R. ponticum .
Dynamic spatiotemporal trends of imported dengue fever in Australia
Huang, Xiaodong; Yakob, Laith; Devine, Gregor; Frentiu, Francesca D.; Fu, Shiu-Yun; Hu, Wenbiao
2016-01-01
Dengue fever (DF) epidemics in Australia are caused by infected international travellers and confined to Northern Queensland where competent vectors exist. Recent analyses suggest that global trade and climate change could lead to the re-establishment of Ae. aegypti across the country and promote the spread of dengue nationally. This study aimed to describe the dynamic spatiotemporal trends of imported DF cases and their origins, identify the current and potential future high-risk regions and locate areas that might be at particular risk of dengue transmission should competent mosquito vectors expand their range. Our results showed that the geographical distribution of imported DF cases has significantly expanded in mainland Australia over the past decade. In recent years, the geographical distribution of source countries of DF has expanded from the Pacific region and Asia to include Africa and the Americas. Australia is now exposed to dengue importations from all of the regions involved in the current global pandemic. The public health implications of a range expansion of dengue mosquito vectors are severe. Enhanced mosquito surveillance in those areas that have high imported cases is called for to reduce emerging threats from this globally expanding pathogen. PMID:27460696
Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models
NASA Astrophysics Data System (ADS)
Rigler, E. J.; Wiltberger, M. J.; Love, J. J.
2017-12-01
Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.
Global trends in satellite-based emergency mapping
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-01-01
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.
Bounds on geologically current rates of motion of groups of hotspots.
NASA Astrophysics Data System (ADS)
Wang, C.; Gordon, R. G.; Zhang, T.
2017-12-01
It is widely believed that groups of hotspots in different regions of the world are in relative motion at rates of 10 to 30 mm a-1 or more. Here we present a new method for analyzing geologically current motion between groups of hotspots beneath different plates. In an inversion of 56 globally distributed, equally weighted trends of hotspot tracks, the dispersion is dominated by differences in trend between different plates rather than differences within plates. Nonetheless the rate of hotspot motion perpendicular to the direction of absolute plate motion, vperp, differs significantly from zero for only three of ten plates and then by merely 0.3 to 1.4 mm a-1. The global mean upper bound on |vperp| is 3.2 ±2.7 mm a-1. Therefore, groups of hotspots move slowly and can be used to define a global reference frame for plate motions. Further implications for uncertainties in hotspot trends and current plate motion relative to hotspots will be discussed.
Global rural electrification - A different race initiative
NASA Astrophysics Data System (ADS)
Leonard, Raymond S.
1991-10-01
The paper considers global rural electrification based on electric power from power stations, built in geosynchronous orbit out of lunar materials. These materials are distributed to individual villages and rural electric cooperatives via microwaves for a cost of about 6-45 cents per kilowatt-hour. Power would be available in modular increments of 25-100 kilowatts with an average capital cost as low as $5000 per kilowatt. The global rural electrification program is aimed at providing electric power from space at competitive costs, relative to current costs, to rural and agricultural areas and diverting resources from weapons development to infrastructure development.
A global view of shifting cultivation: Recent, current, and future extent
Mertz, Ole; Frolking, Steve; Egelund Christensen, Andreas; Hurni, Kaspar; Sedano, Fernando; Parsons Chini, Louise; Sahajpal, Ritvik; Hansen, Matthew; Hurtt, George
2017-01-01
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing–based land cover and land use classifications, as these are unable to adequately capture such landscapes’ dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation at a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation—the majority in the Americas (41%) and Africa (37%)—this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation. PMID:28886132
A global view of shifting cultivation: Recent, current, and future extent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinimann, Andreas; Mertz, Ole; Frolking, Steve
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
A global view of shifting cultivation: Recent, current, and future extent
Heinimann, Andreas; Mertz, Ole; Frolking, Steve; ...
2017-09-08
Mosaic landscapes under shifting cultivation, with their dynamic mix of managed and natural land covers, often fall through the cracks in remote sensing-based land cover and land use classifications, as these are unable to adequately capture such landscapes' dynamic nature and complex spectral and spatial signatures. But information about such landscapes is urgently needed to improve the outcomes of global earth system modelling and large-scale carbon and greenhouse gas accounting. This study combines existing global Landsat-based deforestation data covering the years 2000 to 2014 with very high-resolution satellite imagery to visually detect the specific spatio-temporal pattern of shifting cultivation atmore » a one-degree cell resolution worldwide. The accuracy levels of our classification were high with an overall accuracy above 87%. We estimate the current global extent of shifting cultivation and compare it to other current global mapping endeavors as well as results of literature searches. Based on an expert survey, we make a first attempt at estimating past trends as well as possible future trends in the global distribution of shifting cultivation until the end of the 21 st century. With 62% of the investigated one-degree cells in the humid and sub-humid tropics currently showing signs of shifting cultivation$-$the majority in the Americas (41%) and Africa (37%)$-$this form of cultivation remains widespread, and it would be wrong to speak of its general global demise in the last decades. We estimate that shifting cultivation landscapes currently cover roughly 280 million hectares worldwide, including both cultivated fields and fallows. While only an approximation, this estimate is clearly smaller than the areas mentioned in the literature which range up to 1,000 million hectares. Based on our expert survey and historical trends we estimate a possible strong decrease in shifting cultivation over the next decades, raising issues of livelihood security and resilience among people currently depending on shifting cultivation.« less
Assessment of Global Mercury Deposition through Litterfall.
Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin
2016-08-16
There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.
USDA-ARS?s Scientific Manuscript database
The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle, ...
Microscale Effects from Global Hot Plasma Imagery
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Perez, J. D.; Keady, J. P.
1995-01-01
We have used a three-dimensional model of recovery phase storm hot plasmas to explore the signatures of pitch angle distributions (PADS) in global fast atom imagery of the magnetosphere. The model computes mass, energy, and position-dependent PADs based on drift effects, charge exchange losses, and Coulomb drag. The hot plasma PAD strongly influences both the storm current system carried by the hot plasma and its time evolution. In turn, the PAD is strongly influenced by plasma waves through pitch angle diffusion, a microscale effect. We report the first simulated neutral atom images that account for anisotropic PADs within the hot plasma. They exhibit spatial distribution features that correspond directly to the PADs along the lines of sight. We investigate the use of image brightness distributions along tangent-shell field lines to infer equatorial PADS. In tangent-shell regions with minimal spatial gradients, reasonably accurate PADs are inferred from simulated images. They demonstrate the importance of modeling PADs for image inversion and show that comparisons of models with real storm plasma images will reveal the global effects of these microscale processes.
Opportunities drive the global distribution of protected areas.
Baldi, Germán; Texeira, Marcos; Martin, Osvaldo A; Grau, H Ricardo; Jobbágy, Esteban G
2017-01-01
Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed to what extent protection has pursued (i) a balanced representation of biophysical environments, (ii) a set of preferred conditions (biological, spiritual, economic, or geopolitical), or (iii) existing opportunities for conservation regardless of any representation or preference criteria. We used histograms to describe the distribution of terrestrial protected areas along biophysical, human, and biological independent gradients and linear and non-linear regression and correlation analyses to describe the sign, shape, and strength of the relationships. We used a random forest analysis to rank the importance of different variables related to conservation preferences and opportunity drivers, and an evenness metric to quantify representativeness. We find that protection at a global level is primarily driven by the opportunities provided by isolation and a low population density (variable importance = 34.6 and 19.9, respectively). Preferences play a secondary role, with a bias towards tourism attractiveness and proximity to international borders (variable importance = 12.7 and 3.4, respectively). Opportunities shape protection strongly in "North America & Australia-NZ" and "Latin America & Caribbean," while the importance of the representativeness of biophysical environments is higher in "Sub-Saharan Africa" (1.3 times the average of other regions). Environmental representativeness and biodiversity protection are top priorities in land conservation agendas. However, our results suggest that they have been minor players driving current protection at both global and regional levels. Attempts to increase their relevance will necessarily have to recognize the predominant opportunistic nature that the establishment of protected areas has had until present times.
Opportunities drive the global distribution of protected areas
Texeira, Marcos; Martin, Osvaldo A.; Grau, H. Ricardo; Jobbágy, Esteban G.
2017-01-01
Background Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed to what extent protection has pursued (i) a balanced representation of biophysical environments, (ii) a set of preferred conditions (biological, spiritual, economic, or geopolitical), or (iii) existing opportunities for conservation regardless of any representation or preference criteria. Methods We used histograms to describe the distribution of terrestrial protected areas along biophysical, human, and biological independent gradients and linear and non-linear regression and correlation analyses to describe the sign, shape, and strength of the relationships. We used a random forest analysis to rank the importance of different variables related to conservation preferences and opportunity drivers, and an evenness metric to quantify representativeness. Results We find that protection at a global level is primarily driven by the opportunities provided by isolation and a low population density (variable importance = 34.6 and 19.9, respectively). Preferences play a secondary role, with a bias towards tourism attractiveness and proximity to international borders (variable importance = 12.7 and 3.4, respectively). Opportunities shape protection strongly in “North America & Australia–NZ” and “Latin America & Caribbean,” while the importance of the representativeness of biophysical environments is higher in “Sub-Saharan Africa” (1.3 times the average of other regions). Discussion Environmental representativeness and biodiversity protection are top priorities in land conservation agendas. However, our results suggest that they have been minor players driving current protection at both global and regional levels. Attempts to increase their relevance will necessarily have to recognize the predominant opportunistic nature that the establishment of protected areas has had until present times. PMID:28229022
NASA Technical Reports Server (NTRS)
Johnson, B.
1988-01-01
The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.
Including eddies in global ocean models
NASA Astrophysics Data System (ADS)
Semtner, Albert J.; Chervin, Robert M.
The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Sein, Dmitry; Durgadoo, Jonathan V.; Wang, Qiang; Danilov, Sergey
2018-01-01
Many questions in ocean and climate modelling require the combined use of high resolution, global coverage and multi-decadal integration length. For this combination, even modern resources limit the use of traditional structured-mesh grids. Here we compare two approaches: A high-resolution grid nested into a global model at coarser resolution (NEMO with AGRIF) and an unstructured-mesh grid (FESOM) which allows to variably enhance resolution where desired. The Agulhas system around South Africa is used as a testcase, providing an energetic interplay of a strong western boundary current and mesoscale dynamics. Its open setting into the horizontal and global overturning circulations also requires global coverage. Both model configurations simulate a reasonable large-scale circulation. Distribution and temporal variability of the wind-driven circulation are quite comparable due to the same atmospheric forcing. However, the overturning circulation differs, owing each model's ability to represent formation and spreading of deep water masses. In terms of regional, high-resolution dynamics, all elements of the Agulhas system are well represented. Owing to the strong nonlinearity in the system, Agulhas Current transports of both configurations and in comparison with observations differ in strength and temporal variability. Similar decadal trends in Agulhas Current transport and Agulhas leakage are linked to the trends in wind forcing.
Bernstein, Diana N.; Neelin, J. David
2016-04-28
A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, Diana N.; Neelin, J. David
A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less
NASA Astrophysics Data System (ADS)
Li, Jinze; Qu, Zhi; He, Xiaoyang; Jin, Xiaoming; Li, Tie; Wang, Mingkai; Han, Qiu; Gao, Ziji; Jiang, Feng
2018-02-01
Large-scale access of distributed power can improve the current environmental pressure, at the same time, increasing the complexity and uncertainty of overall distribution system. Rational planning of distributed power can effectively improve the system voltage level. To this point, the specific impact on distribution network power quality caused by the access of typical distributed power was analyzed and from the point of improving the learning factor and the inertia weight, an improved particle swarm optimization algorithm (IPSO) was proposed which could solve distributed generation planning for distribution network to improve the local and global search performance of the algorithm. Results show that the proposed method can well reduce the system network loss and improve the economic performance of system operation with distributed generation.
USDA-ARS?s Scientific Manuscript database
The global potential distribution of Phyllosticta citricarpa, the causal organism of citrus black spot (CBS), is at the heart of an ongoing debate on the level of potential pest risk posed by P. citricarpa to citrus producing orchards within the European Union (EU). The EU currently regulates the i...
NASA Technical Reports Server (NTRS)
Chapman, Barbara; Mehrotra, Piyush; Zima, Hans
1992-01-01
Exploiting the full performance potential of distributed memory machines requires a careful distribution of data across the processors. Vienna Fortran is a language extension of Fortran which provides the user with a wide range of facilities for such mapping of data structures. In contrast to current programming practice, programs in Vienna Fortran are written using global data references. Thus, the user has the advantages of a shared memory programming paradigm while explicitly controlling the data distribution. In this paper, we present the language features of Vienna Fortran for FORTRAN 77, together with examples illustrating the use of these features.
Sean B. Reilly; Andrew D Gottsho; Justin M. Garwood; Bryan Jennings
2010-01-01
Given the current global amphibian decline, it is crucial to obtain accurate and current information regarding species distributions. Secretive amphibians such as plethodontid salamanders can be difficult to detect in many cases, especially in remote, high elevation areas. We used molecular phylogenetic analyses to identify three partially digested salamanders palped...
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves (Khazanov et al., 2003) is presented In order to adequately take into account wave propagation and refraction in a multi-ion magnetosphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate the spatial, temporal, and spectral evolution of the ring current and of electromagnetic ion cyclotron waves To demonstrate the effects of EMIC wave propagation and refraction on the wave energy distribution and evolution, we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, owing to the density gradient at the plasmapause, the net wave refraction is suppressed, and He+-mode grows preferably at the plasmapause. This result is in total agreement with previous ray tracing studies and is very clearly found in presented B field spectrograms. Second, comparison of global wave distributions with the results from another ring current model (Kozyra et al., 1997) reveals that this new model provides more intense and more highly plasmapause-organized wave distributions during the May 1998 storm period Finally, it is found that He(+)-mode energy distributions are not Gaussian distributions and most important that wave energy can occupy not only the region of generation, i.e., the region of small wave normal angles, but all wave normal angles, including those to near 90 . The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gumayunov, K. V.; Gallagher, D. L.; Kozyra, J. U.
2006-01-01
The further development of a self-consistent theoretical model of interacting ring current ions and electromagnetic ion cyclotron waves [Khazanov et al., 2003] is presented. In order to adequately take into account the wave propagation and refraction in a multi-ion plasmasphere, we explicitly include the ray tracing equations in our previous self-consistent model and use the general form of the wave kinetic equation. This is a major new feature of the present model and, to the best of our knowledge, the ray tracing equations for the first time are explicitly employed on a global magnetospheric scale in order to self-consistently simulate spatial, temporal, and spectral evolutions of the ring current and electromagnetic ion cyclotron waves. To demonstrate the effects of EMIC wave propagation and refraction on the EMIC wave energy distributions and evolution we simulate the May 1998 storm. The main findings of our simulation can be summarized as follows. First, due to the density gradient at the plasmapause, the net wave refraction is suppressed, and He(+)-mode grows preferably at plasmapause. This result is in a total agreement with the previous ray tracing studies, and very clear observed in presented B-field spectrograms. Second, comparison the global wave distributions with the results from other ring current model [Kozyra et al., 1997] reveals that our model provides more intense and higher plasmapause organized distributions during the May, 1998 storm period. Finally, the found He(+)-mode energy distributions are not Gaussian distributions, and most important that wave energy can occupy not only the region of generation, i. e. the region of small wave normal angles, but the entire wave normal angle region and even only the region near 90 degrees. The latter is extremely crucial for energy transfer to thermal plasmaspheric electrons by resonant Landau damping, and subsequent downward heat transport and excitation of stable auroral red arcs.
NASA Astrophysics Data System (ADS)
Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Fok, M. C. H.; Hwang, K. J.
2015-12-01
On 17-18 March 2015, there was a large (minimum SYM/H < -200 nT) geomagnetic storm. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which global distributions of ion flux, energy spectra, and pitch angle distributions are obtained. We will show how the observed ion pressure correlates with SYM/H. Examples of multiple peaks in the ion spatial distribution which may be due to multiple injections and/or energy and pitch angle dependent drift will be illustrated. Energy spectra will be shown to be non-Maxwellian, frequently having two peaks, one in the 10 keV range and another near 40 keV. Pitch angle distributions will be shown to have generally perpendicular anisotropy and that this can be time, space and energy dependent. The results are consistent with Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model simulations.
State of Global Pediatric Neurosurgery Outreach: Survey by the International Education Subcommittee
Davis, Matthew C.; Rocque, Brandon G.; Singhal, Ash; Ridder, Tom; Pattisapu, Jogi V.; Johnston, James M.
2017-01-01
Object Neurosurgical services are increasingly recognized as essential components of surgical care worldwide. Degree of interest among neurosurgeons regarding international work, and barriers to involvement in global neurosurgical outreach, are largely unexplored. We distributed a survey to members of the AANS/CNS Joint Section on Pediatric Neurosurgery to assess the state of global outreach among its members and identify barriers to involvement. Methods An internet-based questionnaire was developed by the International Education Subcommittee of the AANS/CNS Joint Section on Pediatric Neurosurgery, and distributed to pediatric neurosurgeons via the AANS/CNS Joint Section email contact list. Participants were surveyed on involvement in global neurosurgical outreach, geographic location, nature of participation, and barriers to further involvement. Results A 35.3% response rate was obtained, with 116 respondents completed the survey. 61% performed or taught neurosurgery in a developing country, 49% traveling at least annually. Africa was the most common region (54%), followed by South America (30%), through 29 separate organizing entities. Hydrocephalus was the most commonly treated condition (88%), followed by spinal dysraphism (74%) and tumor (68%). Most respondents obtained follow-up through communication from local surgeons (77%). 71% believed the international experience improved their practice, and 74% were very or extremely interested in working elsewhere. Interference with current practice (61%), cost (44%), and difficulty identifying international partners (43%) were the most commonly cited barriers to participation. Conclusion Any coordinated effort to expand global neurosurgical capacity begins with appreciation for the current state of outreach efforts. Increasing participation in global outreach will require addressing both real and perceived barriers to involvement. Creation and curation of a centralized online database of ongoing projects to facilitate coordination and involvement may be beneficial. PMID:28524788
How well do we succeed in modeling the global soil carbon pools?
NASA Astrophysics Data System (ADS)
Viskari, T.; Liski, J.
2017-12-01
Terrestrial carbon pools are a crucial part of the global carbon cycle. Carbon from vegetation is deposited to the soil, which in turn releases carbon dioxide back to the atmosphere through heterotrophic respiration. The resulting soil carbon storage in the largest on land. While there are continuous efforts to improve the modeling of global soil carbon and how this storage is affected by climate change, this research requires still a more reliable baseline on how well the models estimate the current global soil carbon pools. Especially such comparisons are important for identifying the major challenges in the current soil carbon models. Here, we used the Yasso soil carbon model to create a global soil carbon map at a 0.5 degree resolution based on the available climate, land cover and vegetation productivity information. Yasso model describes the soil carbon cycling by pools that represent the breaking down of dead organic matter. We compared the model results to a measurement based projection of global soil carbon pools, and we examined the differences and spatial correlations between the two maps. In our findings, the modelled predictions captured the overall soil carbon distributions within 5 kgCm-2 on 63 % of the land area. The spatial distributions fit each other as well. The average soil carbon is smaller with the Yasso prediction ( 8.5 kg m-2) than with the measurement map ( 10 kg m-2) and there are notable areas, such as Siberia and Southern North America, where there are large differences between the model predictions and measurements. These results not only encourage future development of soil carbon models, but also highlight problem areas to focus and improve upon.
Validation results of the IAG Dancer project for distributed GPS analysis
NASA Astrophysics Data System (ADS)
Boomkamp, H.
2012-12-01
The number of permanent GPS stations in the world has grown far too large to allow processing of all this data at analysis centers. The majority of these GPS sites do not even make their observation data available to the analysis centers, for various valid reasons. The current ITRF solution is still based on centralized analysis by the IGS, and subsequent densification of the reference frame via regional network solutions. Minor inconsistencies in analysis methods, software systems and data quality imply that this centralized approach is unlikely to ever reach the ambitious accuracy objectives of GGOS. The dependence on published data also makes it clear that a centralized approach will never provide a true global ITRF solution for all GNSS receivers in the world. If the data does not come to the analysis, the only alternative is to bring the analysis to the data. The IAG Dancer project has implemented a distributed GNSS analysis system on the internet in which each receiver can have its own analysis center in the form of a freely distributed JAVA peer-to-peer application. Global parameters for satellite orbits, clocks and polar motion are solved via a distributed least squares solution among all participating receivers. A Dancer instance can run on any computer that has simultaneous access to the receiver data and to the public internet. In the future, such a process may be embedded in the receiver firmware directly. GPS network operators can join the Dancer ITRF realization without having to publish their observation data or estimation products. GPS users can run a Dancer process without contributing to the global solution, to have direct access to the ITRF in near real-time. The Dancer software has been tested on-line since late 2011. A global network of processes has gradually evolved to allow stabilization and tuning of the software in order to reach a fully operational system. This presentation reports on the current performance of the Dancer system, and demonstrates the obvious benefits of distributed analysis of geodetic data in general. IAG Dancer screenshot
[The globalization of health].
Franco, A
2003-01-01
In this article diverse aspects of the relationship between health and globalization are explored. Different dimensions of globalization (economic, technological, cultural and political) are considered. Aspects of its effects on health (epidemiological, ethical and environmental), as well as its relationship with public health, power distribution and equity are discussed. Data that demonstrate the globalization of risks and of diseases, due to the current model of international relations and geographical mobility, are analyzed. The article defends the globalization of health and integrates renewed concepts and scientific advances in public health with politics, social strategies and new organizational forms of the practice of public health. Finally, we discuss the opportunities that have been provided by globalization since the middle of the last century for redefining world government and for developing local movements, based on solidarity and a new concept of politics, which could favor the universalization of health.
Honing the Priorities and Making the Investment Case for Global Health.
Mundel, Trevor
2016-03-01
In the aftermath of the Ebola crisis, the global health community has a unique opportunity to reflect on the lessons learned and apply them to prepare the world for the next crisis. Part of that preparation will entail knowing, with greater precision, what the scale and scope of our specific global health challenges are and what resources are needed to address them. However, how can we know the magnitude of the challenge, and what resources are needed without knowing the current status of the world through accurate primary data? Once we know the current status, how can we decide on an intervention today with a predicted impact decades out if we cannot project into that future? Making a case for more investments will require not just better data generation and sharing but a whole new level of sophistication in our analytical capability--a fundamental shift in our thinking to set expectations to match the reality. In this current status of a distributed world, being transparent with our assumptions and specific with the case for investing in global health is a powerful approach to finding solutions to the problems that have plagued us for centuries.
Marten, Robert; Smith, Richard D
2017-07-24
Shiffman recently summarized lessons for network effectiveness from an impressive collection of case-studies. However, in common with most global health governance analysis in recent years, Shiffman underplays the important role of states in these global networks. As the body which decides and signs international agreements, often provides the resourcing, and is responsible for implementing initiatives all contributing to the prioritization of certain issues over others, state recognition and support is a prerequisite to enabling and determining global health networks' success. The role of states deserves greater attention, analysis and consideration. We reflect upon the underappreciated role of the state within the current discourse on global health. We present the tobacco case study to illustrate the decisive role of states in determining progress for global health networks, and highlight how states use a legitimacy loop to gain legitimacy from and provide legitimacy to global health networks. Moving forward in assessing global health networks' effectiveness, further investigating state support as a determinant of success will be critical. Understanding how global health networks and states interact and evolve to shape and support their respective interests should be a focus for future research. © 2018 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
van de Pas, Remco
2016-12-24
There has been much reflection on the need for a new understanding of global health and the urgency of a paradigm shift to address global health issues. A crucial question is whether this is still possible in current modes of global governance based on capitalist values. Four reflections are provided. (1) Ecological -centered values must become central in any future global health framework. (2) The objectives of 'sustainability' and 'economic growth' present a profound contradiction. (3) The resilience discourse maintains a gridlock in the functioning of the global health system. (4) The legitimacy of multi-stakeholder governance arrangements in global health requires urgent attention. A dual track approach is suggested. It must be aimed to transform capitalism into something better for global health while in parallel there is an urgent need to imagine a future and pathways to a different world order rooted in the principles of social justice, protecting the commons and a central role for the preservation of ecology. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective
NASA Technical Reports Server (NTRS)
MacDonald, Alison Marguerite
1995-01-01
Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.
NASA Astrophysics Data System (ADS)
Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.
2017-12-01
Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].
NASA Astrophysics Data System (ADS)
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.
In situ sensors for measurements in the global trosposphere
NASA Technical Reports Server (NTRS)
Saeger, M. L.; Eaton, W. C.; Wright, R. S.; White, J. H.; Tommerdahl, J. B.
1981-01-01
Current techniques available for the in situ measurement of ambient trace gas species, particulate composition, and particulate size distribution are reviewed. The operational specifications of the various techniques are described. Most of the techniques described are those that have been used in airborne applications or show promise of being adaptable to airborne applications. Some of the instruments described are specialty items that are not commercially-available. In situ measurement techniques for several meteorological parameters important in the study of the distribution and transport of ambient air pollutants are discussed. Some remote measurement techniques for meteorological parameters are also discussed. State-of-the-art measurement capabilities are compared with a list of capabilities and specifications desired by NASA for ambient measurements in the global troposphere.
Global trends in satellite-based emergency mapping.
Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati
2016-07-15
Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective. Copyright © 2016, American Association for the Advancement of Science.
Bounds on geologically current rates of motion of groups of hot spots
NASA Astrophysics Data System (ADS)
Wang, Chengzu; Gordon, Richard G.; Zhang, Tuo
2017-06-01
It is widely believed that groups of hot spots in different regions of the world are in relative motion at rates of 10 to 30 mm a-1 or more. Here we present a new method for analyzing geologically current motion between groups of hot spots beneath different plates. In an inversion of 56 globally distributed, equally weighted trends of hot spot tracks, the dispersion is dominated by differences in trend between different plates rather than differences within plates. Nonetheless the rate of hot spot motion perpendicular to the direction of absolute plate motion, vperp, differs significantly from zero for only 3 of 10 plates and then by merely 0.3 to 1.4 mm a-1. The global mean upper bound on |vperp| is 3.2 ± 2.7 mm a-1. Therefore, hot spots move slowly and can be used to define a global reference frame for plate motions.
Electrical description of N2 capacitively coupled plasmas with the global model
NASA Astrophysics Data System (ADS)
Cao, Ming-Lu; Lu, Yi-Jia; Cheng, Jia; Ji, Lin-Hong; Engineering Design Team
2016-10-01
N2 discharges in a commercial capacitively coupled plasma reactor are modelled by a combination of an equivalent circuit and the global model, for a range of gas pressure at 1 4 Torr. The ohmic and inductive plasma bulk and the capacitive sheath are represented as LCR elements, with electrical characteristics determined by plasma parameters. The electron density and electron temperature are obtained from the global model in which a Maxwellian electron distribution is assumed. Voltages and currents are recorded by a VI probe installed after the match network. Using the measured voltage as an input, the current flowing through the discharge volume is calculated from the electrical model and shows excellent agreement with the measurements. The experimentally verified electrical model provides a simple and accurate description for the relationship between the external electrical parameters and the plasma properties, which can serve as a guideline for process window planning in industrial applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy G.; D'Orgeville, Marc; Weaver, Andrew J.
2015-05-01
A coupled carbon/climate model is used to explore the impact of Drake Passage opening and Central American Seaway closure on the distribution of carbon in the global oceans. We find that gateway evolution likely played an important role in setting the modern day distribution of oceanic dissolved inorganic carbon (DIC), which is currently characterized by relatively low concentrations in the Atlantic ocean, and high concentrations in the Southern, Indian, and Pacific oceans. In agreement with previous studies, we find a closed Drake Passage in the presence of an open Central American Seaway results in suppressed Atlantic meridional overturning and enhancedmore » southern hemispheric deep convection. Opening of the Drake Passage triggers Antarctic Circumpolar Current flow and a weak Atlantic meridional overturning circulation (AMOC). Subsequent Central American Seaway closure reinforces the AMOC while also stagnating equatorial Pacific subsurface waters. These gateway-derived oceanographic changes are reflected in large shifts to the global distribution of DIC. An initially closed Drake Passage results in high DIC concentrations in the Atlantic and Arctic oceans, and lower DIC concentrations in the Pacific/Indian/Southern oceans. Opening Drake Passage reverses this gradient by lowering mid-depth Atlantic and Arctic DIC concentrations and raising deep Pacific/Indian/Southern Ocean DIC concentrations. Central American Seaway closure further reinforces this trend through additional Atlantic mid-depth DIC decreases, as well as Pacific mid-depth DIC concentration increases, with the net effect being a transition to a modern distribution of oceanic DIC.« less
Năpăruş, Magdalena; Kuntner, Matjaž
2012-01-01
Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change.
Năpăruş, Magdalena; Kuntner, Matjaž
2012-01-01
Background Although numerous studies model species distributions, these models are almost exclusively on single species, while studies of evolutionary lineages are preferred as they by definition study closely related species with shared history and ecology. Hermit spiders, genus Nephilengys, represent an ecologically important but relatively species-poor lineage with a globally allopatric distribution. Here, we model Nephilengys global habitat suitability based on known localities and four ecological parameters. Methodology/Principal Findings We geo-referenced 751 localities for the four most studied Nephilengys species: N. cruentata (Africa, New World), N. livida (Madagascar), N. malabarensis (S-SE Asia), and N. papuana (Australasia). For each locality we overlaid four ecological parameters: elevation, annual mean temperature, annual mean precipitation, and land cover. We used linear backward regression within ArcGIS to select two best fit parameters per species model, and ModelBuilder to map areas of high, moderate and low habitat suitability for each species within its directional distribution. For Nephilengys cruentata suitable habitats are mid elevation tropics within Africa (natural range), a large part of Brazil and the Guianas (area of synanthropic spread), and even North Africa, Mediterranean, and Arabia. Nephilengys livida is confined to its known range with suitable habitats being mid-elevation natural and cultivated lands. Nephilengys malabarensis, however, ranges across the Equator throughout Asia where the model predicts many areas of high ecological suitability in the wet tropics. Its directional distribution suggests the species may potentially spread eastwards to New Guinea where the suitable areas of N. malabarensis largely surpass those of the native N. papuana, a species that prefers dry forests of Australian (sub)tropics. Conclusions Our model is a customizable GIS tool intended to predict current and future potential distributions of globally distributed terrestrial lineages. Its predictive potential may be tested in foreseeing species distribution shifts due to habitat destruction and global climate change. PMID:22238692
Langer, Martin R.; Weinmann, Anna E.; Lötters, Stefan; Bernhard, Joan M.; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year−1, and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change. PMID:23405081
Langer, Martin R; Weinmann, Anna E; Lötters, Stefan; Bernhard, Joan M; Rödder, Dennis
2013-01-01
Species-range expansions are a predicted and realized consequence of global climate change. Climate warming and the poleward widening of the tropical belt have induced range shifts in a variety of marine and terrestrial species. Range expansions may have broad implications on native biota and ecosystem functioning as shifting species may perturb recipient communities. Larger symbiont-bearing foraminifera constitute ubiquitous and prominent components of shallow water ecosystems, and range shifts of these important protists are likely to trigger changes in ecosystem functioning. We have used historical and newly acquired occurrence records to compute current range shifts of Amphistegina spp., a larger symbiont-bearing foraminifera, along the eastern coastline of Africa and compare them to analogous range shifts currently observed in the Mediterranean Sea. The study provides new evidence that amphisteginid foraminifera are rapidly progressing southwestward, closely approaching Port Edward (South Africa) at 31°S. To project future species distributions, we applied a species distribution model (SDM) based on ecological niche constraints of current distribution ranges. Our model indicates that further warming is likely to cause a continued range extension, and predicts dispersal along nearly the entire southeastern coast of Africa. The average rates of amphisteginid range shift were computed between 8 and 2.7 km year(-1), and are projected to lead to a total southward range expansion of 267 km, or 2.4° latitude, in the year 2100. Our results corroborate findings from the fossil record that some larger symbiont-bearing foraminifera cope well with rising water temperatures and are beneficiaries of global climate change.
NASA Astrophysics Data System (ADS)
Kusche, J.; Rietbroek, R.; Gunter, B.; Mark-Willem, J.
2008-12-01
Global deformation of the Earth can be linked to loading caused by mass changes in the atmosphere, the ocean and the terrestrial hydrosphere. World-wide geodetic observation systems like GPS, e.g., the global IGS network, can be used to study the global deformation of the Earth directly and, when other effects are properly modeled, provide information regarding the surface loading mass (e.g., to derive geo-center motion estimates). Vice versa, other observing systems that monitor mass change, either through gravitational changes (GRACE) or through a combination of in-situ and modeled quantities (e.g., the atmosphere, ocean or hydrosphere), can provide indirect information on global deformation. In the framework of the German 'Mass transport and mass distribution' program, we estimate surface mass anomalies at spherical harmonic resolution up to degree and order 30 by linking three complementary data sets in a least squares approach. Our estimates include geo-center motion and the thickness of a spatially uniform layer on top of the ocean surface (that is otherwise estimated from surface fluxes, evaporation and precipitation, and river run-off) as a time-series. As with all current Earth observing systems, each dataset has its own limitations and do not realize homogeneous coverage over the globe. To assess the impact that these limitations might have on current and future deformation and loading mass solutions, a sensitivity study was conducted. Simulated real-case and idealized solutions were explored in which the spatial distribution and quality of GPS, GRACE and OBP data sets were varied. The results show that significant improvements, e.g., over the current GRACE monthly gravity fields, in particular at the low degrees, can be achieved when these solutions are combined with present day GPS and OBP products. Our idealized scenarios also provide quantitative implications on how much surface mass change estimates may improve in the future when improved observing systems become available.
Determinants of Distribution Logistics in the Construction Industry
NASA Astrophysics Data System (ADS)
Bukova, Bibiana; Brumercikova, Eva; Kondek, Pavol
2017-03-01
Global business is currently still influenced by the economic crisis and the economic development in each country of the EU. The construction sector is among the most affected sectors of the national economies. The production of building material is a part of the construction industry. Several companies of this sector in the European Union use business logistics effectively. The overall efficiency of the company is influenced by many various external and internal determinants, especially the distribution logistics.
Elevated CO2 compensates for water stress in northern red oak
Patricia T. Tomlinson; Paul D. Anderson
1996-01-01
Global climate change models predict decreased rainfall in association with elevated CO2 in the western Lakes States region. Currently, the western edge of northern red oak (Quercus rubra L.) distribution coincides with the most xeric conditions of its ecological range. Decreased rainfall and water availability could alter...
The Context of Enterprise Education: Insights into Current Practices
ERIC Educational Resources Information Center
Penaluna, Kathryn; Penaluna, Andy; Jones, Colin
2012-01-01
This paper presents the results of an investigation into contextual differences in the development and delivery of enterprise education in higher education globally. Using information gathered from an online survey distributed to enterprise educators, distinct differences in the provision of enterprise education are identified, as are differences…
Satellite-based peatland mapping: potential of the MODIS sensor.
D. Pflugmacher; O.N. Krankina; W.B. Cohen
2006-01-01
Peatlands play a major role in the global carbon cycle but are largely overlooked in current large-scale vegetation mapping efforts. In this study, we investigated the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to capture extent and distribution of peatlands in the St. Petersburg region of Russia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... effects of global change on the natural environment, agriculture, energy production and use, land and..., NCADAC recognizes and seeks to leverage the important and growing distributed science capabilities and... communities, professional societies, and private industry represent currently untapped assets and diverse...
A framework for global river flood risk assessments
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.
2012-08-01
There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate. The framework estimates hazard at high resolution (~1 km2) using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood routing model, and importantly, a flood extent downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case-study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard and damage estimates has been performed using the Dartmouth Flood Observatory database and damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.
Global distribution of particle phase state in atmospheric secondary organic aerosols
NASA Astrophysics Data System (ADS)
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols.
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P; Karydis, Vlassis A; Berkemeier, Thomas; Pandis, Spyros N; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-04-21
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas-particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA.
Global distribution of particle phase state in atmospheric secondary organic aerosols
Shiraiwa, Manabu; Li, Ying; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; Berkemeier, Thomas; Pandis, Spyros N.; Lelieveld, Jos; Koop, Thomas; Pöschl, Ulrich
2017-01-01
Secondary organic aerosols (SOA) are a large source of uncertainty in our current understanding of climate change and air pollution. The phase state of SOA is important for quantifying their effects on climate and air quality, but its global distribution is poorly characterized. We developed a method to estimate glass transition temperatures based on the molar mass and molecular O:C ratio of SOA components, and we used the global chemistry climate model EMAC with the organic aerosol module ORACLE to predict the phase state of atmospheric SOA. For the planetary boundary layer, global simulations indicate that SOA are mostly liquid in tropical and polar air with high relative humidity, semi-solid in the mid-latitudes and solid over dry lands. We find that in the middle and upper troposphere SOA should be mostly in a glassy solid phase state. Thus, slow diffusion of water, oxidants and organic molecules could kinetically limit gas–particle interactions of SOA in the free and upper troposphere, promote ice nucleation and facilitate long-range transport of reactive and toxic organic pollutants embedded in SOA. PMID:28429776
Current insights into phage biodiversity and biogeography.
Thurber, Rebecca Vega
2009-10-01
Phages exert tremendous ecological and evolutionary forces directly on their bacterial hosts. Phage induced cell lysis also indirectly contributes to organic and inorganic nutrient recycling. Phage abundance, diversity, and distribution are therefore important parameters in ecosystem function. The assumption that phage consortia are ubiquitous and homogenous across habitats (everything is everywhere) is currently being re-evaluated. New studies on phage biogeography have found that some phages are globally distributed while others are unique and perhaps endemic to specific environments. Furthermore, advances in technology have allowed scientists to conduct experiments aimed at analyzing phage consortia over temporal scales, and surprisingly have found reoccurring patterns. This review discusses currents in the field of phage ecology with particular focus on efforts to characterize phage diversity and biogeography across various spatial and temporal scales.
World-size global markets lead to economic instability.
Louzoun, Yoram; Solomon, Sorin; Goldenberg, Jacob; Mazursky, David
2003-01-01
Economic and cultural globalization is one of the most important processes humankind has been undergoing lately. This process is assumed to be leading the world into a wealthy society with a better life. However, the current trend of globalization is not unprecedented in human history, and has had some severe consequences in the past. By applying a quantitative analysis through a microscopic representation we show that globalization, besides being unfair (with respect to wealth distribution), is also unstable and potentially dangerous as one event may lead to a collapse of the system. It is proposed that the optimal solution in controlling the unwanted aspects and enhancing the advantageous ones lies in limiting competition to large subregions, rather than making it worldwide.
Pinkernell, Stefan; Beszteri, Bánk
2014-08-01
Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
Factors influencing anesthesia residency selection: impact of global health opportunities.
Evans, Faye M; Mallepally, Niharika R; Dubowitz, Gerald; Vasilopoulos, Terrie; McClain, Craig D; Enneking, Kayser
2016-06-01
There is growing evidence to suggest that the current generation of medical students and young physicians is interested in global health. However, there are few data on the interest in global health by students pursuing a career in anesthesiology. The objective of this survey was to evaluate the importance of global health opportunities in regard to applicants' choice of anesthesiology residency programs. Anesthesiology residency program directors in the United States were invited to distribute an online survey to recently matched residents. To reduce study bias, the survey included a wide selection of reasons for program choices in addition to global health. Participants were asked to rate independently, on a scale of 1 to 10 (1 = least important, 10 = most important), the importance that each factor had on their selection of an anesthesiology residency program. Of the 117 U.S. anesthesiology programs contacted, 87 (74%) distributed the survey. Completed surveys were obtained from 582 of 1,092 (53%) polled participants. All factors assessed were rated between 5 and 9 and the global health median [interquartile range] rating was 6 [3-7]. Nearly half of the survey respondents were interested in incorporating global health into future careers. More than three-quarters reported being interested in participating in, or reading about, global health activities during their residency. Responders with previous global health experience, or who were interested in an "in-country" experience, were more likely to choose programs that had global health opportunities available during residency. Anesthesia residency program applicants are interested in global health. Having a global health opportunity was an important reason for choosing a residency program, comparable to some more traditional factors. Regardless of previous global health experience, the majority of future anesthesia residents are either planning or considering participation in global health activities during or after training.
Global ionospheric current distributions during substorms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, B.; Kamide, Y.; Akasofu, S.
1984-03-01
The growth and decay of global ionospheric currents during magnetospheric substorms on March 17, 18, and 19, 1978 are examined on the basis of magnetic records from the six IMS meridian chains of observatories and others (the total number being 71). The computer code developed by Kamide et al. (1981) and the conductivity model developed by Ahn et al. (1983) are used. Several substorms centered around 1000-1200 UT are chosen in this presentation, since the simultaneous all-sky and riometer records are essential in timing the substorm epochs. Several global feautes that are common to most substorms during the three-day intervalmore » include the following: (1) During a quiet period, currents are often present in the cusp and/or polar cap regions. The cusp current consists of a pair of east-west currents and the polar cap current consists of several vortices. (2) When the interplanetary magnetic field (IMF) B/sub z/ component is positive, but decreases in magnitude, a well-defined westward electrojet develops in the midnight sector. However, this development is not evident in the AE index. (3) A gradual, but distinct growth (often followed by a rapid and large increase) in the AE index is indentified as the intensification of a weaksubstorm current system, which was mentioned in (2), accompanied by typical auroral substorm features, including riometer absorption. (4) The subsequent sharp increase of the AE index arises primarily from a deep intrusion of the westward electrojet into the pre-midnight sector and its equatorward shift. (5) The overall increase of the global current can be significantly differnt fromm what a sharp increase of the AE index indicates. (6) During the recovery phase, the intruded westward electrojet recedes towards the dawn sector.« less
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2014-09-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget. We review current estimates of soil organic carbon stocks (mass/area) and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg. Correcting the HWSD's bulk density of organic soils, especially Histosols, results in a mass of 1062 Pg. The uncertainty of bulk density of Histosols alone introduces a range of -56 to +180 Pg for the estimate of global SOC in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arc minutes, the areal masses of SOC and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. Incorporating more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Data Base (496 Pg SOC) and tropical peatland carbon, global soils contain 1324 Pg SOC in the upper 1 m including 421 Pg in tropical soils, whereof 40 Pg occur in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
Kinetic Simulation and Energetic Neutral Atom Imaging of the Magnetosphere
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching H.
2011-01-01
Advanced simulation tools and measurement techniques have been developed to study the dynamic magnetosphere and its response to drivers in the solar wind. The Comprehensive Ring Current Model (CRCM) is a kinetic code that solves the 3D distribution in space, energy and pitch-angle information of energetic ions and electrons. Energetic Neutral Atom (ENA) imagers have been carried in past and current satellite missions. Global morphology of energetic ions were revealed by the observed ENA images. We have combined simulation and ENA analysis techniques to study the development of ring current ions during magnetic storms and substorms. We identify the timing and location of particle injection and loss. We examine the evolution of ion energy and pitch-angle distribution during different phases of a storm. In this talk we will discuss the findings from our ring current studies and how our simulation and ENA analysis tools can be applied to the upcoming TRIO-CINAMA mission.
Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis
Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G. John; Lillo, Francesco; De Villiers, F. André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis
2016-01-01
By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain. PMID:27248830
Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis
2016-01-01
By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.
NASA Astrophysics Data System (ADS)
D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara
2017-04-01
Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ-GUESS simulations suggests possible improvements in the model representations of tree-grass competition for water and in the vegetation-fire interaction. The proposed method could be useful for evaluating DGVMs in tropical areas, especially in the phase of model setting-up, before the coupling with Earth System Models. This could help in improving the simulations of ecological processes and consequently of land-climate interactions.
Equilibrium of Global Amphibian Species Distributions with Climate
Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.
2012-01-01
A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938
Climate Change and the Potential Distribution of an Invasive Shrub, Lantana camara L
Taylor, Subhashni; Kumar, Lalit; Reid, Nick; Kriticos, Darren J.
2012-01-01
The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios. PMID:22536408
A Saturnian cam current system driven by asymmetric thermospheric heating
NASA Astrophysics Data System (ADS)
Smith, C. G. A.
2011-02-01
We show that asymmetric heating of Saturn's thermosphere can drive a current system consistent with the magnetospheric ‘cam’ proposed by Espinosa, Southwood & Dougherty. A geometrically simple heating distribution is imposed on the Northern hemisphere of a simplified three-dimensional global circulation model of Saturn's thermosphere. Currents driven by the resulting winds are calculated using a globally averaged ionosphere model. Using a simple assumption about how divergences in these currents close by flowing along dipolar field lines between the Northern and Southern hemispheres, we estimate the magnetic field perturbations in the equatorial plane and show that they are broadly consistent with the proposed cam fields, showing a roughly uniform field implying radial and azimuthal components in quadrature. We also identify a small longitudinal phase drift in the cam current with radial distance as a characteristic of a thermosphere-driven current system. However, at present our model does not produce magnetic field perturbations of the required magnitude, falling short by a factor of ˜100, a discrepancy that may be a consequence of an incomplete model of the ionospheric conductance.
Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming
2011-01-01
Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188
Why only few are so successful?
NASA Astrophysics Data System (ADS)
Mohanty, P. K.
2007-10-01
In many professions employees are rewarded according to their relative performance. Corresponding economy can be modeled by taking N independent agents who gain from the market with a rate which depends on their current gain. We argue that this simple realistic rate generates a scale-free distribution even though intrinsic ability of agents are marginally different from each other. As an evidence we provide distribution of scores for two different systems (a) the global stock game where players invest in real stock market and (b) the international cricket.
NASA Technical Reports Server (NTRS)
Behrangi, Ali; Stephens, Graeme; Adler, Robert F.; Huffman, George J.; Lambrigsten, Bjorn; Lebstock, Matthew
2014-01-01
This study contributes to the estimation of the global mean and zonal distribution of oceanic precipitation rate using complementary information from advanced precipitation measuring sensors and provides an independent reference to assess current precipitation products. Precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and CloudSat cloud profiling radar (CPR) were merged, as the two complementary sensors yield an unprecedented range of sensitivity to quantify rainfall from drizzle through the most intense rates. At higher latitudes, where TRMM PR does not exist, precipitation estimates from Aqua's Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) complemented CloudSat CPR to capture intense precipitation rates. The high sensitivity of CPR allows estimation of snow rate, an important type of precipitation at high latitudes, not directly observed in current merged precipitation products. Using the merged precipitation estimate from the CloudSat, TRMM, and Aqua platforms (this estimate is abbreviated to MCTA), the authors' estimate for 3-yr (2007-09) nearglobal (80degS-80degN) oceanic mean precipitation rate is approx. 2.94mm/day. This new estimate of mean global ocean precipitation is about 9% higher than that of the corresponding Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) value (2.68mm/day) and about 4% higher than that of the Global Precipitation Climatology Project (GPCP; 2.82mm/day). Furthermore, MCTA suggests distinct differences in the zonal distribution of precipitation rate from that depicted in GPCPand CMAP, especially in the Southern Hemisphere.
NASA Astrophysics Data System (ADS)
Nabout, João Carlos; Magalhães, Mara Rúbia; de Amorim Gomes, Marcos Aurélio; da Cunha, Hélida Ferreira
2016-04-01
The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.
Global Environmental Data for Mapping Infectious Disease Distribution
Hay, S.I.; Tatem, A.J.; Graham, A.J.; Goetz, S.J.; Rogers, D.J.
2011-01-01
This contribution documents the satellite data archives, data processing methods and temporal Fourier analysis (TFA) techniques used to create the remotely sensed datasets on the DVD distributed with this volume. The aim is to provide a detailed reference guide to the genesis of the data, rather than a standard review. These remotely sensed data cover the entire globe at either 1 × 1 or 8 × 8 km spatial resolution. We briefly evaluate the relationships between the 1 × 1 and 8 × 8 km global TFA products to explore their inter-compatibility. The 8 × 8 km TFA surfaces are used in the mapping procedures detailed in the subsequent disease mapping reviews, since the 1 × 1 km products have been validated less widely. Details are also provided on additional, current and planned sensors that should be able to provide continuity with these environmental variable surfaces, as well as other sources of global data that may be used for mapping infectious disease. PMID:16647967
Persistent Nature of Secondary Diurnal Modes of Precipitation over Oceanic and Continental Regimes
NASA Technical Reports Server (NTRS)
Yang, S.; Kuo, K.-S.; Smith, E.
2007-01-01
This investigation seeks a better understanding of the assorted mechanisms controlling the global distribution of precipitation diurnal variability based on the use of Tropical Rainfall Measuring Mission (TRMM) microwave radiometer and radar data. The horizontal distributions of precipitation's diurnal cycle are derived from eight years of TRMM Microwave Imager (TMI) and Precipitation Radar (PR) measurements involving three TRMM standard rain rate retrieval algorithms -- the resultant distributions analyzed at various spatiotemporal scales. The results reveal the prominent and expected late-evening to early-morning (LE-EM) precipitation maxima over oceans and the counterpart prominent and expected mid- to late-afternoon (MLA) maxima over continents. Moreover, and not generally recognized, the results reveal a widespread distribution of secondary maxima occurring over both oceans and continents -- maxima which generally mirror their counterpart regime's behavior. That is, many ocean regions exhibit clearcut secondary MLA precipitation maxima while many continental regions exhibit just as evident secondary LE-EM maxima. This investigation is the first comprehensive study of these globally prevalent secondary maxima and their widespread nature, a type of study only made possible when the analysis procedure is applied to a high-quality global-scale precipitation dataset. The characteristics of the secondary maxima are mapped and described on global grids using an innovative clock-face format, while a current study to be published at a later date provides physically-based explanations of the seasonal-regional distributions of the secondary maxima. In addition to an "explicit" maxima identification scheme, a "Fourier decomposition" maxima identification scheme is used to examine the amplitude and phase properties of the primary and secondary maxima -- as well as tertiary and quaternary maxima. Accordingly, the advantages, ambiguities, and pitfalls resulting from use of Fourier harmonic analysis are explained.
Continental drift and climate change drive instability in insect assemblages
NASA Astrophysics Data System (ADS)
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Continental drift and climate change drive instability in insect assemblages
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-01-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036
Continental drift and climate change drive instability in insect assemblages.
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-17
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Assessing the risk zones of Chagas' disease in Chile, in a world marked by global climatic change
Tapia-Garay, Valentina; Figueroa, Daniela P; Maldonado, Ana; Frías-Laserre, Daniel; Gonzalez, Christian R; Parra, Alonso; Canals, Lucia; Apt, Werner; Alvarado, Sergio; Cáceres, Dante; Canals, Mauricio
2018-01-01
BACKGROUND Vector transmission of Trypanosoma cruzi appears to be interrupted in Chile; however, data show increasing incidence of Chagas' disease, raising concerns that there may be a reemerging problem. OBJECTIVE To estimate the actual risk in a changing world it is necessary to consider the historical vector distribution and correlate this distribution with the presence of cases and climate change. METHODS Potential distribution models of Triatoma infestans and Chagas disease were performed using Maxent, a machine-learning method. FINDINGS Climate change appears to play a major role in the reemergence of Chagas' disease and T. infestans in Chile. The distribution of both T. infestans and Chagas' disease correlated with maximum temperature, and the precipitation during the driest month. The overlap of Chagas' disease and T. infestans distribution areas was high. The distribution of T. infestans, under two global change scenarios, showed a minimal reduction tendency in suitable areas. MAIN CONCLUSION The impact of temperature and precipitation on the distribution of T. infestans, as shown by the models, indicates the need for aggressive control efforts; the current control measures, including T. infestans control campaigns, should be maintained with the same intensity as they have at present, avoiding sylvatic foci, intrusions, and recolonisation of human dwellings. PMID:29211105
Impacts of changing ocean circulation on the distribution of marine microplastic litter.
Welden, Natalie Ac; Lusher, Amy L
2017-05-01
Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.
NASA Astrophysics Data System (ADS)
Adams, P. J.; Marks, M.
2015-12-01
The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.
Using small RNA (sRNA) deep sequencing to understand global virus distribution in plants
USDA-ARS?s Scientific Manuscript database
Small RNAs (sRNAs), a class of regulatory RNAs, have been used to serve as the specificity determinants of suppressing gene expression in plants and animals. Next generation sequencing (NGS) uncovered the sRNA landscape in most organisms including their associated microbes. In the current study, w...
Debbie Jewitt; Barend F.N. Erasmus; Peter S. Goodman; Timothy G. O' Connor; William W. Hargrove; Damian M. Maddalena; Ed. T.F. Witkowski
2015-01-01
Global climate change is having marked influences on species distributions, phenology and ecosystem composition and raises questions as to the effectiveness of current conservation strategies. Conservation planning has only recently begun to adequately account for dynamic threats such as climate change. We propose a method to incorporate climate-dynamic environmental...
From Distance Education to Distributed Learning Surviving and Thriving
ERIC Educational Resources Information Center
Matheos, Kathleen; Archer, Walter
2004-01-01
Higher education is currently undergoing what may be its most significant change since the advent of the printing press in the fifteenth century. A number of socioeconomic forces, primarily globalization, have increased student mobility and created a need for increased and more flexible access to education. At the same time, the recent vast…
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.
Future global SLR network evolution and its impact on the terrestrial reference frame
NASA Astrophysics Data System (ADS)
Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian
2018-06-01
Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.
The Definition Study for Implementation of the IMAP Mission
NASA Technical Reports Server (NTRS)
Frank, L. A.
1997-01-01
The Small Explorer Mission in intended to provide the first global visualization of Earth's inner magnetosphere. IMAP promises to greatly advance our knowledge of the global distributions and dynamics of near-Earth radiation environment by obtaining first simultaneous images of the plasmasphere at extreme ultraviolet wavelengths, of the extraterrestrial ring current and the earthward portions of the plasma sheet as seen in their emissions of neutral atoms from charge exchange of plasma hot ions with geocoronal hydrogen atoms, and of the aurora in its far-ultraviolet emissions.
Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting
NASA Technical Reports Server (NTRS)
White, Patrick
2017-01-01
What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.
A remote sensing research agenda for mapping and monitoring biodiversity
NASA Technical Reports Server (NTRS)
Stoms, D. M.; Estes, J. E.
1993-01-01
A remote sensing research agenda designed to expand the knowledge of the spatial distribution of species richness and its ecological determinants and to predict its response to global change is proposed. Emphasis is placed on current methods of mapping species richness of both plants and animals, hypotheses concerning the biophysical factors believed to determine patterns of species richness, and anthropogenic processes causing the accelerating rate of extinctions. It is concluded that biodiversity should be incorporated more prominently into the global change and earth system science paradigms.
Brucellosis update in Libya and regional prospective
Ahmed, Mohamed O; Abouzeed, Yousef M; Bennour, Emad M; van Velkinburgh, Jennifer C
2015-01-01
Brucellosis is a global bacterial zoonosis responsible for high morbidity in humans and significant livestock economic losses. While brucellosis remains a public health concern worldwide, its global geographic distribution is variable, largely due to different management schemes; however, paucity of information renders the status of brucellosis unclear and incomplete in many countries, especially those with low income and under-developed infrastructure. This short article summarizes and discusses recent important updates on brucellosis from the North African countries, with a particular brief emphasis on the current status and recent updates in Libya. PMID:25578285
Brucellosis update in Libya and regional prospective.
Ahmed, Mohamed O; Abouzeed, Yousef M; Bennour, Emad M; van Velkinburgh, Jennifer C
2015-02-01
Brucellosis is a global bacterial zoonosis responsible for high morbidity in humans and significant livestock economic losses. While brucellosis remains a public health concern worldwide, its global geographic distribution is variable, largely due to different management schemes; however, paucity of information renders the status of brucellosis unclear and incomplete in many countries, especially those with low income and under-developed infrastructure. This short article summarizes and discusses recent important updates on brucellosis from the North African countries, with a particular brief emphasis on the current status and recent updates in Libya.
The changing global distribution and prevalence of canine transmissible venereal tumour
2014-01-01
Background The canine transmissible venereal tumour (CTVT) is a contagious cancer that is naturally transmitted between dogs by the allogeneic transfer of living cancer cells during coitus. CTVT first arose several thousand years ago and has been reported in dog populations worldwide; however, its precise distribution patterns and prevalence remain unclear. Results We analysed historical literature and obtained CTVT prevalence information from 645 veterinarians and animal health workers in 109 countries in order to estimate CTVT’s former and current global distribution and prevalence. This analysis confirmed that CTVT is endemic in at least 90 countries worldwide across all inhabited continents. CTVT is estimated to be present at a prevalence of one percent or more in dogs in at least 13 countries in South and Central America as well as in at least 11 countries in Africa and 8 countries in Asia. In the United States and Australia, CTVT was reported to be endemic only in remote indigenous communities. Comparison of current and historical reports of CTVT indicated that its prevalence has declined in Northern Europe, possibly due to changes in dog control laws during the nineteenth and twentieth centuries. Analysis of factors influencing CTVT prevalence showed that presence of free-roaming dogs was associated with increased CTVT prevalence, while dog spaying and neutering were associated with reduced CTVT prevalence. Our analysis indicated no gender bias for CTVT and we found no evidence that animals with CTVT frequently harbour concurrent infectious diseases. Vincristine was widely reported to be the most effective therapy for CTVT. Conclusions Our results provide a survey of the current global distribution of CTVT, confirming that CTVT is endemic in at least 90 countries worldwide. Additionally, our analysis highlights factors that continue to modify CTVT’s prevalence around the world and implicates free-roaming dogs as a reservoir for the disease. Our analysis also documents the disappearance of the disease from the United Kingdom during the twentieth century, which appears to have been an unintentional result of the introduction of dog control policies. PMID:25186078
Accurate Realization of GPS Vertical Global Reference Frame
NASA Technical Reports Server (NTRS)
Elosegui, Pedro
2004-01-01
The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.
Quaternary coral reef refugia preserved fish diversity.
Pellissier, Loïc; Leprieur, Fabien; Parravicini, Valeriano; Cowman, Peter F; Kulbicki, Michel; Litsios, Glenn; Olsen, Steffen M; Wisz, Mary S; Bellwood, David R; Mouillot, David
2014-05-30
The most prominent pattern in global marine biogeography is the biodiversity peak in the Indo-Australian Archipelago. Yet the processes that underpin this pattern are still actively debated. By reconstructing global marine paleoenvironments over the past 3 million years on the basis of sediment cores, we assessed the extent to which Quaternary climate fluctuations can explain global variation in current reef fish richness. Comparing global historical coral reef habitat availability with the present-day distribution of 6316 reef fish species, we find that distance from stable coral reef habitats during historical periods of habitat loss explains 62% of the variation in fish richness, outweighing present-day environmental factors. Our results highlight the importance of habitat persistence during periods of climate change for preserving marine biodiversity. Copyright © 2014, American Association for the Advancement of Science.
Global Ocean Currents Database
NASA Astrophysics Data System (ADS)
Boyer, T.; Sun, L.
2016-02-01
The NOAA's National Centers for Environmental Information has released an ocean currents database portal that aims 1) to integrate global ocean currents observations from a variety of instruments with different resolution, accuracy and response to spatial and temporal variability into a uniform network common data form (NetCDF) format and 2) to provide a dedicated online data discovery, access to NCEI-hosted and distributed data sources for ocean currents data. The portal provides a tailored web application that allows users to search for ocean currents data by platform types and spatial/temporal ranges of their interest. The dedicated web application is available at http://www.nodc.noaa.gov/gocd/index.html. The NetCDF format supports widely-used data access protocols and catalog services such as OPeNDAP (Open-source Project for a Network Data Access Protocol) and THREDDS (Thematic Real-time Environmental Distributed Data Services), which the GOCD users can use data files with their favorite analysis and visualization client software without downloading to their local machine. The potential users of the ocean currents database include, but are not limited to, 1) ocean modelers for their model skills assessments, 2) scientists and researchers for studying the impact of ocean circulations on the climate variability, 3) ocean shipping industry for safety navigation and finding optimal routes for ship fuel efficiency, 4) ocean resources managers while planning for the optimal sites for wastes and sewages dumping and for renewable hydro-kinematic energy, and 5) state and federal governments to provide historical (analyzed) ocean circulations as an aid for search and rescue
Cloud cover archiving on a global scale - A discussion of principles
NASA Technical Reports Server (NTRS)
Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.
1981-01-01
Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.
Sáinz-Bariáin, Marta; Poquet, José Manuel; Rodríguez-López, Roberto
2017-01-01
Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area. PMID:28135280
Weiner, Agnes K M; Weinkauf, Manuel F G; Kurasawa, Atsushi; Darling, Kate F; Kucera, Michal; Grimm, Guido W
2014-01-01
Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.
NASA Astrophysics Data System (ADS)
Dowell, M.; Moore, T.; Follows, M.; Dutkiewicz, S.
2006-12-01
In recent years there has been significant progress both in the use of satellite ocean colour remote sensing and coupled hydrodynamic biological models for producing maps of different dominant phytoplankton groups in the global ocean. In parallel to these initiatives, there is ongoing research largely following on from Alan Longhurst's seminal work on defining a template of distinct ecological and biogeochemical provinces for the oceans based on their physical and biochemical characteristics. For these products and models to be of maximum use in their subsequent inclusion in re-analysis and climate scale models, there is a need to understand how the "observed" distributions of dominant phytoplankton (realized niche) coincide with of the environmental constraints in which they occur (fundamental niche). In the current paper, we base our analysis on the recently published results on the distribution of dominant phytoplankton species at global scale, resulting both from satellite and model analysis. Furthermore, we will present research in defining biogeochemical provinces using satellite and model data inputs and a fuzzy logic based approach. This will be compared with ongoing modelling efforts, which include competitive exclusion and therefore compatible with the definition of the realized ecological niche, to define the emergent distribution of dominant phytoplankton species. Ultimately we investigate the coherence of these two distinct approaches in studying phytoplankton distributions and propose the significance of this in the context of modelling and analysis at various scales.
NASA Astrophysics Data System (ADS)
Kosch, M.; Nielsen, E.
Two bi-static VHF radar systems STARE and SABRE have been employed to estimate ionospheric electric field distributions in the geomagnetic latitude range 61 1 - 69 3 degrees over Scandinavia corresponding to the global Region 2 current system 173 days of data from all four radars have been analysed during the period 1982 to 1986 The average magnetic field-aligned currents have been computed as a function of the Kp and Ae indices using an empirical model of ionospheric Pedersen and Hall conductance taking into account conductance gradients The divergence of horizontal Pedersen currents and Hall conductance gradients have approximately the same importance for generating the Region 2 field-aligned currents Pedersen conductance gradients have a significant modifying effect A case study of field-aligned currents has been performed using the STARE radar system to obtain the instantaneous ionospheric electric field distribution in the vicinity of an auroral arc The instantaneous Hall conductance was estimated from the Scandinavian Magnetometer Array This study clearly shows that even for quiet steady state geomagnetic conditions conductance gradients are important modifiers of magnetic field-aligned currents
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H.; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey’s songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey’s songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges. PMID:23844151
Abolafya, Moris; Onmuş, Ortaç; Şekercioğlu, Çağan H; Bilgin, Raşit
2013-01-01
In this study, we evaluated the potential impact of climate change on the distributions of Turkey's songbirds in the 21st century by modelling future distributions of 20 resident and nine migratory species under two global climate change scenarios. We combined verified data from an ornithological citizen science initiative (www.kusbank.org) with maximum entropy modeling and eight bioclimatic variables to estimate species distributions and projections for future time periods. Model predictions for resident and migratory species showed high variability, with some species projected to lose and others projected to gain suitable habitat. Our study helps improve the understanding of the current and potential future distributions of Turkey's songbirds and their responses to climate change, highlights effective strategies to maximize avian conservation efforts in the study region, and provides a model for using citizen science data for biodiversity research in a large developing country with few professional field biologists. Our results demonstrate that climate change will not affect every species equally in Turkey. Expected range reductions in some breeding species will increase the risk of local extinction, whereas others are likely to expand their ranges.
Three-dimensional eddy current solution of a polyphase machine test model (abstract)
NASA Astrophysics Data System (ADS)
Pahner, Uwe; Belmans, Ronnie; Ostovic, Vlado
1994-05-01
This abstract describes a three-dimensional (3D) finite element solution of a test model that has been reported in the literature. The model is a basis for calculating the current redistribution effects in the end windings of turbogenerators. The aim of the study is to see whether the analytical results of the test model can be found using a general purpose finite element package, thus indicating that the finite element model is accurate enough to treat real end winding problems. The real end winding problems cannot be solved analytically, as the geometry is far too complicated. The model consists of a polyphase coil set, containing 44 individual coils. This set generates a two pole mmf distribution on a cylindrical surface. The rotating field causes eddy currents to flow in the inner massive and conducting rotor. In the analytical solution a perfect sinusoidal mmf distribution is put forward. The finite element model contains 85824 tetrahedra and 16451 nodes. A complex single scalar potential representation is used in the nonconducting parts. The computation time required was 3 h and 42 min. The flux plots show that the field distribution is acceptable. Furthermore, the induced currents are calculated and compared with the values found from the analytical solution. The distribution of the eddy currents is very close to the distribution of the analytical solution. The most important results are the losses, both local and global. The value of the overall losses is less than 2% away from those of the analytical solution. Also the local distribution of the losses is at any given point less than 7% away from the analytical solution. The deviations of the results are acceptable and are partially due to the fact that the sinusoidal mmf distribution was not modeled perfectly in the finite element method.
MAC-v1: A new global aerosol climatology for climate studies
NASA Astrophysics Data System (ADS)
Kinne, Stefan; O'Donnel, Declan; Stier, Philip; Kloster, Silvia; Zhang, Kai; Schmidt, Hauke; Rast, Sebastian; Giorgetta, Marco; Eck, Tom F.; Stevens, Bjorn
2013-12-01
The Max-Planck-Institute Aerosol Climatology version 1 (MAC-v1) is introduced. It describes the optical properties of tropospheric aerosols on monthly timescales and with global coverage at a spatial resolution of 1° in latitude and longitude. By providing aerosol radiative properties for any wavelength of the solar (or shortwave) and of the terrestrial (or longwave) radiation spectrum, as needed in radiative transfer applications, this MAC-v1 data set lends itself to simplified and computationally efficient representations of tropospheric aerosol in climate studies. Estimates of aerosol radiative properties are provided for both total and anthropogenic aerosol in annual time steps from preindustrial times (i.e., starting with year 1860) well into the future (until the year 2100). Central to the aerosol climatology is the merging of monthly statistics of aerosol optical properties for current (year 2000) conditions. Hereby locally sparse but trusted high-quality data by ground-based sun-photometer networks are merged onto complete background maps defined by central data from global modeling with complex aerosol modules. This merging yields 0.13 for the global annual midvisible aerosol optical depth (AOD), with 0.07 attributed to aerosol sizes larger than 1 µm in diameter and 0.06 of attributed to aerosol sizes smaller than 1 µm in diameter. Hereby larger particles are less absorbing with a single scattering albedo (SSA) of 0.98 compared to 0.93 for smaller sizes. Simulation results of a global model are applied to prescribe the vertical distribution and to estimate anthropogenic contributions to the smaller size AOD as a function of time, with a 0.037 value for current conditions. In a demonstration application, the associated aerosol direct radiative effects are determined. For current conditions, total aerosol is estimated to reduce the combined shortwave and longwave net-flux balance at the top of the atmosphere by about -1.6 W/m2 from which -0.5 W/m2 (with an uncertainty of ±0.2 W/m2) is attributed to anthropogenic activities. Based on past and projected aerosol emission data, the global anthropogenic direct aerosol impact (i.e., ToA cooling) is currently near the maximum and is projected to drop by 2100 to about -0.3 W/m2. The reported global averages are driven by considerable spatial and temporal variability. To better convey this diversity, regional and seasonal distributions of aerosol optical properties and their radiative effects are presented. On regional scales, the anthropogenic direct aerosol forcing can be an order of magnitude stronger than the global average and it can be of either sign. It is also shown that maximum anthropogenic impacts have shifted during the last 30 years from the U.S. and Europe to eastern and southern Asia.
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)
2000-01-01
The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.
Increased food production and reduced water use through optimized crop distribution
NASA Astrophysics Data System (ADS)
Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo
2017-12-01
Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.
Mapping Tree Density at the Global Scale
NASA Astrophysics Data System (ADS)
Covey, K. R.; Crowther, T. W.; Glick, H.; Bettigole, C.; Bradford, M.
2015-12-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global-scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical regions, with 0.74, and 0.61 trillion in boreal and temperate regions, respectively. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming impact of humans across most of the world. Based on our projected tree densities, we estimate that deforestation is currently responsible for removing over 15 billion trees each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
NASA Astrophysics Data System (ADS)
Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.
2013-04-01
We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK
Evolution of anthropogenic emissions at the global and regional scale during the past three decades
NASA Astrophysics Data System (ADS)
Granier, C.; Bessagnet, B. B.; Bond, T. C.; D'Angiola, A.; Denier van der Gon, H.; Frost, G. J.; Heil, A.; Kaiser, J.; Kinne, S. A.; Klimont, Z.; Kloster, S.; Lamarque, J.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.; Riahi, K.; Schultz, M. G.; Smith, S.; Thomson, A. M.; van Aardenne, J.; van der Werf, G.; van Vuuren, D.
2010-12-01
The knowledge of the distributions of surface emissions of gases and aerosols is essential for an accurate modeling and analysis of the distribution and evolution of the concentration of gaseous and particulate chemical species. The quantification of surface fluxes by source of origin is furthermore central to the assessment of effects and the development of control measures. Over the past few years, different ranges of emission fluxes have been proposed by several studies, which have provided emissions at different spatial and temporal scales. We have compared the emissions of several chemical compounds, i.e. carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon, as provided by global and regional emissions inventories in different regions of the world for the past thirty years. The presentation will focus on the United States, Europe and China. Significant differences between the datasets providing emissions in these regions have been identified, reaching for example 60% and 35% for anthropogenic emissions of carbon monoxide and nitrogen oxides in both regions, respectively. We will assess the current uncertainties on surface emissions and their recent trends. This analysis is often hindered because of differences in base years and in species considered in the different datasets. Current work aiming at compiling comparable metrics for such species for the analysis of regional and global emission datasets will be discussed.
NASA Astrophysics Data System (ADS)
Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl
2011-07-01
During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring and control activities to avoid disease vector establishment.
Global Instrumental Seismic Catalog: earthquake relocations for 1900-present
NASA Astrophysics Data System (ADS)
Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.
2010-12-01
We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.
NASA Astrophysics Data System (ADS)
Ringbom, A.
2010-12-01
A detailed knowledge of both the spatial and isotopic distribution of anthropogenic radioxenon is essential in investigations of the performance of the radioxenon part of the IMS, as well as in the development of techniques to discriminate radioxenon signatures from a nuclear explosion from other sources. Further, the production processes in the facilities causing the radioxenon background has to be understood and be compatible with simulations. In this work, several aspects of the observed atmospheric radioxenon background are investigated, including the global distribution as well as the current understanding of the observed isotopic ratios. Analyzed radioxenon data from the IMS, as well as from other measurement stations, are used to create an up-to-date description of the global radioxenon background, including all four CTBT relevant xenon isotopes (133Xe, 131mXe, 133mXe, and 135Xe). In addition, measured isotopic ratios will be compared to simulations of neutron induced fission of 235U, and the uncertainties will be discussed. Finally, the impact of the radioxenon background on the detection capability of the IMS will be investigated. This work is a continuation of studies [1,2] that was presented at the International Scientific Studies conference held in Vienna in 2009. [1] A. Ringbom, et.al., “Characterization of the global distribution of atmospheric radioxenons”, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009. [2] R. D'Amours and A. Ringbom, “A study on the global detection capability of IMS for all CTBT relevant xenon isotopes“, International Scientific Studies Conference on CTBT Verification, 10-12 June 2009.
The Martian hydrologic cycle - Effects of CO2 mass flux on global water distribution
NASA Technical Reports Server (NTRS)
James, P. B.
1985-01-01
The Martian CO2 cycle, which includes the seasonal condensation and subsequent sublimation of up to 30 percent of the planet's atmosphere, produces meridional winds due to the consequent mass flux of CO2. These winds currently display strong seasonal and hemispheric asymmetries due to the large asymmetries in the distribution of insolation on Mars. It is proposed that asymmetric meridional advection of water vapor on the planet due to these CO2 condensation winds is capable of explaining the observed dessication of Mars' south polar region at the current time. A simple model for water vapor transport is used to verify this hypothesis and to speculate on the effects of changes in orbital parameters on the seasonal water cycle.
NASA Astrophysics Data System (ADS)
Yu, Y.; Jordanova, V. K.; McGranaghan, R. M.; Solomon, S. C.
2017-12-01
The ionospheric conductance, height-integrated electric conductivity, can regulate both the ionospheric electrodynamics and the magnetospheric dynamics because of its key role in determining the electric field within the coupled magnetosphere-ionosphere system. State-of-the-art global magnetosphere models commonly adopt empirical conductance calculators to obtain the auroral conductance. Such specification can bypass the complexity of the ionosphere-thermosphere chemistry but on the other hand breaks the self-consistent link within the coupled system. In this study, we couple a kinetic ring current model RAM-SCB-E that solves for anisotropic particle distributions with a two-stream electron transport code (GLOW) to more self-consistently compute the height-dependent electric conductivity, provided the auroral electron precipitation from the ring current model. Comparisons with the traditional empirical formula are carried out. It is found that the newly coupled modeling framework reveals smaller Hall and Pedersen conductance, resulting in a larger electric field. As a consequence, the subauroral polarization streams demonstrate a better agreement with observations from DMSP satellites. It is further found that the commonly assumed Maxwellian spectrum of the particle precipitation is not globally appropriate. Instead, a full precipitation spectrum resulted from wave particle interactions in the ring current accounts for a more comprehensive precipitation spectrum.
Establishing a Modern Ground Network for Space Geodesy Applications
NASA Technical Reports Server (NTRS)
Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.
2010-01-01
Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.
State of global pediatric neurosurgery outreach: survey by the International Education Subcommittee.
Davis, Matthew C; Rocque, Brandon G; Singhal, Ash; Ridder, Thomas; Pattisapu, Jogi V; Johnston, James M
2017-08-01
OBJECTIVE Neurosurgical services are increasingly recognized as essential components of surgical care worldwide. The degree of interest among neurosurgeons regarding international work, and the barriers to involvement in global neurosurgical outreach, are largely unexplored. The authors distributed a survey to members of the American Association of Neurological Surgeons/Congress of Neurological Surgeons (AANS/CNS) Joint Section on Pediatric Neurosurgery to assess the state of global outreach among its members and to identify barriers to involvement. METHODS An internet-based questionnaire was developed by the International Education Subcommittee of the AANS/CNS Joint Section on Pediatric Neurosurgery and distributed to pediatric neurosurgeons via the AANS/CNS Joint Section email contact list. Participants were surveyed on their involvement in global neurosurgical outreach, geographic location, nature of the participation, and barriers to further involvement. RESULTS A 35.3% response rate was obtained, with 116 respondents completing the survey. Sixty-one percent have performed or taught neurosurgery in a developing country, and 49% travel at least annually. Africa was the most common region (54%), followed by South America (30%), through 29 separate organizing entities. Hydrocephalus was the most commonly treated condition (88%), followed by spinal dysraphism (74%), and tumor (68%). Most respondents obtained follow-up through communications from local surgeons (77%). Seventy-one percent believed the international experience improved their practice, and 74% were very or extremely interested in working elsewhere. Interference with current practice (61%), cost (44%), and difficulty identifying international partners (43%) were the most commonly cited barriers to participation. CONCLUSIONS Any coordinated effort to expand global neurosurgical capacity begins with appreciation for the current state of outreach efforts. Increasing participation in global outreach will require addressing both real and perceived barriers to involvement. Creation and curation of a centralized online database of ongoing projects to facilitate coordination and involvement may be beneficial.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
Programming distributed memory architectures using Kali
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1990-01-01
Programming nonshared memory systems is more difficult than programming shared memory systems, in part because of the relatively low level of current programming environments for such machines. A new programming environment is presented, Kali, which provides a global name space and allows direct access to remote data values. In order to retain efficiency, Kali provides a system on annotations, allowing the user to control those aspects of the program critical to performance, such as data distribution and load balancing. The primitives and constructs provided by the language is described, and some of the issues raised in translating a Kali program for execution on distributed memory systems are also discussed.
Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad
2002-01-01
Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard s Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
NASA's Next Generation Space Geodesy Program
NASA Technical Reports Server (NTRS)
Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.;
2012-01-01
Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.
2009-01-01
Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.
Scientific Foundations for an IUCN Red List of Ecosystems
Keith, David A.; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M.; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G.; Benson, John S.; Bishop, Melanie J.; Bonifacio, Ronald; Brooks, Thomas M.; Burgman, Mark A.; Comer, Patrick; Comín, Francisco A.; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G.; Holdaway, Robert J.; Jennings, Michael; Kingsford, Richard T.; Lester, Rebecca E.; Nally, Ralph Mac; McCarthy, Michael A.; Moat, Justin; Oliveira-Miranda, María A.; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J.; Riecken, Uwe; Spalding, Mark D.; Zambrano-Martínez, Sergio
2013-01-01
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world’s ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity PMID:23667454
Scientific foundations for an IUCN Red List of ecosystems.
Keith, David A; Rodríguez, Jon Paul; Rodríguez-Clark, Kathryn M; Nicholson, Emily; Aapala, Kaisu; Alonso, Alfonso; Asmussen, Marianne; Bachman, Steven; Basset, Alberto; Barrow, Edmund G; Benson, John S; Bishop, Melanie J; Bonifacio, Ronald; Brooks, Thomas M; Burgman, Mark A; Comer, Patrick; Comín, Francisco A; Essl, Franz; Faber-Langendoen, Don; Fairweather, Peter G; Holdaway, Robert J; Jennings, Michael; Kingsford, Richard T; Lester, Rebecca E; Mac Nally, Ralph; McCarthy, Michael A; Moat, Justin; Oliveira-Miranda, María A; Pisanu, Phil; Poulin, Brigitte; Regan, Tracey J; Riecken, Uwe; Spalding, Mark D; Zambrano-Martínez, Sergio
2013-01-01
An understanding of risks to biodiversity is needed for planning action to slow current rates of decline and secure ecosystem services for future human use. Although the IUCN Red List criteria provide an effective assessment protocol for species, a standard global assessment of risks to higher levels of biodiversity is currently limited. In 2008, IUCN initiated development of risk assessment criteria to support a global Red List of ecosystems. We present a new conceptual model for ecosystem risk assessment founded on a synthesis of relevant ecological theories. To support the model, we review key elements of ecosystem definition and introduce the concept of ecosystem collapse, an analogue of species extinction. The model identifies four distributional and functional symptoms of ecosystem risk as a basis for assessment criteria: A) rates of decline in ecosystem distribution; B) restricted distributions with continuing declines or threats; C) rates of environmental (abiotic) degradation; and D) rates of disruption to biotic processes. A fifth criterion, E) quantitative estimates of the risk of ecosystem collapse, enables integrated assessment of multiple processes and provides a conceptual anchor for the other criteria. We present the theoretical rationale for the construction and interpretation of each criterion. The assessment protocol and threat categories mirror those of the IUCN Red List of species. A trial of the protocol on terrestrial, subterranean, freshwater and marine ecosystems from around the world shows that its concepts are workable and its outcomes are robust, that required data are available, and that results are consistent with assessments carried out by local experts and authorities. The new protocol provides a consistent, practical and theoretically grounded framework for establishing a systematic Red List of the world's ecosystems. This will complement the Red List of species and strengthen global capacity to report on and monitor the status of biodiversity.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Global Change Data Center: Mission, Organization, Major Activities, and 2003 Highlights
NASA Technical Reports Server (NTRS)
2004-01-01
Rapid, efficient access to Earth sciences data from satellites and ground validation stations is fundamental to the nation's efforts to understand the effects of global environmental changes and their implications for public policy. It becomes a bigger challenge in the future when data volumes increase from current levels to terabytes per day. Demands on data storage, data access, network throughput, processing power, and database and information management are increased by orders of magnitude, while budgets remain constant and even shrink.The Global Change Data Center's (GCDC) mission is to develop and operate data systems, generate science products, and provide archival and distribution services for Earth science data in support of the U.S. Global Change Program and NASA's Earth Sciences Enterprise. The ultimate product of the GCDC activities is access to data to support research, education, and public policy.
Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1
NASA Technical Reports Server (NTRS)
Shepherd, Marshall; Starr, David OC. (Technical Monitor)
2001-01-01
The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.
Steen, Valerie; Powell, Abby N.
2012-01-01
Wetland-dependent birds are considered to be at particularly high risk for negative climate change effects. Current and future distributions of American Bittern (Botaurus lentiginosus), American Coot (Fulica americana), Black Tern (Chlidonias niger), Pied-billed Grebe (Podilymbus podiceps) and Sora (Porzana carolina), five waterbird species common in the Prairie Pothole Region (PPR), were predicted using species distribution models (SDMs) in combination with climate data that projected a drier future for the PPR. Regional-scale SDMs were created for the U.S. PPR using breeding bird survey occurrence records for 1971-2000 and wetland and climate parameters. For each waterbird species, current distribution and four potential future distributions were predicted: all combinations of two Global Circulation Models and two emissions scenarios. Averaged for all five species, the ensemble range reduction was 64%. However, projected range losses for individual species varied widely with Sora and Black Tern projected to lose close to 100% and American Bittern 29% of their current range. Future distributions were also projected to a hypothetical landscape where wetlands were numerous and constant to highlight areas suitable as conservation reserves under a drier future climate. The ensemble model indicated that northeastern North Dakota and northern Minnesota would be the best areas for conservation reserves within the U.S. PPR under the modeled conditions.
Global perspectives on ensuring the safety of pharmaceutical products in the distribution process .
Jeong, Sohyun; Ji, Eunhee
2018-01-01
The distribution of counterfeit or falsified drugs is increasing worldwide. This can contribute to the high burden of disease and cost to society and is of global concern with the worldwide circulation of pharmaceuticals. The preparation and implementation of good distribution practice should be one of the most important aspects of ensuring safe drug circulation and administration. This research aimed to compare and analyze good distribution practice guidelines from advanced countries and international organizations, and to evaluate the status of the current good distribution practice guidelines in the world. Advanced pharmaceutical countries and international organizations, such as the World Health Organization, European Union, Pharmaceutical Inspection Co-operation Scheme, United States of America, Canada, and Australia, which have stable good distribution practice guidelines and public confidence, were included in the analysis. The World Health Organization and European Union guidelines are models for standardized good distribution practice for nations worldwide. The United States of America has a combination of four different series of distribution practices which have a unique structure and detailed content compared to those of other countries. The Canadian guidelines focus on temperature control during storage and transportation. The Australian guidelines apply to both classes of medicinal products and medical devices and need separate standardization. Transparent information about the Internet chain, international cooperation regarding counterfeiting, a high-standard qualification of sellers and customers, and technology to track and trace the whole life cycle of drugs should be the main focus of future good distribution practice guidelines worldwide. .
Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data
NASA Astrophysics Data System (ADS)
Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.
2015-12-01
Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.
Landsat Data Continuity Mission
,
2007-01-01
The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.
Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?
NASA Technical Reports Server (NTRS)
Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.
1985-01-01
Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.
Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.
Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen
2014-01-01
Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2015-04-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
Distributed Storage Healthcare — The Basis of a Planet-Wide Public Health Care Network
Kakouros, Nikolaos
2013-01-01
Background: As health providers move towards higher levels of information technology (IT) integration, they become increasingly dependent on the availability of the electronic health record (EHR). Current solutions of individually managed storage by each healthcare provider focus on efforts to ensure data security, availability and redundancy. Such models, however, scale poorly to a future of a planet-wide public health-care network (PWPHN). Our aim was to review the research literature on distributed storage systems and propose methods that may aid the implementation of a PWPHN. Methods: A systematic review was carried out of the research dealing with distributed storage systems and EHR. A literature search was conducted on five electronic databases: Pubmed/Medline, Cinalh, EMBASE, Web of Science (ISI) and Google Scholar and then expanded to include non-authoritative sources. Results: The English National Health Service Spine represents the most established country-wide PHN but is limited in deployment and remains underused. Other, literature identified and established distributed EHR attempts are more limited in scope. We discuss the currently available distributed file storage solutions and propose a schema of how one of these technologies can be used to deploy a distributed storage of EHR with benefits in terms of enhanced fault tolerance and global availability within the PWPHN. We conclude that a PWPHN distributed health care record storage system is technically feasible over current Internet infrastructure. Nonetheless, the socioeconomic viability of PWPHN implementations remains to be determined. PMID:23459171
Rosales, Jon
2008-12-01
Economic growth-the increase in production and consumption of goods and services-must be considered within its biophysical context. Economic growth is fueled by biophysical inputs and its outputs degrade ecological processes, such as the global climate system. Economic growth is currently the principal cause of increased climate change, and climate change is a primary mechanism of biodiversity loss. Therefore, economic growth is a prime catalyst of biodiversity loss. Because people desire economic growth for dissimilar reasons-some for the increased accumulation of wealth, others for basic needs-how we limit economic growth becomes an ethical problem. Principles of distributive justice can help construct an international climate-change regime based on principles of equity. An equity-based framework that caps economic growth in the most polluting economies will lessen human impact on biodiversity. When coupled with a cap-and-trade mechanism, the framework can also provide a powerful tool for redistribution of wealth. Such an equity-based framework promises to be more inclusive and therefore more effective because it accounts for the disparate developmental conditions of the global north and south.
Charidimou, Andreas; Farid, Karim; Tsai, Hsin-Hsi; Tsai, Li-Kai; Yen, Rouh-Fang; Baron, Jean-Claude
2018-04-01
We performed a meta-analysis to synthesise current evidence on amyloid-positron emission tomography (PET) burden and presumed preferential occipital distribution in sporadic cerebral amyloid angiopathy (CAA). In a PubMed systematic search, we identified case-control studies with extractable data on global and occipital-to-global amyloid-PET uptake in symptomatic patients with CAA (per Boston criteria) versus control groups (healthy participants or patients with non-CAA deep intracerebral haemorrhage) and patients with Alzheimer's disease. To circumvent PET studies' methodological variation, we generated and used 'fold change', that is, ratio of mean amyloid uptake (global and occipital-to-global) of CAA relative to comparison groups. Amyloid-PET uptake biomarker performance was then quantified by random-effects meta-analysis on the ratios of the means. A ratio >1 indicates that amyloid-PET uptake (global or occipital/global) is higher in CAA than comparison groups, and a ratio <1 indicates the reverse. Seven studies, including 106 patients with CAA (>90% with probable CAA) and 138 controls (96 healthy elderly, 42 deep intracerebral haemorrhage controls) and 72 patients with Alzheimer's disease, were included. Global amyloid-PET ratio between patients with CAA and controls was above 1, with an average effect size of 1.18 (95% CI 1.08 to 1.28; p<0.0001). Occipital-to-global amyloid-PET uptake ratio did not differ between patients with CAA versus patients with deep intracerebral haemorrhage or healthy controls. By contrast, occipital-to-global amyloid-PET uptake ratio was above 1 in patients with CAA versus those with Alzheimer's disease, with an average ratio of 1.10 (95% CI 1.03 to 1.19; p=0.009) and high statistical heterogeneity. Our analysis provides exploratory actionable data on the overall effect sizes and strength of amyloid-PET burden and distribution in patients with CAA, useful for future larger studies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
ERIC Educational Resources Information Center
Brewer, Denise
2012-01-01
The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have…
Global biogeography of human infectious diseases.
Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter
2015-10-13
The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.
Resilience in the global food system
NASA Astrophysics Data System (ADS)
Seekell, David; Carr, Joel; Dell'Angelo, Jampel; D'Odorico, Paolo; Fader, Marianela; Gephart, Jessica; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Puma, Michael; Ratajczak, Zak; Rulli, Maria Cristina; Suweis, Samir; Tavoni, Alessandro
2017-02-01
Ensuring food security requires food production and distribution systems function throughout disruptions. Understanding the factors that contribute to the global food system’s ability to respond and adapt to such disruptions (i.e. resilience) is critical for understanding the long-term sustainability of human populations. Variable impacts of production shocks on food supply between countries indicate a need for national-scale resilience indicators that can provide global comparisons. However, methods for tracking changes in resilience have had limited application to food systems. We developed an indicator-based analysis of food systems resilience for the years 1992-2011. Our approach is based on three dimensions of resilience: socio-economic access to food in terms of income of the poorest quintile relative to food prices, biophysical capacity to intensify or extensify food production, and the magnitude and diversity of current domestic food production. The socio-economic indicator has a large variability, but with low values concentrated in Africa and Asia. The biophysical capacity indicator is highest in Africa and Eastern Europe, in part because of a high potential for extensification of cropland and for yield gap closure in cultivated areas. However, the biophysical capacity indicator has declined globally in recent years. The production diversity indicator has increased slightly, with a relatively even geographic distribution. Few countries had exclusively high or low values for all indicators. Collectively, these results are the basis for global comparisons of resilience between countries, and provide necessary context for developing generalizations about resilience in the global food system.
The Global Distribution and Drivers of Alien Bird Species Richness
Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.
2017-01-01
Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142
Investigating EMIC Wave Dynamics with RAM-SCB-E
NASA Astrophysics Data System (ADS)
Jordanova, V. K.; Fu, X.; Henderson, M. G.; Morley, S.; Welling, D. T.; Yu, Y.
2017-12-01
The distribution of ring current ions and electrons in the inner magnetosphere depends strongly on their transport in realistic electric (E) and magnetic (B) fields and concurrent energization or loss. To investigate the high variability of energetic particle (H+, He+, O+, and electron) fluxes during storms selected by the GEM Surface Charging Challenge, we use our kinetic ring current model (RAM) two-way coupled with a 3-D magnetic field code (SCB). This model was just extended to include electric field calculations, making it a unique, fully self-consistent, anisotropic ring current-atmosphere interactions model, RAM-SCB-E. Recently we investigated electromagnetic ion cyclotron (EMIC) instability in a local plasma using both linear theory and nonlinear hybrid simulations and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Global dynamic EMIC wave maps obtained with our RAM-SCB-E model using this scaling will be presented and compared with statistical models. These plasma waves can affect significantly both ion and electron precipitation into the atmosphere and the subsequent patterns of ionospheric conductance, as well as the global ring current dynamics.
Alonso, Conchita; Balao, Francisco; Bazaga, Pilar; Pérez, Ricardo
2016-11-01
Polyploidization is a significant evolutionary force in plants which involves major genomic and genetic changes, frequently regulated by epigenetic factors. We explored whether natural polyploidization in Dianthus broteri complex resulted in substantial changes in global DNA cytosine methylation associated to ploidy. Global cytosine methylation was estimated by high-performance liquid chromatography (HPLC) in 12 monocytotypic populations with different ploidies (2×, 4×, 6×, 12×) broadly distributed within D. broteri distribution range. The effects of ploidy level and local variation on methylation were assessed by generalized linear mixed models (GLMMs). Dianthus broteri exhibited a higher methylation percent (˜33%) than expected by its monoploid genome size and a large variation among study populations (range: 29.3-35.3%). Global methylation tended to increase with ploidy but did not significantly differ across levels due to increased variation within the highest-order polyploidy categories. Methylation varied more among hexaploid and dodecaploid populations, despite such cytotypes showing more restricted geographic location and increased genetic relatedness than diploids and tetraploids. In this study, we demonstrate the usefulness of an HPLC method in providing precise and genome reference-free global measure of DNA cytosine methylation, suitable to advance current knowledge of the roles of this epigenetic mechanism in polyploidization processes. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The Global Footprint of Oral Medicine Specialists: The University of Pennsylvania Experience.
Stoopler, Eric T; De Rossi, Scott S; Greenberg, Martin S; Sollecito, Thomas P
2016-12-01
The aim of this study was to analyze the global footprint of oral medicine specialists who graduated from the University of Pennsylvania oral medicine residency program. In 2016, a cross-sectional electronic survey was distributed to 53 graduates of that program, asking about their current geographical location and professional status. Of those 53 graduates, 23 (43%) completed the survey with 22 reporting their current location and 21 reporting their current professional status. The results showed that 17 graduates were located within the U.S., and five were located internationally. Twelve graduates were in full-time academic positions, three were in part-time academic positions/part-time private practice, three were in full-time private practice, two were in postdoctoral training programs, and one was not employed. This study found that oral medicine specialists trained at the University of Pennsylvania were located both domestically and internationally. The majority held faculty positions at academic institutions with fewer involved in private practice. This program may thus be considered a source of future dental academicians.
Global Diversity and Distribution of Hantaviruses and Their Hosts.
Milholland, Matthew T; Castro-Arellano, Iván; Suzán, Gerardo; Garcia-Peña, Gabriel E; Lee, Thomas E; Rohde, Rodney E; Alonso Aguirre, A; Mills, James N
2018-04-30
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Improvements in Space Geodesy Data Discovery at the CDDIS
NASA Technical Reports Server (NTRS)
Noll, C.; Pollack, N.; Michael, P.
2011-01-01
The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.
Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation.
Chang, Yuan-Wei; Cheng, Yin; Helfen, Lukas; Xu, Feng; Tian, Tian; Scheel, Mario; Di Michiel, Marco; Chen, Chih; Tu, King-Ning; Baumbach, Tilo
2017-12-20
In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value.
Do substorms energise the ring current?
NASA Astrophysics Data System (ADS)
Sandhu, J. K.; Rae, J.; Freeman, M. P.; Forsyth, C.; Jackman, C. M.; Lam, M. M.
2017-12-01
The substorm phenomenon is a highly dynamic and variable process that results in the global reconfiguration and redistribution of energy within the magnetosphere. There are many open questions surrounding substorms, particularly how the energy released during a substorm is distributed throughout the magnetosphere, and how the energy loss varies from one substorm to the next. In this study, we explore whether energy lost during the substorm plays a role in energising the ring current. Using observations of the particle energy flux from RBSPICE/RBSP, we are able to quantitatively observe how the energy is distributed spatially and across the different ion species (H+, He+, and O+). Furthermore, we can observe how the total energy content of the ring current changes during the substorm process, using substorm phases defined by the SOPHIE algorithm. This analysis provides information on how the energy released from a substorm is partitioned throughout the magnetosphere, and on the processes determining the energy provided to the ring current. Overall, our results show that the substorm-ring current coupling is more complex than originally thought, and we discuss the reasons behind this complex response.
A Motion-Based Feature for Event-Based Pattern Recognition
Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.
2017-01-01
This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001
Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research
Kinnear, Susan
2010-01-01
Cylindrospermopsin (CYN) is rapidly being recognised as one of the most globally important of the freshwater algal toxins. The ever-expanding distribution of CYN producers into temperate zones is heightening concern that this toxin will represent serious human, as well as environmental, health risks across many countries. Since 1999, a number of studies have demonstrated the ability for CYN to bioaccumulate in freshwater organisms. This paper synthesizes the most current information on CYN accumulation, including notes on the global distribution of CYN producers, and a précis of CYN’s ecological and human effects. Studies on the bioaccumulation of CYN are systematically reviewed, together with an analysis of patterns of accumulation. A discussion on the factors influencing bioaccumulation rates and potential is also provided, along with notes on detection, monitoring and risk assessments. Finally, key gaps in the existing research are identified for future study. PMID:20411114
NASA Astrophysics Data System (ADS)
Huscroft, Jordan; Gleeson, Tom; Hartmann, Jens; Börker, Janine
2018-02-01
The spatial distribution of subsurface parameters such as permeability are increasingly relevant for regional to global climate, land surface, and hydrologic models that are integrating groundwater dynamics and interactions. Despite the large fraction of unconsolidated sediments on Earth's surface with a wide range of permeability values, current global, high-resolution permeability maps distinguish solely fine-grained and coarse-grained unconsolidated sediments. Representative permeability values are derived for a wide variety of unconsolidated sediments and applied to a new global map of unconsolidated sediments to produce the first geologically constrained, two-layer global map of shallower and deeper permeability. The new mean logarithmic permeability of the Earth's surface is -12.7 ± 1.7 m2 being 1 order of magnitude higher than that derived from previous maps, which is consistent with the dominance of the coarser sediments. The new data set will benefit a variety of scientific applications including the next generation of climate, land surface, and hydrology models at regional to global scales.
Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-01-01
The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856
Model-based synthesis of locally contingent responses to global market signals
NASA Astrophysics Data System (ADS)
Magliocca, N. R.
2015-12-01
Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.
Epidemiology of dengue: past, present and future prospects
Murray, Natasha Evelyn Anne; Quam, Mikkel B; Wilder-Smith, Annelies
2013-01-01
Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265–420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012–2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future. PMID:23990732
Epidemiology of dengue: past, present and future prospects.
Murray, Natasha Evelyn Anne; Quam, Mikkel B; Wilder-Smith, Annelies
2013-01-01
Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265-420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012-2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future.
Almoosawi, S; Vingeliene, S; Karagounis, L G; Pot, G K
2016-11-01
The importance of the circadian rhythm in regulating human food intake behaviour and metabolism has long been recognised. However, little is known as to how energy intake is distributed over the day in existing populations, and its potential association with obesity. The present review describes global trends in time-of-day of energy intake in the general population based on data from cross-sectional surveys and longitudinal cohorts. Evidence of the association between time-of-day of energy intake and obesity is also summarised. Overall, there were a limited number of cross-sectional surveys and longitudinal cohorts that provided data on time-of-day of energy intake. In the identified studies, a wide variation in time-of-day of energy intake was observed, with patterns of energy distribution varying greatly by country and geographical area. In relation to obesity, eight cross-sectional surveys and two longitudinal cohorts were identified. The association between time-of-day of energy intake and obesity varied widely, with several studies reporting a positive link between evening energy intake and obesity. In conclusion, the current review summarises global trends in time-of-day of energy intake. The large variations across countries and global regions could have important implications to health, emphasising the need to understand the socio-environmental factors guiding such differences in eating patterns. Evidence of the association between time-of-day of energy intake and BMI also varied. Further larger scale collaborations between various countries and regions are needed to sum data from existing surveys and cohorts, and guide our understanding of the role of chrono-nutrition in health.
Supporting shared data structures on distributed memory architectures
NASA Technical Reports Server (NTRS)
Koelbel, Charles; Mehrotra, Piyush; Vanrosendale, John
1990-01-01
Programming nonshared memory systems is more difficult than programming shared memory systems, since there is no support for shared data structures. Current programming languages for distributed memory architectures force the user to decompose all data structures into separate pieces, with each piece owned by one of the processors in the machine, and with all communication explicitly specified by low-level message-passing primitives. A new programming environment is presented for distributed memory architectures, providing a global name space and allowing direct access to remote parts of data values. The analysis and program transformations required to implement this environment are described, and the efficiency of the resulting code on the NCUBE/7 and IPSC/2 hypercubes are described.
Yang, Ya; Cheng, Wanting; Wu, Xiaoying; Huang, Shaoyu; Deng, Zhuohui; Zeng, Xin; Yang, Yu; Wu, Zhongdao; Chen, Yue; Zhou, Yibiao; Jiang, Qingwu
2018-01-01
Background Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, Central America and southern China during the last decades. S. mansoni is endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the potential global distribution of this snail is essential for risk assessment, monitoring, disease prevention and control. Methods and findings A comprehensive database of cross-continental occurrence for B. straminea was compiled to construct ecological models. We used several approaches to investigate the distribution of B. straminea, including direct comparison of climatic conditions, principal component analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts of bioclimatic and human factors, and then used the bioclimatic and footprint layers to predict the potential distribution of B. straminea at global scale. We detected niche shifts accompanying the invasions of B. straminea in the Americas and China. The introduced populations had enlarged its habitats to subtropical regions where annual mean temperature is relatively low. Annual mean temperature, isothermality and temperature seasonality were identified as most important climatic features for the occurrence of B. straminea. Additionally, human factors improved the model prediction (P<0.001). Our model showed that under current climate conditions the snail should mostly be confined to the tropic and subtropic regions, including South America, Central America, Sub-Saharan Africa and Southeast Asia. Conclusions Our results confirmed that niche shifts took place in the invasions of B. straminea, in which bioclimatic and human factors played an important role. Our model predicted the global distribution of B. straminea based on habitat suitability, which would help for prioritizing monitoring and management efforts for B. straminea control in the context of ongoing climate change and human disturbances. PMID:29813073
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro
2015-01-01
Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436
Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro
2015-11-12
Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiaofeng; Thornton, Peter E; Post, Wilfred M
2013-01-01
Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass Cmore » and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.« less
NO{sub x} from lightning 1. Global distribution based on lightning physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, C.; Penner, J.; Prather, M.
1997-03-01
This paper begins a study on the role of lightning in maintaining the global distribution of nitrogen oxides (NO{sub x}) in the troposphere. It presents the first global and seasonal distributions of lightning-produced NO{sub x} (LNO{sub x}) based on the observed distribution of electrical storms and the physical properties of lightning strokes. We derive a global rate for cloud-to-ground (CG) flashes of 20{endash}30 flashes/s with a mean energy per flash of 6.7{times}10{sup 9}J. Intracloud (IC) flashes are more frequent, 50{endash}70 flashes/s but have 10{percent} of the energy of CG strokes and, consequently, produce significantly less NO{sub x}. It appears tomore » us that the majority of previous studies have mistakenly assumed that all lightning flashes produce the same amount of NO{sub x}, thus overestimating the NO{sub x} production by a factor of 3. On the other hand, we feel these same studies have underestimated the energy released in CG flashes, resulting in two negating assumptions. For CG energies we adopt a production rate of 10{times}10{sup 16} molecules NO/J based on the current literature. Using a method to simulate global lightning frequencies from satellite-observed cloud data, we have calculated the LNO{sub x} on various spatial (regional, zonal, meridional, and global) and temporal scales (daily, monthly, seasonal, and interannual). Regionally, the production of LNO{sub x} is concentrated over tropical continental regions, predominantly in the summer hemisphere. The annual mean production rate is calculated to be 12.2 Tg N/yr, and we believe it extremely unlikely that this number is less than 5 or more than 20 Tg N/yr. Although most of LNO{sub x} is produced in the lowest 5 km by CG lightning, convective mixing in the thunderstorms is likely to deposit large amounts of NO{sub x} in the upper troposphere where it is important in ozone production. (Abstract Truncated)« less
Ability of the current global observing network to constrain N2O sources and sinks
NASA Astrophysics Data System (ADS)
Millet, D. B.; Wells, K. C.; Chaliyakunnel, S.; Griffis, T. J.; Henze, D. K.; Bousserez, N.
2014-12-01
The global observing network for atmospheric N2O combines flask and in-situ measurements at ground stations with sustained and campaign-based aircraft observations. In this talk we apply a new global model of N2O (based on GEOS-Chem) and its adjoint to assess the strengths and weaknesses of this network for quantifying N2O emissions. We employ an ensemble of pseudo-observation analyses to evaluate the relative constraints provided by ground-based (surface, tall tower) and airborne (HIPPO, CARIBIC) observations, and the extent to which variability (e.g. associated with pulsing or seasonality of emissions) not captured by the a priori inventory can bias the inferred fluxes. We find that the ground-based and HIPPO datasets each provide a stronger constraint on the distribution of global emissions than does the CARIBIC dataset on its own. Given appropriate initial conditions, we find that our inferred surface fluxes are insensitive to model errors in the stratospheric loss rate of N2O over the timescale of our analysis (2 years); however, the same is not necessarily true for model errors in stratosphere-troposphere exchange. Finally, we examine the a posteriori error reduction distribution to identify priority locations for future N2O measurements.
Vaccine production, distribution, access and uptake
Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W.
2011-01-01
Making human vaccines available on a global scale requires the use of complex production methods, meticulous quality control and reliable distribution channels that ensure the products are potent and effective at their point of use. The technologies involved in manufacturing different types of vaccines may strongly influence vaccine cost, ease of industrial scale-up, stability and ultimately world-wide availability. Manufacturing complexity is compounded by the need for different formulations for different countries and age groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, ensuring optimal access and uptake also requires strong partnerships between private manufacturers, regulatory authorities and national and international public health services. For vaccines whose supplies are limited, either due to rapidly emerging diseases or longer-term mismatch of supply and demand, prioritizing target groups can increase vaccine impact. Focusing on influenza vaccines as an example that well illustrates many of the relevant points, this article considers current production, distribution, access and other factors that ultimately impact on vaccine uptake and population-level effectiveness. PMID:21664680
Jeong, Sohyun; Sohn, Minji; Kim, Jae Hyun; Ko, Minoh; Seo, Hee-Won; Song, Yun-Kyoung; Choi, Boyoon; Han, Nayoung; Na, Han-Sung; Lee, Jong Gu; Kim, In-Wha; Oh, Jung Mi; Lee, Euni
2017-06-21
Clinical trial globalization is a major trend for industry-sponsored clinical trials. There has been a shift in clinical trial sites towards emerging regions of Eastern Europe, Latin America, Asia, the Middle East, and Africa. Our study objectives were to evaluate the current characteristics of clinical trials and to find out the associated multiple factors which could explain clinical trial globalization and its implications for clinical trial globalization in 2011-2013. The data elements of "phase," "recruitment status," "type of sponsor," "age groups," and "design of trial" from 30 countries were extracted from the ClinicalTrials.gov website. Ten continental representative countries including the USA were selected and the design elements were compared to those of the USA. Factors associated with trial site distribution were chosen for a multilinear regression analysis. The USA, Germany, France, Canada, and United Kingdom were the "top five" countries which frequently held clinical trials. The design elements from nine continental representative countries were quite different from those of the USA; phase 1 trials were more prevalent in India (OR 1.517, p < 0.001) while phase 3 trials were much more prevalent in all nine representative countries than in the USA. A larger number of "child" age group trials was performed in Poland (OR 1.852, p < 0.001), Israel (OR 1.546, p = 0.005), and South Africa (OR 1.963, p < 0.001) than in the USA. Multivariate analysis showed that health care expenditure per capita, Economic Freedom Index, Human Capital Index, and Intellectual Property Rights Index could explain the variance of regional distribution of clinical trials by 63.6%. The globalization of clinical trials in the emerging regions of Asia, South Africa, and Eastern Europe developed in parallel with the factors of economic drive, population for recruitment, and regulatory constraints.
Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine; Buisson, Laëtitia
2016-01-01
Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future.
Charbonnel, Anaïs; Laffaille, Pascal; Biffi, Marjorie; Blanc, Frédéric; Maire, Anthony; Némoz, Mélanie; Sanchez-Perez, José Miguel; Sauvage, Sabine
2016-01-01
Species distribution models (SDMs) are the main tool to predict global change impacts on species ranges. Climate change alone is frequently considered, but in freshwater ecosystems, hydrology is a key driver of the ecology of aquatic species. At large scale, hydrology is however rarely accounted for, owing to the lack of detailed stream flow data. In this study, we developed an integrated modelling approach to simulate stream flow using the hydrological Soil and Water Assessment Tool (SWAT). Simulated stream flow was subsequently included as an input variable in SDMs along with topographic, hydrographic, climatic and land-cover descriptors. SDMs were applied to two temporally-distinct surveys of the distribution of the endangered Pyrenean desman (Galemys pyrenaicus) in the French Pyrenees: a historical one conducted from 1985 to 1992 and a current one carried out between 2011 and 2013. The model calibrated on historical data was also forecasted onto the current period to assess its ability to describe the distributional change of the Pyrenean desman that has been modelled in the recent years. First, we found that hydrological and climatic variables were the ones influencing the most the distribution of this species for both periods, emphasizing the importance of taking into account hydrology when SDMs are applied to aquatic species. Secondly, our results highlighted a strong range contraction of the Pyrenean desman in the French Pyrenees over the last 25 years. Given that this range contraction was under-estimated when the historical model was forecasted onto current conditions, this finding suggests that other drivers may be interacting with climate, hydrology and land-use changes. Our results imply major concerns for the conservation of this endemic semi-aquatic mammal since changes in climate and hydrology are expected to become more intense in the future. PMID:27467269
A framework for global river flood risk assessments
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Jongman, B.; Ward, P. J.; Bouwman, A.
2013-05-01
There is an increasing need for strategic global assessments of flood risks in current and future conditions. In this paper, we propose a framework for global flood risk assessment for river floods, which can be applied in current conditions, as well as in future conditions due to climate and socio-economic changes. The framework's goal is to establish flood hazard and impact estimates at a high enough resolution to allow for their combination into a risk estimate, which can be used for strategic global flood risk assessments. The framework estimates hazard at a resolution of ~ 1 km2 using global forcing datasets of the current (or in scenario mode, future) climate, a global hydrological model, a global flood-routing model, and more importantly, an inundation downscaling routine. The second component of the framework combines hazard with flood impact models at the same resolution (e.g. damage, affected GDP, and affected population) to establish indicators for flood risk (e.g. annual expected damage, affected GDP, and affected population). The framework has been applied using the global hydrological model PCR-GLOBWB, which includes an optional global flood routing model DynRout, combined with scenarios from the Integrated Model to Assess the Global Environment (IMAGE). We performed downscaling of the hazard probability distributions to 1 km2 resolution with a new downscaling algorithm, applied on Bangladesh as a first case study application area. We demonstrate the risk assessment approach in Bangladesh based on GDP per capita data, population, and land use maps for 2010 and 2050. Validation of the hazard estimates has been performed using the Dartmouth Flood Observatory database. This was done by comparing a high return period flood with the maximum observed extent, as well as by comparing a time series of a single event with Dartmouth imagery of the event. Validation of modelled damage estimates was performed using observed damage estimates from the EM-DAT database and World Bank sources. We discuss and show sensitivities of the estimated risks with regard to the use of different climate input sets, decisions made in the downscaling algorithm, and different approaches to establish impact models.
Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment
NASA Technical Reports Server (NTRS)
Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.
2003-01-01
Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.
Virtual Special Issue Preface: Forest Response to Environmental Stress: Impacts and Adaptation
Steven McNulty; Enzai Du; Elena Paoletti
2017-01-01
The current distribution of forest typeswas largely established at the beginning of the Holocene epoch (approximately 12,000 BCE), but forests are constantly in flux. Many regional scale stresses (e.g., drought, heat, fire, and insect) and even a few multi-regional or global stresses (e.g., 8200 BCE cooling, or the medievalwarming period) have occurred over the past 12...
Anderson, B. J.; Korth, H.; Waters, C. L.; ...
2014-05-07
The Active Magnetosphere and Planetary Electrodynamics Response Experiment uses magnetic field data from the Iridium constellation to derive the global Birkeland current distribution every 10 min. We examine cases in which the interplanetary magnetic field (IMF) rotated from northward to southward resulting in onsets of the Birkeland currents. Dayside Region 1/2 currents, totaling ~25% of the final current, appear within 20 min of the IMF southward turning and remain steady. In the onset of nightside currents occurs 40 to 70 min after the dayside currents appear. Afterwards, the currents intensify at dawn, dusk, and on the dayside, yielding a fullymore » formed Region 1/2 system ~30 min after the nightside onset. Our results imply that the dayside Birkeland currents are driven by magnetopause reconnection, and the remainder of the system forms as magnetospheric return flows start and progress sunward, ultimately closing the Dungey convection cycle.« less
Ruosch, Melanie; Spahni, Renato; Joos, Fortunat; Henne, Paul D; van der Knaap, Willem O; Tinner, Willy
2016-02-01
Information on how species distributions and ecosystem services are impacted by anthropogenic climate change is important for adaptation planning. Palaeo data suggest that Abies alba formed forests under significantly warmer-than-present conditions in Europe and might be a native substitute for widespread drought-sensitive temperate and boreal tree species such as beech (Fagus sylvatica) and spruce (Picea abies) under future global warming conditions. Here, we combine pollen and macrofossil data, modern observations, and results from transient simulations with the LPX-Bern dynamic global vegetation model to assess past and future distributions of A. alba in Europe. LPX-Bern is forced with climate anomalies from a run over the past 21 000 years with the Community Earth System Model, modern climatology, and with 21st-century multimodel ensemble results for the high-emission RCP8.5 and the stringent mitigation RCP2.6 pathway. The simulated distribution for present climate encompasses the modern range of A. alba, with the model exceeding the present distribution in north-western and southern Europe. Mid-Holocene pollen data and model results agree for southern Europe, suggesting that at present, human impacts suppress the distribution in southern Europe. Pollen and model results both show range expansion starting during the Bølling-Allerød warm period, interrupted by the Younger Dryas cold, and resuming during the Holocene. The distribution of A. alba expands to the north-east in all future scenarios, whereas the potential (currently unrealized) range would be substantially reduced in southern Europe under RCP8.5. A. alba maintains its current range in central Europe despite competition by other thermophilous tree species. Our combined palaeoecological and model evidence suggest that A. alba may ensure important ecosystem services including stand and slope stability, infrastructure protection, and carbon sequestration under significantly warmer-than-present conditions in central Europe. © 2015 John Wiley & Sons Ltd.
Mbulo, Lazarous; Palipudi, Krishna M; Nelson-Blutcher, Glenda; Murty, Komanduri S; Asma, Samira
2015-09-17
We analyzed data from the Global Adult Tobacco Survey (GATS) from 21 countries to categorize smokers by stages of cessation and highlight interventions that could be tailored to each stage. GATS is a nationally representative household survey that measures tobacco use and other key indicators by using a standardized protocol. The distribution of smokers into precontemplation, contemplation, and preparation stages varied by country. Using the stages of change model, each country can design and implement effective interventions suitable to its cultural, social, and economic situations to help smokers advance successfully through the stages of cessation.
Northward dispersal of sea kraits (Laticauda semifasciata) beyond their typical range
Park, Jaejin; Kim, Il-Hun; Fong, Jonathan J.; Koo, Kyo-Soung; Choi, Woo-Jin; Tsai, Tein-Shun
2017-01-01
Marine reptiles are declining globally, and recent climate change may be a contributing factor. The study of sea snakes collected beyond their typical distribution range provides valuable insight on how climate change affects marine reptile populations. Recently, we collected 12 Laticauda semifasciata (11 females, 1 male) from the waters around southern South Korea—an area located outside its typical distribution range (Japan, China including Taiwan, Philippines and Indonesia). We investigated the genetic origin of Korean specimens by analyzing mitochondrial cytochrome b gene (Cytb) sequences. Six individuals shared haplotypes with a group found in Taiwan-southern Ryukyu Islands, while the remaining six individuals shared haplotypes with a group encompassing the entire Ryukyu Archipelago. These results suggest L. semifasciata moved into Korean waters from the Taiwan-Ryukyu region via the Taiwan Warm Current and/or the Kuroshio Current, with extended survival facilitated by ocean warming. We highlight several contributing factors that increase the chances that L. semifasciata establishes new northern populations beyond the original distribution range. PMID:28644894
Global gridded anthropogenic emissions inventory of carbonyl sulfide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zumkehr, Andrew; Hilton, Tim; Whelan, Mary
Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, themore » inventory is provided as annually varying estimates from years 1980–2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y -1 (range of 223–586 Gg S y -1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Lastly, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.« less
Global gridded anthropogenic emissions inventory of carbonyl sulfide
Zumkehr, Andrew; Hilton, Tim; Whelan, Mary; ...
2018-03-31
Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, themore » inventory is provided as annually varying estimates from years 1980–2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y -1 (range of 223–586 Gg S y -1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Lastly, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.« less
Global gridded anthropogenic emissions inventory of carbonyl sulfide
NASA Astrophysics Data System (ADS)
Zumkehr, Andrew; Hilton, Tim W.; Whelan, Mary; Smith, Steve; Kuai, Le; Worden, John; Campbell, J. Elliott
2018-06-01
Atmospheric carbonyl sulfide (COS or OCS) is the most abundant sulfur containing gas in the troposphere and is an atmospheric tracer for the carbon cycle. Gridded inventories of global anthropogenic COS are used for interpreting global COS measurements. However, previous gridded anthropogenic data are a climatological estimate based on input data that is over three decades old and are not representative of current conditions. Here we develop a new gridded data set of global anthropogenic COS sources that includes more source sectors than previously available and uses the most current emissions factors and industry activity data as input. Additionally, the inventory is provided as annually varying estimates from years 1980-2012 and employs a source specific spatial scaling procedure. We estimate a global source in year 2012 of 406 Gg S y-1 (range of 223-586 Gg S y-1), which is highly concentrated in China and is twice as large as the previous gridded inventory. Our large upward revision in the bottom-up estimate of the source is consistent with a recent top-down estimate based on air-monitoring and Antarctic firn data. Furthermore, our inventory time trends, including a decline in the 1990's and growth after the year 2000, are qualitatively consistent with trends in atmospheric data. Finally, similarities between the spatial distribution in this inventory and remote sensing data suggest that the anthropogenic source could potentially play a role in explaining a missing source in the global COS budget.
Spiraling pathways of global deep waters to the surface of the Southern Ocean.
Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert
2017-08-02
Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.
Aerosol Retrievals Using Channel 1 and 2 AVHRR Data
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.
1999-01-01
The effect of tropospheric aerosols on global climate via the direct and indirect radiative forcings is one of the largest remaining uncertainties in climate change studies. Current assessments of the direct aerosol radiative effect mainly focus on sulfate aerosols. It has become clear, however, that other aerosol types like soil dust and smoke from biomass burning are also likely to be important climate forcing factors. The magnitude and even the sign of the climate forcing caused by these aerosol types is still unknown. General circulation models (GCMs) can be used to estimate the climatic effect of the direct radiative forcing by tropospheric and stratospheric aerosols. Aerosol optical properties are already parameterized in the Goddard Institute for Space Studies GCM. Once the global distribution of aerosol properties (optical thickness, size distribution, and chemical composition) is available, the calculation of the direct aerosol forcing is rather straighfforward. However, estimates of the indirect aerosol effect require additional knowledge of the physics and chemistry of aerosol-cloud interactions which are still poorly understood. One of the main objectives of the Global Aerosol Climatology Project, established in 1998 as a joint initiative of NASA's Radiation Science Program and GEWEX, is to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations for the full period of available satellite data. This will be accomplished primarily through a systematic application of multichannel aerosol retrieval algorithms to existing satellite data and advanced 3-dimensional aerosol chemistry/transport models. In this paper we outline the methodology of analyzing channel 1 and 2 AVHRR radiance data over the oceans and describe preliminary retrieval results.
The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b
NASA Astrophysics Data System (ADS)
Graham, J.; Morisette, J. T.; Simpson, A.
2009-12-01
Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme
2013-07-01
The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.
Effects of Climate on the Zooplankton of the California Current
NASA Astrophysics Data System (ADS)
Lavaniegos, B. E.
2007-05-01
Almost six decades of sampling of the California Current system, carried out by the CalCOFI program (California Cooperative Fisheries Investigation) complemented by a decade of observations from the IMECOCAL program (Investigaciones Mexicanas de la Corriente de California), have revealed changing patterns in zooplankton abundances, species composition, and distributions over interannual through multidecadal time scales. Interannual changes associated with ENSO variability are manifested as strong but transitory perturbations in the mean annual cycle in seasonal abundances (and distributions) of particular species. An investigation of longer- term change, limited to the region off southern California, shows a persistent decline in zooplankton volumes (a proxy for overall biomass of macrozooplankton) between 1977 and 1998 that is considered to be a response to the well documented shift in basin-scale climate forcing that occurred in 1976-77. Further examination of this decline in zooplankton volumes indicates that it was due principally to the disappearance of several salp species after 1977. Other species and functional groups did not decline after the change in climate regime, while some species have followed persistent secular trends that appear to be associated more with the phenomenon of long-term global warming. Differences in the regional responses to climate change throughout the California Current system have also been observed recently in the spatial distribution of zooplankton biomass and changes in latitudinal ranges of certain species. For example, zooplankton biomass in the Baja California region show typical values for the 1997-98 El Niño that were followed by a decrease during the sharp transition to the cool La Niña conditions in 1999. This contrasts with the nearby region off southern California that was characterized by reduced biomass during the El Niño period and the subsequent recovery during the La Niña. Another regional contrast in zooplankton distribution observed recently was the significant presence of subarctic euphausiid species off Baja California during July 2005, while the krill collapsed in the region off Oregon in the same period. It is reasonable to suspect that regional contrasts in the zooplankton abundance and species distributions may increase as a response to latitudinal shifts in habitat character due to global warming.
Truglio, Joseph; Graziano, Michelle; Vedanthan, Rajesh; Hahn, Sigrid; Rios, Carlos; Hendel-Paterson, Brett; Ripp, Jonathan
2015-01-01
Noncommunicable diseases, including cardiovascular disease, chronic respiratory disease, diabetes, cancer, and mental illness, are the leading causes of death and disability worldwide. These diseases are chronic and often mediated predominantly by social determinants of health. Currently there exists a global-health workforce crisis and a subsequent disparity in the distribution of providers able to manage chronic noncommunicable diseases. Clinical competency in global health and primary care could provide practitioners with the knowledge and skills needed to address the global rise of noncommunicable diseases through an emphasis on these social determinants. The past decade has seen substantial growth in the number and quality of US global-health and primary-care training programs, in both undergraduate and graduate medical education. Despite their overlapping competencies, these 2 complementary fields are most often presented as distinct disciplines. Furthermore, many global-health training programs suffer from a lack of a formalized curriculum. At present, there are only a few examples of well-integrated US global-health and primary-care training programs. We call for universal acceptance of global health as a core component of medical education and greater integration of global-health and primary-care training programs in order to improve the quality of each and increase a global workforce prepared to manage noncommunicable diseases and their social mediators. PMID:22786735
Global change impacts on wheat production along an environmental gradient in south Australia.
Reyenga, P J; Howden, S M; Meinke, H; Hall, W B
2001-09-01
Crop production is likely to change in the future as a result of global changes in CO2 levels in the atmosphere and climate. APSIM, a cropping system model, was used to investigate the potential impact of these changes on the distribution of cropping along an environmental transect in south Australia. The effects of several global change scenarios were studied, including: (1) historical climate and CO2 levels, (2) historic climate with elevated CO2 (700 ppm), (3) warmer climate (+2.4 degrees C) +700 ppm CO2, (4) drier climate (-15% summer, -20% winter rainfall) +2.4 degrees C +700 ppm CO2, (5) wetter climate (+10% summer rainfall) +2.4 degrees C +700 ppm CO2 and (6) most likely climate changes (+1.8 degrees C, -8% annual rainfall) +700 ppm CO2. Based on an analysis of the current cropping boundary, a criterion of 1 t/ha was used to assess potential changes in the boundary under global change. Under most scenarios, the cropping boundary moved northwards with a further 240,000 ha potentially being available for cropping. The exception was the reduced rainfall scenario (4), which resulted in a small retreat of cropping from its current extent. However, the impact of this scenario may only be small (in the order of 10,000-20,000 ha reduction in cropping area). Increases in CO2 levels over the current climate record have resulted in small but significant increases in simulated yields. Model limitations are discussed.
Semantics-enabled knowledge management for global Earth observation system of systems
NASA Astrophysics Data System (ADS)
King, Roger L.; Durbha, Surya S.; Younan, Nicolas H.
2007-10-01
The Global Earth Observation System of Systems (GEOSS) is a distributed system of systems built on current international cooperation efforts among existing Earth observing and processing systems. The goal is to formulate an end-to-end process that enables the collection and distribution of accurate, reliable Earth Observation data, information, products, and services to both suppliers and consumers worldwide. One of the critical components in the development of such systems is the ability to obtain seamless access of data across geopolitical boundaries. In order to gain support and willingness to participate by countries around the world in such an endeavor, it is necessary to devise mechanisms whereby the data and the intellectual capital is protected through procedures that implement the policies specific to a country. Earth Observations (EO) are obtained from a multitude of sources and requires coordination among different agencies and user groups to come to a shared understanding on a set of concepts involved in a domain. It is envisaged that the data and information in a GEOSS context will be unprecedented and the current data archiving and delivery methods need to be transformed into one that allows realization of seamless interoperability. Thus, EO data integration is dependent on the resolution of conflicts arising from a variety of areas. Modularization is inevitable in distributed environments to facilitate flexible and efficient reuse of existing ontologies. Therefore, we propose a framework for modular ontologies based knowledge management approach for GEOSS and present methods to enable efficient reasoning in such systems.
NASA Astrophysics Data System (ADS)
Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi
2017-03-01
Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs and improve the modeling of terrestrial carbon dynamics in ESMs. This study also reveals how a data-mining algorithm can be used to assess model outputs.
NASA Astrophysics Data System (ADS)
Reiff, P. H.; Sazykin, S. Y.; Bala, R.; Coffey, V. N.; Chandler, M. O.; Minow, J. I.; Anderson, B. J.; Wolf, R.; Huba, J.; Baker, D. N.; Mauk, B.; Russell, C. T.
2015-12-01
The magnetic storm that commenced on June 22, 2015 was one of the largest storms in the current solar cycle. Availability of in situ observations from Magnetospheric Multiscale (MMS), the Van Allen Probes (VAP), and THEMIS in the magnetosphere, field-aligned currents from AMPERE, as well as the ionospheric data from the Floating Potential Measurement Unit (FPMU) instrument suite on board the International Space Station (ISS) represents an exciting opportunity to analyze storm-related dynamics. Our real-time space weather alert system sent out a "red alert" warning users of the event 2 hours in advance, correctly predicting Kp indices greater than 8. During this event, the MMS observatories were taking measurements in the magnetotail, VAP were in the inner magnetosphere, THEMIS was on the dayside, and the ISS was orbiting at 400 km every 90 minutes. Among the initial findings are the crossing of the dayside magnetopause into the region earthward of 8 RE, strong dipolarizations in the MMS magnetometer data, and dropouts in the particle fluxes seen by the MMS FPI instrument suite. At ionospheric altitudes, the FMPU measurements of the ion densities show dramatic post-sunset depletions at equatorial latitudes that are correlated with the particle flux dropouts measured by the MMS FPI. AMPERE data show highly variable currents varying from intervals of intense high latitude currents to currents at maximum polar cap expansion to 50 deg MLAT and exceeding 20 MA. In this paper, we use numerical simulations with global magnetohydrodynamic (MHD) models and the Rice Convection Model (RCM) of the inner magnetosphere in an attempt to place the observations in the context of storm-time global electrodynamics and cross-check the simulation global Birkeland currents with AMPERE distributions. Specifically, we will look at model-predicted effects of dipolarizations and the global convection on the inner magnetosphere via data-model comparison.
Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.
Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu
2015-10-01
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.
NASA Astrophysics Data System (ADS)
Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su
2017-01-01
The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.
Vulnerability of the global terrestrial ecosystems to climate change.
Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng
2018-05-27
Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.
Space weather. Ionospheric control of magnetotail reconnection.
Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G
2014-07-11
Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. Copyright © 2014, American Association for the Advancement of Science.
DataFed: A Federated Data System for Visualization and Analysis of Spatio-Temporal Air Quality Data
NASA Astrophysics Data System (ADS)
Husar, R. B.; Hoijarvi, K.
2017-12-01
DataFed is a distributed web-services-based computing environment for accessing, processing, and visualizing atmospheric data in support of air quality science and management. The flexible, adaptive environment facilitates the access and flow of atmospheric data from provider to users by enabling the creation of user-driven data processing/visualization applications. DataFed `wrapper' components, non-intrusively wrap heterogeneous, distributed datasets for access by standards-based GIS web services. The mediator components (also web services) map the heterogeneous data into a spatio-temporal data model. Chained web services provide homogeneous data views (e.g., geospatial, time views) using a global multi-dimensional data model. In addition to data access and rendering, the data processing component services can be programmed for filtering, aggregation, and fusion of multidimensional data. A complete application software is written in a custom made data flow language. Currently, the federated data pool consists of over 50 datasets originating from globally distributed data providers delivering surface-based air quality measurements, satellite observations, emissions data as well as regional and global-scale air quality models. The web browser-based user interface allows point and click navigation and browsing the XYZT multi-dimensional data space. The key applications of DataFed are for exploring spatial pattern of pollutants, seasonal, weekly, diurnal cycles and frequency distributions for exploratory air quality research. Since 2008, DataFed has been used to support EPA in the implementation of the Exceptional Event Rule. The data system is also used at universities in the US, Europe and Asia.
NASA Astrophysics Data System (ADS)
Donoho, N.; Graumann, A.; McNamara, D. P.
2015-12-01
In this presentation we will highlight access and availability of NOAA satellite data for near real time (NRT) and retrospective product users. The presentation includes an overview of the current fleet of NOAA satellites and methods of data distribution and access to hundreds of imagery and products offered by the Environmental Satellite Processing Center (ESPC) and the Comprehensive Large Array-data Stewardship System (CLASS). In particular, emphasis on the various levels of services for current and past observations will be presented. The National Environmental Satellite, Data, and Information Service (NESDIS) is dedicated to providing timely access to global environmental data from satellites and other sources. In special cases, users are authorized direct access to NESDIS data distribution systems for environmental satellite data and products. Other means of access include publicly available distribution services such as the Global Telecommunication System (GTS), NOAA satellite direct broadcast services and various NOAA websites and ftp servers, including CLASS. CLASS is NOAA's information technology system designed to support long-term, secure preservation and standards-based access to environmental data collections and information. The National Centers for Environmental Information (NCEI) is responsible for the ingest, quality control, stewardship, archival and access to data and science information. This work will also show the latest technology improvements, enterprise approach and future plans for distribution of exponentially increasing data volumes from future NOAA missions. A primer on access to NOAA operational satellite products and services is available at http://www.ospo.noaa.gov/Organization/About/access.html. Access to post-operational satellite data and assorted products is available at http://www.class.noaa.gov
Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.
Faust, Christina; Dobson, Andrew P
2015-12-01
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep
2015-01-01
Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.
Pandit, Shubha N; Maitland, Bryan M; Pandit, Laxmi K; Poesch, Mark S; Enders, Eva C
2017-11-15
Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO 2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species. Copyright © 2017 Elsevier B.V. All rights reserved.
Njeh, Ines; Sallemi, Lamia; Ayed, Ismail Ben; Chtourou, Khalil; Lehericy, Stephane; Galanaud, Damien; Hamida, Ahmed Ben
2015-03-01
This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5s per image). Copyright © 2014 Elsevier Ltd. All rights reserved.
Shallow Lunar Seismic Activity and the Current Stress State of the Moon
NASA Technical Reports Server (NTRS)
Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.
2017-01-01
A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.
Integrated RF-shim coil allowing two degrees of freedom shim current.
Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin
2016-08-01
High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.
Snake species of the world: A taxonomic and geographic reference. v. 1
McDiarmid, R.W.; Campbell, J.A.; Toure, T.
1999-01-01
Given the absence of a current source on snake diversity and nomenclature and the expressed global need to understand better the diversity of our biota, we think that a catalogue of the world snake fauna complete with synonymies at the familial, generic, and specific levels is essential. We provide that here beginning with publication of the first volume. This compendium will facilitate comparative studies on the ecology, genetics, and behavior of snakes and, we hope, contribute to their conservation. At the very least, this work, when completed, will provide a readily available reference to the current taxonomic statuses and geographic distributions of snakes on a global scale. No comprehensive, up-to-date catalogue of snake species exists, and it is obvious that a detailed and inclusive treatment is long overdue. Snake Species of the World provides a comprehensive treatment of 31 families, 450 genera, and more than 2500 species of living snakes. The magnitude of the compilation requires publication in several volumes. This volume, the first of three, covers 682 species. A primary goal of this synthesis is to provide interested readers with a means for tracking scientific names that have been applied to a snake and determining the currently accepted name of that species. A secondary goal is to alert those interested in snakes as research subjects that in general many species are poorly known, that some have limited distributions, and that several are characterized by taxonomic problems.
Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria
Sonthiphand, Puntipar; Hall, Michael W.; Neufeld, Josh D.
2014-01-01
Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments. PMID:25147546
Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria.
Sonthiphand, Puntipar; Hall, Michael W; Neufeld, Josh D
2014-01-01
Anaerobic ammonia-oxidizing (anammox) bacteria are able to oxidize ammonia and reduce nitrite to produce N2 gas. After being discovered in a wastewater treatment plant (WWTP), anammox bacteria were subsequently characterized in natural environments, including marine, estuary, freshwater, and terrestrial habitats. Although anammox bacteria play an important role in removing fixed N from both engineered and natural ecosystems, broad scale anammox bacterial distributions have not yet been summarized. The objectives of this study were to explore global distributions and diversity of anammox bacteria and to identify factors that influence their biogeography. Over 6000 anammox 16S rRNA gene sequences from the public database were analyzed in this current study. Data ordinations indicated that salinity was an important factor governing anammox bacterial distributions, with distinct populations inhabiting natural and engineered ecosystems. Gene phylogenies and rarefaction analysis demonstrated that freshwater environments and the marine water column harbored the highest and the lowest diversity of anammox bacteria, respectively. Co-occurrence network analysis indicated that Ca. Scalindua strongly connected with other Ca. Scalindua taxa, whereas Ca. Brocadia co-occurred with taxa from both known and unknown anammox genera. Our survey provides a better understanding of ecological factors affecting anammox bacterial distributions and provides a comprehensive baseline for understanding the relationships among anammox communities in global environments.
Ge, Xuezhen; He, Shanyong; Zhu, Chenyi; Wang, Tao; Xu, Zhichun; Shixiang, Zong
2018-05-23
The international invasive and quarantined defoliating insect Hyphantria cunea Drury (Lepidoptera: Arctiidae) causes huge ecological and economic losses in the world. The future climate change may alter the distribution of H. cunea and aggravate the damage. In the present study, we used CLIMEX to project the potential global distribution of H. cunea according to both historical climate data (1950-2000) and future climate warming estimates (2011-2100) to define the impact of climate change. Under the historical climate scenario, we found that H. cunea can survive on every continent, and temperature is the main factor that limits its establishment. With climate change, the suitability will increase in middle and high latitude regions, while decrease in the low latitude regions. Besides, tropic regions will be most sensitive to the climate change impacts for the pest to survive. The impacts of climate change will also increase over time, whether the positive impacts or negative impacts. The projected potential distributions provide a theoretical basis for quarantine and control strategies for the management of this pest in each country. Furthermore, these results provide substantial guidance for studies of the effects of climate change on other major forest pests. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Technologies for Networked Enabled Operations
NASA Technical Reports Server (NTRS)
Glass, B.; Levine, J.
2005-01-01
Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).
Late Quaternary climate stability and the origins and future of global grass endemism.
Sandel, Brody; Monnet, Anne-Christine; Govaerts, Rafaël; Vorontsova, Maria
2017-01-01
Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year -1 ), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year -1 ). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Succes of foraminiferal calcification mechanisms depend on ocean chemistry
NASA Astrophysics Data System (ADS)
van Dijk, I. V.; de Nooijer, L. J.; Hart, M.; Reichart, G. J.
2014-12-01
Although the relationship between Phanerozoic changes in seawater Mg/Ca and the evolutionary history of many marine calcifyers has been analyzed, the response of foraminifera to changes in Mg/Casw is only sparsely investigated. Geological longevity, areal distribution and importance in the global carbon cycle, however, make foraminifera particularly suitable to study the interplay between seawater chemistry and biogenic mineralogy. We assess global foraminifera abundances in the geological record from fossil species occurrences in the Paleobiology DataBase (PaleoDB; www.paleodb.org). Here, we present an analysis of the distribution of major groups of foraminifera through the Phanerozoic by comparing dominance of taxa producing aragonite or (low- and high-Mg) calcite in relation to changes in Mg/Casw and mass marine extinction events (P/T, T/J and K/Pg). This allows relating the effect of ocean chemistry to the relative success of foraminifera with different calcification strategies. We show for the first time that the success of foraminifera with different calcification mechanisms (i.e. aragonite versus calcite producers) is governed by Mg/Casw, potentially making foraminifera with unfavored mineralogy more vulnerable to major environmental perturbations. Furthermore, we suggest that planktic foraminifera, which are currently calcifying in a period with unfavorable sea water chemistry, might be more sensitive to on-going ocean acidification and associated environmental perturbations than currently assumed.
NASA Astrophysics Data System (ADS)
Lund, M. T.; Samset, B. H.; Skeie, R. B.; Berntsen, T.
2017-12-01
Several recent studies have used observations from the HIPPO flight campaigns to constrain the modeled vertical distribution of black carbon (BC) over the Pacific. Results indicate a relatively linear relationship between global-mean atmospheric BC residence time, or lifetime, and bias in current models. A lifetime of less than 5 days is necessary for models to reasonably reproduce these observations. This is shorter than what many global models predict, which will in turn affect their estimates of BC climate impacts. Here we use the chemistry-transport model OsloCTM to examine whether this relationship between global BC lifetime and model skill also holds for a broader a set of flight campaigns from 2009-2013 covering both remote marine and continental regions at a range of latitudes. We perform four sets of simulations with varying scavenging efficiency to obtain a spread in the modeled global BC lifetime and calculate the model error and bias for each campaign and region. Vertical BC profiles are constructed using an online flight simulator, as well by averaging and interpolating monthly mean model output, allowing us to quantify sampling errors arising when measurements are compared with model output at different spatial and temporal resolutions. Using the OsloCTM coupled with a microphysical aerosol parameterization, we investigate the sensitivity of modeled BC vertical distribution to uncertainties in the aerosol aging and scavenging processes in more detail. From this, we can quantify how model uncertainties in the BC life cycle propagate into uncertainties in its climate impacts. For most campaigns and regions, a short global-mean BC lifetime corresponds with the lowest model error and bias. On an aggregated level, sampling errors appear to be small, but larger differences are seen in individual regions. However, we also find that model-measurement discrepancies in BC vertical profiles cannot be uniquely attributed to uncertainties in a single process or parameter, at least in this model. Model development therefore needs to focus on improvements to individual processes, supported by a broad range of observational and experimental data, rather than tuning individual, effective parameters such as global BC lifetime.
Mi, Chunrong; Falk, Huettmann
2016-01-01
The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change. PMID:26855870
Mi, Chunrong; Falk, Huettmann; Guo, Yumin
2016-01-01
The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500-2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change.
Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment
NASA Astrophysics Data System (ADS)
O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.
2018-03-01
Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.
Climate change impacts on global rainfed agricultural land availability
NASA Astrophysics Data System (ADS)
Zhang, X.; Cai, X.
2010-12-01
Global rainfed agricultural land availability can be subject to significant changes in both magnitude and spatial distribution due to climate change. We assess the possible changes using current and projected climate data from thirteen general circulation models (GCMs) under two emission scenarios, A1B & B1, together with global databases on land, including soil properties and slope. Two ensemble methods with the set of GCMs, Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), are employed to abate uncertainty involved in global GCM projections for assembling regional climate. Fuzzy logic, which handles land classification in an approximate yet efficient way, is adopted to estimate the land suitability through empirically determined membership functions and fuzzy rules chosen through a learning process based on remote sensed crop land products. Land suitability under five scenarios, which include the present-climate baseline scenario and four projected scenarios, A1B-SAM, A1B-RMSEMM, B1-SAM, and B1-RMSEMM, are assessed for both global and seven important agricultural regions in the world, Africa, China, India, Europe (excluding Russia), Russia, South America, and U.S. It is found that countries at the high latitudes of north hemisphere are more likely to benefit from climate change with respect to agricultural land availability; while countries at mid- and low latitudes may suffer different levels of loss of potential arable land. Expansions of the gross potential arable land are likely to occur in regions at the north high latitudes, including Russia, North China and U.S., while land shrinking can be expected in South America, Africa, India and Europe. Although the greatest potential for agricultural expansion lies in Africa and South America, with current cultivated land accounting for 20% and 13% respectively of the net potential arable land, negative effects from climate change may decline the potential. In summary, climate change is likely to alter the global distribution of potential rainfed arable land and further influence agricultural production and related socio-economic aspects around the end of this century. Global suitable rainfed agricultural land (can be used for regular crops) changes between A1B-SAM scenario based on 2070-2099 averaged climate data and baseline scenario simulated using 1961-1990 averaged climate data
NASA Astrophysics Data System (ADS)
Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.
2014-12-01
Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.
1-km Global Anthropogenic Heat Flux Database for Urban Climate Studies
NASA Astrophysics Data System (ADS)
Dong, Y.; Varquez, A. C. G.; Kanda, M.
2016-12-01
Among various factors contributing to warming in cities, anthropogenic heat emission (AHE), defined by heat fluxes arising from human consumption of energy, has the most obvious influence. Despite this, estimation of the AHE distribution is challenging and assumed almost uniform in investigations of the regional atmospheric environment. In this study, we introduce a top-down method for estimating a global distribution of AHE (see attachment), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 hour. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector: heat loss, heat emissions from industrial-related sectors and heat emissions from commercial, residential and transport sectors (CRT). The first and second components were equally distributed throughout the country and populated areas, respectively. Bulk AHE from the CRT was proportionally distributed using a global population dataset with a nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on monthly temperatures was derived from various city measurements. Finally, a global AHE database was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that a problem of AHE underestimation at central urban areas existing in previous top-down models was significantly mitigated by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of our current methodology. Investigations of AHE in the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%, whereas the share of metabolic heating varied closely depending on the level of economic development in the city. Incorporation of our proposed AHE data into climate models will provide a more realistic representation of urban atmospheric environment, leading to a deeper understanding of urban climate change. Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan
NASA Technical Reports Server (NTRS)
Ott, L.; Putman, B.; Collatz, J.; Gregg, W.
2012-01-01
Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement concepts to create realistic pseudo-datasets. Pseudo-data are averaged over coarse model grid cell areas to better understand the ability of measurements to characterize CO2 distributions and spatial gradients on both short (daily to weekly) and long (monthly to seasonal) time scales
NASA Astrophysics Data System (ADS)
Clare, Michael; Peter, Talling; James, Hunt
2014-05-01
A geologically short-lived (~170kyr) episode of global warming occurred at ~55Ma, termed the Initial Eocene Thermal Maximum (IETM). Global temperatures rose by up to 8oC over only ~10kyr and a massive perturbation of the global carbon cycle occurred; creating a negative carbon isotopic (~-4% δ13C) excursion in sedimentary records. This interval has relevance to study of future climate change and its influence on geohazards including submarine landslides and turbidity currents. We analyse the recurrence frequency of turbidity currents, potentially initiated from large-volume slope failures. The study focuses on two sedimentary intervals that straddle the IETM and we discuss implications for turbidity current triggering. We present the results of statistical analyses (regression, generalised linear model, and proportional hazards model) for extensive turbidite records from an outcrop at Zumaia in NE Spain (N=285; 54.0 to 56.5 Ma) and based on ODP site 1068 on the Iberian Margin (N=1571; 48.2 to 67.6 Ma). The sedimentary sequences provide clear differentiation between hemipelagic and turbiditic mud with only negligible evidence of erosion. We infer dates for turbidites by converting hemipelagic bed thicknesses to time using interval-averaged accumulation rates. Multi-proxy dating techniques provide good age constraint. The background trend for the Zumaia record shows a near-exponential distribution of turbidite recurrence intervals, while the Iberian Margin shows a log-normal response. This is interpreted to be related to regional time-independence (exponential) and the effects of additive processes (log-normal). We discuss how a log-normal response may actually be generated over geological timescales from multiple shorter periods of random turbidite recurrence. The IETM interval shows a dramatic departure from both these background trends, however. This is marked by prolonged hiatuses (0.1 and 0.6 Myr duration) in turbidity current activity in contrast to the arithmetic mean recurrence, λ, for the full records (λ=0.007 and 0.0125 Myr). This period of inactivity is coincident with a dramatic carbon isotopic excursion (i.e. warmest part of the IETM) and heavily skews statistical analyses for both records. Dramatic global warming appears to exert a strong control on inhibiting turbidity current activity; whereas the effects of sea level change are not shown to be statistically significant. Rapid global warming is often implicated as a potential landslide trigger, due to dissociation of gas hydrates in response to elevated ocean temperatures. Other studies have suggested that intense global warming may actually be attributed to the atmospheric release of gas hydrates following catastrophic failure of large parts of a continental slope. Either way, a greater intensity of landslide and resultant turbidity current activity would be expected during the IETM; however, our findings are to the contrary. We offer some explanations in relation to potential triggers. Our work suggests that previous rapid global warming at the IETM did not trigger more frequent turbidity currents. This has direct relevance to future assessments relating to landslide-triggered tsunami hazard, and breakage of subsea cables by turbidity currents.
Integrating Socioeconomic and Earth Science Data Using Geobrowsers and Web Services: A Demonstration
NASA Astrophysics Data System (ADS)
Schumacher, J. A.; Yetman, G. G.
2007-12-01
The societal benefit areas identified as the focus for the Global Earth Observing System of Systems (GEOSS) 10- year implementation plan are an indicator of the importance of integrating socioeconomic data with earth science data to support decision makers. To aid this integration, CIESIN is delivering its global and U.S. demographic data to commercial and open source Geobrowsers and providing open standards based services for data access. Currently, data on population distribution, poverty, and detailed census data for the U.S. are available for visualization and access in Google Earth, NASA World Wind, and a browser-based 2-dimensional mapping client. The mapping client allows for the creation of web map documents that pull together layers from distributed servers and can be saved and shared. Visualization tools with Geobrowsers, user-driven map creation and sharing via browser-based clients, and a prototype for characterizing populations at risk to predicted precipitation deficits will be demonstrated.
Palipudi, Krishna M.; Nelson-Blutcher, Glenda; Murty, Komanduri S.; Asma, Samira
2015-01-01
We analyzed data from the Global Adult Tobacco Survey (GATS) from 21 countries to categorize smokers by stages of cessation and highlight interventions that could be tailored to each stage. GATS is a nationally representative household survey that measures tobacco use and other key indicators by using a standardized protocol. The distribution of smokers into precontemplation, contemplation, and preparation stages varied by country. Using the stages of change model, each country can design and implement effective interventions suitable to its cultural, social, and economic situations to help smokers advance successfully through the stages of cessation. PMID:26378897
Essentials for Successful and Widespread LED Lighting Adoption
NASA Astrophysics Data System (ADS)
Khan, Nisa
2011-03-01
Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity. Such solutions are expected to make LED lights more energy efficient, pleasant in appearance, longer-lasting, affordable, and thus suitable for green living.
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less
Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.
Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua
2015-01-01
Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.
Garcia-R, Juan C; French, Nigel; Pita, Anthony; Velathanthiri, Niluka; Shrestha, Rima; Hayman, David
2017-07-01
Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardia gdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases.
NASA Astrophysics Data System (ADS)
Barber, A.; Millar, C.
2014-12-01
Documenting plant response to global climate change in sensitive zones, such as the alpine, is a major goal for global change biology. Basic information on alpine plant distribution by elevation and substrate provides a basis for anticipating which species may decline in a warming climate. The Global Observation Research Initiative in Alpine Environments (GLORIA) is a worldwide effort to document vegetation changes over time in alpine settings using permanent multi-summit plots. The California/Nevada group currently monitors seven permanent GLORIA target regions, composed of 29 summits in alpine and subalpine zones. Summits range in elevations from 2918m to 4325m on substrates including dolomite, granite, quartzite, and volcanics. High-resolution plant occurrence and cover data from the upper 10 meters of each summit are presented. Plants from our target regions can be divided into three groups: summit specialists found only on the highest peaks, alpine species found predominantly within the alpine zone, and broadly distributed species found in the alpine zone and below. Rock substrate and microsite soil development have a strong influence on plant communities and species richness. We present the first set of five-year resurvey and temperature data from 18 summits. We have documented some annual variation in species presence/absence at almost all sites, but no dramatic changes in total diversity. Consistent with the expectation of rising global temperatures, our soil temperature loggers have documented temperature increases at most of our sites. These data are a baseline for assessing bioclimatic shifts and future plant composition in California and Nevada's alpine zone.
NASA Astrophysics Data System (ADS)
Mackler, D. A.; Jahn, J.; Mukherjee, J.; Pollock, C. J.
2012-12-01
Charge exchange between ring current ions spiraling into the upper atmosphere and terrestrial neutral constituents produces a non-isotropic distribution of escaping Energetic Neutral Atoms (ENA). These ENA's are no longer tied to the magnetic field, and can therefore be observed remotely from orbiting platforms. Particularly of interest is Low Altitude Emissions (LAE) of ENA's. These ENA emissions occur near the oxygen exobase and constitute the brightest ENA signatures during geomagnetic storms. In this study we build on previous work described in Pollock et al. [2009] in which IMAGE/MENA data was used to compute the Invariant Latitude (IL) and Magnetic Local Time (MLT) distributions of ENA's observed in the 29 October 2003 storm. The algorithms developed in Pollock et al. [2009] are used to compute the IL and MLT of LAE source regions for 76 identified storms at different phases of solar cycle 23. The ENA flux from the source regions are divided by in-situ ion precipitation obtained by DMSP-SSJ4 and NOAA-TED to give a global mapping of the particulate albedo during storm times.
Rnomads: An R Interface with the NOAA Operational Model Archive and Distribution System
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Lees, J. M.
2014-12-01
The National Oceanic and Atmospheric Administration Operational Model Archive and Distribution System (NOMADS) facilitates rapid delivery of real time and archived environmental data sets from multiple agencies. These data are distributed free to the scientific community, industry, and the public. The rNOMADS package provides an interface between NOMADS and the R programming language. Like R itself, rNOMADS is open source and cross platform. It utilizes server-side functionality on the NOMADS system to subset model outputs for delivery to client R users. There are currently 57 real time and 10 archived models available through rNOMADS. Atmospheric models include the Global Forecast System and North American Mesoscale. Oceanic models include WAVEWATCH III and U. S. Navy Operational Global Ocean Model. rNOMADS has been downloaded 1700 times in the year since it was released. At the time of writing, it is being used for wind and solar power modeling, climate monitoring related to food security concerns, and storm surge/inundation calculations, among others. We introduce this new package and show how it can be used to extract data for infrasonic waveform modeling in the atmosphere.
Global assessment of human losses due to earthquakes
Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen
2014-01-01
Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.
Links between global meat trade and organic river pollution
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2017-04-01
Rising demand of meat boosts livestock farming intensification. Due to international meat trade, the environmental costs of production are becoming increasingly separated from where the meat is consumed. However, little is known about the impact of trade on the environment for both importers and exporters. Combining multi-scale (national, regional and gridded) data, we present a new method to quantify the impacts of international meat trade on global river organic pollution. We computed spatially distributed organic pollution in global river networks with and without meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis indicates high potential savings of livestock population and pollutants production at the global scale due to the international meat trade. The spatially detailed analysis shows that current trade contributes to organic pollution reductions in meat importing regions, especially in rich nations. The deterioration of river water quality, especially in developing regions, points to an urgent need for affordable infrastructure and technology development and wastewater solutions.
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Tao, Wei-Kuo
2004-01-01
An effort has been made at NASA/GSFC to use the Goddard Earth Observing system (GEOS) global analysis in generating the initial and boundary conditions for MM5/WRF simulation. This linkage between GEOS global analysis and MM5/WRF models has made possible for a few useful applications. As one of the sample studies, a series of MM5 simulations were conducted to test the sensitivity of initial and boundary conditions to MM5 simulated precipitation over the eastern; USA. Global analyses horn different operational centers (e.g., NCEP, ECMWF, I U ASA/GSFCj were used to provide first guess field and boundary conditions for MM5. Numerical simulations were performed for one- week period over the eastern coast areas of USA. the distribution and quantities of MM5 simulated precipitation were compared. Results will be presented in the workshop. In addition,other applications from recent and future studies will also be addressed.
Condition monitoring of 3G cellular networks through competitive neural models.
Barreto, Guilherme A; Mota, João C M; Souza, Luis G M; Frota, Rewbenio A; Aguayo, Leonardo
2005-09-01
We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.
NASA Astrophysics Data System (ADS)
Lin, Y.; Perez, J. D.
A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.
Fowkes, Freya J I; Draper, Bridget L; Hellard, Margaret; Stoové, Mark
2016-12-12
The global health community is currently transitioning from the Millennium Development Goals (MDGs) to the Sustainable Development Goals (SDGs). Unfortunately, progress towards maternal, newborn and infant health MDGs has lagged significantly behind other key health goals, demanding a renewed global effort in this key health area. The World Health Organization and other institutions heralded integrated antenatal care (ANC) as the best way to address the inter-related health issues of HIV, tuberculosis (TB) and malaria in the high risk groups of pregnant women and infants; integrated ANC services also offer a mechanism to address slow progress towards improved maternal health. There is remarkably limited evidence on best practice approaches of program implementation, acceptability and effectiveness for integrated ANC models targeting multiple diseases. Here, we discuss current integrated ANC global guidelines and the limited literature describing integrated ANC implementation and evidence for their role in addressing HIV, malaria and TB during pregnancy in sub-Saharan Africa. We highlight the paucity of data on the effectiveness of integrated ANC models and identify significant structural barriers in the health system (funding, infrastructure, distribution, human resources), the adoption system (limited buy-in from implementers, leadership, governance) and, in the broader context, patient-centred barriers (fear, stigma, personal burdens) and barriers in funding structures. We highlight recommendations for action and discuss avenues for the global health community to develop systems to integrate multiple disease programs into ANC models of care that better address these three priority infectious diseases. With the current transition to the SDGs and concerns regarding the failure to meet maternal health MDGs, the global health community, researchers, implementers and funding bodies must work together to ensure the establishment of quality operational and implementation research to inform integrated ANC models. It is imperative that the global health community engages in a timely discussion about such implementation innovations and instigates appropriate actions to ensure advances in maternal health are sufficient to meet applicable SDGs.
Probabilistic attribution of individual unprecedented extreme events
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.
2016-12-01
The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.
NASA Astrophysics Data System (ADS)
Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Hare, Jonathan A.; Moret, Skye; Perretti, Charles T.; Saba, Vincent S.
2017-04-01
The U.S. Northeast Continental Shelf marine ecosystem has warmed much faster than the global ocean and it is expected that this enhanced warming will continue through this century. Complex bathymetry and ocean circulation in this region have contributed to biases in global climate model simulations of the Shelf waters. Increasing the resolution of these models results in reductions in the bias of future climate change projections and indicates greater warming than suggested by coarse resolution climate projections. Here, we used a high-resolution global climate model and historical observations of species distributions from a trawl survey to examine changes in the future distribution of suitable thermal habitat for various demersal and pelagic species on the Shelf. Along the southern portion of the shelf (Mid-Atlantic Bight and Georges Bank), a projected 4.1 °C (surface) to 5.0 °C (bottom) warming of ocean temperature from current conditions results in a northward shift of the thermal habitat for the majority of species. While some southern species like butterfish and black sea bass are projected to have moderate losses in suitable thermal habitat, there are potentially significant increases for many species including summer flounder, striped bass, and Atlantic croaker. In the north, in the Gulf of Maine, a projected 3.7 °C (surface) to 3.9 °C (bottom) warming from current conditions results in substantial reductions in suitable thermal habitat such that species currently inhabiting this region may not remain in these waters under continued warming. We project a loss in suitable thermal habitat for key northern species including Acadian redfish, American plaice, Atlantic cod, haddock, and thorney skate, but potential gains for some species including spiny dogfish and American lobster. We illustrate how changes in suitable thermal habitat of important commercially fished species may impact local fishing communities and potentially impact major fishing ports along the U.S. Northeast Shelf. Given the complications of multiple drivers including species interactions and fishing pressure, it is difficult to predict exactly how species will shift. However, observations of species distribution shifts in the historical record under ocean warming suggest that temperature will play a primary role in influencing how species fare. Our results provide critical information on the potential for suitable thermal habitat on the U.S. Northeast Shelf for demersal species in the region, and may contribute to the development of ecosystem-based fisheries management strategies in response to climate change.
Impunity: Countering Illicit Power in War and Transition
2016-05-01
Post -Conflict: The Lessons from Timor-Leste..........347 Deniz Kocak CHAPTER 17 A Granular Approach to Combating Corruption and Illicit Power Structures...transregional security,” and central to our task “is strengthening our global network of allies and partners.”4 In the current post -“Big Footprint” era...after the post -2001 political settlement, which was built on the distribution of political power between factions formed during the country’s civil war
Lei, Juncheng; Chen, Lian; Li, Hong
2017-08-01
The golden apple snail, Pomacea canaliculata, is one of the world's 100 most notorious invasive alien species. Knowledge about the critical climate variables that limit the global distribution range of the snail, as well as predictions of future species distributions under climate change, is very helpful for management of snail. In this study, the climatically suitable habitats for this kind of snail under current climate conditions were modeled by biomod2 and projected to eight future climate scenarios (2 time periods [2050s, 2080s] × 2 Representative Concentration Pathways [RCPs; RCP2.6, RCP8.5] × 2 atmospheric General Circulation Models [GCMs; Canadian Centre for Climate Modelling and Analysis (CCCMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO)]). The results suggest that the lowest temperature of coldest month is the critical climate variable to restrict the global distribution range of P. canaliculata. It is predicted that the climatically suitable habitats for P. canaliculata will increase by an average of 3.3% in 2050s and 3.8% in 2080s for the RCP2.6 scenario, while they increase by an average of 8.7% in 2050s and 10.3% in 2080s for the RCP8.5 scenario. In general, climate change in the future may promote the global invasion of the invasive species. Therefore, it is necessary to take proactive measures to monitor and preclude the invasion of this species.
Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten
2015-01-22
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Irvine, P. J.; Keith, D.; Dykema, J. A.; Vecchi, G. A.; Horowitz, L. W.
2016-12-01
Solar geoengineering may limit or even halt the rise in global-average surface temperatures. Evidence from the geoMIP model intercomparison project shows that idealized geoengineering can greatly reduce temperature changes on a region-by-region basis. If solar geoengineering is used to hold radiative forcing or surface temperatures constant in the face of rising CO2, then the global evaporation and precipitation rates will be reduced below pre-industrial. The spartial and frequency distribution of the precipitation response is, however, much less well understood. There is limited evidence that solar geoengineering may reduce extreme precipitation events more that it reduces mean precipitation, but that evidence is based on relatively course resolution models that may to a poor job representing the distribution of extreme precipitation in the current climate. The response of global and regional climate, as well as tropical cyclone (TC) activity, to increasing solar geoengineering is explored through experiments with climate models spanning a broad range of atmospheric resolutions. Solar geoengineering is represented by an idealized adjustment of the solar constant that roughly halves the rate of increase in radiative forcing in a scenario with increasing CO2 concentration. The coarsest resolution model has approximately a 2-degree global resolution, representative of the typical resolution of past GCMs used to explore global response to CO2 increase, and its response is compared to that of two tropical cyclone permitting GCMs of approximately 0.5 and 0.25 degree resolution (FLOR and HiFLOR). The models have exactly the same ocean and sea-ice components, as well as the same parameterizations and parameter settings. These high-resolution models are used for real-time seasonal prediction, providing a unified framework for seasonal-to-multidecadal climate modeling. We assess the extreme precipitation response, comparing the frequency distribution of extreme events with and without solar geoengineering. We compare our results to two prior studies of the response of climate extremes to solar geoengineering.
Mineral supply constraints necessitate a global policy response
NASA Astrophysics Data System (ADS)
Nickless, Edmund
2016-04-01
Adoption on 12 December 2015 of The Paris Agreement, the first universal climate agreement, suggests that nations will invest in infrastructures for renewable energy sources paving the way to a global low-carbon society. These large-scale changes will require vast amounts of metals and minerals. Regardless of whether known supplies are enough to meet demand in the near future, efforts must be made now to forestall unpredictable yet inevitable supply shortages in the decades to come, shortages that would dramatically impact the building of additional generation and distribution capacity, and deployment of low-carbon technology. But in response to the current downturn in commodity prices, the global mining industry is downsizing and reducing investment in the new exploration, putting at risk future security of supply. Mining and climate change are inextricably linked; the new adaptive technologies needed to tackle climate change depend on extraction of minerals and metals. An interdisciplinary group supported by the International Union of Geological Sciences, the International Council for Science Unions and UNESCO proposes measures to avert the looming minerals crisis that is developing in the context of current recycling capacity and exploration trends. Our immediate goal is to stimulate discussion of supply constraints using available data on mineral reserves. We build on recent discussions of supply risk and criticality with a focus on the source of primary resources over the next two to three decades when the availability of metals for recycling will remain low. Current massive production of iron ore and other such commodities despite record low prices indicates a failure of the traditional supply and demand constraints. Broader discussions of metal and mineral supply beyond current criticality are needed given the pace of technological and demographic change as well as rapid development spurts. Furthermore, accessible mineral deposits are irregularly distributed and often occur in areas of conflict. We advocate the establishment of an international panel (under the auspices of the United Nations) to monitor consumption and production of mineral resources for future generations. Edmund Nickless, Chair, IUGS Resourcing Future Generations initiative
Fontanilla, Ian Kendrich C; Sta Maria, Inna Mikaella P; Garcia, James Rainier M; Ghate, Hemant; Naggs, Fred; Wade, Christopher M
2014-01-01
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.
Fontanilla, Ian Kendrich C.; Sta. Maria, Inna Mikaella P.; Garcia, James Rainier M.; Ghate, Hemant; Naggs, Fred; Wade, Christopher M.
2014-01-01
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes. PMID:25203830
Estimation of the global climate effect of brown carbon
NASA Astrophysics Data System (ADS)
Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.
2017-12-01
Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.
Globalizing Lessons Learned from Regional-scale Observatories
NASA Astrophysics Data System (ADS)
Glenn, S. M.
2016-02-01
The Mid Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) has accumulated a decade of experience designing, building and operating a Regional Coastal Ocean Observing System for the U.S. Integrated Ocean Observing System (IOOS). MARACOOS serves societal goals and supports scientific discovery at the scale of a Large Marine Ecosystem (LME). Societal themes include maritime safety, ecosystem decision support, coastal inundation, water quality and offshore energy. Scientific results that feed back on societal goals with better products include improved understanding of seasonal transport pathways and their impact on phytoplankton blooms and hypoxia, seasonal evolution of the subsurface Mid Atlantic Cold Pool and its impact on fisheries, biogeochemical transformations in coastal plumes, coastal ocean evolution and impact on hurricane intensities, and storm sediment transport pathways. As the global ocean observing requirements grow to support additional societal needs for information on fisheries and aquaculture, ocean acidification and deoxygenation, water quality and offshore development, global observing will necessarily evolve to include more coastal observations and forecast models at the scale of the world's many LMEs. Here we describe our efforts to share lessons learned between the observatory operators at the regional-scale of the LMEs. Current collaborators are spread across Europe, and also include Korea, Indonesia, Australia, Brazil and South Africa. Specific examples include the development of a world standard QA/QC approach for HF Radar data that will foster the sharing of data between countries, basin-scale underwater glider missions between internationally-distributed glider ports to developed a shared understanding of operations and an ongoing evaluation of the global ocean models in which the regional models for the LME will be nested, and joint training programs to develop the distributed teams of scientists and technicians required to support the global network. Globalization includes the development of international networks to coordinate activities, such as the Global HF Radar network supported by GEO, the global Everyone's Glider Organization supported by WMO and IOC, and the need for professional training supported by MTS.
The Global Atmosphere Watch Aerosol Programme
NASA Astrophysics Data System (ADS)
Baltensperger, U.
2003-04-01
The Global Atmosphere Watch (GAW) programme is a WMO sponsored activity and currently supported by about 80 WMO member countries. It is the goal of GAW to develop and maintain long-term measurements of atmospheric constituents in order to detect trends, develop aerosol predictive capabilities and understand proc- esses. With respect to aerosols, the objective of GAW is to support a global network determining the spatio-temporal distribution of aerosol properties related to climate forcing and air quality up to multi-decadal time scales. The GAW network consists of 22 Global stations and some 300 Regional stations. The Scientific Advisory Group (SAG) for Aerosols will soon publish their recommendations for aerosol measurements. Each site should have an acceptable aerosol sampling inlet. Regional stations measure aerosol optical depth, as well as the aerosol light scattering and absorption coefficient. If possible these should be complemented by routine mass concentration and composition measurements in two aerosol size fractions. At Global stations, a larger number of measurements are desirable. These include the Regional parameters list above as well as the light scattering, hemispheric backscat- tering, and absorption coefficients at various wavelengths, aerosol number concen- tration, cloud condensation nuclei (CCN) concentration at 0.5% supersaturation, and diffuse, global and direct solar radiation. Additional parameters such as the aerosol size distribution, detailed size fractionated chemical composition, dependence of aerosol properties on relative humidity, CCN concentration at various supersatura- tions, and the vertical distribution of aerosol properties should be measured intermit- tently at Global stations. Examples from the Jungfraujoch (Swiss Alps, 3580 m asl) will be given, where many of the parameters listed above are measured. Data are delivered to and made available by the World Data Centre for Aerosols (WDCA, located in Ispra, Italy http://ies.jrc.cec.eu.int/wdca/) using the NARSTO data exchange standard. The Institute for Tropospheric Research in Leipzig hosts a GAW World Calibration Centre (WCC) for physical aerosol parameters. A host for the chemical parameters still must be located. None of the Global sites perform a full set of measurements, and many Regional sites have not yet started with aerosol ac- tivities at all. Capacity building and fund raising are therefore important priorities in order to achieve the goals of the GAW global aerosol programme. It should be em- phasized that GAW works with many partners in the World Meteorological Organi- zation as well as other agencies in an attempt to develop an integrated system of satellite and non-satellite observations of the global aerosol.
Advanced Protection & Service Restoration for FREEDM Systems
NASA Astrophysics Data System (ADS)
Singh, Urvir
A smart electric power distribution system (FREEDM system) that incorporates DERs (Distributed Energy Resources), SSTs (Solid State Transformers - that can limit the fault current to two times of the rated current) & RSC (Reliable & Secure Communication) capabilities has been studied in this work in order to develop its appropriate protection & service restoration techniques. First, a solution is proposed that can make conventional protective devices be able to provide effective protection for FREEDM systems. Results show that although this scheme can provide required protection but it can be quite slow. Using the FREEDM system's communication capabilities, a communication assisted Overcurrent (O/C) protection scheme is proposed & results show that by using communication (blocking signals) very fast operating times are achieved thereby, mitigating the problem of conventional O/C scheme. Using the FREEDM System's DGI (Distributed Grid Intelligence) capability, an automated FLISR (Fault Location, Isolation & Service Restoration) scheme is proposed that is based on the concept of 'software agents' & uses lesser data (than conventional centralized approaches). Test results illustrated that this scheme is able to provide a global optimal system reconfiguration for service restoration.
Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.
2014-01-01
Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. PMID:24466253
NASA Astrophysics Data System (ADS)
Benson, R. B.; Ahern, T. K.; Trabant, C.
2006-12-01
The IRIS Data Management System has long supported international collaboration for seismology by both deploying a global network of seismometers and creating and maintaining an open and accessible archive in Seattle, WA, known as the Data Management Center (DMC). With sensors distributed on a global scale spanning more than 30 years of digital data, the DMC provides a rich repository of observations across broad time and space domains. Primary seismological data types include strong motion and broadband seismometers, conventional and superconducting gravimeters, tilt and creep meters, GPS measurements, along with other similar sensors that record accurate and calibrated ground motion. What may not be as well understood is the volume of environmental data that accompanies typical seismological data these days. This poster will review the types of time-series data that are currently being collected, how they are collected, and made freely available for download at the IRIS DMC. Environmental sensor data that is often co-located with geophysical data sensors include temperature, barometric pressure, wind direction and speed, humidity, insolation, rain gauge, and sometimes hydrological data like water current, level, temperature and depth. As the primary archival institution of the International Federation of Digital Seismograph Networks (FDSN), the IRIS DMC collects approximately 13,600 channels of real-time data from 69 different networks, from close to 1600 individual stations, currently averaging 10Tb per year in total. A major contribution to the IRIS archive currently is the EarthScope project data, a ten-year science undertaking that is collecting data from a high-resolution, multi-variate sensor network. Data types include magnetotelluric, high-sample rate seismics from a borehole drilled into the San Andreas fault (SAFOD) and various types of strain data from the Plate Boundary Observatory (PBO). In addition to the DMC, data centers located in other countries are networked seamlessly, and are providing access for researchers to these data from national networks around the world utilizing the IRIS developed Data Handling Interface (DHI) system. This poster will highlight some of the DHI enabled clients that allow geophysical information to be directly transferred to the clients. This ability allows one to construct a virtual network of data centers providing the illusion of a single virtual observatory. Furthermore, some of the features that will be shown include direct connections to MATLAB and the ability to access globally distributed sensor data in real time. We encourage discussion and participation from network operators who would like to leverage existing technology, as well as enabling collaboration.
Contributions of a global network of tree diversity experiments to sustainable forest plantations.
Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael
2016-02-01
The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinz, Nick; Coolbaugh, Mark; Shevenell, Lisa
There are currently 74 productive geothermal systems associated with volcanic centers (VCs) in arcs globally, including actively producing systems, past producing systems, and systems with successful flow tests. The total installed or tested capacity of these 74 geothermal systems is 7,605 MWe, ranging from 0.7 MWe each at Copahue, Chile and Barkhatnaya Sopka, Kamchatka to 795 MWe, Larderello, Italy, and averaging 90.5 MWe per system. These 74 productive VCs constitute 10% of 732 VCs distributed across more than a dozen major arcs around the world. The intra-arc (within-arc) tectonic setting is highly variable globally, ranging from extension to transtension, transpression,more » or compression. Furthermore, the shear strain associated with oblique plate convergence can be accommodated by either intra-arc or arc-marginal deformation. The structural-tectonic settings of these 74 productive VCs were characterized to add to a global catalog of parameters to help guide future exploration, development, and regional resource potential.« less
NASA Astrophysics Data System (ADS)
McKee, Shawn
2017-10-01
Networks have played a critical role in high-energy physics (HEP), enabling us to access and effectively utilize globally distributed resources to meet the needs of our physicists. National and global-scale collaborations that characterize HEP would not be feasible without ubiquitous capable networks. Because of their importance in enabling our grid computing infrastructure many physicists have taken leading roles in research and education (R&E) networking, participating in, and even convening, network related meetings and research programs with the broader networking community worldwide. This has led to HEP benefiting from excellent global networking capabilities for little to no direct cost. However, as other science domains ramp-up their need for similar networking it becomes less clear that this situation will continue unchanged. This paper will briefly discuss the history of networking in HEP, the current activities and challenges we are facing, and try to provide some understanding of where networking may be going in the next 5 to 10 years.
Potential climate impact of black carbon emitted by rockets
NASA Astrophysics Data System (ADS)
Ross, Martin; Mills, Michael; Toohey, Darin
2010-12-01
A new type of hydrocarbon rocket engine is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. A global climate model predicts that emissions from a fleet of 1000 launches per year of suborbital rockets would create a persistent layer of black carbon particles in the northern stratosphere that could cause potentially significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical stratospheric ozone abundances are predicted to change as much as 1%, while polar ozone changes by up to 6%. Polar surface temperatures change as much as one degree K regionally with significant impacts on polar sea ice fractions. After one decade of continuous launches, globally averaged radiative forcing from the black carbon would exceed the forcing from the emitted CO2 by a factor of about 105 and would be comparable to the radiative forcing estimated from current subsonic aviation.
Internal seismological stations for monitoring a comprehensive test ban theory
NASA Astrophysics Data System (ADS)
Dahlman, O.; Israelson, H.
1980-06-01
Verification of the compliance with a Comprehensive Test Ban on nuclear explosions is expected to be carried out by a seismological verification system of some fifty globally distributed teleseismic stations designed to monitor underground explosions at large distances (beyond 2000 km). It is attempted to assess various technical purposes that such internal stations might serve in relation to a global network of seismological stations. The assessment is based on estimates of the detection capabilities of hypothetical networks of internal stations. Estimates pertaining to currently used detection techniques (P waves) indicate that a limited number (less than 30) of such stations would not improve significantly upon the detection capability that a global network of stations would have throughout the territories of the US and the USSR. Recently available and not yet fully analyzed data indicate however that very high detection capabilities might be obtained in certain regions.
NASA Astrophysics Data System (ADS)
Bergmann-Wolf, I.; Dobslaw, H.
2015-12-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists.In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed.
Validation of NH3 satellite observations by ground-based FTIR measurements
NASA Astrophysics Data System (ADS)
Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem
2016-04-01
Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.
The assessment of Global Precipitation Measurement estimates over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.
2017-08-01
Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.
Validation of Ocean Color Satellite Data Products in Under Sampled Marine Areas. Chapter 6
NASA Technical Reports Server (NTRS)
Subramaniam, Ajit; Hood, Raleigh R.; Brown, Christopher W.; Carpenter, Edward J.; Capone, Douglas G.
2001-01-01
The planktonic marine cyanobacterium, Trichodesmium sp., is broadly distributed throughout the oligotrophic marine tropical and sub-tropical oceans. Trichodesmium, which typically occurs in macroscopic bundles or colonies, is noteworthy for its ability to form large surface aggregations and to fix dinitrogen gas. The latter is important because primary production supported by N2 fixation can result in a net export of carbon from the surface waters to deep ocean and may therefore play a significant role in the global carbon cycle. However, information on the distribution and density of Trichodesmium from shipboard measurements through the oligotrophic oceans is very sparse. Such estimates are required to quantitatively estimate total global rates of N2 fixation. As a result current global rate estimates are highly uncertain. Thus in order to understand the broader biogeochemical importance of Trichodesmium and N2 fixation in the oceans, we need better methods to estimate the global temporal and spatial variability of this organism. One approach that holds great promise is satellite remote sensing. Satellite ocean color sensors are ideal instruments for estimating global phytoplankton biomass, especially that due to episodic blooms, because they provide relatively high frequency synoptic information over large areas. Trichodesmium has a combination of specific ultrastructural and biochemical features that lend themselves to identification of this organism by remote sensing. Specifically, these features are high backscatter due to the presence of gas vesicles, and absorption and fluorescence of phycoerythrin. The resulting optical signature is relatively unique and should be detectable with satellite ocean color sensors such as the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS).
Dengue vaccine: come let's fight the menace.
Chawla, Sumit; Sahoo, Soumya Swaroop; Singh, Inderjeet; Verma, Madhur; Gupta, Vikas; Kumari, Sneh
2015-01-01
Although dengue has a global distribution, the World Health Organization (WHO) South-East Asia region together with Western Pacific region bears nearly 75% of the current global disease burden. Globally, the societal burden has been estimated to be approximately 528 to 1300 disability-adjusted life years (DALY) per million to populations in endemic regions Dengue is believed to infect 50 to 100 million people worldwide a year with half a million life-threatening infections requiring hospitalization, resulting in approximately 12,500 to 25,000 deaths. Despite being known for decades and nearly half the world's population is at risk for infection with as many as 100 million cases occurring annually, the pitiable state is that we still have no antiviral drugs to treat it and no vaccines to prevent it. In recent years, however, the development of dengue vaccines has accelerated dramatically in tandem with the burgeoning dengue problem with a rejuvenated vigour. However, recent progress in molecular-based vaccine strategies, as well as a renewed commitment by the World Health Organization (WHO) to co-ordinate global efforts on vaccine development, finally provides hope that control of this serious disease may be at hand. Today, several vaccines are in various stages of advanced development, with clinical trials currently underway on 5 candidate vaccines. Trials in the most advanced stages are showing encouraging preliminary data, and the leading candidate could be licensed as early as 2015.
Friend or Foe? Urbanization and the Biosphere
NASA Astrophysics Data System (ADS)
Schneider, A.
2008-12-01
The environmental influence of urban areas is still often assumed to be negligible at global scales. Although local environmental conditions such as the urban heat island effect are well-documented, surprisingly little work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, improved systems for measuring, monitoring and modeling the global environmental impacts of cities should receive far greater scientific attention. This presentation will summarize urban environmental issues and impacts at local, regional and global scales and introduce the fundamental concepts and tools needed to measure and respond to these problems. Newly available datasets for the distribution and intensity of urban land use will be introduced, demonstrating the importance of clearly defining 'urbanized' land for empirical studies at the global scale. The negative environmental impacts of urban development will be compared with the often over-looked "positives" of urban growth from a global environmental perspective. Progress in understanding and forecasting the global impacts of urban areas will require systematic global urban research designs that treat cities as urban systems, anthropogenic biomes and urban ecoregions. The challenges and opportunities of global environmental research on urban areas have important implications not only for current research but also for educating the next generation of earth system scientists.
Aagesen, Lone; Biganzoli, Fernando; Bena, Julia; Godoy-Bürki, Ana C; Reinheimer, Renata; Zuloaga, Fernando O
2016-01-01
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.
Locally adaptive, spatially explicit projection of US population for 2030 and 2050.
McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L
2015-02-03
Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.
Barugahare, John; Lie, Reidar K
2016-06-03
Although health is a right of all individuals without any distinction, the realisation of this right has remained very difficult for the marginalised populations of poor countries. Inequitable distribution of health opportunities globally is a major factor in explaining why this is the case. Whereas the Protection, Promotion and Fulfilment of the health rights of poor country citizens are a joint responsibility of both domestic and external governments, most governments flout their obligations. So far disproportionate effort has been dedicated to reaffirming and interpreting these obligations as opposed to investigating the fundamental question regarding why these obligations have nevertheless remained largely unfulfilled. Further the normative question regarding what ought to be done about the shortcomings of current obligations has been largely ignored. We conduct a critical content analysis of existing literature on efforts towards the realisation of the health rights of marginalised populations in our attempt to ascertain their capacity to guarantee basic health opportunities to marginalised populations. In our analysis we treat issues of 'health rights' and 'justice in global health' as having unity of purpose - guaranteeing basic health opportunities to the marginalised populations. We identify two sets of reasons for the failure of present obligations for global distributive justice in general: a set of 'superficial reasons' and a set of 'fundamental reasons' which account for the superficial reasons. In order to overcome these reasons we propose a strategy which consists in specifying a number of minimum and less-demanding obligations for both external and domestic governments to guarantee to all individuals a certain threshold of health goods and services. We argue that these minimum obligations can be freely accepted and fully complied with or enforced with "a thin system of enforcement" without significant threat to national sovereignty and autonomy. The futility of countries' obligations for the health rights of the global poor as is the case with global distributive injustice is because of lack of political will to specify and enforce such obligations. Minimum obligations should be specified and enforced with a "thin system" which is consistent with principles of national sovereignty and autonomy.
Geomagnetic storms, the Dst ring-current myth and lognormal distributions
Campbell, W.H.
1996-01-01
The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.
NASA Astrophysics Data System (ADS)
Sangermano, Florencia
2009-12-01
The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this methodology to redefine species ranges in a more biophysically reasonable way. If a specific variable is important for a species, a change in that variable is likely to impact the species. Chapter 3 presents a methodology to identify the impact of environmental changes on 6362 species of mammals, amphibians and birds of South America, based on per-species measures of sensitivity, marginality, range restriction and trends in remotely sensed bioclimatic variables. Maps of the impact of environmental changes on vertebrates of South America were generated, with the Andes, Patagonia and the Atlantic Forest experiencing the strongest impact of environmental change in this over the past quarter century. Contributions of this dissertation include the development of new range polygons for all mammals, amphibians and birds of South America, as well as a methodology to re-draw the polygons in any other region of the world. This dataset is essential for both biodiversity analysis and conservation prioritization. Other contributions are the generation of maps of impact of global change on biodiversity, together with a framework for the development and updating of those maps. Conservation and monitoring agencies will find this research useful not only for the selection of new conservation areas but also for prioritizing areas for field monitoring.
Current and Future Patterns of Global Marine Mammal Biodiversity
Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris
2011-01-01
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431
Climate change and fishing: a century of shifting distribution in North Sea cod.
Engelhard, Georg H; Righton, David A; Pinnegar, John K
2014-08-01
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913-2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod - mostly in the deeper, northern- and north-easternmost parts of the North Sea - is almost opposite to that during most of the Twentieth Century - mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3 1/2 decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. © 2013 Crown copyright. Global Change Biology published by John Wiley & Sons Ltd. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
NASA Astrophysics Data System (ADS)
Wagner, Roland; Schmedemann, Nico; Neukum, Gerhard; Werner, Stephanie C.; Ivanov, Boris A.; Stephan, Katrin; Jaumann, Ralf; Palumbo, Pasquale
2014-11-01
Crater distributions and origin of potential impactors on the Galilean satellites has been an issue of controversial debate. In this work, we review the current knowledge of the cratering record on Ganymede and Callisto and present strategies for further studies using images from ESA’s JUICE mission to Jupiter. Crater distributions in densely cratered units on these two satellites show a complex shape between 20 m and 200 km crater diameter, similar to lunar highland distributions implying impacts of members of a collisionally evolved projectile family. Also, the complex shape predominantly indicates production distributions. No evidence for apex-antapex asymmetries in crater frequency was found, therefore the majority of projectiles (a) preferentially impacted from planetocentric orbits, or (b) the satellites were rotating non-synchronously during a time of heavy bombardment. The currently available imaging data are insufficient to investigate in detail significant changes in the shape of crater distributions with time. Clusters of secondary craters are well mappable and excluded from crater counts, lack of sufficient image coverage at high resolution, however, in many cases impedes the identification of source craters. ESA’s future JUICE mission will study Ganymede as the first icy satellite in the outer Solar system from an orbit under stable viewing conditions. Measurements of crater distributions can be carried out based on global geologic mapping at highest spatial resolutions (10s of meters down to 3 m/pxl).
Geography of current and future global mammal extinction risk
Shoemaker, Kevin T.; Weinstein, Ben; Costa, Gabriel C.; Brooks, Thomas M.; Ceballos, Gerardo; Radeloff, Volker C.; Rondinini, Carlo; Graham, Catherine H.
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species’ trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally. PMID:29145486
Geography of current and future global mammal extinction risk.
Davidson, Ana D; Shoemaker, Kevin T; Weinstein, Ben; Costa, Gabriel C; Brooks, Thomas M; Ceballos, Gerardo; Radeloff, Volker C; Rondinini, Carlo; Graham, Catherine H
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species' trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally.
The Plasmaspheric Role in Coupled Inner Magnetospheric Dynamics
NASA Astrophysics Data System (ADS)
Goldstein, J.
2006-05-01
The plasmasphere is a near-Earth cold, dense, corotating plasma region that plays both passive and active roles in inner magnetospheric coupling. The plasmasphere plays a passive role with respect to electrodynamic coupling associated with enhanced magnetospheric convection; i.e., zero-order plasmaspheric dynamics result from convection. Following extended periods of quiet geomagnetic conditions, the equatorial extent of the plasmasphere can be several Earth radii (RE), with an internal density distribution that contains a great deal of fine-scale (under 0.1 RE) and meso-scale (0.1 to 1 RE) density structure. Enhanced geomagnetic activity causes erosion of the plasmasphere, in which the outer plasma-filled flux tubes are caught up in the convection field and carried sunward, forming plumes of dense plasmaspheric material on the dayside. The electrodynamic coupling between the ring current and ionosphere (leading to shielding and sub-auroral polarization stream, or SAPS) can either reduce or intensify the global convection field that arises from solar-wind-magnetosphere coupling, and the plasmasphere is subject to the variations of this convection. There is also good evidence that ionosphere-thermosphere coupling plays an important role in determination of the convection field during quiet conditions. The plasmasphere plays an active role in determining the global distribution of warmer inner magnetospheric plasmas (ring current and radiation belts), by providing plasma conditions that can favor or discourage the growth of waves such as whistler, chorus, and electromagnetic ion-cyclotron (EMIC) waves, all of which are believed to be crucial in the various acceleration and loss processes that affect warmer particles. Thus, knowledge of the global plasmasphere configuration and composition is critical for understanding and predicting the behavior of the inner magnetosphere.
Risk Assessment in Relation to the Effect of Climate Change on Water Shortage in the Taichung Area
NASA Astrophysics Data System (ADS)
Hsiao, J.; Chang, L.; Ho, C.; Niu, M.
2010-12-01
Rapid economic development has stimulated a worldwide greenhouse effect and induced global climate change. Global climate change has increased the range of variation in the quantity of regional river flows between wet and dry seasons, which effects the management of regional water resources. Consequently, the influence of climate change has become an important issue in the management of regional water resources. In this study, the Monte Carlo simulation method was applied to risk analysis of shortage of water supply in the Taichung area. This study proposed a simulation model that integrated three models: weather generator model, surface runoff model, and water distribution model. The proposed model was used to evaluate the efficiency of the current water supply system and the potential effectiveness of two additional plans for water supply: the “artificial lakes” plan and the “cross-basin water transport” plan. A first-order Markov Chain method and two probability distribution models, exponential distribution and normal distribution, were used in the weather generator model. In the surface runoff model, researchers selected the Generalized Watershed Loading Function model (GWLF) to simulate the relationship between quantity of rainfall and basin outflow. A system dynamics model (SD) was applied to the water distribution model. Results of the simulation indicated that climate change could increase the annual quantity of river flow in the Dachia River and Daan River basins. However, climate change could also increase the difference in the quantity of river flow between wet and dry seasons. Simulation results showed that in current system case or in the additional plan cases, shortage status of water for both public and agricultural uses with conditions of climate change will be mostly worse than that without conditions of climate change except for the shortage status for the public use in the current system case. With or without considering the effect of climate change, the additional plans, especially the “cross-basin water transport” plan, for water supply could significantly increase the supply of water for public use. The proposed simulation model and results of analysis in this study could provide valuable reference for decision-makers in regards to risk analysis of regional water supply.
Emerging Technologies for Software-Reliant Systems
2011-02-24
needs • Loose coupling • Global distribution of hardware, software and people • Horizontal integration and convergence • Virtualization...Webinar– February 2011 © 2011 Carnegie Mellon University Global Distribution of Hardware, Software and People Globalization is an essential part of...University Required Software Engineering Emphasis Due to Emerging Technologies (2) Defensive Programming • Security • Auto-adaptation • Globalization
Plasma currents and anisotropy in the tail-dipole transition region
NASA Astrophysics Data System (ADS)
Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.
2017-12-01
Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (<2), ions are transversely anisotropic near Earth but isotropic in the tail, whereas electrons are isotropic closer to Earth but field-aligned in tail. For large Kp (>4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.
Wang, Wei; Wen, Changyun; Huang, Jiangshuai; Fan, Huijin
2017-11-01
In this paper, a backstepping based distributed adaptive control scheme is proposed for multiple uncertain Euler-Lagrange systems under directed graph condition. The common desired trajectory is allowed totally unknown by part of the subsystems and the linearly parameterized trajectory model assumed in currently available results is no longer needed. To compensate the effects due to unknown trajectory information, a smooth function of consensus errors and certain positive integrable functions are introduced in designing virtual control inputs. Besides, to overcome the difficulty of completely counteracting the coupling terms of distributed consensus errors and parameter estimation errors in the presence of asymmetric Laplacian matrix, extra information transmission of local parameter estimates are introduced among linked subsystem and adaptive gain technique is adopted to generate distributed torque inputs. It is shown that with the proposed distributed adaptive control scheme, global uniform boundedness of all the closed-loop signals and asymptotically output consensus tracking can be achieved. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Gálvez, Rosa; Musella, Vicenzo; Descalzo, Miguel A; Montoya, Ana; Checa, Rocío; Marino, Valentina; Martín, Oihane; Cringoli, Giuseppe; Rinaldi, Laura; Miró, Guadalupe
2017-09-19
The cat flea, Ctenocephalides felis, is the most prevalent flea species detected on dogs and cats in Europe and other world regions. The status of flea infestation today is an evident public health concern because of their cosmopolitan distribution and the flea-borne diseases transmission. This study determines the spatial distribution of the cat flea C. felis infesting dogs in Spain. Using geospatial tools, models were constructed based on entomological data collected from dogs during the period 2013-2015. Bioclimatic zones, covering broad climate and vegetation ranges, were surveyed in relation to their size. The models builded were obtained by negative binomial regression of several environmental variables to show impacts on C. felis infestation prevalence: land cover, bioclimatic zone, mean summer and autumn temperature, mean summer rainfall, distance to urban settlement and normalized difference vegetation index. In the face of climate change, we also simulated the future distributions of C. felis for the global climate model (GCM) "GFDL-CM3" and for the representative concentration pathway RCP45, which predicts their spread in the country. Predictive models for current climate conditions indicated the widespread distribution of C. felis throughout Spain, mainly across the central northernmost zone of the mainland. Under predicted conditions of climate change, the risk of spread was slightly greater, especially in the north and central peninsula, than for the current situation. The data provided will be useful for local veterinarians to design effective strategies against flea infestation and the pathogens transmitted by these arthropods.
Detecting and Understanding Changing Arctic Carbon Emissions
NASA Astrophysics Data System (ADS)
Bruhwiler, L.
2017-12-01
Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in emissions over time by examining modeled and observed spatial and seasonal variability. An issue we will consider is whether well-mixed background atmospheric records are more likely to detect changing Arctic emissions compared to stronger, but more variable signal from local sources.
aerosol radiative effects and forcing: spatial and temporal distributions
NASA Astrophysics Data System (ADS)
Kinne, Stefan
2014-05-01
A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.
NASA Technical Reports Server (NTRS)
Hogan, Kathleen B.; Harriss, Robert C.
1994-01-01
The carefully measured decrease in the growth rate of atmospheric methane (CH4) in 1992 reported by Dlugokencky et al. (1994) is an impressive accomplishment, and testimony for the importance of maintaining high-quality, long-term monitoring of atmospheric composition. The changing growth rate of atmospheric CH4 has important implications for assessing and understanding the potential magnitude and rates of a future greenhouse gas-induced climate change. Furthermore, the CH4 data from the current Climate Monitoring and Diagnostics Laboratory (CMDL) globally-distributed network of cooperative air sampling sites are clearly the best record of global CH4 trends and distribution currently available. However, we argue briefly here that the speculation by Dlugokencky et al. (1994) on possible mechanisms for the decreased growth rate in 1992 is only one scenario of many that could possibly fit with the constraints imposed by the reported data. Our comments are to (1) illustrate the difficulties of deducing small changes in complex, poorly understood, geographically diverse natural and anthropogenic sources of CH4 from measurements at the remotely-located CMDL sampling sites and (2) emphasize that detailed bottoms-up analyses are necessary to really advance the understanding of changes in source strengths; we are not promoting alternative mechanisms to explain the 1992 decrease in atmospheric CH4.
Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre
2017-11-01
The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.
Lightning charge moment changes estimated by high speed photometric observations from ISS
NASA Astrophysics Data System (ADS)
Hobara, Y.; Kono, S.; Suzuki, K.; Sato, M.; Takahashi, Y.; Adachi, T.; Ushio, T.; Suzuki, M.
2017-12-01
Optical observations by the CCD camera using the orbiting satellite is generally used to derive the spatio-temporal global distributions of the CGs and ICs. However electrical properties of the lightning such as peak current and lightning charge are difficult to obtain from the space. In particular, CGs with considerably large lightning charge moment changes (CMC) and peak currents are crucial parameters to generate red sprites and elves, respectively, and so it must be useful to obtain these parameters from space. In this paper, we obtained the lightning optical signatures by using high speed photometric observations from the International Space Station GLIMS (Global Lightning and Sprit MeasurementS JEM-EF) mission. These optical signatures were compared quantitatively with radio signatures recognized as truth values derived from ELF electromagnetic wave observations on the ground to verify the accuracy of the optically derived values. High correlation (R > 0.9) was obtained between lightning optical irradiance and current moment, and quantitative relational expression between these two parameters was derived. Rather high correlation (R > 0.7) was also obtained between the integrated irradiance and the lightning CMC. Our results indicate the possibility to derive lightning electrical properties (current moment and CMC) from optical measurement from space. Moreover, we hope that these results will also contribute to forthcoming French microsatellite mission TARANIS.
Thermal energy creation and transport and X-ray/EUV emission in a thermodynamic MHD CME simulation
NASA Astrophysics Data System (ADS)
Reeves, K.; Mikic, Z.; Torok, T.; Linker, J.; Murphy, N. A.
2017-12-01
We model a CME using the PSI 3D numerical MHD code that includes coronal heating, thermal conduction and radiative cooling in the energy equation. The magnetic flux distribution at 1 Rs is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. We introduce transverse electric fields near the neutral line in the active region to form a flux rope, then a converging flow is imposed that causes the eruption. We follow the formation and evolution of the current sheet and find that instabilities set in soon after the reconnection commences. We simulate XRT and AIA EUV emission and find that the instabilities manifest as bright features emanating from the reconnection region. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic compression and expansion, coronal heating and ohmic heating due to dissipation of currents. We find that the adiabatic compression plays an important role in heating the plasma around the current sheet, especially in the later stages of the eruption when the instabilities are present. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process.
Worldwide distribution of subaquatic gas hydrates
Kvenvolden, K.A.; Ginsburg, G.D.; Soloviev, V.A.
1993-01-01
Sediments containing natural gas hydrates occur worldwide on continental and insular slopes and rises of active and passive margins, on continental shelves of polar regions, and in deep-water (> 300 m) environments of inland lakes and seas. The potential amount of methane in natural gas hydrates is enormous, with current estimates at about 1019 g of methane carbon. Subaquatic gas hydrates have been recovered in 14 different areas of the world, and geophysical and geochemical evidence for them has been found in 33 other areas. The worldwide distribution of natural gas hydrates is updated here; their global importance to the chemical and physical properties of near-surface subaquatic sediments is affirmed. ?? 1993 Springer-Verlag.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-03
...] International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Manager Roles; One Teleworker Located in Charleston, WV; International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Unit, Relations Analyst and Band 8...
Constraining global dry deposition of ozone: observations and modeling
NASA Astrophysics Data System (ADS)
Silva, S. J.; Heald, C. L.
2016-12-01
Ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. Current estimates are that nearly 25% of all surface ozone is destroyed through dry deposition, and billions of dollars are lost annually due to losses of ecosystem services and agricultural yield associated with ozone damage. However there are still substantial uncertainties regarding the spatial distribution and magnitude of the global depositional flux. As land cover change continues throughout this century, dry deposition of ozone will change in ways that are yet still poorly understood. Nearly every major atmospheric chemistry model uses a variation of the "resistor in series parameterization" for the calculation of dry deposition. By far the most commonly implemented parameterization is of the form presented in Wesely (1989), and is dependent on many variables, including land type look up tables, solar radiation, leaf area index, temperature, and more. The uncertainties contained within the various parts of this parameterization have to date not been fully explored. A lack of understanding of these uncertainties, coupled with a dearth of routine measurements of ozone deposition, ultimately challenges our ability to understand the impacts of land cover change on surface ozone. In this work, we use a suite of globally-distributed observations from the past two decades and the GEOS-Chem chemical transport model to constrain global dry deposition, improve our understanding of these uncertainties, and contextualize the impact of land cover change on ozone concentrations.
Performance of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC
NASA Astrophysics Data System (ADS)
Alruwaili, Manal
With the growing technology, the number of the processors is becoming massive. Current supercomputer processing will be available on desktops in the next decade. For mass scale application software development on massive parallel computing available on desktops, existing popular languages with large libraries have to be augmented with new constructs and paradigms that exploit massive parallel computing and distributed memory models while retaining the user-friendliness. Currently, available object oriented languages for massive parallel computing such as Chapel, X10 and UPC++ exploit distributed computing, data parallel computing and thread-parallelism at the process level in the PGAS (Partitioned Global Address Space) memory model. However, they do not incorporate: 1) any extension at for object distribution to exploit PGAS model; 2) the programs lack the flexibility of migrating or cloning an object between places to exploit load balancing; and 3) lack the programming paradigms that will result from the integration of data and thread-level parallelism and object distribution. In the proposed thesis, I compare different languages in PGAS model; propose new constructs that extend C++ with object distribution and object migration; and integrate PGAS based process constructs with these extensions on distributed objects. Object cloning and object migration. Also a new paradigm MIDD (Multiple Invocation Distributed Data) is presented when different copies of the same class can be invoked, and work on different elements of a distributed data concurrently using remote method invocations. I present new constructs, their grammar and their behavior. The new constructs have been explained using simple programs utilizing these constructs.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
Small ponds play big role in greenhouse gas emissions from inland waters
NASA Astrophysics Data System (ADS)
Holgerson, M.; Raymond, P. A.
2017-12-01
Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.
Zhao, Meng; Ding, Baocang
2015-03-01
This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Final Report for Project DE-FC02-06ER25755 [Pmodels2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panda, Dhabaleswar; Sadayappan, P.
2014-03-12
In this report, we describe the research accomplished by the OSU team under the Pmodels2 project. The team has worked on various angles: designing high performance MPI implementations on modern networking technologies (Mellanox InfiniBand (including the new ConnectX2 architecture and Quad Data Rate), QLogic InfiniPath, the emerging 10GigE/iWARP and RDMA over Converged Enhanced Ethernet (RoCE) and Obsidian IB-WAN), studying MPI scalability issues for multi-thousand node clusters using XRC transport, scalable job start-up, dynamic process management support, efficient one-sided communication, protocol offloading and designing scalable collective communication libraries for emerging multi-core architectures. New designs conforming to the Argonne’s Nemesis interface havemore » also been carried out. All of these above solutions have been integrated into the open-source MVAPICH/MVAPICH2 software. This software is currently being used by more than 2,100 organizations worldwide (in 71 countries). As of January ’14, more than 200,000 downloads have taken place from the OSU Web site. In addition, many InfiniBand vendors, server vendors, system integrators and Linux distributors have been incorporating MVAPICH/MVAPICH2 into their software stacks and distributing it. Several InfiniBand systems using MVAPICH/MVAPICH2 have obtained positions in the TOP500 ranking of supercomputers in the world. The latest November ’13 ranking include the following systems: 7th ranked Stampede system at TACC with 462,462 cores; 11th ranked Tsubame 2.5 system at Tokyo Institute of Technology with 74,358 cores; 16th ranked Pleiades system at NASA with 81,920 cores; Work on PGAS models has proceeded on multiple directions. The Scioto framework, which supports task-parallelism in one-sided and global-view parallel programming, has been extended to allow multi-processor tasks that are executed by processor groups. A quantum Monte Carlo application is being ported onto the extended Scioto framework. A public release of Global Trees (GT) has been made, along with the Global Chunks (GC) framework on which GT is built. The Global Chunks (GC) layer is also being used as the basis for the development of a higher level Global Graphs (GG) layer. The Global Graphs (GG) system will provide a global address space view of distributed graph data structures on distributed memory systems.« less
The water masses and volumetry of the southern Agulhas Current region
NASA Astrophysics Data System (ADS)
Valentine, H. R.; Lutjeharms, J. R. E.; Brundrit, G. B.
1993-06-01
It has been suggested that the southern termination of the Agulhas Current plays a crucial role in the global circulation of thermocline water and thus in global climate. Due to a lack of modern hydrographic observations in this region, no detailed description of water masses or a fine-scale volumetric census for this geographic area had been carried out. Such an analysis of a collection of recent high-quality hydrographic measurements shows that the warm, saline, surface water of Agulhas Current origin contributes very little to the overall volume of the upper 1500 m of the water column in the area. Occasional equatorward leakages from south of the Subtropical Convergence are represented by a range of low-salinity outliers, but they represent <1% of the total volume. The distribution of water volume in temperature/salinity space for the Agulhas Retroflection is less diverse that that of the world ocean as a whole, 25% of the total volume of the region being contained in only 21 fine-scale temperature/salinity classes. North Atlantic Deep Water is the dominant water mass, accounting for 40% of the total volume. Deep Water in general accounts for 60% of the total volume.
Surveillance of Human Rabies by National Authorities--A Global Survey.
Taylor, L H; Knopf, L
2015-11-01
Effective prevention of deaths due to human rabies is currently hampered by a lack of understanding of the scale of the problem, and the distribution of both animal and human cases across countries, regions and continents. Unfortunately, despite the severity of the disease, accurate data on which to assess these questions and to prioritize and direct public health interventions are not available for many parts of the world. This survey sought to understand the current global situation regarding the surveillance of human rabies. Data were collected from 91 countries across all continents and all categories of human rabies risk, generating the most complete and representative global data set currently available. Respondents were asked key questions about whether human rabies was a notifiable disease, how the surveillance system for human rabies operated and whether the respondent considered that the surveillance system was working effectively. Across the 91 countries from which data were collated, human rabies was a notifiable disease in all but eight. Despite international guidance, surveillance systems were very varied. Even where rabies is a notifiable disease, many countries had surveillance system judged to be ineffective, almost all of these being high and moderate rabies risk countries in Africa and Asia. Overall, 41% of the population covered by this survey (around 2.5 billion people) live in countries where there is no or ineffective rabies surveillance. The lack of robust surveillance is hindering rabies control efforts. However, whilst worldwide rabies surveillance would be improved if rabies were notifiable in all countries, many other challenges to the implementation of effective global human rabies surveillance systems remain. © 2015 Blackwell Verlag GmbH.
Simulating PACE Global Ocean Radiances
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Rousseaux, Cecile S.
2017-01-01
The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model
Simulating PACE Global Ocean Radiances
Gregg, Watson W.; Rousseaux, Cécile S.
2017-01-01
The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250–800 nm. These unassimilated radiances were within −0.074 mW cm−2 μm1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of −10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PMID:29292403
Water savings of redistributing global crop production
NASA Astrophysics Data System (ADS)
Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo
2016-04-01
Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.
Calorie increase and water savings of redistributing global crop production
NASA Astrophysics Data System (ADS)
Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.
2015-12-01
Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.
Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven
2003-01-01
The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone distribution. Through the monitoring of statistical properties of the agreement between the data and the model, this approach also enables us to detect changes in the quality of ozone data retrieved from satellite-borne instrument measurements. This paper demonstrates that calculations of the changes in satellite data quality, and the impact these changes on the estimates of the global ozone distribution, can assist in maintaining the uniform quality of the satellite ozone data throughout the lifetime of these instruments, thus contributing to our understanding of long-term ozone change.
Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei).
Chen, Wei-Jen; Lavoué, Sébastien; Mayden, Richard L
2013-08-01
The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Parmar, Aditya; Kirchner, Sascha M.; Langguth, Henning; Döring, Thomas F.; Hensel, Oliver
2017-01-01
Insect specimens of adult beetles and larvae of 7–9 and 9–10 mm length, respectively were collected from infested dry cassava at two locations from multiple stores in southern Ethiopia. The specimens were identified as Heterobostrychus brunneus (Murray, 1867) commonly known as boxwood borer and auger beetle. The study presents a current record of H. brunneus in Ethiopia, particularly in the context of infesting food products. Additionally, a wide geographical distribution of the pest was reviewed and presented in this article. Current evidence suggests that H. brunneus is a serious pest of forest wood, structural timbers, and dried food products and that it carries a risk to be introduced into various other parts of the world via global trade. PMID:28130456
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, B.; Akasofu, S.; Kamide, Y.
1983-08-01
As a part of the joint efforts of operating six meridian chains of magnetometers during the IMS, magnetic records from 71 stations are used to deduce the distribution of electric fields and currents in the polar ionosphere for March 17, 18, and 19, 1978. As a continuation of this project, we have constructed hourly distribution maps of the Joule heat production rate and their sum over the entire polar region on the three days. For this purpose the conductivity distribution is inferred at each instant partially on the basis of an empirical method devised by Ahn et al. (1982). Themore » particle energy injection rate is estimated similarly by using an empirical method. The data set thus obtained allows us to estimate also the global Joule heat production rate U/sub J/, the global particle energy injection rate U/sub A/ and the sum U/sub Gamma/ of the two quantities. It is found that three global quantities (watt) are related almost linearly to the AE(nT) and AL(nT) indices. Our present estimates give the following relationships: U/sub J/ = 2.3 times 10/sup 8/ x AE/sub 8/ U/sub A/ = 0.6 times 10/sup 8/ x AE/sub 8/ and U/sub I/ = 2.9 times 10/sup 8/ x AE: U/sub J/ = 3.0 times 10/sup 8/ x AL/sub 8/ U/sub A/ = 0.8 times 10/sup 8/ x AL, and U/sub I/ = 3.8 times 10/sup 8/ x AL.« less
Halbert, Kristin M. K.; Goetze, Erica; Carlon, David B.
2013-01-01
Although holoplankton are ocean drifters and exhibit high dispersal potential, a number of studies on single species are finding highly divergent genetic clades. These cryptic species complexes are important to discover and describe, as identification of common marine species is fundamental to understanding ecosystem dynamics. Here we investigate the global diversity within Pleuromamma piseki and P. gracilis, two dominant members of the migratory zooplankton assemblage in subtropical and tropical waters worldwide. Using DNA sequence data from the mitochondrial gene cytochrome c oxidase subunit II (mtCOII) from 522 specimens collected across the Pacific, Atlantic and Indian Oceans, we discover twelve well-resolved genetically distinct clades in this species complex (Bayesian posterior probabilities >0.7; 6.3–17% genetic divergence between clades). The morphologically described species P. piseki and P. gracilis did not form monophyletic groups, rather they were distributed throughout the phylogeny and sometimes co-occurred within well-resolved clades: this result suggests that morphological characters currently used for taxonomic identification of P. gracilis and P. piseki may be inaccurate as indicators of species’ boundaries. Cryptic clades within the species complex ranged from being common to rare, and from cosmopolitan to highly restricted in distribution across the global ocean. These novel lineages appear to be ecologically divergent, with distinct biogeographic distributions across varied pelagic habitats. We hypothesize that these mtDNA lineages are distinct species and suggest that resolving their systematic status is important, given the ecological significance of the genus Pleuromamma in subtropical-tropical waters worldwide. PMID:24167556
NASA Astrophysics Data System (ADS)
Whitfield, Alan K.; James, Nicola C.; Lamberth, Stephen J.; Adams, Janine B.; Perissinotto, Renzo; Rajkaran, Anusha; Bornman, Thomas G.
2016-04-01
The South African coastline is just over 3000 km in length yet it covers three major biogeographic regions, namely subtropical, warm temperate and cool temperate. In this review we examine published information to assess the possible role of climate change in driving distributional changes of a wide variety of organisms around the subcontinent. In particular we focus on harmful algal blooms, seaweeds, eelgrass, mangroves, salt marsh plants, foraminiferans, stromatolites, corals, squid, zooplankton, zoobenthos, fish, birds, crocodiles and hippopotamus, but also refer to biota such as pathogens, coralline algae, jellyfish and otters. The role of pioneers or propagules as indicators of an incipient range expansion are discussed, with mangroves, zoobenthos, fishes and birds providing the best examples of actual and imminent distributional changes. The contraction of the warm temperate biogeographic region, arising from the intrusion of cool upwelled waters along the Western Cape shores, and increasingly warm Agulhas Current waters penetrating along the eastern parts of the subcontinent, are highlighted. The above features provide an ideal setting for the monitoring of biotic drivers and responses to global climate change over different spatial and temporal scales, and have direct relevance to similar studies being conducted elsewhere in the world. We conclude that, although this review focuses mainly on the impact of global climate change on South African coastal biodiversity, other anthropogenic drivers of change such as introduced alien invasive species may act synergistically with climate change, thereby compounding both short and long-term changes in the distribution and abundance of indigenous species.
Hellweger, Ferdi L.; van Sebille, Erik; Calfee, Benjamin C.; Chandler, Jeremy W.; Zinser, Erik R.; Swan, Brandon K.; Fredrick, Neil D.
2016-01-01
Biogeography studies that correlate the observed distribution of organisms to environmental variables are typically based on local conditions. However, in cases with substantial translocation, like planktonic organisms carried by ocean currents, selection may happen upstream and local environmental factors may not be representative of those that shaped the local population. Here we use an individual-based model of microbes in the global surface ocean to explore this effect for temperature. We simulate up to 25 million individual cells belonging to up to 50 species with different temperature optima. Microbes are moved around the globe based on a hydrodynamic model, and grow and die based on local temperature. We quantify the role of currents using the “advective temperature differential” metric, which is the optimum temperature of the most abundant species from the model with advection minus that from the model without advection. This differential depends on the location and can be up to 4°C. Poleward-flowing currents, like the Gulf Stream, generally experience cooling and the differential is positive. We apply our results to three global datasets. For observations of optimum growth temperature of phytoplankton, accounting for the effect of currents leads to a slightly better agreement with observations, but there is large variability and the improvement is not statistically significant. For observed Prochlorococcus ecotype ratios and metagenome nucleotide divergence, accounting for advection improves the correlation significantly, especially in areas with relatively strong poleward or equatorward currents. PMID:27907181
Shallow Lunar Seismic Activity and the Current Stress State of the Moon
NASA Technical Reports Server (NTRS)
Watters, T. R.; Weber, R. C.; Collins, G. C.; Johnson, C. L.
2017-01-01
A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. Stresses due to orbital recession do not change with orbital position, thus it is with the addition of diurnal stresses that peak stresses are reached. At apogee, diurnal and recession stresses are most compressive near the tidal axis, while at perigee they are most compressive 90 degrees away from the tidal axis. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we show the results of relocating the shallow moonquake using an algorithm designed for sparse networks to better constrain their epicentral locations in order to compare them with stress models. The model for the current stress state of the Moon is refined by investigating the contribution of polar wander.
The changing role of ornamental horticulture in alien plant invasions.
van Kleunen, Mark; Essl, Franz; Pergl, Jan; Brundu, Giuseppe; Carboni, Marta; Dullinger, Stefan; Early, Regan; González-Moreno, Pablo; Groom, Quentin J; Hulme, Philip E; Kueffer, Christoph; Kühn, Ingolf; Máguas, Cristina; Maurel, Noëlie; Novoa, Ana; Parepa, Madalin; Pyšek, Petr; Seebens, Hanno; Tanner, Rob; Touza, Julia; Verbrugge, Laura; Weber, Ewald; Dawson, Wayne; Kreft, Holger; Weigelt, Patrick; Winter, Marten; Klonner, Günther; Talluto, Matthew V; Dehnen-Schmutz, Katharina
2018-03-05
The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75% and 93% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions. © 2018 Cambridge Philosophical Society.
Morgan, E R; Clare, E L; Jefferies, R; Stevens, J R
2012-12-01
SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.
Variability and Global Distribution of Subgenotypes of Bovine Viral Diarrhea Virus.
Yeşilbağ, Kadir; Alpay, Gizem; Becher, Paul
2017-05-26
Bovine viral diarrhea virus (BVDV) is a globally-distributed agent responsible for numerous clinical syndromes that lead to major economic losses. Two species, BVDV-1 and BVDV-2, discriminated on the basis of genetic and antigenic differences, are classified in the genus Pestivirus within the Flaviviridae family and distributed on all of the continents. BVDV-1 can be segregated into at least twenty-one subgenotypes (1a-1u), while four subgenotypes have been described for BVDV-2 (2a-2d). With respect to published sequences, the number of virus isolates described for BVDV-1 (88.2%) is considerably higher than for BVDV-2 (11.8%). The most frequently-reported BVDV-1 subgenotype are 1b, followed by 1a and 1c. The highest number of various BVDV subgenotypes has been documented in European countries, indicating greater genetic diversity of the virus on this continent. Current segregation of BVDV field isolates and the designation of subgenotypes are not harmonized. While the species BVDV-1 and BVDV-2 can be clearly differentiated independently from the portion of the genome being compared, analysis of different genomic regions can result in inconsistent assignment of some BVDV isolates to defined subgenotypes. To avoid non-conformities the authors recommend the development of a harmonized system for subdivision of BVDV isolates into defined subgenotypes.
Estimate of the global market for rifampicin-containing fixed-dose combination tablets.
Norval, P Y; Blomberg, B; Kitler, M E; Dye, C; Spinaci, S
1999-11-01
Despite WHO and IUATLD recommendations to use fixed-dose combination (FDC) tablets for treatment of tuberculosis, more than 75% of all rifampicin used in the public sector globally is administered as single drug tablets. To estimate the potential global market for rifampicin-containing FDCs in the public and private sectors. The public sector market for FDCs was calculated from the number of tuberculosis cases notified to WHO for 1996 and from information on treatment regimens currently used in each country. The private sector market was calculated from the estimated number of treated tuberculosis cases and the treatment regimens presumed to be used in the private sector. The potential global market for the four-drug FDC tablet (rifampicin 150 mg, isoniazid 75 mg, pyrazinamide 400 mg and ethambutol 275 mg) is 305 (90%CI 145-505) million tablets per year, 105 (90%CI 50-160) and 200 (90%CI 95-345) million of which would be distributed in the public and private sectors, respectively. The uncertainty of the estimate remains considerable, as shown by the 90% confidence intervals. The study demonstrated a large potential global market for FDCs that should encourage pharmaceutical manufacturers to produce WHO-recommended dosages of FDCs at affordable prices.
The conservation status of the world’s reptiles
Böhm, Monika; Reynolds, Robert P.; ,
2013-01-01
Effective and targeted conservation action requires detailed information about species, their distribution, systematics and ecology as well as the distribution of threat processes which affect them. Knowledge of reptilian diversity remains surprisingly disparate, and innovative means of gaining rapid insight into the status of reptiles are needed in order to highlight urgent conservation cases and inform environmental policy with appropriate biodiversity information in a timely manner. We present the first ever global analysis of extinction risk in reptiles, based on a random representative sample of 1500 species (16% of all currently known species). To our knowledge, our results provide the first analysis of the global conservation status and distribution patterns of reptiles and the threats affecting them, highlighting conservation priorities and knowledge gaps which need to be addressed urgently to ensure the continued survival of the world’s reptiles. Nearly one in five reptilian species are threatened with extinction, with another one in five species classed as Data Deficient. The proportion of threatened reptile species is highest in freshwater environments, tropical regions and on oceanic islands, while data deficiency was highest in tropical areas, such as Central Africa and Southeast Asia, and among fossorial reptiles. Our results emphasise the need for research attention to be focussed on tropical areas which are experiencing the most dramatic rates of habitat loss, on fossorial reptiles for which there is a chronic lack of data, and on certain taxa such as snakes for which extinction risk may currently be underestimated due to lack of population information. Conservation actions specifically need to mitigate the effects of human-induced habitat loss and harvesting, which are the predominant threats to reptiles.
A novel resource sharing algorithm based on distributed construction for radiant enclosure problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finzell, Peter; Bryden, Kenneth M.
This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less
A novel resource sharing algorithm based on distributed construction for radiant enclosure problems
Finzell, Peter; Bryden, Kenneth M.
2017-03-06
This study demonstrates a novel approach to solving inverse radiant enclosure problems based on distributed construction. Specifically, the problem of determining the temperature distribution needed on the heater surfaces to achieve a desired design surface temperature profile is recast as a distributed construction problem in which a shared resource, temperature, is distributed by computational agents moving blocks. The sharing of blocks between agents enables them to achieve their desired local state, which in turn achieves the desired global state. Each agent uses the current state of their local environment and a simple set of rules to determine when to exchangemore » blocks, each block representing a discrete unit of temperature change. This algorithm is demonstrated using the established two-dimensional inverse radiation enclosure problem. The temperature profile on the heater surfaces is adjusted to achieve a desired temperature profile on the design surfaces. The resource sharing algorithm was able to determine the needed temperatures on the heater surfaces to obtain the desired temperature distribution on the design surfaces in the nine cases examined.« less
Vulnerability of Hidropower Generation in Amazon's Tributaries Under Global Change Scenarios
NASA Astrophysics Data System (ADS)
Von Randow, R.; Siqueira, J. L., Jr.; Rodriguez, D. A.; Tomasella, J.; Floriano, L. E.
2014-12-01
The Brazilian energy sector is under continued expansion. The majority of energy power generation in the country is done through hydropower, which represents around 88% of the energy originated from renewable sources in the country. Still, only 10% of the high potential for production of the Amazon basin is currently availed, and this raises attention for the implantation of new hydropower plants in the region. When a hydropower plant is considered to be built, the natural characteristics of the region are taken into account, considering that the rainfall regime follows certain stationarity. However, under the possibility of global change, the expected capacity of the plants may be compromised. The objective of this study is to evaluate if the current hydropower plants of some Amazon River tributaries can maintain their functionality under global environmental change conditions. For that, based on the discharge data and hydropower information available by Brazilian National Agency of Water and Energy we will infer the energy potential of these hydropower dams for the historic period that will be compared with the energy potential for future discharge under global environmental change conditions. The future discharge will be generated by the Distributed Hydrological Model developed at the Brazilian National Institute for Space Research (MHD-INPE), driven by different climate change scenarios projected by regional and global atmospheric models, associated with land use scenarios projected by a dynamic land use model (LUCC-ME/INPE). MHD-INPE will be calibrated through observed discharges for 1970-1990 using current land use conditions, and will generate discharges for the period of 2000 to 2050. In addition, special attention will be given to the presence of secondary forest growth in the land use scenarios in order to identify the importance of considering this use in the modelling exercise, since that use is not usually considered in hydrological modelling studies.
NASA Astrophysics Data System (ADS)
Wood, K.; Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P. W.
2016-12-01
Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere and ionosphere. Assuming pressure balance and charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies are obtained. Following the formulations in Vasyliunas (1970), Vasyliunas (1984), and Heinemann (1990), and using results from TWINS observations, we calculate the distributions of field aligned currents for geomagnetic storms on 1 June 2013 and 17 March 2015, in which extended ionospheric precipitation was observed. As previous work has assumed isotropic pressure distributions, we perform calculations both assuming pressure isotropy, and using the pressure anisotropy observed by TWINS, and compare the results from the two storms. References: 1. Vasyliunas, V. M. (1970). Mathematical Models of Magnetospheric Convection and its Coupling to the Ionosphere. Particles and Fields in the Magnetosphere Astrophysics and Space Science Library, 60-71. doi:10.1007/978-94-010-3284-1_6 2. Vasyliunas, V. M. (1984). Fundamentals of current description. Magnetospheric Currents Geophysical Monograph Series, 63-66. doi:10.1029/gm028p0063 3. Heinemann, M. (1990). Representations of currents and magnetic fields in anisotropic magnetohydrostatic plasma. J. Geophys. Res. Journal of Geophysical Research, 95(A6), 7789. doi:10.1029/ja095ia06p07789
Distribution of the GNSS-LEO occultation events over Egypt
NASA Astrophysics Data System (ADS)
Ghoniem, Ibrahim; Mousa, Ashraf El-Kutb; El-Fiky, Gamal
2017-06-01
The space-based GNSS RO technique is a promising tool for monitoring the Earth's atmosphere and ionosphere (Mousa et al., 2006). The current paper presents the distribution of the occultation events over Egypt using the operating LEO satellites and GNSS by its two operating systems. By the present research, Egypt could raise NWP Models efficiency by improving meteorological data quality. Twenty operating LEO missions (e.g. Argentinean SAC-C, European MetOp-A, German TerraSAR-X, Indian OceanSat-2, etc.) sent by different countries all over the world were used to derive the occultation events position through Egypt borders by receiving signal from the American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS). Approximately 20,000 km Altitude satellites are transmitting enormous number of rays by the day to approximately 800 km satellites passing by the Earth atmosphere. Our mission is to derive all of these rays position (start and end) by calculating satellites position by the time, determine the rays in the occultation case and derive the atmosphere tangent point position for all occultating rays on the Earth surface (Occultation Events).
Parton distributions and lattice QCD calculations: A community white paper
NASA Astrophysics Data System (ADS)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
Sequential Monte Carlo Instant Radiosity.
Hedman, Peter; Karras, Tero; Lehtinen, Jaakko
2017-05-01
Instant Radiosity and its derivatives are interactive methods for efficiently estimating global (indirect) illumination. They represent the last indirect bounce of illumination before the camera as the composite radiance field emitted by a set of virtual point light sources (VPLs). In complex scenes, current algorithms suffer from a difficult combination of two issues: it remains a challenge to distribute VPLs in a manner that simultaneously gives a high-quality indirect illumination solution for each frame, and to do so in a temporally coherent manner. We address both issues by building, and maintaining over time, an adaptive and temporally coherent distribution of VPLs in locations where they bring indirect light to the image. We introduce a novel heuristic sampling method that strives to only move as few of the VPLs between frames as possible. The result is, to the best of our knowledge, the first interactive global illumination algorithm that works in complex, highly-occluded scenes, suffers little from temporal flickering, supports moving cameras and light sources, and is output-sensitive in the sense that it places VPLs in locations that matter most to the final result.
Miralles, Laura; Oremus, Marc; Silva, Mónica A; Planes, Serge; Garcia-Vazquez, Eva
2016-01-01
Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.
Miralles, Laura; Oremus, Marc; Silva, Mónica A.; Planes, Serge; Garcia-Vazquez, Eva
2016-01-01
Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas. PMID:27508496
Parton distributions and lattice QCD calculations: A community white paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; ...
2018-01-31
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this paper we present an overview of lattice-QCDmore » and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. Finally, this document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.« less
Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.
Li, Meng; Gu, Ji-Dong
2011-05-01
Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.
NASA Technical Reports Server (NTRS)
L'Ecuyer, Tristan S.; Kummerow, Christian; Berg,Wesley
2004-01-01
Variability in the global distribution of precipitation is recognized as a key element in assessing the impact of climate change for life on earth. The response of precipitation to climate forcings is, however, poorly understood because of discrepancies in the magnitude and sign of climatic trends in satellite-based rainfall estimates. Quantifying and ultimately removing these biases is critical for studying the response of the hydrologic cycle to climate change. In addition, estimates of random errors owing to variability in algorithm assumptions on local spatial and temporal scales are critical for establishing how strongly their products should be weighted in data assimilation or model validation applications and for assigning a level of confidence to climate trends diagnosed from the data. This paper explores the potential for refining assumed drop size distributions (DSDs) in global radar rainfall algorithms by establishing a link between satellite observables and information gleaned from regional validation experiments where polarimetric radar, Doppler radar, and disdrometer measurements can be used to infer raindrop size distributions. By virtue of the limited information available in the satellite retrieval framework, the current method deviates from approaches adopted in the ground-based radar community that attempt to relate microphysical processes and resultant DSDs to local meteorological conditions. Instead, the technique exploits the fact that different microphysical pathways for rainfall production are likely to lead to differences in both the DSD of the resulting raindrops and the three-dimensional structure of associated radar reflectivity profiles. Objective rain-type classification based on the complete three-dimensional structure of observed reflectivity profiles is found to partially mitigate random and systematic errors in DSDs implied by differential reflectivity measurements. In particular, it is shown that vertical and horizontal reflectivity structure obtained from spaceborne radar can be used to reproduce significant differences in Z(sub dr) between the easterly and westerly climate regimes observed in the Tropical Rainfall Measuring Mission Large-scale Biosphere-Atmosphere (TRMM-LBA) field experiment as well as the even larger differences between Amazonian rainfall and that observed in eastern Colorado. As such, the technique offers a potential methodology for placing locally observed DSD information into a global framework.
Quantification of surface emissions: An historical perspective from GEIA
NASA Astrophysics Data System (ADS)
Granier, C.; Denier Van Der Gon, H.; Doumbia, E. H. T.; Frost, G. J.; Guenther, A. B.; Hassler, B.; Janssens-Maenhout, G. G. A.; Lasslop, G.; Melamed, M. L.; Middleton, P.; Sindelarova, K.; Tarrason, L.; van Marle, M.; W Kaiser, J.; van der Werf, G.
2015-12-01
Assessments of the composition of the atmosphere and its evolution require accurate knowledge of the surface emissions of atmospheric compounds. The first community development of global surface emissions started in 1990, when GEIA was established as a component of the International Global Atmospheric Chemistry (IGAC) project. At that time, GEIA meant "Global Emissions Inventory Activity". Since its inception, GEIA has brought together people to understand emissions from anthropogenic, biomass burning and natural sources. The first goal of GEIA was to establish a "best" inventory for the base year 1985 at 1x1 degree resolution. Since then many inventories have been developed by various groups at the global and regional scale at different temporal and spatial resolutions. GEIA, which now means the "Global Emissions Initiative", has evolved into assessing, harmonizing and distributing emissions datasets. We will review the main achievements of GEIA, and show how the development and evaluation of surface emissions has evolved during the last 25 years. We will discuss the use of surface, in-situ and remote sensing observations to evaluate and improve the quantification of emissions. We will highlight the main uncertainties currently limiting emissions datasets, such as the spatial and temporal evolution of emissions at different resolutions, the quantification of emerging emission sources (such as oil/gas extraction and distribution, biofuels, etc.), the speciation of the emissions of volatile organic compounds and of particulate matter, the capacity building necessary for organizing the development of regional emissions across the world, emissions from shipping, etc. We will present the ECCAD (Emissions of Atmospheric Compounds and Compilation of Ancillary Data) database, developed as part of GEIA to facilitate the access and evaluation of emission inventories.
Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere
NASA Astrophysics Data System (ADS)
Mills, M. J.; Ross, M.; Toohey, D. W.
2010-12-01
A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.
Differences Between S/X and VLBI2010 Operation
NASA Technical Reports Server (NTRS)
Hase, Hayo; Himwich, Ed; Neidhardt, Alexander
2010-01-01
The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.
2015-09-01
HMMWV), M1A1 Main Battle Tanks, Tank Retrievers, Armored Breeching Vehicles, Amphibious Assault Vehicles, and several variants of the Medium...MCPP-N equipment stored in the Norwegian caves. As noted earlier, Marine Corps equipment is distributed among six caves. While the current version of...according to Marine Corps Business System Integration Team officials, the initial plan was for the first version of the Global Combat Support System
Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting
NASA Technical Reports Server (NTRS)
White, Patrick
2017-01-01
What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.
Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value
NASA Astrophysics Data System (ADS)
Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.
2016-12-01
Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.
Gajendran, Ravi S; Joshi, Aparna
2012-11-01
For globally distributed teams charged with innovation, member contributions to the team are crucial for effective performance. Prior research, however, suggests that members of globally distributed teams often feel isolated and excluded from their team's activities and decisions. How can leaders of such teams foster member inclusion in team decisions? Drawing on leader-member exchange (LMX) theory, we propose that for distributed teams, LMX and communication frequency jointly shape member influence on team decisions. Findings from a test of our hypotheses using data from 40 globally distributed teams suggest that LMX can enhance member influence on team decisions when it is sustained through frequent leader-member communication. This joint effect is strengthened as team dispersion increases. At the team level, member influence on team decisions has a positive effect on team innovation. (c) 2012 APA, all rights reserved.
Global status of and prospects for protection of terrestrial geophysical diversity.
Sanderson, Eric W; Segan, Daniel B; Watson, James E M
2015-06-01
Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.
Physical Processes for Driving Ionospheric Outflows in Global Simulations
NASA Technical Reports Server (NTRS)
Moore, Thomas Earle; Strangeway, Robert J.
2009-01-01
We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.
NASA Astrophysics Data System (ADS)
Thallam Thattai, A.; van Biert, L.; Aravind, P. V.
2017-12-01
Major operating challenges remain to safely operate methane fuelled solid oxide fuel cells due to undesirable temperature gradients across the porous anode and carbon deposition. This article presents an experimental study on methane steam reforming (MSR) global kinetics for single operating SOFCs with Ni-GDC (gadolinium doped ceria) anodes for low steam to carbon (S/C) ratios and moderate current densities. The study points out the hitherto insufficient research on MSR global and intrinsic kinetics for operating SOFCs with complete Ni-ceria anodes. Further, it emphasizes the need to develop readily applicable global kinetic models as a subsequent step from previously reported state-of-art and complex intrinsic models. Two rate expressions of the Power law (PL) and Langmuir-Hinshelwood (LH) type have been compared and based on the analysis, limitations of using previously proposed rate expressions for Ni catalytic beds to study MSR kinetics for complete cermet anodes have been identified. Firstly, it has been shown that methane reforming on metallic (Ni) current collectors may not be always negligible, contrary to literature reports. Both PL and LH kinetic models predict significantly different local MSR reaction rate and species partial pressure distributions along the normalized reactor length, indicating a strong need for further experimental verifications.
Probabilistic assessment of sea level during the last interglacial stage.
Kopp, Robert E; Simons, Frederik J; Mitrovica, Jerry X; Maloof, Adam C; Oppenheimer, Michael
2009-12-17
With polar temperatures approximately 3-5 degrees C warmer than today, the last interglacial stage (approximately 125 kyr ago) serves as a partial analogue for 1-2 degrees C global warming scenarios. Geological records from several sites indicate that local sea levels during the last interglacial were higher than today, but because local sea levels differ from global sea level, accurately reconstructing past global sea level requires an integrated analysis of globally distributed data sets. Here we present an extensive compilation of local sea level indicators and a statistical approach for estimating global sea level, local sea levels, ice sheet volumes and their associated uncertainties. We find a 95% probability that global sea level peaked at least 6.6 m higher than today during the last interglacial; it is likely (67% probability) to have exceeded 8.0 m but is unlikely (33% probability) to have exceeded 9.4 m. When global sea level was close to its current level (>or=-10 m), the millennial average rate of global sea level rise is very likely to have exceeded 5.6 m kyr(-1) but is unlikely to have exceeded 9.2 m kyr(-1). Our analysis extends previous last interglacial sea level studies by integrating literature observations within a probabilistic framework that accounts for the physics of sea level change. The results highlight the long-term vulnerability of ice sheets to even relatively low levels of sustained global warming.
Global trends in molecular epidemiology of HIV-1 during 2000–2007
Hemelaar, Joris; Gouws, Eleanor; Ghys, Peter D.; Osmanov, Saladin
2013-01-01
Objective To estimate the global and regional distribution of HIV-1 subtypes and recombinants between 2000 and 2007. Design Country-specific HIV-1 molecular epidemiology data were combined with estimates of the number of HIV-infected people in each country. Method Cross-sectional HIV-1 subtyping data were collected from 65913 samples in 109 countries between 2000 and 2007. The distribution of HIV-1 subtypes in individual countries was weighted according to the number of HIV-infected people in each country to generate estimates of regional and global HIV-1 subtype distribution for the periods 2000–2003 and 2004–2007. Results Analysis of the global distribution of HIV-1 subtypes and recombinants in the two time periods indicated a broadly stable distribution of HIV-1 subtypes worldwide with a notable increase in the proportion of circulating recombinant forms (CRFs), a decrease in unique recombinant forms (URFs), and an overall increase in recombinants. In 2004–2007, subtype C accounted for nearly half (48%) of all global infections, followed by subtypes A (12%) and B (11%), CRF02_AG (8%), CRF01_AE (5%), subtype G (5%) and D(2%). Subtypes F, H, J and K together cause fewer than 1% of infections worldwide. Other CRFs and URFs are each responsible for 4% of global infections, bringing the combined total of worldwide CRFs to 16% and all recombinants (CRFs plus URFs) to 20%. Conclusions The global and regional distributions of individual subtypes and recombinants are broadly stable, although CRFs may play an increasing role in the HIV pandemic. The global diversity of HIV-1 poses a formidable challenge to HIV vaccine development. PMID:21297424
NASA Technical Reports Server (NTRS)
Northup, Emily; Benson Early, Amanda; Beach, Aubrey; Wang, Dali; Kusterer, John; Quam, Brandi; Chen, Gao
2015-01-01
The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the ingest, archive, and distribution of NASA Earth Science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The ASDC specializes in atmospheric data that is important to understanding the causes and processes of global climate change and the consequences of human activities on the climate. The ASDC currently supports more than 44 projects and has over 1,700 archived data sets, which increase daily. ASDC customers include scientists, researchers, federal, state, and local governments, academia, industry, and application users, the remote sensing community, and the general public.
Global Distribution of Pyrogenic Carbon
NASA Astrophysics Data System (ADS)
Reisser, Moritz; Abiven, Samuel; Schmidt, Michael W. I.
2016-04-01
Pyrogenic Carbon (PyC) is ubiquitous in the environment and represents presumably one of the most stable compounds of the total organic carbon. Due to its persistence in the soil, it might play an important role in the global carbon cycle. In order to model future CO2 emissions from soils it is thus crucial to know where and how much of PyC exists on a global scale. Yet, only rough estimates for global PyC stocks in soils could be made, and even less is known about the distribution across ecosystems. Therefore we propose here literature analysis of data on PyC concentrations and stocks worldwide. We extracted PyC values in soils from the literature (n = 600) and analysed the percentage of PyC in the soil organic carbon (SOC) as a function of climate (temperature, precipitation), soil parameters (pH, clay content), fire characteristics (fire frequency and fire regime) and land use. Overall, the average contribution of PyC to SOC was 13 %, ranging from 0.1 % up to 60 %. We observed that the PyC content was significantly higher with high clay content, higher pH, and in cultivated land as compared to forest and grassland. We did not observe any relationships between fire activity, frequency or intensity and PyC % at a global scale. When the fire regime was monitored on site (only 12 % of the data we collected), we observed higher PyC concentrations with higher fire frequencies. We hypothesise that the resolution of global fire datasets is neither temporally nor spatially high enough to explain the very local fire history of the soil samples. Data points were not homogeneously distributed on the globe, but rather aggregated in places like Central Europe, the Russian Steppe or North America. Therefore, a global interpolation is not directly possible. We modelled PyC concentrations, based on the five most significant parameters, which were clay content, pH, mean annual temperature and precipitation as well as land use. We then predicted worldwide PyC using global datasets existing for these five variables. We present a global map of PyC concentrations as well as it stocks. In arid ecosystems, where SOC is generally low, stocks of PyC are also low, even though concentrations can be very high. On the other hand, stocks are mostly very large in temperate and boreal ecosystems, even if concentrations are rather low, because total SOC stocks are very high there. Integrating our modelled data, we result in a total global stock of about 230 Pg PyC, corresponding to about 10 % of the total soil organic carbon stock. This value lies well in range with current rule-of-thump estimates of previous studies.
NASA Astrophysics Data System (ADS)
Huang, Tao; Lühr, Hermann; Wang, Hui
2017-11-01
On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Lenzen, Allen J.; Johnson, Donald R.
1991-01-01
This study surveys the large-scale distribution of heating for January 1979 obtained from five sources of information. Through intercomparison of these distributions, with emphasis on satellite-derived information, an investigation is conducted into the global distribution of atmospheric heating and the impact of observations on the diagnostic estimates of heating derived from assimilated datasets. The results indicate a substantial impact of satellite information on diagnostic estimates of heating in regions where there is a scarcity of conventional observations. The addition of satellite data provides information on the atmosphere's temperature and wind structure that is important for estimation of the global distribution of heating and energy exchange.
Global Change and the Function and Distribution of Wetlands
Middleton, Beth A.
2012-01-01
The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists. The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands. Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.
Mapping the global distribution of livestock.
Robinson, Timothy P; Wint, G R William; Conchedda, Giulia; Van Boeckel, Thomas P; Ercoli, Valentina; Palamara, Elisa; Cinardi, Giuseppina; D'Aietti, Laura; Hay, Simon I; Gilbert, Marius
2014-01-01
Livestock contributes directly to the livelihoods and food security of almost a billion people and affects the diet and health of many more. With estimated standing populations of 1.43 billion cattle, 1.87 billion sheep and goats, 0.98 billion pigs, and 19.60 billion chickens, reliable and accessible information on the distribution and abundance of livestock is needed for a many reasons. These include analyses of the social and economic aspects of the livestock sector; the environmental impacts of livestock such as the production and management of waste, greenhouse gas emissions and livestock-related land-use change; and large-scale public health and epidemiological investigations. The Gridded Livestock of the World (GLW) database, produced in 2007, provided modelled livestock densities of the world, adjusted to match official (FAOSTAT) national estimates for the reference year 2005, at a spatial resolution of 3 minutes of arc (about 5×5 km at the equator). Recent methodological improvements have significantly enhanced these distributions: more up-to date and detailed sub-national livestock statistics have been collected; a new, higher resolution set of predictor variables is used; and the analytical procedure has been revised and extended to include a more systematic assessment of model accuracy and the representation of uncertainties associated with the predictions. This paper describes the current approach in detail and presents new global distribution maps at 1 km resolution for cattle, pigs and chickens, and a partial distribution map for ducks. These digital layers are made publically available via the Livestock Geo-Wiki (http://www.livestock.geo-wiki.org), as will be the maps of other livestock types as they are produced.
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Estimating indices of range shifts in birds using dynamic models when detection is imperfect
Clement, Matthew J.; Hines, James E.; Nichols, James D.; Pardieck, Keith L.; Ziolkowski, David J.
2016-01-01
There is intense interest in basic and applied ecology about the effect of global change on current and future species distributions. Projections based on widely used static modeling methods implicitly assume that species are in equilibrium with the environment and that detection during surveys is perfect. We used multiseason correlated detection occupancy models, which avoid these assumptions, to relate climate data to distributional shifts of Louisiana Waterthrush in the North American Breeding Bird Survey (BBS) data. We summarized these shifts with indices of range size and position and compared them to the same indices obtained using more basic modeling approaches. Detection rates during point counts in BBS surveys were low, and models that ignored imperfect detection severely underestimated the proportion of area occupied and slightly overestimated mean latitude. Static models indicated Louisiana Waterthrush distribution was most closely associated with moderate temperatures, while dynamic occupancy models indicated that initial occupancy was associated with diurnal temperature ranges and colonization of sites was associated with moderate precipitation. Overall, the proportion of area occupied and mean latitude changed little during the 1997–2013 study period. Near-term forecasts of species distribution generated by dynamic models were more similar to subsequently observed distributions than forecasts from static models. Occupancy models incorporating a finite mixture model on detection – a new extension to correlated detection occupancy models – were better supported and may reduce bias associated with detection heterogeneity. We argue that replacing phenomenological static models with more mechanistic dynamic models can improve projections of future species distributions. In turn, better projections can improve biodiversity forecasts, management decisions, and understanding of global change biology.
JELC-LITE: Unconventional Instructional Design for Special Operations Training
NASA Technical Reports Server (NTRS)
Friedman, Mark
2012-01-01
Current special operations staff training is based on the Joint Event Life Cycle (JELC). It addresses operational level tasks in multi-week, live military exercises which are planned over a 12 to 18 month timeframe. As the military experiences changing global mission sets, shorter training events using distributed technologies will increasingly be needed to augment traditional training. JELC-Lite is a new approach for providing relevant training between large scale exercises. This new streamlined, responsive training model uses distributed and virtualized training technologies to establish simulated scenarios. It keeps proficiency levels closer to optimal levels -- thereby reducing the performance degradation inherent in periodic training. It can be delivered to military as well as under-reached interagency groups to facilitate agile, repetitive training events. JELC-Lite is described by four phases paralleling the JELC, differing mostly in scope and scale. It has been successfully used with a Theater Special Operations Command and fits well within the current environment of reduced personnel and financial resources.
From Emergence to Eradication: The Epidemiology of Poliomyelitis Deconstructed
Nathanson, Neal; Kew, Olen M.
2010-01-01
Poliomyelitis has appeared in epidemic form, become endemic on a global scale, and been reduced to near-elimination, all within the span of documented medical history. Epidemics of the disease appeared in the late 19th century in many European countries and North America, following which polio became a global disease with annual epidemics. During the period of its epidemicity, 1900–1950, the age distribution of poliomyelitis cases increased gradually. Beginning in 1955, the creation of poliovirus vaccines led to a stepwise reduction in poliomyelitis, culminating in the unpredicted elimination of wild polioviruses in the United States by 1972. Global expansion of polio immunization resulted in a reduction of paralytic disease from an estimated annual prevaccine level of at least 600,000 cases to fewer than 1,000 cases in 2000. Indigenous wild type 2 poliovirus was eradicated in 1999, but unbroken localized circulation of poliovirus types 1 and 3 continues in 4 countries in Asia and Africa. Current challenges to the final eradication of paralytic poliomyelitis include the continued transmission of wild polioviruses in endemic reservoirs, reinfection of polio-free areas, outbreaks due to circulating vaccine-derived polioviruses, and persistent excretion of vaccine-derived poliovirus by a few vaccinees with B-cell immunodeficiencies. Beyond the current efforts to eradicate the last remaining wild polioviruses, global eradication efforts must safely navigate through an unprecedented series of endgame challenges to assure the permanent cessation of all human poliovirus infections. PMID:20978089
NASA Astrophysics Data System (ADS)
Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.
2018-02-01
Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.
The global distribution of tetrapods reveals a need for targeted reptile conservation.
Roll, Uri; Feldman, Anat; Novosolov, Maria; Allison, Allen; Bauer, Aaron M; Bernard, Rodolphe; Böhm, Monika; Castro-Herrera, Fernando; Chirio, Laurent; Collen, Ben; Colli, Guarino R; Dabool, Lital; Das, Indraneil; Doan, Tiffany M; Grismer, Lee L; Hoogmoed, Marinus; Itescu, Yuval; Kraus, Fred; LeBreton, Matthew; Lewin, Amir; Martins, Marcio; Maza, Erez; Meirte, Danny; Nagy, Zoltán T; de C Nogueira, Cristiano; Pauwels, Olivier S G; Pincheira-Donoso, Daniel; Powney, Gary D; Sindaco, Roberto; Tallowin, Oliver J S; Torres-Carvajal, Omar; Trape, Jean-François; Vidan, Enav; Uetz, Peter; Wagner, Philipp; Wang, Yuezhao; Orme, C David L; Grenyer, Richard; Meiri, Shai
2017-11-01
The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; Moebius, E.; Kucharek, H.
2014-11-01
The Interstellar Boundary Explorer (IBEX) observes the IBEX ribbon, which stretches across much of the sky observed in energetic neutral atoms (ENAs). The ribbon covers a narrow (∼20°-50°) region that is believed to be roughly perpendicular to the interstellar magnetic field. Superimposed on the IBEX ribbon is the globally distributed flux that is controlled by the processes and properties of the heliosheath. This is a second study that utilizes a previously developed technique to separate ENA emissions in the ribbon from the globally distributed flux. A transparency mask is applied over the ribbon and regions of high emissions. We thenmore » solve for the globally distributed flux using an interpolation scheme. Previously, ribbon separation techniques were applied to the first year of IBEX-Hi data at and above 0.71 keV. Here we extend the separation analysis down to 0.2 keV and to five years of IBEX data enabling first maps of the ribbon and the globally distributed flux across the full sky of ENA emissions. Our analysis shows the broadening of the ribbon peak at energies below 0.71 keV and demonstrates the apparent deformation of the ribbon in the nose and heliotail. We show global asymmetries of the heliosheath, including both deflection of the heliotail and differing widths of the lobes, in context of the direction, draping, and compression of the heliospheric magnetic field. We discuss implications of the ribbon maps for the wide array of concepts that attempt to explain the ribbon's origin. Thus, we present the five-year separation of the IBEX ribbon from the globally distributed flux in preparation for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.« less
Khormi, Hassan M; Kumar, Lalit
2016-11-21
We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
2016-12-05
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
NASA Astrophysics Data System (ADS)
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
2016-12-01
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.
Recent human history governs global ant invasion dynamics
Cleo Bertelsmeier; Sébastien Ollier; Andrew Liebhold; Laurent Keller
2017-01-01
Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien...
ERIC Educational Resources Information Center
Bartel-Radic, Anne; Moos, J. Chris; Long, Suzanna K.
2015-01-01
This article presents an innovative pedagogy based on student participation in globally distributed project teams. The study questions the link between student learning of intercultural competence and the global teaming experience. Data was collected from 115 students participating in 22 virtual intercultural teams. Results revealed that students…
[Results of the NASA/University Joint Venture (JOVE) Program at the University of Vermont
NASA Technical Reports Server (NTRS)
Yu, Jun
1996-01-01
Sea ice parameters in the north and south polar regions are important components of the global climate system. Current air-sea-ice models do not take into account oscillatory behavior in the ice covers other than for the seasonal cycle, since the relative importance of such oscillations is not known. An analysis of oscillatory behavior then becomes important from the standpoints of determining the significance of the various oscillatory components and perhaps discovery of some new aspects of the air-sea-ice interaction processes. One of these components, the El Nino-Southern Oscillation (ENSO) is known to be associated with weather changes on a global scale. Indeed, its spectral components have also been observed in the sea ice distribution in both hemispheres.
Spatial and temporal patterns of mass bleaching of corals in the Anthropocene
NASA Astrophysics Data System (ADS)
Hughes, Terry P.; Anderson, Kristen D.; Connolly, Sean R.; Heron, Scott F.; Kerry, James T.; Lough, Janice M.; Baird, Andrew H.; Baum, Julia K.; Berumen, Michael L.; Bridge, Tom C.; Claar, Danielle C.; Eakin, C. Mark; Gilmour, James P.; Graham, Nicholas A. J.; Harrison, Hugo; Hobbs, Jean-Paul A.; Hoey, Andrew S.; Hoogenboom, Mia; Lowe, Ryan J.; McCulloch, Malcolm T.; Pandolfi, John M.; Pratchett, Morgan; Schoepf, Verena; Torda, Gergely; Wilson, Shaun K.
2018-01-01
Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.
Janssens, Steven B; Knox, Eric B; Huysmans, Suzy; Smets, Erik F; Merckx, Vincent S F T
2009-09-01
Impatiens comprises more than 1000 species and is one of the largest genera of flowering plants. The genus has a subcosmopolitan distribution, yet most of its evolutionary history is unknown. Diversification analyses, divergence time estimates and historical biogeography, illustrated that the extant species of Impatiens originated in Southwest China and started to diversify in the Early Miocene. Until the Early Pliocene, the net diversification rate within the genus was fairly slow. Since that time, however, approximately 80% of all Impatiens lineages have originated. This period of rapid diversification coincides with the global cooling of the Earth's climate and subsequent glacial oscillations. Without this accelerated diversification rate, Impatiens would only have contained 1/5th of its current number of species, thereby indicating the rapid radiation of the genus.
Pinpointing and preventing imminent extinctions.
Ricketts, Taylor H; Dinerstein, Eric; Boucher, Tim; Brooks, Thomas M; Butchart, Stuart H M; Hoffmann, Michael; Lamoreux, John F; Morrison, John; Parr, Mike; Pilgrim, John D; Rodrigues, Ana S L; Sechrest, Wes; Wallace, George E; Berlin, Ken; Bielby, Jon; Burgess, Neil D; Church, Don R; Cox, Neil; Knox, David; Loucks, Colby; Luck, Gary W; Master, Lawrence L; Moore, Robin; Naidoo, Robin; Ridgely, Robert; Schatz, George E; Shire, Gavin; Strand, Holly; Wettengel, Wes; Wikramanayake, Eric
2005-12-20
Slowing rates of global biodiversity loss requires preventing species extinctions. Here we pinpoint centers of imminent extinction, where highly threatened species are confined to single sites. Within five globally assessed taxa (i.e., mammals, birds, selected reptiles, amphibians, and conifers), we find 794 such species, three times the number recorded as having gone extinct since 1500. These species occur in 595 sites, concentrated in tropical forests, on islands, and in mountainous areas. Their taxonomic and geographical distribution differs significantly from that of historical extinctions, indicating an expansion of the current extinction episode beyond sensitive species and places toward the planet's most biodiverse mainland regions. Only one-third of the sites are legally protected, and most are surrounded by intense human development. These sites represent clear opportunities for urgent conservation action to prevent species loss.
DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements
NASA Astrophysics Data System (ADS)
Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.
2017-12-01
The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.
Global protected area expansion is compromised by projected land-use and parochialism.
Montesino Pouzols, Federico; Toivonen, Tuuli; Di Minin, Enrico; Kukkala, Aija S; Kullberg, Peter; Kuusterä, Johanna; Lehtomäki, Joona; Tenkanen, Henrikki; Verburg, Peter H; Moilanen, Atte
2014-12-18
Protected areas are one of the main tools for halting the continuing global biodiversity crisis caused by habitat loss, fragmentation and other anthropogenic pressures. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To maximize conservation outcomes, it is crucial to identify the best expansion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the protected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) 'red list of threatened species', and terrestrial ecoregions (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial conservation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evidence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering current and projected land-use pressures.
Using Scrum Practices in GSD Projects
NASA Astrophysics Data System (ADS)
Paasivaara, Maria; Lassenius, Casper
In this chapter we present advice for applying Scrum practices to globally distributed software development projects. The chapter is based on a multiple-case study of four distributed Scrum projects. We discuss the use of distributed daily Scrums, Scrum-of-Scrums, Sprints, Sprint planning meetings, Sprint Demos, Retrospective meetings, and Backlogs. Moreover, we present lessons that distributed Scrum projects can benefit from non-agile globally distributed software development projects: frequent visits and multiple communication modes.
Characterizing Urban Air Quality to Provide Actionable Information
NASA Astrophysics Data System (ADS)
Lary, D. J.
2017-12-01
The urbanization of national and global populations is associated with increasing challenges to creation of sustainable and livable communities. In urban environments, there is currently a lack of accurate actionable information on atmospheric composition on fine spatial and temporal scales. There is a pressing need to better characterize the complex spatial distribution of environmental features of cityscapes and improve understanding of their relationship to health and quality of life. This talk gives an overview of integrating sensing of atmospheric composition on multiple scales using a wide range of devices from distributed low cost-sensors, to aerial vehicles, to satellites. Machine learning plays a key role in providing both the cross-calibration and turning the exposure dosimetry into actionable insights for urban environments.
Next Generation Multimedia Distributed Data Base Systems
NASA Technical Reports Server (NTRS)
Pendleton, Stuart E.
1997-01-01
The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.
The debt of nations and the distribution of ecological impacts from human activities
Srinivasan, U. Thara; Carey, Susan P.; Hallstein, Eric; Higgins, Paul A. T.; Kerr, Amber C.; Koteen, Laura E.; Smith, Adam B.; Watson, Reg; Harte, John; Norgaard, Richard B.
2008-01-01
As human impacts to the environment accelerate, disparities in the distribution of damages between rich and poor nations mount. Globally, environmental change is dramatically affecting the flow of ecosystem services, but the distribution of ecological damages and their driving forces has not been estimated. Here, we conservatively estimate the environmental costs of human activities over 1961–2000 in six major categories (climate change, stratospheric ozone depletion, agricultural intensification and expansion, deforestation, overfishing, and mangrove conversion), quantitatively connecting costs borne by poor, middle-income, and rich nations to specific activities by each of these groups. Adjusting impact valuations for different standards of living across the groups as commonly practiced, we find striking imbalances. Climate change and ozone depletion impacts predicted for low-income nations have been overwhelmingly driven by emissions from the other two groups, a pattern also observed for overfishing damages indirectly driven by the consumption of fishery products. Indeed, through disproportionate emissions of greenhouse gases alone, the rich group may have imposed climate damages on the poor group greater than the latter's current foreign debt. Our analysis provides prima facie evidence for an uneven distribution pattern of damages across income groups. Moreover, our estimates of each group's share in various damaging activities are independent from controversies in environmental valuation methods. In a world increasingly connected ecologically and economically, our analysis is thus an early step toward reframing issues of environmental responsibility, development, and globalization in accordance with ecological costs. PMID:18212119
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, E.R.; Hyams, K.C.
1996-07-01
The distribution of Phlebotomus papatasi in Southwest Asia is thought to be highly dependent on temperature and relative humidity. A discriminant analysis model based on weather data and reported vector surveys was developed to predict the seasonal and geographic distribution of P. papatasi in this region. To simulate global warming, temperature values for 115 weather stations were increased by 1 {degrees}C, 3{degrees}C, and 5{degrees}C, and the outcome variable coded as unknown in the model. Probability of occurrence values were then predicted for each location with a weather station. Stations with positive probability of occurrence values for May, June, July, andmore » August were considered locations where two or more life cycles of P. papatasi could occur and which could support endemic transmission of leishmaniasis and sandfly fever. Among 115 weather stations, 71 (62%) would be considered endemic with current temperature conditions; 14 (12%) additional station could become endemic with an increase of 1 {degrees}C; 17 (15%) more than a 3{degrees}C increase; and 12 (10%) more (all but one station) with a t{degrees}C increase. In addition to increased geographic distribution, seasonality of disease transmission could be extended throughout 12 months of the year in 7 (6%) locations with at least a 3{degrees}C rise in temperature and in 29 (25%) locations with a 5{degrees}C rise. 15 refs., 4 figs.« less
A robust close-range photogrammetric target extraction algorithm for size and type variant targets
NASA Astrophysics Data System (ADS)
Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert
2016-05-01
The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.
Federated software defined network operations for LHC experiments
NASA Astrophysics Data System (ADS)
Kim, Dongkyun; Byeon, Okhwan; Cho, Kihyeon
2013-09-01
The most well-known high-energy physics collaboration, the Large Hadron Collider (LHC), which is based on e-Science, has been facing several challenges presented by its extraordinary instruments in terms of the generation, distribution, and analysis of large amounts of scientific data. Currently, data distribution issues are being resolved by adopting an advanced Internet technology called software defined networking (SDN). Stability of the SDN operations and management is demanded to keep the federated LHC data distribution networks reliable. Therefore, in this paper, an SDN operation architecture based on the distributed virtual network operations center (DvNOC) is proposed to enable LHC researchers to assume full control of their own global end-to-end data dissemination. This may achieve an enhanced data delivery performance based on data traffic offloading with delay variation. The evaluation results indicate that the overall end-to-end data delivery performance can be improved over multi-domain SDN environments based on the proposed federated SDN/DvNOC operation framework.
The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface
NASA Technical Reports Server (NTRS)
Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.; Strahan, Susan; Steenrod, Stephen
2015-01-01
The distribution of transit times from the Northern Hemisphere (NH) midlatitude surface is a fundamental property of tropospheric transport. Here we present an analysis of the transit time distribution (TTD) since air last contacted the northern midlatitude surface layer, as simulated by the NASA Global Modeling Initiative Chemistry Transport Model. We find that throughout the troposphere the TTD is characterized by long flat tails that reflect the recirculation of old air from the Southern Hemisphere and results in mean ages that are significantly larger than the modal age. Key aspects of the TTD -- its mode, mean and spectral width -- are interpreted in terms of tropospheric dynamics, including seasonal shifts in the location and strength of tropical convection and variations in quasi-isentropic transport out of the northern midlatitude surface layer. Our results indicate that current diagnostics of tropospheric transport are insufficient for comparing model transport and that the full distribution of transit times is a more appropriate constraint.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
Sharing global CO2 emission reductions among one billion high emitters
Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo
2009-01-01
We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586
A global map of mangrove forest soil carbon at 30 m spatial resolution
NASA Astrophysics Data System (ADS)
Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily
2018-05-01
With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.
Prestele, Reinhard; Hirsch, Annette L; Davin, Edouard L; Seneviratne, Sonia I; Verburg, Peter H
2018-05-10
Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large-scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present-day national-level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present-day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122-215 Mha or 9%-15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no-tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no-tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533-1130 Mha (38%-81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Global rates of habitat loss and implications for amphibian conservation
Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.
2007-01-01
A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the earth supporting the richest assemblages of amphibians are currently undergoing the highest rates of landscape modification.
Understanding the cryptic nature of Lassa fever in West Africa.
Gibb, Rory; Moses, Lina M; Redding, David W; Jones, Kate E
2017-09-01
Lassa fever (LF) is increasingly recognized by global health institutions as an important rodent-borne disease with severe impacts on some of West Africa's poorest communities. However, our knowledge of LF ecology, epidemiology and distribution is limited, which presents barriers to both short-term disease forecasting and prediction of long-term impacts of environmental change on Lassa virus (LASV) zoonotic transmission dynamics. Here, we synthesize current knowledge to show that extrapolations from past research have produced an incomplete picture of the incidence and distribution of LF, with negative consequences for policy planning, medical treatment and management interventions. Although the recent increase in LF case reports is likely due to improved surveillance, recent studies suggest that future socio-ecological changes in West Africa may drive increases in LF burden. Future research should focus on the geographical distribution and disease burden of LF, in order to improve its integration into public policy and disease control strategies.
Chand, Prerna; Kamiya, Takahiro
2016-12-18
The genus Xestoleberis has a global distribution, and although they are predominant in shallow marine environments adapted to both sediment and algal habitats, only two species of this genus, Xestoleberis curta (Brady, 1866) and Xestoleberis variegata Brady, 1880, have previously been reported from the Fiji archipelago. Herein we report seven new species of the genus Xestoleberis from intertidal environments of fringing reef flats of the Fiji Islands: Xestoleberis becca n. sp., Xestoleberis concava n. sp., Xestoleberis gracilariaii n. sp., Xestoleberis marcula n. sp., Xestoleberis natuvuensis n. sp., Xestoleberis penna n. sp. and Xestoleberis petrosa n. sp. With the exception of X. becca n. sp., Xestoleberis species show restricted distribution within Fijian waters. The possible causes for their distribution patterns are suggested to be physical barriers imposed by the fast flowing Bligh Water currents, and islands separated by deep ocean waters.
Biogeography of photoautotrophs in the high polar biome
Pointing, Stephen B.; Burkhard Büdel; Convey, Peter; Gillman, Len N.; Körner, Christian; Leuzinger, Sebastian; Vincent, Warwick F.
2015-01-01
The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks. PMID:26442009
Calculated occultation profiles of Io and the hot spots
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Soderblom, L. A.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.
1986-01-01
Occultations of Io by other Galilean satellites in 1985 provide a means to locate volcanic hot spots and to model their temperatures. The expected time variations in the integral reflected and emitted radiation of the occultations are computed as a function of wavelength (visual to 8.7 microns). The best current ephemerides were used to calculate the geometry of each event as viewed from earth. Visual reflectances were modeled from global mosaics of Io. Thermal emission from the hot spots was calculated from Voyager 1 IRIS observations and, for regions unobserved by IRIS, from a model based on the distribution of low-albedo features. The occultations may help determine (1) the location and temperature distribution of Loki; (2) the source(s) of excess emission in the region from long 50 deg to 200 deg and (3) the distribution of small, high-temperature sources.
NASA Astrophysics Data System (ADS)
Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua
2015-12-01
Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.
Collatz, G James; Berry, Joseph A; Clark, James S
1998-05-01
C 4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO 2 partial pressures (pCO 2 ) compared to the evolutionarily more primitive C 3 type. All else being equal, C 4 plants tend to be favored over C 3 plants in warm humid climates and, conversely, C 3 plants tend to be favored over C 4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological crossover temperature above which C 4 species have a carbon gain advantage and below which C 3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO 2 -dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO 2 (35 Pa). In addition to favorable temperatures, C 4 plants require sufficient precipitation during the warm growing season. C 4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C 3 plants) - regardless of the photosynthetic superiority of the C 4 pathway - in regions otherwise favorable for C 4 . To construct global maps of the distribution of C 4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of the mean monthly temperature to classify the globe into areas which should favor C 4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as C 3 , C 4 , and mixed under current climate and pCO 2 . Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C 4 grasses in the past and the future using plausible estimates for the climates and pCO 2 . When pCO 2 is lowered to pre-industrial levels, C 4 grasses expanded their range into large areas now classified as C 3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler and pCO 2 was about 20 Pa, our analysis predicts substantial expansion of C 4 vegetation - particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double the current pCO 2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the area of C 4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C 3 photosynthetic efficiency by higher pCO 2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis of stable isotopes and other data from regions where large changes are predicted to have occurred.
Schrecker, Ted
2016-08-17
New contours of global inequality present new challenges for global health, and require that we consider new kinds of health issues as global. I provide a number of illustrations, arguing the need for a political science of health that goes beyond conventional preoccupations with formal institutional and inter-state interactions and takes into account how globalization has affected the health policy landscape and restructured the distribution of economic and political power not only among countries, but also within them. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Global challenges in water, sanitation and health.
Moe, Christine L; Rheingans, Richard D
2006-01-01
The year 2005 marks the beginning of the "International Decade for Action: Water for Life" and renewed effort to achieve the Millennium Development Goals (MDGS) to reduce by half the proportion of the world's population without sustainable access to safe drinking water and sanitation by 2015. Currently, UNICEF and WHO estimate that 1.1 billion people lack access to improved water supplies and 2.6 billion people lack adequate sanitation. Providing safe water and basic sanitation to meet the MDGs will require substantial economic resources, sustainable technological solutions and courageous political will. We review five major challenges to providing safe water and sanitation on a global basis: (1) contamination of water in distribution systems, (2) growing water scarcity and the potential for water reuse and conservation, (3) implementing innovative low-cost sanitation systems, (4) providing sustainable water supplies and sanitation for megacities, and (5) reducing global and regional disparities in access to water and sanitation and developing financially sustainable water and sanitation services.
Global Ocean Integrals and Means, with Trend Implications.
Wunsch, Carl
2016-01-01
Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.
Climate change: the potential impact on occupational exposure to pesticides.
Gatto, Maria Pia; Cabella, Renato; Gherardi, Monica
2016-01-01
This study investigates the possible influence of global climate change (GCC) on exposure to plant protection products (PPP) in the workplace. The paper has evaluated the main potential relationships between GCC and occupational exposure to pesticides, by highlighting how global warming might affect their future use and by reviewing its possible consequence on workers' exposure. Global warming, influencing the spatial and temporal distribution and proliferation of weeds, the impact of already present insect pests and pathogens and the introduction of new infesting species, could cause a changed use of pesticides in terms of higher amounts, doses and types of products applied, so influencing the human exposure to them during agricultural activities. GCC, in particular heat waves, may also potentially have impact on workers' susceptibility to pesticides absorption. Prevention policies of health in the workplace must be ready to address new risks from occupational exposure to pesticide, presumably different from current risks, since an increased use may be expected.
NASA Astrophysics Data System (ADS)
Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2017-04-01
This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.
Brotons, Lluís
2014-01-01
In this work, I evaluate the impact of species distribution models (SDMs) on the current status of environmental and ecological journals by asking the question to which degree development of SDMs in the literature is related to recent changes in the impact factors of ecological journals. The hypothesis evaluated states that research fronts are likely to attract research attention and potentially drive citation patterns, with journals concentrating papers related to the research front receiving more attention and benefiting from faster increases in their impact on the ecological literature. My results indicate a positive relationship between the number of SDM related articles published in a journal and its impact factor (IF) growth during the period 2000-09. However, the percentage of SDM related papers in a journal was strongly and positively associated with the percentage of papers on climate change and statistical issues. The results support the hypothesis that global change science has been critical in the development of SDMs and that interest in climate change research in particular, rather than the usage of SDM per se, appears as an important factor behind journal IF increases in ecology and environmental sciences. Finally, our results on SDM application in global change science support the view that scientific interest rather than methodological fashion appears to be the major driver of research attraction in the scientific literature.
Orwat, Melanie Iris; Kempny, Aleksander; Bauer, Ulrike; Gatzoulis, Michael A; Baumgartner, Helmut; Diller, Gerhard-Paul
2015-09-15
The determinants of adult congenital heart disease (ACHD) research output are only partially understood. The heterogeneity of ACHD naturally calls for collaborative work; however, limited information exists on the impact of collaboration on academic performance. We aimed to examine the global topology of ACHD research, distribution of research collaboration and its association with cumulative research output. Based on publications presenting original research between 2005 and 2011, a network analysis was performed quantifying centrality measures and key players in the field of ACHD. In addition, network maps were produced to illustrate the global distribution and interconnected nature of ACHD research. The proportion of collaborative research was 35.6 % overall, with a wide variation between countries (7.1 to 62.8%). The degree of research collaboration, as well as measures of network centrality (betweenness and degree centrality), were statistically associated with cumulative research output independently of national wealth and available workforce. The global ACHD research network was found to be scale-free with a small number of central hubs and a relatively large number of peripheral nodes. In addition, we could identify potentially influential hubs based on cluster analysis and measures of centrality/key player analysis. Using network analysis methods the current study illustrates the complex and global structures of ACHD research. It suggests that collaboration between research institutions is associated with higher academic output. As a consequence national and international collaboration in ACHD research should be encouraged and the creation of an adequate supporting infrastructure should be further promoted. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chiang, Yen-Sheng
2015-11-01
Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.
Geography of Global Forest Carbon Stocks & Dynamics
NASA Astrophysics Data System (ADS)
Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.
2014-12-01
Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.
NASA Astrophysics Data System (ADS)
Bergmann-Wolf, Inga; Dobslaw, Henryk
2016-04-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists. In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed. Swenson, S., D. Chambers and J. Wahr (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410 Bergmann-Wolf, I., L. Zhang and H. Dobslaw (2014), Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from GRACE, J. Geod. Sci., 4, 37-48
Kinkar, Liina; Laurimäe, Teivi; Acosta-Jamett, Gerardo; Andresiuk, Vanessa; Balkaya, Ibrahim; Casulli, Adriano; Gasser, Robin B; van der Giessen, Joke; González, Luis Miguel; Haag, Karen L; Zait, Houria; Irshadullah, Malik; Jabbar, Abdul; Jenkins, David J; Kia, Eshrat Beigom; Manfredi, Maria Teresa; Mirhendi, Hossein; M'rad, Selim; Rostami-Nejad, Mohammad; Oudni-M'rad, Myriam; Pierangeli, Nora Beatriz; Ponce-Gordo, Francisco; Rehbein, Steffen; Sharbatkhori, Mitra; Simsek, Sami; Soriano, Silvia Viviana; Sprong, Hein; Šnábel, Viliam; Umhang, Gérald; Varcasia, Antonio; Saarma, Urmas
2018-05-19
Echinococcus granulosus sensu stricto (s.s.) is the major cause of human cystic echinococcosis worldwide and is listed among the most severe parasitic diseases of humans. To date, numerous studies have investigated the genetic diversity and population structure of E. granulosus s.s. in various geographic regions. However, there has been no global study. Recently, using mitochondrial DNA, it was shown that E. granulosus s.s. G1 and G3 are distinct genotypes, but a larger dataset is required to confirm the distinction of these genotypes. The objectives of this study were to: (i) investigate the distinction of genotypes G1 and G3 using a large global dataset; and (ii) analyse the genetic diversity and phylogeography of genotype G1 on a global scale using near-complete mitogenome sequences. For this study, 222 globally distributed E. granulosus s.s. samples were used, of which 212 belonged to genotype G1 and 10 to G3. Using a total sequence length of 11,682 bp, we inferred phylogenetic networks for three datasets: E. granulosus s.s. (n = 222), G1 (n = 212) and human G1 samples (n = 41). In addition, the Bayesian phylogenetic and phylogeographic analyses were performed. The latter yielded several strongly supported diffusion routes of genotype G1 originating from Turkey, Tunisia and Argentina. We conclude that: (i) using a considerably larger dataset than employed previously, E. granulosus s.s. G1 and G3 are indeed distinct mitochondrial genotypes; (ii) the genetic diversity of E. granulosus s.s. G1 is high globally, with lower values in South America; and (iii) the complex phylogeographic patterns emerging from the phylogenetic and geographic analyses suggest that the current distribution of genotype G1 has been shaped by intensive animal trade. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
..., Inc., a Subsidiary of Global Heating Solutions, Inc., Currently Known as Truheat, a Division of Three Heat LLC, Allegan, MI; Electro-Heat, Inc., a Subsidiary of Global Heating Solutions, Inc., Currently... subsidiary of Global Heating Solutions, Inc., Allegan, Michigan and Electro-Heat, Inc., a subsidiary of...
The interplay of homing and dispersal in green turtles: a focus on the southwestern atlantic.
Naro-Maciel, Eugenia; Bondioli, Ana Cristina Vigliar; Martin, Meredith; de Pádua Almeida, Antônio; Baptistotte, Cecília; Bellini, Claudio; Marcovaldi, Maria Ângela; Santos, Armando José Barsante; Amato, George
2012-01-01
Current understanding of spatial ecology is insufficient in many threatened marine species, failing to provide a solid basis for conservation and management. To address this issue for globally endangered green turtles, we investigated their population distribution by sequencing a mitochondrial control region segment from the Rocas Atoll courtship area (n = 30 males) and four feeding grounds (FGs) in Brazil (n = 397), and compared our findings to published data (n (nesting) = 1205; n (feeding) = 1587). At Rocas Atoll, the first Atlantic courtship area sequenced to date, we found males were differentiated from local juveniles but not from nesting females. In combination with tag data, this indicates possible male philopatry. The most common haplotypes detected at the study sites were CMA-08 and CMA-05, and significant temporal variation was not revealed. Although feeding grounds were differentiated overall, intra-regional structure was less pronounced. Ascension was the primary natal source of the study FGs, with Surinam and Trindade as secondary sources. The study clarified the primary connectivity between Trindade and Brazil. Possible linkages to African populations were considered, but there was insufficient resolution to conclusively determine this connection. The distribution of FG haplotype lineages was nonrandom and indicative of regional clustering. The study investigated impacts of population size, geographic distance, ocean currents, and juvenile natal homing on connectivity, addressed calls for increased genetic sampling in the southwestern Atlantic, and provided data important for conservation of globally endangered green turtles.
Vincent, Flora J; Colin, Sébastien; Romac, Sarah; Scalco, Eleonora; Bittner, Lucie; Garcia, Yonara; Lopes, Rubens M; Dolan, John R; Zingone, Adriana; de Vargas, Colomban; Bowler, Chris
2018-04-01
Diatoms are a diverse and ecologically important group of phytoplankton. Although most species are considered free living, several are known to interact with other organisms within the plankton. Detailed imaging and molecular characterization of any such partnership is, however, limited, and an appraisal of the large-scale distribution and ecology of such consortia was never attempted. Here, observation of Tara Oceans samples from the Benguela Current led to the detection of an epibiotic association between a pennate diatom and a tintinnid ciliate. We identified the diatom as Fragilariopsis doliolus that possesses a unique feature to form barrel-shaped chains, associated with seven different genera of tintinnids including five previously undescribed associations. The organisms were commonly found together in the Atlantic and Pacific Ocean basins, and live observations of the interaction have been recorded for the first time. By combining confocal and scanning electron microscopy of individual consortia with the sequencing of high-resolution molecular markers, we analyzed their distribution in the global ocean, revealing morpho-genetically distinct tintinnid haplotypes and biogeographically structured diatom haplotypes. The diatom was among the most abundant in the global ocean. We show that the consortia were particularly prevalent in nutrient-replete conditions, rich in potential predators. These observations support the hypothesis of a mutualistic symbiosis, wherein diatoms acquire increased motility and tintinnids benefit from silicification through increased protection, and highlight that such associations may be more prevalent than currently appreciated.
Dynamics of the Antarctic Circumpolar Current as seen by GRACE (Invited)
NASA Astrophysics Data System (ADS)
Thomas, M.; Dobslaw, H.; Bergmann, I.
2010-12-01
The Antarctic Circumpolar Current, being the strongest and longest ocean current on Earth, connects the three great ocean basins and contributes substantially to the global re-distribution of water masses, with a significant impact on global climate. Observational coverage from in-situ measurements is sparse due to the harsh environmental conditions, and satellite altimetry does not capture the full extent of the current due to seasonal sea-ice coverage. Ocean bottom pressure variations as sensed with the satellite gravity mission GRACE provide a promising way to broaden our observational basis. Besides monthly mean gravity fields that provide ocean bottom pressure variations averaged over 30 days, several alternative GRACE products with higher temporal resolution have been developed during the most recent years. These include 10-day solutions from GRGS Toulouse, weekly solutions from the GFZ Potsdam as well as constrained daily solutions from the University of Bonn which have been obtained by means of a Kalman filtering approach. In this presentation, ocean bottom pressure derived from these alternative GRACE releases will be contrasted against both in-situ observations and output from a numerical ocean model, highlighting the additional information contained in these GRACE solutions with respect to the standard monthly fields. By means of statistical analyses of ocean bottom pressure variations and barotropic transports it will be demonstrated how these new GRACE releases are contributing to our understanding of this highly dynamic great ocean conveyor.
The ion temperature gradient: An intrinsic property of Earth's magnetotail
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.; Lin, Y.; Wang, X. Y.
2017-08-01
Although the ion temperature gradient along (XGSM) and across (ZGSM) the Earth's magnetotail, which plays a key role in generating the cross-tail current and establishing pressure balance with the lobes, has been extensively observed by spacecraft, the mechanism responsible for its formation is still unknown. We use multispacecraft observations and three-dimensional (3-D) global hybrid simulations to reveal this mechanism. Using THEMIS (Time History of Events and Macroscale Interactions during Substorms), Geotail, and ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun) observations during individual, near-simultaneous plasma sheet crossings from 10 to 60 RE, we demonstrate that the ion temperature ZGSM profile is bell-shaped at different geocentric distances. This ZGSM profile is also prevalent in statistics of 200 THEMIS current sheet crossings in the near-Earth region. Using 3-D global hybrid simulations, we show that mapping of the XGSM gradient of ion temperature along magnetic field lines produces such a bell-shaped profile. The ion temperature mapping along magnetic field lines in the magnetotail enables construction of two-dimensional distributions of these quantities from vertical (north-south) spacecraft crossings. Our findings suggest that the ion temperature gradient is an intrinsic property of the magnetotail that should be considered in kinetic descriptions of the magnetotail current sheet. Toward this goal, we use theoretical approaches to incorporate the temperature gradient into kinetic current sheet models, making them more realistic.
The current biodiversity extinction event: scenarios for mitigation and recovery.
Novacek, M J; Cleland, E E
2001-05-08
The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.
Formoso, Anahí E; Martin, Gabriel M; Teta, Pablo; Carbajo, Aníbal E; Sauthier, Daniel E Udrizar; Pardiñas, Ulyses F J
2015-01-01
The Patagonian opossum (Lestodelphys halli), the southernmost living marsupial, inhabits dry and open environments, mainly in the Patagonian steppe (between ~32 °S and ~49 °S). Its rich fossil record shows its occurrence further north in Central Argentina during the Quaternary. The paleoenvironmental meaning of the past distribution of L. halli has been mostly addressed in a subjective framework without an explicit connection with the climatic "space" currently occupied by this animal. Here, we assessed the potential distribution of this species and the changes occurred in its geographic range during late Pleistocene-Holocene times and linked the results obtained with conservation issues. To this end, we generated three potential distribution models with fossil records and three with current ones, using MaxEnt software. These models showed a decrease in the suitable habitat conditions for the species, highlighting a range shift from Central-Eastern to South-Western Argentina. Our results support that the presence of L. halli in the Pampean region during the Pleistocene-Holocene can be related to precipitation and temperature variables and that its current presence in Patagonia is more related to temperature and dominant soils. The models obtained suggest that the species has been experiencing a reduction in its geographic range since the middle Holocene, a process that is in accordance with a general increase in moisture and temperature in Central Argentina. Considering the findings of our work and the future scenario of global warming projected for Patagonia, we might expect a harsh impact on the distribution range of this opossum in the near future.
Opell, Brent D.; Haddad, Charles R.; Raven, Robert J.; Soto, Eduardo M.; Ramírez, Martín J.
2016-01-01
Closely related organisms with transoceanic distributions have long been the focus of historical biogeography, prompting the question of whether long-distance dispersal, or tectonic-driven vicariance shaped their current distribution. Regarding the Southern Hemisphere continents, this question deals with the break-up of the Gondwanan landmass, which has also affected global wind and oceanic current patterns since the Miocene. With the advent of phylogenetic node age estimation and parametric bioinformatic advances, researchers have been able to disentangle historical evolutionary processes of taxa with greater accuracy. In this study, we used the coastal spider genus Amaurobioides to investigate the historical biogeographical and evolutionary processes that shaped the modern-day distribution of species of this exceptional genus of spiders. As the only genus of the subfamily Amaurobioidinae found on three Southern Hemisphere continents, its distribution is well-suited to study in the context of Gondwanic vicariance versus long-distance, transoceanic dispersal. Ancestral species of the genus Amaurobioides appear to have undergone several long-distance dispersal events followed by successful establishments and speciation, starting from the mid-Miocene through to the Pleistocene. The most recent common ancestor of all present-day Amaurobioides species is estimated to have originated in Africa after arriving from South America during the Miocene. From Africa the subsequent dispersals are likely to have taken place predominantly in an eastward direction. The long-distance dispersal events by Amaurobioides mostly involved transoceanic crossings, which we propose occurred by rafting, aided by the Antarctic Circumpolar Current and the West Wind Drift. PMID:27732621
New Mars free-air and Bouguer gravity: Correlation with topography, geology and large impact basins
NASA Technical Reports Server (NTRS)
Frey, Herbert; Bills, Bruce G.; Kiefer, Walter S.; Nerem, R. Steven; Roark, James H.; Zuber, Maria T.
1993-01-01
Free-air and Bouguer gravity anomalies from a 50x50 field (MGM635), derived at the Goddard Space Flight Center, with global topography, geology, and the distribution of large impact basins was compared. The free-air gravity anomalies were derived from re-analysis of Viking Orbiter and Mariner 9 tracking data and have a spatial resolution of 250-300 km. Bouguer anomalies were calculated using a 50x50 expansion of the current Mars topography and the GSFC degree 50 geoid as the equipotential reference surface. Rotational flattening was removed using a moment of inertia of 0.365 and the corrections from Table B2 of Sleep and Phillips. Crustal density and mean density were assumed to be 2.9 and 3.93 gm/cm(sup 3). The spherical harmonic topography used has zero mean elevation, and differs from the USGS maps by about 2 km. Comparisons with global geology use a simplified map with about 1/3 the number of units on the current maps. For correlation with impact basins, the recent compilation by Schultz and Frey was used.