Neuroimaging in adult penetrating brain injury: a guide for radiographers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temple, Nikki; Donald, Cortny; Skora, Amanda
Penetrating brain injuries (PBI) are a medical emergency, often resulting in complex damage and high mortality rates. Neuroimaging is essential to evaluate the location and extent of injuries, and to manage them accordingly. Currently, a myriad of imaging modalities are included in the diagnostic workup for adult PBI, including skull radiography, computed tomography (CT), magnetic resonance imaging (MRI) and angiography, with each modality providing their own particular benefits. This literature review explores the current modalities available for investigating PBI and aims to assist in decision making for the appropriate use of diagnostic imaging when presented with an adult PBI. Basedmore » on the current literature, the authors have developed an imaging pathway for adult penetrating brain injury that functions as both a learning tool and reference guide for radiographers and other health professionals. Currently, CT is recommended as the imaging modality of choice for the initial assessment of PBI patients, while MRI is important in the sub-acute setting where it aids prognosis prediction and rehabilitation planning, Additional follow-up imaging, such as angiography, should be dependent upon clinical findings.« less
Multimodal Imaging of Human Brain Activity: Rational, Biophysical Aspects and Modes of Integration
Blinowska, Katarzyna; Müller-Putz, Gernot; Kaiser, Vera; Astolfi, Laura; Vanderperren, Katrien; Van Huffel, Sabine; Lemieux, Louis
2009-01-01
Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship. PMID:19547657
NASA Astrophysics Data System (ADS)
Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie
2016-07-01
Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03809c
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.
Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie
2016-07-01
Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.
Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.
Rose, Tracy L; Lotan, Yair
2018-03-01
Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.
Multi-Modality Phantom Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Jennifer S.; Peng, Qiyu; Moses, William W.
2009-03-20
Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less
NASA Astrophysics Data System (ADS)
Niu, Kai
Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute ischemic stroke patients more efficiently compared with the current clinical work-flow. The animal and patient cases presented in this thesis are focused towards but not limited to neurointerventional applications.
Ma, Teng; Zhou, Bill; Hsiai, Tzung K.; Shung, K. Kirk
2015-01-01
Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features—the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages—are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal “gold standard” for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability. PMID:26400676
Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru
2008-01-01
Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788
Clinical potential for imaging in patients with asthma and other lung disorders.
DeBoer, Emily M; Spielberg, David R; Brody, Alan S
2017-01-01
The ability of lung imaging to phenotype patients, determine prognosis, and predict response to treatment is expanding in clinical and translational research. The purpose of this perspective is to describe current imaging modalities that might be useful clinical tools in patients with asthma and other lung disorders and to explore some of the new developments in imaging modalities of the lung. These imaging modalities include chest radiography, computed tomography, lung magnetic resonance imaging, electrical impedance tomography, bronchoscopy, and others. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging
Joshi, Bishnu P.; Wang, Thomas D.
2010-01-01
Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research. PMID:22180839
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo
Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.
2016-01-01
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316
NASA Astrophysics Data System (ADS)
Wáng, Yì Xiáng J.; Idée, Jean-Marc; Corot, Claire
2015-10-01
Designing of theranostics and dual or multi-modality contrast agents are currently two of the hottest topics in biotechnology and biomaterials science. However, for single entity theranostics, a right ratio of their diagnostic component and their therapeutic component may not always be realized in a composite suitable for clinical application. For dual/multiple modality molecular imaging agents, after in vivo administration, there is an optimal time window for imaging, when an agent is imaged by one modality, the pharmacokinetics of this agent may not allow imaging by another modality. Due to reticuloendothelial system clearance, efficient in vivo delivery of nanoparticles to the lesion site is sometimes difficult. The toxicity of these entities also remains poorly understood. While the medical need of theranostics is admitted, the business model remains to be established. There is an urgent need for a global and internationally harmonized re-evaluation of the approval and marketing processes of theranostics. However, a reasonable expectation exists that, in the near future, the current obstacles will be removed, thus allowing the wide use of these very promising agents.
Dual-modality imaging of function and physiology
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.
2002-04-01
Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.
Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan
2014-01-01
Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092
Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.
Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina
2013-05-01
This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.
NASA Astrophysics Data System (ADS)
Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing
2018-02-01
Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.
Out of hospital point of care ultrasound: current use models and future directions.
Nelson, B P; Sanghvi, A
2016-04-01
Ultrasound has evolved from a modality that was once exclusively reserved to certain specialities of its current state, in which its portability and durability lend to its broadly increasing applications. This review describes portable ultrasound in the hospital setting and its comparison to gold standard imaging modalities. Also, this review summarizes current literature describing portable ultrasound use in prehospital, austere and remote environments, highlighting successes and barriers to use in these environments. Prehospital ultrasound has the ability to increase diagnostic ability and allow for therapeutic intervention in the field. In austere environments, ultrasound may be the only available imaging modality and thus can guide diagnosis, therapeutics and determine which patients may need emergent transfer to a healthcare facility. The most cutting edge applications of portable ultrasound employ telemedicine to obtain and transmit ultrasound images. This technology and ability to transmit images via satellite and cellular transmission can allow for even novice users to obtain interpretable images in austere environments. Portable ultrasound uses have steadily grown and will continue to do so with the introduction of more portable and durable technologies. As applications continue to grow, certain technologic considerations and future directions are explored.
Imaging in diabetic retinopathy.
Salz, David A; Witkin, Andre J
2015-01-01
While the primary method for evaluating diabetic retinopathy involves direct and indirect ophthalmoscopy, various imaging modalities are of significant utility in the screening, evaluation, diagnosis, and treatment of different presentations and manifestations of this disease. This manuscript is a review of the important imaging modalities that are used in diabetic retinopathy, including color fundus photography, fluorescein angiography, B-scan ultrasonography, and optical coherence tomography. The article will provide an overview of these different imaging techniques and how they can be most effectively used in current practice.
Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W
2015-01-01
Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with 18F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents. PMID:25625022
Image-guided interventional procedures in the dog and cat.
Vignoli, Massimo; Saunders, Jimmy H
2011-03-01
Medical imaging is essential for the diagnostic workup of many soft tissue and bone lesions in dogs and cats, but imaging modalities do not always allow the clinician to differentiate inflammatory or infectious conditions from neoplastic disorders. This review describes interventional procedures in dogs and cats for collection of samples for cytological or histopathological examinations under imaging guidance. It describes the indications and procedures for imaging-guided sampling, including ultrasound (US), computed tomography (CT), magnetic resonance imaging and fluoroscopy. US and CT are currently the modalities of choice in interventional imaging. Copyright © 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Edward M.; Wright, Jeffrey; Fontaine, Marc T.; Robinson, Arvin E.
1998-07-01
The Medical Information, Communication and Archive System (MICAS) is a multi-vendor incremental approach to PACS. MICAS is a multi-modality integrated image management system that incorporates the radiology information system (RIS) and radiology image database (RID) with future 'hooks' to other hospital databases. Even though this approach to PACS is more risky than a single-vendor turn-key approach, it offers significant advantages. The vendors involved in the initial phase of MICAS are IDX Corp., ImageLabs, Inc. and Digital Equipment Corp (DEC). The network architecture operates at 100 MBits per sec except between the modalities and the stackable intelligent switch which is used to segment MICAS by modality. Each modality segment contains the acquisition engine for the modality, a temporary archive and one or more diagnostic workstations. All archived studies are available at all workstations, but there is no permanent archive at this time. At present, the RIS vendor is responsible for study acquisition and workflow as well as maintenance of the temporary archive. Management of study acquisition, workflow and the permanent archive will become the responsibility of the archive vendor when the archive is installed in the second quarter of 1998. The modalities currently interfaced to MICAS are MRI, CT and a Howtek film digitizer with Nuclear Medicine and computed radiography (CR) to be added when the permanent archive is installed. There are six dual-monitor diagnostic workstations which use ImageLabs Shared Vision viewer software located in MRI, CT, Nuclear Medicine, musculoskeletal reading areas and two in Radiology's main reading area. One of the major lessons learned to date is that the permanent archive should have been part of the initial MICAS installation and the archive vendor should have been responsible for image acquisition rather than the RIS vendor. Currently an archive vendor is being selected who will be responsible for the management of the archive plus the HIS/RIS interface, image acquisition, modality work list manager and interfacing to the current DICOM viewer software. The next phase of MICAS will include interfacing ultrasound, locating servers outside of the Radiology LAN to support the distribution of images and reports to the clinical floors and physician offices both within and outside of the University of Rochester Medical Center (URMC) campus and the teaching archive.
Ultrasonic image analysis and image-guided interventions.
Noble, J Alison; Navab, Nassir; Becher, H
2011-08-06
The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.
MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labby, Z; Sensakovic, W; Hipp, E
2014-06-15
Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less
Barriers and incentives for choosing to specialise in mammography: Qualitative analysis.
Warren-Forward, H M; Taylor, J
2017-02-01
There is a projected shortage of radiographers working in breast screening and this study aimed to examine comments from open response questions from a mixed methods survey of current diagnostic radiography students on their perceptions of working in mammography. The survey asked three open ended questions: Justification of choice of modality in which they would want to specialise, why they believed there was a shortage of radiographers working in breast screening and any other comment about mammography. Reasons given for specialising in any modality was interest, feature of a modality, amount of clinical exposure during the degree program, personal issues and career prospects. Few current diagnostic radiography students indicated that they would be interested in specialising in breast imaging. They considered there to be a shortage of radiographers as breast imaging was seen to be repetitive, high pressure, intimate and gender biased. Lack of education, clinical exposure, limited career prospects and low pay were also discussed. Increasing education to the modality during the degree, allowing males to be involved in breast imaging and promoting part-time work in mammography while also working in other modalities may alter the perception that mammography offers a limited career pathway. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Zam, Azhar; Pugh, Edward N.; Zawadzki, Robert J.
2014-02-01
Animal models of human diseases play an important role in studying and advancing our understanding of these conditions, allowing molecular level studies of pathogenesis as well as testing of new therapies. Recently several non-invasive imaging modalities including Fundus Camera, Scanning Laser Ophthalmoscopy (SLO) and Optical Coherence Tomography (OCT) have been successfully applied to monitor changes in the retinas of the living animals in experiments in which a single animal is followed over a portion of its lifespan. Here we evaluate the capabilities and limitations of these three imaging modalities for visualization of specific structures in the mouse eye. Example images acquired from different types of mice are presented. Future directions of development for these instruments and potential advantages of multi-modal imaging systems are discussed as well.
MRI in local staging of rectal cancer: an update
Tapan, Ümit; Özbayrak, Mustafa; Tatlı, Servet
2014-01-01
Preoperative imaging for staging of rectal cancer has become an important aspect of current approach to rectal cancer management, because it helps to select suitable patients for neoadjuvant chemoradiotherapy and determine the appropriate surgical technique. Imaging modalities such as endoscopic ultrasonography, computed tomography, and magnetic resonance imaging (MRI) play an important role in assessing the depth of tumor penetration, lymph node involvement, mesorectal fascia and anal sphincter invasion, and presence of distant metastatic diseases. Currently, there is no consensus on a preferred imaging technique for preoperative staging of rectal cancer. However, high-resolution phased-array MRI is recommended as a standard imaging modality for preoperative local staging of rectal cancer, with excellent soft tissue contrast, multiplanar capability, and absence of ionizing radiation. This review will mainly focus on the role of MRI in preoperative local staging of rectal cancer and discuss recent advancements in MRI technique such as diffusion-weighted imaging and dynamic contrast-enhanced MRI. PMID:25010367
Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter
2014-01-01
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922
Molecular Imaging of Pancreatic Cancer with Antibodies
2015-01-01
Development of novel imaging probes for cancer diagnostics remains critical for early detection of disease, yet most imaging agents are hindered by suboptimal tumor accumulation. To overcome these limitations, researchers have adapted antibodies for imaging purposes. As cancerous malignancies express atypical patterns of cell surface proteins in comparison to noncancerous tissues, novel antibody-based imaging agents can be constructed to target individual cancer cells or surrounding vasculature. Using molecular imaging techniques, these agents may be utilized for detection of malignancies and monitoring of therapeutic response. Currently, there are several imaging modalities commonly employed for molecular imaging. These imaging modalities include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance (MR) imaging, optical imaging (fluorescence and bioluminescence), and photoacoustic (PA) imaging. While antibody-based imaging agents may be employed for a broad range of diseases, this review focuses on the molecular imaging of pancreatic cancer, as there are limited resources for imaging and treatment of pancreatic malignancies. Additionally, pancreatic cancer remains the most lethal cancer with an overall 5-year survival rate of approximately 7%, despite significant advances in the imaging and treatment of many other cancers. In this review, we discuss recent advances in molecular imaging of pancreatic cancer using antibody-based imaging agents. This task is accomplished by summarizing the current progress in each type of molecular imaging modality described above. Also, several considerations for designing and synthesizing novel antibody-based imaging agents are discussed. Lastly, the future directions of antibody-based imaging agents are discussed, emphasizing the potential applications for personalized medicine. PMID:26620581
Joint MR-PET reconstruction using a multi-channel image regularizer
Koesters, Thomas; Otazo, Ricardo; Bredies, Kristian; Sodickson, Daniel K
2016-01-01
While current state of the art MR-PET scanners enable simultaneous MR and PET measurements, the acquired data sets are still usually reconstructed separately. We propose a new multi-modality reconstruction framework using second order Total Generalized Variation (TGV) as a dedicated multi-channel regularization functional that jointly reconstructs images from both modalities. In this way, information about the underlying anatomy is shared during the image reconstruction process while unique differences are preserved. Results from numerical simulations and in-vivo experiments using a range of accelerated MR acquisitions and different MR image contrasts demonstrate improved PET image quality, resolution, and quantitative accuracy. PMID:28055827
Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour
2017-06-01
Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.
Badal, Josep; Biarnés, Marc; Monés, Jordi
2018-02-01
To describe the appearance of reticular pseudodrusen on multicolor imaging and to evaluate its diagnostic accuracy as compared with the two modalities that may be considered the current reference standard, blue light and infrared imaging. Retrospective study in which all multicolor images (constructed from images acquired at 486 nm-blue, 518 nm-green and 815 nm-infrared) of 45 consecutive patients visited in a single center was reviewed. Inclusion criteria involved the presence of >1 reticular pseudodrusen on a 30° × 30° image centered on the fovea as seen with the blue light channel derived from the multicolor imaging. Three experienced observers, masked to each other's results with other imaging modalities, independently classified the number of reticular pseudodrusen with each modality. The median interobserver agreement (kappa) was 0.58 using blue light; 0.65 using infrared; and 0.64 using multicolor images. Multicolor and infrared modalities identified a higher number of reticular pseudodrusen than blue light modality in all fields for all observers (p < 0.0001). Results were not different when multicolor and infrared were compared (p ≥ 0.27). These results suggest that multicolor and infrared are more sensitive and reproducible than blue light in the identification of RPD. Multicolor did not appear to add a significant value to infrared in the evaluation of RDP. Clinicians using infrared do not need to incorporate multicolor for the identification and quantification of RPD.
Design of magnetic and fluorescent nanoparticles for in vivo MR and NIRF cancer imaging
NASA Astrophysics Data System (ADS)
Key, Jaehong
One big challenge for cancer treatment is that it has many errors in detection of cancers in the early stages before metastasis occurs. Using a current imaging modality, the detection of small tumors having potential metastasis is still very difficult. Thus, the development of multi-component nanoparticles (NPs) for dual modality cancer imaging is invaluable. The multi-component NPs can be an alternative to overcome the limitations from an imaging modality. For example, the multi-component NPs can visualize small tumors in both magnetic resonance imaging (MRI) and near infrared fluorescence (NIRF) imaging, which can help find the location of the tumors deep inside the body using MRI and subsequently guide surgeons to delineate the margin of tumors using highly sensitive NIRF imaging during a surgical operation. In this dissertation, we demonstrated the potential of the MRI and NIRF dual-modality NPs for skin and bladder cancer imaging. The multi-component NPs consisted of glycol chitosan, superparamagnetic iron oxide, NIRF dye, and cancer targeting peptides. We characterized the NPs and evaluated them with tumor bearing mice as well as various cancer cells. The findings of this research will contribute to the development of cancer diagnostic imaging and it can also be extensively applied to drug delivery system and fluorescence-guided surgical removal of cancer.
Comparative imaging study in ultrasound, MRI, CT, and DSA using a multimodality renal artery phantom
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Deirdre M.; Fagan, Andrew J.; Moran, Carmel M.
2011-02-15
Purpose: A range of anatomically realistic multimodality renal artery phantoms consisting of vessels with varying degrees of stenosis was developed and evaluated using four imaging techniques currently used to detect renal artery stenosis (RAS). The spatial resolution required to visualize vascular geometry and the velocity detection performance required to adequately characterize blood flow in patients suffering from RAS are currently ill-defined, with the result that no one imaging modality has emerged as a gold standard technique for screening for this disease. Methods: The phantoms, which contained a range of stenosis values (0%, 30%, 50%, 70%, and 85%), were designed formore » use with ultrasound, magnetic resonance imaging, x-ray computed tomography, and x-ray digital subtraction angiography. The construction materials used were optimized with respect to their ultrasonic speed of sound and attenuation coefficient, MR relaxometry (T{sub 1},T{sub 2}) properties, and Hounsfield number/x-ray attenuation coefficient, with a design capable of tolerating high-pressure pulsatile flow. Fiducial targets, incorporated into the phantoms to allow for registration of images among modalities, were chosen to minimize geometric distortions. Results: High quality distortion-free images of the phantoms with good contrast between vessel lumen, fiducial markers, and background tissue to visualize all stenoses were obtained with each modality. Quantitative assessments of the grade of stenosis revealed significant discrepancies between modalities, with each underestimating the stenosis severity for the higher-stenosed phantoms (70% and 85%) by up to 14%, with the greatest discrepancy attributable to DSA. Conclusions: The design and construction of a range of anatomically realistic renal artery phantoms containing varying degrees of stenosis is described. Images obtained using the main four diagnostic techniques used to detect RAS were free from artifacts and exhibited adequate contrast to allow for quantitative measurements of the degree of stenosis in each phantom. Such multimodality phantoms may prove useful in evaluating current and emerging US, MRI, CT, and DSA technology.« less
Review of photoacoustic flow imaging: its current state and its promises
van den Berg, P.J.; Daoudi, K.; Steenbergen, W.
2015-01-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages. PMID:26640771
Review of photoacoustic flow imaging: its current state and its promises.
van den Berg, P J; Daoudi, K; Steenbergen, W
2015-09-01
Flow imaging is an important method for quantification in many medical imaging modalities, with applications ranging from estimating wall shear rate to detecting angiogenesis. Modalities like ultrasound and optical coherence tomography both offer flow imaging capabilities, but suffer from low contrast to red blood cells and are sensitive to clutter artefacts. Photoacoustic imaging (PAI) is a relatively new field, with a recent interest in flow imaging. The recent enthusiasm for PA flow imaging is due to its intrinsic contrast to haemoglobin, which offers a new spin on existing methods of flow imaging, and some unique approaches in addition. This review article will delve into the research on photoacoustic flow imaging, explain the principles behind the many techniques and comment on their individual advantages and disadvantages.
Advances in Clinical and Biomedical Applications of Photoacoustic Imaging
Su, Jimmy L.; Wang, Bo; Wilson, Katheryne E.; Bayer, Carolyn L.; Chen, Yun-Sheng; Kim, Seungsoo; Homan, Kimberly A.; Emelianov, Stanislav Y.
2010-01-01
Importance of the field Photoacoustic imaging is an imaging modality that derives image contrast from the optical absorption coefficient of the tissue being imaged. The imaging technique is able to differentiate between healthy and diseased tissue with either deeper penetration or higher resolution than other functional imaging modalities currently available. From a clinical standpoint, photoacoustic imaging has demonstrated safety and effectiveness in diagnosing diseased tissue regions using either endogenous tissue contrast or exogenous contrast agents. Furthermore, the potential of photoacoustic imaging has been demonstrated in various therapeutic interventions ranging from drug delivery and release to image-guided therapy and monitoring. Areas covered in this review This article reviews the current state of photoacoustic imaging in biomedicine from a technological perspective, highlights various biomedical and clinical applications of photoacoustic imaging, and gives insights on future directions. What the reader will gain Readers will learn about the various applications of photoacoustic imaging, as well as the various contrast agents that can be used to assist photoacoustic imaging. This review will highlight both pre-clinical and clinical uses for photoacoustic imaging, as well as discuss some of the challenges that must be addressed to move photoacoustic imaging into the clinical realm. Take home message Photoacoustic imaging offers unique advantages over existing imaging modalities. The imaging field is broad with many exciting applications for detecting and diagnosing diseased tissue or processes. Photoacoustics is also used in therapeutic applications to identify and characterize the pathology and then to monitor the treatment. Although the technology is still in its infancy, much work has been done in the pre-clinical arena, and photoacoustic imaging is fast approaching the clinical setting. PMID:21344060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie Liming; Xing Da; Yang Diwu
2007-04-23
Current imaging modalities face challenges in clinical applications due to limitations in resolution or contrast. Microwave-induced thermoacoustic imaging may provide a complementary modality for medical imaging, particularly for detecting foreign objects due to their different absorption of electromagnetic radiation at specific frequencies. A thermoacoustic tomography system with a multielement linear transducer array was developed and used to detect foreign objects in tissue. Radiography and thermoacoustic images of objects with different electromagnetic properties, including glass, sand, and iron, were compared. The authors' results demonstrate that thermoacoustic imaging has the potential to become a fast method for surgical localization of occult foreignmore » objects.« less
Gibson, Eli; Fenster, Aaron; Ward, Aaron D
2013-10-01
Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.
Laeseke, Paul F.; Chen, Ru; Jeffrey, R. Brooke; Brentnall, Teresa A.
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the fourth-leading cause of cancer-related death in the United States and is associated with a dismal prognosis, particularly when diagnosed at an advanced stage. Overall survival is significantly improved if PDAC is detected at an early stage prior to the onset of symptoms. At present, there is no suitable screening strategy for the general population. Available diagnostic serum markers are not sensitive or specific enough, and clinically available imaging modalities are inadequate for visualizing early-stage lesions. In this article, the role of currently available blood biomarkers and imaging tests for the early detection of PDAC will be reviewed. Also, the emerging biomarkers and molecularly targeted imaging agents being developed to improve the specificity of current imaging modalities for PDAC will be discussed. A strategy incorporating blood biomarkers and molecularly targeted imaging agents could lead to improved screening and earlier detection of PDAC in the future. © RSNA, 2015 PMID:26599925
Bae, Youngwoo; Son, Taeyoon; Nelson, J. Stuart; Kim, Jae-Hong; Choi, Eung Ho; Jung, Byungjo
2010-01-01
Background/Purpose Digital color image analysis is currently considered as a routine procedure in dermatology. In our previous study, a multimodal facial color imaging modality (MFCIM), which provides a conventional, parallel- and cross-polarization, and fluorescent color image, was introduced for objective evaluation of various facial skin lesions. This study introduces a commercial version of MFCIM, DermaVision-PRO, for routine clinical use in dermatology and demonstrates its dermatological feasibility for cross-evaluation of skin lesions. Methods/Results Sample images of subjects with actinic keratosis or non-melanoma skin cancers were obtained at four different imaging modes. Various image analysis methods were applied to cross-evaluate the skin lesion and, finally, extract valuable diagnostic information. DermaVision-PRO is potentially a useful tool as an objective macroscopic imaging modality for quick prescreening and cross-evaluation of facial skin lesions. Conclusion DermaVision-PRO may be utilized as a useful tool for cross-evaluation of widely distributed facial skin lesions and an efficient database management of patient information. PMID:20923462
Imaging of congenital heart disease in adults: choice of modalities.
Orwat, Stefan; Diller, Gerhard-Paul; Baumgartner, Helmut
2014-01-01
Major advances in noninvasive imaging of adult congenital heart disease have been accomplished. These tools play now a key role in comprehensive diagnostic work-up, decision for intervention, evaluation for the suitability of specific therapeutic options, monitoring of interventions and regular follow-up. Besides echocardiography, magnetic resonance (CMR) and computed tomography (CT) have gained particular importance. The choice of imaging modality has thus become a critical issue. This review summarizes strengths and limitations of the different imaging modalities and how they may be used in a complementary fashion. Echocardiography obviously remains the workhorse of imaging routinely used in all patients. However, in complex disease and after surgery echocardiography alone frequently remains insufficient. CMR is particularly useful in this setting and allows reproducible and accurate quantification of ventricular function and comprehensive assessment of cardiac anatomy, aorta, pulmonary arteries and venous return including complex flow measurements. CT is preferred when CMR is contraindicated, when superior spatial resolution is required or when "metallic" artefacts limit CMR imaging. In conclusion, the use of currently available imaging modalities in adult congenital heart disease needs to be complementary. Echocardiography remains the basis tool, CMR and CT should be added considering specific open questions and the ability to answer them, availability and economic issues.
Radiological and Radionuclide Imaging of Degenerative Disease of the Facet Joints
Shur, Natalie; Corrigan, Alexis; Agrawal, Kanhaiyalal; Desai, Amidevi; Gnanasegaran, Gopinath
2015-01-01
The facet joint has been increasingly implicated as a potential source of lower back pain. Diagnosis can be challenging as there is not a direct correlation between facet joint disease and clinical or radiological features. The purpose of this article is to review the diagnosis, treatment, and current imaging modality options in the context of degenerative facet joint disease. We describe each modality in turn with a pictorial review using current evidence. Newer hybrid imaging techniques such as single photon emission computed tomography/computed tomography (SPECT/CT) provide additional information relative to the historic gold standard magnetic resonance imaging. The diagnostic benefits of SPECT/CT include precise localization and characterization of spinal lesions and improved diagnosis for lower back pain. It may have a role in selecting patients for local therapeutic injections, as well as guiding their location with increased precision. PMID:26170560
Noninvasive imaging of hepatocellular carcinoma: From diagnosis to prognosis
Jiang, Han-Yu; Chen, Jie; Xia, Chun-Chao; Cao, Li-Kun; Duan, Ting; Song, Bin
2018-01-01
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and a major public health problem worldwide. Hepatocarcinogenesis is a complex multistep process at molecular, cellular, and histologic levels with key alterations that can be revealed by noninvasive imaging modalities. Therefore, imaging techniques play pivotal roles in the detection, characterization, staging, surveillance, and prognosis evaluation of HCC. Currently, ultrasound is the first-line imaging modality for screening and surveillance purposes. While based on conclusive enhancement patterns comprising arterial phase hyperenhancement and portal venous and/or delayed phase wash-out, contrast enhanced dynamic computed tomography and magnetic resonance imaging (MRI) are the diagnostic tools for HCC without requirements for histopathologic confirmation. Functional MRI techniques, including diffusion-weighted imaging, MRI with hepatobiliary contrast agents, perfusion imaging, and magnetic resonance elastography, show promise in providing further important information regarding tumor biological behaviors. In addition, evaluation of tumor imaging characteristics, including nodule size, margin, number, vascular invasion, and growth patterns, allows preoperative prediction of tumor microvascular invasion and patient prognosis. Therefore, the aim of this article is to review the current state-of-the-art and recent advances in the comprehensive noninvasive imaging evaluation of HCC. We also provide the basic key concepts of HCC development and an overview of the current practice guidelines. PMID:29904242
PET and Single-Photon Emission Computed Tomography in Brain Concussion.
Raji, Cyrus A; Henderson, Theodore A
2018-02-01
This article offers an overview of the application of PET and single photon emission computed tomography brain imaging to concussion, a type of mild traumatic brain injury and traumatic brain injury, in general. The article reviews the application of these neuronuclear imaging modalities in cross-sectional and longitudinal studies. Additionally, this article frames the current literature with an overview of the basic physics and radiation exposure risks of each modality. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tu, Haohua; You, Sixian; Sun, Yi; Spillman, Darold R.; Ray, Partha S.; Liu, George; Boppart, Stephen A.
2017-03-01
In contrast to a broadband Ti:sapphire laser that mode locks a continuum of emission and enables broadband biophotonic applications, supercontinuum generation moves the spectral broadening outside the laser cavity into a nonlinear medium, and may thus improve environmental stability and more readily enable clinical translation. Using a photonic crystal fiber for passive spectral broadening, this technique becomes widely accessible from a narrowband fixed-wavelength mode-locked laser. Currently, fiber supercontinuum sources have benefited single-photon biological imaging modalities, including light-sheet or confocal microscopy, diffuse optical tomography, and retinal optical coherence tomography. However, they have not fully benefited multiphoton biological imaging modalities with proven capability for high-resolution label-free molecular imaging. The reason can be attributed to the amplitude/phase noise of fiber supercontinuum, which is amplified from the intrinsic noise of the input laser and responsible for spectral decoherence. This instability deteriorates the performance of multiphoton imaging modalities more than that of single-photon imaging modalities. Building upon a framework of coherent fiber supercontinuum generation, we have avoided this instability or decoherence, and balanced the often conflicting needs to generate strong signal, prevent sample photodamage, minimize background noise, accelerate imaging speed, improve imaging depth, accommodate different modalities, and provide user-friendly operation. Our prototypical platforms have enabled fast stain-free histopathology of fresh tissue in both laboratory and intraoperative settings to discover a wide variety of imaging-based cancer biomarkers, which may reduce the cost and waiting stress associated with disease/cancer diagnosis. A clear path toward intraoperative multiphoton imaging can be envisioned to help pathologists and surgeons improve cancer surgery.
Inflammatory bowel disease imaging: Current practice and future directions.
Kilcoyne, Aoife; Kaplan, Jess L; Gee, Michael S
2016-01-21
The purpose of this paper is to evaluate the role of imaging in inflammatory bowel disease (IBD), including detection of extraluminal complications and extraintestinal manifestations of IBD, assessment of disease activity and treatment response, and discrimination of inflammatory from fibrotic strictures. IBD is a chronic idiopathic disease affecting the gastrointestinal tract that is comprised of two separate, but related intestinal disorders; Crohn's disease and ulcerative colitis. The paper discusses, in detail the pros and cons of the different IBD imaging modalities that need to be considered in order to optimize the imaging and clinical evaluation of patients with IBD. Historically, IBD evaluation of the bowel has included imaging to assess the portions of the small bowel that are inaccessible to optical endoscopic visualization. This traditionally was performed using barium fluoroscopic techniques; however, cross-sectional imaging techniques (computed tomography and magnetic resonance imaging) are being increasingly utilized for IBD evaluation because they can simultaneously assess mural and extramural IBD manifestations. Recent advances in imaging technology, that continue to improve the ability of imaging to noninvasively follow disease activity and treatment response, are also discussed. This review article summarizes the current imaging approach in inflammatory bowel disease as well as the role of emerging imaging modalities.
Novel Algorithm for Classification of Medical Images
NASA Astrophysics Data System (ADS)
Bhushan, Bharat; Juneja, Monika
2010-11-01
Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.
Thyroid and parathyroid imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandler, M.P.; Patton, J.A.; Partain, C.L.
1986-01-01
This book describes the numerous modalities currently used in the diagnosis and treatment of both thyroid and parathyroid disorders. Each modality is fully explained and then evaluated in terms of benefits and limitations in the clinical context. Contents: Production and Quality Control of Radiopharmaceutics Used for Diagnosis and Therapy in Thyroid and Parathyroid Disorders. Basic Physics. Nuclear Instrumentation. Radioimmunoassay: Thyroid Function Tests. Quality Control. Embryology, Anatomy, Physiology, and Thyroid Function Studies. Scintigraphic Thyroid Imaging. Neonatal and Pediatric Thyroid Imaging. Radioiodine Thyroid Uptake Measurement. Radioiodine Treatment of Thyroid Disorders. Radiation Dosimetry of Diagnostic Procedures. Radiation Safety Procedures for High-Level I-131 Therapies.more » X-Ray Fluorescent Scanning. Thyroid Sonography. Computed Tomography in Thyroid Disease. Magnetic Resonance Imaging in Thyroid Disease. Parathyroid Imaging.« less
Progress in atherosclerotic plaque imaging
Soloperto, Giulia; Casciaro, Sergio
2012-01-01
Cardiovascular diseases are the primary cause of mortality in the industrialized world, and arterial obstruction, triggered by rupture-prone atherosclerotic plaques, lead to myocardial infarction and cerebral stroke. Vulnerable plaques do not necessarily occur with flow-limiting stenosis, thus conventional luminographic assessment of the pathology fails to identify unstable lesions. In this review we discuss the currently available imaging modalities used to investigate morphological features and biological characteristics of the atherosclerotic plaque. The different imaging modalities such as ultrasound, magnetic resonance imaging, computed tomography, nuclear imaging and their intravascular applications are illustrated, highlighting their specific diagnostic potential. Clinically available and upcoming methodologies are also reviewed along with the related challenges in their clinical translation, concerning the specific invasiveness, accuracy and cost-effectiveness of these methods. PMID:22937215
Kontos, A P; Huppert, T J; Beluk, N H; Elbin, R J; Henry, L C; French, J; Dakan, S M; Collins, M W
2014-12-01
There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18-45 years with a recent (15-45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X's and O's) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion.
Advanced endoscopic imaging in gastric neoplasia and preneoplasia
Lee, Jonathan W J; Lim, Lee Guan; Yeoh, Khay Guan
2017-01-01
Conventional white light endoscopy remains the current standard in routine clinical practice for early detection of gastric cancer. However, it may not accurately diagnose preneoplastic gastric lesions. The technological advancements in the field of endoscopic imaging for gastric lesions are fast growing. This article reviews currently available advanced endoscopic imaging modalities, in particular chromoendoscopy, narrow band imaging and confocal laser endomicroscopy, and their corresponding evidence shown to improve diagnosis of preneoplastic gastric lesions. Raman spectrometry and polarimetry are also introduced as promising emerging technologies. PMID:28176895
NASA Astrophysics Data System (ADS)
Nuster, Robert; Wurzinger, Gerhild; Paltauf, Guenther
2017-03-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
Schilling, R B
1993-05-01
Picture archiving and communication systems (PACS) provide image viewing at diagnostic, reporting, consultation, and remote workstations; archival on magnetic or optical media by means of short- or long-term storage devices; communications by means of local or wide area networks or public communication services; and integrated systems with modality interfaces and gateways to health care facilities and departmental information systems. Research indicates three basic needs for image and report management: (a) improved communication and turnaround time between radiologists and other imaging specialists and referring physicians, (b) fast reliable access to both current and previously obtained images and reports, and (c) space-efficient archival support. Although PACS considerations are much more complex than those associated with single modalities, the same basic purchase criteria apply. These criteria include technical leadership, image quality, throughput, life cost (eg, initial cost, maintenance, upgrades, and depreciation), and total service. Because a PACS takes much longer to implement than a single modality, the customer and manufacturer must develop a closer working relationship than has been necessary in the past.
Comparison of breast density measurements made using ultrasound tomography and mammography
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Krycia, Mark; Sherman, Mark E.; Boyd, Norman; Gierach, Gretchen L.
2015-03-01
Women with elevated mammographic percent density, defined as the ratio of fibroglandular tissue area to total breast area on a mammogram are at an increased risk of developing breast cancer. Ultrasound tomography (UST) is an imaging modality that can create tomographic sound speed images of a patient's breast, which can then be used to measure breast density. These sound speed images are useful because physical tissue density is directly proportional to sound speed. The work presented here updates previous results that compared mammographic breast density measurements with UST breast density measurements within an ongoing study. The current analysis has been expanded to include 158 women with negative digital mammographic screens who then underwent a breast UST scan. Breast density was measured for both imaging modalities and preliminary analysis demonstrated strong and positive correlations (Spearman correlation coefficient rs = 0.703). Additional mammographic and UST related imaging characteristics were also analyzed and used to compare the behavior of both imaging modalities. Results suggest that UST can be used among women with negative mammographic screens as a quantitative marker of breast density that may avert shortcomings of mammography.
Hangiandreou, Nicholas J
2003-01-01
Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon. Copyright RSNA, 2003
Uematsu, Takayoshi
2017-01-01
This article discusses possible supplemental breast cancer screening modalities for younger women with dense breasts from a perspective of population-based breast cancer screening program in Japan. Supplemental breast cancer screening modalities have been proposed to increase the sensitivity and detection rates of early stage breast cancer in women with dense breasts; however, there are no global guidelines that recommend the use of supplemental breast cancer screening modalities in such women. Also, no criterion standard exists for breast density assessment. Based on the current situation of breast imaging in Japan, the possible supplemental breast cancer screening modalities are ultrasonography, digital breast tomosynthesis, and breast magnetic resonance imaging. An appropriate population-based breast cancer screening program based on the balance between cost and benefit should be a high priority. Further research based on evidence-based medicine is encouraged. It is very important that the ethnicity, workforce, workflow, and resources for breast cancer screening in each country should be considered when considering supplemental breast cancer screening modalities for women with dense breasts.
Blomström Lundqvist, Carina; Auricchio, Angelo; Brugada, Josep; Boriani, Giuseppe; Bremerich, Jens; Cabrera, Jose Angel; Frank, Herbert; Gutberlet, Matthias; Heidbuchel, Hein; Kuck, Karl-Heinz; Lancellotti, Patrizio; Rademakers, Frank; Winkels, Gerard; Wolpert, Christian; Vardas, Panos E
2013-07-01
Implantations of cardiac devices therapies and ablation procedures frequently depend on accurate and reliable imaging modalities for pre-procedural assessments, intra-procedural guidance, detection of complications, and the follow-up of patients. An understanding of echocardiography, cardiovascular magnetic resonance imaging, nuclear cardiology, X-ray computed tomography, positron emission tomography, and vascular ultrasound is indispensable for cardiologists, electrophysiologists as well as radiologists, and it is currently recommended that physicians should be trained in several imaging modalities. There are, however, no current guidelines or recommendations by electrophysiologists, cardiac imaging specialists, and radiologists, on the appropriate use of cardiovascular imaging for selected patient indications, which needs to be addressed. A Policy Conference on the use of imaging in electrophysiology and device management, with representatives from different expert areas of radiology and electrophysiology and commercial developers of imaging and device technologies, was therefore jointly organized by European Heart Rhythm Association (EHRA), the Council of Cardiovascular Imaging and the European Society of Cardiac Radiology (ESCR). The objectives were to assess the state of the level of evidence and a first step towards a consensus document for currently employed imaging techniques to guide future clinical use, to elucidate the issue of reimbursement structures and health economy, and finally to define the need for appropriate educational programmes to ensure clinical competence for electrophysiologists, imaging specialists, and radiologists.
Molecular Imaging: Current Status and Emerging Strategies
Pysz, Marybeth A.; Gambhir, Sanjiv S.; Willmann, Jürgen K.
2011-01-01
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic treatment (personalized medicine), applying a directed or targeted therapy, and measuring molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of different diseases are identified and, sophisticated and multifunctional contrast agents for imaging these molecular targets are developed along with new technologies and instrumentation for multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are attractive strategies since they provide real-time imaging, are relatively inexpensive, produce images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility. Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory contrast agent movement with ultrasound. Current preclinical findings and advances in instrumentation such as endoscopes and microcatheters suggest that these molecular imaging modalities have numerous clinical applications and will be translated into clinical use in the near future. PMID:20541650
A review of biomechanically informed breast image registration
NASA Astrophysics Data System (ADS)
Hipwell, John H.; Vavourakis, Vasileios; Han, Lianghao; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J.
2016-01-01
Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice.
Nanotechnology-supported THz medical imaging
Stylianou, Andreas; Talias, Michael A
2013-01-01
Over the last few decades, the achievements and progress in the field of medical imaging have dramatically enhanced the early detection and treatment of many pathological conditions. The development of new imaging modalities, especially non-ionising ones, which will improve prognosis, is of crucial importance. A number of novel imaging modalities have been developed but they are still in the initial stages of development and serious drawbacks obstruct them from offering their benefits to the medical field. In the 21 st century, it is believed that nanotechnology will highly influence our everyday life and dramatically change the world of medicine, including medical imaging. Here we discuss how nanotechnology, which is still in its infancy, can improve Terahertz (THz) imaging, an emerging imaging modality, and how it may find its way into real clinical applications. THz imaging is characterised by the use of non-ionising radiation and although it has the potential to be used in many biomedical fields, it remains in the field of basic research. An extensive review of the recent available literature shows how the current state of this emerging imaging modality can be transformed by nanotechnology. Innovative scientific concepts that use nanotechnology-based techniques to overcome some of the limitations of the use of THz imaging are discussed. We review a number of drawbacks, such as a low contrast mechanism, poor source performance and bulky THz systems, which characterise present THz medical imaging and suggest how they can be overcome through nanotechnology. Better resolution and higher detection sensitivity can also be achieved using nanotechnology techniques. PMID:24555052
NASA Astrophysics Data System (ADS)
Rocha, José Celso; Passalia, Felipe José; Matos, Felipe Delestro; Takahashi, Maria Beatriz; Maserati, Marc Peter, Jr.; Alves, Mayra Fernanda; de Almeida, Tamie Guibu; Cardoso, Bruna Lopes; Basso, Andrea Cristina; Nogueira, Marcelo Fábio Gouveia
2017-12-01
There is currently no objective, real-time and non-invasive method for evaluating the quality of mammalian embryos. In this study, we processed images of in vitro produced bovine blastocysts to obtain a deeper comprehension of the embryonic morphological aspects that are related to the standard evaluation of blastocysts. Information was extracted from 482 digital images of blastocysts. The resulting imaging data were individually evaluated by three experienced embryologists who graded their quality. To avoid evaluation bias, each image was related to the modal value of the evaluations. Automated image processing produced 36 quantitative variables for each image. The images, the modal and individual quality grades, and the variables extracted could potentially be used in the development of artificial intelligence techniques (e.g., evolutionary algorithms and artificial neural networks), multivariate modelling and the study of defined structures of the whole blastocyst.
Image reconstruction for PET/CT scanners: past achievements and future challenges
Tong, Shan; Alessio, Adam M; Kinahan, Paul E
2011-01-01
PET is a medical imaging modality with proven clinical value for disease diagnosis and treatment monitoring. The integration of PET and CT on modern scanners provides a synergy of the two imaging modalities. Through different mathematical algorithms, PET data can be reconstructed into the spatial distribution of the injected radiotracer. With dynamic imaging, kinetic parameters of specific biological processes can also be determined. Numerous efforts have been devoted to the development of PET image reconstruction methods over the last four decades, encompassing analytic and iterative reconstruction methods. This article provides an overview of the commonly used methods. Current challenges in PET image reconstruction include more accurate quantitation, TOF imaging, system modeling, motion correction and dynamic reconstruction. Advances in these aspects could enhance the use of PET/CT imaging in patient care and in clinical research studies of pathophysiology and therapeutic interventions. PMID:21339831
[Molecular imaging; current status and future prospects in USA].
Kobayashi, Hisataka
2007-02-01
The goal of this review is to introduce the definition, current status, and future prospects of the molecular imaging, which has recently been a hot topic in medicine and the biological science in USA. In vivo imaging methods to visualize the molecular events and functions in organs or animals/humans are overviewed and discussed especially in combinations of imaging modalities (machines) and contrast agents(chemicals) used in the molecular imaging. Next, the close relationship between the molecular imaging and the nanotechnology, an important part of nanomedicine, is stressed from the aspect of united multidisciplinary sciences such as physics, chemistry, biology, and medicine.
NASA Astrophysics Data System (ADS)
Gabai, Haniel; Baranes-Zeevi, Maya; Zilberman, Meital; Shaked, Natan T.
2013-04-01
We propose an off-axis interferometric imaging system as a simple and unique modality for continuous, non-contact and non-invasive wide-field imaging and characterization of drug release from its polymeric device used in biomedicine. In contrast to the current gold-standard methods in this field, usually based on chromatographic and spectroscopic techniques, our method requires no user intervention during the experiment, and only one test-tube is prepared. We experimentally demonstrate imaging and characterization of drug release from soy-based protein matrix, used as skin equivalent for wound dressing with controlled anesthetic, Bupivacaine drug release. Our preliminary results demonstrate the high potential of our method as a simple and low-cost modality for wide-field imaging and characterization of drug release from drug delivery devices.
Inflammatory bowel disease imaging: Current practice and future directions
Kilcoyne, Aoife; Kaplan, Jess L; Gee, Michael S
2016-01-01
The purpose of this paper is to evaluate the role of imaging in inflammatory bowel disease (IBD), including detection of extraluminal complications and extraintestinal manifestations of IBD, assessment of disease activity and treatment response, and discrimination of inflammatory from fibrotic strictures. IBD is a chronic idiopathic disease affecting the gastrointestinal tract that is comprised of two separate, but related intestinal disorders; Crohn’s disease and ulcerative colitis. The paper discusses, in detail the pros and cons of the different IBD imaging modalities that need to be considered in order to optimize the imaging and clinical evaluation of patients with IBD. Historically, IBD evaluation of the bowel has included imaging to assess the portions of the small bowel that are inaccessible to optical endoscopic visualization. This traditionally was performed using barium fluoroscopic techniques; however, cross-sectional imaging techniques (computed tomography and magnetic resonance imaging) are being increasingly utilized for IBD evaluation because they can simultaneously assess mural and extramural IBD manifestations. Recent advances in imaging technology, that continue to improve the ability of imaging to noninvasively follow disease activity and treatment response, are also discussed. This review article summarizes the current imaging approach in inflammatory bowel disease as well as the role of emerging imaging modalities. PMID:26811637
The history of imaging in obstetrics.
Benson, Carol B; Doubilet, Peter M
2014-11-01
During the past century, imaging of the pregnant patient has been performed with radiography, scintigraphy, computed tomography, magnetic resonance imaging, and ultrasonography (US). US imaging has emerged as the primary imaging modality, because it provides real-time images at relatively low cost without the use of ionizing radiation. This review begins with a discussion of the history and current status of imaging modalities other than US for the pregnant patient. The discussion then turns to an in-depth description of how US technology advanced to become such a valuable diagnostic tool in the obstetric patient. Finally, the broad range of diagnostic uses of US in these patients is presented, including its uses for distinguishing an intrauterine pregnancy from a failed or ectopic pregnancy in the first trimester; assigning gestational age and assessing fetal weight; evaluating the fetus for anomalies and aneuploidy; examining the uterus, cervix, placenta, and amniotic fluid; and guiding obstetric interventional procedures.
NASA Astrophysics Data System (ADS)
Tian, Chao; Zhang, Wei; Nguyen, Van Phuc; Huang, Ziyi; Wang, Xueding; Paulus, Yannis M.
2018-02-01
Current clinical available retinal imaging techniques have limitations, including limited depth of penetration or requirement for the invasive injection of exogenous contrast agents. Here, we developed a novel multimodal imaging system for high-speed, high-resolution retinal imaging of larger animals, such as rabbits. The system integrates three state-of-the-art imaging modalities, including photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence microscopy (FM). In vivo experimental results of rabbit eyes show that the PAM is able to visualize laser-induced retinal burns and distinguish individual eye blood vessels using a laser exposure dose of 80 nJ, which is well below the American National Standards Institute (ANSI) safety limit 160 nJ. The OCT can discern different retinal layers and visualize laser burns and choroidal detachments. The novel multi-modal imaging platform holds great promise in ophthalmic imaging.
Enterprise-class Digital Imaging and Communications in Medicine (DICOM) image infrastructure.
York, G; Wortmann, J; Atanasiu, R
2001-06-01
Most current picture archiving and communication systems (PACS) are designed for a single department or a single modality. Few PACS installations have been deployed that support the needs of the hospital or the entire Integrated Delivery Network (IDN). The authors propose a new image management architecture that can support a large, distributed enterprise.
Huppert, T. J.; Beluk, N. H.; Elbin, R. J.; Henry, L. C.; French, J.; Dakan, S. M.; Collins, M. W.
2016-01-01
There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/ patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18–45 years with a recent (15–45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X’s and O’s) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion. PMID:24477579
A tutorial on ultrasonic physics and imaging techniques.
Halliwell, M
2010-01-01
Ultrasound is a widely used modality for both therapy and diagnosis in medicine and biology. Currently, in the field of medical diagnosis, ultrasound is responsible for about one in five of all diagnostic images. The physical characteristics of medical ultrasound, along with its behaviour as it interacts with biological tissues, are described in this tutorial. The role of ultrasound in therapeutic and diagnostic applications is briefly described. In view of the importance of ultrasound as a medical imaging modality, the basic technological building blocks utilized in diagnostic ultrasound scanners are also described. Many of these topics are the subjects of other papers in this special issue where they are dealt with in more detail.
Nonmetastatic Castration-resistant Prostate Cancer: A Modern Perspective.
Cancian, Madeline; Renzulli, Joseph F
2018-06-01
Nonmetastatic castration-resistant prostate cancer (nmCRPC) presents a challenge to urologists as currently there are no Food and Drug Administration-approved therapies. However, there are new imaging modalities, including fluciclovine positron emission tomography-computed tomography and Ga-PSMA (prostate specific membrane antigent) positron emission tomography-computed tomography, which are improving accuracy of diagnosis. With improved imaging, we are better able to target therapy. Today there are 3 ongoing clinical trials studying second-generation antiandrogens in nmCRPC, which hold the promise of a new treatment paradigm. In this article, we will review the new imaging techniques and the rationale behind novel treatment modalities in nmCRPC. Copyright © 2018 Elsevier Inc. All rights reserved.
Breast Cancer Screening, Mammography, and Other Modalities.
Fiorica, James V
2016-12-01
This article is an overview of the modalities available for breast cancer screening. The modalities discussed include digital mammography, digital breast tomosynthesis, breast ultrasonography, magnetic resonance imaging, and clinical breast examination. There is a review of pertinent randomized controlled trials, studies and meta-analyses which contributed to the evolution of screening guidelines. Ultimately, 5 major medical organizations formulated the current screening guidelines in the United States. The lack of consensus in these guidelines represents an ongoing controversy about the optimal timing and method for breast cancer screening in women. For mammography screening, the Breast Imaging Reporting and Data System lexicon is explained which corresponds with recommended clinical management. The presentation and discussion of the data in this article are designed to help the clinician individualize breast cancer screening for each patient.
Maia, S; Ayachi Hatit, N; Paycha, F
2011-05-01
Molecular imaging has shown its interest in the diagnosis, staging and therapy monitoring of many diseases, especially in the field of cancer. This imaging modality can detect non-invasively early molecular changes specific to these diseases. Its expansion includes two aspects linked firstly with the advanced techniques of imaging modalities and secondly with the development of tracers as radio pharmaceuticals for imaging new molecular targets. Technetium-99m ((99m)Tc), because of its physical characteristics, its widespread availability and low cost, is the most used radionuclide in molecular imaging with the technique of single photon emission computed tomography (SPECT). Nevertheless, the current difficulty concerning the supply and the great interest of Positron Emission Tomography (PET), the "competitor" imaging modality-using molecules labelled with fluorine-18 ((18)F), legitimates the question about the future of (99m)Tc, its supremacy and the emergence of new tracer labelled with (99m)Tc. Focusing on the actual and future supply situation, the place of SPECT imaging in nuclear medicine, as well as the development of new molecules labelled with (99m)Tc is necessary to show that this radionuclide will remain essential for the speciality in the next years. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.
Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru
2007-11-01
Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.
Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.
Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B
2014-11-01
The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.
Turan, Nefize; Heider, Robert A; Roy, Anil K; Miller, Brandon A; Mullins, Mark E; Barrow, Daniel L; Grossberg, Jonathan; Pradilla, Gustavo
2018-05-01
Intracranial aneurysms (IAs) are pathologic dilatations of cerebral arteries. This systematic review summarizes and compares imaging techniques for assessing unruptured IAs (UIAs). This review also addresses their uses in different scopes of practice. Pathophysiologic mechanisms are reviewed to better understand the clinical usefulness of each imaging modality. A literature review was performed using PubMed with these search terms: "intracranial aneurysm," "cerebral aneurysm," "magnetic resonance angiography (MRA)," computed tomography angiography (CTA)," "catheter angiography," "digital subtraction angiography," "molecular imaging," "ferumoxytol," and "myeloperoxidase". Only studies in English were cited. Since the development and improvement of noninvasive diagnostic imaging (computed tomography angiography and magnetic resonance angiography), many prospective studies and meta-analyses have compared these tests with gold standard digital subtraction angiography (DSA). Although computed tomography angiography and magnetic resonance angiography have lower detection rates for UIAs, they are vital in the treatment and follow-up of UIAs. The reduction in ionizing radiation and lack of endovascular instrumentation with these modalities provide benefits compared with DSA. Novel molecular imaging techniques to detect inflammation within the aneurysmal wall with the goal of stratifying risk based on level of inflammation are under investigation. DSA remains the gold standard for preoperative planning and follow-up for patients with IA. Newer imaging modalities such as ferumoxytol-enhanced magnetic resonance imaging are emerging techniques that provide critical in vivo information about the inflammatory milieu within aneurysm walls. With further study, these techniques may provide aneurysm rupture risk and prediction models for individualized patient care. Copyright © 2018 Elsevier Inc. All rights reserved.
Siloxane nanoprobes for labeling and dual modality imaging of neural stem cells
Addington, Caroline P.; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E.; Kodibagkar, Vikram D.
2015-01-01
Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality (1H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μl/104 cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by 1H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast 1H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability. PMID:26597417
NASA Astrophysics Data System (ADS)
Stanley, Dennis Nichols
With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor the stability of the imaging systems and characterize each system are important to ensuring the consistency and effectiveness of the overall treatment. Image-Guided Radiation Therapy quality assurance allows a method of quantifying the accuracy and stability of the imaging systems. Understanding how the ionizing imaging systems operate and change over time allows for a more effective overall treatment and will be the focus of the first step of this project. In each of the first three aims, different ionizing imaging modalities will be evaluated for their temporal stability and a record of the determined tolerance level will be reported. The Second step of this project will be a characterization of the accuracy and performance of the new C-Rad CatalystHD a video-based, surface-imaging guided patient localization system. The catalyst will be analyzed for it accuracy of setup and patient positing, intra- and inter- fraction motion detection as well as its respiratory gating capabilities. The final step of this project will be to use the well-established accuracy of the XVI volumetric imaging system as a benchmark to assess the accuracy of the C-Rad CatalystHD system for use in pretreatment patient position verification for cranial stereotactic procedures. The treatment of brain lesions generally requires a very high degree of precision due to relatively small target sizes, close proximity to eloquent areas of the brain, and large, ablative doses being delivered. Stringent accuracy in imaging is needed to verify and monitor the correct spatial delivery of radiation throughout treatment. In order to investigate if the CatalystHD system is a capable imaging system for such deliveries, the system will need to be assessed and benchmarked against the XVI in a phantom geometry. By doing so, the currently unproven utility of the CatalystHD system for cranial stereotactic delivery may be established. (Abstract shortened by ProQuest.).
Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS
2016-01-01
Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183
NASA Astrophysics Data System (ADS)
Dalstra, M.; Schulz, G.; Dagassan-Berndt, D.; Verna, C.; Müller-Gerbl, M.; Müller, B.
2016-10-01
An entire human head obtained at autopsy was micro-CT scanned in a nano/micro-CT scanner in a 6-hour long session. Despite the size of the head, it could still be scanned with a pixel size of 70 μm. The aim of this study was to obtain an optimal quality 3D data-set to be used as baseline control in a larger study comparing the image quality of various cone beam CT systems currently used in dentistry. The image quality of the micro-CT scans was indeed better than the ones of the clinical imaging modalities, both with regard to noise and streak artifacts due to metal dental implants. Bony features in the jaws, like the trabecular architecture and the thin wall of the alveolar bone were clearly visible. Therefore, the 3D micro-CT data-set can be used as the gold standard for linear, angular, and volumetric measurements of anatomical features in and around the oral cavity when comparing clinical imaging modalities.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process.
Caballero Perea, Begoña; Villegas, Antonio Cabrera; Rodríguez, José Miguel Delgado; Velloso, María José García; Vicente, Ana María García; Cabrerizo, Carlos Huerga; López, Rosa Morera; Romasanta, Luis Alberto Pérez; Beltrán, Moisés Sáez
2012-01-01
Positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) is a valuable tool for diagnosing and staging malignant lesions. The fusion of PET and computed tomography (CT) yields images that contain both metabolic and morphological information, which, taken together, have improved the diagnostic precision of PET in oncology. The main imaging modality for planning radiotherapy treatment is CT. However, PET-CT is an emerging modality for use in planning treatments because it allows for more accurate treatment volume definition. The use of PET-CT for treatment planning is highly complex, and protocols and standards for its use are still being developed. It seems probable that PET-CT will eventually replace current CT-based planning methods, but this will require a full understanding of the relevant technical aspects of PET-CT planning. The aim of the present document is to review these technical aspects and to provide recommendations for clinical use of this imaging modality in the radiotherapy planning process. PMID:24377032
NASA Astrophysics Data System (ADS)
Kang, Jeeun; Chang, Jin Ho; Wilson, Brian C.; Veilleux, Israel; Bai, Yanhui; DaCosta, Ralph; Kim, Kang; Ha, Seunghan; Lee, Jong Gun; Kim, Jeong Seok; Lee, Sang-Goo; Kim, Sun Mi; Lee, Hak Jong; Ahn, Young Bok; Han, Seunghee; Yoo, Yangmo; Song, Tai-Kyong
2015-03-01
Multi-modality imaging is beneficial for both preclinical and clinical applications as it enables complementary information from each modality to be obtained in a single procedure. In this paper, we report the design, fabrication, and testing of a novel tri-modal in vivo imaging system to exploit molecular/functional information from fluorescence (FL) and photoacoustic (PA) imaging as well as anatomical information from ultrasound (US) imaging. The same ultrasound transducer was used for both US and PA imaging, bringing the pulsed laser light into a compact probe by fiberoptic bundles. The FL subsystem is independent of the acoustic components but the front end that delivers and collects the light is physically integrated into the same probe. The tri-modal imaging system was implemented to provide each modality image in real time as well as co-registration of the images. The performance of the system was evaluated through phantom and in vivo animal experiments. The results demonstrate that combining the modalities does not significantly compromise the performance of each of the separate US, PA, and FL imaging techniques, while enabling multi-modality registration. The potential applications of this novel approach to multi-modality imaging range from preclinical research to clinical diagnosis, especially in detection/localization and surgical guidance of accessible solid tumors.
Zuluaga, Maria A; Rodionov, Roman; Nowell, Mark; Achhala, Sufyan; Zombori, Gergely; Mendelson, Alex F; Cardoso, M Jorge; Miserocchi, Anna; McEvoy, Andrew W; Duncan, John S; Ourselin, Sébastien
2015-08-01
Brain vessels are among the most critical landmarks that need to be assessed for mitigating surgical risks in stereo-electroencephalography (SEEG) implantation. Intracranial haemorrhage is the most common complication associated with implantation, carrying significantly associated morbidity. SEEG planning is done pre-operatively to identify avascular trajectories for the electrodes. In current practice, neurosurgeons have no assistance in the planning of electrode trajectories. There is great interest in developing computer-assisted planning systems that can optimise the safety profile of electrode trajectories, maximising the distance to critical structures. This paper presents a method that integrates the concepts of scale, neighbourhood structure and feature stability with the aim of improving robustness and accuracy of vessel extraction within a SEEG planning system. The developed method accounts for scale and vicinity of a voxel by formulating the problem within a multi-scale tensor voting framework. Feature stability is achieved through a similarity measure that evaluates the multi-modal consistency in vesselness responses. The proposed measurement allows the combination of multiple images modalities into a single image that is used within the planning system to visualise critical vessels. Twelve paired data sets from two image modalities available within the planning system were used for evaluation. The mean Dice similarity coefficient was 0.89 ± 0.04, representing a statistically significantly improvement when compared to a semi-automated single human rater, single-modality segmentation protocol used in clinical practice (0.80 ± 0.03). Multi-modal vessel extraction is superior to semi-automated single-modality segmentation, indicating the possibility of safer SEEG planning, with reduced patient morbidity.
Musculoskeletal Imaging Findings of Hematologic Malignancies.
Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J
2017-01-01
Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.
Oberg, Kjell; Krenning, Eric; Sundin, Anders; Bodei, Lisa; Kidd, Mark; Tesselaar, Margot; Ambrosini, Valentina; Baum, Richard P; Kulke, Matthew; Pavel, Marianne; Cwikla, Jaroslaw; Drozdov, Ignat; Falconi, Massimo; Fazio, Nicola; Frilling, Andrea; Jensen, Robert; Koopmans, Klaus; Korse, Tiny; Kwekkeboom, Dik; Maecke, Helmut; Paganelli, Giovanni; Salazar, Ramon; Severi, Stefano; Strosberg, Jonathan; Prasad, Vikas; Scarpa, Aldo; Grossman, Ashley; Walenkamp, Annemeik; Cives, Mauro; Virgolini, Irene; Kjaer, Andreas; Modlin, Irvin M
2016-09-01
The complexity of the clinical management of neuroendocrine neoplasia (NEN) is exacerbated by limitations in imaging modalities and a paucity of clinically useful biomarkers. Limitations in currently available imaging modalities reflect difficulties in measuring an intrinsically indolent disease, resolution inadequacies and inter-/intra-facility device variability and that RECIST (Response Evaluation Criteria in Solid Tumors) criteria are not optimal for NEN. Limitations of currently used biomarkers are that they are secretory biomarkers (chromogranin A, serotonin, neuron-specific enolase and pancreastatin); monoanalyte measurements; and lack sensitivity, specificity and predictive capacity. None of them meet the NIH metrics for clinical usage. A multinational, multidisciplinary Delphi consensus meeting of NEN experts (n = 33) assessed current imaging strategies and biomarkers in NEN management. Consensus (>75%) was achieved for 78% of the 142 questions. The panel concluded that morphological imaging has a diagnostic value. However, both imaging and current single-analyte biomarkers exhibit substantial limitations in measuring the disease status and predicting the therapeutic efficacy. RECIST remains suboptimal as a metric. A critical unmet need is the development of a clinico-biological tool to provide enhanced information regarding precise disease status and treatment response. The group considered that circulating RNA was better than current general NEN biomarkers and preliminary clinical data were considered promising. It was resolved that circulating multianalyte mRNA (NETest) had clinical utility in both diagnosis and monitoring disease status and therapeutic efficacy. Overall, it was concluded that a combination of tumor spatial and functional imaging with circulating transcripts (mRNA) would represent the future strategy for real-time monitoring of disease progress and therapeutic efficacy. © 2016 The authors.
Liposomal nanocarriers for tumor imaging.
Erdogan, Suna
2009-04-01
Currently used imaging modalities such as scintigraphy, computed tomography, magnetic resonance imaging and ultrasonography require the sufficient intensity of a corresponding signal from an area of interest to differentiate this area from the surrounding tissues. Targeting of various reporter moieties directly to the specific organs, tissues or tumors provide the highest dose of drug directly where it is needed. Many different types of nanoparticles are currently being studied for applications in nanomedicine. Among particulate drug carriers, liposomes are one of the most extensively studied and possess the most suitable characteristics for encapsulation of many drugs, genes, and diagnostic (imaging) agents. Among the many potential targets for such nanocarriers, tumors have been most often investigated. This review attempts to summarize the currently available information regarding liposomal nanocarriers for cancer imaging.
Rosset, Antoine; Spadola, Luca; Pysher, Lance; Ratib, Osman
2006-01-01
The display and interpretation of images obtained by combining three-dimensional data acquired with two different modalities (eg, positron emission tomography and computed tomography) in the same subject require complex software tools that allow the user to adjust the image parameters. With the current fast imaging systems, it is possible to acquire dynamic images of the beating heart, which add a fourth dimension of visual information-the temporal dimension. Moreover, images acquired at different points during the transit of a contrast agent or during different functional phases add a fifth dimension-functional data. To facilitate real-time image navigation in the resultant large multidimensional image data sets, the authors developed a Digital Imaging and Communications in Medicine-compliant software program. The open-source software, called OsiriX, allows the user to navigate through multidimensional image series while adjusting the blending of images from different modalities, image contrast and intensity, and the rate of cine display of dynamic images. The software is available for free download at http://homepage.mac.com/rossetantoine/osirix. (c) RSNA, 2006.
Digital ocular fundus imaging: a review.
Bernardes, Rui; Serranho, Pedro; Lobo, Conceição
2011-01-01
Ocular fundus imaging plays a key role in monitoring the health status of the human eye. Currently, a large number of imaging modalities allow the assessment and/or quantification of ocular changes from a healthy status. This review focuses on the main digital fundus imaging modality, color fundus photography, with a brief overview of complementary techniques, such as fluorescein angiography. While focusing on two-dimensional color fundus photography, the authors address the evolution from nondigital to digital imaging and its impact on diagnosis. They also compare several studies performed along the transitional path of this technology. Retinal image processing and analysis, automated disease detection and identification of the stage of diabetic retinopathy (DR) are addressed as well. The authors emphasize the problems of image segmentation, focusing on the major landmark structures of the ocular fundus: the vascular network, optic disk and the fovea. Several proposed approaches for the automatic detection of signs of disease onset and progression, such as microaneurysms, are surveyed. A thorough comparison is conducted among different studies with regard to the number of eyes/subjects, imaging modality, fundus camera used, field of view and image resolution to identify the large variation in characteristics from one study to another. Similarly, the main features of the proposed classifications and algorithms for the automatic detection of DR are compared, thereby addressing computer-aided diagnosis and computer-aided detection for use in screening programs. Copyright © 2011 S. Karger AG, Basel.
Evangelista, Laura; Bertoldo, Francesco; Boccardo, Francesco; Conti, Giario; Menchi, Ilario; Mungai, Francesco; Ricardi, Umberto; Bombardieri, Emilio
2016-07-01
Different therapeutic options for the management of prostate cancer (PC) have been developed, and some are successful in providing crucial improvement in both survival and quality of life, especially in patients with metastatic castration-resistant PC. In this scenario, diverse combinations of radiopharmaceuticals (for targeting bone, cancer cells and receptors) and nuclear medicine modalities (e.g. bone scan, SPECT, SPECT/CT, PET and PET/CT) are now available for imaging bone metastases. Some radiopharmaceuticals are approved, currently available and used in the routine clinical setting, while others are not registered and are still under evaluation, and should therefore be considered experimental. On the other hand, radiologists have other tools, in addition to CT, that can better visualize bone localization and medullary involvement, such as multimodal MRI. In this review, the authors provide an overview of current management of advanced PC and discuss the choice of diagnostic modality for the detection of metastatic skeletal lesions in different phases of the disease. In addition to detection of bone metastases, the evaluation of response to therapy is another critical issue, since it remains one of the most important open questions that a multidisciplinary team faces when optimizing the management of PC. The authors emphasize the role of nuclear modalities that can presently be used in clinical practice, and also look at future perspectives based on relevant clinical data with novel radiopharmaceuticals.
Implementation of DICOM Modality Worklist at Patient Registration Systems in Radiology Unit
NASA Astrophysics Data System (ADS)
Kartawiguna, Daniel; Georgiana, Vina
2014-03-01
Currently, the information and communication technology is developing very rapidly. A lot of hospitals have digital radiodiagnostic modality that supports the DICOM protocol. However, the implementation of integrated radiology information system with medical imaging equipment is still very limited until now, especially in developing countries like Indonesia. One of the obstacles is high prices for radiology information system. Whereas the radiology information systems can be widely used by radiologists to provide many benefit for patient, hospitals, and the doctors themselves. This study aims to develop a system that integrates the radiology administration information system with radiodiagnostic imaging modalities. Such a system would give some benefits that the information obtained is more accurate, timely, relevant, and accelerate the workflow of healthcare workers. This research used direct observation method to some hospital radiology unit. Data was collected through interviews, questionnaires, and surveys directly to some of the hospital's radiology department in Jakarta, and supported by the literature study. Based on the observations, the prototype of integrated patient registration systems in radiology unit is developed and interfaced to imaging equipment radiodiagnostic using standard DICOM communications. The prototype of radiology patient registration system is tested with the modality MRI and CT scan.
Enhancing image classification models with multi-modal biomarkers
NASA Astrophysics Data System (ADS)
Caban, Jesus J.; Liao, David; Yao, Jianhua; Mollura, Daniel J.; Gochuico, Bernadette; Yoo, Terry
2011-03-01
Currently, most computer-aided diagnosis (CAD) systems rely on image analysis and statistical models to diagnose, quantify, and monitor the progression of a particular disease. In general, CAD systems have proven to be effective at providing quantitative measurements and assisting physicians during the decision-making process. As the need for more flexible and effective CADs continues to grow, questions about how to enhance their accuracy have surged. In this paper, we show how statistical image models can be augmented with multi-modal physiological values to create more robust, stable, and accurate CAD systems. In particular, this paper demonstrates how highly correlated blood and EKG features can be treated as biomarkers and used to enhance image classification models designed to automatically score subjects with pulmonary fibrosis. In our results, a 3-5% improvement was observed when comparing the accuracy of CADs that use multi-modal biomarkers with those that only used image features. Our results show that lab values such as Erythrocyte Sedimentation Rate and Fibrinogen, as well as EKG measurements such as QRS and I:40, are statistically significant and can provide valuable insights about the severity of the pulmonary fibrosis disease.
Accurate determination of imaging modality using an ensemble of text- and image-based classifiers.
Kahn, Charles E; Kalpathy-Cramer, Jayashree; Lam, Cesar A; Eldredge, Christina E
2012-02-01
Imaging modality can aid retrieval of medical images for clinical practice, research, and education. We evaluated whether an ensemble classifier could outperform its constituent individual classifiers in determining the modality of figures from radiology journals. Seventeen automated classifiers analyzed 77,495 images from two radiology journals. Each classifier assigned one of eight imaging modalities--computed tomography, graphic, magnetic resonance imaging, nuclear medicine, positron emission tomography, photograph, ultrasound, or radiograph-to each image based on visual and/or textual information. Three physicians determined the modality of 5,000 randomly selected images as a reference standard. A "Simple Vote" ensemble classifier assigned each image to the modality that received the greatest number of individual classifiers' votes. A "Weighted Vote" classifier weighted each individual classifier's vote based on performance over a training set. For each image, this classifier's output was the imaging modality that received the greatest weighted vote score. We measured precision, recall, and F score (the harmonic mean of precision and recall) for each classifier. Individual classifiers' F scores ranged from 0.184 to 0.892. The simple vote and weighted vote classifiers correctly assigned 4,565 images (F score, 0.913; 95% confidence interval, 0.905-0.921) and 4,672 images (F score, 0.934; 95% confidence interval, 0.927-0.941), respectively. The weighted vote classifier performed significantly better than all individual classifiers. An ensemble classifier correctly determined the imaging modality of 93% of figures in our sample. The imaging modality of figures published in radiology journals can be determined with high accuracy, which will improve systems for image retrieval.
The dual loop model: its relation to language and other modalities
Rijntjes, Michel; Weiller, Cornelius; Bormann, Tobias; Musso, Mariacristina
2012-01-01
The current neurobiological consensus of a general dual loop system scaffolding human and primate brains gives evidence that the dorsal and ventral connections subserve similar functions, independent of the modality and species. However, most current commentators agree that although bees dance and chimpanzees grunt, these systems of communication differ qualitatively from human language. So why is language unique to humans? We discuss anatomical differences between humans and other animals, the meaning of lesion studies in patients, the role of inner speech, and compare functional imaging studies in language with other modalities in respect to the dual loop model. These aspects might be helpful for understanding what kind of biological system the language faculty is, and how it relates to other systems in our own species and others. PMID:22783188
Imaging of coronary atherosclerosis and identification of the vulnerable plaque
de Feyter, P.J.; Serruys, P. W.; Nieman, K.; Mollet, N.; Cademartiri, F.; van Geuns, R. J.; Slager, C.; van der Steen, A.F.W.; Krams, R.; Schaar, J.A.; Wielopolski, P.; Pattynama, P.M.T.; Arampatzis, A.; van der Lugt, A.; Regar, E.; Ligthart, J.; Smits, P.
2003-01-01
Identification of the vulnerable plaque responsible for the occurrence of acute coronary syndromes and acute coronary death is a prerequisite for the stabilisation of this vulnerable plaque. Comprehensive coronary atherosclerosis imaging in clinical practice should involve visualisation of the entire coronary artery tree and characterisation of the plaque, including the three-dimensional morphology of the plaque, encroachment of the plaque on the vessel lumen, the major tissue components of the plaque, remodelling of the vessel and presence of inflammation. Obviously, no single diagnostic modality is available that provides such comprehensive imaging and unfortunately no diagnostic tool is available that unequivocally identifies the vulnerable plaque. The objective of this article is to discuss experience with currently available diagnostic modalities for coronary atherosclerosis imaging. In addition, a number of evolving techniques will be briefly discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:25696244
Dual-modal photoacoustic and ultrasound imaging of dental implants
NASA Astrophysics Data System (ADS)
Lee, Donghyun; Park, Sungjo; Kim, Chulhong
2018-02-01
Dental implants are common method to replace decayed or broken tooth. As the implant treatment procedures varies according to the patients' jawbone, bone ridge, and sinus structure, appropriate examinations are necessary for successful treatment. Currently, radiographic examinations including periapical radiology, panoramic X-ray, and computed tomography are commonly used for diagnosing and monitoring. However, these radiographic examinations have limitations in that patients and operators are exposed to radioactivity and multiple examinations are performed during the treatment. In this study, we demonstrated photoacoustic (PA) and ultrasound (US) combined imaging of dental implant that can lower the total amount of absorbed radiation dose in dental implant treatment. An acoustic resolution PA macroscopy and a clinical PA/US system was used for dental implant imaging. The acquired dual modal PA/US imaging results support that the proposed photoacoustic imaging strategy can reduce the radiation dose rate during dental implant treatment.
A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening.
Chi, Taiyun; Park, Jong Seok; Butts, Jessica C; Hookway, Tracy A; Su, Amy; Zhu, Chengjie; Styczynski, Mark P; McDevitt, Todd C; Wang, Hua
2015-12-01
In this paper, we present a fully integrated multi-modality CMOS cellular sensor array with four sensing modalities to characterize different cell physiological responses, including extracellular voltage recording, cellular impedance mapping, optical detection with shadow imaging and bioluminescence sensing, and thermal monitoring. The sensor array consists of nine parallel pixel groups and nine corresponding signal conditioning blocks. Each pixel group comprises one temperature sensor and 16 tri-modality sensor pixels, while each tri-modality sensor pixel can be independently configured for extracellular voltage recording, cellular impedance measurement (voltage excitation/current sensing), and optical detection. This sensor array supports multi-modality cellular sensing at the pixel level, which enables holistic cell characterization and joint-modality physiological monitoring on the same cellular sample with a pixel resolution of 80 μm × 100 μm. Comprehensive biological experiments with different living cell samples demonstrate the functionality and benefit of the proposed multi-modality sensing in cell-based assay and drug screening.
MRI in patients with inflammatory bowel disease
Gee, Michael S.; Harisinghani, Mukesh G.
2011-01-01
Inflammatory bowel disease (IBD) affects approximately 1.4 million people in North America and, because of its typical early age of onset and episodic disease course, IBD patients often undergo numerous imaging studies over the course of their lifetimes. CT has become the standard imaging modality for assessment of IBD patients because of its widespread availability, rapid image acquisition, and ability to evaluate intraluminal and extraluminal disease. However, repetitive CT imaging has been associated with a significant ionizing radiation risk to patients, making MRI an appealing alternative IBD imaging modality. Pelvic MRI is currently the imaging gold standard for detecting perianal disease, while recent studies indicate that MRI bowel-directed techniques (enteroclysis, enterography, colonography) can accurately evaluate bowel inflammation in IBD. With recent technical innovations leading to faster and higher resolution body MRI, the role of MRI in IBD evaluation is likely to continue to expand. Future applications include surveillance imaging, detection of mural fibrosis, and early assessment of therapy response. PMID:21512607
Photoacoustic cystography using handheld dual modal clinical ultrasound photoacoustic imaging system
NASA Astrophysics Data System (ADS)
Sivasubramanian, Kathyayini; Periyasamy, Vijitha; Austria, Dienzo Rhonnie; Pramanik, Manojit
2018-02-01
Vesicoureteral reflux is the abnormal flow of urine from your bladder back up the tubes (ureters) that connect your kidneys to your bladder. Normally, urine flows only down from your kidneys to your bladder. Vesicoureteral reflux is usually diagnosed in infants and children. The disorder increases the risk of urinary tract infections, which, if left untreated, can lead to kidney damage. X-Ray cystography is used currently to diagnose this condition which uses ionising radiation, making it harmful for patients. In this work we demonstrate the feasibility of imaging the urinary bladder using a handheld clinical ultrasound and photoacoustic dual modal imaging system in small animals (rats). Additionally, we demonstrate imaging vesicoureteral reflux using bladder mimicking phantoms. Urinary bladder imaging is done with the help of contrast agents like black ink and gold nanoparticles which have high optical absorption at 1064 nm. Imaging up to 2 cm was demonstrated with this system. Imaging was done at a framerate of 5 frames per second.
NASA Astrophysics Data System (ADS)
Murukeshan, Vadakke M.; Hoong Ta, Lim
2014-11-01
Medical diagnostics in the recent past has seen the challenging trend to come up with dual and multi-modality imaging for implementing better diagnostic procedures. The changes in tissues in the early disease stages are often subtle and can occur beneath the tissue surface. In most of these cases, conventional types of medical imaging using optics may not be able to detect these changes easily due to its penetration depth of the orders of 1 mm. Each imaging modality has its own advantages and limitations, and the use of a single modality is not suitable for every diagnostic applications. Therefore the need for multi or hybrid-modality imaging arises. Combining more than one imaging modalities overcomes the limitation of individual imaging method and integrates the respective advantages into a single setting. In this context, this paper will be focusing on the research and development of two multi-modality imaging platforms. The first platform combines ultrasound and photoacoustic imaging for diagnostic applications in the eye. The second platform consists of optical hyperspectral and photoacoustic imaging for diagnostic applications in the colon. Photoacoustic imaging is used as one of the modalities in both platforms as it can offer deeper penetration depth compared to optical imaging. The optical engineering and research challenges in developing the dual/multi-modality platforms will be discussed, followed by initial results validating the proposed scheme. The proposed schemes offer high spatial and spectral resolution imaging and sensing, and is expected to offer potential biomedical imaging solutions in the near future.
Sonoelastography in the musculoskeletal system: Current role and future directions.
Winn, Naomi; Lalam, Radhesh; Cassar-Pullicino, Victor
2016-11-28
Ultrasound is an essential modality within musculoskeletal imaging, with the recent addition of elastography. The elastic properties of tissues are different from the acoustic impedance used to create B mode imaging and the flow properties used within Doppler imaging, hence elastography provides a different form of tissue assessment. The current role of ultrasound elastography in the musculoskeletal system will be reviewed, in particular with reference to muscles, tendons, ligaments, joints and soft tissue tumours. The different ultrasound elastography methods currently available will be described, in particular strain elastography and shear wave elastography. Future directions of ultrasound elastography in the musculoskeletal system will also be discussed.
Patel, Meenal J; Andreescu, Carmen; Price, Julie C; Edelman, Kathryn L; Reynolds, Charles F; Aizenstein, Howard J
2015-10-01
Currently, depression diagnosis relies primarily on behavioral symptoms and signs, and treatment is guided by trial and error instead of evaluating associated underlying brain characteristics. Unlike past studies, we attempted to estimate accurate prediction models for late-life depression diagnosis and treatment response using multiple machine learning methods with inputs of multi-modal imaging and non-imaging whole brain and network-based features. Late-life depression patients (medicated post-recruitment) (n = 33) and older non-depressed individuals (n = 35) were recruited. Their demographics and cognitive ability scores were recorded, and brain characteristics were acquired using multi-modal magnetic resonance imaging pretreatment. Linear and nonlinear learning methods were tested for estimating accurate prediction models. A learning method called alternating decision trees estimated the most accurate prediction models for late-life depression diagnosis (87.27% accuracy) and treatment response (89.47% accuracy). The diagnosis model included measures of age, Mini-mental state examination score, and structural imaging (e.g. whole brain atrophy and global white mater hyperintensity burden). The treatment response model included measures of structural and functional connectivity. Combinations of multi-modal imaging and/or non-imaging measures may help better predict late-life depression diagnosis and treatment response. As a preliminary observation, we speculate that the results may also suggest that different underlying brain characteristics defined by multi-modal imaging measures-rather than region-based differences-are associated with depression versus depression recovery because to our knowledge this is the first depression study to accurately predict both using the same approach. These findings may help better understand late-life depression and identify preliminary steps toward personalized late-life depression treatment. Copyright © 2015 John Wiley & Sons, Ltd.
Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk
2010-01-01
We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques. PMID:21894259
Sun, Yang; Stephens, Douglas N; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M; Shung, K Kirk
2008-01-01
We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques.
Current status of the joint Mayo Clinic-IBM PACS project
NASA Astrophysics Data System (ADS)
Hangiandreou, Nicholas J.; Williamson, Byrn, Jr.; Gehring, Dale G.; Persons, Kenneth R.; Reardon, Frank J.; Salutz, James R.; Felmlee, Joel P.; Loewen, M. D.; Forbes, Glenn S.
1994-05-01
A multi-phase collaboration between Mayo Clinic and IBM-Rochester was undertaken, with the goal of developing a picture archiving and communication system for routine clinical use in the Radiology Department. The initial phase of this project (phase 0) was started in 1988. The current system has been fully integrated into the clinical practice and, to date, over 6.5 million images from 16 imaging modalities have been archived. Phase 3 of this project has recently concluded.
Perspectives on Current Training Guidelines for Cardiac Imaging and Recommendations for the Future.
Arrighi, James A; Kilic, Sena; Haines, Philip G
2018-04-23
To summarize current training guidelines for cardiac imaging and provide recommendations for future guidelines. The current structure of training in cardiac imaging is largely dictated by modality-specific guidelines. While there has been debate on how to define the advanced cardiac imager for over a decade, a uniform consensus has not emerged. We report the perspectives of three key stakeholders in this debate: a senior faculty member-former fellowship program director, a cardiology fellow, and an academic junior faculty imaging expert. The observations of these stakeholders suggest that there is no consensus on the definition of advanced cardiac imaging, leading to ambiguity in training guidelines. This may have negative impact on recruitment of fellows into cardiac imaging careers. Based on the current status of training in cardiac imaging, the authors suggest that the relevant professional groups reconvene to form a consensus in defining advanced cardiac imaging, in order to guide future revisions of training guidelines.
Imaging Breast Density: Established and Emerging Modalities1
Chen, Jeon-Hor; Gulsen, Gultekin; Su, Min-Ying
2015-01-01
Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature. PMID:26692524
Yanke, Adam B; Shin, Jason J; Pearson, Ian; Bach, Bernard R; Romeo, Anthony A; Cole, Brian J; Verma, Nikhil N
2017-04-01
To assess the ability of 3-dimensional (3D) magnetic resonance imaging (MRI, 1.5 and 3 tesla [T]) to quantify glenoid bone loss in a cadaveric model compared with the current gold standard, 3D computed tomography (CT). Six cadaveric shoulders were used to create a bone loss model, leaving the surrounding soft tissues intact. The anteroposterior (AP) dimension of the glenoid was measured at the glenoid equator and after soft tissue layer closure the specimen underwent scanning (CT, 1.5-T MRI, and 3-T MRI) with the following methods (0%, 10%, and 25% defect by area). Raw axial data from the scans were segmented using manual mask manipulation for bone and reconstructed using Mimics software to obtain a 3D en face glenoid view. Using calibrated Digital Imaging and Communications in Medicine images, the diameter of the glenoid at the equator and the area of the glenoid defect was measured on all imaging modalities. In specimens with 10% or 25% defects, no difference was detected between imaging modalities when comparing the measured defect size (10% defect P = .27, 25% defect P = .73). All 3 modalities demonstrated a strong correlation with the actual defect size (CT, ρ = .97; 1.5-T MRI, ρ = .93; 3-T MRI, ρ = .92, P < .0001). When looking at the absolute difference between the actual and measured defect area, no significance was noted between imaging modalities (10% defect P = .34, 25% defect P = .47). The error of 3-T 3D MRI increased with increasing defect size (P = .02). Both 1.5- and 3-T-based 3D MRI reconstructions of glenoid bone loss correlate with measurements from 3D CT scan data and actual defect size in a cadaveric model. Regardless of imaging modality, the error in bone loss measurement tends to increase with increased defect size. Use of 3D MRI in the setting of shoulder instability could obviate the need for CT scans. The goal of our work was to develop a reproducible method of determining glenoid bone loss from 3D MRI data and hence eliminate the need for CT scans in this setting. This will lead to decreased cost of care as well as decreased radiation exposure to patients. The long-term goal is a fully automated system that is as approachable for clinicians as current 3D CT technology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Duszak, Richard; Silva, Ezequiel; Kim, Angela J; Barr, Robert M; Donovan, William D; Kassing, Pamela; McGinty, Geraldine; Allen, Bibb
2013-09-01
The aim of this study was to quantify potential physician work efficiencies and appropriate multiple procedure payment reductions for different same-session diagnostic imaging studies interpreted by different physicians in the same group practice. Medicare Resource-Based Relative Value Scale data were analyzed to determine the relative contributions of various preservice, intraservice, and postservice physician diagnostic imaging work activities. An expert panel quantified potential duplications in professional work activities when separate examinations were performed during the same session by different physicians within the same group practice. Maximum potential work duplications for various imaging modalities were calculated and compared with those used as the basis of CMS payment policy. No potential intraservice work duplication was identified when different examination interpretations were rendered by different physicians in the same group practice. When multiple interpretations within the same modality were rendered by different physicians, maximum potential duplicated preservice and postservice activities ranged from 5% (radiography, fluoroscopy, and nuclear medicine) to 13.6% (CT). Maximum mean potential duplicated work relative value units ranged from 0.0049 (radiography and fluoroscopy) to 0.0413 (CT). This equates to overall potential total work reductions ranging from 1.39% (nuclear medicine) to 2.73% (CT). Across all modalities, this corresponds to maximum Medicare professional component physician fee reductions of 1.23 ± 0.38% (range, 0.95%-1.87%) for services within the same modality, much less than an order of magnitude smaller than those implemented by CMS. For services from different modalities, potential duplications were too small to quantify. Although potential efficiencies exist in physician preservice and postservice work when same-session, same-modality imaging services are rendered by different physicians in the same group practice, these are relatively minuscule and have been grossly overestimated by current CMS payment policy. Greater transparency and methodologic rigor in government payment policy development are warranted. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tang, Qinggong; Frank, Aaron; Wang, Jianting; Chen, Chao-wei; Jin, Lily; Lin, Jon; Chan, Joanne M.; Chen, Yu
2016-03-01
Early detection of neoplastic changes remains a critical challenge in clinical cancer diagnosis and treatment. Many cancers arise from epithelial layers such as those of the gastrointestinal (GI) tract. Current standard endoscopic technology is unable to detect those subsurface lesions. Since cancer development is associated with both morphological and molecular alterations, imaging technologies that can quantitative image tissue's morphological and molecular biomarkers and assess the depth extent of a lesion in real time, without the need for tissue excision, would be a major advance in GI cancer diagnostics and therapy. In this research, we investigated the feasibility of multi-modal optical imaging including high-resolution optical coherence tomography (OCT) and depth-resolved high-sensitivity fluorescence laminar optical tomography (FLOT) for structural and molecular imaging. APC (adenomatous polyposis coli) mice model were imaged using OCT and FLOT and the correlated histopathological diagnosis was obtained. Quantitative structural (the scattering coefficient) and molecular imaging parameters (fluorescence intensity) from OCT and FLOT images were developed for multi-parametric analysis. This multi-modal imaging method has demonstrated the feasibility for more accurate diagnosis with 87.4% (87.3%) for sensitivity (specificity) which gives the most optimal diagnosis (the largest area under receiver operating characteristic (ROC) curve). This project results in a new non-invasive multi-modal imaging platform for improved GI cancer detection, which is expected to have a major impact on detection, diagnosis, and characterization of GI cancers, as well as a wide range of epithelial cancers.
3D/2D model-to-image registration by imitation learning for cardiac procedures.
Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter
2018-05-12
In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.
3D widefield light microscope image reconstruction without dyes
NASA Astrophysics Data System (ADS)
Larkin, S.; Larson, J.; Holmes, C.; Vaicik, M.; Turturro, M.; Jurkevich, A.; Sinha, S.; Ezashi, T.; Papavasiliou, G.; Brey, E.; Holmes, T.
2015-03-01
3D image reconstruction using light microscope modalities without exogenous contrast agents is proposed and investigated as an approach to produce 3D images of biological samples for live imaging applications. Multimodality and multispectral imaging, used in concert with this 3D optical sectioning approach is also proposed as a way to further produce contrast that could be specific to components in the sample. The methods avoid usage of contrast agents. Contrast agents, such as fluorescent or absorbing dyes, can be toxic to cells or alter cell behavior. Current modes of producing 3D image sets from a light microscope, such as 3D deconvolution algorithms and confocal microscopy generally require contrast agents. Zernike phase contrast (ZPC), transmitted light brightfield (TLB), darkfield microscopy and others can produce contrast without dyes. Some of these modalities have not previously benefitted from 3D image reconstruction algorithms, however. The 3D image reconstruction algorithm is based on an underlying physical model of scattering potential, expressed as the sample's 3D absorption and phase quantities. The algorithm is based upon optimizing an objective function - the I-divergence - while solving for the 3D absorption and phase quantities. Unlike typical deconvolution algorithms, each microscope modality, such as ZPC or TLB, produces two output image sets instead of one. Contrast in the displayed image and 3D renderings is further enabled by treating the multispectral/multimodal data as a feature set in a mathematical formulation that uses the principal component method of statistics.
CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API
NASA Astrophysics Data System (ADS)
Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor
2004-05-01
Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.
A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.
Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming
2014-01-01
To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05) with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.
Imaging of gastroenteropancreatic neuroendocrine tumors
Tan, Eik Hock; Tan, Cher Heng
2011-01-01
Imaging of gastroenteropancreatic neuroendocrine tumors can be broadly divided into anatomic and functional techniques. Anatomic imaging determines the local extent of the primary lesion, providing crucial information required for surgical planning. Functional imaging, not only determines the extent of metastatic disease spread, but also provides important information with regard to the biologic behavior of the tumor, allowing clinicians to decide on the most appropriate forms of treatment. We review the current literature on this subject, with emphasis on the strengths of each imaging modality. PMID:21603312
On the performance of SART and ART algorithms for microwave imaging
NASA Astrophysics Data System (ADS)
Aprilliyani, Ria; Prabowo, Rian Gilang; Basari
2018-02-01
The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.
Schaverien, Mark V; Ludman, Catherine N; Neil-Dwyer, Jason; McCulley, Stephen J
2011-12-01
The anatomy of the anterior abdominal wall is highly variable and leads to uncertainty when harvesting a deep inferior epigastric artery perforator flap. Presurgical imaging has been shown to reduce the operating time, as well as reduce the rates of flap and donor site complications. The importance of imaging of the venous system has also been recognized for reducing the risk of venous congestion. The modalities currently available for presurgical imaging include handheld Doppler ultrasound, duplex ultrasound, computed tomographic angiography (CTA), and contrast-enhanced magnetic resonance angiography (CE-MRA). Of these, the most promising are CTA and CE-MRA, and advantages and disadvantages exist for both modalities. In this article, we review the use of CE-MRA for preoperative flap imaging and report our experience with its use in deep inferior epigastric artery perforator flap harvest, as well as compare it with CTA. We also explore the future directions for presurgical flap imaging.
NASA Astrophysics Data System (ADS)
Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.
1996-05-01
One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.
Quantitative imaging of the human upper airway: instrument design and clinical studies
NASA Astrophysics Data System (ADS)
Leigh, M. S.; Armstrong, J. J.; Paduch, A.; Sampson, D. D.; Walsh, J. H.; Hillman, D. R.; Eastwood, P. R.
2006-08-01
Imaging of the human upper airway is widely used in medicine, in both clinical practice and research. Common imaging modalities include video endoscopy, X-ray CT, and MRI. However, no current modality is both quantitative and safe to use for extended periods of time. Such a capability would be particularly valuable for sleep research, which is inherently reliant on long observation sessions. We have developed an instrument capable of quantitative imaging of the human upper airway, based on endoscopic optical coherence tomography. There are no dose limits for optical techniques, and the minimally invasive imaging probe is safe for use in overnight studies. We report on the design of the instrument and its use in preliminary clinical studies, and we present results from a range of initial experiments. The experiments show that the instrument is capable of imaging during sleep, and that it can record dynamic changes in airway size and shape. This information is useful for research into sleep disorders, and potentially for clinical diagnosis and therapies.
Cone-beam volume CT mammographic imaging: feasibility study
NASA Astrophysics Data System (ADS)
Chen, Biao; Ning, Ruola
2001-06-01
X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.
Multi-modal Registration for Correlative Microscopy using Image Analogies
Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943
Contrast echocardiography: new agents.
Miller, Andrew P; Nanda, Navin C
2004-04-01
In this report, we review the history, rationale, current status and future directions of contrast agents in echocardiography. First, we discuss the historic development of contrast agents through a review of important physical principles of microbubbles in ultrasonography. Second, we identify attributes of an ideal contrast agent and review those that are currently available or in the "pipeline" for clinical use. Third, we review indications for contrast echocardiography, including endocardial border detection, perfusion quantification and reperfusion assessment, and validate these observations by comparisons with other imaging modalities. Then, we briefly review different methodologies of performing a contrast study, including interrupted, real-time and a hybrid modality. Finally, we identify novel future applications of the newest contrast agents. These newer concepts in contrast echocardiography should form a foundation for nearly limitless application of echocardiography in improved anatomical assessment, perfusion imaging and even special applications, such as detection of vascular inflammation and site-specific drug delivery.
NASA Astrophysics Data System (ADS)
Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.
2018-01-01
Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.
Current and Future Methods for Measuring Breast Density: A Brief Comparative Review
Sak, Mark A.; Littrup, Peter J.; Duric, Neb; Mullooly, Maeve; Sherman, Mark E.; Gierach, Gretchen L.
2017-01-01
Breast density is one of the strongest predictors of breast cancer risk. Women with the densest breasts are 4 to 6 times more likely to develop cancer compared with those with the lowest densities. Breast density is generally assessed using mammographic imaging; however, this approach has limitations. Magnetic resonance imaging and ultrasound tomography are some alternative imaging modalities that can aid mammography in patient screening and the measurement of breast density. As breast density becomes more commonly discussed, knowledge of the advantages and limitations of breast density as a marker of risk will become more critical. This review article discusses the relationship between breast density and breast cancer risk, lists the benefits and drawbacks of using multiple different imaging modalities to measure density and briefly discusses how breast density will be applied to aid in breast cancer prevention and treatment. PMID:28943893
Multimodal Image Alignment via Linear Mapping between Feature Modalities.
Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James
2017-01-01
We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.
Imaging Evaluation of Acute Traumatic Brain Injury
Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa
2016-01-01
SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393
Vision 20/20: Simultaneous CT-MRI — Next chapter of multimodality imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ge, E-mail: wangg6@rpi.edu; Xi, Yan; Gjesteby, Lars
Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRImore » are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called “omnitomography” defined as the integration of all relevant imaging modalities for systems biology and precision medicine.« less
A two-view ultrasound CAD system for spina bifida detection using Zernike features
NASA Astrophysics Data System (ADS)
Konur, Umut; Gürgen, Fikret; Varol, Füsun
2011-03-01
In this work, we address a very specific CAD (Computer Aided Detection/Diagnosis) problem and try to detect one of the relatively common birth defects - spina bifida, in the prenatal period. To do this, fetal ultrasound images are used as the input imaging modality, which is the most convenient so far. Our approach is to decide using two particular types of views of the fetal neural tube. Transcerebellar head (i.e. brain) and transverse (axial) spine images are processed to extract features which are then used to classify healthy (normal), suspicious (probably defective) and non-decidable cases. Decisions raised by two independent classifiers may be individually treated, or if desired and data related to both modalities are available, those decisions can be combined to keep matters more secure. Even more security can be attained by using more than two modalities and base the final decision on all those potential classifiers. Our current system relies on feature extraction from images for cases (for particular patients). The first step is image preprocessing and segmentation to get rid of useless image pixels and represent the input in a more compact domain, which is hopefully more representative for good classification performance. Next, a particular type of feature extraction, which uses Zernike moments computed on either B/W or gray-scale image segments, is performed. The aim here is to obtain values for indicative markers that signal the presence of spina bifida. Markers differ depending on the image modality being used. Either shape or texture information captured by moments may propose useful features. Finally, SVM is used to train classifiers to be used as decision makers. Our experimental results show that a promising CAD system can be actualized for the specific purpose. On the other hand, the performance of such a system would highly depend on the qualities of image preprocessing, segmentation, feature extraction and comprehensiveness of image data.
Computer-Assisted Orthopedic Surgery: Current State and Future Perspective
Zheng, Guoyan; Nolte, Lutz P.
2015-01-01
Introduced about two decades ago, computer-assisted orthopedic surgery (CAOS) has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined. PMID:26779486
Imaging of degenerative lumbar intervertebral discs; linking anatomy, pathology and imaging.
Adams, Ashok; Roche, Oran; Mazumder, Asif; Davagnanam, Indran; Mankad, Kshitij
2014-09-01
Low back pain is a common medical condition that has significant implications for healthcare providers and the UK economy. Low back pain can be classified as 'specific' in which an underlying pathophysiological mechanism is identified (eg, herniated intervertebral disc). Advanced imaging should be performed in this situation and in those patients in whom systemic disease is strongly suspected. In the majority (approximately 90%), low back pain in 'non specific' and there is a weak correlation with imaging abnormalities. This is an area of ongoing research and remains controversial in terms of imaging approach and treatment (eg, theory of discogenic pain, interpretation and treatment of endplate changes). With regards Modic endplate changes, current research suggests that an infective component may be involved that may identify novel potential treatments in patients with chronic low back pain refractory to other treatment modalities. MRI is the imaging modality of choice for the assessment of degenerative changes in intervertebral discs. MRI has superior soft tissue contrast resolution when compared to other imaging modalities (eg, plain radiography, CT). An understanding of normal anatomy and MR appearances of intervertebral discs, particularly with regards to how these appearances change with advancing age, is required to aid image interpretation. Knowledge of the spectrum of degenerative processes that may occur in the intervertebral discs is required in order to identify and explain abnormal MRI appearances. As the communication of MRI findings may guide therapeutic decision making and surgical intervention, the terminology used by radiologists must be accurate and consistent. Therefore, description of degenerative disc changes in the current paper is based on the most up-to-date recommendations, the aim being to aid reporting by radiologists and interpretation of reports by referring clinicians. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Huang, Yawen; Shao, Ling; Frangi, Alejandro F
2018-03-01
Multi-modality medical imaging is increasingly used for comprehensive assessment of complex diseases in either diagnostic examinations or as part of medical research trials. Different imaging modalities provide complementary information about living tissues. However, multi-modal examinations are not always possible due to adversary factors, such as patient discomfort, increased cost, prolonged scanning time, and scanner unavailability. In additionally, in large imaging studies, incomplete records are not uncommon owing to image artifacts, data corruption or data loss, which compromise the potential of multi-modal acquisitions. In this paper, we propose a weakly coupled and geometry co-regularized joint dictionary learning method to address the problem of cross-modality synthesis while considering the fact that collecting the large amounts of training data is often impractical. Our learning stage requires only a few registered multi-modality image pairs as training data. To employ both paired images and a large set of unpaired data, a cross-modality image matching criterion is proposed. Then, we propose a unified model by integrating such a criterion into the joint dictionary learning and the observed common feature space for associating cross-modality data for the purpose of synthesis. Furthermore, two regularization terms are added to construct robust sparse representations. Our experimental results demonstrate superior performance of the proposed model over state-of-the-art methods.
Development of a universal medical X-ray imaging phantom prototype.
Groenewald, Annemari; Groenewald, Willem A
2016-11-08
Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the inserts were 3D-printed, others were machined from different materials. The different components were assembled to form the first prototype of the universal X-ray imaging phantom. The resulting prototype of the universal phantom conformed to the aims of a single phantom for multiple imag-ing modalities, which would be easy to use and manufacture at a reduced cost. A PCT International Patent Application No. PCT/IB2016/051165 has been filed for this technology. © 2016 The Authors.
2009-10-01
be made. Currently, iodine based compounds are used to enhance contrast of CT which have the limitations of short imaging window due to rapid...number compared to conventionally used iodine compounds . Nanoparticle based CT contrast agents have been demonstrated for vascular imaging, which...constructs with gamma or positron emitting isotopes through a covalent attachment of a bifunctional chelator to the nanoparticles surface. However, in
Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2017-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.
Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John
2018-01-01
In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420
Multimodal Imaging of the Normal Eye.
Kawali, Ankush; Pichi, Francesco; Avadhani, Kavitha; Invernizzi, Alessandro; Hashimoto, Yuki; Mahendradas, Padmamalini
2017-10-01
Multimodal imaging is the concept of "bundling" images obtained from various imaging modalities, viz., fundus photograph, fundus autofluorescence imaging, infrared (IR) imaging, simultaneous fluorescein and indocyanine angiography, optical coherence tomography (OCT), and, more recently, OCT angiography. Each modality has its pros and cons as well as its limitations. Combination of multiple imaging techniques will overcome their individual weaknesses and give a comprehensive picture. Such approach helps in accurate localization of a lesion and understanding the pathology in posterior segment. It is important to know imaging of normal eye before one starts evaluating pathology. This article describes multimodal imaging modalities in detail and discusses healthy eye features as seen on various imaging modalities mentioned above.
Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan
2015-03-18
To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery.
Stirling, Paul; Valsalan Mannambeth, Rejith; Soler, Agustin; Batta, Vineet; Malhotra, Rajeev Kumar; Kalairajah, Yegappan
2015-01-01
AIM: To summarise and compare currently available evidence regarding accuracy of pre-operative imaging, which is one of the key choices for surgeons contemplating patient-specific instrumentation (PSI) surgery. METHODS: The MEDLINE and EMBASE medical literature databases were searched, from January 1990 to December 2013, to identify relevant studies. The data from several clinical studies was assimilated to allow appreciation and comparison of the accuracy of each modality. The overall accuracy of each modality was calculated as proportion of outliers > 3% in the coronal plane of both computerised tomography (CT) or magnetic resonance imaging (MRI). RESULTS: Seven clinical studies matched our inclusion criteria for comparison and were included in our study for statistical analysis. Three of these reported series using MRI and four with CT. Overall percentage of outliers > 3% in patients with CT-based PSI systems was 12.5% vs 16.9% for MRI-based systems. These results were not statistically significant. CONCLUSION: Although many studies have been undertaken to determine the ideal pre-operative imaging modality, conclusions remain speculative in the absence of long term data. Ultimately, information regarding accuracy of CT and MRI will be the main determining factor. Increased accuracy of pre-operative imaging could result in longer-term savings, and reduced accumulated dose of radiation by eliminating the need for post-operative imaging and revision surgery. PMID:25793170
Fiducial marker for correlating images
Miller, Lisa Marie [Rocky Point, NY; Smith, Randy J [Wading River, NY; Warren, John B [Port Jefferson, NY; Elliott, Donald [Hampton Bays, NY
2011-06-21
The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.
Multimodality medical image database for temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-05-01
This paper presents the development of a human brain multi-modality database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted and FLAIR MRI and ictal/interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as non-verbal Wechsler memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication matches the neurosurgeons expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
TU-A-18C-01: ACR Accreditation Updates in CT, Ultrasound, Mammography and MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R; Berns, E; Hangiandreou, N
2014-06-15
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, the ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-datemore » as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, mammography, ultrasound, and computed tomography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program. To understand the new requirements of the ACR ultrasound accreditation program, and roles the physicist can play in annual equipment surveys and setting up and supervising the routine QC program. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process.« less
MO-AB-207-02: ACR Update in MR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, R.
2015-06-15
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less
MO-AB-207-04: ACR Update in Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berns, E.
2015-06-15
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less
MO-AB-207-01: ACR Update in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNitt-Gray, M.
2015-06-15
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less
MO-AB-207-00: ACR Update in MR, CT, Nuclear Medicine, and Mammography
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less
MO-AB-207-03: ACR Update in Nuclear Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harkness, B.
A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date asmore » the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.« less
Sparchez, Zeno; Mocan, Tudor; Radu, Pompilia; Anton, Ofelia; Bolog, Nicolae
2016-03-01
The last decades have known continuous development of therapeutic strategies in hepatocellular carcinoma (HCC). Unfortunately the disease it still not diagnosed until it is already at an intermediate or even an advanced disease. In these circumstances transarterial chemoembolization (TACE) is considered an effective treatment for HCC. The most important independent prognostic factor of both disease free survival and overall survival is the presence of complete necrosis. Therefore, treatment outcomes are dictated by the proper use of radiological imaging. Current guidelines recommend contrast enhanced computer tomography (CECT) as the standard imaging technique for evaluating the therapeutic response in patients with HCC after TACE. One of the most important disadvantage of CECT is the overestimation of tumor response. As an attempt to overcome this limitation contrast enhanced ultrasound (CEUS) has gained particular attention as an imaging modality in HCC patients after TACE. Of all available imaging modalities, CEUS performs better in the early and very early assessment of TACE especially after lipiodol TACE. As any other imaging techniques CEUS has disadvantages especially in hypovascular tumors or in cases of tumor multiplicity. Not far from now the current limitations of CEUS will be overcome by the new CEUS techniques that are already tested in clinical practice such as dynamic CEUS with quantification, three-dimensional CEUS or fusion techniques.
Image acquisition unit for the Mayo/IBM PACS project
NASA Astrophysics Data System (ADS)
Reardon, Frank J.; Salutz, James R.
1991-07-01
The Mayo Clinic and IBM Rochester, Minnesota, have jointly developed a picture archiving, distribution and viewing system for use with Mayo's CT and MRI imaging modalities. Images are retrieved from the modalities and sent over the Mayo city-wide token ring network to optical storage subsystems for archiving, and to server subsystems for viewing on image review stations. Images may also be retrieved from archive and transmitted back to the modalities. The subsystems that interface to the modalities and communicate to the other components of the system are termed Image Acquisition Units (LAUs). The IAUs are IBM Personal System/2 (PS/2) computers with specially developed software. They operate independently in a network of cooperative subsystems and communicate with the modalities, archive subsystems, image review server subsystems, and a central subsystem that maintains information about the content and location of images. This paper provides a detailed description of the function and design of the Image Acquisition Units.
DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool
Gouws, André; Woods, Will; Millman, Rebecca; Morland, Antony; Green, Gary
2008-01-01
Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data. PMID:19352444
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L
2017-02-01
Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.
Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun
2017-04-01
A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.
MIND: modality independent neighbourhood descriptor for multi-modal deformable registration.
Heinrich, Mattias P; Jenkinson, Mark; Bhushan, Manav; Matin, Tahreema; Gleeson, Fergus V; Brady, Sir Michael; Schnabel, Julia A
2012-10-01
Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this important problem and proposes a modality independent neighbourhood descriptor (MIND) for both linear and deformable multi-modal registration. Based on the similarity of small image patches within one image, it aims to extract the distinctive structure in a local neighbourhood, which is preserved across modalities. The descriptor is based on the concept of image self-similarity, which has been introduced for non-local means filtering for image denoising. It is able to distinguish between different types of features such as corners, edges and homogeneously textured regions. MIND is robust to the most considerable differences between modalities: non-functional intensity relations, image noise and non-uniform bias fields. The multi-dimensional descriptor can be efficiently computed in a dense fashion across the whole image and provides point-wise local similarity across modalities based on the absolute or squared difference between descriptors, making it applicable for a wide range of transformation models and optimisation algorithms. We use the sum of squared differences of the MIND representations of the images as a similarity metric within a symmetric non-parametric Gauss-Newton registration framework. In principle, MIND would be applicable to the registration of arbitrary modalities. In this work, we apply and validate it for the registration of clinical 3D thoracic CT scans between inhale and exhale as well as the alignment of 3D CT and MRI scans. Experimental results show the advantages of MIND over state-of-the-art techniques such as conditional mutual information and entropy images, with respect to clinically annotated landmark locations. Copyright © 2012 Elsevier B.V. All rights reserved.
RANZCR Body Systems Framework of diagnostic imaging examination descriptors.
Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia
2014-08-01
A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.
Using x-ray mammograms to assist in microwave breast image interpretation.
Curtis, Charlotte; Frayne, Richard; Fear, Elise
2012-01-01
Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.
Sharif, S.A.; Taydas, E.; Mazhar, A.; Rahimian, R.; Kelly, K.M.; Choi, B.; Durkin, A.J.
2012-01-01
Port wine stain (PWS) birthmarks are one class of benign congenital vascular malformation. Laser therapy is the most successful treatment modality of PWS. Unfortunately, this approach has limited efficacy, with only 10% of patients experiencing complete blanching of the PWS. To address this problem, several research groups have developed technologies and methods designed to study treatment outcome and improve treatment efficacy. This paper reviews seven optical imaging techniques currently in use or under development to assess treatment efficacy, focusing on: Reflectance spectrophotometers/tristimulus colorimeters, Laser Doppler flowmetry (LDF) and Laser Doppler imaging (LDI), Cross-polarized diffuse reflectance color imaging system (CDR), Reflectance Confocal Microscopy (RCM), Optical Coherence Tomography (OCT), Spatial Frequency Domain Imaging (SFDI), and Laser Speckle Imaging (LSI). PMID:22804872
Magnetic resonance imaging of cartilage repair.
Potter, Hollis G; Chong, Le Roy; Sneag, Darryl B
2008-12-01
Magnetic resonance imaging is an important noninvasive modality in characterizing cartilage morphology, biochemistry, and function. It serves as a valuable objective outcome measure in diagnosing pathology at the time of initial injury, guiding surgical planning, and evaluating postsurgical repair. This article reviews the current literature addressing the recent advances in qualitative and quantitative magnetic resonance imaging techniques in the preoperative setting, and in patients who have undergone cartilage repair techniques such as microfracture, autologous cartilage transplantation, or osteochondral transplantation.
Interventional Therapies for Chronic Low Back Pain: A Focused Review (Efficacy and Outcomes)
Patel, Vikram B.; Wasserman, Ronald; Imani, Farnad
2015-01-01
Context: Lower back pain is considered to be one of the most common complaints that brings a patient to a pain specialist. Several modalities in interventional pain management are known to be helpful to a patient with chronic low back pain. Proper diagnosis is required for appropriate intervention to provide optimal benefits. From simple trigger point injections for muscular pain to a highly complex intervention such as a spinal cord stimulator are very effective if chosen properly. The aim of this article is to provide the reader with a comprehensive reading for treatment of lower back pain using interventional modalities. Evidence Acquisition: Extensive search for published literature was carried out online using PubMed, Cochrane database and Embase for the material used in this manuscript. This article describes the most common modalities available to an interventional pain physician along with the most relevant current and past references for the treatment of lower back pain. All the graphics and images were prepared by and belong to the author. Results: This review article describes the most common modalities available to an interventional pain physician along with the most relevant current and past references for the treatment of lower back pain. All the graphics and images belong to the author. Although it is beyond the scope of this review article to include a very detailed description of each procedure along with complete references, a sincere attempt has been made to comprehensively cover this very complex and perplexing topic. Conclusion: Lower back pain is a major healthcare issue and this review article will help educate the pain practitioners about the current evidence based treatment options. PMID:26484298
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
Diagnostic imaging of trabecular bone microstructure for oral implants: a literature review.
Ibrahim, N; Parsa, A; Hassan, B; van der Stelt, P; Wismeijer, D
2013-01-01
Several dental implant studies have reported that radiographic evaluation of bone quality can aid in reducing implant failure. Bone quality is assessed in terms of its quantity, density, trabecular characteristics and cells. Current imaging modalities vary widely in their efficiency in assessing trabecular structures, especially in a clinical setting. Most are very costly, require an extensive scanning procedure coupled with a high radiation dose and are only partially suitable for patient use. This review examines the current literature regarding diagnostic imaging assessment of trabecular microstructure prior to oral implant placement and suggests cone beam CT as a method of choice for evaluating trabecular bone microstructure.
Jana, Tanima; Shroff, Jennifer; Bhutani, Manoop S.
2015-01-01
Pancreatic cystic lesions are being detected with increasing frequency, largely due to advances in cross-sectional imaging. The most common neoplasms include serous cystadenomas, mucinous cystic neoplasms, intraductal papillary mucinous neoplasms, solid pseudopapillary neoplasms, and cystic pancreatic endocrine neoplasms. Computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) are currently used as imaging modalities. EUS-guided fine needle aspiration has proved to be a useful diagnostic tool, and enables an assessment of tumor markers, cytology, chemistries, and DNA analysis. Here, we review the current literature on pancreatic cystic neoplasms, including classification, diagnosis, treatment, and recommendations for surveillance. Data for this manuscript was acquired via searching the literature from inception to December 2014 on PubMed and Ovid MEDLINE. PMID:25821410
Thermoacoustic imaging of fresh prostates up to 6-cm diameter
NASA Astrophysics Data System (ADS)
Patch, S. K.; Hanson, E.; Thomas, M.; Kelly, H.; Jacobsohn, K.; See, W. A.
2013-03-01
Thermoacoustic (TA) imaging provides a novel contrast mechanism that may enable visualization of cancerous lesions which are not robustly detected by current imaging modalities. Prostate cancer (PCa) is the most notorious example. Imaging entire prostate glands requires 6 cm depth penetration. We therefore excite TA signal using submicrosecond VHF pulses (100 MHz). We will present reconstructions of fresh prostates imaged in a well-controlled benchtop TA imaging system. Chilled glycine solution is used as acoustic couplant. The urethra is routinely visualized as signal dropout; surgical staples formed from 100-micron wide wire bent to 3 mm length generate strong positive signal.
Towards clinically translatable in vivo nanodiagnostics
NASA Astrophysics Data System (ADS)
Park, Seung-Min; Aalipour, Amin; Vermesh, Ophir; Yu, Jung Ho; Gambhir, Sanjiv S.
2017-05-01
Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.
Tins, Bernhard J
2017-01-01
Traumatic spine injuries can be devastating for patients affected and for health care professionals if preventable neurological deterioration occurs. This review discusses the imaging options for the diagnosis of spinal trauma. It lays out when imaging is appropriate and when it is not. It discusses strength and weakness of available imaging modalities. Advanced techniques for spinal injury imaging will be explored. The review concludes with a review of imaging protocols adjusted to clinical circumstances.
Laghari, Fahad J; Hammer, Maxim D
2017-01-01
The use of telecommunications technology to provide the healthcare services, telemedicine, has been in use since the 1860s. The use of technology has ranged from providing medical care to far-off places during wartimes to monitoring physiological measurements of astronauts in space. Since the 1990s, reports have been published on diagnoses of neurological diseases with the use of video links. Studies confirm that the neurological examinations, including the National Institutes of Health Stroke Scale, performed during teleneurology are dependable. The transfer of stroke patients in rural hospitals to bigger medical centers delays treatment while there exists current and projected shortage of neurologists. Telestroke provides the solution. Patients suspected of acute stroke need a noncontrast computerized tomography (CT) scan for tissue plasminogen activator administration. Vascular imaging such as CT angiography, magnetic resonance angiography, and digital subtraction angiography can help show large-vessel occlusion or critical stenosis responsive to endovascular therapy. A standard protocol can be followed to decide a vascular modality of choice, considering advantages and disadvantages of each imaging modality. Telestroke solves the problems of distance and of shortage of neurologists. Neuroimaging plays a vital role in the delivery of telestroke, and the telestroke doctor should be comfortable with making a decision on selecting an appropriate vascular imaging modality. Copyright © 2016 by the American Society of Neuroimaging.
MineScan: non-image data monitoring and mining from imaging modalities
NASA Astrophysics Data System (ADS)
Zaidi, Shayan M.; Huff, Dov; Bhalodia, Pankit; Mongkolwat, Pattanasak; Channin, David S.
2003-05-01
This project is intended to capture and interactively display non-image information routinely generated by imaging modalities. This information relates to the device's performance of the individual procedures and is not necessarily available in other information streams such as DICOM headers. While originally intended for use in servicing the modalities, this information can also be presented to radiologists and administrators within the department for both micro- and macro-management purposes. This data can help hospital administrators and radiologists manage available resources and discover clues to indicate what modifications in hospital operations might significantly improve its ability to provide efficient patient care. Data is collected from a departmental CT scanner. The data consists of a running record of exams followed by a list of processing records logged over a 24-hour period. MineScan extracts information from these records and stores it into a database. A statistical program is run once a day to collect relevant metrics. MineScan can be accessed via a Web browser or through an advanced prototype PACS workstation. This information, if provided in real-time, can be used to manage operations in a busy department. Even when provided historically, the data can be used to assess current activity, analyze trends and plan future operations.
Gold nanoparticles for photoacoustic imaging
Li, Wanwan; Chen, Xiaoyuan
2015-01-01
Photoacoustic (PA) imaging is a biomedical imaging modality that provides functional information regarding the cellular and molecular signatures of tissue by using endogenous and exogenous contrast agents. There has been tremendous effort devoted to the development of PA imaging agents, and gold nanoparticles as exogenous contrast agents have great potential for PA imaging due to their inherent and geometrically induced optical properties. The gold-based nanoparticles that are most commonly employed for PA imaging include spheres, rods, shells, prisms, cages, stars and vesicles. This article provides an overview of the current state of research in utilizing these gold nanomaterials for PA imaging of cancer, atherosclerotic plaques, brain function and image-guided therapy. PMID:25600972
Gyrocopter-Based Remote Sensing Platform
NASA Astrophysics Data System (ADS)
Weber, I.; Jenal, A.; Kneer, C.; Bongartz, J.
2015-04-01
In this paper the development of a lightweight and highly modularized airborne sensor platform for remote sensing applications utilizing a gyrocopter as a carrier platform is described. The current sensor configuration consists of a high resolution DSLR camera for VIS-RGB recordings. As a second sensor modality, a snapshot hyperspectral camera was integrated in the aircraft. Moreover a custom-developed thermal imaging system composed of a VIS-PAN camera and a LWIR-camera is used for aerial recordings in the thermal infrared range. Furthermore another custom-developed highly flexible imaging system for high resolution multispectral image acquisition with up to six spectral bands in the VIS-NIR range is presented. The performance of the overall system was tested during several flights with all sensor modalities and the precalculated demands with respect to spatial resolution and reliability were validated. The collected data sets were georeferenced, georectified, orthorectified and then stitched to mosaics.
In vivo targeted peripheral nerve imaging with a nerve-specific nanoscale magnetic resonance probe.
Zheng, Linfeng; Li, Kangan; Han, Yuedong; Wei, Wei; Zheng, Sujuan; Zhang, Guixiang
2014-11-01
Neuroimaging plays a pivotal role in clinical practice. Currently, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and positron emission tomography (PET) are applied in the clinical setting as neuroimaging modalities. There is no optimal imaging modality for clinical peripheral nerve imaging even though fluorescence/bioluminescence imaging has been used for preclinical studies on the nervous system. Some studies have shown that molecular and cellular MRI (MCMRI) can be used to visualize and image the cellular and molecular level of the nervous system. Other studies revealed that there are different pathological/molecular changes in the proximal and distal sites after peripheral nerve injury (PNI). Therefore, we hypothesized that in vivo peripheral nerve targets can be imaged using MCMRI with specific MRI probes. Specific probes should have higher penetrability for the blood-nerve barrier (BNB) in vivo. Here, a functional nanometre MRI probe that is based on nerve-specific proteins as targets, specifically, using a molecular antibody (mAb) fragment conjugated to iron nanoparticles as an MRI probe, was constructed for further study. The MRI probe allows for imaging the peripheral nerve targets in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imaging trends in suspected appendicitis-a Canadian perspective.
Tan, Victoria F; Patlas, Michael N; Katz, Douglas S
2017-06-01
The purpose of our study was to assess trends in the imaging of suspected appendicitis in adult patients in emergency departments of academic centers in Canada. A questionnaire was sent to all 17 academic centers in Canada to be completed by a radiologist who works in emergency radiology. The questionnaires were sent and collected over a period of 4 months from October 2015 to February 2016. Sixteen centers (94%) responded to the questionnaire. Eleven respondents (73%) use IV contrast-enhanced computed tomography (CT) as the imaging modality of choice for all patients with suspected appendicitis. Thirteen respondents (81%) use ultrasound as the first modality of choice in imaging pregnant patients with suspected appendicitis. Eleven respondents (69%) use ultrasound (US) as the first modality of choice in patients younger than 40 years of age. Ten respondents (67%) use ultrasound as the first imaging modality in female patients younger than 40 years of age. When CT is used, 81% use non-focused CT of the abdomen and pelvis, and 44% of centers use oral contrast. Thirteen centers (81%) have ultrasound available 24 h a day/7 days a week. At 12 centers (75%), ultrasound is performed by ultrasound technologists. Four centers (40%) perform magnetic resonance imaging (MRI) in suspected appendicitis in adult patients at the discretion of the attending radiologist. Eleven centers (69%) have MRI available 24/7. All 16 centers (100%) use unenhanced MRI. Various imaging modalities are available for the work-up of suspected appendicitis. Although there are North American societal guidelines and recommendations regarding the appropriateness of the multiple imaging modalities, significant heterogeneity in the first-line modalities exist, which vary depending on the patient demographics and resource availability. Imaging trends in the use of the first-line modalities should be considered in order to plan for the availability of the imaging examinations and to consider plans for an imaging algorithm to permit standardization across multiple centers. While this study examined the imaging trends specifically in Canada, there are implications to other countries seeking to streamline imaging protocols and determining appropriateness of the first-line imaging modalities.
Stimulus Modality and Smoking Behavior: Moderating Role of Implicit Attitudes.
Ezeh, Valentine C; Mefoh, Philip
2015-07-20
This study investigated whether stimulus modality influences smoking behavior among smokers in South Eastern Nigeria and also whether implicit attitudes moderate the relationship between stimulus modality and smoking behavior. 60 undergraduate students of University of Nigeria, Nsukka were used. Participants were individually administered the IAT task as a measure of implicit attitude toward smoking and randomly assigned into either image condition that paired images of cigarette with aversive images of potential health consequences or text condition that paired images of cigarette with aversive texts of potential health consequences. A one- predictor and one-moderator binary logistic analysis indicates that stimulus modality significantly predicts smoking behavior (p = < .05) with those in the image condition choosing not to smoke with greater probability than the text condition. The interaction between stimulus modality and IAT scores was also significant (p = < .05). Specifically, the modality effect was larger for participants in the image group who held more negative implicit attitudes towards smoking. The finding shows the urgent need to introduce the use of aversive images of potential health consequences on cigarette packs in Nigeria.
Flaherty, Stephen; Mortele, Koenraad J; Young, Gary J
2018-06-01
To report utilization trends in diagnostic imaging among commercially insured Massachusetts residents from 2009 to 2013. Current Procedural Terminology codes were used to identify diagnostic imaging claims in the Massachusetts All-Payer Claims Database for the years 2009 to 2013. We reported utilization and spending annually by imaging modality using total claims, claims per 1,000 individuals, total expenditures, and average per claim payments. The number of diagnostic imaging claims per insured MA resident increased only 0.6% from 2009 to 2013, whereas nonradiology claims increased by 6% annually. Overall diagnostic imaging expenditures, adjusted for inflation, were 27% lower in 2009 than 2013, compared with an 18% increase in nonimaging expenditures. Average payments per claim were lower in 2013 than 2009 for all modalities except nuclear medicine. Imaging procedure claims per 1,000 MA residents increased from 2009 to 2013 by 13% in MRI, from 147 to 166; by 17% in ultrasound, from 453 to 530; and by 12% in radiography (x-ray), from 985 to 1,100. However, CT claims per 1,000 fell by 37%, from 341 to 213, and nuclear medicine declined 57%, from 89 claims per 1,000 to 38. Diagnostic imaging utilization exhibited negligible growth over the study period. Diagnostic imaging expenditures declined, largely the result of falling payments per claim in most imaging modalities, in contrast with increased utilization and spending on nonimaging services. Utilization of MRI, ultrasound, and x-ray increased from 2009 to 2013, whereas CT and nuclear medicine use decreased sharply, although CT was heavily impacted by billing code changes. Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Chahboun, Sobh; Vulchanov, Valentin; Saldaña, David; Eshuis, Hendrik
2016-01-01
Individuals with High functioning autism (HFA) are distinguished by relative preservation of linguistic and cognitive skills. However, problems with pragmatic language skills have been consistently reported across the autistic spectrum, even when structural language is intact. Our main goal was to investigate how highly verbal individuals with autism process figurative language and whether manipulation of the stimuli presentation modality had an impact on the processing. We were interested in the extent to which visual context, e.g., an image corresponding either to the literal meaning or the figurative meaning of the expression may facilitate responses to such expressions. Participants with HFA and their typically developing peers (matched on intelligence and language level) completed a cross-modal sentence-picture matching task for figurative expressions and their target figurative meaning represented in images. We expected that the individuals with autism would have difficulties in appreciating the non-literal nature of idioms and metaphors, despite intact structural language skills. Analyses of accuracy and reaction times showed clearly that the participants with autism performed at a lower level than their typically developing peers. Moreover, the modality in which the stimuli were presented was an important variable in task performance for the more transparent expressions. The individuals with autism displayed higher error rates and greater reaction latencies in the auditory modality compared to the visual stimulus presentation modality, implying more difficulty. Performance differed depending on type of expression. Participants had more difficulty understanding the culturally-based expressions, but not expressions grounded in human experience (biological idioms). This research highlights the importance of stimulus presentation modality and that this can lead to differences in figurative language comprehension between typically and atypically developing individuals. The current study also contributes to current debates on the role of structural language in figurative language comprehension in autism. PMID:28036344
Chahboun, Sobh; Vulchanov, Valentin; Saldaña, David; Eshuis, Hendrik; Vulchanova, Mila
2016-01-01
Individuals with High functioning autism (HFA) are distinguished by relative preservation of linguistic and cognitive skills. However, problems with pragmatic language skills have been consistently reported across the autistic spectrum, even when structural language is intact. Our main goal was to investigate how highly verbal individuals with autism process figurative language and whether manipulation of the stimuli presentation modality had an impact on the processing. We were interested in the extent to which visual context, e.g., an image corresponding either to the literal meaning or the figurative meaning of the expression may facilitate responses to such expressions. Participants with HFA and their typically developing peers (matched on intelligence and language level) completed a cross-modal sentence-picture matching task for figurative expressions and their target figurative meaning represented in images. We expected that the individuals with autism would have difficulties in appreciating the non-literal nature of idioms and metaphors, despite intact structural language skills. Analyses of accuracy and reaction times showed clearly that the participants with autism performed at a lower level than their typically developing peers. Moreover, the modality in which the stimuli were presented was an important variable in task performance for the more transparent expressions. The individuals with autism displayed higher error rates and greater reaction latencies in the auditory modality compared to the visual stimulus presentation modality, implying more difficulty. Performance differed depending on type of expression. Participants had more difficulty understanding the culturally-based expressions, but not expressions grounded in human experience (biological idioms). This research highlights the importance of stimulus presentation modality and that this can lead to differences in figurative language comprehension between typically and atypically developing individuals. The current study also contributes to current debates on the role of structural language in figurative language comprehension in autism.
Wallace, T.J.; Torre, T.; Grob, M.; Yu, J.; Avital, I.; Brücher, BLDM; Stojadinovic, A.; Man, Y.G.
2014-01-01
Prostate cancer is the most commonly diagnosed non-cutaneous neoplasm in men in the United States and the second leading cause of cancer mortality. One in 7 men will be diagnosed with prostate cancer during their lifetime. As a result, monitoring treatment response is of vital importance. The cornerstone of current approaches in monitoring treatment response remains the prostate-specific antigen (PSA). However, with the limitations of PSA come challenges in our ability to monitor treatment success. Defining PSA response is different depending on the individual treatment rendered potentially making it difficult for those not trained in urologic oncology to understand. Furthermore, standard treatment response criteria do not apply to prostate cancer further complicating the issue of treatment response. Historically, prostate cancer has been difficult to image and no single modality has been consistently relied upon to measure treatment response. However, with newer imaging modalities and advances in our understanding and utilization of specific biomarkers, the future for monitoring treatment response in prostate cancer looks bright. PMID:24396494
In vivo imaging of endogenous neural stem cells in the adult brain
Rueger, Maria Adele; Schroeter, Michael
2015-01-01
The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107
NASA Astrophysics Data System (ADS)
Masciotti, J.; Provenzano, F.; Papa, J.; Klose, A.; Hur, J.; Gu, X.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2006-02-01
Small animal models are employed to simulate disease in humans and to study its progression, what factors are important to the disease process, and to study the disease treatment. Biomedical imaging modalities such as magnetic resonance imaging (MRI) and Optical Tomography make it possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. MRI is an established imaging modality capable of obtaining high resolution anatomical images and along with contrast agents allow the studying of blood volume. Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and blood volume with high temporal resolution. In this study we apply these modalities to imaging the growth of kidney tumors and then there treatment by an anti-VEGF agent. We illustrate how these imaging modalities have their individual uses, but can still supplement each other and cross validation can be performed.
A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina
Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed
2013-01-01
Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137
Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I
2014-07-01
Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.
Mertan, Francesca; Turkbey, Baris
2016-12-01
Imaging has played an important role in the administration of personalized medicine. From diagnosing diseases to guiding therapies, imaging has become an all-encompassing modality. With respect to prostate cancer, personalized management of the disease has been transformed by imaging. Specifically, multiparametric magnetic resonance imaging has emerged as a vital player in the detection, characterization, and localization of the disease thus making the incorporation of imaging in personalized prostate cancer management integral. In this review, the current role of imaging in personalized medicine for the management of prostate cancer is discussed. Copyright © 2016. Published by Elsevier Ltd.
Alignment of multimodality, 2D and 3D breast images
NASA Astrophysics Data System (ADS)
Grevera, George J.; Udupa, Jayaram K.
2003-05-01
In a larger effort, we are studying methods to improve the specificity of the diagnosis of breast cancer by combining the complementary information available from multiple imaging modalities. Merging information is important for a number of reasons. For example, contrast uptake curves are an indication of malignancy. The determination of anatomical locations in corresponding images from various modalities is necessary to ascertain the extent of regions of tissue. To facilitate this fusion, registration becomes necessary. We describe in this paper a framework in which 2D and 3D breast images from MRI, PET, Ultrasound, and Digital Mammography can be registered to facilitate this goal. Briefly, prior to image acquisition, an alignment grid is drawn on the breast skin. Modality-specific markers are then placed at the indicated grid points. Images are then acquired by a specific modality with the modality specific external markers in place causing the markers to appear in the images. This is the first study that we are aware of that has undertaken the difficult task of registering 2D and 3D images of such a highly deformable (the breast) across such a wide variety of modalities. This paper reports some very preliminary results from this project.
Correlation mapping microscopy
NASA Astrophysics Data System (ADS)
McGrath, James; Alexandrov, Sergey; Owens, Peter; Subhash, Hrebesh M.; Leahy, Martin J.
2015-03-01
Changes in the microcirculation are associated with conditions such as Raynauds disease. Current modalities used to assess the microcirculation such as nailfold capillaroscopy are limited due to their depth ambiguity. A correlation mapping technique was recently developed to extend the capabilities of Optical Coherence Tomography to generate depth resolved images of the microcirculation. Here we present the extension of this technique to microscopy modalities, including confocal microscopy. It is shown that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution.
Translational research of optical molecular imaging for personalized medicine.
Qin, C; Ma, X; Tian, J
2013-12-01
In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.
NASA Astrophysics Data System (ADS)
Reavis, R. J.; Zielonka, Jason S.
1986-06-01
PACS literature to date has emphasized the needs of diagnostic imaging; however, the ability to acquire, manipulate, and display data derived from multiple imaging modalities is also vital in the practice of radiation oncology and radiation therapy planning (RTP). Radiographic or scintigraphic images for RTP must include specific spatial calibration data, as well as data relating image acquisition to anatomic localization within the patient. The digital nature of PACS images and displays allows the radiation oncologist to interactively assist in evaluating whether or not near-by structures are tumor-free. The radiation oncologist may also need to review nonradiographic diagnostic images (e.g., endoscopic images or pathology tissue specimens). Finally, it must be possible to take data such as isodose lines and superimpose them onto images relating the proposed therapy field to patient anatomy. Not only would this be useful for the radiation oncologist, but it would also provide information currently not easily available to the diagnostician and useful in subsequent diagnostic efforts. The three-dimensional (volumetric) data creation for RTP is not currently widespread because of the difficulties in converting images into a coherent, reliable and registered data set; this is the unique contribution of PACS. Software must be developed to permit creation of volumetric models based on data derived from both planar images and various tomographic modalities, including calibration and localizaton data for accurate image registration and scaling. This will permit positive definition of tumor volume by diagnosticians and the radiation oncologists as an initial portion of the therapy planning process. As a part of the underlying data structure for such systems, there must be some uniformity of image format between modalities and vendors; this has been adequately addressed by the Digital Imaging and Communications Interface Standard recently adopted by the American College of Radiology and the National Electrical Manufacturers' Association (ACR-NEMA). In addition, such standardization efforts must also incorporate the necessary calibration and coordinate data. This paper will examine some of the unique requirements for PACS (and PACS workstations)optimized for RTP. The assumption is made here that these are not independent, self-sufficient devices; rather, they are subsystems of a PACS network, capable of sharing certain resources.
Khan, Waseem; Zoga, Adam C; Meyers, William C
2013-02-01
Magnetic resonance imaging (MRI) has become the standard imaging modality for activity-related groin pain. Lesions, including rectus abdominis/adductor aponeurosis injury and osteitis pubis, can be accurately identified and delineated in patients with clinical conditions termed athletic pubalgia, core injury, and sports hernia. A dedicated noncontrast athletic pubalgia MRI protocol is easy to implement and should be available at musculoskeletal MR imaging centers. This article will review pubic anatomy, imaging considerations, specific lesions, and common MRI findings encountered in the setting of musculoskeletal groin pain. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zevon, M.; Kantamneni, H.; Ganapathy, V.; Higgins, L.; Mingozzi, M.; Pierce, M.; Riman, R.; Roth, C. M.; Moghe, P. V.
2016-05-01
Success of personalized medicine in cancer therapy depends on the ability to identify and molecularly phenotype tumors. Current clinical imaging techniques cannot be integrated with precision molecular medicine at the level of single cells or microlesions due to limited resolution. In this work we use molecularly targeted infrared emitting optical probes to identify and characterize metastatic microlesions prior to their detection with clinically relevant imaging modalities. These contrast agents form the basis of an in vivo optical imaging system capable of resolving internal microlesions, filling a critical unmet need in cancer imaging.
Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.
Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu
2016-01-01
The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.
Magnetoacoustic tomography with magnetic induction (MAT-MI)
NASA Astrophysics Data System (ADS)
Xu, Yuan; He, Bin
2005-11-01
We report our theoretical and experimental investigations on a new imaging modality, magnetoacoustic tomography with magnetic induction (MAT-MI). In MAT-MI, the sample is located in a static magnetic field and a time-varying (µs) magnetic field. The time-varying magnetic field induces an eddy current in the sample. Consequently, the sample will emit ultrasonic waves by the Lorentz force. The ultrasonic signals are collected around the object to reconstruct images related to the electrical impedance distribution in the sample. MAT-MI combines the good contrast of electrical impedance tomography with the good spatial resolution of sonography. MAT-MI has two unique features due to the solenoid nature of the induced electrical field. Firstly, MAT-MI could provide an explicit or simple quantitative reconstruction algorithm for the electrical impedance distribution. Secondly, it promises to eliminate the shielding effects of other imaging modalities in which the current is applied directly with electrodes. In the theoretical part, we provide formulae for both the forward and inverse problems of MAT-MI and estimate the signal amplitude in biological tissues. In the experimental part, the experimental setup and methods are introduced and the signals and the image of a metal object by means of MAT-MI are presented. The promising pilot experimental results suggest the feasibility of the proposed MAT-MI approach.
Magnetic Resonance Imaging to Detect Early Molecular and Cellular Changes in Alzheimer's Disease.
Knight, Michael J; McCann, Bryony; Kauppinen, Risto A; Coulthard, Elizabeth J
2016-01-01
Recent pharmaceutical trials have demonstrated that slowing or reversing pathology in Alzheimer's disease is likely to be possible only in the earliest stages of disease, perhaps even before significant symptoms develop. Pathology in Alzheimer's disease accumulates for well over a decade before symptoms are detected giving a large potential window of opportunity for intervention. It is therefore important that imaging techniques detect subtle changes in brain tissue before significant macroscopic brain atrophy. Current diagnostic techniques often do not permit early diagnosis or are too expensive for routine clinical use. Magnetic Resonance Imaging (MRI) is the most versatile, affordable, and powerful imaging modality currently available, being able to deliver detailed analyses of anatomy, tissue volumes, and tissue state. In this mini-review, we consider how MRI might detect patients at risk of future dementia in the early stages of pathological change when symptoms are mild. We consider the contributions made by the various modalities of MRI (structural, diffusion, perfusion, relaxometry) in identifying not just atrophy (a late-stage AD symptom) but more subtle changes reflective of early dementia pathology. The sensitivity of MRI not just to gross anatomy but to the underlying "health" at the cellular (and even molecular) scales, makes it very well suited to this task.
EAU standardised medical terminology for urologic imaging: a taxonomic approach.
Loch, Tillmann; Carey, Brendan; Walz, Jochen; Fulgham, Pat Fox
2015-05-01
The terminology and abbreviations used in urologic imaging have generally been adopted on an ad hoc basis by different speciality groups; however, there is a need for shared nomenclature to facilitate clinical communication and collaborative research. This work reviews the current nomenclature for urologic imaging used in clinical practice and proposes a taxonomy and terminology for urologic imaging studies. A list of terms used in urologic imaging were compiled from guidelines published by the European Association of Urology and the American Urological Association and from the American College of Radiology Appropriateness Criteria. Terms searched were grouped into broad categories based on technology, and imaging terms were further stratified based on the anatomic extent, contrast or phases, technique or modifiers, and combinations or fusions. Terms that had a high degree of utilisation were classified as accepted. We propose a new taxonomy to define a more useful and acceptable nomenclature model acceptable to all health professionals involved in urology. The major advantage of a taxonomic approach to the classification of urologic imaging studies is that it provides a flexible framework for classifying the modifications of current imaging modalities and allows the incorporation of new imaging modalities. The adoption of this hierarchical classification model ranging from the most general to the most detailed descriptions should facilitate hierarchical searches of the medical literature using both general and specific terms. This work is limited in its scope, as it is not currently all-inclusive. This will hopefully be addressed by future modification as others embrace the concept and work towards uniformity in nomenclature. This paper provides a noncomprehensive list of the most widely used terms across different specialties. This list can be used as the basis for further discussion, development, and enhancement. In this paper we describe a classification system for urologic imaging terms with the aim of aiding health professionals and ensuring that the terms used are more consistent. Copyright © 2014 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Yan, Xuejie; Song, Xiaoyan; Wang, Zhenbo
2017-05-01
The purpose of the study was to construct specific magnetic resonance imaging (MRI)/optical dual-modality molecular probe. Tumor-bearing animal models were established. MRI/optical dual-modality molecular probe was construed by coupling polyethylene glycol (PEG)-modified nano-Fe 3 O 4 with specific targeted cyclopeptide GX1 and near-infrared fluorescent dyes Cy5.5. MRI/optical imaging effects of the probe were observed and the feasibility of in vivo double-modality imaging was discussed. It was found that, the double-modality probe was of high stability; tumor signal of the experimental group tended to be weak after injection of the probe, but rose to a level which was close to the previous level after 18 h (p > 0.05). We successively completed the construction of an ideal MRI/optical dual-modality molecular probe. MRI/optical dual-modality molecular probe which can selectively gather in gastric cancer is expected to be a novel probe used for diagnosing gastric cancer in the early stage.
Molecular Imaging of Experimental Abdominal Aortic Aneurysms
Ramaswamy, Aneesh K.; Hamilton, Mark; Joshi, Rucha V.; Kline, Benjamin P.; Li, Rui; Wang, Pu; Goergen, Craig J.
2013-01-01
Current laboratory research in the field of abdominal aortic aneurysm (AAA) disease often utilizes small animal experimental models induced by genetic manipulation or chemical application. This has led to the use and development of multiple high-resolution molecular imaging modalities capable of tracking disease progression, quantifying the role of inflammation, and evaluating the effects of potential therapeutics. In vivo imaging reduces the number of research animals used, provides molecular and cellular information, and allows for longitudinal studies, a necessity when tracking vessel expansion in a single animal. This review outlines developments of both established and emerging molecular imaging techniques used to study AAA disease. Beyond the typical modalities used for anatomical imaging, which include ultrasound (US) and computed tomography (CT), previous molecular imaging efforts have used magnetic resonance (MR), near-infrared fluorescence (NIRF), bioluminescence, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). Mouse and rat AAA models will hopefully provide insight into potential disease mechanisms, and the development of advanced molecular imaging techniques, if clinically useful, may have translational potential. These efforts could help improve the management of aneurysms and better evaluate the therapeutic potential of new treatments for human AAA disease. PMID:23737735
NASA Astrophysics Data System (ADS)
Atehortúa, Angélica; Garreau, Mireille; Romero, Eduardo
2017-11-01
An accurate left (LV) and right ventricular (RV) function quantification is important to support evaluation, diagnosis and prognosis of cardiac pathologies such as the cardiomyopathies. Currently, diagnosis by ultrasound is the most cost-effective examination. However, this modality is highly noisy and operator dependent, hence prone to errors. Therefore, fusion with other cardiac modalities may provide complementary information and improve the analysis of the specific pathologies like cardiomyopathies. This paper proposes an automatic registration between two complementary modalities, 4D echocardiography and Magnetic resonance images, by mapping both modalities to a common space of salience where an optimal registration between them is estimated. The obtained matrix transformation is then applied to the MRI volume which is superimposed to the 4D echocardiography. Manually selected marks in both modalities are used to evaluate the precision of the superimposition. Preliminary results, in three evaluation cases, show the distance between these marked points and the estimated with the transformation is about 2 mm.
New Researches and Application Progress of Commonly Used Optical Molecular Imaging Technology
Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhou, Qiu-Lan; Liao, Yang-Ying
2014-01-01
Optical molecular imaging, a new medical imaging technique, is developed based on genomics, proteomics and modern optical imaging technique, characterized by non-invasiveness, non-radiativity, high cost-effectiveness, high resolution, high sensitivity and simple operation in comparison with conventional imaging modalities. Currently, it has become one of the most widely used molecular imaging techniques and has been applied in gene expression regulation and activity detection, biological development and cytological detection, drug research and development, pathogenesis research, pharmaceutical effect evaluation and therapeutic effect evaluation, and so forth, This paper will review the latest researches and application progresses of commonly used optical molecular imaging techniques such as bioluminescence imaging and fluorescence molecular imaging. PMID:24696850
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
Cerenkov luminescence imaging of medical isotopes
Ruggiero, Alessandro; Holland, Jason P.; Lewis, Jason S.; Grimm, Jan
2011-01-01
The development of novel multimodality imaging agents and techniques represents the current frontier of research in the field of medical imaging science. However, the combination of nuclear tomography with optical techniques has yet to be established. Here, we report the use of the inherent optical emissions from the decay of radiopharmaceuticals for Cerenkov luminescence imaging (CLI) of tumors in vivo and correlate the results with those obtained from concordant immuno-PET studies. Methods In vitro phantom studies were used to validate the visible light emission observed from a range of radionuclides including the positron emitters 18F, 64Cu, 89Zr, and 124I; β-emitter 131I; and α-particle emitter 225Ac for potential use in CLI. The novel radiolabeled monoclonal antibody 89Zr-desferrioxamine B-[DFO-J591 for immuno-PET of prostate-specific membrane antigen (PSMA) expression was used to coregister and correlate the CLI signal observed with the immuno-PET images and biodistribution studies. Results Phantom studies confirmed that Cerenkov radiation can be observed from a range of positron-,β-, and α-emitting radionuclides using standard optical imaging devices. The change in light emission intensity versus time was concordant with radionuclide decay and was also found to correlate linearly with both the activity concentration and the measured PET signal (percentage injected dose per gram). In vivo studies conducted in male severe combined immune deficient mice bearing PSMA-positive, subcutaneous LNCaP tumors demonstrated that tumor-specific uptake of 89Zr-DFO-J591 could be visualized by both immuno-PET and CLI. Optical and immuno-PET signal intensities were found to increase over time from 24 to 96 h, and biodistribution studies were found to correlate well with both imaging modalities. Conclusion These studies represent the first, to our knowledge, quantitative assessment of CLI for measuring radiotracer uptake in vivo. Many radionuclides common to both nuclear tomographic imaging and radiotherapy have the potential to be used in CLI. The value of CLI lies in its ability to image radionuclides that do not emit either positrons or γ-rays and are, thus, unsuitable for use with current nuclear imaging modalities. Optical imaging of Cerenkov radiation emission shows excellent promise as a potential new imaging modality for the rapid, high-throughput screening of radiopharmaceuticals PMID:20554722
Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging
Washko, George R.; Parraga, Grace; Coxson, Harvey O.
2011-01-01
Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490
WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emelianov, S; Oraevsky, A; Stafford, R
The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less
Doherty, John U; Kort, Smadar; Mehran, Roxana; Schoenhagen, Paul; Soman, Prem; Dehmer, Greg J; Doherty, John U; Schoenhagen, Paul; Amin, Zahid; Bashore, Thomas M; Boyle, Andrew; Calnon, Dennis A; Carabello, Blase; Cerqueira, Manuel D; Conte, John; Desai, Milind; Edmundowicz, Daniel; Ferrari, Victor A; Ghoshhajra, Brian; Mehrotra, Praveen; Nazarian, Saman; Reece, T Brett; Tamarappoo, Balaji; Tzou, Wendy S; Wong, John B; Doherty, John U; Dehmer, Gregory J; Bailey, Steven R; Bhave, Nicole M; Brown, Alan S; Daugherty, Stacie L; Dean, Larry S; Desai, Milind Y; Duvernoy, Claire S; Gillam, Linda D; Hendel, Robert C; Kramer, Christopher M; Lindsay, Bruce D; Manning, Warren J; Mehrotra, Praveen; Patel, Manesh R; Sachdeva, Ritu; Wann, L Samuel; Winchester, David E; Wolk, Michael J; Allen, Joseph M
2018-04-01
This document is 1 of 2 companion appropriate use criteria (AUC) documents developed by the American College of Cardiology, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. This document addresses the evaluation and use of multimodality imaging in the diagnosis and management of valvular heart disease, whereas the second, companion document addresses this topic with regard to structural heart disease. Although there is clinical overlap, the documents addressing valvular and structural heart disease are published separately, albeit with a common structure. The goal of the companion AUC documents is to provide a comprehensive resource for multimodality imaging in the context of valvular and structural heart disease, encompassing multiple imaging modalities. Using standardized methodology, the clinical scenarios (indications) were developed by a diverse writing group to represent patient presentations encountered in everyday practice and included common applications and anticipated uses. Where appropriate, the scenarios were developed on the basis of the most current American College of Cardiology/American Heart Association guidelines. A separate, independent rating panel scored the 92 clinical scenarios in this document on a scale of 1 to 9. Scores of 7 to 9 indicate that a modality is considered appropriate for the clinical scenario presented. Midrange scores of 4 to 6 indicate that a modality may be appropriate for the clinical scenario, and scores of 1 to 3 indicate that a modality is considered rarely appropriate for the clinical scenario. The primary objective of the AUC is to provide a framework for the assessment of these scenarios by practices that will improve and standardize physician decision making. AUC publications reflect an ongoing effort by the American College of Cardiology to critically and systematically create, review, and categorize clinical situations where diagnostic tests and procedures are utilized by physicians caring for patients with cardiovascular diseases. The process is based on the current understanding of the technical capabilities of the imaging modalities examined. Copyright © 2017. Published by Elsevier Inc.
Doherty, John U; Kort, Smadar; Mehran, Roxana; Schoenhagen, Paul; Soman, Prem
2017-12-01
This document is 1 of 2 companion appropriate use criteria (AUC) documents developed by the American College of Cardiology, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. This document addresses the evaluation and use of multimodality imaging in the diagnosis and management of valvular heart disease, whereas the second, companion document addresses this topic with regard to structural heart disease. Although there is clinical overlap, the documents addressing valvular and structural heart disease are published separately, albeit with a common structure. The goal of the companion AUC documents is to provide a comprehensive resource for multimodality imaging in the context of valvular and structural heart disease, encompassing multiple imaging modalities.Using standardized methodology, the clinical scenarios (indications) were developed by a diverse writing group to represent patient presentations encountered in everyday practice and included common applications and anticipated uses. Where appropriate, the scenarios were developed on the basis of the most current American College of Cardiology/American Heart Association guidelines.A separate, independent rating panel scored the 92 clinical scenarios in this document on a scale of 1 to 9. Scores of 7 to 9 indicate that a modality is considered appropriate for the clinical scenario presented. Midrange scores of 4 to 6 indicate that a modality may be appropriate for the clinical scenario, and scores of 1 to 3 indicate that a modality is considered rarely appropriate for the clinical scenario.The primary objective of the AUC is to provide a framework for the assessment of these scenarios by practices that will improve and standardize physician decision making. AUC publications reflect an ongoing effort by the American College of Cardiology to critically and systematically create, review, and categorize clinical situations where diagnostic tests and procedures are utilized by physicians caring for patients with cardiovascular diseases. The process is based on the current understanding of the technical capabilities of the imaging modalities examined.
Kim, James D.; Hashemi, Nafiseh; Gelman, Rachel; Lee, Andrew G.
2012-01-01
In the past three decades, there have been countless advances in imaging modalities that have revolutionized evaluation, management, and treatment of neuro-ophthalmic disorders. Non-invasive approaches for early detection and monitoring of treatments have decreased morbidity and mortality. Understanding of basic methods of imaging techniques and choice of imaging modalities in cases encountered in neuro-ophthalmology clinic is critical for proper evaluation of patients. Two main imaging modalities that are often used are computed tomography (CT) and magnetic resonance imaging (MRI). However, variations of these modalities and appropriate location of imaging must be considered in each clinical scenario. In this article, we review and summarize the best neuroimaging studies for specific neuro-ophthalmic indications and the diagnostic radiographic findings for important clinical entities. PMID:23961025
Bombardieri, E; Setti, L; Kirienko, M; Antunovic, L; Guglielmo, P; Ciocia, G
2015-12-01
Prostate cancer bone metastases occur frequently in advanced cancer and this is matter of particular attention, due to the great impact on patient's management and considering that a lot of new emerging therapeutic options have been recently introduced. Imaging bone metastases is essential to localize lesions, to establish their size and number, to study characteristics and changes during therapy. Besides radiological imaging, nuclear medicine modalities can image their features and offer additional information about their metabolic behaviour. They can be classified according to physical characteristics, type of detection, mechanism of uptake, availability for daily use. The physiopathology of metastases formation and the mechanisms of tracer uptake are essential to understand the interpretation of nuclear medicine images. Therefore, radiopharmaceuticals for bone metastases can be classified in agents targeting bone (99mTc-phosphonates, 18F-fluoride) and those targeting prostatic cancer cells (18F-fluoromethylcholine, 11C-choline, 18F-fluorodeoxyglucose). The modalities using the first group of tracers are planar bone scan, SPECT or SPECT/CT with 99mTc-diphosphonates, and 18F-fluoride PET/CT, while the modalities using the second group include 18F/11C-choline derivatives PET/CT, 18F-FDG PET/CT and PET/CT scans with several other radiopharmaceuticals described in the literature, such as 18F/11C-acetate derivatives, 18F-fluoro-5α-dihydrotestosterone (FDHT), 18F-anti-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC), 18F-2'-fluoro-5-methyl-1-β-D-arabinofuranosyluracil (FMAU) and 68Ga-labeled-prostate specific membrane antigen (PMSA) PET/TC. However, since data on clinical validation for these last novel modalities are not conclusive and/or are not still sufficient in number, at present they can be still considered as promising tools under evaluation. The present paper considers the nuclear modalities today available for the clinical routine. This overview wants to discuss the opportunities and the drawbacks of these current diagnostic tests in a scenario where planar scintigraphy and/or SPECT with phosphonates, is the only metabolic imaging recommended by the most important Guidelines of the Scientific Societies dealing with prostate cancer. Other nuclear medicine modalities are in very few cases just cited, never recommended except in rare situations. Is there space for agents other than 99mTc-phosphonates to image bone lesions from prostate cancer?
Feature-based Alignment of Volumetric Multi-modal Images
Toews, Matthew; Zöllei, Lilla; Wells, William M.
2014-01-01
This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955
Runfola, Cristin D.; Von Holle, Ann; Trace, Sara E.; Brownley, Kimberly A.; Hofmeier, Sara M.; Gagne, Danielle A.; Bulik, Cynthia M.
2013-01-01
To explore age differences in current and preferred silhouette and body dissatisfaction (current -preferred silhouette discrepancy) in women aged 25-89 years using figural stimuli (range: 1-very small to 9-very large). Data were abstracted from two online convenience samples (N = 5,868). t-tests with permutation-adjusted p-values examined linear associations between mean silhouette scores (current, preferred, discrepancy score) and age with/without stratification by body mass index (BMI). Modal current silhouette was 5; modal preferred silhouette was 4; mean discrepancy score was 1.8. There was no significant association between current silhouette and age, but a positive linear association between preferred silhouette and age remained after stratification by BMI. A significant inverse linear association of silhouette discrepancy score and age was found only prior to stratification by BMI. Body dissatisfaction exists in women across the adult life span and is influenced by BMI. PMID:22949165
VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.
Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro
2016-01-01
In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.
Brédart, Anne; Kop, Jean-Luc; Fall, Mouhamadou; Pelissier, Sandra; Simondi, Cécile; Dolbeault, Sylvie; Livartowski, Alain; Tardivon, Anne
2012-11-01
Intensive surveillance in women at intermediate and high breast cancer risk is currently investigated in a French prospective, non-randomized, multicentre study. Two surveillance modalities, standard imaging-mammography ± ultrasound ('Mx')-or standard imaging with magnetic resonance imaging ('MRI'), provided according to the level of breast cancer risk, are compared on psychological distress. A total of 1561 women were invited to complete the State-Trait Anxiety Inventory (STAI), Impact of Event Scale (IES) Intrusion and Avoidance subscales and breast cancer-risk perception items at T0 (before examination) and T2 (1 to 3 months later) and the STAI-State anxiety at T1 (just after examination). Multiple regression analyses were performed. Baseline compliance was high (>91%). Between surveillance modalities, women differed significantly for age, education level, breast cancer-risk objective estimates and subjective perception. Mean STAI-State anxiety scores reflected low to moderate distress in both surveillance modalities. At baseline, MRI was associated with lower STAI-State anxiety (p ≤ 0.001) and Avoidance scores (p = 0.02), but at T1 and T2, no difference between surveillance modalities was observed on psychological outcomes. Abnormal surveillance result was associated with a higher STAI-State anxiety (p ≤ 0.01) and IES-Intrusion (p ≤ 0.01) scores; a personal history of breast cancer and higher risk perception was associated with higher psychological distress at T1 and T2. Standard breast imaging including MRI does not seem to convey more harmful psychological effects than standard imaging alone. Higher psychological distress observed in the case of history of breast cancer or higher breast cancer-risk perception evidences women with needs for specific support and information. Copyright © 2011 John Wiley & Sons, Ltd.
On the Multi-Modal Object Tracking and Image Fusion Using Unsupervised Deep Learning Methodologies
NASA Astrophysics Data System (ADS)
LaHaye, N.; Ott, J.; Garay, M. J.; El-Askary, H. M.; Linstead, E.
2017-12-01
The number of different modalities of remote-sensors has been on the rise, resulting in large datasets with different complexity levels. Such complex datasets can provide valuable information separately, yet there is a bigger value in having a comprehensive view of them combined. As such, hidden information can be deduced through applying data mining techniques on the fused data. The curse of dimensionality of such fused data, due to the potentially vast dimension space, hinders our ability to have deep understanding of them. This is because each dataset requires a user to have instrument-specific and dataset-specific knowledge for optimum and meaningful usage. Once a user decides to use multiple datasets together, deeper understanding of translating and combining these datasets in a correct and effective manner is needed. Although there exists data centric techniques, generic automated methodologies that can potentially solve this problem completely don't exist. Here we are developing a system that aims to gain a detailed understanding of different data modalities. Such system will provide an analysis environment that gives the user useful feedback and can aid in research tasks. In our current work, we show the initial outputs our system implementation that leverages unsupervised deep learning techniques so not to burden the user with the task of labeling input data, while still allowing for a detailed machine understanding of the data. Our goal is to be able to track objects, like cloud systems or aerosols, across different image-like data-modalities. The proposed system is flexible, scalable and robust to understand complex likenesses within multi-modal data in a similar spatio-temporal range, and also to be able to co-register and fuse these images when needed.
Ulloa, Alvaro; Jingyu Liu; Vergara, Victor; Jiayu Chen; Calhoun, Vince; Pattichis, Marios
2014-01-01
In the biomedical field, current technology allows for the collection of multiple data modalities from the same subject. In consequence, there is an increasing interest for methods to analyze multi-modal data sets. Methods based on independent component analysis have proven to be effective in jointly analyzing multiple modalities, including brain imaging and genetic data. This paper describes a new algorithm, three-way parallel independent component analysis (3pICA), for jointly identifying genomic loci associated with brain function and structure. The proposed algorithm relies on the use of multi-objective optimization methods to identify correlations among the modalities and maximally independent sources within modality. We test the robustness of the proposed approach by varying the effect size, cross-modality correlation, noise level, and dimensionality of the data. Simulation results suggest that 3p-ICA is robust to data with SNR levels from 0 to 10 dB and effect-sizes from 0 to 3, while presenting its best performance with high cross-modality correlations, and more than one subject per 1,000 variables. In an experimental study with 112 human subjects, the method identified links between a genetic component (pointing to brain function and mental disorder associated genes, including PPP3CC, KCNQ5, and CYP7B1), a functional component related to signal decreases in the default mode network during the task, and a brain structure component indicating increases of gray matter in brain regions of the default mode region. Although such findings need further replication, the simulation and in-vivo results validate the three-way parallel ICA algorithm presented here as a useful tool in biomedical data decomposition applications.
Radiological Determination of Postoperative Cervical Fusion: A Systematic Review.
Rhee, John M; Chapman, Jens R; Norvell, Daniel C; Smith, Justin; Sherry, Ned A; Riew, K Daniel
2015-07-01
Systematic review. To determine best criteria for radiological determination of postoperative subaxial cervical fusion to be applied to current clinical practice and ongoing future research assessing fusion to standardize assessment and improve comparability. Despite availability of multiple imaging modalities and criteria, there remains no method of determining cervical fusion with absolute certainty, nor clear consensus on specific criteria to be applied. A systematic search in MEDLINE/Cochrane Collaboration Library (through March 2014). Included studies assessed C2 to C7 via anterior or posterior approach, at 12 weeks or more postoperative, with any graft or implant. Overall body of evidence with respect to 6 posited key questions was determined using Grading of Recommendations Assessment, Development and Evaluation and Agency for Healthcare Research and Quality precepts. Of plain radiographical modalities, there is moderate evidence that the interspinous process motion method (<1 mm) is more accurate than the Cobb angle method for assessing anterior cervical fusion. Of the advanced imaging modalities, there is moderate evidence that computed tomography (CT) is more accurate and reliable than magnetic resonance imaging in assessing anterior cervical fusion. There is insufficient evidence regarding the optimal modality and criteria for assessing posterior cervical fusions and insufficient evidence to support a single time point after surgery as being optimal for determining fusion, although some evidence suggest that reliability of radiography and CT improves with increasing time postoperatively. We recommend using less than 1-mm motion as the initial modality for determining anterior cervical arthrodesis for both clinical and research applications. If further imaging is needed because of indeterminate radiographical evaluation, we recommend CT, which has relatively high accuracy and reliability, but due to greater radiation exposure and cost, it is not routinely suggested. We recommend that plain radiographs also be the initial method of determining posterior cervical fusion but suggest a lower threshold for obtaining CT scans because dynamic radiographs may not be as useful if spinous processes have been removed by laminectomy. 1.
Amyloid PET in clinical practice: Its place in the multidimensional space of Alzheimer's disease☆
Vandenberghe, Rik; Adamczuk, Katarzyna; Dupont, Patrick; Laere, Koen Van; Chételat, Gaël
2013-01-01
Amyloid imaging is currently introduced to the market for clinical use. We will review the evidence demonstrating that the different amyloid PET ligands that are currently available are valid biomarkers for Alzheimer-related β amyloidosis. Based on recent findings from cross-sectional and longitudinal imaging studies using different modalities, we will incorporate amyloid imaging into a multidimensional model of Alzheimer's disease. Aside from the critical role in improving clinical trial design for amyloid-lowering drugs, we will also propose a tentative algorithm for when it may be useful in a memory clinic environment. Gaps in our evidence-based knowledge of the added value of amyloid imaging in a clinical context will be identified and will need to be addressed by dedicated studies of clinical utility. PMID:24179802
NASA Astrophysics Data System (ADS)
Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret
2018-03-01
Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.
Longmire, Michelle R.; Ogawa, Mikako; Choyke, Peter L.
2012-01-01
In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references). PMID:21607237
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.
2001-09-01
In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.
Imaging of femoroacetabular impingement-current concepts
Albers, Christoph E.; Wambeek, Nicholas; Hanke, Markus S.; Schmaranzer, Florian; Prosser, Gareth H.; Yates, Piers J.
2016-01-01
Following the recognition of femoroacetabular impingement (FAI) as a clinical entity, diagnostic tools have continuously evolved. While the diagnosis of FAI is primarily made based on the patients’ history and clinical examination, imaging of FAI is indispensable. Routine diagnostic work-up consists of a set of plain radiographs, magnetic resonance imaging (MRI) and MR-arthrography. Recent advances in MRI technology include biochemically sensitive sequences bearing the potential to detect degenerative changes of the hip joint at an early stage prior to their appearance on conventional imaging modalities. Computed tomography may serve as an adjunct. Advantages of CT include superior bone to soft tissue contrast, making CT applicable for image-guiding software tools that allow evaluation of the underlying dynamic mechanisms causing FAI. This article provides a summary of current concepts of imaging in FAI and a review of the literature on recent advances, and their application to clinical practice. PMID:29632685
Intravascular Optical Imaging Technology for Investigating the Coronary Artery
Suter, Melissa J.; Nadkarni, Seemantini K.; Weisz, Giora; Tanaka, Atsushi; Jaffer, Farouc A.; Bouma, Brett E.; Tearney, Guillermo J.
2012-01-01
There is an ever-increasing demand for new imaging methods that can provide additional information about the coronary wall to better characterize and stratify high-risk plaques, and to guide interventional and pharmacologic management of patients with coronary artery disease. While there are a number of imaging modalities that facilitate the assessment of coronary artery pathology, this review paper focuses on intravascular optical imaging modalities that provide information on the microstructural, compositional, biochemical, biomechanical, and molecular features of coronary lesions and stents. The optical imaging modalities discussed include angioscopy, optical coherence tomography, polarization sensitive-optical coherence tomography, laser speckle imaging, near-infrared spectroscopy, time-resolved laser induced fluorescence spectroscopy, Raman spectroscopy, and near-infrared fluorescence molecular imaging. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in the evaluation of the coronary artery in the future. PMID:21920342
Robust Multimodal Dictionary Learning
Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc
2014-01-01
We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674
Combined optical tomographic and magnetic resonance imaging of tumor bearing mice
NASA Astrophysics Data System (ADS)
Masciotti, J.; Abdoulaev, G.; Hur, J.; Papa, J.; Bae, J.; Huang, J.; Yamashiro, D.; Kandel, J.; Hielscher, A. H.
2005-04-01
With the advent of small animal imaging systems, it has become possible to non-invasively monitor the progression of diseases in living small animals and study the efficacy of drugs and treatment protocols. Magnetic resonance imaging (MRI) is an established imaging modality capable of obtaining high resolution anatomical images as well as studying cerebral blood volume (CBV), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen (CMRO2). Optical tomography, on the other hand, is an emerging imaging modality, which, while much lower in spatial resolution and insensitive to CBF, can separate the effects of oxyhemoglobin, deoxyhemoglobin, and CBV with high temporal resolution. In this study we present our first results concerning coregistration of MRI and optical data. By applying both modalities to imaging of kidney tumors in mice that undergo VEGF treatment, we illustrate how these imaging modalities can supplement each other and cross validation can be performed.
Imaging of the temporomandibular joint: An update
Bag, Asim K; Gaddikeri, Santhosh; Singhal, Aparna; Hardin, Simms; Tran, Benson D; Medina, Josue A; Curé, Joel K
2014-01-01
Imaging of the temporomandibular joint (TMJ) is continuously evolving with advancement of imaging technologies. Many different imaging modalities are currently used to evaluate the TMJ. Magnetic resonance imaging is commonly used for evaluation of the TMJ due to its superior contrast resolution and its ability to acquire dynamic imaging for demonstration of the functionality of the joint. Computed tomography and ultrasound imaging have specific indication in imaging of the TMJ. This article focuses on state of the art imaging of the temporomandibular joint. Relevant normal anatomy and biomechanics of movement of the TMJ are discussed for better understanding of many TMJ pathologies. Imaging of internal derangements is discussed in detail. Different arthropathies and common tumors are also discussed in this article. PMID:25170394
Hybrid imaging: Instrumentation and Data Processing
NASA Astrophysics Data System (ADS)
Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas
2018-05-01
State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.
Clinical imaging of the pancreas
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, G.; Gardiner, R.
1987-01-01
Featuring more than 300 high-quality radiographs and scan images, clinical imaging of the pancreas systematically reviews all appropriate imaging modalities for diagnosing and evaluating a variety of commonly encountered pancreatic disorders. After presenting a succinct overview of pancreatic embryology, anatomy, and physiology, the authors establish the clinical indications-including postoperative patient evaluation-for radiologic examination of the pancreas. The diagnostic capabilities and limitations of currently available imaging techniques for the pancreas are thoroughly assessed, with carefully selected illustrations depicting the types of images and data obtained using these different techniques. The review of acute and chronic pancreatitis considers the clinical features andmore » possible complications of their variant forms and offers guidance in selecting appropriate imaging studies.« less
Brenner, Arnold I; Koshy, June; Morey, Jose; Lin, Cheryl; DiPoce, Jason
2012-01-01
Bone imaging continues to be the second greatest-volume nuclear imaging procedure, offering the advantage of total body examination, low cost, and high sensitivity. Its power rests in the physiological uptake and pathophysiologic behavior of 99m technetium (99m-Tc) diphosphonates. The diagnostic utility, sensitivity, specificity, and predictive value of 99m-Tc bone imaging for benign conditions and tumors was established when only planar imaging was available. Currently, nearly all bone scans are performed as a planar study (whole-body, 3-phase, or regional), with the radiologist often adding single-photon emission computed tomography (SPECT) imaging. Here we review many current indications for planar bone imaging, highlighting indications in which the planar data are often diagnostically sufficient, although diagnosis may be enhanced by SPECT. (18)F sodium fluoride positron emission tomography (PET) is also re-emerging as a bone agent, and had been considered interchangeable with 99m-Tc diphosphonates in the past. In addition to SPECT, new imaging modalities, including (18)F fluorodeoxyglucose, PET/CT, CT, magnetic resonance, and SPECT/CT, have been developed and can aid in evaluating benign and malignant bone disease. Because (18)F fluorodeoxyglucose is taken up by tumor cells and Tc diphosphonates are taken up in osteoblastic activity or osteoblastic healing reaction, both modalities are complementary. CT and magnetic resonance may supplement, but do not replace, bone imaging, which often detects pathology before anatomic changes are appreciated. We also stress the importance of dose reduction by reducing the dose of 99m-Tc diphosphonates and avoiding unnecessary CT acquisitions. In addition, we describe an approach to image interpretation that emphasizes communication with referring colleagues and correlation with appropriate history to significantly improve our impact on patient care. Copyright © 2012 Elsevier Inc. All rights reserved.
A digital 3D atlas of the marmoset brain based on multi-modal MRI.
Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C
2018-04-01
The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Liu, Shuangquan; Zhang, Bin; Wang, Xin; Li, Lin; Chen, Yan; Liu, Xin; Liu, Fei; Shan, Baoci; Bai, Jing
2011-02-01
A dual-modality imaging system for simultaneous fluorescence molecular tomography (FMT) and positron emission tomography (PET) of small animals has been developed. The system consists of a noncontact 360°-projection FMT module and a flat panel detector pair based PET module, which are mounted orthogonally for the sake of eliminating cross interference. The FMT images and PET data are simultaneously acquired by employing dynamic sampling mode. Phantom experiments, in which the localization and range of radioactive and fluorescence probes are exactly indicated, have been carried out to verify the feasibility of the system. An experimental tumor-bearing mouse is also scanned using the dual-modality simultaneous imaging system, the preliminary fluorescence tomographic images and PET images demonstrate the in vivo performance of the presented dual-modality system.
Content-independent embedding scheme for multi-modal medical image watermarking.
Nyeem, Hussain; Boles, Wageeh; Boyd, Colin
2015-02-04
As the increasing adoption of information technology continues to offer better distant medical services, the distribution of, and remote access to digital medical images over public networks continues to grow significantly. Such use of medical images raises serious concerns for their continuous security protection, which digital watermarking has shown great potential to address. We present a content-independent embedding scheme for medical image watermarking. We observe that the perceptual content of medical images varies widely with their modalities. Recent medical image watermarking schemes are image-content dependent and thus they may suffer from inconsistent embedding capacity and visual artefacts. To attain the image content-independent embedding property, we generalise RONI (region of non-interest, to the medical professionals) selection process and use it for embedding by utilising RONI's least significant bit-planes. The proposed scheme thus avoids the need for RONI segmentation that incurs capacity and computational overheads. Our experimental results demonstrate that the proposed embedding scheme performs consistently over a dataset of 370 medical images including their 7 different modalities. Experimental results also verify how the state-of-the-art reversible schemes can have an inconsistent performance for different modalities of medical images. Our scheme has MSSIM (Mean Structural SIMilarity) larger than 0.999 with a deterministically adaptable embedding capacity. Our proposed image-content independent embedding scheme is modality-wise consistent, and maintains a good image quality of RONI while keeping all other pixels in the image untouched. Thus, with an appropriate watermarking framework (i.e., with the considerations of watermark generation, embedding and detection functions), our proposed scheme can be viable for the multi-modality medical image applications and distant medical services such as teleradiology and eHealth.
The evolution of gadolinium based contrast agents: from single-modality to multi-modality
NASA Astrophysics Data System (ADS)
Zhang, Li; Liu, Ruiqing; Peng, Hui; Li, Penghui; Xu, Zushun; Whittaker, Andrew K.
2016-05-01
Gadolinium-based contrast agents are extensively used as magnetic resonance imaging (MRI) contrast agents due to their outstanding signal enhancement and ease of chemical modification. However, it is increasingly recognized that information obtained from single modal molecular imaging cannot satisfy the higher requirements on the efficiency and accuracy for clinical diagnosis and medical research, due to its limitation and default rooted in single molecular imaging technique itself. To compensate for the deficiencies of single function magnetic resonance imaging contrast agents, the combination of multi-modality imaging has turned to be the research hotpot in recent years. This review presents an overview on the recent developments of the functionalization of gadolinium-based contrast agents, and their application in biomedicine applications.
Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M
2015-10-01
New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference data set with a 10-fold cross-validation method. EGT segments cells or colonies with resulting Dice accuracy index measurements above 0.92 for all cross-validation data sets. EGT results has also been visually verified on a much larger data set that includes bright field and Differential Interference Contrast (DIC) images, 16 cell lines and 61 time-sequence data sets, for a total of 17,479 images. This method is implemented as an open-source plugin to ImageJ as well as a standalone executable that can be downloaded from the following link: https://isg.nist.gov/. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives
Ngen, Ethel J.; Artemov, Dmitri
2017-01-01
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions. PMID:28106829
Current developments in departmental PACS for ultrasound.
Grenier, L E; Eng, P
1995-01-01
1. INTRODUCTION TO DEPARTMENTAL PACS. Full or partial Departmental PACS is generally taken to mean an image management system focused on serving the needs of a specific modality or modality application. It will provide a modality specific means of image acquisition, specialized redisplay of images, distribution, and local long term storage of images. A Departmental PACS can be considered in isolation or as a component in a distributed Radiology PACS which consists of one or more departmental work groups on a back bone, potentially with shared resources. 2. DEPARTMENTAL PACS Issues Implementation of a Departmental PACS requires an in-depth knowledge of departmental clinical practice and work flow in all affected areas in the department, including patient intake, image collection, data routing, retrieval of previous image data, reporting, and long term data management and storage. Optimization of modality specific image display systems requires significant involvement from representative physician users. System architectures and user interfaces must be flexible enough to support the span of variation in clinical practice encountered in the site. A departmental PACS should offer a variety of "open" communications interfaces, both local and wide area, recognizing that outreach efforts are often driven by specific imaging departments. Interfaces to other departmental PAC systems and other information systems must be considered in order to facilitate institutions developing "Best of Breed" PACS systems. As hospitals move toward the integrated electronic medical record, means need to exist for a client process launched from a physician desktop to acquire images and/or reports from a departmental system. At minimum, HIS/RIS interfaces need to be considered to minimize re-keying of data and reduce data entry errors. 3. DESIGN OBJECTIVES FOR ALI ULTRAPACS. The key objectives were to design a product which could function either as a free standing PACS or as a departmental subnet on a larger PACS backbone, one which could function in a local or mixed local and wide area environment and one which could provide a cost effective implementation based on currently available technologies. 4. IMPLEMENTATION STRATEGIES. In order to attain the product design objectives, ALI made the following critical implementation decisions: 1) to build the UltraPACS application as a suite of separable UNIX processes based on a message passing client server model; 2) to host the application and operating system on a Digital Equipment Corporation PC using an Intel microprocessor because of the competition and broad variety of suppliers in the PC arena; and 3) to use NEXTSTEP as the UNIX variant of choice because of NEXTSTEPUs strong object orientation, superb development tools, and the excellent integration between the Graphical User Interface level and the underlying operating system layers. 5. CONCLUSION. ALI is convinced that a departmental approach to PACS offers significant advantages over monolithic PACS in several key areas including: optimization for modality specific clinical practice and workflow, cost effectiveness, the potential for an institution to implement PACS in a stepwise fashion, starting with the department with the potential for the greatest savings, and the capability for an institution to build a "best of breed" solution for large scale PACS.
Imaging of thoracic tuberculosis in children: current and future directions.
Sodhi, Kushaljit Singh; Bhalla, Ashu S; Mahomed, Nasreen; Laya, Bernard F
2017-09-01
Tuberculosis continues to be an important cause of morbidity and mortality worldwide. It is the leading cause of infection-related deaths worldwide. Children are amongst the high-risk groups for developing tuberculosis and often pose a challenge to the clinicians in making a definitive diagnosis. The newly released global tuberculosis report from World Health Organization reveals a 50% increase in fatality from tuberculosis in children. Significantly, diagnostic and treatment algorithms of tuberculosis for children differ from those of adults. Bacteriologic confirmation of the disease is often difficult in children; hence radiologists have an important role to play in early diagnosis of this disease. Despite advancing technology, the key diagnostic imaging modalities for primary care and emergency services, especially in rural and low-resource areas, are chest radiography and ultrasonography. In this article, we discuss various diagnostic imaging modalities used in diagnosis and treatment of tuberculosis and their indications. We highlight the use of US as point-of-care service along with mediastinal US and rapid MRI protocols, especially in mediastinal lymphadenopathy and thoracic complications. MRI is the ideal modality in high-resource areas when adequate infrastructure is available. Because the prevalence of tuberculosis is highest in lower-resource countries, we also discuss global initiatives in low-resource settings.
MO-E-12A-01: Quantitative Imaging: Techniques, Applications, and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, E; Jeraj, R; McNitt-Gray, M
The first symposium in the Quantitative Imaging Track focused on the introduction of quantitative imaging (QI) by illustrating the potential of QI in diagnostic and therapeutic applications in research and patient care, highlighting key challenges in implementation of such QI applications, and reviewing QI efforts of selected national and international agencies and organizations, including the FDA, NCI, NIST, and RSNA. This second QI symposium will focus more specifically on the techniques, applications, and challenges of QI. The first talk of the session will focus on modalityagnostic challenges of QI, beginning with challenges of the development and implementation of QI applicationsmore » in single-center, single-vendor settings and progressing to the challenges encountered in the most general setting of multi-center, multi-vendor settings. The subsequent three talks will focus on specific QI challenges and opportunities in the modalityspecific settings of CT, PET/CT, and MR. Each talk will provide information on modality-specific QI techniques, applications, and challenges, including current efforts focused on solutions to such challenges. Learning Objectives: Understand key general challenges of QI application development and implementation, regardless of modality. Understand selected QI techniques and applications in CT, PET/CT, and MR. Understand challenges, and potential solutions for such challenges, for the applications presented for each modality.« less
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
Treder, M; Eter, N
2018-04-19
Deep learning is increasingly becoming the focus of various imaging methods in medicine. Due to the large number of different imaging modalities, ophthalmology is particularly suitable for this field of application. This article gives a general overview on the topic of deep learning and its current applications in the field of optical coherence tomography. For the benefit of the reader it focuses on the clinical rather than the technical aspects.
Role for imaging in spondyloarthritis.
Ran, Jun; Morelli, John N; Xie, Ruyi; Zhang, Xiaoli; Liang, Xiaoqing; Liu, Xuanlin; Li, Xiaoming
2017-09-01
Despite major progress in the imaging diagnosis of spondyloarthritis (SpA), the relative advantages of various available imaging techniques remain unclear. The aim of this study is to assess the current use of imaging in the diagnosis of SpA and to provide suitable recommendations for the use of imaging as an outcome measure as defined in the Assessment in SpondyloArthritis international Society (ASAS) criteria. A systematic literature search regarding imaging in SpA was performed. Articles were assessed by two reviewers to identify and summarized key information pertaining to imaging in SpA. The search identified 180 relevant articles. Conventional radiography (CR) (17 articles), ultrasound (US) (26 articles), conventional computed tomography (CT) (13 articles), spectral computed tomography (spectral CT) (2 articles), bone scintigraphy (24 articles), and magnetic resonance imaging (MRI) were assessed (98 articles). Sacroiliitis and enthesitis were the major imaging findings in SpA. Multiple studies assessed the feasibility, validity, or differences among imaging modalities for the diagnosis of SpA; however, comprehensive assessments were not available due to a paucity of prospective imaging studies. CR is a widely available, inexpensive initial approach to evaluate patients with suspected SpA. CT enables assessment of structural changes from chronic sacroiliitis including bony erosions, subchondral sclerosis, joint space narrowing, and ankyloses; however, both CR and CT modalities are insensitive for demonstrating early enthesitis and sacroiliitis in SpA. US mainly identifies appendicular enthesitis but is more limited with respect to the sacroiliac joints. Bone scintigraphy can identify sacroiliac joint lesions and semi-quantitatively assess active sacroiliitis. MRI optimally evaluates not only early enthesitis and sacroiliitis of SpA but also chronic structural changes to the sacroiliac joints. More than one modality may be required for diagnostic and assessment of SpA depending upon disease characteristics and evolution. CR is a suitable initial examination while MRI is able to detect both early and late changes of SpA. A combination of CR and MRI is recommended for the diagnosis and assessment of SpA.
Implementation and applications of dual-modality imaging
NASA Astrophysics Data System (ADS)
Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho
2004-06-01
In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.
Innovations in diagnostic imaging of localized prostate cancer.
Pummer, Karl; Rieken, Malte; Augustin, Herbert; Gutschi, Thomas; Shariat, Shahrokh F
2014-08-01
In recent years, various imaging modalities have been developed to improve diagnosis, staging, and localization of early-stage prostate cancer (PCa). A MEDLINE literature search of the time frame between 01/2007 and 06/2013 was performed on imaging of localized PCa. Conventional transrectal ultrasound (TRUS) is mainly used to guide prostate biopsy. Contrast-enhanced ultrasound is based on the assumption that PCa tissue is hypervascularized and might be better identified after intravenous injection of a microbubble contrast agent. However, results on its additional value for cancer detection are controversial. Computer-based analysis of the transrectal ultrasound signal (C-TRUS) appears to detect cancer in a high rate of patients with previous biopsies. Real-time elastography seems to have higher sensitivity, specificity, and positive predictive value than conventional TRUS. However, the method still awaits prospective validation. The same is true for prostate histoscanning, an ultrasound-based method for tissue characterization. Currently, multiparametric MRI provides improved tissue visualization of the prostate, which may be helpful in the diagnosis and targeting of prostate lesions. However, most published series are small and suffer from variations in indication, methodology, quality, interpretation, and reporting. Among ultrasound-based techniques, real-time elastography and C-TRUS seem the most promising techniques. Multiparametric MRI appears to have advantages over conventional T2-weighted MRI in the detection of PCa. Despite these promising results, currently, no recommendation for the routine use of these novel imaging techniques can be made. Prospective studies defining the value of various imaging modalities are urgently needed.
Fiber optic in vivo imaging in the mammalian nervous system
Mehta, Amit D; Jung, Juergen C; Flusberg, Benjamin A; Schnitzer, Mark J
2010-01-01
The compact size, mechanical flexibility, and growing functionality of optical fiber and fiber optic devices are enabling several new modalities for imaging the mammalian nervous system in vivo. Fluorescence microendoscopy is a minimally invasive fiber modality that provides cellular resolution in deep brain areas. Diffuse optical tomography is a non-invasive modality that uses assemblies of fiber optic emitters and detectors on the cranium for volumetric imaging of brain activation. Optical coherence tomography is a sensitive interferometric imaging technique that can be implemented in a variety of fiber based formats and that might allow intrinsic optical detection of brain activity at a high resolution. Miniaturized fiber optic microscopy permits cellular level imaging in the brains of behaving animals. Together, these modalities will enable new uses of imaging in the intact nervous system for both research and clinical applications. PMID:15464896
Implementation of High-resolution Manometry in the Clinical Practice of Speech Language Pathology
Thibeault, Susan; McCulloch, Timothy M.
2014-01-01
Visual imaging modalities, videofluoroscopic swallow study (VFSS) and fiberoptic endoscopic evaluation of swallow, for assessment of oropharyngeal dysphagia have been part of the speech language pathologist’s (SLPs) armamentarium for the diagnosis and treatment of dysphagia for decades. Recently, the addition of high-resolution manometry (HRM) has enabled the SLP to evaluate pharyngeal pressures and upper esophageal sphincter relaxation. Taken together, the use of visual imaging modalities with HRM can improve interpretation of swallowing physiology and facilitate more effective treatment planning. The goal of this article is to describe a clinical paradigm using HRM as an adjunct to VFSS, by the SLP, in the assessment of complex dysphagia. Moreover, in three cases described, the value of manometric measurements in elucidating swallowing imaging studies and documenting physiologic change in response to treatment is highlighted. As technology in this area is evolving, so will the clinical use of HRM by the SLP. Limitations of current HRM systems and applications are discussed. PMID:24233810
NASA Astrophysics Data System (ADS)
Tseytlin, Mark; Stolin, Alexander V.; Guggilapu, Priyaankadevi; Bobko, Andrey A.; Khramtsov, Valery V.; Tseytlin, Oxana; Raylman, Raymond R.
2018-05-01
The advent of hybrid scanners, combining complementary modalities, has revolutionized the application of advanced imaging technology to clinical practice and biomedical research. In this project, we investigated the melding of two complementary, functional imaging methods: positron emission tomography (PET) and electron paramagnetic resonance imaging (EPRI). PET radiotracers can provide important information about cellular parameters, such as glucose metabolism. While EPR probes can provide assessment of tissue microenvironment, measuring oxygenation and pH, for example. Therefore, a combined PET/EPRI scanner promises to provide new insights not attainable with current imagers by simultaneous acquisition of multiple components of tissue microenvironments. To explore the simultaneous acquisition of PET and EPR images, a prototype system was created by combining two existing scanners. Specifically, a silicon photomultiplier (SiPM)-based PET scanner ring designed as a portable scanner was combined with an EPRI scanner designed for the imaging of small animals. The ability of the system to obtain simultaneous images was assessed with a small phantom consisting of four cylinders containing both a PET tracer and EPR spin probe. The resulting images demonstrated the ability to obtain contemporaneous PET and EPR images without cross-modality interference. Given the promising results from this initial investigation, the next step in this project is the construction of the next generation pre-clinical PET/EPRI scanner for multi-parametric assessment of physiologically-important parameters of tissue microenvironments.
Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.
Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas
2016-04-01
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Imaging Surveillance After Primary Breast Cancer Treatment
Lam, Diana L.; Houssami, Nehmat; Lee, Janie M.
2017-01-01
OBJECTIVE Current clinical guidelines are consistent in supporting annual mammography for women after treatment of primary breast cancer. Surveillance imaging beyond standard digital mammography, including digital breast tomosynthesis (DBT), breast ultrasound, and MRI, may improve outcomes. This article reviews the evidence on the performance and effectiveness of breast imaging modalities available for surveillance after treatment of sporadic unilateral primary breast cancer and identifies additional factors to be considered when selecting an imaging surveillance regimen. CONCLUSION Evidence review supports the use of mammography for surveillance after primary breast cancer treatment. Variability exists in guideline recommendations for surveillance initiation, interval, and cessation. DBT offers the most promise as a potential modality to replace standard digital mammography as a front-line surveillance test; a single published study to date has shown a significant decrease in recall rates compared with standard digital mammography alone. Most guidelines do not support the use of whole-breast ultrasound in breast cancer surveillance, and further studies are needed to define the characteristics of women who may benefit from MRI surveillance. The emerging evidence about surveillance imaging outcomes suggests that additional factors, including patient and imaging characteristics, tumor biology and gene expression profile, and choice of treatment, warrant consideration in selecting personalized posttreatment imaging surveillance regimens. PMID:28075622
Dual modality surgical guidance of non-palpable breast lesions
NASA Astrophysics Data System (ADS)
Judy, Patricia Goodale
Although breast conserving therapy has some advantages over the traditional mastectomy procedure, the biggest disadvantage is the chance of local re-occurrence in which a second surgery is often required. Adequate surgical removal of breast tumors requires accurate tumor localization in order to ensure a balance between optimal cosmetic results and minimization of the risk for local re-occurrence. These challenges have motivated the search for alternative, more accurate methods for intraoperative localization of non-palpable breast lesions. The overall goal of this project was to develop an innovative technique for radioguided localization of non-palpable breast lesions that is more accurate, easier for the breast surgeon, and more comfortable for the patient than the current practice of wire localization. The technique uses a dual modality breast imaging system to place a marker composed of radiolabeled albumin (99mTc-MAA or 111ln-MAA) into the lesion. Preliminary studies were made to evaluate the localization accuracy of the system, which showed that the dual modality breast scanner is capable of accurate 3-dimensional localization using either X-ray or gamma ray imaging. A 3-axis needle positioning system was built and integrated into the dual modality breast scanner and its accuracy tested. A pilot clinical trial to evaluate the dual-modality surgical guidance technique was designed and preliminary clinical data collected. Detailed results were presented on the first three subjects; although a total of seven subjects have been recruited to the study to date. So far, it has been demonstrated that the radioguided surgery technique can be performed with approximately 10 times less radiomarker activity than is currently being used by other researchers employing 99mTc-MAA as a radiomarker, while maintaining comparable localization accuracy. Although the DMSG technique has not been tested in a large cohort of subjects, the preliminary data on the first few are encouraging. Feedback on the technique from the surgeons, for this limited population, has been positive. Recruitment to the study is ongoing.
Update on wide- and ultra-widefield retinal imaging
Shoughy, Samir S; Arevalo, J Fernando; Kozak, Igor
2015-01-01
The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice. PMID:26458474
Katorza, E; Bertucci, E; Perlman, S; Taschini, S; Ber, R; Gilboa, Y; Mazza, V; Achiron, R
2016-07-01
Normal biometry of the fetal posterior fossa rules out most major anomalies of the cerebellum and vermis. Our aim was to provide new reference data of the fetal vermis in 4 biometric parameters by using 3 imaging modalities, 2D ultrasound, 3D ultrasound, and MR imaging, and to assess the relation among these modalities. A retrospective study was conducted between June 2011 and June 2013. Three different imaging modalities were used to measure vermis biometry: 2D ultrasound, 3D ultrasound, and MR imaging. The vermian parameters evaluated were the maximum superoinferior diameter, maximum anteroposterior diameter, the perimeter, and the surface area. Statistical analysis was performed to calculate centiles for gestational age and to assess the agreement among the 3 imaging modalities. The number of fetuses in the study group was 193, 172, and 151 for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. The mean and median gestational ages were 29.1 weeks, 29.5 weeks (range, 21-35 weeks); 28.2 weeks, 29.05 weeks (range, 21-35 weeks); and 32.1 weeks, 32.6 weeks (range, 27-35 weeks) for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. In all 3 modalities, the biometric measurements of the vermis have shown a linear growth with gestational age. For all 4 biometric parameters, the lowest results were those measured by MR imaging, while the highest results were measured by 3D ultrasound. The inter- and intraobserver agreement was excellent for all measures and all imaging modalities. Limits of agreement were considered acceptable for clinical purposes for all parameters, with excellent or substantial agreement defined by the intraclass correlation coefficient. Imaging technique-specific reference data should be used for the assessment of the fetal vermis in pregnancy. © 2016 by American Journal of Neuroradiology.
NASA Technical Reports Server (NTRS)
Sargsyan, Ashot E.; Kramer, Larry A.; Hamilton, Douglas R.; Hamilton, Douglas R.; Fogarty, Jennifer; Polk, J. D.
2010-01-01
Introduction: Intracranial pressure (ICP) elevation has been inferred or documented in a number of space crewmembers. Recent advances in noninvasive imaging technology offer new possibilities for ICP assessment. Most International Space Station (ISS) partner agencies have adopted a battery of occupational health monitoring tests including magnetic resonance imaging (MRI) pre- and postflight, and high-resolution sonography of the orbital structures in all mission phases including during flight. We hypothesize that joint consideration of data from the two techniques has the potential to improve quality and continuity of crewmember monitoring and care. Methods: Specially designed MRI and sonographic protocols were used to image eyes and optic nerves (ON) including the meningeal sheaths. Specific crewmembers multi-modality imaging data were analyzed to identify points of mutual validation as well as unique features of complementary nature. Results and Conclusion: Magnetic resonance imaging (MRI) and high-resolution sonography are both tomographic methods, however images obtained by the two modalities are based on different physical phenomena and use different acquisition principles. Consideration of the images acquired by these two modalities allows cross-validating findings related to the volume and fluid content of the ON subarachnoid space, shape of the globe, and other anatomical features of the orbit. Each of the imaging modalities also has unique advantages, making them complementary techniques.
Weinstein, Ronald S; Graham, Anna R; Lian, Fangru; Braunhut, Beth L; Barker, Gail R; Krupinski, Elizabeth A; Bhattacharyya, Achyut K
2012-04-01
Telepathology, the distant service component of digital pathology, is a growth industry. The word "telepathology" was introduced into the English Language in 1986. Initially, two different, competing imaging modalities were used for telepathology. These were dynamic (real time) robotic telepathology and static image (store-and-forward) telepathology. In 1989, a hybrid dynamic robotic/static image telepathology system was developed in Norway. This hybrid imaging system bundled these two primary pathology imaging modalities into a single multi-modality pathology imaging system. Similar hybrid systems were subsequently developed and marketed in other countries as well. It is noteworthy that hybrid dynamic robotic/static image telepathology systems provided the infrastructure for the first truly sustainable telepathology services. Since then, impressive progress has been made in developing another telepathology technology, so-called "virtual microscopy" telepathology (also called "whole slide image" telepathology or "WSI" telepathology). Over the past decade, WSI has appeared to be emerging as the preferred digital telepathology digital imaging modality. However, recently, there has been a re-emergence of interest in dynamic-robotic telepathology driven, in part, by concerns over the lack of a means for up-and-down focusing (i.e., Z-axis focusing) using early WSI processors. In 2010, the initial two U.S. patents for robotic telepathology (issued in 1993 and 1994) expired enabling many digital pathology equipment companies to incorporate dynamic-robotic telepathology modules into their WSI products for the first time. The dynamic-robotic telepathology module provided a solution to the up-and-down focusing issue. WSI and dynamic robotic telepathology are now, rapidly, being bundled into a new class of telepathology/digital pathology imaging system, the "WSI-enhanced dynamic robotic telepathology system". To date, six major WSI processor equipment companies have embraced the approach and developed WSI-enhanced dynamic-robotic digital telepathology systems, marketed under a variety of labels. Successful commercialization of such systems could help overcome the current resistance of some pathologists to incorporate digital pathology, and telepathology, into their routine and esoteric laboratory services. Also, WSI-enhanced dynamic robotic telepathology could be useful for providing general pathology and subspecialty pathology services to many of the world's underserved populations in the decades ahead. This could become an important enabler for the delivery of patient-centered healthcare in the future. © 2012 The Authors APMIS © 2012 APMIS.
Platform for intraoperative analysis of video streams
NASA Astrophysics Data System (ADS)
Clements, Logan; Galloway, Robert L., Jr.
2004-05-01
Interactive, image-guided surgery (IIGS) has proven to increase the specificity of a variety of surgical procedures. However, current IIGS systems do not compensate for changes that occur intraoperatively and are not reflected in preoperative tomograms. Endoscopes and intraoperative ultrasound, used in minimally invasive surgery, provide real-time (RT) information in a surgical setting. Combining the information from RT imaging modalities with traditional IIGS techniques will further increase surgical specificity by providing enhanced anatomical information. In order to merge these techniques and obtain quantitative data from RT imaging modalities, a platform was developed to allow both the display and processing of video streams in RT. Using a Bandit-II CV frame grabber board (Coreco Imaging, St. Laurent, Quebec) and the associated library API, a dynamic link library was created in Microsoft Visual C++ 6.0 such that the platform could be incorporated into the IIGS system developed at Vanderbilt University. Performance characterization, using two relatively inexpensive host computers, has shown the platform capable of performing simple image processing operations on frames captured from a CCD camera and displaying the processed video data at near RT rates both independent of and while running the IIGS system.
New Trends in Radionuclide Myocardial Perfusion Imaging
Hung, Guang-Uei; Wang, Yuh-Feng; Su, Hung-Yi; Hsieh, Te-Chun; Ko, Chi-Lun; Yen, Ruoh-Fang
2016-01-01
Radionuclide myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) has been widely used clinically as one of the major functional imaging modalities for patients with coronary artery disease (CAD) for decades. Ample evidence has supported the use of MPI as a useful and important tool in the diagnosis, risk stratification and treatment planning for CAD. Although popular in the United States, MPI has become the most frequently used imaging modality among all nuclear medicine tests in Taiwan. However, it should be acknowledged that MPI SPECT does have its limitations. These include false-positive results due to certain artifacts, false-negative due to balanced ischemia, complexity and adverse reaction arising from current pharmacological stressors, time consuming nature of the imaging procedure, no blood flow quantitation and relatively high radiation exposure. The purpose of this article was to review the recent trends in nuclear cardiology, including the utilization of positron emission tomography (PET) for MPI, new stressor, new SPECT camera with higher resolution and higher sensitivity, dynamic SPECT protocol for blood flow quantitation, new software of phase analysis for evaluation of LV dyssynchrony, and measures utilized for reducing radiation exposure of MPI. PMID:27122946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R; Lakshmanan, M; Fong, G
Purpose: Coherent scatter based imaging has shown improved contrast and molecular specificity over conventional digital mammography however the biological risks have not been quantified due to a lack of accurate information on absorbed dose. This study intends to characterize the dose distribution and average glandular dose from coded aperture coherent scatter spectral imaging of the breast. The dose deposited in the breast from this new diagnostic imaging modality has not yet been quantitatively evaluated. Here, various digitized anthropomorphic phantoms are tested in a Monte Carlo simulation to evaluate the absorbed dose distribution and average glandular dose using clinically feasible scanmore » protocols. Methods: Geant4 Monte Carlo radiation transport simulation software is used to replicate the coded aperture coherent scatter spectral imaging system. Energy sensitive, photon counting detectors are used to characterize the x-ray beam spectra for various imaging protocols. This input spectra is cross-validated with the results from XSPECT, a commercially available application that yields x-ray tube specific spectra for the operating parameters employed. XSPECT is also used to determine the appropriate number of photons emitted per mAs of tube current at a given kVp tube potential. With the implementation of the XCAT digital anthropomorphic breast phantom library, a variety of breast sizes with differing anatomical structure are evaluated. Simulations were performed with and without compression of the breast for dose comparison. Results: Through the Monte Carlo evaluation of a diverse population of breast types imaged under real-world scan conditions, a clinically relevant average glandular dose for this new imaging modality is extrapolated. Conclusion: With access to the physical coherent scatter imaging system used in the simulation, the results of this Monte Carlo study may be used to directly influence the future development of the modality to keep breast dose to a minimum while still maintaining clinically viable image quality.« less
Photoacoustic and ultrasound imaging of cancellous bone tissue.
Yang, Lifeng; Lashkari, Bahman; Tan, Joel W Y; Mandelis, Andreas
2015-07-01
We used ultrasound (US) and photoacoustic (PA) imaging modalities to characterize cattle trabecular bones. The PA signals were generated with an 805-nm continuous wave laser used for optimally deep optical penetration depth. The detector for both modalities was a 2.25-MHz US transducer with a lateral resolution of ~1 mm at its focal point. Using a lateral pixel size much larger than the size of the trabeculae, raster scanning generated PA images related to the averaged values of the optical and thermoelastic properties, as well as density measurements in the focal volume. US backscatter yielded images related to mechanical properties and density in the focal volume. The depth of interest was selected by time-gating the signals for both modalities. The raster scanned PA and US images were compared with microcomputed tomography (μCT) images averaged over the same volume to generate similar spatial resolution as US and PA. The comparison revealed correlations between PA and US modalities with the mineral volume fraction of the bone tissue. Various features and properties of these modalities such as detectable depth, resolution, and sensitivity are discussed.
Architecture for a PACS primary diagnosis workstation
NASA Astrophysics Data System (ADS)
Shastri, Kaushal; Moran, Byron
1990-08-01
A major factor in determining the overall utility of a medical Picture Archiving and Communications (PACS) system is the functionality of the diagnostic workstation. Meyer-Ebrecht and Wendler [1] have proposed a modular picture computer architecture with high throughput and Perry et.al [2] have defined performance requirements for radiology workstations. In order to be clinically useful, a primary diagnosis workstation must not only provide functions of current viewing systems (e.g. mechanical alternators [3,4]) such as acceptable image quality, simultaneous viewing of multiple images, and rapid switching of image banks; but must also provide a diagnostic advantage over the current systems. This includes window-level functions on any image, simultaneous display of multi-modality images, rapid image manipulation, image processing, dynamic image display (cine), electronic image archival, hardcopy generation, image acquisition, network support, and an easy user interface. Implementation of such a workstation requires an underlying hardware architecture which provides high speed image transfer channels, local storage facilities, and image processing functions. This paper describes the hardware architecture of the Siemens Diagnostic Reporting Console (DRC) which meets these requirements.
Dementia resulting from traumatic brain injury
Ramalho, Joana; Castillo, Mauricio
2015-01-01
Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge. PMID:29213985
Transthoracic needle biopsy of the lung
DiBardino, David M.; Yarmus, Lonny B.
2015-01-01
Background Image guided transthoracic needle aspiration (TTNA) is a valuable tool used for the diagnosis of countless thoracic diseases. Computed tomography (CT) is the most common imaging modality used for guidance followed by ultrasound (US) for lesions abutting the pleural surface. Novel approaches using virtual CT guidance have recently been introduced. The objective of this review is to examine the current literature for TTNA biopsy of the lung focusing on diagnostic accuracy and safety. Methods MEDLINE was searched from inception to October 2015 for all case series examining image guided TTNA. Articles focusing on fluoroscopic guidance as well as influence of rapid on-site evaluation (ROSE) on yield were excluded. The diagnostic accuracy, defined as the number of true positives divided by the number of biopsies done, as well as the complication rate [pneumothorax (PTX), bleeding] was examined for CT guided TTNA, US guided TTNA as well as CT guided electromagnetic navigational-TTNA (E-TTNA). Of the 490 articles recovered 75 were included in our analysis. Results The overall pooled diagnostic accuracy for CT guided TTNA using 48 articles that met the inclusion and exclusion criteria was 92.1% (9,567/10,383). A similar yield was obtained examining ten articles using US guided TTNA of 88.7% (446/503). E-TTNA, being a new modality, only had one pilot study citing a diagnostic accuracy of 83% (19/23). Pooled PTX and hemorrhage rates were 20.5% and 2.8% respectively for CT guided TTNA. The PTX rate was lower in US guided TTNA at a pooled rate of 4.4%. E-TTNA showed a similar rate of PTX at 20% with no incidence of bleeding in a single pilot study available. Conclusions Image guided TTNA is a safe and accurate modality for the biopsy of lung pathology. This study found similar yield and safety profiles with the three imaging modalities examined. PMID:26807279
Christiansen, Andrew R; Shorti, Rami M; Smith, Cory D; Prows, William C; Bishoff, Jay T
2018-05-01
Despite the increasing use of advanced 3D imaging techniques and 3D printing, these techniques have not yet been comprehensively compared in a surgical setting. The purpose of this study is to explore the effectiveness of five different advanced imaging modalities during a complex renal surgical procedure. A patient with a horseshoe kidney and multiple large, symptomatic stones that had failed Extracorporeal Shock Wave Lithotripsy (ESWL) and ureteroscopy treatment was used for this evaluation. CT data were used to generate five different imaging modalities, including a 3D printed model, three different volume rendered models, and a geometric CAD model. A survey was used to evaluate the quality and breadth of the imaging modalities during four different phases of the laparoscopic procedure. In the case of a complex kidney procedure, the CAD model, 3D print, volume render on an autostereoscopic 3D display, interactive and basic volume render models demonstrated added insight and complemented the surgical procedure. CAD manual segmentation allowed tissue layers and/or kidney stones to be made colorful and semi-transparent, allowing easier navigation through abnormal vasculature. The 3D print allowed for simultaneous visualization of renal pelvis and surrounding vasculature. Our preliminary exploration indicates that various advanced imaging modalities, when properly utilized and supported during surgery, can be useful in complementing the CT data and laparoscopic display. This study suggests that various imaging modalities, such as ones utilized in this case, can be beneficial intraoperatively depending on the surgical step involved and may be more helpful than 3D printed models. We also present factors to consider when evaluating advanced imaging modalities during complex surgery.
Photoacoustic image-guided navigation system for surgery (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Sara; Jang, Jongseong; Kim, Jeesu; Kim, Young Soo; Kim, Chulhong
2017-03-01
Identifying and delineating invisible anatomical and pathological details during surgery guides surgical procedures in real time. Various intraoperative imaging modalities have been increasingly employed to minimize such surgical risks as anatomical changes, damage to normal tissues, and human error. However, current methods provide only structural information, which cannot identify critical structures such as blood vessels. The logical next step is an intraoperative imaging modality that can provide functional information. Here, we have successfully developed a photoacoustic (PA) image-guided navigation system for surgery by integrating a position tracking system and a real-time clinical photoacoustic/ultrasound (PA/US) imaging system. PA/US images were acquired in real time and overlaid on pre-acquired cross-sectional magnetic resonance (MR) images. In the overlaid images, PA images represent the optical absorption characteristics of the surgical field, while US and MR images represent the morphological structure of surrounding tissues. To test the feasibility of the system, we prepared a tissue mimicking phantom which contained two samples, methylene blue as a contrast agent and water as a control. We acquired real-time overlaid PA/US/MR images of the phantom, which were well-matched with the optical and morphological properties of the samples. The developed system is the first approach to a novel intraoperative imaging technology based on PA imaging, and we believe that the system can be utilized in various surgical environments in the near future, improving the efficacy of surgical guidance.
Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.
Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A
2012-06-01
Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.
XML-based scripting of multimodality image presentations in multidisciplinary clinical conferences
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Allada, Vivekanand; Dahlbom, Magdalena; Marcus, Phillip; Fine, Ian; Lapstra, Lorelle
2002-05-01
We developed a multi-modality image presentation software for display and analysis of images and related data from different imaging modalities. The software is part of a cardiac image review and presentation platform that supports integration of digital images and data from digital and analog media such as videotapes, analog x-ray films and 35 mm cine films. The software supports standard DICOM image files as well as AVI and PDF data formats. The system is integrated in a digital conferencing room that includes projections of digital and analog sources, remote videoconferencing capabilities, and an electronic whiteboard. The goal of this pilot project is to: 1) develop a new paradigm for image and data management for presentation in a clinically meaningful sequence adapted to case-specific scenarios, 2) design and implement a multi-modality review and conferencing workstation using component technology and customizable 'plug-in' architecture to support complex review and diagnostic tasks applicable to all cardiac imaging modalities and 3) develop an XML-based scripting model of image and data presentation for clinical review and decision making during routine clinical tasks and multidisciplinary clinical conferences.
NASA Astrophysics Data System (ADS)
Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.
2017-02-01
Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.
Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.
Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo
2012-04-15
Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.
Filippou, Valeria; Tsoumpas, Charalampos
2018-06-22
Printing technology, capable of producing three-dimensional (3D) objects, has evolved in recent years and provides potential for developing reproducible and sophisticated physical phantoms. 3D printing technology can help rapidly develop relatively low cost phantoms with appropriate complexities, which are useful in imaging or dosimetry measurements. The need for more realistic phantoms is emerging since imaging systems are now capable of acquiring multimodal and multiparametric data. This review addresses three main questions about the 3D printers currently in use, and their produced materials. The first question investigates whether the resolution of 3D printers is sufficient for existing imaging technologies. The second question explores if the materials of 3D-printed phantoms can produce realistic images representing various tissues and organs as taken by different imaging modalities such as computer tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound (US), and mammography. The emergence of multimodal imaging increases the need for phantoms that can be scanned using different imaging modalities. The third question probes the feasibility and easiness of "printing" radioactive and/or non-radioactive solutions during the printing process. A systematic review of medical imaging studies published after January 2013 is performed using strict inclusion criteria. The databases used were Scopus and Web of Knowledge with specific search terms. In total, 139 papers were identified, however only 50 were classified as relevant for the purpose of this paper. In this review, following an appropriate introduction and literature research strategy, all 50 articles are presented in detail. A summary of tables and example figures of the most recent advances in 3D printing for the purposes of phantoms across different imaging modalities are provided. All 50 studies printed and scanned phantoms in either CT, PET, SPECT, mammography, MRI, and US - or a combination of those modalities. According to the literature, different parameters were evaluated depending on the imaging modality used. Almost all papers evaluated more than two parameters, with the most common being Hounsfield units, density, attenuation and speed of sound. The development of this field is rapidly evolving and becoming more refined. There is potential to reach the ultimate goal of using 3D phantoms to get feedback on imaging scanners and reconstruction algorithms more regularly. Although the development of imaging phantoms is evident, there are still some limitations to address: One of which is printing accuracy, due to the printer properties. Another limitation is the materials available to print: There are not enough materials to mimic all the tissue properties. For example, one material can mimic one property - such as the density of real tissue - but not any other property, like speed of sound or attenuation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost
2003-01-01
This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.
NASA Astrophysics Data System (ADS)
Choi, S.; Mandelis, A.; Guo, X.; Lashkari, B.; Kellnberger, S.; Ntziachristos, V.
2015-06-01
In the field of medical diagnostics, biomedical photoacoustics (PA) is a non-invasive hybrid optical-ultrasonic imaging modality. Due to the unique hybrid capability of optical and acoustic imaging, PA imaging has risen to the frontiers of medical diagnostic procedures such as human breast cancer detection. While conventional PA imaging has been mainly carried out by a high-power pulsed laser, an alternative technology, the frequency domain biophotoacoustic radar (FD-PAR) is under intensive development. It utilizes a continuous wave optical source with the laser intensity modulated by a frequency-swept waveform for acoustic wave generation. The small amplitude of the generated acoustic wave is significantly compensated by increased signal-to-noise ratio (several orders of magnitude) using matched-filter and pulse compression correlation processing in a manner similar to radar systems. The current study introduces the theory of a novel FD-PAR modality for ultra-sensitive characterization of functional information for breast cancer imaging. The newly developed theory of wavelength-modulated differential PA spectroscopy (WM-DPAS) detection has been introduced to address angiogenesis and hypoxia monitoring, two well-known benchmarks of breast tumor formation. Based on the WM-DPAS theory, this modality efficiently suppresses background absorptions and is expected to detect very small changes in total hemoglobin concentration and oxygenation levels, thereby identifying pre-malignant tumors before they are anatomically apparent. An experimental system design for the WM-DPAS is presented and preliminary single-ended laser experimental results were obtained and compared to a limiting case of the developed theoretical formalism.
Fourier Spectral Filter Array for Optimal Multispectral Imaging.
Jia, Jie; Barnard, Kenneth J; Hirakawa, Keigo
2016-04-01
Limitations to existing multispectral imaging modalities include speed, cost, range, spatial resolution, and application-specific system designs that lack versatility of the hyperspectral imaging modalities. In this paper, we propose a novel general-purpose single-shot passive multispectral imaging modality. Central to this design is a new type of spectral filter array (SFA) based not on the notion of spatially multiplexing narrowband filters, but instead aimed at enabling single-shot Fourier transform spectroscopy. We refer to this new SFA pattern as Fourier SFA, and we prove that this design solves the problem of optimally sampling the hyperspectral image data.
Business aspects of cardiovascular computed tomography: tackling the challenges.
Bateman, Timothy M
2008-01-01
The purpose of this article is to provide a comprehensive understanding of the business issues surrounding provision of dedicated cardiovascular computed tomographic imaging. Some of the challenges include high up-front costs, current low utilization relative to scanner capability, and inadequate payments. Cardiovascular computed tomographic imaging is a valuable clinical modality that should be offered by cardiovascular centers-of-excellence. With careful consideration of the business aspects, moderate-to-large size cardiology programs should be able to implement an economically viable cardiovascular computed tomographic service.
NASA Astrophysics Data System (ADS)
Karagiannis, Georgios
2017-03-01
This work led to a new method named 3D spectracoustic tomographic mapping imaging. The current and the future work is related to the fabrication of a combined acoustic microscopy transducer and infrared illumination probe permitting the simultaneous acquisition of the spectroscopic and the tomographic information. This probe provides with the capability of high fidelity and precision registered information from the combined modalities named spectracoustic information.
Adaptive Optics of Small Choroidal Melanoma.
Rodrigues, Murilo W; Say, Emil A; Shields, Carol L; Jorge, Rodrigo
2017-04-01
The authors report the use of an adaptive optics (AO) system in an asymptomatic patient with small choroidal melanoma. A noninvasive, novel assessment that detected potential photoreceptor abnormalities in the retina overlying the choroidal lesion and adjacent retina is presented. These findings may help current clinical evaluation to monitor structural damage to the outer retina and possibly justify earlier intervention in borderline cases. Future research is warranted to recognize full potential of this imaging modality. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:354-357.]. Copyright 2017, SLACK Incorporated.
Imaging assessment of penetrating injury of the neck and face.
Offiah, Curtis; Hall, Edward
2012-10-01
Penetrating trauma of the neck and face is a frequent presentation to acute emergency, trauma and critical care units. There remains a steady incidence of both gunshot penetrating injury to the neck and face as well as non-missile penetrating injury-largely, but not solely, knife-related. Optimal imaging assessment of such injuries therefore remains an on-going requirement of the general and specialised radiologist. The anatomy of the neck and face-in particular, vascular, pharyngo-oesophageal, laryngo-tracheal and neural anatomy-demands a more specialised and selective management plan which incorporates specific imaging techniques. The current treatment protocol of injuries of the neck and face has seen a radical shift away from expectant surgical exploration in the management of such injuries, largely as a result of advances in the diagnostic capabilities of multi-detector computed tomography angiography (MDCTA), which is now the first-line imaging modality of choice in such cases. This review aims to highlight ballistic considerations, differing imaging modalities, including MDCTA, that might be utilised to assist in the accurate assessment of these injuries as well as the specific radiological features and patterns of specific organ-system injuries that should be considered and communicated to surgical and critical care teams. TEACHING POINTS : • MDCTA is the first-line imaging modality in penetrating trauma of the neck and, often, of the face • The inherent deformability of a bullet is a significant factor in its tissue-damaging capabilities • MDCTA can provide accurate assessment of visceral injury of the neck as well as vascular injury • Penetrating facial trauma warrants radiological assessment of key adjacent anatomical structures • In-driven fragments of native bone potentiate tissue damage in projectile penetrating facial trauma.
Introduction to clinical and laboratory (small-animal) image registration and fusion.
Zanzonico, Pat B; Nehmeh, Sadek A
2006-01-01
Imaging has long been a vital component of clinical medicine and, increasingly, of biomedical research in small-animals. Clinical and laboratory imaging modalities can be divided into two general categories, structural (or anatomical) and functional (or physiological). The latter, in particular, has spawned what has come to be known as "molecular imaging". Image registration and fusion have rapidly emerged as invaluable components of both clinical and small-animal imaging and has lead to the development and marketing of a variety of multi-modality, e.g. PET-CT, devices which provide registered and fused three-dimensional image sets. This paper briefly reviews the basics of image registration and fusion and available clinical and small-animal multi-modality instrumentation.
The role of molecular imaging in diagnosis of deep vein thrombosis
Houshmand, Sina; Salavati, Ali; Hess, Søren; Ravina, Mudalsha; Alavi, Abass
2014-01-01
Venous thromboembolism (VTE) mostly presenting as deep venous thrombosis (DVT) and pulmonary embolism (PE) affects up to 600,000 individuals in United States each year. Clinical symptoms of VTE are nonspecific and sometimes misleading. Additionally, side effects of available treatment plans for DVT are significant. Therefore, medical imaging plays a crucial role in proper diagnosis and avoidance from over/under diagnosis, which exposes the patient to risk. In addition to conventional structural imaging modalities, such as ultrasonography and computed tomography, molecular imaging with different tracers have been studied for diagnosis of DVT. In this review we will discuss currently available and newly evolving targets and tracers for detection of DVT using molecular imaging methods. PMID:25143860
Utilization of a multimedia PACS workstation for surgical planning of epilepsy
NASA Astrophysics Data System (ADS)
Soo Hoo, Kent; Wong, Stephen T.; Hawkins, Randall A.; Knowlton, Robert C.; Laxer, Kenneth D.; Rowley, Howard A.
1997-05-01
Surgical treatment of temporal lobe epilepsy requires the localization of the epileptogenic zone for surgical resection. Currently, clinicians utilize electroencephalography, various neuroimaging modalities, and psychological tests together to determine the location of this zone. We investigate how a multimedia neuroimaging workstation built on top of the UCSF Picture Archiving and Communication System can be used to aid surgical planning of epilepsy and related brain diseases. This usage demonstrates the ability of the workstation to retrieve image and textural data from PACS and other image sources, register multimodality images, visualize and render 3D data sets, analyze images, generate new image and text data from the analysis, and organize all data in a relational database management system.
[Guidelines for wise utilization of knee imaging].
Finestone, Aharon S; Eshed, Iris; Freedman, Yehuda; Beer, Yiftah; Bar-Sever, Zvi; Kots, Yavvgeni; Adar, Eliyahu; Mann, Gideon
2012-02-01
The knee is a complex structure afflicted with diverse pathologies. Correct management of knee complaints demands wise utilization of imaging modalities, considering their accuracy in the specific clinical situation, the patient's safety and availability and financial issues. Some of these considerations are universal, while others are local, depending on medical and insurance systems. There is controversy and unclearness regarding the best imaging modality in different clinical situations. To develop clinical guidelines for utilizing knee imaging. Leading physicians in specialties associated with knee disease and imaging were invited to participate in a panel on the guidelines. Controversies were settled in the main panel or in sub-panels. The panel agreed on the principles in choosing from the various modalities, primarily medical accuracy, followed by patient safety, availability and cost. There was agreement that the physician is responsible to choose the most appropriate diagnostic tool, consulting, when necessary, on the advantages, limitations and risks of the various imaging modalities. A comprehensive table was compiled with the importance of the different imaging modalities in various clinical situations. For the first time, Israeli guidelines on wise utilization of knee imaging are presented. They take into consideration the clinical situations and also availability and financial issues specific to Israel. These guidelines will serve physicians of several disciplines and medical insurers to improve patient management efficiently.
Cross-sectional imaging in cancers of the head and neck: how we review and report.
Tshering Vogel, Dechen Wangmo; Thoeny, Harriet C
2016-08-03
Cancer of the head and neck is the sixth most frequent cancer worldwide and associated with significant morbidity. The head and neck area is complex and divided into various anatomical and functional subunits. Imaging is performed by cross-sectional modalities like computed tomography, magnetic resonance imaging, ultrasound and positron emission tomography-computed tomography, usually with fluorine-18-deoxy-D-glucose. Therefore, knowledge of the cross-sectional anatomy is very important. This article seeks to give an overview of the various cross-sectional imaging modalities used in the evaluation of head and neck cancers. It briefly describes the anatomy of the extracranial head and neck and the role of imaging as well as the imaging appearance of tumours and their extension to lymph nodes, bone and surrounding tissue. The advantages and disadvantages as well as basic requirements of the various modalities are described along with ways of optimizing imaging quality. A general guideline for prescription of the various modalities is given. Pitfalls are many and varied and can be due to anatomical variation, due to pathology which can be misinterpreted and technical due to peculiarities of the various imaging modalities. Knowledge of these pitfalls can help to avoid misinterpretation. The important points to be mentioned while reporting are also enumerated.
Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann
2018-04-01
Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Luk, Alex T.; Lin, Yuting; Grimmond, Brian; Sood, Anup; Uzgiris, Egidijus E.; Nalcioglu, Orhan; Gulsen, Gultekin
2013-03-01
Since diffuse optical tomography (DOT) is a low spatial resolution modality, it is desirable to validate its quantitative accuracy with another well-established imaging modality, such as magnetic resonance imaging (MRI). In this work, we have used a polymer based bi-functional MRI-optical contrast agent (Gd-DTPA-polylysine-IR800) in collaboration with GE Global Research. This multi-modality contrast agent provided not only co-localization but also the same kinetics, to cross-validate two imaging modalities. Bi-functional agents are injected to the rats and pharmacokinetics at the bladder are recovered using both optical and MR imaging. DOT results are validated using MRI results as "gold standard"
Principles of Simultaneous PET/MR Imaging.
Catana, Ciprian
2017-05-01
Combined PET/MR imaging scanners capable of acquiring simultaneously the complementary information provided by the 2 imaging modalities are now available for human use. After addressing the hardware challenges for integrating the 2 imaging modalities, most of the efforts in the field have focused on developing MR-based attenuation correction methods for neurologic and whole-body applications, implementing approaches for improving one modality by using the data provided by the other and exploring research and clinical applications that could benefit from the synergistic use of the multimodal data. Copyright © 2017 Elsevier Inc. All rights reserved.
An Incidental Renal Oncocytoma: 18F-Choline PET/MRI
Mallia, Andrew; Bashir, Usman; Stirling, James; Wolfe, Konrad; Goh, Vicky; Cook, Gary
2016-01-01
PET/MRI is a new hybrid imaging modality and has the potential to become a powerful imaging tool. It is currently one of the most active areas of research in diagnostic imaging. The characterisation of an incidental renal lesion can be difficult. In particular, the differentiation of an oncocytoma from other solid renal lesions such as renal cell carcinoma (RCC) represents a diagnostic challenge. We describe the detection of an incidental renal oncocytoma in a 79-year gentleman who underwent a re-staging 18F-Choline PET/MRI following a rise in PSA values (4.07, nadir 1.3).
Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel
2017-07-01
To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)-associated retinopathy. Twelve patients with STGD (aged 9-52 years) and eight with RPGR-associated retinopathy (aged 11-31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions.
Tanna, Preena; Kasilian, Melissa; Strauss, Rupert; Tee, James; Kalitzeos, Angelos; Tarima, Sergey; Visotcky, Alexis; Dubra, Alfredo; Carroll, Joseph; Michaelides, Michel
2017-01-01
Purpose To assess reliability and repeatability of cone density measurements by using confocal and (nonconfocal) split-detector adaptive optics scanning light ophthalmoscopy (AOSLO) imaging. It will be determined whether cone density values are significantly different between modalities in Stargardt disease (STGD) and retinitis pigmentosa GTPase regulator (RPGR)–associated retinopathy. Methods Twelve patients with STGD (aged 9–52 years) and eight with RPGR-associated retinopathy (aged 11–31 years) were imaged using both confocal and split-detector AOSLO simultaneously. Four graders manually identified cone locations in each image that were used to calculate local densities. Each imaging modality was evaluated independently. The data set consisted of 1584 assessments of 99 STGD images (each image in two modalities and four graders who graded each image twice) and 928 RPGR assessments of 58 images (each image in two modalities and four graders who graded each image twice). Results For STGD assessments the reliability for confocal and split-detector AOSLO was 67.9% and 95.9%, respectively, and the repeatability was 71.2% and 97.3%, respectively. The differences in the measured cone density values between modalities were statistically significant for one grader. For RPGR assessments the reliability for confocal and split-detector AOSLO was 22.1% and 88.5%, respectively, and repeatability was 63.2% and 94.5%, respectively. The differences in cone density between modalities were statistically significant for all graders. Conclusions Split-detector AOSLO greatly improved the reliability and repeatability of cone density measurements in both disorders and will be valuable for natural history studies and clinical trials using AOSLO. However, it appears that these indices may be disease dependent, implying the need for similar investigations in other conditions. PMID:28738413
Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections
Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.
2010-01-01
18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505
Psaltis, Peter J.; Simari, Robert D.
2012-01-01
Despite preclinical promise, the progress of cell-based therapy to clinical cardiovascular practice has been slowed by several challenges and uncertainties that have been highlighted by the conflicting results of human trials. Most telling has been the revelation that current strategies fall short of achieving sufficient retention and engraftment of cells to meet the ambitious objective of myocardial regeneration. This has sparked novel research into the refinement of cell biology and delivery to overcome these shortcomings. Within this context, molecular imaging has emerged as a valuable tool for providing noninvasive surveillance of cell fate in vivo. Direct and indirect labelling of cells can be coupled with clinically relevant imaging modalities, such as radionuclide single photon emission computed tomography and positron emission tomography, and magnetic resonance imaging, to assess their short- and long-term distributions, along with their viability, proliferation and functional interaction with the host myocardium. This review details the strengths and limitations of the different cell labelling and imaging techniques and their potential application to the clinical realm. We also consider the broader, multifaceted utility of imaging throughout the cell therapy process, providing a discussion of its considerable value during cell delivery and its importance during the evaluation of cardiac outcomes in clinical studies. PMID:21901381
Joint Probability Models of Radiology Images and Clinical Annotations
ERIC Educational Resources Information Center
Arnold, Corey Wells
2009-01-01
Radiology data, in the form of images and reports, is growing at a high rate due to the introduction of new imaging modalities, new uses of existing modalities, and the growing importance of objective image information in the diagnosis and treatment of patients. This increase has resulted in an enormous set of image data that is richly annotated…
NASA Astrophysics Data System (ADS)
Mehrmohammadi, Mohammad; Alizad, Azra; Kinnick, Randall R.; Davis, Brian J.; Fatemi, Mostafa
2013-03-01
Effective brachytherapy procedures require precise placement of radioactive seeds in the prostate. Currently, transrectal ultrasound (TRUS) imaging is one of the main intraoperative imaging modalities to assist physicians in placement of brachytherapy seeds. However, the seed detection rate with TRUS is poor mainly because ultrasound imaging is highly sensitive to variations in seed orientation. The purpose of this study is to investigate the abilities of a new acoustic radiation force imaging modality, vibro-acoustography (VA), equipped with a 1.75D array transducer and implemented on a customized clinical ultrasound scanner, to image and localize brachytherapy seeds in prostatic tissue. To perform experiments, excised cadaver prostate specimens were implanted with dummy brachytherapy seeds, and embedded in tissue mimicking gel to simulate the properties of the surrounding soft tissues. The samples were scanned using the VA system and the resulting VA signals were used to reconstruct VA images at several depths inside the tissue. To further evaluate the performance of VA in detecting seeds, X-ray computed tomography (CT) images of the same tissue sample, were obtained and used as a gold-standard to compare the number of seeds detected by the two methods. Our results indicate that VA is capable of imaging of brachytherapy seeds with accuracy and high contrast, and can detect a large percentage of the seeds implanted within the tissue samples.
Lung ultrasound for the diagnosis of community-acquired pneumonia in children.
Stadler, Jacob A M; Andronikou, Savvas; Zar, Heather J
2017-10-01
Ultrasound (US) has been proposed as an alternative first-line imaging modality to diagnose community-acquired pneumonia in children. Lung US has the potential benefits over chest radiography of being radiation free, subject to fewer regulatory requirements, relatively lower cost and with immediate bedside availability of results. However, the uptake of lung US into clinical practice has been slow and it is not yet included in clinical guidelines for community-acquired pneumonia in children. The aim of this review is to give an overview of the equipment and techniques used to perform lung US in children with suspected pneumonia and the interpretation of relevant sonographic findings. We also summarise the current evidence of diagnostic accuracy and reliability of lung US compared to alternative imaging modalities in children and critically consider the strengths and limitations of lung US for use in children presenting with suspected community-acquired pneumonia.
Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David
2013-07-01
Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment. Electronic supplementary information (ESI) available: Synthesis and functionalization of NPs. Fig. S1, TEM data of NPs before labeling. Fig. S2, magnetization curve of iron-oxide NPs. Fig. S3, radioactivity measurements for 11C-labeled NPs. Fig. S4, TGA data of iron-oxide NPs. Fig. S5-S8, Radio-TLC chromatograms of 11C-labeled NPs. Fig. S9, radio-HPLC chromatograms of supernatant solutions from washing 11C-labeled NPs to check for impurities. See DOI: 10.1039/c3nr02519e
Synchrotron radiation imaging is a powerful tool to image brain microvasculature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan
2014-03-15
Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. Inmore » the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.« less
Synchrotron radiation imaging is a powerful tool to image brain microvasculature.
Zhang, Mengqi; Peng, Guanyun; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo
2014-03-01
Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.
Contrast-enhanced photoacoustic tomography of human joints
NASA Astrophysics Data System (ADS)
Tian, Chao; Keswani, Rahul K.; Gandikota, Girish; Rosania, Gus R.; Wang, Xueding
2016-03-01
Photoacoustic tomography (PAT) provides a unique tool to diagnose inflammatory arthritis. However, the specificity and sensitivity of PAT based on endogenous contrasts is limited. The development of contrast enhanced PAT imaging modalities in combination with small molecule contrast agents could lead to improvements in diagnosis and treatment of joint disease. Accordingly, we adapted and tested a PAT clinical imaging system for imaging the human joints, in combination with a novel PAT contrast agent derived from an FDA-approved small molecule drug. Imaging results based on a photoacoustic and ultrasound (PA/US) dual-modality system revealed that this contrast-enhanced PAT imaging system may offer additional information beyond single-modality PA or US imaging system, for the imaging, diagnosis and assessment of inflammatory arthritis.
Neonatal brain resting-state functional connectivity imaging modalities.
Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza
2018-06-01
Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.
Viscous optical clearing agent for in vivo optical imaging
NASA Astrophysics Data System (ADS)
Deng, Zijian; Jing, Lijia; Wu, Ning; lv, Pengyu; Jiang, Xiaoyun; Ren, Qiushi; Li, Changhui
2014-07-01
By allowing more photons to reach deeper tissue, the optical clearing agent (OCA) has gained increasing attention in various optical imaging modalities. However, commonly used OCAs have high fluidity, limiting their applications in in vivo studies with oblique, uneven, or moving surfaces. In this work, we reported an OCA with high viscosity. We measured the properties of this viscous OCA, and tested its successful performances in the imaging of a living animal's skin with two optical imaging modalities: photoacoustic microscopy and optical coherence tomography. Our results demonstrated that the viscous OCA has a great potential in the study of different turbid tissues using various optical imaging modalities.
Computational method for multi-modal microscopy based on transport of intensity equation
NASA Astrophysics Data System (ADS)
Li, Jiaji; Chen, Qian; Sun, Jiasong; Zhang, Jialin; Zuo, Chao
2017-02-01
In this paper, we develop the requisite theory to describe a hybrid virtual-physical multi-modal imaging system which yields quantitative phase, Zernike phase contrast, differential interference contrast (DIC), and light field moment imaging simultaneously based on transport of intensity equation(TIE). We then give the experimental demonstration of these ideas by time-lapse imaging of live HeLa cell mitosis. Experimental results verify that a tunable lens based TIE system, combined with the appropriate post-processing algorithm, can achieve a variety of promising imaging modalities in parallel with the quantitative phase images for the dynamic study of cellular processes.
Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling
2015-11-01
The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-Modality Imaging in the Evaluation and Treatment of Mitral Regurgitation.
Bouchard, Marc-André; Côté-Laroche, Claudia; Beaudoin, Jonathan
2017-10-13
Mitral regurgitation (MR) is frequent and associated with increased mortality and morbidity when severe. It may be caused by intrinsic valvular disease (primary MR) or ventricular deformation (secondary MR). Imaging has a critical role to document the severity, mechanism, and impact of MR on heart function as selected patients with MR may benefit from surgery whereas other will not. In patients planned for a surgical intervention, imaging is also important to select candidates for mitral valve (MV) repair over replacement and to predict surgical success. Although standard transthoracic echocardiography is the first-line modality to evaluate MR, newer imaging modalities like three-dimensional (3D) transesophageal echocardiography, stress echocardiography, cardiac magnetic resonance (CMR), and computed tomography (CT) are emerging and complementary tools for MR assessment. While some of these modalities can provide insight into MR severity, others will help to determine its mechanism. Understanding the advantages and limitations of each imaging modality is important to appreciate their respective role for MR assessment and help to resolve eventual discrepancies between different diagnostic methods. With the increasing use of transcatheter mitral procedures (repair or replacement) for high-surgical-risk patients, multimodality imaging has now become even more important to determine eligibility, preinterventional planning, and periprocedural guidance.
Multimodal Diffuse Optical Imaging
NASA Astrophysics Data System (ADS)
Intes, Xavier; Venugopal, Vivek; Chen, Jin; Azar, Fred S.
Diffuse optical imaging, particularly diffuse optical tomography (DOT), is an emerging clinical modality capable of providing unique functional information, at a relatively low cost, and with nonionizing radiation. Multimodal diffuse optical imaging has enabled a synergistic combination of functional and anatomical information: the quality of DOT reconstructions has been significantly improved by incorporating the structural information derived by the combined anatomical modality. In this chapter, we will review the basic principles of diffuse optical imaging, including instrumentation and reconstruction algorithm design. We will also discuss the approaches for multimodal imaging strategies that integrate DOI with clinically established modalities. The merit of the multimodal imaging approaches is demonstrated in the context of optical mammography, but the techniques described herein can be translated to other clinical scenarios such as brain functional imaging or muscle functional imaging.
Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography
Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael
2012-01-01
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108
Photoacoustic tomography: applications for atherosclerosis imaging
NASA Astrophysics Data System (ADS)
Sangha, Gurneet S.; Goergen, Craig J.
2016-08-01
Atherosclerosis is a debilitating condition that increases a patient’s risk for intermittent claudication, limb amputation, myocardial infarction, and stroke, thereby causing approximately 50% of deaths in the western world. Current diagnostic imaging techniques, such as ultrasound, digital subtraction angiography, computed tomography angiography, magnetic resonance angiography, and optical imaging remain suboptimal for detecting development of early stage plaques. This is largely due to the lack of compositional information, penetration depth, and/or clinical efficiency of these traditional imaging techniques. Photoacoustic imaging has emerged as a promising modality that could address some of these limitations to improve the diagnosis and characterization of atherosclerosis-related diseases. Photoacoustic imaging uses near-infrared light to induce acoustic waves, which can be used to recreate compositional images of tissue. Recent developments in photoacoustic techniques show its potential in noninvasively characterizing atherosclerotic plaques deeper than traditional optical imaging approaches. In this review, we discuss the significance and development of atherosclerosis, current and novel clinical diagnostic methods, and recent works that highlight the potential of photoacoustic imaging for both experimental and clinical studies of atherosclerosis.
Imaging modalities for the in vivo surveillance of mesenchymal stromal cells.
Hossain, Mohammad Ayaz; Chowdhury, Tina; Bagul, Atul
2015-11-01
Bone marrow stromal cells exist as mesenchymal stromal cells (MSCs) and have the capacity to differentiate into multiple tissue types when subjected to appropriate culture conditions. This property of MSCs creates therapeutic opportunities in regenerative medicine for the treatment of damage to neural, cardiac and musculoskeletal tissues or acute kidney injury. The prerequisite for successful cell therapy is delivery of cells to the target tissue. Assessment of therapeutic outcomes utilize traditional methods to examine cell function of MSC populations involving routine biochemical or histological analysis for cell proliferation, protein synthesis and gene expression. However, these methods do not provide sufficient spatial and temporal information. In vivo surveillance of MSC migration to the site of interest can be performed through a variety of imaging modalities such as the use of radiolabelling, fluc protein expression bioluminescence imaging and paramagnetic nanoparticle magnetic resonance imaging. This review will outline the current methods of in vivo surveillance of exogenously administered MSCs in regenerative medicine while addressing potential technological developments. Furthermore, nanoparticles and microparticles for cellular labelling have shown that migration of MSCs can be spatially and temporally monitored. In vivo surveillance therefore permits time-stratified assessment in animal models without disruption of the target organ. In vivo tracking of MSCs is non-invasive, repeatable and non-toxic. Despite the excitement that nanoparticles for tracking MSCs offer, delivery methods are difficult because of the challenges with imaging three-dimensional systems. The current advances and growth in MSC research, is likely to provide a wealth of evidence overcoming these issues. Copyright © 2014 John Wiley & Sons, Ltd.
Disrupting the old order of imaging.
Jha, Saurabh; Lexa, Frank J
2013-06-01
The purpose of this article is to expand on the economic concepts of creative destruction and disruptive innovation to imagine scenarios in which diagnostic imaging modalities and certain imaging paradigms can be rendered obsolete. Potential disrupters of imaging are novel drugs, clinical trials, accurate biomarkers, and government regulations. A taxonomic schema can be used to better predict the decline of certain imaging modalities.
The taste-visual cross-modal Stroop effect: An event-related brain potential study.
Xiao, X; Dupuis-Roy, N; Yang, X L; Qiu, J F; Zhang, Q L
2014-03-28
Event-related potentials (ERPs) were recorded to explore, for the first time, the electrophysiological correlates of the taste-visual cross-modal Stroop effect. Eighteen healthy participants were presented with a taste stimulus and a food image, and asked to categorize the image as "sweet" or "sour" by pressing the relevant button as quickly as possible. Accurate categorization of the image was faster when it was presented with a congruent taste stimulus (e.g., sour taste/image of lemon) than with an incongruent one (e.g., sour taste/image of ice cream). ERP analyses revealed a negative difference component (ND430-620) between 430 and 620ms in the taste-visual cross-modal Stroop interference. Dipole source analysis of the difference wave (incongruent minus congruent) indicated that two generators localized in the prefrontal cortex and the parahippocampal gyrus contributed to this taste-visual cross-modal Stroop effect. This result suggests that the prefrontal cortex is associated with the process of conflict control in the taste-visual cross-modal Stroop effect. Also, we speculate that the parahippocampal gyrus is associated with the process of discordant information in the taste-visual cross-modal Stroop effect. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Hoh, Daniel J; Liu, Charles Y; Chen, Joseph C T; Pagnini, Paul G; Yu, Cheng; Wang, Michael Y; Apuzzo, Michael L J
2007-12-01
Radiosurgery is fundamentally the harnessing of energy and delivering it to a focal target for a therapeutic effect. The evolution of radiosurgical technology and practice has served toward refining methodologies for better conformal energy delivery. In the past, this has resulted in developing strategies for improved beam generation and delivery. Ultimately, however, our current instrumentation and treatment modalities may be approaching a practical limit with regard to further optimizing energy containment. In looking forward, several strategies are emerging to circumvent these limitations and improve conformal radiosurgery. Refinement of imaging techniques through functional imaging and nanoprobes for cancer detection may benefit lesion localization and targeting. Methods for enhancing the biological effect while reducing radiation-induced changes are being examined through dose fractionation schedules. Radiosensitizers and photosensitizers are being investigated as agents for modulating the biological response of tissues to radiation and alternative energy forms. Discovery of new energy modalities is being pursued through development of microplanar beams, free electron lasers, and high-intensity focused ultrasound. The exploration of these future possibilities will provide the tools for radiosurgical treatment of a broader spectrum of diseases for the next generation.
Chang, Melinda Y; Velez, Federico G; Demer, Joseph L; Bonelli, Laura; Quiros, Peter A; Arnold, Anthony C; Sadun, Alfredo A; Pineles, Stacy L
2017-12-01
To identify the most accurate diagnostic imaging modality for classifying pediatric eyes as papilledema (PE) or pseudopapilledema (PPE). Prospective observational study. Nineteen children between the ages of 5 and 18 years were recruited. Five children (10 eyes) with PE, 11 children (19 eyes) with PPE owing to suspected buried optic disc drusen (ODD), and 3 children (6 eyes) with PPE owing to superficial ODD were included. All subjects underwent imaging with B-scan ultrasonography, fundus photography, autofluorescence, fluorescein angiography (FA), optical coherence tomography (OCT) of the retinal nerve fiber layer (RNFL), and volumetric OCT scans through the optic nerve head with standard spectral-domain (SD OCT) and enhanced depth imaging (EDI OCT) settings. Images were read by 3 masked neuro-ophthalmologists, and the final image interpretation was based on 2 of 3 reads. Image interpretations were compared with clinical diagnosis to calculate accuracy and misinterpretation rates of each imaging modality. Accuracy of each imaging technique for classifying eyes as PE or PPE, and misinterpretation rates of each imaging modality for PE and PPE. Fluorescein angiography had the highest accuracy (97%, 34 of 35 eyes, 95% confidence interval 92%-100%) for classifying an eye as PE or PPE. FA of eyes with PE showed leakage of the optic nerve, whereas eyes with suspected buried ODD demonstrated no hyperfluorescence, and eyes with superficial ODD showed nodular staining. Other modalities had substantial likelihood (30%-70%) of misinterpretation of PE as PPE. The best imaging technique for correctly classifying pediatric eyes as PPE or PE is FA. Other imaging modalities, if used in isolation, are more likely to lead to misinterpretation of PE as PPE, which could potentially result in failure to identify a life-threatening disorder causing elevated intracranial pressure and papilledema. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph S; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried
2010-01-01
Analogous to the evolution of biological sensor-systems, the progress in "medical sensor-systems", i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given.
NASA Astrophysics Data System (ADS)
Wang, Yan; Ji, Lei; Zhang, Bingbo; Yin, Peihao; Qiu, Yanyan; Song, Daqian; Zhou, Juying; Li, Qi
2013-05-01
Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd3+) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd3+ with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s-1 per mM Gd3+, respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s-1 per mM Gd3+, respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd3+. In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd3+. All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd3+ present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.
Cross-Modal Retrieval With CNN Visual Features: A New Baseline.
Wei, Yunchao; Zhao, Yao; Lu, Canyi; Wei, Shikui; Liu, Luoqi; Zhu, Zhenfeng; Yan, Shuicheng
2017-02-01
Recently, convolutional neural network (CNN) visual features have demonstrated their powerful ability as a universal representation for various recognition tasks. In this paper, cross-modal retrieval with CNN visual features is implemented with several classic methods. Specifically, off-the-shelf CNN visual features are extracted from the CNN model, which is pretrained on ImageNet with more than one million images from 1000 object categories, as a generic image representation to tackle cross-modal retrieval. To further enhance the representational ability of CNN visual features, based on the pretrained CNN model on ImageNet, a fine-tuning step is performed by using the open source Caffe CNN library for each target data set. Besides, we propose a deep semantic matching method to address the cross-modal retrieval problem with respect to samples which are annotated with one or multiple labels. Extensive experiments on five popular publicly available data sets well demonstrate the superiority of CNN visual features for cross-modal retrieval.
Cerenkov imaging - a new modality for molecular imaging
Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Beattie, Bradley J; Grimm, Jan
2012-01-01
Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipment to visualize clinical diagnostic (all PET radioisotopes) and many therapeutic radionuclides. The amount of light detected in CLI applications is significantly lower than other that in other optical imaging techniques such as bioluminescence and fluorescence. However, significant advantages include the use of approved radiotracers and lack of an incident light source, resulting in high signal to background ratios. As well, multiple subjects may be imaged concurrently (up to 5 in common bioluminescent equipment), conferring both cost and time benefits. This review summarizes the field of Cerenkov luminescence imaging to date. Applications of CLI discussed include intraoperative radionuclide-guided surgery, monitoring of therapeutic efficacy, tomographic optical imaging capabilities, and the ability to perform multiplexed imaging using fluorophores excited by the Cerenkov radiation. While technical challenges still exist, Cerenkov imaging has materialized as an important molecular imaging modality. PMID:23133811
Optimal wavelet transform for the detection of microaneurysms in retina photographs.
Quellec, Gwénolé; Lamard, Mathieu; Josselin, Pierre Marie; Cazuguel, Guy; Cochener, Béatrice; Roux, Christian
2008-09-01
In this paper, we propose an automatic method to detect microaneurysms in retina photographs. Microaneurysms are the most frequent and usually the first lesions to appear as a consequence of diabetic retinopathy. So, their detection is necessary for both screening the pathology and follow up (progression measurement). Automating this task, which is currently performed manually, would bring more objectivity and reproducibility. We propose to detect them by locally matching a lesion template in subbands of wavelet transformed images. To improve the method performance, we have searched for the best adapted wavelet within the lifting scheme framework. The optimization process is based on a genetic algorithm followed by Powell's direction set descent. Results are evaluated on 120 retinal images analyzed by an expert and the optimal wavelet is compared to different conventional mother wavelets. These images are of three different modalities: there are color photographs, green filtered photographs, and angiographs. Depending on the imaging modality, microaneurysms were detected with a sensitivity of respectively 89.62%, 90.24%, and 93.74% and a positive predictive value of respectively 89.50%, 89.75%, and 91.67%, which is better than previously published methods.
Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca
2012-10-15
Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less
Chen, Cheng; Wang, Wei; Ozolek, John A.; Rohde, Gustavo K.
2013-01-01
We describe a new supervised learning-based template matching approach for segmenting cell nuclei from microscopy images. The method uses examples selected by a user for building a statistical model which captures the texture and shape variations of the nuclear structures from a given dataset to be segmented. Segmentation of subsequent, unlabeled, images is then performed by finding the model instance that best matches (in the normalized cross correlation sense) local neighborhood in the input image. We demonstrate the application of our method to segmenting nuclei from a variety of imaging modalities, and quantitatively compare our results to several other methods. Quantitative results using both simulated and real image data show that, while certain methods may work well for certain imaging modalities, our software is able to obtain high accuracy across several imaging modalities studied. Results also demonstrate that, relative to several existing methods, the template-based method we propose presents increased robustness in the sense of better handling variations in illumination, variations in texture from different imaging modalities, providing more smooth and accurate segmentation borders, as well as handling better cluttered nuclei. PMID:23568787
Clinical applications of computerized thermography
NASA Technical Reports Server (NTRS)
Anbar, Michael
1988-01-01
Computerized or digital, thermography is a rapidly growing diagnostic imaging modality. It has superseded contact thermography and analog imaging thermography which do not allow effective quantization. Medical applications of digital thermography can be classified in two groups: static and dynamic imaging. They can also be classified into macro thermography (resolution greater than 1 mm) and micro thermography (resolution less than 100 microns). Both modalities allow a thermal resolution of 0.1 C. The diagnostic power of images produced by any of these modalities can be augmented by the use of digital image enhancement and image recognition procedures. Computerized thermography has been applied in neurology, cardiovascular and plastic surgery, rehabilitation and sports medicine, psychiatry, dermatology and ophthalmology. Examples of these applications are shown and their scope and limitations are discussed.
Molecular-genetic imaging based on reporter gene expression.
Kang, Joo Hyun; Chung, June-Key
2008-06-01
Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation improvements, the identification of novel targets and genes, and imaging probe developments suggest that molecular-genetic imaging is likely to play an increasingly important role in the diagnosis and therapy of cancer.
SU-E-P-10: Imaging in the Cardiac Catheterization Lab - Technologies and Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K
2014-06-01
Purpose: Diagnosis and treatment of cardiovascular disease in the cardiac catheterization laboratory is often aided by a multitude of imaging technologies. The purpose of this work is to highlight the contributions to patient care offered by the various imaging systems used during cardiovascular interventional procedures. Methods: Imaging technologies used in the cardiac catheterization lab were characterized by their fundamental technology and by the clinical applications for which they are used. Whether the modality is external to the patient, intravascular, or intracavity was specified. Specific clinical procedures for which multiple modalities are routinely used will be highlighted. Results: X-ray imaging modalitiesmore » include fluoroscopy/angiography and angiography CT. Ultrasound imaging is performed with external, trans-esophageal echocardiography (TEE), and intravascular (IVUS) transducers. Intravascular infrared optical coherence tomography (IVOCT) is used to assess vessel endothelium. Relatively large (>0.5 mm) anatomical structures are imaged with x-ray and ultrasound. IVUS and IVOCT provide high resolution images of vessel walls. Cardiac CT and MRI images are used to plan complex cardiovascular interventions. Advanced applications are used to spatially and temporally merge images from different technologies. Diagnosis and treatment of coronary artery disease frequently utilizes angiography and intra-vascular imaging, and treatment of complex structural heart conditions routinely includes use of multiple imaging modalities. Conclusion: There are several imaging modalities which are routinely used in the cardiac catheterization laboratory to diagnose and treat both coronary artery and structural heart disease. Multiple modalities are frequently used to enhance the quality and safety of procedures. The cardiac catheterization laboratory includes many opportunities for medical physicists to contribute substantially toward advancing patient care.« less
Optoacoustic imaging in five dimensions
NASA Astrophysics Data System (ADS)
Deán-Ben, X. L.; Gottschalk, Sven; Fehm, Thomas F.; Razansky, Daniel
2015-03-01
We report on an optoacoustic imaging system capable of acquiring volumetric multispectral optoacoustic data in real time. The system is based on simultaneous acquisition of optoacoustic signals from 256 different tomographic projections by means of a spherical matrix array. Thereby, volumetric reconstructions can be done at high frame rate, only limited by the pulse repetition rate of the laser. The developed tomographic approach presents important advantages over previously reported systems that use scanning for attaining volumetric optoacoustic data. First, dynamic processes, such as the biodistribution of optical biomarkers, can be monitored in the entire volume of interest. Second, out-of-plane and motion artifacts that could degrade the image quality when imaging living specimens can be avoided. Finally, real-time 3D performance can obviously save time required for experimental and clinical observations. The feasibility of optoacoustic imaging in five dimensions, i.e. real time acquisition of volumetric datasets at multiple wavelengths, is reported. In this way, volumetric images of spectrally resolved chromophores are rendered in real time, thus offering an unparallel imaging performance among the current bio-imaging modalities. This performance is subsequently showcased by video-rate visualization of in vivo hemodynamic changes in mouse brain and handheld visualization of blood oxygenation in deep human vessels. The newly discovered capacities open new prospects for translating the optoacoustic technology into highly performing imaging modality for biomedical research and clinical practice with multiple applications envisioned, from cardiovascular and cancer diagnostics to neuroimaging and ophthalmology.
What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management?
Wang, Xia; Oo, Win Min; Linklater, James M
2018-05-01
While OA is predominantly diagnosed on the basis of clinical criteria, imaging may aid with differential diagnosis in clinically suspected cases. While plain radiographs are traditionally the first choice of imaging modality, MRI and US also have a valuable role in assessing multiple pathologic features of OA, although each has particular advantages and disadvantages. Although modern imaging modalities provide the capability to detect a wide range of osseous and soft tissue (cartilage, menisci, ligaments, synovitis, effusion) OA-related structural damage, this extra information has not yet favourably influenced the clinical decision-making and management process. Imaging is recommended if there are unexpected rapid changes in clinical outcomes to determine whether it relates to disease severity or an additional diagnosis. On developing specific treatments, imaging serves as a sensitive tool to measure treatment response. This narrative review aims to describe the role of imaging modalities to aid in OA diagnosis, disease progression and management. It also provides insight into the use of these modalities in finding targeted treatment strategies in clinical research.
Li, Deling; Zhang, Jingjing; Chi, Chongwei; Xiao, Xiong; Wang, Junmei; Lang, Lixin; Ali, Iqbal; Niu, Gang; Zhang, Liwei; Tian, Jie; Ji, Nan; Zhu, Zhaohui; Chen, Xiaoyuan
2018-01-01
Purpose : Despite the use of fluorescence-guided surgery (FGS), maximum safe resection of glioblastoma multiforme (GBM) remains a major challenge. It has restricted surgeons between preoperative diagnosis and intraoperative treatment. Currently, an integrated approach combining preoperative assessment with intraoperative guidance would be a significant step in this direction. Experimental design : We developed a novel 68 Ga-IRDye800CW-BBN PET/near-infrared fluorescence (NIRF) dual-modality imaging probe targeting gastrin-releasing peptide receptor (GRPR) in GBM. The preclinical in vivo tumor imaging and FGS were first evaluated using an orthotopic U87MG glioma xenograft model. Subsequently, the first-in-human prospective cohort study (NCT 02910804) of GBM patients were conducted with preoperative PET assessment and intraoperative FGS. Results : The orthotopic tumors in mice could be precisely resected using the near-infrared intraoperative system. Translational cohort research in 14 GBM patients demonstrated an excellent correlation between preoperative positive PET uptake and intraoperative NIRF signal. The tumor fluorescence signals were significantly higher than those from adjacent brain tissue in vivo and ex vivo (p < 0.0001). Compared with pathology, the sensitivity and specificity of fluorescence using 42 loci of fluorescence-guided sampling were 93.9% (95% CI 79.8%-99.3%) and 100% (95% CI 66.4%-100%), respectively. The tracer was safe and the extent of resection was satisfactory without newly developed neurologic deficits. Progression-free survival (PFS) at 6 months was 80% and two newly diagnosed patients achieved long PFS. Conclusions: This initial study has demonstrated that the novel dual-modality imaging technique is feasible for integrated pre- and intraoperative targeted imaging via the same molecular receptor and improved intraoperative GBM visualization and maximum safe resection.
NASA Astrophysics Data System (ADS)
Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.
2016-07-01
Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.
Management of disorders of the posterior pelvic floor.
Berman, Loren; Aversa, John; Abir, Farshad; Longo, Walter E.
2005-01-01
INTRODUCTION: Constipation is a relatively common problem affecting 15 percent of adults in the Western world, and over half of these cases are related to pelvic floor disorders. This article reviews the clinical presentation and diagnostic approach to posterior pelvic floor disorders, including how to image and treat them. METHODS: A Pubmed search using keywords "rectal prolapse," "rectocele," "perineal hernia," and "anismus" was performed, and bibliographies of the revealed articles were cross-referenced to obtain a representative cross-section of the literature, both investigational studies and reviews, that are currently available on posterior pelvic floor disorders. DISCUSSION: Pelvic floor disorders can occur with or without concomitant physical anatomical defects, and there are a number of imaging modalities available to detect such abnormalities in order to decide on the appropriate course of treatment. Depending on the nature of the disorder, operative or non-operative therapy may be indicated. CONCLUSION: Correctly diagnosing pelvic floor disorders can be complex and challenging, and the various imaging modalities as well as clinical history and exam must be considered together in order to arrive at a diagnosis. PMID:16720016
Advanced NDE research in electromagnetic, thermal, and coherent optics
NASA Technical Reports Server (NTRS)
Skinner, S. Ballou
1992-01-01
A new inspection technology called magneto-optic/eddy current imaging was investigated. The magneto-optic imager makes readily visible irregularities and inconsistencies in airframe components. Other research observed in electromagnetics included (1) disbond detection via resonant modal analysis; (2) AC magnetic field frequency dependence of magnetoacoustic emission; and (3) multi-view magneto-optic imaging. Research observed in the thermal group included (1) thermographic detection and characterization of corrosion in aircraft aluminum; (2) a multipurpose infrared imaging system for thermoelastic stress detection; (3) thermal diffusivity imaging of stress induced damage in composites; and (4) detection and measurement of ice formation on the space shuttle main fuel tank. Research observed in the optics group included advancements in optical nondestructive evaluation (NDE).
A systematic approach to adnexal masses discovered on ultrasound: the ADNEx MR scoring system.
Sadowski, Elizabeth A; Robbins, Jessica B; Rockall, Andrea G; Thomassin-Naggara, Isabelle
2018-03-01
Adnexal lesions are a common occurrence in radiology practice and imaging plays a crucial role in triaging women appropriately. Current trends toward early detection and characterization have increased the need for accurate imaging assessment of adnexal lesions prior to treatment. Ultrasound is the first-line imaging modality for assessing adnexal lesions; however, approximately 20% of lesions are incompletely characterized after ultrasound evaluation. Secondary assessment with MR imaging using the ADNEx MR Scoring System has been demonstrated as highly accurate in the characterization of adnexal lesions and in excluding ovarian cancer. This review will address the role of MR imaging in further assessment of adnexal lesions discovered on US, and the utility of the ADNEx MR Scoring System.
Harvey, Joshua Paul
2013-06-01
Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.
Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.
Ciarrocchi, Esther; Belcari, Nicola
2017-12-01
Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.
Functional magnetic resonance imaging in clinical practice: State of the art and science.
Barras, Christen D; Asadi, Hamed; Baldeweg, Torsten; Mancini, Laura; Yousry, Tarek A; Bisdas, Sotirios
2016-11-01
Functional magnetic resonance imaging (fMRI) has become a mainstream neuroimaging modality in the assessment of patients being evaluated for brain tumour and epilepsy surgeries. Thus, it is important for doctors in primary care settings to be well acquainted with the present and potential future applications, as well as limitations, of this modality. The objective of this article is to introduce the theoretical principles and state-of-the-art clinical applications of fMRI in brain tumour and epilepsy surgery, with a focus on the implications for clinical primary care. fMRI enables non-invasive functional mapping of specific cortical tasks (eg motor, language, memory-based, visual), revealing information about functional localisation, anatomical variation in cortical function, and disease effects and adaptations, including the fascinating phenomenon of brain plasticity. fMRI is currently ordered by specialist neurologists and neurosurgeons for the purposes of pre-surgical assessment, and within the context of an experienced multidisciplinary team to prepare, conduct and interpret the scan. With an increasing number of patients undergoing fMRI, general practitioners can expect questions about the current and emerging role of fMRI in clinical care from these patients and their families.
Automating radiologist workflow, part 3: education and training.
Reiner, Bruce
2008-12-01
The current model for radiologist education consists largely of mentorship during residency, followed by peer-to-peer training thereafter. The traditional focus of this radiologist education has historically been restricted to anatomy, pathology, and imaging modality. This "human" mentoring model becomes a limiting factor in the current practice environment because of rapid and dramatic changes in imaging and information technologies, along with the increased time demands placed on practicing radiologists. One novel way to address these burgeoning education and training challenges is to leverage technology, with the creation of user-specific and context-specific automated workflow templates. These automated templates would provide a low-stress, time-efficient, and easy-to-use equivalent of "computerized" mentoring. A radiologist could identify the workflow template of interest on the basis of the specific computer application, pathology, anatomy, or modality of interest. While the corresponding workflow template is activated, the radiologist "student" could effectively start and stop at areas of interest and use the functionality of an electronic wizard to identify additional educational resource of interest. An additional training feature of the technology is the ability to review "proven" cases for the purposes of establishing competence and credentialing.
IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE
Hamrah, Pedram
2014-01-01
Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045
Yang, C; Paulson, E; Li, X
2012-06-01
To develop and evaluate a tool that can improve the accuracy of contour transfer between different image modalities under challenging conditions of low image contrast and large image deformation, comparing to a few commonly used methods, for radiation treatment planning. The software tool includes the following steps and functionalities: (1) accepting input of images of different modalities, (2) converting existing contours on reference images (e.g., MRI) into delineated volumes and adjusting the intensity within the volumes to match target images (e.g., CT) intensity distribution for enhanced similarity metric, (3) registering reference and target images using appropriate deformable registration algorithms (e.g., B-spline, demons) and generate deformed contours, (4) mapping the deformed volumes on target images, calculating mean, variance, and center of mass as the initialization parameters for consecutive fuzzy connectedness (FC) image segmentation on target images, (5) generate affinity map from FC segmentation, (6) achieving final contours by modifying the deformed contours using the affinity map with a gradient distance weighting algorithm. The tool was tested with the CT and MR images of four pancreatic cancer patients acquired at the same respiration phase to minimize motion distortion. Dice's Coefficient was calculated against direct delineation on target image. Contours generated by various methods, including rigid transfer, auto-segmentation, deformable only transfer and proposed method, were compared. Fuzzy connected image segmentation needs careful parameter initialization and user involvement. Automatic contour transfer by multi-modality deformable registration leads up to 10% of accuracy improvement over the rigid transfer. Two extra proposed steps of adjusting intensity distribution and modifying the deformed contour with affinity map improve the transfer accuracy further to 14% averagely. Deformable image registration aided by contrast adjustment and fuzzy connectedness segmentation improves the contour transfer accuracy between multi-modality images, particularly with large deformation and low image contrast. © 2012 American Association of Physicists in Medicine.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
FogBank: a single cell segmentation across multiple cell lines and image modalities.
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary
2014-12-30
Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
Wang, Yan; Ma, Guangkai; An, Le; Shi, Feng; Zhang, Pei; Lalush, David S.; Wu, Xi; Pu, Yifei; Zhou, Jiliu; Shen, Dinggang
2017-01-01
Objective To obtain high-quality positron emission tomography (PET) image with low-dose tracer injection, this study attempts to predict the standard-dose PET (S-PET) image from both its low-dose PET (L-PET) counterpart and corresponding magnetic resonance imaging (MRI). Methods It was achieved by patch-based sparse representation (SR), using the training samples with a complete set of MRI, L-PET and S-PET modalities for dictionary construction. However, the number of training samples with complete modalities is often limited. In practice, many samples generally have incomplete modalities (i.e., with one or two missing modalities) that thus cannot be used in the prediction process. In light of this, we develop a semi-supervised tripled dictionary learning (SSTDL) method for S-PET image prediction, which can utilize not only the samples with complete modalities (called complete samples) but also the samples with incomplete modalities (called incomplete samples), to take advantage of the large number of available training samples and thus further improve the prediction performance. Results Validation was done on a real human brain dataset consisting of 18 subjects, and the results show that our method is superior to the SR and other baseline methods. Conclusion This work proposed a new S-PET prediction method, which can significantly improve the PET image quality with low-dose injection. Significance The proposed method is favorable in clinical application since it can decrease the potential radiation risk for patients. PMID:27187939
Optical imaging: new tools for arthritis.
Chamberland, David; Jiang, Yebin; Wang, Xueding
2010-10-01
Conventional radiography, ultrasound, CT, MRI, and nuclear imaging are the current imaging modalities used for clinical evaluation of arthritis which is highly prevalent and a leading cause of disability. Some of these types of imaging are also used for monitoring disease progression and treatment response of arthritis. However, their disadvantages limit their utilities, such as ionizing radiation for radiography, CT, and nuclear imaging; suboptimal tissue contrast resolution for radiography, CT, ultrasound, and nuclear imaging; high cost for CT and MRI and nuclear imaging; and long data-acquisition time with ensuing patient discomfort for MRI. Recently, there have been considerable advances in nonionizing noninvasive optical imaging which has demonstrated promise for early diagnosis, monitoring therapeutic interventions and disease progression of arthritis. Optical based molecular imaging modalities such as fluorescence imaging have shown high sensitivity in detection of optical contrast agents and can aid early diagnosis and ongoing evaluation of chronic inflammatory arthritis. Optical transillumination imaging or diffuse optical tomography may differentiate normal joint clear synovial fluid from turbid and pink medium early in the inflammatory process. Fourier transform infrared spectroscopy has been used to evaluate fluid composition from joints affected by arthritis. Hemodynamic changes such as angiogenesis, hypervascularization, and hypoxia in arthritic articular tissue can potentially be observed by diffuse optical tomography and photoacoustic tomography. Optical measurements could also facilitate quantification of hemodynamic properties such as blood volume and oxygenation levels at early stages of inflammatory arthritis. Optical imaging provides methodologies which should contribute to detection of early changes and monitoring of progression in pathological characteristics of arthritis, with relatively simple instrumentation.
Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling
2013-01-01
This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391
Use of shear waves for diagnosis and ablation monitoring of prostate cancer: a feasibility study
NASA Astrophysics Data System (ADS)
Gomez, A.; Rus, G.; Saffari, N.
2016-01-01
Prostate cancer remains as a major healthcare issue. Limitations in current diagnosis and treatment monitoring techniques imply that there is still a need for improvements. The efficacy of prostate cancer diagnosis is still low, generating under and over diagnoses. High intensity focused ultrasound ablation is an emerging treatment modality, which enables the noninvasive ablation of pathogenic tissue. Clinical trials are being carried out to evaluate its longterm efficacy as a focal treatment for prostate cancer. Successful treatment of prostate cancer using non-invasive modalities is critically dependent on accurate diagnostic means and is greatly benefited by a real-time monitoring system. While magnetic resonance imaging remains the gold standard for prostate imaging, its wider implementation for prostate cancer diagnosis remains prohibitively expensive. Conventional ultrasound is currently limited to guiding biopsy. Elastography techniques are emerging as a promising real-time imaging method, as cancer nodules are usually stiffer than adjacent healthy prostatic tissue. In this paper, a new transurethral approach is proposed, using shear waves for diagnosis and ablation monitoring of prostate cancer. A finite-difference time domain model is developed for studying the feasibility of the method, and an inverse problem technique based on genetic algorithms is proposed for reconstructing the location, size and stiffness parameters of the tumour. Preliminary results indicate that the use of shear waves for diagnosis and monitoring ablation of prostate cancer is feasible.
X-ray cargo container inspection system with few-view projection imaging
NASA Astrophysics Data System (ADS)
Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran
2009-01-01
An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.
Eytan, Danny; Pang, Elizabeth W; Doesburg, Sam M; Nenadovic, Vera; Gavrilovic, Bojan; Laussen, Peter; Guerguerian, Anne-Marie
2016-01-01
Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG) for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory), and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage critically-ill children and adults, and potentially patients not suited for magnetic resonance imaging technologies.
Cost-effectiveness of Different Diabetic Retinopathy Screening Modalities
Pasquel, Francisco J.; Hendrick, Andrew M.; Ryan, Martha; Cason, Emily; Ali, Mohammed K.; Narayan, K. M. Venkat
2015-01-01
Current screening strategies aimed at detection of diabetic retinopathy (DR) historically have poor compliance, but advancements in technology can enable improved access to care. Nearly 80% of all persons with diabetes live in low- and middle-income countries (LMICs), highlighting the importance of a cost effective screening program. Establishing mechanisms to reach populations with geographic and financial barriers to access is essential to prevent visual disability. Teleretinal programs leverage technology to improve access and reduce cost. The quality of currently employed screening modalities depends on many variables including the instrument used, use of pupillary mydriasis, number of photographic fields, and the qualifications of the photographer and image interpreter. Recent telemedicine and newer technological approaches have been introduced, but data for these technologies is yet limited. We present results of a systematic review of studies evaluating cost-effectiveness of DR screening, and discuss potential relevance for LMICs. PMID:26719134
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
Incorporating prognostic imaging biomarkers into clinical practice
Miles, Kenneth A.
2013-01-01
Abstract A prognostic imaging biomarker can be defined as an imaging characteristic that is objectively measurable and provides information on the likely outcome of the cancer disease in an untreated individual and should be distinguished from predictive imaging biomarkers and imaging markers of response. A range of tumour characteristics of potential prognostic value can be measured using a variety imaging modalities. However, none has currently been adopted into routine clinical practice. This article considers key examples of emerging prognostic imaging biomarkers and proposes an evaluation framework that aims to demonstrate clinical efficacy and so support their introduction into the clinical arena. With appropriate validation within an established evaluation framework, prognostic imaging biomarkers have the potential to contribute to individualized cancer care, in some cases reducing the financial burden of expensive cancer treatments by facilitating their more rational use. PMID:24060808
Enhanced interfaces for web-based enterprise-wide image distribution.
Jost, R Gilbert; Blaine, G James; Fritz, Kevin; Blume, Hartwig; Sadhra, Sarbjit
2002-01-01
Modern Web browsers support image distribution with two shortcomings: (1) image grayscale presentation at client workstations is often sub-optimal and generally inconsistent with the presentation state on diagnostic workstations and (2) an Electronic Patient Record (EPR) application usually cannot directly access images with an integrated viewer. We have modified our EPR and our Web-based image-distribution system to allow access to images from within the EPR. In addition, at the client workstation, a grayscale transformation is performed that consists of two components: a client-display-specific component based on the characteristic display function of the class of display system, and a modality-specific transformation that is downloaded with every image. The described techniques have been implemented in our institution and currently support enterprise-wide clinical image distribution. The effectiveness of the techniques is reviewed.
Breast ultrasonography: state of the art.
Hooley, Regina J; Scoutt, Leslie M; Philpotts, Liane E
2013-09-01
Ultrasonography (US) is an indispensable tool in breast imaging and is complementary to both mammography and magnetic resonance (MR) imaging of the breast. Advances in US technology allow confident characterization of not only benign cysts but also benign and malignant solid masses. Knowledge and understanding of current and emerging US technology, along with the application of meticulous scanning technique, is imperative for image optimization and diagnosis. The ability to synthesize breast US findings with multiple imaging modalities and clinical information is also necessary to ensure the best patient care. US is routinely used to guide breast biopsies and is also emerging as a supplemental screening tool in women with dense breasts and a negative mammogram. This review provides a summary of current state-of-the-art US technology, including elastography, and applications of US in clinical practice as an adjuvant technique to mammography, MR imaging, and the clinical breast examination. The use of breast US for screening, preoperative staging for breast cancer, and breast intervention will also be discussed.
Can a decision-making model be justified in the management of hepatocellular adenoma?
van Aalten, Susanna M; Witjes, Caroline D M; de Man, Robert A; Ijzermans, Jan N M; Terkivatan, Türkan
2012-01-01
During recent years, there was a great development in the area of hepatocellular adenomas (HCA), especially regarding the pathological subtype classification, radiological imaging and management during pregnancy. This review discusses the current knowledge about diagnosis and treatment modalities of HCA and proposes a decision-making model for HCA. A Medline search of studies relevant to epidemiology, histopathology, complications, imaging and management of HCA lesions was undertaken. References from identified articles were hand-searched for further relevant articles. © 2011 John Wiley & Sons A/S.
Clinical and diagnostic aspects of lymphedema.
Keo, Hong H; Gretener, Silvia B; Staub, Daniel
2017-07-01
Lymphedema is a chronic, progressive, and common but often unrecognized condition. The diagnosis of lymphatic disease on clinical grounds alone remains a challenge. Without proper diagnosis, therapy is often delayed, allowing disease progression. There is a need for a practical diagnostic algorithm and its imaging technique to guide clinical decision-making. The aim of this topical review is to provide a practical approach for assessing patients with suspected lymphedema and to give a critical appraisal of currently available imaging modalities that are applied in clinical practice to diagnose and map lymphatic disease.
Advances in cardiac CT contrast injection and acquisition protocols.
Scholtz, Jan-Erik; Ghoshhajra, Brian
2017-10-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.
Advances in cardiac CT contrast injection and acquisition protocols
Scholtz, Jan-Erik
2017-01-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688
Hip Imaging in Athletes: Sports Imaging Series.
Agten, Christoph A; Sutter, Reto; Buck, Florian M; Pfirrmann, Christian W A
2016-08-01
Hip or groin pain in athletes is common and clinical presentation is often nonspecific. Imaging is a very important diagnostic step in the work-up of athletes with hip pain. This review article provides an overview on hip biomechanics and discusses strategies for hip imaging modalities such as radiography, ultrasonography, computed tomography, and magnetic resonance (MR) imaging (MR arthrography and traction MR arthrography). The authors explain current concepts of femoroacetabular impingement and the problem of high prevalence of cam- and pincer-type morphology in asymptomatic persons. With the main focus on MR imaging, the authors present abnormalities of the hip joint and the surrounding soft tissues that can occur in athletes: intraarticular and extraarticular hip impingement syndromes, labral and cartilage disease, microinstability of the hip, myotendinous injuries, and athletic pubalgia. (©) RSNA, 2016.
3D Compton scattering imaging and contour reconstruction for a class of Radon transforms
NASA Astrophysics Data System (ADS)
Rigaud, Gaël; Hahn, Bernadette N.
2018-07-01
Compton scattering imaging is a nascent concept arising from the current development of high-sensitive energy detectors and is devoted to exploit the scattering radiation to image the electron density of the studied medium. Such detectors are able to collect incoming photons in terms of energy. This paper introduces potential 3D modalities in Compton scattering imaging (CSI). The associated measured data are modeled using a class of generalized Radon transforms. The study of this class of operators leads to build a filtered back-projection kind algorithm preserving the contours of the sought-for function and offering a fast approach to partially solve the associated inverse problems. Simulation results including Poisson noise demonstrate the potential of this new imaging concept as well as the proposed image reconstruction approach.
Speed of sound and photoacoustic imaging with an optical camera based ultrasound detection system
NASA Astrophysics Data System (ADS)
Nuster, Robert; Paltauf, Guenther
2017-07-01
CCD camera based optical ultrasound detection is a promising alternative approach for high resolution 3D photoacoustic imaging (PAI). To fully exploit its potential and to achieve an image resolution <50 μm, it is necessary to incorporate variations of the speed of sound (SOS) in the image reconstruction algorithm. Hence, in the proposed work the idea and a first implementation are shown how speed of sound imaging can be added to a previously developed camera based PAI setup. The current setup provides SOS-maps with a spatial resolution of 2 mm and an accuracy of the obtained absolute SOS values of about 1%. The proposed dual-modality setup has the potential to provide highly resolved and perfectly co-registered 3D photoacoustic and SOS images.
Herget-Rosenthal, Stefan
2011-05-01
The measurement of both renal function and structure is critical in clinical nephrology to detect, stage, and monitor chronic kidney disease (CKD). Current imaging modalities especially ultrasound (US), computed tomography, and magnetic resonance imaging (MRI) provide adequate information on structural changes but little on functional impairment in CKD. Although not yet considered first-line procedures for evaluating patients with renal disease, new US and MR imaging techniques may permit the assessment of renal function in the near future. Combined with established imaging techniques, contrast-enhanced US, dynamic contrast-enhanced MRI, blood oxygen level dependency MRI, or diffusion-weighted imaging may provide rapid, accurate, simultaneous, and noninvasive imaging of the structure of kidneys, macrovascular and microvascular renal perfusion, oxygenation, and glomerular filtration rate. Recent developments in molecular imaging indicate that pathophysiological pathways of renal diseases such as apoptosis, coagulation, fibrosis, and ischemia will be visualized at the tissue level. These major advances in imaging and developments in hardware and software could enable comprehensive imaging of renal structure and function in four dimensions (three dimensions plus time), and imaging is expected to play an increasing role in the management of CKD. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vuong, Barry; Skowron, Patryk; Kiehl, Tim-Rasmus; Kyan, Matthew; Garzia, Livia; Genis, Helen; Sun, Cuiru; Taylor, Michael D.; Yang, Victor X. D.
2015-03-01
The hemodynamic environment is known to play a crucial role in the progression, rupture, and treatment of intracranial aneurysms. Currently there is difficulty assessing and measuring blood flow profiles in vivo. An emerging high resolution imaging modality known as split spectrum Doppler optical coherence tomography (ssDOCT) has demonstrated the capability to quantify hemodynamic patterns as well as arterial microstructural changes. In this study, we present a novel in vitro method to acquire precise blood flow patterns within a patient- specific aneurysm silicone flow models using ssDOCT imaging. Computational fluid dynamics (CFD) models were generated to verify ssDOCT results.
Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging
Menon, Jyothi U.; Gulaka, Praveen K.; McKay, Madalyn A.; Geethanath, Sairam; Liu, Li; Kodibagkar, Vikram D.
2012-01-01
An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications. PMID:23382776
Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis
Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.
2006-01-01
In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709
Integration of Multi-Modal Biomedical Data to Predict Cancer Grade and Patient Survival.
Phan, John H; Hoffman, Ryan; Kothari, Sonal; Wu, Po-Yen; Wang, May D
2016-02-01
The Big Data era in Biomedical research has resulted in large-cohort data repositories such as The Cancer Genome Atlas (TCGA). These repositories routinely contain hundreds of matched patient samples for genomic, proteomic, imaging, and clinical data modalities, enabling holistic and multi-modal integrative analysis of human disease. Using TCGA renal and ovarian cancer data, we conducted a novel investigation of multi-modal data integration by combining histopathological image and RNA-seq data. We compared the performances of two integrative prediction methods: majority vote and stacked generalization. Results indicate that integration of multiple data modalities improves prediction of cancer grade and outcome. Specifically, stacked generalization, a method that integrates multiple data modalities to produce a single prediction result, outperforms both single-data-modality prediction and majority vote. Moreover, stacked generalization reveals the contribution of each data modality (and specific features within each data modality) to the final prediction result and may provide biological insights to explain prediction performance.
Endoscopic optical coherence tomography: technologies and clinical applications [Invited
Gora, Michalina J.; Suter, Melissa J.; Tearney, Guillermo J.; Li, Xingde
2017-01-01
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed. PMID:28663882
A multimodal image sensor system for identifying water stress in grapevines
NASA Astrophysics Data System (ADS)
Zhao, Yong; Zhang, Qin; Li, Minzan; Shao, Yongni; Zhou, Jianfeng; Sun, Hong
2012-11-01
Water stress is one of the most common limitations of fruit growth. Water is the most limiting resource for crop growth. In grapevines, as well as in other fruit crops, fruit quality benefits from a certain level of water deficit which facilitates to balance vegetative and reproductive growth and the flow of carbohydrates to reproductive structures. A multi-modal sensor system was designed to measure the reflectance signature of grape plant surfaces and identify different water stress levels in this paper. The multi-modal sensor system was equipped with one 3CCD camera (three channels in R, G, and IR). The multi-modal sensor can capture and analyze grape canopy from its reflectance features, and identify the different water stress levels. This research aims at solving the aforementioned problems. The core technology of this multi-modal sensor system could further be used as a decision support system that combines multi-modal sensory data to improve plant stress detection and identify the causes of stress. The images were taken by multi-modal sensor which could output images in spectral bands of near-infrared, green and red channel. Based on the analysis of the acquired images, color features based on color space and reflectance features based on image process method were calculated. The results showed that these parameters had the potential as water stress indicators. More experiments and analysis are needed to validate the conclusion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, U; Kumaraswamy, N; Markey, M
Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution,more » with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality.« less
A quantitative comparison of two methods to correct eddy current-induced distortions in DT-MRI.
Muñoz Maniega, Susana; Bastin, Mark E; Armitage, Paul A
2007-04-01
Eddy current-induced geometric distortions of single-shot, diffusion-weighted, echo-planar (DW-EP) images are a major confounding factor to the accurate determination of water diffusion parameters in diffusion tensor MRI (DT-MRI). Previously, it has been suggested that these geometric distortions can be removed from brain DW-EP images using affine transformations determined from phantom calibration experiments using iterative cross-correlation (ICC). Since this approach was first described, a number of image-based registration methods have become available that can also correct eddy current-induced distortions in DW-EP images. However, as yet no study has investigated whether separate eddy current calibration or image-based registration provides the most accurate way of removing these artefacts from DT-MRI data. Here we compare how ICC phantom calibration and affine FLIRT (http://www.fmrib.ox.ac.uk), a popular image-based multi-modal registration method that can correct both eddy current-induced distortions and bulk subject motion, perform when registering DW-EP images acquired with different slice thicknesses (2.8 and 5 mm) and b-values (1000 and 3000 s/mm(2)). With the use of consistency testing, it was found that ICC was a more robust algorithm for correcting eddy current-induced distortions than affine FLIRT, especially at high b-value and small slice thickness. In addition, principal component analysis demonstrated that the combination of ICC phantom calibration (to remove eddy current-induced distortions) with rigid body FLIRT (to remove bulk subject motion) provided a more accurate registration of DT-MRI data than that achieved by affine FLIRT.
NASA Astrophysics Data System (ADS)
Potuzko, Marci; Shan, Jing; Pearce, Caleb; Lee, Yueh Z.; Lu, Jianping; Zhou, Otto
2015-03-01
Digital chest tomosynthesis (DCT) is a 3D imaging modality which has been shown to approach the diagnostic capability of CT, but uses only one-tenth the radiation dose of CT. One limitation of current commercial DCT is the mechanical motion of the x-ray source which prolongs image acquisition time and introduces motion blurring in images. By using a carbon nanotube (CNT) x-ray source array, we have developed a stationary digital chest tomosynthesis (s- DCT) system which can acquire tomosynthesis images without mechanical motion, thus enhancing the image quality. The low dose and high quality 3D image makes the s-DCT system a viable imaging tool for monitoring cystic fibrosis (CF) patients. The low dose is especially important in pediatric patients who are both more radiosensitive and have a longer lifespan for radiation symptoms to develop. The purpose of this research is to evaluate the feasibility of using s-DCT as a faster, lower dose means for diagnosis and monitoring of CF in pediatric patients. We have created an imaging phantom by injecting a gelatinous mucus substitute into porcine lungs and imaging the lungs from within an anthropomorphic hollow chest phantom in order to mimic the human conditions of a CF patient in the laboratory setting. We have found that our s-DCT images show evidence of mucus plugging in the lungs and provide a clear picture of the airways in the lung, allowing for the possibility of using s- DCT to supplement or replace CT as the imaging modality for CF patients.
Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.
Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar
2017-11-03
Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.
Bartling, Soenke H; Budjan, Johannes; Aviv, Hagit; Haneder, Stefan; Kraenzlin, Bettina; Michaely, Henrik; Margel, Shlomo; Diehl, Steffen; Semmler, Wolfhard; Gretz, Norbert; Schönberg, Stefan O; Sadick, Maliha
2011-03-01
Embolization therapy is gaining importance in the treatment of malignant lesions, and even more in benign lesions. Current embolization materials are not visible in imaging modalities. However, it is assumed that directly visible embolization material may provide several advantages over current embolization agents, ranging from particle shunt and reflux prevention to improved therapy control and follow-up assessment. X-ray- as well as magnetic resonance imaging (MRI)-visible embolization materials have been demonstrated in experiments. In this study, we present an embolization material with the property of being visible in more than one imaging modality, namely MRI and x-ray/computed tomography (CT). Characterization and testing of the substance in animal models was performed. To reduce the chance of adverse reactions and to facilitate clinical approval, materials have been applied that are similar to those that are approved and being used on a routine basis in diagnostic imaging. Therefore, x-ray-visible Iodine was combined with MRI-visible Iron (Fe3O4) in a macroparticle (diameter, 40-200 μm). Its core, consisting of a copolymerized monomer MAOETIB (2-methacryloyloxyethyl [2,3,5-triiodobenzoate]), was coated with ultra-small paramagnetic iron oxide nanoparticles (150 nm). After in vitro testing, including signal to noise measurements in CT and MRI (n = 5), its ability to embolize tissue was tested in an established tumor embolization model in rabbits (n = 6). Digital subtraction angiography (DSA) (Integris, Philips), CT (Definition, Siemens Healthcare Section, Forchheim, Germany), and MRI (3 Tesla Magnetom Tim Trio MRI, Siemens Healthcare Section, Forchheim, Germany) were performed before, during, and after embolization. Imaging signal changes that could be attributed to embolization particles were assessed by visual inspection and rated on an ordinal scale by 3 radiologists, from 1 to 3. Histologic analysis of organs was performed. Particles provided a sufficient image contrast on DSA, CT (signal to noise [SNR], 13 ± 2.5), and MRI (SNR, 35 ± 1) in in vitro scans. Successful embolization of renal tissue was confirmed by catheter angiography, revealing at least partial perfusion stop in all kidneys. Signal changes that were attributed to particles residing within the kidney were found in all cases in all the 3 imaging modalities. Localization distribution of particles corresponded well in all imaging modalities. Dynamic imaging during embolization provided real-time monitoring of the inflow of embolization particles within DSA, CT, and MRI. Histologic visualization of the residing particles as well as associated thrombosis in renal arteries could be performed. Visual assessment of the likelihood of embolization particle presence received full rating scores (153/153) after embolization. Multimodal-visible embolization particles have been developed, characterized, and tested in vivo in an animal model. Their implementation in clinical radiology may provide optimization of embolization procedures with regard to prevention of particle misplacement and direct intraprocedural visualization, at the same time improving follow-up examinations by utilizing the complementary characteristics of CT and MRI. Radiation dose savings can also be considered. All these advantages could contribute to future refinements and improvements in embolization therapy. Additionally, new approaches in embolization research may open up.
Training of polyp staging systems using mixed imaging modalities.
Wimmer, Georg; Gadermayr, Michael; Kwitt, Roland; Häfner, Michael; Tamaki, Toru; Yoshida, Shigeto; Tanaka, Shinji; Merhof, Dorit; Uhl, Andreas
2018-05-04
In medical image data sets, the number of images is usually quite small. The small number of training samples does not allow to properly train classifiers which leads to massive overfitting to the training data. In this work, we investigate whether increasing the number of training samples by merging datasets from different imaging modalities can be effectively applied to improve predictive performance. Further, we investigate if the extracted features from the employed image representations differ between different imaging modalities and if domain adaption helps to overcome these differences. We employ twelve feature extraction methods to differentiate between non-neoplastic and neoplastic lesions. Experiments are performed using four different classifier training strategies, each with a different combination of training data. The specifically designed setup for these experiments enables a fair comparison between the four training strategies. Combining high definition with high magnification training data and chromoscopic with non-chromoscopic training data partly improved the results. The usage of domain adaptation has only a small effect on the results compared to just using non-adapted training data. Merging datasets from different imaging modalities turned out to be partially beneficial for the case of combining high definition endoscopic data with high magnification endoscopic data and for combining chromoscopic with non-chromoscopic data. NBI and chromoendoscopy on the other hand are mostly too different with respect to the extracted features to combine images of these two modalities for classifier training. Copyright © 2018 Elsevier Ltd. All rights reserved.
MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2016-06-15
Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR ismore » U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.« less
NASA Astrophysics Data System (ADS)
Liang, Guanghui; Ren, Shangjie; Dong, Feng
2018-07-01
The ultrasound/electrical dual-modality tomography utilizes the complementarity of ultrasound reflection tomography (URT) and electrical impedance tomography (EIT) to improve the speed and accuracy of image reconstruction. Due to its advantages of no-invasive, no-radiation and low-cost, ultrasound/electrical dual-modality tomography has attracted much attention in the field of dual-modality imaging and has many potential applications in industrial and biomedical imaging. However, the data fusion of URT and EIT is difficult due to their different theoretical foundations and measurement principles. The most commonly used data fusion strategy in ultrasound/electrical dual-modality tomography is incorporating the structured information extracted from the URT into the EIT image reconstruction process through a pixel-based constraint. Due to the inherent non-linearity and ill-posedness of EIT, the reconstructed images from the strategy suffer from the low resolution, especially at the boundary of the observed inclusions. To improve this condition, an augmented Lagrangian trust region method is proposed to directly reconstruct the shapes of the inclusions from the ultrasound/electrical dual-modality measurements. In the proposed method, the shape of the target inclusion is parameterized by a radial shape model whose coefficients are used as the shape parameters. Then, the dual-modality shape inversion problem is formulated by an energy minimization problem in which the energy function derived from EIT is constrained by an ultrasound measurements model through an equality constraint equation. Finally, the optimal shape parameters associated with the optimal inclusion shape guesses are determined by minimizing the constrained cost function using the augmented Lagrangian trust region method. To evaluate the proposed method, numerical tests are carried out. Compared with single modality EIT, the proposed dual-modality inclusion boundary reconstruction method has a higher accuracy and is more robust to the measurement noise.
Imaging technologies for preclinical models of bone and joint disorders
2011-01-01
Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy. PMID:22214535
Survey of image-guided radiotherapy use in Australia.
Batumalai, Vikneswary; Holloway, Lois Charlotte; Kumar, Shivani; Dundas, Kylie; Jameson, Michael Geoffrey; Vinod, Shalini Kavita; Delaney, Geoff P
2017-06-01
This study aimed to evaluate the current use of imaging technologies for planning and delivery of radiotherapy (RT) in Australia. An online survey was emailed to all Australian RT centres in August 2015. The survey inquired about imaging practices during planning and treatment delivery processes. Participants were asked about the types of image-guided RT (IGRT) technologies and the disease sites they were used for, reasons for implementation, frequency of imaging and future plans for IGRT use in their department. The survey was completed by 71% of Australian RT centres. All respondents had access to computed tomography (CT) simulators and regularly co-registered the following scans to the RT: diagnostic CT (50%), diagnostic magnetic resonance imaging (MRI) (95%), planning MRI (34%), planning positron emission tomography (PET) (26%) and diagnostic PET (97%) to aid in tumour delineation. The main reason for in-room IGRT implementation was the use of highly conformal techniques, while the most common reason for under-utilisation was lack of equipment capability. The most commonly used IGRT modalities were kilovoltage (kV) cone-beam CT (CBCT) (97%), kV electronic portal image (EPI) (89%) and megavoltage (MV) EPI (75%). Overall, participants planned to increase IGRT use in planning (33%) and treatment delivery (36%). IGRT is widely used among Australian RT centres. On the basis of future plans of respondents, the installation of new imaging modalities is expected to increase for both planning and treatment. © 2016 The Royal Australian and New Zealand College of Radiologists.
Counts, Sarah J; Kim, Anthony W
2017-08-01
Modalities to detect and characterize lung cancer are generally divided into those that are invasive [endobronchial ultrasound (EBUS), esophageal ultrasound (EUS), and electromagnetic navigational bronchoscopy (ENMB)] versus noninvasive [chest radiography (CXR), computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI)]. This chapter describes these modalities, the literature supporting their use, and delineates what tests to use to best evaluate the patient with lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Ex vivo brain tumor analysis using spectroscopic optical coherence tomography
NASA Astrophysics Data System (ADS)
Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.
2016-03-01
A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.
WE-E-211-01: Medical Physics in Federal and State Governments.
Mills, T; Winter, D; Keith, S; Fletcher, D
2012-06-01
In 2010, FDA's Center for Devices and Radiological Health (CDRH) launched an "Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging" and held a public meeting on "Device Improvements to Reduce Unnecessary Radiation Exposure from Medical Imaging" March 30- 31, 2010). In follow-up, FDA is pursuing efforts using its regulatory authority as it applies to imaging equipment and manufacturers and also partnering with professional organizations such as AAPM, industry and other governmental agencies to incorporate radiation protection principles into facility quality assurance, personnel credentialing, and training requirements.The current U.S. Federal guidance on medical x-rays was published in 1976 and addresses film imaging for radiographie and dental modalities. The Medical Workgroup of the Interagency Steering Committee on Radiation Standards (ISCORS) has modernized that document to address both diagnostic and interventional approaches, film and digital imaging, and the broad range of modalities that include radiography, computed tomography, interventional fluoroscopy, dentistry, bone densitometry, and veterinary practice. The current scope and status of the document will be presented.The Military Health System is committed to providing state-of- the-art care to its beneficiaries; both at home and abroad. Personnel constraints and the continuing wars oversees have created obstacles to this objective. In the past decade, tremendous advances have occurred in Electronic Health Records (EHR) and Teleradiology. Military Radiology seeks to leverage these advances as a means of surmounting many of the challenges it faces. In this talk, the current status of DoD teleradiology and EHR will be presented. 1. To provide a venue in which physicists working in the public sector can interface and discuss specific issues related to supporting the federal and state governments 2. To provide a venue for medical physicists to voice specific concerns with federal/state programs where medical physics should be involved in and/or more effective. 3. To educate audience on federal or state new or updated guidelines. © 2012 American Association of Physicists in Medicine.
Benson, Donald G; Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Grist, Thomas M; Reeder, Scott B; Nagle, Scott K
2017-06-01
CT pulmonary angiography (CTPA) is currently considered the imaging standard of care for the diagnosis of pulmonary embolism (PE). Recent advances in contrast-enhanced pulmonary MR angiography (MRA) techniques have led to increased use of this modality for the detection of PE in the proper clinical setting. This review is intended to provide an introduction to the state-of-the-art techniques used in pulmonary MRA for the detection of PE and to discuss possible future directions for this modality. This review discusses the following issues pertinent to MRA for the diagnosis of PE: (1) the diagnostic efficacy and clinical effectiveness for pulmonary MRA relative to CTPA, (2) the different pulmonary MRA techniques used for the detection of PE, (3) guidance for building a clinical service at their institution using MRA and (4) future directions of PE MRA. Our principal aim was to show how pulmonary MRA can be used as a safe, effective modality for the diagnosis of clinically significant PE, particularly for those patients where there are concerns about ionizing radiation or contraindications/allergies to the iodinated contrast material.
Schiebler, Mark L; Repplinger, Michael D; François, Christopher J; Grist, Thomas M; Reeder, Scott B
2017-01-01
CT pulmonary angiography (CTPA) is currently considered the imaging standard of care for the diagnosis of pulmonary embolism (PE). Recent advances in contrast-enhanced pulmonary MR angiography (MRA) techniques have led to increased use of this modality for the detection of PE in the proper clinical setting. This review is intended to provide an introduction to the state-of-the-art techniques used in pulmonary MRA for the detection of PE and to discuss possible future directions for this modality. This review discusses the following issues pertinent to MRA for the diagnosis of PE: (1) the diagnostic efficacy and clinical effectiveness for pulmonary MRA relative to CTPA, (2) the different pulmonary MRA techniques used for the detection of PE, (3) guidance for building a clinical service at their institution using MRA and (4) future directions of PE MRA. Our principal aim was to show how pulmonary MRA can be used as a safe, effective modality for the diagnosis of clinically significant PE, particularly for those patients where there are concerns about ionizing radiation or contraindications/allergies to the iodinated contrast material. PMID:28306332
Volume curtaining: a focus+context effect for multimodal volume visualization
NASA Astrophysics Data System (ADS)
Fairfield, Adam J.; Plasencia, Jonathan; Jang, Yun; Theodore, Nicholas; Crawford, Neil R.; Frakes, David H.; Maciejewski, Ross
2014-03-01
In surgical preparation, physicians will often utilize multimodal imaging scans to capture complementary information to improve diagnosis and to drive patient-specific treatment. These imaging scans may consist of data from magnetic resonance imaging (MR), computed tomography (CT), or other various sources. The challenge in using these different modalities is that the physician must mentally map the two modalities together during the diagnosis and planning phase. Furthermore, the different imaging modalities will be generated at various resolutions as well as slightly different orientations due to patient placement during scans. In this work, we present an interactive system for multimodal data fusion, analysis and visualization. Developed with partners from neurological clinics, this work discusses initial system requirements and physician feedback at the various stages of component development. Finally, we present a novel focus+context technique for the interactive exploration of coregistered multi-modal data.
Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane
2018-07-01
To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.
Nanomaterials for In Vivo Imaging.
Smith, Bryan Ronain; Gambhir, Sanjiv Sam
2017-02-08
In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.
Magnetic resonance imaging of appendicular musculoskeletal infection.
Lalam, Radhesh K; Cassar-Pullicino, Victor N; Tins, Bernhard J
2007-06-01
Appendicular skeletal infection includes osseous and extraosseous infections. Skeletal infection needs early diagnosis and appropriate management to prevent long-term morbidity. Magnetic resonance imaging is the best imaging modality to diagnose skeletal infection early in most circumstances. This article describes the role of magnetic resonance imaging in relation to the other available imaging modalities in the diagnosis of skeletal infection. Special circumstances such as diabetic foot, postoperative infection, and chronic recurrent multifocal osteomyelitis are discussed separately.
Towards Development of a Field-Deployable Imaging Device for TBI
2012-03-01
accompany TBI, and that ultrasound-based ‘sonoelastic’ imaging modalities responsive to some measure of stiffness might offer a useful means for imaging the...changes to brain due to TBI. Use of such systems in and near the field should improve clinical outcome for patients suffering from TBI. Our long...sonoelastic’ imaging modalities responsive to some measure of stiffness might offer a useful means for imaging the gross and subtle changes to brain
Moser, Ewald; Meyerspeer, Martin; Fischmeister, Florian Ph. S.; Grabner, Günther; Bauer, Herbert; Trattnig, Siegfried
2010-01-01
Analogous to the evolution of biological sensor-systems, the progress in “medical sensor-systems”, i.e., diagnostic procedures, is paradigmatically described. Outstanding highlights of this progress are magnetic resonance imaging (MRI) and spectroscopy (MRS), which enable non-invasive, in vivo acquisition of morphological, functional, and metabolic information from the human body with unsurpassed quality. Recent achievements in high and ultra-high field MR (at 3 and 7 Tesla) are described, and representative research applications in Medicine and Psychology in Austria are discussed. Finally, an overview of current and prospective research in multi-modal imaging, potential clinical applications, as well as current limitations and challenges is given. PMID:22219684
Fully Scalable Porous Metal Electrospray Propulsion
2012-03-20
particular emphasis on the variation of specific impulse for multi-modal propulsion is currently carried out by MIT and the Busek Company under an...Beam profile distributions in the negative (left) and positive (center) modes as visualized directly thorough a multi-channel plate and phosphor...screen. These profiles are parabolic (right) indicating the non-thermal character of these type of ion beams. Microscopic Image of pattern imprinted on Si
2008-01-01
attenuation value of -15 Hounsfield units is suggestive of AML (7). Renal MRI may be necessary to help determine the character of more complex or...increased risk for retroperitoneal hemorrhage and may be managed more aggressively. CT scan is currently the imaging modality of choice and the...evaluation of these renal masses if CT is contraindicated. History A 46-year-old male presented to the emergency room with one day history of right
Dual-modality imaging with a ultrasound-gamma device for oncology
NASA Astrophysics Data System (ADS)
Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.
2018-06-01
Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.
Noninvasive Imaging of the Biliary System Relevant to Percutaneous Interventions
Thomas, Stephen; Jahangir, Kayleen
2016-01-01
Clinical data such as history, physical examination, and laboratory tests are useful in identifying patients with biliary obstruction and biliary sources of infection. However, if intervention is planned, noninvasive imaging is needed to confirm the presence, location, and extent of the disease process. Currently, the most commonly available and used noninvasive modalities are ultrasound (US), computed tomography (CT), magnetic resonance (MR), and nuclear medicine hepatobiliary scintigraphy (HIDA). US is quick, portable, readily available, and is commonly the first imaging modality used when biliary pathology is suspected. It is excellent in the detection of cholelithiasis and acute cholecystitis but is limited in detecting choledocholithiasis. CT is excellent at detecting infected postoperative fluid collections, bilomas, biliary obstruction, and biliary infection but is limited in the detection of cholelithiasis. Therefore, US may be more useful than CT for the initial screening of acute biliary disease. MR has inherent advantages over CT, as it does not use ionizing radiation, can be done without intravenous contrast, and its detection of cholelithiasis is not affected by the internal composition of the stone. Magnetic resonance cholangiopancreatography can be used to determine the cause and location of biliary obstruction but is limited in the detection of small stones and the evaluation of the biliary tract near the ampulla. HIDA is used to evaluate for cholecystitis, biliary obstruction, and bile leaks. The main limitation is its lack of anatomical detail, and it is therefore frequently performed in conjunction with other described modalities. PMID:27904246
NASA Astrophysics Data System (ADS)
Quang Bui, Nhat; Hlaing, Kyu Kyu; Lee, Yong Wook; Kang, Hyun Wook; Oh, Junghwan
2017-01-01
Macrophages are excellent imaging targets for detecting atherosclerotic plaques as they are involved in all the developmental stages of atherosclerosis. However, no imaging technique is currently capable of visualizing macrophages inside blood vessel walls. The current study develops an intravascular ultrasonic-photoacoustic (IVUP) imaging system combined with indocyanine green (ICG) as a contrast agent to provide morphological and compositional information about the targeted samples. Both tissue-mimicking vessel phantoms and atherosclerotic plaque-mimicking porcine arterial tissues are used to demonstrate the feasibility of mapping macrophages labeled with ICG by endoscopically applying the proposed hybrid technique. A delay pulse triggering technique is able to sequentially acquire photoacoustic (PA) and ultrasound (US) signals from a single scan without using any external devices. The acquired PA and US signals are used to reconstruct 2D cross-sectional and 3D volumetric images of the entire tissue with the ICG-loaded macrophages injected. Due to high imaging contrast and sensitivity, the IVUP imaging vividly reveals structural information and detects the spatial distribution of the ICG-labeled macrophages inside the samples. ICG-assisted IVUP imaging can be a feasible imaging modality for the endoscopic detection of atherosclerotic plaques.
NASA Astrophysics Data System (ADS)
Huang, Guojia; Yuan, Yi; Xing, Da
2011-01-01
X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.
Rosman, David A; Duszak, Richard; Wang, Wenyi; Hughes, Danny R; Rosenkrantz, Andrew B
2018-02-01
The objective of our study was to use a new modality and body region categorization system to assess changing utilization of noninvasive diagnostic imaging in the Medicare fee-for-service population over a recent 20-year period (1994-2013). All Medicare Part B Physician Fee Schedule services billed between 1994 and 2013 were identified using Physician/Supplier Procedure Summary master files. Billed codes for diagnostic imaging were classified using the Neiman Imaging Types of Service (NITOS) coding system by both modality and body region. Utilization rates per 1000 beneficiaries were calculated for families of services. Among all diagnostic imaging modalities, growth was greatest for MRI (+312%) and CT (+151%) and was lower for ultrasound, nuclear medicine, and radiography and fluoroscopy (range, +1% to +31%). Among body regions, service growth was greatest for brain (+126%) and spine (+74%) imaging; showed milder growth (range, +18% to +67%) for imaging of the head and neck, breast, abdomen and pelvis, and extremity; and showed slight declines (range, -2% to -7%) for cardiac and chest imaging overall. The following specific imaging service families showed massive (> +100%) growth: cardiac CT, cardiac MRI, and breast MRI. NITOS categorization permits identification of temporal shifts in noninvasive diagnostic imaging by specific modality- and region-focused families, providing a granular understanding and reproducible analysis of global changes in imaging overall. Service family-level perspectives may help inform ongoing policy efforts to optimize imaging utilization and appropriateness.
Dalbeth, Nicola; Doyle, Anthony J
2012-12-01
The diverse clinical states and sites of pathology in gout provide challenges when considering the features apparent on imaging. Ideally, an imaging modality should capture all aspects of disease including monosodium urate crystal deposition, acute inflammation, tophus, tissue remodelling and complications of disease. The modalities used in gout include conventional radiography, ultrasonography, magnetic resonance imaging, computed tomography and dual-energy computed tomography. This review discusses the role of each of these imaging modalities in gout, focussing on the imaging characteristics, role in gout diagnosis and role for disease monitoring. Ultrasonography and dual-energy computed tomography are particularly promising methods for both non-invasive diagnosis and monitoring of disease. The observation that ultrasonographic appearances of monosodium urate crystal deposition can be observed in patients with hyperuricaemia but no other clinical features of gout raises important questions about disease definitions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Imaging for percutaneous renal access and management of renal calculi.
Park, Sangtae; Pearle, Margaret S
2006-08-01
Percutaneous renal stone surgery requires detailed imaging to define stone burden and delineate the anatomy of the kidney and nearby organs. It is also essential to carry out safe percutaneous access and to assess postoperative outcomes. The emergence of CT as the imaging modality of choice for detecting renal calculi and the ability of CT urography with or without three-dimensional reconstruction to delineate the collecting system makes this the most versatile and sensitive imaging modality for pre- and postoperative evaluation. At present, intravenous urogram continues to play an important role in the evaluation of patients considered for percutaneous nephrostolithotomy. Fluoroscopy re-mains the mainstay of intraoperative imaging, although ultrasound is a useful alternative. Selection and application of appropriate imaging modalities for patients undergoing per-cutaneous nephrostolithotomy enhances the safety and success of the procedure.
Seeing cilia: imaging modalities for ciliary motion and clinical connections.
Peabody, Jacelyn E; Shei, Ren-Jay; Bermingham, Brent M; Phillips, Scott E; Turner, Brett; Rowe, Steven M; Solomon, George M
2018-06-01
The respiratory tract is lined with multiciliated epithelial cells that function to move mucus and trapped particles via the mucociliary transport apparatus. Genetic and acquired ciliopathies result in diminished mucociliary clearance, contributing to disease pathogenesis. Recent innovations in imaging technology have advanced our understanding of ciliary motion in health and disease states. Application of imaging modalities including transmission electron microscopy, high-speed video microscopy, and micron-optical coherence tomography could improve diagnostics and be applied for precision medicine. In this review, we provide an overview of ciliary motion, imaging modalities, and ciliopathic diseases of the respiratory system including primary ciliary dyskinesia, cystic fibrosis, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis.
NASA Astrophysics Data System (ADS)
Peter, Jörg; Semmler, Wolfhard
2007-10-01
Alongside and in part motivated by recent advances in molecular diagnostics, the development of dual-modality instruments for patient and dedicated small animal imaging has gained attention by diverse research groups. The desire for such systems is high not only to link molecular or functional information with the anatomical structures, but also for detecting multiple molecular events simultaneously at shorter total acquisition times. While PET and SPECT have been integrated successfully with X-ray CT, the advance of optical imaging approaches (OT) and the integration thereof into existing modalities carry a high application potential, particularly for imaging small animals. A multi-modality Monte Carlo (MC) simulation approach at present has been developed that is able to trace high-energy (keV) as well as optical (eV) photons concurrently within identical phantom representation models. We show that the involved two approaches for ray-tracing keV and eV photons can be integrated into a unique simulation framework which enables both photon classes to be propagated through various geometry models representing both phantoms and scanners. The main advantage of such integrated framework for our specific application is the investigation of novel tomographic multi-modality instrumentation intended for in vivo small animal imaging through time-resolved MC simulation upon identical phantom geometries. Design examples are provided for recently proposed SPECT-OT and PET-OT imaging systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakshminarayan, Raghuram, E-mail: raghuram.lakshminarayan@hey.nhs.u; Simpson, James O.; Ettles, Duncan F., E-mail: Duncan.Ettles@hey.nhs.u
Magnetic resonance angiography (MRA) has become an established imaging modality in the management of lower-limb arterial disease, with emerging roles in treatment planning and follow-up. Contrast-enhanced MRA is now the most widely used technique with clinically acceptable results in the majority of patients. Difficulties in imaging and image interpretation are recognised in certain subgroups, including patients with critical limb ischaemia as well as patients with stents. Although newer contrast agents and refined imaging protocols may offer some solutions to these problems, this optimism is balanced by concerns about the toxicity of certain gadolinium chelates. Further development of interventional MRA remainsmore » one of the most significant challenges in the development of magnetic resonance imaging-guided peripheral vascular intervention. The status of MRA in managing patients with lower-limb arterial disease in current clinical practice is reviewed.« less
Non-invasive molecular imaging for preclinical cancer therapeutic development
O'Farrell, AC; Shnyder, SD; Marston, G; Coletta, PL; Gill, JH
2013-01-01
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development. PMID:23488622
Combined semantic and similarity search in medical image databases
NASA Astrophysics Data System (ADS)
Seifert, Sascha; Thoma, Marisa; Stegmaier, Florian; Hammon, Matthias; Kramer, Martin; Huber, Martin; Kriegel, Hans-Peter; Cavallaro, Alexander; Comaniciu, Dorin
2011-03-01
The current diagnostic process at hospitals is mainly based on reviewing and comparing images coming from multiple time points and modalities in order to monitor disease progression over a period of time. However, for ambiguous cases the radiologist deeply relies on reference literature or second opinion. Although there is a vast amount of acquired images stored in PACS systems which could be reused for decision support, these data sets suffer from weak search capabilities. Thus, we present a search methodology which enables the physician to fulfill intelligent search scenarios on medical image databases combining ontology-based semantic and appearance-based similarity search. It enabled the elimination of 12% of the top ten hits which would arise without taking the semantic context into account.
Jia, Qiang; Meng, Zhaowei; Tan, Jian; Zhang, Guizhi; He, Yajing; Sun, Haoran; Yu, Chunshui; Li, Dong; Zheng, Wei; Wang, Renfei; Wang, Shen; Li, Xue; Zhang, Jianping; Hu, Tianpeng; Liu, N A; Upadhyaya, Arun
2015-11-01
Iodine-131 (I-131) therapy and post-therapy I-131 scanning are essential in the management of differentiated thyroid cancer (DTC). However, pathological false positive I-131 scans can lead to misdiagnosis and inappropriate I-131 treatment. This retrospective study aimed to investigate the best imaging modality for the diagnosis of pathological false positive I-131 scans in a DTC patient cohort, and to determine its incidence. DTC patient data archived from January 2008 to January 2010 was retrieved. Post-therapeutic I-131 scans were conducted and interpreted. The imaging modalities of magnetic resonance imaging (MRI), computed tomography and ultrasonography were applied and compared to check all suspected lesions. Biopsy or needle aspiration was conducted for patients who consented to the acquisition of histopathological confirmation. Data for 156 DTC patients were retrieved. Only 6 cases of pathological false-positives were found among these (incidence, 3.85%), which included 3 cases of thymic hyperplasia in the mediastinum, 1 case of pleomorphic adenoma in the parapharyngeal space and 1 case of thyroglossal duct cyst in the neck. MRI was demonstrated as the best imaging modality for diagnosis due to its superior soft tissue resolution. However, no imaging modality was able to identify the abdominal false positive-lesions observed in 2 cases, one of whom also had thymic hyperplasia. In conclusion, pathological false positive I-131 scans occurred with an incidence of 3.85%. MRI was the best imaging modality for diagnosing these pathological false-positives.
Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies.
Uslu, Lebriz; Donig, Jessica; Link, Michael; Rosenberg, Jarrett; Quon, Andrew; Daldrup-Link, Heike E
2015-02-01
Successful management of solid tumors in children requires imaging tests for accurate disease detection, characterization, and treatment monitoring. Technologic developments aim toward the creation of integrated imaging approaches that provide a comprehensive diagnosis with a single visit. These integrated diagnostic tests not only are convenient for young patients but also save direct and indirect health-care costs by streamlining procedures, minimizing hospitalizations, and minimizing lost school or work time for children and their parents. (18)F-FDG PET/CT is a highly sensitive and specific imaging modality for whole-body evaluation of pediatric malignancies. However, recent concerns about ionizing radiation exposure have led to a search for alternative imaging methods, such as whole-body MR imaging and PET/MR. As we develop new approaches for tumor staging, it is important to understand current benchmarks. This review article will synthesize the current literature on (18)F-FDG PET/CT for tumor staging in children, summarizing questions that have been solved and providing an outlook on unsolved avenues. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences
NASA Astrophysics Data System (ADS)
Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.
2015-03-01
3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.
The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.
Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio
2013-06-01
The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.
Optical coherence tomography for embryonic imaging: a review
Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503
NASA Astrophysics Data System (ADS)
Guan, Huifeng; Anastasio, Mark A.
2017-03-01
It is well-known that properly designed image reconstruction methods can facilitate reductions in imaging doses and data-acquisition times in tomographic imaging. The ability to do so is particularly important for emerging modalities such as differential X-ray phase-contrast tomography (D-XPCT), which are currently limited by these factors. An important application of D-XPCT is high-resolution imaging of biomedical samples. However, reconstructing high-resolution images from few-view tomographic measurements remains a challenging task. In this work, a two-step sub-space reconstruction strategy is proposed and investigated for use in few-view D-XPCT image reconstruction. It is demonstrated that the resulting iterative algorithm can mitigate the high-frequency information loss caused by data incompleteness and produce images that have better preserved high spatial frequency content than those produced by use of a conventional penalized least squares (PLS) estimator.
Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo
Yang, Joon-Mo; Favazza, Christopher; Chen, Ruimin; Yao, Junjie; Cai, Xin; Maslov, Konstantin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.
2013-01-01
Presently, clinicians routinely apply ultrasound endoscopy in a variety of interventional procedures which provide treatment solutions for diseased organs. Ultrasound endoscopy not only produces high resolution images, it is also safe for clinical use and broadly applicable. However, for soft tissue imaging, its mechanical wave-based image contrast fundamentally limits its ability to provide physiologically-specific functional information. By contrast, photoacoustic endoscopy possesses a unique combination of functional optical contrast and high spatial resolution at clinically-relevant depths, ideal for soft tissue imaging. With these attributes, photoacoustic endoscopy can overcome the current limitations of ultrasound endoscopy. Moreover, the benefits of photoacoustic imaging do not come at the expense of existing ultrasound functions; photoacoustic endoscopy systems are inherently compatible with ultrasound imaging, enabling multi-modality imaging with complementary contrast. Here, we present simultaneous photoacoustic and ultrasonic dual-mode endoscopy and demonstrate its ability to image internal organs in vivo, illustrating its potential clinical application. PMID:22797808
NASA Astrophysics Data System (ADS)
Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping
2014-03-01
Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.
A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system
NASA Astrophysics Data System (ADS)
Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun
2017-09-01
Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.
New false color mapping for image fusion
NASA Astrophysics Data System (ADS)
Toet, Alexander; Walraven, Jan
1996-03-01
A pixel-based color-mapping algorithm is presented that produces a fused false color rendering of two gray-level images representing different sensor modalities. The resulting images have a higher information content than each of the original images and retain sensor-specific image information. The unique component of each image modality is enhanced in the resulting fused color image representation. First, the common component of the two original input images is determined. Second, the common component is subtracted from the original images to obtain the unique component of each image. Third, the unique component of each image modality is subtracted from the image of the other modality. This step serves to enhance the representation of sensor-specific details in the final fused result. Finally, a fused color image is produced by displaying the images resulting from the last step through, respectively, the red and green channels of a color display. The method is applied to fuse thermal and visual images. The results show that the color mapping enhances the visibility of certain details and preserves the specificity of the sensor information. The fused images also have a fairly natural appearance. The fusion scheme involves only operations on corresponding pixels. The resolution of a fused image is therefore directly related to the resolution of the input images. Before fusing, the contrast of the images can be enhanced and their noise can be reduced by standard image- processing techniques. The color mapping algorithm is computationally simple. This implies that the investigated approaches can eventually be applied in real time and that the hardware needed is not too complicated or too voluminous (an important consideration when it has to fit in an airplane, for instance).
Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong
2017-01-01
Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390
Whole-body diffusion-weighted MR image stitching and alignment to anatomical MRI
NASA Astrophysics Data System (ADS)
Ceranka, Jakub; Polfliet, Mathias; Lecouvet, Frederic; Michoux, Nicolas; Vandemeulebroucke, Jef
2017-02-01
Whole-body diffusion-weighted (WB-DW) MRI in combination with anatomical MRI has shown a great poten- tial in bone and soft tissue tumour detection, evaluation of lymph nodes and treatment response assessment. Because of the vast body coverage, whole-body MRI is acquired in separate stations, which are subsequently combined into a whole-body image. However, inter-station and inter-modality image misalignments can occur due to image distortions and patient motion during acquisition, which may lead to inaccurate representations of patient anatomy and hinder visual assessment. Automated and accurate whole-body image formation and alignment of the multi-modal MRI images is therefore crucial. We investigated several registration approaches for the formation or stitching of the whole-body image stations, followed by a deformable alignment of the multi- modal whole-body images. We compared a pairwise approach, where diffusion-weighted (DW) image stations were sequentially aligned to a reference station (pelvis), to a groupwise approach, where all stations were simultaneously mapped to a common reference space while minimizing the overall transformation. For each, a choice of input images and corresponding metrics was investigated. Performance was evaluated by assessing the quality of the obtained whole-body images, and by verifying the accuracy of the alignment with whole-body anatomical sequences. The groupwise registration approach provided the best compromise between the formation of WB- DW images and multi-modal alignment. The fully automated method was found to be robust, making its use in the clinic feasible.
Data integration: Combined imaging and electrophysiology data in the cloud.
Kini, Lohith G; Davis, Kathryn A; Wagenaar, Joost B
2016-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file formats. IEEG.org provides high- and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. Copyright © 2015 Elsevier Inc. All rights reserved.
Data integration: Combined Imaging and Electrophysiology data in the cloud
Kini, Lohith G.; Davis, Kathryn A.; Wagenaar, Joost B.
2015-01-01
There has been an increasing effort to correlate electrophysiology data with imaging in patients with refractory epilepsy over recent years. IEEG.org provides a free-access, rapidly growing archive of imaging data combined with electrophysiology data and patient metadata. It currently contains over 1200 human and animal datasets, with multiple data modalities associated with each dataset (neuroimaging, EEG, EKG, de-identified clinical and experimental data, etc.). The platform is developed around the concept that scientific data sharing requires a flexible platform that allows sharing of data from multiple file-formats. IEEG.org provides high and low-level access to the data in addition to providing an environment in which domain experts can find, visualize, and analyze data in an intuitive manner. Here, we present a summary of the current infrastructure of the platform, available datasets and goals for the near future. PMID:26044858
Real-time dynamic display of registered 4D cardiac MR and ultrasound images using a GPU
NASA Astrophysics Data System (ADS)
Zhang, Q.; Huang, X.; Eagleson, R.; Guiraudon, G.; Peters, T. M.
2007-03-01
In minimally invasive image-guided surgical interventions, different imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and real-time three-dimensional (3D) ultrasound (US), can provide complementary, multi-spectral image information. Multimodality dynamic image registration is a well-established approach that permits real-time diagnostic information to be enhanced by placing lower-quality real-time images within a high quality anatomical context. For the guidance of cardiac procedures, it would be valuable to register dynamic MRI or CT with intraoperative US. However, in practice, either the high computational cost prohibits such real-time visualization of volumetric multimodal images in a real-world medical environment, or else the resulting image quality is not satisfactory for accurate guidance during the intervention. Modern graphics processing units (GPUs) provide the programmability, parallelism and increased computational precision to begin to address this problem. In this work, we first outline our research on dynamic 3D cardiac MR and US image acquisition, real-time dual-modality registration and US tracking. Then we describe image processing and optimization techniques for 4D (3D + time) cardiac image real-time rendering. We also present our multimodality 4D medical image visualization engine, which directly runs on a GPU in real-time by exploiting the advantages of the graphics hardware. In addition, techniques such as multiple transfer functions for different imaging modalities, dynamic texture binding, advanced texture sampling and multimodality image compositing are employed to facilitate the real-time display and manipulation of the registered dual-modality dynamic 3D MR and US cardiac datasets.
CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction
Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.
2012-01-01
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons. PMID:23032638
ACR Appropriateness Criteria® Suspected Liver Metastases.
Kaur, Harmeet; Hindman, Nicole M; Al-Refaie, Waddah B; Arif-Tiwari, Hina; Cash, Brooks D; Chernyak, Victoria; Farrell, James; Grajo, Joseph R; Horowitz, Jeanne M; McNamara, Michelle M; Noto, Richard B; Qayyum, Aliya; Lalani, Tasneem; Kamel, Ihab R
2017-05-01
Liver metastases are the most common malignant liver tumors. The accurate and early detection and characterization of liver lesions is the key to successful treatment strategies. Increasingly, surgical resection in combination with chemotherapy is effective in significantly improving survival if all metastases are successfully resected. MRI and multiphase CT are the primary imaging modalities in the assessment of liver metastasis, with the relative preference toward multiphase CT or MRI depending upon the clinical setting (ie, surveillance or presurgical planning). The optimization of imaging parameters is a vital factor in the success of either modality. PET/CT, intraoperative ultrasound are used to supplement CT and MRI. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer-reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Radiographic Diagnosis of Pincer-Type Femoroacetabular Impingement: A Systematic Review.
Rhee, Chanseok; Le Francois, Tina; Byrd, J W Thomas; Glazebrook, Mark; Wong, Ivan
2017-05-01
Femoroacetabular impingement (FAI) is a well-recognized condition that causes hip pain and can lead to early osteoarthritis if not managed properly. With the increasing awareness and efficacy of operative treatments for pincer-type FAI, there is a need for consensus on the standardized radiographic diagnosis. To perform a systematic review of the evidence regarding imaging modalities and radiographic signs for diagnosing pincer-type FAI. Systematic review; Level of evidence, 4. A literature review was performed in 2016 using the Cochrane, PubMed, and Embase search engines. All articles focusing on a radiographic diagnosis of pincer-type FAI were reviewed. Each of the included 44 articles was assigned the appropriate level of evidence, and the particular radiographic marker and/or type of imaging were also summarized. There were 44 studies included in the final review. Most of the articles were level 4 evidence (26 articles), and there were 12 level 3 and 6 level 2 articles. The crossover sign was the most commonly used radiographic sign (27/44) followed by the lateral center-edge angle (22/44). Anteroposterior (AP) pelvis plain radiographs were the most commonly used imaging modality (33 studies). Poor-quality evidence exists in support of most currently used radiographic markers, including the crossover sign, lateral center-edge angle, posterior wall sign, ischial spine sign, coxa profunda, acetabular protrusion, and acetabular index. There is poor-quality conflicting evidence regarding the use of the herniation pit to diagnose pincer-type FAI. Some novel measurements, such as β-angle, acetabular roof ratio, and acetabular retroversion index, have been proposed, but they also lack support from the literature. No strong evidence exists to support a single best set of current radiographic markers for the diagnosis of pincer-type FAI, largely due to the lack of better quality trials (levels 1 and 2) that compare conventional radiographic findings with the gold standard, which is the intraoperative findings. More sophisticated imaging modalities such as computed tomography and magnetic resonance arthrography are often needed to diagnose pincer-type FAI, and these investigations are relatively accurate in assessing labral pathology or cartilage damage.
Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies
NASA Astrophysics Data System (ADS)
Scarfe, Lauren; Brillant, Nathalie; Kumar, J. Dinesh; Ali, Noura; Alrumayh, Ahmed; Amali, Mohammed; Barbellion, Stephane; Jones, Vendula; Niemeijer, Marije; Potdevin, Sophie; Roussignol, Gautier; Vaganov, Anatoly; Barbaric, Ivana; Barrow, Michael; Burton, Neal C.; Connell, John; Dazzi, Francesco; Edsbagge, Josefina; French, Neil S.; Holder, Julie; Hutchinson, Claire; Jones, David R.; Kalber, Tammy; Lovatt, Cerys; Lythgoe, Mark F.; Patel, Sara; Patrick, P. Stephen; Piner, Jacqueline; Reinhardt, Jens; Ricci, Emanuelle; Sidaway, James; Stacey, Glyn N.; Starkey Lewis, Philip J.; Sullivan, Gareth; Taylor, Arthur; Wilm, Bettina; Poptani, Harish; Murray, Patricia; Goldring, Chris E. P.; Park, B. Kevin
2017-10-01
Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo.
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations.
Shuster, Anastasia; Levy, Dino J
2018-01-01
Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing.
Common Sense in Choice: The Effect of Sensory Modality on Neural Value Representations
2018-01-01
Abstract Although it is well established that the ventromedial prefrontal cortex (vmPFC) represents value using a common currency across categories of rewards, it is unknown whether the vmPFC represents value irrespective of the sensory modality in which alternatives are presented. In the current study, male and female human subjects completed a decision-making task while their neural activity was recorded using functional magnetic resonance imaging. On each trial, subjects chose between a safe alternative and a lottery, which was presented visually or aurally. A univariate conjunction analysis revealed that the anterior portion of the vmPFC tracks subjective value (SV) irrespective of the sensory modality. Using a novel cross-modality multivariate classifier, we were able to decode auditory value based on visual trials and vice versa. In addition, we found that the visual and auditory sensory cortices, which were identified using functional localizers, are also sensitive to the value of stimuli, albeit in a modality-specific manner. Whereas both primary and higher-order auditory cortices represented auditory SV (aSV), only a higher-order visual area represented visual SV (vSV). These findings expand our understanding of the common currency network of the brain and shed a new light on the interplay between sensory and value information processing. PMID:29619408
Application and Utility of iPads in Pediatric Tele-echocardiography.
Colombo, Jamie N; Seckeler, Michael D; Barber, Brent J; Krupinski, Elizabeth A; Weinstein, Ronald S; Sisk, David; Lax, Daniela
2016-05-01
Telemedicine is used with increasing frequency to improve patient care in remote areas. The interpretation of medical imaging on iPad(®) (Apple, Cupertino, CA) tablets has been reported to be accurate. There are no studies on the use of iPads for interpretation of pediatric echocardiograms. We compared the quality of echo images, diagnostic accuracy, and review time using three different modalities: remote access on an iPad Air (iPad), remote access via a computer (Remote), and direct access on a computer linked through Ethernet to the server, the "gold standard" (Direct). Fifty consecutive archived pediatric echocardiograms were interpreted using the three modalities. Studies were analyzed blindly by three pediatric cardiologists; review time, diagnostic accuracy, and image quality were documented. Diagnostic accuracy was assessed by comparing the study diagnoses with the official diagnosis in the patient's chart. Discrepancies between diagnoses were graded as major (more than one grade difference) or minor (one grade difference in severity of lesion). There were no significant differences in accuracy among the three modalities. There was one major discrepancy (size of patent ductus arteriosus); all others were minor, hemodynamically insignificant. Image quality ratings were better for iPad than Remote; Direct had the highest ratings. Review times (mean [standard deviation] minutes) were longest for iPad (5.89 [3.87]) and then Remote (4.72 [2.69]), with Direct having the shortest times (3.52 [1.42]) (p < 0.0001). Pediatric echocardiograms can be interpreted using convenient, portable devices while preserving accuracy and quality with slightly longer review times (1-2 min). These findings are important in the current era of increasing need for mobile health.
NASA Astrophysics Data System (ADS)
Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.
2016-04-01
High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.
NASA Astrophysics Data System (ADS)
Fard, Ali M.; Gardecki, Joseph A.; Ughi, Giovanni J.; Hyun, Chulho; Tearney, Guillermo J.
2016-02-01
Intravascular optical coherence tomography (OCT) is a high-resolution catheter-based imaging method that provides three-dimensional microscopic images of coronary artery in vivo, facilitating coronary artery disease treatment decisions based on detailed morphology. Near-infrared spectroscopy (NIRS) has proven to be a powerful tool for identification of lipid-rich plaques inside the coronary walls. We have recently demonstrated a dual-modality intravascular imaging technology that integrates OCT and NIRS into one imaging catheter using a two-fiber arrangement and a custom-made dual-channel fiber rotary junction. It therefore enables simultaneous acquisition of microstructural and composition information at 100 frames/second for improved diagnosis of coronary lesions. The dual-modality OCT-NIRS system employs a single wavelength-swept light source for both OCT and NIRS modalities. It subsequently uses a high-speed photoreceiver to detect the NIRS spectrum in the time domain. Although use of one light source greatly simplifies the system configuration, such light source exhibits pulse-to-pulse wavelength and intensity variation due to mechanical scanning of the wavelength. This can be in particular problematic for NIRS modality and sacrifices the reliability of the acquired spectra. In order to address this challenge, here we developed a robust data acquisition and processing method that compensates for the spectral variations of the wavelength-swept light source. The proposed method extracts the properties of the light source, i.e., variation period and amplitude from a reference spectrum and subsequently calibrates the NIRS datasets. We have applied this method on datasets obtained from cadaver human coronary arteries using a polygon-scanning (1230-1350nm) OCT system, operating at 100,000 sweeps per second. The results suggest that our algorithm accurately and robustly compensates the spectral variations and visualizes the dual-modality OCT-NIRS images. These findings are therefore crucial for the practical application and clinical translation of dual-modality intravascular OCT-NIRS imaging when the same swept sources are used for both OCT and spectroscopy.
Neural network fusion: a novel CT-MR aortic aneurysm image segmentation method
NASA Astrophysics Data System (ADS)
Wang, Duo; Zhang, Rui; Zhu, Jin; Teng, Zhongzhao; Huang, Yuan; Spiga, Filippo; Du, Michael Hong-Fei; Gillard, Jonathan H.; Lu, Qingsheng; Liò, Pietro
2018-03-01
Medical imaging examination on patients usually involves more than one imaging modalities, such as Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography(PET) imaging. Multimodal imaging allows examiners to benefit from the advantage of each modalities. For example, for Abdominal Aortic Aneurysm, CT imaging shows calcium deposits in the aorta clearly while MR imaging distinguishes thrombus and soft tissues better.1 Analysing and segmenting both CT and MR images to combine the results will greatly help radiologists and doctors to treat the disease. In this work, we present methods on using deep neural network models to perform such multi-modal medical image segmentation. As CT image and MR image of the abdominal area cannot be well registered due to non-affine deformations, a naive approach is to train CT and MR segmentation network separately. However, such approach is time-consuming and resource-inefficient. We propose a new approach to fuse the high-level part of the CT and MR network together, hypothesizing that neurons recognizing the high level concepts of Aortic Aneurysm can be shared across multiple modalities. Such network is able to be trained end-to-end with non-registered CT and MR image using shorter training time. Moreover network fusion allows a shared representation of Aorta in both CT and MR images to be learnt. Through experiments we discovered that for parts of Aorta showing similar aneurysm conditions, their neural presentations in neural network has shorter distances. Such distances on the feature level is helpful for registering CT and MR image.
Magnetomotive Molecular Nanoprobes
John, Renu; Boppart, Stephen A.
2012-01-01
Tremendous developments in the field of biomedical imaging in the past two decades have resulted in the transformation of anatomical imaging to molecular-specific imaging. The main approaches towards imaging at a molecular level are the development of high resolution imaging modalities with high penetration depths and increased sensitivity, and the development of molecular probes with high specificity. The development of novel molecular contrast agents and their success in molecular optical imaging modalities have lead to the emergence of molecular optical imaging as a more versatile and capable technique for providing morphological, spatial, and functional information at the molecular level with high sensitivity and precision, compared to other imaging modalities. In this review, we discuss a new class of dynamic contrast agents called magnetomotive molecular nanoprobes for molecular-specific imaging. Magnetomotive agents are superparamagnetic nanoparticles, typically iron-oxide, that are physically displaced by the application of a small modulating external magnetic field. Dynamic phase-sensitive position measurements are performed using any high resolution imaging modality, including optical coherence tomography (OCT), ultrasonography, or magnetic resonance imaging (MRI). The dynamics of the magnetomotive agents can be used to extract the biomechanical tissue properties in which the nanoparticles are bound, and the agents can be used to deliver therapy via magnetomotive displacements to modulate or disrupt cell function, or hyperthermia to kill cells. These agents can be targeted via conjugation to antibodies, and in vivo targeted imaging has been shown in a carcinogen-induced rat mammary tumor model. The iron-oxide nanoparticles also exhibit negative T2 contrast in MRI, and modulations can produce ultrasound imaging contrast for multimodal imaging applications. PMID:21517766
NASA Astrophysics Data System (ADS)
Carbary-Ganz, Jordan L.; Welge, Weston A.; Barton, Jennifer K.; Utzinger, Urs
2015-09-01
Optical coherence tomography/laser induced fluorescence (OCT/LIF) dual-modality imaging allows for minimally invasive, nondestructive endoscopic visualization of colorectal cancer in mice. This technology enables simultaneous longitudinal tracking of morphological (OCT) and biochemical (fluorescence) changes as colorectal cancer develops, compared to current methods of colorectal cancer screening in humans that rely on morphological changes alone. We have shown that QDot655 targeted to vascular endothelial growth factor receptor 2 (QD655-VEGFR2) can be applied to the colon of carcinogen-treated mice and provides significantly increased contrast between the diseased and undiseased tissue with high sensitivity and specificity ex vivo. QD655-VEGFR2 was used in a longitudinal in vivo study to investigate the ability to correlate fluorescence signal to tumor development. QD655-VEGFR2 was applied to the colon of azoxymethane (AOM-) or saline-treated control mice in vivo via lavage. OCT/LIF images of the distal colon were taken at five consecutive time points every three weeks after the final AOM injection. Difficulties in fully flushing unbound contrast agent from the colon led to variable background signal; however, a spatial correlation was found between tumors identified in OCT images, and high fluorescence intensity of the QD655 signal, demonstrating the ability to detect VEGFR2 expressing tumors in vivo.
Nagaya, Tadanobu; Nakamura, Yu A.; Choyke, Peter L.; Kobayashi, Hisataka
2017-01-01
Surgical resection of cancer remains an important treatment modality. Despite advances in preoperative imaging, surgery itself is primarily guided by the surgeon’s ability to locate pathology with conventional white light imaging. Fluorescence-guided surgery (FGS) can be used to define tumor location and margins during the procedure. Intraoperative visualization of tumors may not only allow more complete resections but also improve safety by avoiding unnecessary damage to normal tissue which can also reduce operative time and decrease the need for second-look surgeries. A number of new FGS imaging probes have recently been developed, complementing a small but useful number of existing probes. In this review, we describe current and new fluorescent probes that may assist FGS. PMID:29312886
2015-12-01
Xiang, L Xing, “ X - Ray Fluorescence CT as a Novel Imaging Modality for Improved Radiation Therapy Target Delineation”, Presented at 56th Annual Meeting... Imaging and Sensing, 1: 18-22 (2014). Moiz Ahmad, Magdalena Bazalova, Liangzhong Xiang, and Lei Xing, Order of magnitude sensitivity increase in x - ray ...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The goals of this training grant is to develop the foundations for a new medical imaging modality, now
An overview of contemporary nuclear cardiology.
Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G
2004-01-01
Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.
Diagnostic imaging of the lower genitourinary tract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rifkin, M.D.
1985-01-01
Dr. Rifkin analyzes the relative merits of ultrasound, computed tomography, magnetic resonance imaging, nuclear medicine, and radiography. He correlates ultrasound findings with those of computed tomography, radiography, and nuclear medicine and assesses the potential benefits of magnetic resonance imaging as compared with ultrasound and other imaging modalities. Each imaging modality is discussed in terms of its role as the primary, secondary, or complementary study for diagnoses involving the urinary bladder and perivesical spaces, the prostate and seminal vesicles, the urethra and penis, and the scrotal sac.
Zhang, Jimei; Li, Chan; Zhang, Xu; Huo, Shuaidong; Jin, Shubin; An, Fei-Fei; Wang, Xiaodan; Xue, Xiangdong; Okeke, C I; Duan, Guiyun; Guo, Fengguang; Zhang, Xiaohong; Hao, Jifu; Wang, Paul C; Zhang, Jinchao; Liang, Xing-Jie
2015-02-01
As an intensely studied computed tomography (CT) contrast agent, gold nanoparticle has been suggested to be combined with fluorescence imaging modality to offset the low sensitivity of CT. However, the strong quenching of gold nanoparticle on fluorescent dyes requires complicated design and shielding to overcome. Herein, we report a unique nanoprobe (M-NPAPF-Au) co-loading an aggregation-induced emission (AIE) red dye and gold nanoparticles into DSPE-PEG(2000) micelles for dual-modal fluorescence/CT imaging. The nanoprobe was prepared based on a facile method of "one-pot ultrasonic emulsification". Surprisingly, in the micelles system, fluorescence dye (NPAPF) efficiently overcame the strong fluorescence quenching of shielding-free gold nanoparticles and retained the crucial AIE feature. In vivo studies demonstrated the nanoprobe had superior tumor-targeting ability, excellent fluorescence and CT imaging effects. The totality of present studies clearly indicates the significant potential application of M-NPAPF-Au as a dual-modal non-invasive fluorescence/X-ray CT nanoprobe for in vivo tumor-targeted imaging and diagnosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia
2015-10-01
eyes and image choroidal vessels/capillaries using CARS intravital microscopy Subtask 3: Measure oxy-hemoglobin levels in PBI test and control eyes...AWARD NUMBER: W81XWH-14-1-0537 TITLE: Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia...4. TITLE AND SUBTITLE Mobile, Multimodal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia 5a. CONTRACT NUMBER W81XWH
Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu
2014-09-01
Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Brain Imaging in Alzheimer Disease
Johnson, Keith A.; Fox, Nick C.; Sperling, Reisa A.; Klunk, William E.
2012-01-01
Imaging has played a variety of roles in the study of Alzheimer disease (AD) over the past four decades. Initially, computed tomography (CT) and then magnetic resonance imaging (MRI) were used diagnostically to rule out other causes of dementia. More recently, a variety of imaging modalities including structural and functional MRI and positron emission tomography (PET) studies of cerebral metabolism with fluoro-deoxy-d-glucose (FDG) and amyloid tracers such as Pittsburgh Compound-B (PiB) have shown characteristic changes in the brains of patients with AD, and in prodromal and even presymptomatic states that can help rule-in the AD pathophysiological process. No one imaging modality can serve all purposes as each have unique strengths and weaknesses. These modalities and their particular utilities are discussed in this article. The challenge for the future will be to combine imaging biomarkers to most efficiently facilitate diagnosis, disease staging, and, most importantly, development of effective disease-modifying therapies. PMID:22474610
Non-invasive assessment of low- and intermediate-risk patients with chest pain
Balfour, Pelbreton C.; Gonzalez, Jorge A.; Kramer, Christopher M.
2016-01-01
Coronary artery disease (CAD) remains a significant global public health burden despite advancements in prevention and therapeutic strategies. Common non-invasive imaging modalities, anatomic and functional, are available for the assessment of patients with stable chest pain. Exercise electrocardiography is a long-standing method for evaluation for CAD and remains the initial test for the majority of patients who can exercise adequately with a baseline interpretable electrocardiogram. The addition of cardiac imaging to exercise testing provides incremental benefit for accurate diagnosis for CAD and is particularly useful in patients who are unable to exercise adequately and/or have uninterpretable electrocardiograms. Radionuclide myocardial perfusion imaging and echocardiography with exercise or pharmacological stress provide high sensitivity and specificity in the detection and further risk stratification of patients with CAD. Recently, coronary computed tomography angiography has demonstrated its growing role to rule out significant CAD given its high negative predictive value. Although less available, stress cardiac magnetic resonance provides a comprehensive assessment of cardiac structure and function and provides a high diagnostic accuracy in the detection of CAD. The utilization of non-invasive testing is complex due to various advantages and limitations, particularly in the assessment of low- and intermediate-risk patients with chest pain, where no single study is suitable for all patients. This review will describe currently available non-invasive modalities, along with current evidence-based guidelines and appropriate use criteria in the assessment of low- and intermediate-risk patients with suspected, stable CAD. PMID:27717538
Nanoparticles for Imaging, Sensing, and Therapeutic Intervention
2014-01-01
Nanoparticles have the potential to contribute to new modalities in molecular imaging and sensing as well as in therapeutic interventions. In this Nano Focus article, we identify some of the current challenges and knowledge gaps that need to be confronted to accelerate the developments of various applications. Using specific examples, we journey from the characterization of these complex hybrid nanomaterials; continue with surface design and (bio)physicochemical properties, their fate in biological media and cells, and their potential for cancer treatment; and finally reflect on the role of animal models to predict their behavior in humans. PMID:24641589
NASA Astrophysics Data System (ADS)
Suzuki, Yuki; Fung, George S. K.; Shen, Zeyang; Otake, Yoshito; Lee, Okkyun; Ciuffo, Luisa; Ashikaga, Hiroshi; Sato, Yoshinobu; Taguchi, Katsuyuki
2017-03-01
Cardiac motion (or functional) analysis has shown promise not only for non-invasive diagnosis of cardiovascular diseases but also for prediction of cardiac future events. Current imaging modalities has limitations that could degrade the accuracy of the analysis indices. In this paper, we present a projection-based motion estimation method for x-ray CT that estimates cardiac motion with high spatio-temporal resolution using projection data and a reference 3D volume image. The experiment using a synthesized digital phantom showed promising results for motion analysis.
2015-01-01
Background Ehlers-Danlos syndrome (EDS) is an inherited disorder affecting the connective tissue. EDS can manifest with symptoms attributable to the spine or craniovertebral junction (CVJ). In addition to EDS, numerous congenital, developmental, or acquired disorders can increase ligamentous laxity in the CVJ and cervical spine. Resulting abnormalities can lead to morbidity and serious neurologic complications. Appropriate imaging and diagnosis is needed to determine patient management and need for complex surgery. Some spinal abnormalities cause symptoms or are more pronounced while patients sit, stand, or perform specific movements. Positional magnetic resonance imaging (pMRI) allows imaging of the spine or CVJ with patients in upright, weight-bearing positions and can be combined with dynamic maneuvers, such as flexion, extension, or rotation. Imaging in these positions could allow diagnosticians to better detect spinal or CVJ abnormalities than recumbent MRI or even a combination of other available imaging modalities might allow. Objectives To determine the diagnostic impact and clinical utility of pMRI for the assessment of (a) craniovertebral or spinal abnormalities among people with EDS and (b) major craniovertebral or cervical spine abnormalities among symptomatic people. Data Sources A literature search was performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, and EBM Reviews, for studies published from January 1, 1998, to September 28, 2014. Review Methods Studies comparing pMRI to recumbent MRI or other available imaging modalities for diagnosis and management of spinal or CVJ abnormalities were reviewed. All studies of spinal or CVJ imaging in people with EDS were included as well as studies among people with suspected major CVJ or cervical spine abnormalities (cervical or craniovertebral spine instability, basilar invagination, cranial settling, cervical stenosis, spinal cord compression, Chiari malformation). Results No studies were identified that met the inclusion criteria. Conclusions We did not identify any evidence that assessed the diagnostic impact or clinical utility of pMRI for (a) craniovertebral or spinal abnormalities among people with EDS or (b) major craniovertebral or cervical spine abnormalities among symptomatic people relative to currently available diagnostic modalities. PMID:26366238
A dedicated breast-PET/CT scanner: Evaluation of basic performance characteristics.
Raylman, Raymond R; Van Kampen, Will; Stolin, Alexander V; Gong, Wenbo; Jaliparthi, Gangadhar; Martone, Peter F; Smith, Mark F; Sarment, David; Clinthorne, Neal H; Perna, Mark
2018-04-01
Application of advanced imaging techniques, such as PET and x ray CT, can potentially improve detection of breast cancer. Unfortunately, both modalities have challenges in the detection of some lesions. The combination of the two techniques, however, could potentially lead to an overall improvement in diagnostic breast imaging. The purpose of this investigation is to test the basic performance of a new dedicated breast-PET/CT. The PET component consists of a rotating pair of detectors. Its performance was evaluated using the NEMA NU4-2008 protocols. The CT component utilizes a pulsed x ray source and flat panel detector mounted on the same gantry as the PET scanner. Its performance was assessed using specialized phantoms. The radiation dose to a breast during CT imaging was explored by the measurement of free-in-air kerma and air kerma measured at the center of a 16 cm-diameter PMMA cylinder. Finally, the combined capabilities of the system were demonstrated by imaging of a micro-hot-rod phantom. Overall, performance of the PET component is comparable to many pre-clinical and other dedicated breast-PET scanners. Its spatial resolution is 2.2 mm, 5 mm from the center of the scanner using images created with the single-sliced-filtered-backprojection algorithm. Peak NECR is 24.6 kcps; peak sensitivity is 1.36%; the scatter fraction is 27%. Spatial resolution of the CT scanner is 1.1 lp/mm at 10% MTF. The free-in-air kerma is 2.33 mGy, while the PMMA-air kerma is 1.24 mGy. Finally, combined imaging of a micro-hot-rod phantom illustrated the potential utility of the dual-modality images produced by the system. The basic performance characteristics of a new dedicated breast-PET/CT scanner are good, demonstrating that its performance is similar to current dedicated PET and CT scanners. The potential value of this system is the capability to produce combined duality-modality images that could improve detection of breast disease. The next stage in development of this system is testing with more advanced phantoms and human subjects. © 2018 American Association of Physicists in Medicine.
Vaquero, Juan José; Kinahan, Paul
2015-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges.
Hu, Gang; Li, Xu; He, Bin
2010-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced imaging modality for noninvasive electrical impedance imaging, with ultrasound imaging resolution and a contrast reflecting the electrical conductivity properties of tissues. However, previous MAT-MI systems can only image samples that are much more conductive than real human or animal tissues. To image real biological tissue samples, a large-current-carrying coil that can give stronger magnetic stimulations and stronger MAT-MI acoustic signals is employed in this study. The conductivity values of all the tissue samples employed in this study are also directly measured using a well calibrated four-electrode system. The experimental results demonstrated the feasibility to image biological tissues with electrical conductivity contrast below 1.0 S∕m using the MAT-MI technique with safe level of electromagnetic energy applied to tissue samples. PMID:20938494
Vaquero, Juan José; Kinahan, Paul
2017-01-01
Positron emission tomography (PET) imaging is based on detecting two time-coincident high-energy photons from the emission of a positron-emitting radioisotope. The physics of the emission, and the detection of the coincident photons, give PET imaging unique capabilities for both very high sensitivity and accurate estimation of the in vivo concentration of the radiotracer. PET imaging has been widely adopted as an important clinical modality for oncological, cardiovascular, and neurological applications. PET imaging has also become an important tool in preclinical studies, particularly for investigating murine models of disease and other small-animal models. However, there are several challenges to using PET imaging systems. These include the fundamental trade-offs between resolution and noise, the quantitative accuracy of the measurements, and integration with X-ray computed tomography and magnetic resonance imaging. In this article, we review how researchers and industry are addressing these challenges. PMID:26643024
Rhoades, Glendon W; Belev, George S; Chapman, L Dean; Wiebe, Sheldon P; Cooper, David M; Wong, Adelaine TF; Rosenberg, Alan M
2015-01-01
The objective of this project was to develop and test a new technology for imaging growing joints by means of diffraction-enhanced imaging (DEI) combined with CT and using a synchrotron radiation source. DEI–CT images of an explanted 4-wk-old piglet stifle joint were acquired by using a 40-keV beam. The series of scanned slices was later ‘stitched’ together, forming a 3D dataset. High-resolution DEI-CT images demonstrated fine detail within all joint structures and tissues. Striking detail of vasculature traversing between bone and cartilage, a characteristic of growing but not mature joints, was demonstrated. This report documents for the first time that DEI combined with CT and a synchrotron radiation source can generate more detailed images of intact, growing joints than can currently available conventional imaging modalities. PMID:26310464
NASA Astrophysics Data System (ADS)
Hu, Gang; Li, Xu; He, Bin
2010-09-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently introduced imaging modality for noninvasive electrical impedance imaging, with ultrasound imaging resolution and a contrast reflecting the electrical conductivity properties of tissues. However, previous MAT-MI systems can only image samples that are much more conductive than real human or animal tissues. To image real biological tissue samples, a large-current-carrying coil that can give stronger magnetic stimulations and stronger MAT-MI acoustic signals is employed in this study. The conductivity values of all the tissue samples employed in this study are also directly measured using a well calibrated four-electrode system. The experimental results demonstrated the feasibility to image biological tissues with electrical conductivity contrast below 1.0 S/m using the MAT-MI technique with safe level of electromagnetic energy applied to tissue samples.
Radioactive Nanomaterials for Multimodality Imaging
Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao
2016-01-01
Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167
Detecting breast microcalcifications using super-resolution ultrasound imaging: a clinical study
NASA Astrophysics Data System (ADS)
Huang, Lianjie; Labyed, Yassin; Hanson, Kenneth; Sandoval, Daniel; Pohl, Jennifer; Williamson, Michael
2013-03-01
Imaging breast microcalcifications is crucial for early detection and diagnosis of breast cancer. It is challenging for current clinical ultrasound to image breast microcalcifications. However, new imaging techniques using data acquired with a synthetic-aperture ultrasound system have the potential to significantly improve ultrasound imaging. We recently developed a super-resolution ultrasound imaging method termed the phase-coherent multiple-signal classification (PC-MUSIC). This signal subspace method accounts for the phase response of transducer elements to improve image resolution. In this paper, we investigate the clinical feasibility of our super-resolution ultrasound imaging method for detecting breast microcalcifications. We use our custom-built, real-time synthetic-aperture ultrasound system to acquire breast ultrasound data for 40 patients whose mammograms show the presence of breast microcalcifications. We apply our super-resolution ultrasound imaging method to the patient data, and produce clear images of breast calcifications. Our super-resolution ultrasound PC-MUSIC imaging with synthetic-aperture ultrasound data can provide a new imaging modality for detecting breast microcalcifications in clinic without using ionizing radiation.
Magnetic Resonance Spectroscopy: An Objective Modality to Identify the Pathology of Breast Neoplasms
1999-05-01
Zealand Journal or Surgery Appendix IV: Attached Manuscript published in Life Sciences Appendix V: Attached Figures 1-13 Appendix VI: Attached Tables 1... early diagnosis and effective management. The triage of mammography, clinical examination and fine needle aspiration biopsy is currently used to...identify early breast cancers. Magnetic resonance imaging (MRI) has now been added to select women with breast abnormalities requiring biopsy. However
[Research on non-rigid registration of multi-modal medical image based on Demons algorithm].
Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang
2014-02-01
Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.
Converging levels of analysis in the cognitive neuroscience of visual attention.
Duncan, J
1998-01-01
Experiments using behavioural, lesion, functional imaging and single neuron methods are considered in the context of a neuropsychological model of visual attention. According to this model, inputs compete for representation in multiple visually responsive brain systems, sensory and motor, cortical and subcortical. Competition is biased by advance priming of neurons responsive to current behavioural targets. Across systems competition is integrated such that the same, selected object tends to become dominant throughout. The behavioural studies reviewed concern divided attention within and between modalities. They implicate within-modality competition as one main restriction on concurrent stimulus identification. In contrast to the conventional association of lateral attentional focus with parietal lobe function, the lesion studies show attentional bias to be a widespread consequence of unilateral cortical damage. Although the clinical syndrome of unilateral neglect may indeed be associated with parietal lesions, this probably reflects an assortment of further deficits accompanying a simple attentional imbalance. The functional imaging studies show joint involvement of lateral prefrontal and occipital cortex in lateral attentional focus and competition. The single unit studies suggest how competition in several regions of extrastriate cortex is biased by advance priming of neurons responsive to current behavioural targets. Together, the concepts of competition, priming and integration allow a unified theoretical approach to findings from behavioural to single neuron levels. PMID:9770224
Imaging and machine learning techniques for diagnosis of Alzheimer's disease.
Mirzaei, Golrokh; Adeli, Anahita; Adeli, Hojjat
2016-12-01
Alzheimer's disease (AD) is a common health problem in elderly people. There has been considerable research toward the diagnosis and early detection of this disease in the past decade. The sensitivity of biomarkers and the accuracy of the detection techniques have been defined to be the key to an accurate diagnosis. This paper presents a state-of-the-art review of the research performed on the diagnosis of AD based on imaging and machine learning techniques. Different segmentation and machine learning techniques used for the diagnosis of AD are reviewed including thresholding, supervised and unsupervised learning, probabilistic techniques, Atlas-based approaches, and fusion of different image modalities. More recent and powerful classification techniques such as the enhanced probabilistic neural network of Ahmadlou and Adeli should be investigated with the goal of improving the diagnosis accuracy. A combination of different image modalities can help improve the diagnosis accuracy rate. Research is needed on the combination of modalities to discover multi-modal biomarkers.
Bhargavan, Mythreyi; Sunshine, Jonathan H; Hughes, Danny R
2011-11-01
Several limitations and deficiencies have been identified in existing studies of physician financial interest in imaging that show financial interest is associated with more imaging. We conducted extensive quantitative analysis of seven deficiencies that have been identified. Using Symmetry's Episode Grouper, we created episodes of care from all the 2004-2007 health care claims for a random 5% sample of Medicare fee-for-service beneficiaries. We compared utilization of imaging in nonhospital episodes having a nonradiologist physician who had a financial interest in imaging with utilization in episodes with no such physician. We studied 23 combinations of medical conditions with imaging modalities commonly used for these conditions. Across four different definitions of financial interest and the 23 combinations, the relative probability (risk ratio) of imaging was uniformly higher for episodes of physicians with a financial interest, predominantly at p < 0.001. The mean relative probability was 1.87. This mean was little affected by the definition of financial interest used or the definition of the physician deemed responsible for the imaging. Controlling for patient characteristics, illness severity, and physician specialty likewise had little effect. Physicians who had acquired a financial interest averaged a 49% increase in the odds of imaging relative to physicians who had not. Physicians with a financial interest in an imaging modality used other modalities more than did physicians without a financial interest in the index modality. The Deficit Reduction Act's 2007 payment reductions had little effect. A financial interest in imaging is associated with higher utilization, probably causally. Limiting nonradiologists' financial interest in imaging may be desirable.
Wang, Chang; Ren, Qiongqiong; Qin, Xin
2018-01-01
Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.
Wang, Chang; Ren, Qiongqiong; Qin, Xin; Yu, Yi
2018-01-01
Diffeomorphic demons can guarantee smooth and reversible deformation and avoid unreasonable deformation. However, the number of iterations needs to be set manually, and this greatly influences the registration result. In order to solve this problem, we proposed adaptive diffeomorphic multiresolution demons in this paper. We used an optimized framework with nonrigid registration and diffeomorphism strategy, designed a similarity energy function based on grey value, and stopped iterations adaptively. This method was tested by synthetic image and same modality medical image. Large deformation was simulated by rotational distortion and extrusion transform, medical image registration with large deformation was performed, and quantitative analyses were conducted using the registration evaluation indexes, and the influence of different driving forces and parameters on the registration result was analyzed. The registration results of same modality medical images were compared with those obtained using active demons, additive demons, and diffeomorphic demons. Quantitative analyses showed that the proposed method's normalized cross-correlation coefficient and structural similarity were the highest and mean square error was the lowest. Medical image registration with large deformation could be performed successfully; evaluation indexes remained stable with an increase in deformation strength. The proposed method is effective and robust, and it can be applied to nonrigid registration of same modality medical images with large deformation.
Multi-modality molecular imaging: pre-clinical laboratory configuration
NASA Astrophysics Data System (ADS)
Wu, Yanjun; Wellen, Jeremy W.; Sarkar, Susanta K.
2006-02-01
In recent years, the prevalence of in vivo molecular imaging applications has rapidly increased. Here we report on the construction of a multi-modality imaging facility in a pharmaceutical setting that is expected to further advance existing capabilities for in vivo imaging of drug distribution and the interaction with their target. The imaging instrumentation in our facility includes a microPET scanner, a four wavelength time-domain optical imaging scanner, a 9.4T/30cm MRI scanner and a SPECT/X-ray CT scanner. An electronics shop and a computer room dedicated to image analysis are additional features of the facility. The layout of the facility was designed with a central animal preparation room surrounded by separate laboratory rooms for each of the major imaging modalities to accommodate the work-flow of simultaneous in vivo imaging experiments. This report will focus on the design of and anticipated applications for our microPET and optical imaging laboratory spaces. Additionally, we will discuss efforts to maximize the daily throughput of animal scans through development of efficient experimental work-flows and the use of multiple animals in a single scanning session.
Continuous monitoring of arthritis in animal models using optical imaging modalities
NASA Astrophysics Data System (ADS)
Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk
2014-10-01
Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeghi, P; Smith, W; Tom Baker Cancer Centre, Calgary, AB
2015-06-15
Purpose This study quantifies errors associated with MR-guided High Dose Rate (HDR) gynecological brachytherapy. Uncertainties in this treatment results from contouring, organ motion between imaging and treatment delivery, dose calculation, and dose delivery. We focus on interobserver and inter-modality variability in contouring and the motion of organs at risk (OARs) in the time span between the MR and CT scans (∼1 hour). We report the change in organ volume and position of center of mass (CM) between the two imaging modalities. Methods A total of 8 patients treated with MR-guided HDR brachytherapy were included in this study. Two observers contouredmore » the bladder and rectum on both MR and CT scans. The change in OAR volume and CM position between the MR and CT imaging sessions on both image sets were calculated. Results The absolute mean bladder volume change between the two imaging modalities is 67.1cc. The absolute mean inter-observer difference in bladder volume is much lower at 15.5cc (MR) and 11.0cc (CT). This higher inter-modality volume difference suggests a real change in the bladder filling between the two imaging sessions. Change in Rectum volume inter-observer standard error of means (SEM) is 3.18cc (MR) and 3.09cc (CT), while the inter-modality SEM is 3.65cc (observer 1), and 2.75cc (observer 2). The SEM for rectum CM position in the superior-inferior direction was approximately three times higher than in other directions for both the inter—observer (0.77 cm, 0.92 cm for observers 1 and 2, respectively) and inter-modality (0.91 cm, 0.95 cm for MR and CT, respectively) variability. Conclusion Bladder contours display good consistency between different observers on both CT and MR images. For rectum contouring the highest inconsistency stems from the observers’ choice of the superior-inferior borders. A complete analysis of a larger patient cohort will enable us to separate the true organ motion from the inter-observer variability.« less
Cone beam tomographic imaging anatomy of the maxillofacial region.
Angelopoulos, Christos
2008-10-01
Multiplanar imaging is a fairly new concept in diagnostic imaging available with a number of contemporary imaging modalities such as CT, MR imaging, diagnostic ultrasound, and others. This modality allows reconstruction of images in different planes (flat or curved) from a volume of data that was acquired previously. This concept makes the diagnostic process more interactive, and proper use may increase diagnostic potential. At the same time, the complexity of the anatomical structures on the maxillofacial region may make it harder for these images to be interpreted. This article reviews the anatomy of maxillofacial structures in planar imaging, and more specifically cone-beam CT images.
NASA Astrophysics Data System (ADS)
Li, Yan; Jing, Joseph C.; Qu, Yueqiao; Miao, Yusi; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping
2017-02-01
The rupture of atherosclerotic plaques is the leading cause of acute coronary events, so accurate assessment of plaque is critical. A large lipid pool, thin fibrous cap, and inflammatory reaction are the crucial characteristics for identifying vulnerable plaques. In our study, a tri-modality imaging system for intravascular imaging was designed and implemented. The tri-modality imaging system with a 1-mm probe diameter is able to simultaneously acquire optical coherence tomography (OCT), intravascular ultrasound (IVUS), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. Firstly, IVUS is used as the first step for identifying plaque since IVUS enables the visualization of the layered structures of the artery wall. Due to low soft-tissue contrast, IVUS only provides initial identification of the lipid plaque. Then OCT is used for differentiating fibrosis and lipid pool based on its relatively higher soft tissue contrast and high sensitivity/specificity. Last, fluorescence imaging is used for identifying inflammatory reaction to further confirm whether the plaque is vulnerable or not. Ex vivo experiment of a male New Zealand white rabbit aorta was performed to validate the performance of our tri-modality system. H and E histology results of the rabbit aorta were also presented to check assessment accuracy. The miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.
Recent Advances in Tumor Ablation for Hepatocellular Carcinoma
Kang, Tae Wook; Rhim, Hyunchul
2015-01-01
Image-guided tumor ablation for early stage hepatocellular carcinoma (HCC) is an accepted non-surgical treatment that provides excellent local tumor control and favorable survival benefit. This review summarizes the recent advances in tumor ablation for HCC. Diagnostic imaging and molecular biology of HCC has recently undergone marked improvements. Second-generation ultrasonography (US) contrast agents, new computed tomography (CT) techniques, and liver-specific contrast agents for magnetic resonance imaging (MRI) have enabled the early detection of smaller and inconspicuous HCC lesions. Various imaging-guidance tools that incorporate imaging-fusion between real-time US and CT/MRI, that are now common for percutaneous tumor ablation, have increased operator confidence in the accurate targeting of technically difficult tumors. In addition to radiofrequency ablation (RFA), various therapeutic modalities including microwave ablation, irreversible electroporation, and high-intensity focused ultrasound ablation have attracted attention as alternative energy sources for effective locoregional treatment of HCC. In addition, combined treatment with RFA and chemoembolization or molecular agents may be able to overcome the limitation of advanced or large tumors. Finally, understanding of the biological mechanisms and advances in therapy associated with tumor ablation will be important for successful tumor control. All these advances in tumor ablation for HCC will result in significant improvement in the prognosis of HCC patients. In this review, we primarily focus on recent advances in molecular tumor biology, diagnosis, imaging-guidance tools, and therapeutic modalities, and refer to the current status and future perspectives for tumor ablation for HCC. PMID:26674766
Mutual-information-based registration for ultrasound and CT datasets
NASA Astrophysics Data System (ADS)
Firle, Evelyn A.; Wesarg, Stefan; Dold, Christian
2004-05-01
In many applications for minimal invasive surgery the acquisition of intra-operative medical images is helpful if not absolutely necessary. Especially for Brachytherapy imaging is critically important to the safe delivery of the therapy. Modern computed tomography (CT) and magnetic resonance (MR) scanners allow minimal invasive procedures to be performed under direct imaging guidance. However, conventional scanners do not have real-time imaging capability and are expensive technologies requiring a special facility. Ultrasound (U/S) is a much cheaper and one of the most flexible imaging modalities. It can be moved to the application room as required and the physician sees what is happening as it occurs. Nevertheless it may be easier to interpret these 3D intra-operative U/S images if they are used in combination with less noisier preoperative data such as CT. The purpose of our current investigation is to develop a registration tool for automatically combining pre-operative CT volumes with intra-operatively acquired 3D U/S datasets. The applied alignment procedure is based on the information theoretic approach of maximizing the mutual information of two arbitrary datasets from different modalities. Since the CT datasets include a much bigger field of view we introduced a bounding box to narrow down the region of interest within the CT dataset. We conducted a phantom experiment using a CIRS Model 53 U/S Prostate Training Phantom to evaluate the feasibility and accuracy of the proposed method.
NASA Astrophysics Data System (ADS)
Emge, Darren K.; Adalı, Tülay
2014-06-01
As the availability and use of imaging methodologies continues to increase, there is a fundamental need to jointly analyze data that is collected from multiple modalities. This analysis is further complicated when, the size or resolution of the images differ, implying that the observation lengths of each of modality can be highly varying. To address this expanding landscape, we introduce the multiset singular value decomposition (MSVD), which can perform a joint analysis on any number of modalities regardless of their individual observation lengths. Through simulations, the inter modal relationships across the different modalities which are revealed by the MSVD are shown. We apply the MSVD to forensic fingerprint analysis, showing that MSVD joint analysis successfully identifies relevant similarities for further analysis, significantly reducing the processing time required. This reduction, takes this technique from a laboratory method to a useful forensic tool with applications across the law enforcement and security regimes.
Stasiuk, Graeme J; Long, Nicholas J
2013-04-07
Over the last twenty-five years 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has made a significant impact on the field of diagnostic imaging. DOTA is not the only metal chelate in use in medical diagnostics, but it is the only one to significantly impact on all of the major imaging modalities Magnetic Resonance (MR), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Fluorescence imaging. This crossover of modalities has been possible due to the versatility of DOTA firstly, to complex a variety of metal ions and secondly, the ease with which it can be modified for different disease states. This has driven research over the last two decades into the chemistry of DOTA and the modification of the substituent pendant arms of this macrocycle to create functional, targeted and dual-modal imaging agents. The primary use of DOTA has been with the lanthanide series of metals, gadolinium for MRI, europium and terbium for fluorescence and neodymium for near infra-red imaging. There are now many research groups dedicated to the use of lanthanides with DOTA although other chelates such as DTPA and NOTA are being increasingly employed. The ease with which DOTA can be conjugated to peptides has given rise to targeted imaging agents seen in the PET, SPECT and radiotherapy fields. These modalities use a variety of radiometals that complex with DOTA, e.g.(64)Cu and (68)Ga which are used in clinical PET scans, (111)In, and (90)Y for SPECT and radiotherapy. In this article, we will demonstrate the remarkable versatility of DOTA, how it has crossed the imaging modality boundaries and how it has been successfully transferred into the clinic.
Multiscale and multi-modality visualization of angiogenesis in a human breast cancer model
Cebulla, Jana; Kim, Eugene; Rhie, Kevin; Zhang, Jiangyang
2017-01-01
Angiogenesis in breast cancer helps fulfill the metabolic demands of the progressing tumor and plays a critical role in tumor metastasis. Therefore, various imaging modalities have been used to characterize tumor angiogenesis. While micro-CT (μCT) is a powerful tool for analyzing the tumor microvascular architecture at micron-scale resolution, magnetic resonance imaging (MRI) with its sub-millimeter resolution is useful for obtaining in vivo vascular data (e.g. tumor blood volume and vessel size index). However, integration of these microscopic and macroscopic angiogenesis data across spatial resolutions remains challenging. Here we demonstrate the feasibility of ‘multiscale’ angiogenesis imaging in a human breast cancer model, wherein we bridge the resolution gap between ex vivo μCT and in vivo MRI using intermediate resolution ex vivo MR microscopy (μMRI). To achieve this integration, we developed suitable vessel segmentation techniques for the ex vivo imaging data and co-registered the vascular data from all three imaging modalities. We showcase two applications of this multiscale, multi-modality imaging approach: (1) creation of co-registered maps of vascular volume from three independent imaging modalities, and (2) visualization of differences in tumor vasculature between viable and necrotic tumor regions by integrating μCT vascular data with tumor cellularity data obtained using diffusion-weighted MRI. Collectively, these results demonstrate the utility of ‘mesoscopic’ resolution μMRI for integrating macroscopic in vivo MRI data and microscopic μCT data. Although focused on the breast tumor xenograft vasculature, our imaging platform could be extended to include additional data types for a detailed characterization of the tumor microenvironment and computational systems biology applications. PMID:24719185
Matsumiya, Kazumichi
2013-10-01
Current views on face perception assume that the visual system receives only visual facial signals. However, I show that the visual perception of faces is systematically biased by adaptation to a haptically explored face. Recently, face aftereffects (FAEs; the altered perception of faces after adaptation to a face) have been demonstrated not only in visual perception but also in haptic perception; therefore, I combined the two FAEs to examine whether the visual system receives face-related signals from the haptic modality. I found that adaptation to a haptically explored facial expression on a face mask produced a visual FAE for facial expression. This cross-modal FAE was not due to explicitly imaging a face, response bias, or adaptation to local features. Furthermore, FAEs transferred from vision to haptics. These results indicate that visual face processing depends on substrates adapted by haptic faces, which suggests that face processing relies on shared representation underlying cross-modal interactions.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
Di Marco, Aimee N; Jeyakumar, Jenifa; Pratt, Philip J; Yang, Guang-Zhong; Darzi, Ara W
2016-01-01
To compare surgical performance with transanal endoscopic surgery (TES) using a novel 3-dimensional (3D) stereoscopic viewer against the current modalities of a 3D stereoendoscope, 3D, and 2-dimensional (2D) high-definition monitors. TES is accepted as the primary treatment for selected rectal tumors. Current TES systems offer a 2D monitor, or 3D image, viewed directly via a stereoendoscope, necessitating an uncomfortable operating position. To address this and provide a platform for future image augmentation, a 3D stereoscopic display was created. Forty participants, of mixed experience level, completed a simulated TES task using 4 visual displays (novel stereoscopic viewer and currently utilized stereoendoscope, 3D, and 2D high-definition monitors) in a randomly allocated order. Primary outcome measures were: time taken, path length, and accuracy. Secondary outcomes were: task workload and participant questionnaire results. Median time taken and path length were significantly shorter for the novel viewer versus 2D and 3D, and not significantly different to the traditional stereoendoscope. Significant differences were found in accuracy, task workload, and questionnaire assessment in favor of the novel viewer, as compared to all 3 modalities. This novel 3D stereoscopic viewer allows surgical performance in TES equivalent to that achieved using the current stereoendoscope and superior to standard 2D and 3D displays, but with lower physical and mental demands for the surgeon. Participants expressed a preference for this system, ranking it more highly on a questionnaire. Clinical translation of this work has begun with the novel viewer being used in 5 TES patients.
Neural network for intelligent query of an FBI forensic database
NASA Astrophysics Data System (ADS)
Uvanni, Lee A.; Rainey, Timothy G.; Balasubramanian, Uma; Brettle, Dean W.; Weingard, Fred; Sibert, Robert W.; Birnbaum, Eric
1997-02-01
Examiner is an automated fired cartridge case identification system utilizing a dual-use neural network pattern recognition technology, called the statistical-multiple object detection and location system (S-MODALS) developed by Booz(DOT)Allen & Hamilton, Inc. in conjunction with Rome Laboratory. S-MODALS was originally designed for automatic target recognition (ATR) of tactical and strategic military targets using multisensor fusion [electro-optical (EO), infrared (IR), and synthetic aperture radar (SAR)] sensors. Since S-MODALS is a learning system readily adaptable to problem domains other than automatic target recognition, the pattern matching problem of microscopic marks for firearms evidence was analyzed using S-MODALS. The physics; phenomenology; discrimination and search strategies; robustness requirements; error level and confidence level propagation that apply to the pattern matching problem of military targets were found to be applicable to the ballistic domain as well. The Examiner system uses S-MODALS to rank a set of queried cartridge case images from the most similar to the least similar image in reference to an investigative fired cartridge case image. The paper presents three independent tests and evaluation studies of the Examiner system utilizing the S-MODALS technology for the Federal Bureau of Investigation.
Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, S.T.C.
The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound,more » electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.« less
Advances in Lymphatic Imaging and Drug Delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nune, Satish K.; Gunda, Padmaja; Majeti, Bharat K.
2011-09-10
Cancer remains the second leading cause of death after heart disease in the US. While metastasized cancers such as breast, prostate, and colon are incurable, before their distant spread, these diseases will have invaded the lymphatic system as a first step in their progression. Hence, proper evaluation of the disease state of the lymphatics which drain a tumor site is crucial to staging and the formation of a treatment plan. Current lymphatic imaging modalities with visible dyes and radionucleotide tracers offer limited sensitivity and poor resolution; however, newer tools using nanocarriers, quantum dots, and magnetic resonance imaging promise to vastlymore » improve the staging of lymphatic spread without needless biopsies. Concurrent with the improvement of lymphatic imaging agents, has been the development of drug carriers that can localize chemotherapy to the lymphatic system, thus improving the treatment of localized disease while minimizing the exposure of healthy organs to cytotoxic drugs. This review will focus on polymeric systems that have been developed for imaging and drug delivery to the lymph system, how these new devices improve upon current technologies, and where further improvement is needed.« less
[PACS: storage and retrieval of digital radiological image data].
Wirth, S; Treitl, M; Villain, S; Lucke, A; Nissen-Meyer, S; Mittermaier, I; Pfeifer, K-J; Reiser, M
2005-08-01
Efficient handling of both picture archiving and retrieval is a crucial factor when new PACS installations as well as technical upgrades are planned. For a large PACS installation for 200 actual studies, the number, modality,and body region of available priors were evaluated. In addition, image access time of 100 CT studies from hard disk (RAID), magneto-optic disk (MOD), and tape archives (TAPE) were accessed. For current examinations priors existed in 61.1% with an averaged quantity of 7.7 studies. Thereof 56.3% were within 0-3 months, 84.9% within 12 months, 91.7% within 24 months, and 96.2% within 36 months. On average, access to images from the hard disk cache was more than 100 times faster then from MOD or TAPE. Since only PACS RAID provides online image access, at least current imaging of the past 12 months should be available from cache. An accurate prefetching mechanism facilitates effective use of the expensive online cache area. For that, however, close interaction of PACS, RIS, and KIS is an indispensable prerequisite.
Structured-illumination reflectance imaging as a new modality for food quality detection
USDA-ARS?s Scientific Manuscript database
Uniform or diffuse illumination is the standard in implementing many different imaging modalities. This form of illumination, however, has some major limitations in acquisition of useful information from food products because reflectance from the food products is non-uniform due to irregular, curved...
Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.
Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung
2018-04-01
In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
AlJaroudi, Wael A; Einstein, Andrew J; Chaudhry, Farooq A; Lloyd, Steven G; Hage, Fadi G
2015-04-01
A large number of studies were presented at the 2014 American Heart Association Scientific Sessions. In this review, we will summarize key studies in nuclear cardiology, computed tomography, echocardiography, and cardiac magnetic resonance imaging. This brief review will be helpful for readers of the Journal who are interested in being updated on the latest research covering these imaging modalities.
Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.
2014-01-01
The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019
Optimal Co-segmentation of Tumor in PET-CT Images with Context Information
Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.
2014-01-01
PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127
Biomedical photoacoustics: fundamentals, instrumentation and perspectives on nanomedicine
Zou, Chunpeng; Wu, Beibei; Dong, Yanyan; Song, Zhangwei; Zhao, Yaping; Ni, Xianwei; Yang, Yan; Liu, Zhe
2017-01-01
Photoacoustic imaging (PAI) is an integrated biomedical imaging modality which combines the advantages of acoustic deep penetration and optical high sensitivity. It can provide functional and structural images with satisfactory resolution and contrast which could provide abundant pathological information for disease-oriented diagnosis. Therefore, it has found vast applications so far and become a powerful tool of precision nanomedicine. However, the investigation of PAI-based imaging nanomaterials is still in its infancy. This perspective article aims to summarize the developments in photoacoustic technologies and instrumentations in the past years, and more importantly, present a bright outlook for advanced PAI-based imaging nanomaterials as well as their emerging biomedical applications in nanomedicine. Current challenges and bottleneck issues have also been discussed and elucidated in this article to bring them to the attention of the readership. PMID:28053532
Creating a classification of image types in the medical literature for visual categorization
NASA Astrophysics Data System (ADS)
Müller, Henning; Kalpathy-Cramer, Jayashree; Demner-Fushman, Dina; Antani, Sameer
2012-02-01
Content-based image retrieval (CBIR) from specialized collections has often been proposed for use in such areas as diagnostic aid, clinical decision support, and teaching. The visual retrieval from broad image collections such as teaching files, the medical literature or web images, by contrast, has not yet reached a high maturity level compared to textual information retrieval. Visual image classification into a relatively small number of classes (20-100) on the other hand, has shown to deliver good results in several benchmarks. It is, however, currently underused as a basic technology for retrieval tasks, for example, to limit the search space. Most classification schemes for medical images are focused on specific areas and consider mainly the medical image types (modalities), imaged anatomy, and view, and merge them into a single descriptor or classification hierarchy. Furthermore, they often ignore other important image types such as biological images, statistical figures, flowcharts, and diagrams that frequently occur in the biomedical literature. Most of the current classifications have also been created for radiology images, which are not the only types to be taken into account. With Open Access becoming increasingly widespread particularly in medicine, images from the biomedical literature are more easily available for use. Visual information from these images and knowledge that an image is of a specific type or medical modality could enrich retrieval. This enrichment is hampered by the lack of a commonly agreed image classification scheme. This paper presents a hierarchy for classification of biomedical illustrations with the goal of using it for visual classification and thus as a basis for retrieval. The proposed hierarchy is based on relevant parts of existing terminologies, such as the IRMA-code (Image Retrieval in Medical Applications), ad hoc classifications and hierarchies used in imageCLEF (Image retrieval task at the Cross-Language Evaluation Forum) and NLM's (National Library of Medicine) OpenI. Furtheron, mappings to NLM's MeSH (Medical Subject Headings), RSNA's RadLex (Radiological Society of North America, Radiology Lexicon), and the IRMA code are also attempted for relevant image types. Advantages derived from such hierarchical classification for medical image retrieval are being evaluated through benchmarks such as imageCLEF, and R&D systems such as NLM's OpenI. The goal is to extend this hierarchy progressively and (through adding image types occurring in the biomedical literature) to have a terminology for visual image classification based on image types distinguishable by visual means and occurring in the medical open access literature.
NASA Astrophysics Data System (ADS)
Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi
2011-06-01
Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).
Shintaku, Werner; Enciso, Reyes; Broussard, Jack; Clark, Glenn T
2006-08-01
Since dentists can be faced by unusual cases during their professional life, this article reviews the common orofacial disorders that are of concern to a dentist trying to diagnose the source of pain or dysfunction symptoms, providing an overview of the essential knowledge and usage of nowadays available advanced diagnostic imaging modalities. In addition to symptom-driven diagnostic dilemmas, where such imaging is utilized, occasionally there are asymptomatic anomalies discovered by routine clinical care and/or on dental or panoramic images that need more discussion. The correct selection criteria of an image exam should be based on the individual characteristics of the patient, and the type of imaging technique should be selected depending on the specific clinical problem, the kind of tissue to be visualized, the information obtained from the imaging modality, radiation exposure, and the cost of the examination. The usage of more specialized imaging modalities such as magnetic resonance imaging, computed tomography, ultrasound, as well as single photon computed tomography, positron electron tomography, and their hybrid machines, SPECT/ CT and PET/CT, are discussed.
Dou, Ya-Kun; Chen, Yang; He, Xi-Wen; Li, Wen-You; Li, Yu-Hao; Zhang, Yu-Kui
2017-11-07
Silicon nanoparticles (Si NPs) have been widely used in fluorescence imaging. However, rigorous synthesis conditions and the single modality imaging limit the further development of Si NPs in the field of biomedical imaging. Here, we reported a method for synthesizing water-dispersible Mn 2+ functionalized Si NPs (Mn-Si NPs) under mild experimental conditions for fluorescence and magnetic resonance dual-modality imaging. The whole synthesis process was completed under room temperature and atmospheric pressure, and no special and expensive equipment was required. The synthetic nanoparticles, with favorable pH stability, NaCl stability, photostability, and low toxicity, emitted green fluorescence (512 nm). At the same time, the nanoparticles also demonstrated excellent magnetic resonance imaging ability. In vitro, their T 1 -weighted magnetic resonance imaging effect was obvious, and the value of longitudinal relaxation degree r 1 reached 4.25 mM -1 s -1 . On the basis of their good biocompatibility, Mn-Si NPs were successfully used for the fluorescence imaging as well as magnetic resonance imaging in vivo.
Multi-detector CT imaging in the postoperative orthopedic patient with metal hardware.
Vande Berg, Bruno; Malghem, Jacques; Maldague, Baudouin; Lecouvet, Frederic
2006-12-01
Multi-detector CT imaging (MDCT) becomes routine imaging modality in the assessment of the postoperative orthopedic patients with metallic instrumentation that degrades image quality at MR imaging. This article reviews the physical basis and CT appearance of such metal-related artifacts. It also addresses the clinical value of MDCT in postoperative orthopedic patients with emphasis on fracture healing, spinal fusion or arthrodesis, and joint replacement. MDCT imaging shows limitations in the assessment of the bone marrow cavity and of the soft tissues for which MR imaging remains the imaging modality of choice despite metal-related anatomic distortions and signal alteration.
Kotowski, Jacek; Wollstein, Gadi; Ishikawa, Hiroshi; Schuman, Joel S
2014-01-01
Because glaucomatous damage is irreversible early detection of structural changes in the optic nerve head and retinal nerve fiber layer is imperative for timely diagnosis of glaucoma and monitoring of its progression. Significant improvements in ocular imaging have been made in recent years. Imaging techniques such as optical coherence tomography, scanning laser polarimetry and confocal scanning laser ophthalmoscopy rely on different properties of light to provide objective structural assessment of the optic nerve head, retinal nerve fiber layer and macula. In this review, we discuss the capabilities of these imaging modalities pertinent for diagnosis of glaucoma and detection of progressive glaucomatous damage and provide a review of the current knowledge on the clinical performance of these technologies. Copyright © 2014 Elsevier Inc. All rights reserved.
Double sided grating fabrication for high energy X-ray phase contrast imaging
Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick; ...
2018-04-19
State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. Furthermore, we have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be appliedmore » to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.« less
Zschaeck, Sebastian; Lohaus, Fabian; Beck, Marcus; Habl, Gregor; Kroeze, Stephanie; Zamboglou, Constantinos; Koerber, Stefan Alexander; Debus, Jürgen; Hölscher, Tobias; Wust, Peter; Ganswindt, Ute; Baur, Alexander D J; Zöphel, Klaus; Cihoric, Nikola; Guckenberger, Matthias; Combs, Stephanie E; Grosu, Anca Ligia; Ghadjar, Pirus; Belka, Claus
2018-05-11
68 Gallium prostate specific membrane antigen (PSMA) ligand positron emission tomography (PET) is an increasingly used imaging modality in prostate cancer, especially in cases of tumor recurrence after curative intended therapy. Owed to the novelty of the PSMA-targeting tracers, clinical evidence on the value of PSMA-PET is moderate but rapidly increasing. State of the art imaging is pivotal for radiotherapy treatment planning as it may affect dose prescription, target delineation and use of concomitant therapy.This review summarizes the evidence on PSMA-PET imaging from a radiation oncologist's point of view. Additionally a short survey containing twelve examples of patients and 6 additional questions was performed in seven mayor academic centers with experience in PSMA ligand imaging and the findings are reported here.
PET-CMR in heart failure - synergistic or redundant imaging?
Quail, Michael A; Sinusas, Albert J
2017-07-01
Imaging in heart failure (HF) provides data for diagnosis, prognosis and disease monitoring. Both MRI and nuclear imaging techniques have been successfully used for this purpose in HF. Positron Emission Tomography-Cardiac Magnetic Resonance (PET-CMR) is an example of a new multimodality diagnostic imaging technique with potential applications in HF. The threshold for adopting a new diagnostic tool to clinical practice must necessarily be high, lest they exacerbate costs without improving care. New modalities must demonstrate clinical superiority, or at least equivalence, combined with another important advantage, such as lower cost or improved patient safety. The purpose of this review is to outline the current status of multimodality PET-CMR with regard to HF applications, and determine whether the clinical utility of this new technology justifies the cost.
North by Northwestern: initial experience with PACS at Northwestern Memorial Hospital
NASA Astrophysics Data System (ADS)
Channin, David S.; Hawkins, Rodney C.; Enzmann, Dieter R.
2000-05-01
This paper describes the initial phases and configuration of the Picture Archive and Communication System (PACS) deployed at Northwestern Memorial Hospital. The primary goals of the project were to improve service to patients, improve service to referring physicians, and improve the process of radiology. Secondary goals were to enhance the academic mission, and modernize institutional information systems. The system consists of a large number of heterogeneous imaging modalities sending imaging studies via DICOM to a GE medical Systems PathSpeed PACS. The radiology department workflow is briefly described. The system is currently storing approximately 140,000 studies and over 5 million images, growing by approximately 600 studies and 25,000 images per day. Data reflecting use of the short term and long term storage is provided.
MR imaging in sports-related glenohumeral instability
Waldt, Simone
2006-01-01
Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions. PMID:16633790
Double sided grating fabrication for high energy X-ray phase contrast imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollowell, Andrew E.; Arrington, Christian L.; Finnegan, Patrick
State of the art grating fabrication currently limits the maximum source energy that can be used in lab based x-ray phase contrast imaging (XPCI) systems. In order to move to higher source energies, and image high density materials or image through encapsulating barriers, new grating fabrication methods are needed. In this work we have analyzed a new modality for grating fabrication that involves precision alignment of etched gratings on both sides of a substrate, effectively doubling the thickness of the grating. Furthermore, we have achieved a front-to-backside feature alignment accuracy of 0.5 µm demonstrating a methodology that can be appliedmore » to any grating fabrication approach extending the attainable aspect ratios allowing higher energy lab based XPCI systems.« less
Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.
2012-01-01
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585
Quantitative multi-modal NDT data analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heideklang, René; Shokouhi, Parisa
2014-02-18
A single NDT technique is often not adequate to provide assessments about the integrity of test objects with the required coverage or accuracy. In such situations, it is often resorted to multi-modal testing, where complementary and overlapping information from different NDT techniques are combined for a more comprehensive evaluation. Multi-modal material and defect characterization is an interesting task which involves several diverse fields of research, including signal and image processing, statistics and data mining. The fusion of different modalities may improve quantitative nondestructive evaluation by effectively exploiting the augmented set of multi-sensor information about the material. It is the redundantmore » information in particular, whose quantification is expected to lead to increased reliability and robustness of the inspection results. There are different systematic approaches to data fusion, each with its specific advantages and drawbacks. In our contribution, these will be discussed in the context of nondestructive materials testing. A practical study adopting a high-level scheme for the fusion of Eddy Current, GMR and Thermography measurements on a reference metallic specimen with built-in grooves will be presented. Results show that fusion is able to outperform the best single sensor regarding detection specificity, while retaining the same level of sensitivity.« less
Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei
2012-08-01
Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes.
Kao, Ya-Ting; Zhu, Xinxin; Xu, Fang; Min, Wei
2012-01-01
Probing biological structures and functions deep inside live organisms with light is highly desirable. Among the current optical imaging modalities, multiphoton fluorescence microscopy exhibits the best contrast for imaging scattering samples by employing a spatially confined nonlinear excitation. However, as the incident laser power drops exponentially with imaging depth into the sample due to the scattering loss, the out-of-focus background eventually overwhelms the in-focus signal, which defines a fundamental imaging-depth limit. Herein we significantly improve the image contrast for deep scattering samples by harnessing reversibly switchable fluorescent proteins (RSFPs) which can be cycled between bright and dark states upon light illumination. Two distinct techniques, multiphoton deactivation and imaging (MPDI) and multiphoton activation and imaging (MPAI), are demonstrated on tissue phantoms labeled with Dronpa protein. Such a focal switch approach can generate pseudo background-free images. Conceptually different from wave-based approaches that try to reduce light scattering in turbid samples, our work represents a molecule-based strategy that focused on imaging probes. PMID:22876358
Plaque imaging with CT—a comprehensive review on coronary CT angiography based risk assessment
Kolossváry, Márton; Szilveszter, Bálint; Merkely, Béla
2017-01-01
CT based technologies have evolved considerably in recent years. Coronary CT angiography (CTA) provides robust assessment of coronary artery disease (CAD). Early coronary CTA imaging—as a gate-keeper of invasive angiography—has focused on the presence of obstructive stenosis. Coronary CTA is currently the only non-invasive imaging modality for the evaluation of non-obstructive CAD, which has been shown to contribute to adverse cardiac events. Importantly, improved spatial resolution of CT scanners and novel image reconstruction algorithms enable the quantification and characterization of atherosclerotic plaques. State-of-the-art CT imaging can therefore reliably assess the extent of CAD and differentiate between various plaque features. Recent studies have demonstrated the incremental prognostic value of adverse plaque features over luminal stenosis. Comprehensive coronary plaque assessment holds potential to significantly improve individual risk assessment incorporating adverse plaque characteristics, the extent and severity of atherosclerotic plaque burden. As a result, several coronary CTA based composite risk scores have been proposed recently to determine patients at high risk for adverse events. Coronary CTA became a promising modality for the evaluation of functional significance of coronary lesions using CT derived fractional flow reserve (FFR-CT) and/or rest/dynamic myocardial CT perfusion. This could lead to substantial reduction in unnecessary invasive catheterization procedures and provide information on ischemic burden of CAD. Discordance between the degree of stenosis and ischemia has been recognized in clinical landmark trials using invasive FFR. Both lesion stenosis and composition are possibly related to myocardial ischemia. The evaluation of lesion-specific ischemia using combined functional and morphological plaque information could ultimately improve the diagnostic performance of CTA and thus patient care. In this review we aimed to summarize current evidence on comprehensive coronary artery plaque assessment using coronary CTA. PMID:29255692
Chae, Michael P.; Hunter-Smith, David J.
2015-01-01
Background The high incidence of breast cancer and growing number of breast cancer patients undergoing mastectomy has led to breast reconstruction becoming an important part of holistic treatment for these patients. In planning autologous reconstructions, preoperative assessment of donor site microvascular anatomy with advanced imaging modalities has assisted in the appropriate selection of flap donor site, individual perforators, and lead to an overall improvement in flap outcomes. In this review, we compare the accuracy of fluorescent angiography, computed tomographic angiography (CTA), and magnetic resonance angiography (MRA) and their impact on clinical outcomes. Methods A review of the published English literature dating from 1950 to 2015 using databases, such as PubMed, Medline, Web of Science, and EMBASE was undertaken. Results Fluorescent angiography is technically limited by its inability to evaluate deep-lying perforators and hence, it has a minimal role in the preoperative setting. However, it may be useful intraoperatively in evaluating microvascular anastomotic patency and the mastectomy skin perfusion. CTA is currently widely considered the standard, due to its high accuracy and reliability. Multiple studies have demonstrated its ability to improve clinical outcomes, such as operative length and flap complications. However, concerns surrounding exposure to radiation and nephrotoxic contrast agents exist. MRA has been explored, however despite recent advances, the image quality of MRA is considered inferior to CTA. Conclusions Preoperative imaging is an essential component in planning autologous breast reconstruction. Fluorescent angiography presents minimal role as a preoperative imaging modality, but may be a useful intraoperative adjunct to assess the anastomosis and the mastectomy skin perfusion. Currently, CTA is the gold standard preoperatively. MRA has a role, particularly for women of younger age, iodine allergy, and renal impairment. PMID:26005648
Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaffino, Paolo; Spadea, Maria Francesca
Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, wheremore » a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against other segmentation algorithms.« less
Correlation of breast image alignment using biomechanical modelling
NASA Astrophysics Data System (ADS)
Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.
2009-02-01
Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
Noninvasive Imaging in Coronary Artery Disease
Heo, Ran; Nakazato, Ryo; Kalra, Dan; Min, James K.
2014-01-01
Noninvasive cardiac imaging is widely used to evaluate the presence of coronary artery disease. Recently, with improvements in imaging technology, noninvasive imaging has also been used for evaluation of the presence, severity, and prognosis of coronary artery disease. Coronary CT angiography and MRI of coronary arteries provide an anatomical assessment of coronary stenosis, whereas the hemodynamic significance of a coronary artery stenosis can be assessed by stress myocardial perfusion imaging, such as SPECT/PET and stress MRI. For appropriate use of multiple imaging modalities, the strengths and limitations of each modality are discussed in this review. PMID:25234083
NASA Astrophysics Data System (ADS)
Yu, Ping; Ma, Lixin
2012-02-01
In this work we developed two biomedical imaging techniques for early detection of breast cancer. Both image modalities provide molecular imaging capability to probe site-specific targeting dyes. The first technique, heterodyne CCD fluorescence mediated tomography, is a non-invasive biomedical imaging that uses fluorescent photons from the targeted dye on the tumor cells inside human breast tissue. The technique detects a large volume of tissue (20 cm) with a moderate resolution (1 mm) and provides the high sensitivity. The second technique, dual-band spectral-domain optical coherence tomography, is a high-resolution tissue imaging modality. It uses a low coherence interferometer to detect coherent photons hidden in the incoherent background. Due to the coherence detection, a high resolution (20 microns) is possible. We have finished prototype imaging systems for the development of both image modalities and performed imaging experiments on tumor tissues. The spectroscopic/tomographic images show contrasts of dense tumor tissues and tumor necrotic regions. In order to correlate the findings from our results, a diffusion-weighted magnetic resonance imaging (MRI) of the tumors was performed using a small animal 7-Telsa MRI and demonstrated excellent agreement.
Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong
2016-09-15
Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer
NASA Astrophysics Data System (ADS)
Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui
2016-02-01
Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.
Murat, Sema; Kamburoğlu, Kıvanç; Kılıç, Cenk; Ozen, Tuncer; Gurbuz, Ayhan
2014-02-01
The present study compared the use of cone beam computerized tomography (CBCT) images and intra-oral radiographs in the placement of final implant drills in terms of nerve damage to cadaver mandibles. Twelve cadaver hemimandibles obtained from 6 cadavers were used. Right hemimandibles were imaged using peri-apical radiography and left hemimandibles using CBCT, and the images obtained were used in treatment planning for the placement of implant drills (22 for each modality, for a total of 44 final drills). Specimens were dissected, and the distances between the apex of the final implant drill and the inferior alveolar neurovascular bundle and incisive nerve were measured using a digital calliper. Nerves were assessed as damaged or not damaged, and the Chi-square test was used to compare nerve damage between modalities (P < 0.05). Nerve damage occurred with 7 final drills placed based on peri-apical radiography (31.8%) and 1 final drill placed using CBCT images (4.5%). The difference in nerve damage between imaging modalities was statistically significant (P = 0.023), with CBCT outperforming intraoral film in the placement of final implant drills ex vivo. In order to prevent nerve damage, CBCT is recommended as the principal imaging modality for pre-implant assessment.
Tran, Nhiem; Bye, Nicole; Moffat, Bradford A; Wright, David K; Cuddihy, Andrew; Hinton, Tracey M; Hawley, Adrian M; Reynolds, Nicholas P; Waddington, Lynne J; Mulet, Xavier; Turnley, Ann M; Morganti-Kossmann, M Cristina; Muir, Benjamin W
2017-02-01
Engineered nanoparticles with multiple complementary imaging modalities are of great benefit to the rapid treatment and diagnosis of disease in various organs. Herein, we report the formulation of cubosomes and hexosomes that carry multiple amphiphilic imaging contrast agents in their self-assembled lipid bilayers. This is the first report of the use of both near infrared fluorescent (NIRF) imaging and gadolinium lipid based magnetic resonance (MR) imaging modalities in cubosomes and hexosomes. High-throughput screening was used to rapidly optimize formulations with desirable nano-architectures and low in vitro cytotoxicity. The dual-modal imaging nanoparticles in vivo biodistribution and organ specific contrast enhancement were then studied. The NIRF in vivo imaging results indicated accumulation of both cubosomes and hexosomes in the liver and spleen of mice up to 20h post-injection. Remarkably, the biodistribution of the nanoparticle formulations was affected by the mesophase (i.e. cubic or hexagonal), a finding of significant importance for the future use of these compounds, with hexosomes showing higher accumulation in the spleen than the liver compared to cubosomes. Furthermore, in vivo MRI data of animals injected with either type of lyotropic liquid crystal nanoparticle displayed enhanced contrast in the liver and spleen. Copyright © 2016 Elsevier B.V. All rights reserved.
Feature-based fusion of medical imaging data.
Calhoun, Vince D; Adali, Tülay
2009-09-01
The acquisition of multiple brain imaging types for a given study is a very common practice. There have been a number of approaches proposed for combining or fusing multitask or multimodal information. These can be roughly divided into those that attempt to study convergence of multimodal imaging, for example, how function and structure are related in the same region of the brain, and those that attempt to study the complementary nature of modalities, for example, utilizing temporal EEG information and spatial functional magnetic resonance imaging information. Within each of these categories, one can attempt data integration (the use of one imaging modality to improve the results of another) or true data fusion (in which multiple modalities are utilized to inform one another). We review both approaches and present a recent computational approach that first preprocesses the data to compute features of interest. The features are then analyzed in a multivariate manner using independent component analysis. We describe the approach in detail and provide examples of how it has been used for different fusion tasks. We also propose a method for selecting which combination of modalities provides the greatest value in discriminating groups. Finally, we summarize and describe future research topics.
Imaging of Muscle Injuries in Sports Medicine: Sports Imaging Series.
Guermazi, Ali; Roemer, Frank W; Robinson, Philip; Tol, Johannes L; Regatte, Ravindar R; Crema, Michel D
2017-03-01
In sports-related muscle injuries, the main goal of the sports medicine physician is to return the athlete to competition-balanced against the need to prevent the injury from worsening or recurring. Prognosis based on the available clinical and imaging information is crucial. Imaging is crucial to confirm and assess the extent of sports-related muscle injuries and may help to guide management, which directly affects the prognosis. This is especially important when the diagnosis or grade of injury is unclear, when recovery is taking longer than expected, and when interventional or surgical management may be necessary. Several imaging techniques are widely available, with ultrasonography and magnetic resonance imaging currently the most frequently applied in sports medicine. This state of the art review will discuss the main imaging modalities for the assessment of sports-related muscle injuries, including advanced imaging techniques, with the focus on the clinical relevance of imaging features of muscle injuries. © RSNA, 2017 Online supplemental material is available for this article.
Medical imaging: examples of clinical applications
NASA Astrophysics Data System (ADS)
Meinzer, H. P.; Thorn, M.; Vetter, M.; Hassenpflug, P.; Hastenteufel, M.; Wolf, I.
Clinical routine is currently producing a multitude of diagnostic digital images but only a few are used in therapy planning and treatment. Medical imaging is involved in both diagnosis and therapy. Using a computer, existing 2D images can be transformed into interactive 3D volumes and results from different modalities can be merged. Furthermore, it is possible to calculate functional areas that were not visible in the primary images. This paper presents examples of clinical applications that are integrated into clinical routine and are based on medical imaging fundamentals. In liver surgery, the importance of virtual planning is increasing because surgery is still the only possible curative procedure. Visualisation and analysis of heart defects are also gaining in significance due to improved surgery techniques. Finally, an outlook is provided on future developments in medical imaging using navigation to support the surgeon's work. The paper intends to give an impression of the wide range of medical imaging that goes beyond the mere calculation of medical images.
Radiology of colorectal cancer.
Pijl, M E J; Chaoui, A S; Wahl, R L; van Oostayen, J A
2002-05-01
In the past 20 years, the radiology of colorectal cancer has evolved from the barium enema to advanced imaging modalities like phased array magnetic resonance imaging (MRI), virtual colonoscopy and positron emission tomography (PET). Nowadays, primary rectal cancers are preferably imaged with transrectal ultrasound or MRI, while barium enema is still the most often used technique for imaging of colonic cancers. Virtual colonoscopy is rapidly evolving and might considerably change the imaging of colorectal cancer in the near future. The use of virtual colonoscopy for screening purposes and imaging of the colon in occlusive cancer or incomplete colonoscopies is currently under evaluation. The main role of PET is in detecting tumour recurrences, both locally and distantly. Techniques to fuse cross-sectional anatomical (computer tomography (CT) and MRI) and functional (PET) images are being developed. Apart from diagnostic imaging, the radiologists has added image-guided minimally invasive treatments of colorectal liver metastases to their arsenal. The radio-frequency ablation technique is now widely available, and can be used during laparotomy or percutaneously in selected cases.
Dual mode stereotactic localization method and application
Keppel, Cynthia E.; Barbosa, Fernando Jorge; Majewski, Stanislaw
2002-01-01
The invention described herein combines the structural digital X-ray image provided by conventional stereotactic core biopsy instruments with the additional functional metabolic gamma imaging obtained with a dedicated compact gamma imaging mini-camera. Before the procedure, the patient is injected with an appropriate radiopharmaceutical. The radiopharmaceutical uptake distribution within the breast under compression in a conventional examination table expressed by the intensity of gamma emissions is obtained for comparison (co-registration) with the digital mammography (X-ray) image. This dual modality mode of operation greatly increases the functionality of existing stereotactic biopsy devices by yielding a much smaller number of false positives than would be produced using X-ray images alone. The ability to obtain both the X-ray mammographic image and the nuclear-based medicine gamma image using a single device is made possible largely through the use of a novel, small and movable gamma imaging camera that permits its incorporation into the same table or system as that currently utilized to obtain X-ray based mammographic images for localization of lesions.
Nanoparticles in Higher-Order Multimodal Imaging
NASA Astrophysics Data System (ADS)
Rieffel, James Ki
Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.
WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.
Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffersmore » from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi-modality imaging instrumentation and techniques that are being developed. Sang Hyun Cho; X-ray fluorescence (XRF) imaging, such as x-ray fluorescence computed tomography (XFCT), offers unique capabilities for accurate identification and quantification of metals within the imaging objects. As a result, it has emerged as a promising quantitative imaging modality in recent years, especially in conjunction with metal-based imaging probes. This talk will familiarize the audience with the basic principles of XRF/XFCT imaging. It will also cover the latest development of benchtop XFCT technology. Additionally, the use of metallic nanoparticles such as gold nanoparticles, in conjunction with benchtop XFCT, will be discussed within the context of preclinical multimodal multiplexed molecular imaging. Learning Objectives: To learn the basic principles of XRF/XFCT imaging To learn the latest advances in benchtop XFCT development for preclinical imaging Funding support received from NIH and DOD; Funding support received from GE Healthcare; Funding support received from Siemens AX; Patent royalties received from GE Healthcare; L. Wang, Funding Support: NIH; COI: Microphotoacoustics; S. Cho, Yes: ;NIH/NCI grant R01CA155446 DOD/PCRP grant W81XWH-12-1-0198.« less
Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine
Upputuri, Paul Kumar; Sivasubramanian, Kathyayini; Mark, Chong Seow Khoon; Pramanik, Manojit
2015-01-01
Adequate vascularisation is key in determining the clinical outcome of stem cells and engineered tissue in regenerative medicine. Numerous imaging modalities have been developed and used for the visualization of vascularisation in tissue engineering. In this review, we briefly discuss the very recent advances aiming at high performance imaging of vasculature. We classify the vascular imaging modalities into three major groups: nonoptical methods (X-ray, magnetic resonance, ultrasound, and positron emission imaging), optical methods (optical coherence, fluorescence, multiphoton, and laser speckle imaging), and hybrid methods (photoacoustic imaging). We then summarize the strengths and challenges of these methods for preclinical and clinical applications. PMID:25821821
Gundogan, Fatih C; Yolcu, Umit; Akay, Fahrettin; Ilhan, Abdullah; Ozge, Gokhan; Uzun, Salih
2016-01-01
Diabetic macular edema (DME), one the most prevalent causes of visual loss in industrialized countries, may be diagnosed at any stage of diabetic retinopathy. The diagnosis, treatment, and follow up of DME have become straightforward with recent developments in fundus imaging, such as optical coherence tomography. Laser photocoagulation, intravitreal injections, and pars plana vitrectomy surgery are the current treatment modalities; however, the positive effects of currently available intravitreally injected agents are temporary. At this point, further treatment choices are needed for a permanent effect. The articles published between 1985-2015 years on major databases were searched and most appropriate 40 papers were used to write this review article.
Zawadzki, Robert J.; Jones, Steven M.; Pilli, Suman; Balderas-Mata, Sandra; Kim, Dae Yu; Olivier, Scot S.; Werner, John S.
2011-01-01
We describe an ultrahigh-resolution (UHR) retinal imaging system that combines adaptive optics Fourier-domain optical coherence tomography (AO-OCT) with an adaptive optics scanning laser ophthalmoscope (AO-SLO) to allow simultaneous data acquisition by the two modalities. The AO-SLO subsystem was integrated into the previously described AO-UHR OCT instrument with minimal changes to the latter. This was done in order to ensure optimal performance and image quality of the AO- UHR OCT. In this design both imaging modalities share most of the optical components including a common AO-subsystem and vertical scanner. One of the benefits of combining Fd-OCT with SLO includes automatic co-registration between two acquisition channels for direct comparison between retinal structures imaged by both modalities (e.g., photoreceptor mosaics or microvasculature maps). Because of differences in the detection scheme of the two systems, this dual imaging modality instrument can provide insight into retinal morphology and potentially function, that could not be accessed easily by a single system. In this paper we describe details of the components and parameters of the combined instrument, including incorporation of a novel membrane magnetic deformable mirror with increased stroke and actuator count used as a single wavefront corrector. We also discuss laser safety calculations for this multimodal system. Finally, retinal images acquired in vivo with this system are presented. PMID:21698028