Effectiveness of Shield Termination Techniques Tested with TEM Cell and Bulk Current Injection
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Hare, Richard J.
2009-01-01
This paper presents experimental results of the effectiveness of various shield termination techniques. Each termination technique is evaluated by two independent noise injection methods; transverse electromagnetic (TEM) cell operated from 3 MHz 400 MHz, and bulk current injection (BCI) operated from 50 kHz 400 MHz. Both single carrier and broadband injection tests were investigated. Recommendations as to how to achieve the best shield transfer impedance (i.e. reduced coupled noise) are made based on the empirical data. Finally, the noise injection techniques themselves are indirectly evaluated by comparing the results obtained from the TEM Cell to those from BCI.
NASA Astrophysics Data System (ADS)
Badini, L.; Grassi, F.; Pignari, S. A.; Spadacini, G.; Bisognin, P.; Pelissou, P.; Marra, S.
2016-05-01
This work presents a theoretical rationale for the substitution of radiated-susceptibility (RS) verifications defined in current aerospace standards with an equivalent conducted-susceptibility (CS) test procedure based on bulk current injection (BCI) up to 500 MHz. Statistics is used to overcome the lack of knowledge about uncontrolled or uncertain setup parameters, with particular reference to the common-mode impedance of equipment. The BCI test level is properly investigated so to ensure correlation of currents injected in the equipment under test via CS and RS. In particular, an over-testing probability quantifies the severity of the BCI test with respect to the RS test.
Effect of current injection into thin-film Josephson junctions
Kogan, V. G.; Mints, R. G.
2014-11-11
New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ 2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.
Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...
An investigation of improved airbag performance by vent control and gas injection
NASA Astrophysics Data System (ADS)
Lee, Calvin; Rosato, Nick; Lai, Francis
Airbags are currently being investigated as an impact energy absorber for U.S. Army airdrop. Simple airbags with constant vent areas have been found to be unsatisfactory in yielding high G forces. In this paper, a method of controlling the vent area and a method of injecting gas into the airbag during its compression stroke to improve airbag performance are presented. Theoretical analysis of complex airbags using these two methods show that they provide lower G forces than simple airbags. Vertical drop tests of a vent-control airbag confirm this result. Gas-injection airbags are currently being tested.
Kappelgaard, Anne-Marie; Mikkelsen, Søren; Knudsen, Thomas Kamp; Fuchs, Gitte Schøning
2011-01-01
Growth hormone deficiency (GHD) in children is treated with daily subcutaneous injections of GH. Poor adherence, resulting in suboptimal treatment outcomes, is common due to long-term treatment. Injection devices that are considered easy to use by patients or guardians could improve adherence. This study assessed the usability of the Norditropin FlexPro pen injector and NovoTwist needles (both Novo Nordisk A/S, Bagsvaerd, Denmark) in Japanese children and adolescents with GHD. This open-label, uncontrolled usability test included patients aged 6 to < or = 18 years with GHD currently receiving daily injections of GH with pen injectors. Patients performed repeated injections of test medium into a foam cushion. Patients or guardians completed a questionnaire on pen handling. A total of 73/74 patients (99%) rated Norditropin FlexPro easy to handle, reporting no technical complaints. In total, 60 (81%) preferred Norditropin FlexPro over their current device, with 12% preferring their current device and 7% not sure. Norditropin FlexPro was perceived as easy to use and reliable, and was well accepted and preferred over the current device for the administration of GH in children and adolescents. Patients were more confident that Norditropin FlexPro delivered the right dose compared with their current device.
Characterization of DUT impedance in immunity test setups
NASA Astrophysics Data System (ADS)
Hassanpour Razavi, Seyyed Ali; Frei, Stephan
2016-09-01
Several immunity test procedures for narrowband radiated electromagnetic energy are available for automotive components. The ISO 11452 series describes the most commonly used test methods. The absorber line shielded enclosure (ALSE) is often considered as the most reliable method. However, testing with the bulk current injection (BCI) can be done with less efforts and is often preferred. As the test setup in both procedures is quite similar, there were several trials for finding appropriate modifications to the BCI in order to increase the matching to the ALSE. However, the lack of knowledge regarding the impedance of the tested component, makes it impossible to find the equivalent current to be injected by the BCI and a good match cannot be achieved. In this paper, three approaches are proposed to estimate the termination impedance indirectly by using different current probes.
Signal injection as a fault detection technique.
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies.
Signal Injection as a Fault Detection Technique
Cusidó, Jordi; Romeral, Luis; Ortega, Juan Antonio; Garcia, Antoni; Riba, Jordi
2011-01-01
Double frequency tests are used for evaluating stator windings and analyzing the temperature. Likewise, signal injection on induction machines is used on sensorless motor control fields to find out the rotor position. Motor Current Signature Analysis (MCSA), which focuses on the spectral analysis of stator current, is the most widely used method for identifying faults in induction motors. Motor faults such as broken rotor bars, bearing damage and eccentricity of the rotor axis can be detected. However, the method presents some problems at low speed and low torque, mainly due to the proximity between the frequencies to be detected and the small amplitude of the resulting harmonics. This paper proposes the injection of an additional voltage into the machine being tested at a frequency different from the fundamental one, and then studying the resulting harmonics around the new frequencies appearing due to the composition between injected and main frequencies. PMID:22163801
New technologies for HWIL testing of WFOV, large-format FPA sensor systems
NASA Astrophysics Data System (ADS)
Fink, Christopher
2016-05-01
Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.
Bulk Current Injection Testing of Cable Noise Reduction Techniques, 50 kHz to 400 MHz
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Hare, Richard J.; Singh, Manisha
2009-01-01
This paper presents empirical results of cable noise reduction techniques as demonstrated using bulk current injection (BCI) techniques with radiated fields from 50 kHz - 400 MHz. It is a follow up to the two-part paper series presented at the Asia Pacific EMC Conference that focused on TEM cell signal injection. This paper discusses the effects of cable types, shield connections, and chassis connections on cable noise. For each topic, well established theories are compared with data from a real-world physical system.
Massive Gas Injection Valve Development for NSTX-U
Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Plunkett, G. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Way, W.-S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2016-05-01
NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.
Lightning Pin Injection Testing on MOSFETS
NASA Technical Reports Server (NTRS)
Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita
2009-01-01
Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.
High risk behavior for HIV transmission among former injecting drug users: a survey from Indonesia.
Iskandar, Shelly; Basar, Diba; Hidayat, Teddy; Siregar, Ike M P; Pinxten, Lucas; van Crevel, Reinout; Van der Ven, Andre J A M; De Jong, Cor A J
2010-08-10
Injecting drug use is an increasingly important cause of HIV transmission in most countries worldwide, especially in eastern Europe, South America, and east and southeast Asia. Among people actively injecting drugs, provision of clean needles and opioid substitution reduce HIV-transmission. However, former injecting drug users (fIDUs) are often overlooked as a high risk group for HIV transmission. We compared HIV risk behavior among current and former injecting drug users (IDUs) in Indonesia, which has a rapidly growing HIV-epidemic largely driven by injecting drug use. Current and former IDUs were recruited by respondent driven sampling in an urban setting in Java, and interviewed regarding drug use and HIV risk behavior using the European Addiction Severity Index and the Blood Borne Virus Transmission Questionnaire. Drug use and HIV transmission risk behavior were compared between current IDUs and former IDUs, using the Mann-Whitney and Pearson Chi-square test. Ninety-two out of 210 participants (44%) were self reported former IDUs. Risk behavior related to sex, tattooing or piercing was common among current as well as former IDUs, 13% of former IDUs were still exposed to contaminated injecting equipment. HIV-infection was high among former (66%) and current (60%) IDUs. Former IDUs may contribute significantly to the HIV-epidemic in Indonesia, and HIV-prevention should therefore also target this group, addressing sexual and other risk behavior.
Transitions from injecting to non-injecting drug use: potential protection against HCV infection
Des Jarlais, Don C.; McKnight, Courtney; Arasteh, Kamyar; Feelemyer, Jonathan; Perlman, David C.; Hagan, Holly; Cooper, Hannah L. F.
2013-01-01
Transitions from injecting to non-injecting drug use have been reported from many different areas, particularly in areas with large human immunodeficiency virus (HIV) epidemics. The extent to which such transitions actually protect against HIV and HCV has not been determined. A cross-sectional survey with HIV and hepatitis C (HCV) testing was conducted with 322 former injectors (persons who had injected illicit drugs but permanently transitioned to non-injecting use) and 801 current injectors recruited in New York City between 2007 and 2012. There were no differences in HIV prevalence, while HCV prevalence was significantly lower among former injectors compared to current injectors. Years injecting functioned as a mediating variable linking former injector status to lower HCV prevalence. Transitions have continued well beyond the reduction in the threat of AIDS to injectors in the city. New interventions to support transitions to non-injecting drug use should be developed and supported by both drug treatment and syringe exchange programs. PMID:24161262
Human and bovine spinal disc mechanics subsequent to trypsin injection.
Alsup, Jeremy; Bishop, Timothy; Eggett, Dennis; Bowden, Anton E
2017-10-01
To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments. Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading. Stiffness and neutral zone parameters experienced significant changes over time, with bovine tissues more strongly affected than human cadaver tissues. This was true in both axial rotation and flexion-extension. The treatment type significantly affected the neutral zone measurements in axial rotation. Hysteresis parameters were impacted by control injections. The extrapolation of bovine coccygeal motion testing results to human lumbar disc mechanics is not yet practical. The injected treatment may have a smaller impact on disc mechanics than time in testing. Viscoelasticity of human lumbar discs may be impacted by any damage to the annulus fibrosis induced by needlestick. Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.
36C1 measurements and the hydrology of an acid injection site
Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.
1990-01-01
In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.
Local Helicity Injection Systems for Non-solenoidal Startup in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Redd, A. J.
2013-10-01
Local helicity injection is being developed in the PEGASUS Toroidal Experiment for non-solenoidal startup in spherical tokamaks. The effective loop voltage due to helicity injection scales with the area of the injectors, requiring the development of electron current injectors with areas much larger than the 2 cm2 plasma arc injectors used to date. Solid and gas-effused metallic electrodes were found to be unusable due to reduced injector area utilization from localized cathode spots and narrow operational regimes. An integrated array of 8 compact plasma arc sources is thus being developed for high current startup. It employs two monolithic power systems, for the plasma arc sources and the bias current extraction system. The array effectively eliminates impurity fueling from plasma-material interaction by incorporating a local scraper-limiter and conical-frustum bias electrodes to mitigate the effects of cathode spots. An energy balance model of helicity injection indicates that the resulting 20 cm2 of total injection area should provide sufficient current drive to reach 0.3 MA. At that level, helicity injection drive exceeds that from poloidal induction, which is the relevant operational regime for large-scale spherical tokamaks. Future placement of the injector array near an expanded boundary divertor region will test simultaneous optimization of helicity drive and the Taylor relaxation current limit. Work supported by US DOE Grant DE-FG02-96ER54375.
Non-Solenoidal Tokamak Startup via Inboard Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Reusch, J. A.; Rodriguez Sanchez, C.; Richner, N. J.; Schlossberg, D. J.
2016-10-01
Local helicity injection (LHI) is a non-solenoidal startup technique utilizing small injectors at the plasma edge to source current along helical magnetic field lines. Unstable injected current streams relax to a tokamak-like configuration with high toroidal current multiplication. Flexible placement of injectors permits tradeoffs between helicity injection rate, poloidal field induction, and magnetic geometry requirements for initial relaxation. Experiments using a new set of large-area injectors in the lower divertor explore the efficacy of high-field-side (HFS) injection. The increased area (4 cm2) current source is functional up to full Pegasus toroidal field (BT , inj = 0.23 T). However, relaxation to a tokamak state is increasingly frustrated for BT , inj > 0.15 T with uniform vacuum vertical field. Paths to relaxation at increased field include: manipulation of vacuum poloidal field geometry; increased injector current; and plasma initiation with outboard injectors, subsequently transitioning to divertor injector drive. During initial tests of HFS injectors, achieved Vinj was limited to 600 V by plasma-material interactions on the divertor plate, which may be mitigated by increasing injector elevation. In experiments with helicity injection as the dominant current drive Ip 0.13 MA has been attained, with T̲e > 100 eV and ne 1019 m-3. Extrapolation to full BT, longer pulse length, and Vinj 1 kV suggest Ip > 0.25 MA should be attainable in a plasma dominated by helicity drive. Work supported by US DOE Grant DE-FG02-96ER54375.
Injectable silk foams for the treatment of cervical insufficiency
NASA Astrophysics Data System (ADS)
Fournier, Eric P.
Preterm birth is the leading cause of neonatal mortality, resulting in over 4,000 deaths each year. A significant risk factor for preterm birth is cervical insufficiency, the weakening and subsequent deformation of cervical tissue. Cervical insufficiency is both detectable and treatable but current treatments are lacking. The most common approach requires multiple invasive procedures. This work investigates the injection of silk foams, a minimally-invasive method for supporting cervical tissue. Silk offers many advantages for use as a biomaterial including strength, versatility, and biocompatibility. Injectable silk foams will minimize patient discomfort while also providing more targeted and personalized treatment. A battery of mechanical testing was undertaken to determine silk foam response under physiologically relevant loading and environmental conditions. Mechanical testing was paired with analysis of foam morphology and structure that illustrated the effects of injection on pore geometry and size. Biological response to silk foams was evaluated using an in vitro degradation study and subcutaneous in vivo implantation in a mouse model. Results showed that foams exceeded the mechanical requirements for stiffening cervical tissue, although the current injection process limits foam size. Injection was shown to cause measurable but localized foam deformation. This work indicates that silk foams are a feasible treatment option for cervical insufficiency but challenges remain with foam delivery.
Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.
Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je
2017-11-01
Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.
New diesel injection nozzle flow measuring device
NASA Astrophysics Data System (ADS)
Marčič, Milan
2000-04-01
A new measuring device has been developed for diesel injection nozzle testing, allowing measuring of the steady flow through injection nozzle and the injection rate. It can be best applied for measuring the low and high injection rates of the pintle and single hole nozzle. In steady flow measuring the fuel pressure at the inlet of the injection nozzle is 400 bar. The sensor of the measuring device measures the fuel charge, resulting from fuel rubbing in the fuel injection system, as well as from the temperature gradient in the sensor electrode. The electric charge is led to the charge amplifier, where it is converted into electric current and amplified. The amplifier can be used also to measure the mean injection rate value.
Arpinar, V E; Hamamura, M J; Degirmenci, E; Muftuler, L T
2012-07-07
Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z).
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.
1989-01-01
The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.
Lightning induced currents in aircraft wiring using low level injection techniques
NASA Technical Reports Server (NTRS)
Stevens, E. G.; Jordan, D. T.
1991-01-01
Various techniques were studied to predict the transient current induced into aircraft wiring bundles as a result of an aircraft lightning strike. A series of aircraft measurements were carried out together with a theoretical analysis using computer modeling. These tests were applied to various aircraft and also to specially constructed cylinders installed within coaxial return conductor systems. Low level swept frequency CW (carrier waves), low level transient and high level transient injection tests were applied to the aircraft and cylinders. Measurements were made to determine the transfer function between the aircraft drive current and the resulting skin currents and currents induced on the internal wiring. The full threat lightning induced transient currents were extrapolated from the low level data using Fourier transform techniques. The aircraft and cylinders used were constructed from both metallic and CFC (carbon fiber composite) materials. The results show the pulse stretching phenomenon which occurs for CFC materials due to the diffusion of the lightning current through carbon fiber materials. Transmission Line Matrix modeling techniques were used to compare theoretical and measured currents.
Preliminary test results of electrical charged particle generator for application to fog dispersal
NASA Technical Reports Server (NTRS)
Frost, W.
1982-01-01
A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.
Mixson-Hayden, Tonya; Dawson, George J; Teshale, Eyasu; Le, Thao; Cheng, Kevin; Drobeniuc, Jan; Ward, John; Kamili, Saleem
2015-05-01
Hepatitis C virus (HCV) core antigen is a serological marker of current HCV infection. The aim of this study was mainly to evaluate the performance characteristics of the ARCHITECT HCV core antigen assay with specimens from US plasma donors and injecting drug users. A total of 551 serum and plasma samples with known anti-HCV and HCV RNA status were tested for HCV core antigen using the Abbott ARCHITECT HCV core antigen test. HCV core antigen was detectable in 100% of US plasma donor samples collected during the pre-seroconversion phase of infection (anti-HCV negative/HCV RNA positive). Overall sensitivity of the HCV core antigen assay was 88.9-94.3% in samples collected after seroconversion. The correlation between HCV core antigen and HCV RNA titers was 0.959. HCV core antigen testing may be reliably used to identify current HCV infection. Published by Elsevier B.V.
Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)
NASA Astrophysics Data System (ADS)
Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.
1999-11-01
Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.
Toussova, Olga V.; Verevochkin, Sergei V.; Barbour, Russell; Heimer, Robert; Kozlov, Andrei P.
2011-01-01
The purpose of this analysis was to estimate human immunodeficiency virus (HIV) prevalence and testing patterns among injection drug users (IDUs) in St. Petersburg, Russia. HIV prevalence among 387 IDUs in the sample was 50%. Correlates of HIV-positive serostatus included unemployment, recent unsafe injections, and history/current sexually transmitted infection. Seventy-six percent had been HIV tested, but only 22% of those who did not report HIV-positive serostatus had been tested in the past 12 months and received their test result. Correlates of this measure included recent doctor visit and having been in prison or jail among men. Among the 193 HIV-infected participants, 36% were aware of their HIV-positive serostatus. HIV prevalence is high and continuing to increase in this population. Adequate coverage of HIV testing has not been achieved, resulting in poor knowledge of positive serostatus. Efforts are needed to better understand motivating and deterring factors for HIV testing in this setting. PMID:18843531
Processing study of injection molding of silicon nitride for engine applications
NASA Technical Reports Server (NTRS)
Rorabaugh, M. E.; Yeh, H. C.
1985-01-01
The high hardness of silicon nitride, which is currently under consideration as a structural material for such hot engine components as turbine blades, renders machining of the material prohibitively costly; the near net shape forming technique of injection molding is accordingly favored as a means for component fabrication. Attention is presently given to the relationships between injection molding processing parameters and the resulting microstructural and mechanical properties of the resulting engine parts. An experimental program has been conducted under NASA sponsorship which tests the quality of injection molded bars of silicon nitride at various stages of processing.
HIV and injecting drug use in Indonesia: epidemiology and national response.
Afriandi, Irvan; Aditama, Tjandra Yoga; Mustikawati, Dyah; Oktavia, Martiani; Alisjahbana, Bachti; Riono, Pandu
2009-07-01
Indonesia is facing one of the most rapidly growing HIV-epidemics in Asia. Risk behaviour associated with injecting drug use, such as sharing contaminated needles, is the main risk factor for HIV infection. Among the general population the prevalence of HIV-infection is still low (0.2%), but up to 50% or more of the estimated 145.000 - 170.000 injecting drug users are already HIV-positive. Overrepresentation of injecting drug users and continued risk behavior inside Indonesian prisons contribute to spread of HIV. Through sexual contacts, HIV is transmitted from current or previous injecting drug users to their non-injecting sexual partners; 10-20% of this group may already be infected. The national response targeted to limit spread of HIV through injecting drug use has included needle and syringe program (NSP), methadone maintenance treatment (MMT), voluntary counseling and testing (VCT), and outreach program as priority programs. However coverage and utilization of the harm reduction services is still limited, but effective integration with HIV testing and treatment is expanding. By 2008, there were 110 service points for NSP and 24 operational MMT clinics. Nevertheless, utilization of these services has been less satisfactory and their effectiveness has been questioned. Besides effective prevention, HIV- testing and earlier treatment of HIV-seropositve individuals, including those with a history of injecting drug use, will help control the growing HIV-epidemic in Indonesia.
Measurements of charge state breeding efficiency at BNL test EBIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondrashev, S.; Alessi, J.; Beebe, E.N.
Charge breeding of singly charged ions is required to efficiently accelerate rare isotope ion beams for nuclear and astrophysics experiments, and to enhance the accuracy of low-energy Penning trap-assisted spectroscopy. An efficient charge breeder for the Californium Rare Isotope Breeder Upgrade (CARIBU) to the ANL Tandem Linear Accelerator System (ATLAS) facility is being developed using the BNL Test Electron Beam Ion Source (Test EBIS) as a prototype. Parameters of the CARIBU EBIS charge breeder are similar to those of the BNL Test EBIS except the electron beam current will be adjustable in the range from 1 to 2 {angstrom}. Themore » electron beam current density in the CARIBU EBIS trap will be significantly higher than in existing operational charge state breeders based on the EBIS concept. The charge state breeding efficiency is expected to be about 25% for the isotope ions extracted from the CARIBU. For the success of our EBIS project, it is essential to demonstrate high breeding efficiency at the BNL Test EBIS tuned to the regime close to the parameters of the CARIBU EBIS at ANL. The breeding efficiency optimization and measurements have been successfully carried out using a Cs{sup +} surface ionization ion source for externally pulsed injection into the BNL Test EBIS. A Cs{sup +} ion beam with a total number of ions of 5 x 10{sup 8} and optimized pulse length of 70 {mu}s has been injected into the Test EBIS and charge-bred for 5.3 ms for two different electron beam currents 1 and 1.5 {angstrom}. In these experiments we have achieved 70% injection/extraction efficiency and breeding efficiency into the most abundant charge state 17%.« less
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-01-01
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142
Liu, Yixin; Xu, Jiang; Peng, Shoujian
2016-12-08
Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.
1975-01-01
The calcium sequestering agent, EGTA, was injected into Limulus ventral photoreceptors. Before injection, the inward membrane current induced by a long stimulus had a large initial transient which declined to a smaller plateau. Iontophoretic injection of EGTA tended to prevent the decline from transient to plateau. Before injection the plateau response was a nonlinear function of light intensity. After EGTA injection the response-intensity curves tended to become linear. Before injection, bright lights lowered the sensitivity as determined with subsequent test flashes. EGTA injection decreased the light-induced changes in sensitivity. Ca-EGTA buffers having different levels of free calcium were pressure-injected into ventral photoreceptors; the higher the level of free calcium, the lower the sensitivity measured after injection. The effects of inotophoretic injection of EGTA were not mimicked by injection or similar amounts of sulfate and the effects of pressure injection of EGTA buffer solutions were not mimicked by injection of similar volumes of pH buffer or mannitol. The data are consistent with the hypothesis that light adaptation is mediated by a rise of the intracellular free calcium concentration. PMID:810540
Nayak, Rabindra S; Shafiuddin, Bareera; Pasha, Azam; Vinay, K; Narayan, Anjali; Shetty, Smitha V
2015-07-01
Technological advances in wire selection and bracket design have led to improved treatment efficiency and allowed longer time intervals between appliance adjustments. The wires remain in the mouth for a longer duration and are subjected to electrochemical reactions, mechanical forces of mastication and generalized wear. These cause different types of corrosion. This study was done to compare the galvanic currents generated between different combinations of brackets and archwires commonly used in orthodontic practices. The materials used for the study included different commercially available orthodontic archwires and brackets. The galvanic current generated by individual materials and different combinations of these materials was tested and compared. The orthodontic archwires used were 0.019″ × 0.025″ heat-activated nickel-titanium (3M Unitek), 0.019″ × 0.025″ beta-titanium (3M Unitek) and 0.019″ × 0.025″ stainless steel (3M Unitek). The orthodontic brackets used were 0.022″ MBT laser-cut (Victory Series, 3M Unitek) and metal-injection molded (Leone Company) maxillary central incisor brackets respectively. The ligature wire used for ligation was 0.009″ stainless steel ligature (HP Company). The galvanic current for individual archwires, brackets, and the different bracket-archwire-ligature combinations was measured by using a Potentiostat machine. The data were generated using the Linear Sweep Voltammetry and OriginPro 8.5 Graphing and Data Analysis Softwares. The study was conducted in two phases. Phase I comprised of five groups for open circuit potential (OCP) and galvanic current (I), whereas Phase II comprised of six groups for galvanic current alone. Mean, standard deviation and range were computed for the OCP and galvanic current (I) values obtained. Results were subjected to statistical analysis through ANOVA. In Phase I, higher mean OCP was recorded in stainless steel archwire, followed by beta-titanium archwire, heat-activated nickel titanium archwire, laser-cut bracket and metal-injection molded bracket, respectively. The difference in mean OCP recorded among the groups was found to be statistically significant in aerated phosphate buffered saline solution. The galvanic current (I) for metal-injection molded stainless steel brackets showed significantly higher values than all the other materials. Phase II results suggested that, in the couples formed by the archwire-bracket-ligature combinations, the bracket had more important contribution to the total galvanic current generated, since there were significant differences between galvanic current among the 2 brackets tested but not among the 3 wires. The galvanic current of the metal-injection molded bracket was significantly higher than that of laser-cut bracket. Highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire. The present study concluded that the bracket emerged to be the most important factor in determining the galvanic current (I). Higher mean current (I) was recorded in metal-injection molded bracket compared to laser-cut bracket. Among the three archwires, higher mean current (I) was recorded in heat-activated nickel-titanium, followed by stainless-steel and beta-titanium respectively. When coupled together; highest mean current (I) was recorded in metal-injection molded bracket when used with heat-activated nickel titanium archwire while lowest mean current (I) was recorded in laser-cut bracket when used with beta-titanium archwire.
Li, Lei; Assanangkornchai, Sawitri; Duo, Lin; McNeil, Edward; Li, Jianhua
2014-01-01
Background Injection drug use has been the major cause of HIV/AIDS in China in the past two decades. We measured the prevalences of HIV and hepatitis C virus (HCV) prevalence and their associated risk factors among current injection drug users (IDUs) in Ruili city, a border region connecting China with Myanmar that has been undergoing serious drug use and HIV spread problems. An estimate of the number of current IDUs is also presented. Methods In 2012, Chinese IDUs who had injected within the past six months and aged ≥18 years were recruited using a respondent-driven sampling (RDS) technique. Participants underwent interviews and serological testing for HIV, HBV, HCV and syphilis. Logistic regression indentified factors associated with HIV and HCV infections. Multiplier method was used to obtain an estimate of the size of the current IDU population via combining available service data and findings from our survey. Results Among 370 IDUs recruited, the prevalence of HIV and HCV was 18.3% and 41.5%, respectively. 27.1% of participants had shared a needle/syringe in their lifetime. Consistent condom use rates were low among both regular (6.8%) and non-regular (30.4%) partners. Factors independently associated with being HIV positive included HCV infection, having a longer history of injection drug use and experience of needle/syringe sharing. Participants with HCV infection were more likely to be HIV positive, have injected more types of drugs, have shared other injection equipments and have unprotected sex with regular sex partners. The estimated number of current IDUs in Ruili city was 2,714 (95% CI: 1,617–5,846). Conclusions IDUs may continue to be a critical subpopulation for transmission of HIV and other infections in this region because of the increasing population and persistent high risk of injection and sexual behaviours. Developing innovative strategies that can improve accessibility of current harm reduction services and incorporate more comprehensive contents is urgently needed. PMID:25203256
Des Jarlais, D C; Cooper, H L F; Arasteh, K; Feelemyer, J; McKnight, C; Ross, Z
2018-01-01
We identified potential geographic "hotspots" for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an "end of the epidemic" stage, while HCV is in a continuing, high prevalence (> 50%) stage. We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011-2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential "hotspots" for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk-passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk-injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US.
A Numerical Simulation of a Normal Sonic Jet into a Hypersonic Cross-Flow
NASA Technical Reports Server (NTRS)
Jeffries, Damon K.; Krishnamurthy, Ramesh; Chandra, Suresh
1997-01-01
This study involves numerical modeling of a normal sonic jet injection into a hypersonic cross-flow. The numerical code used for simulation is GASP (General Aerodynamic Simulation Program.) First the numerical predictions are compared with well established solutions for compressible laminar flow. Then comparisons are made with non-injection test case measurements of surface pressure distributions. Good agreement with the measurements is observed. Currently comparisons are underway with the injection case. All the experimental data were generated at the Southampton University Light Piston Isentropic Compression Tube.
Turning Noise into Signal: Utilizing Impressed Pipeline Currents for EM Exploration
NASA Astrophysics Data System (ADS)
Lindau, Tobias; Becken, Michael
2017-04-01
Impressed Current Cathodic Protection (ICCP) systems are extensively used for the protection of central Europe's dense network of oil-, gas- and water pipelines against destruction by electrochemical corrosion. While ICCP systems usually provide protection by injecting a DC current into the pipeline, mandatory pipeline integrity surveys demand a periodical switching of the current. Consequently, the resulting time varying pipe currents induce secondary electric- and magnetic fields in the surrounding earth. While these fields are usually considered to be unwanted cultural noise in electromagnetic exploration, this work aims at utilizing the fields generated by the ICCP system for determining the electrical resistivity of the subsurface. The fundamental period of the switching cycles typically amounts to 15 seconds in Germany and thereby roughly corresponds to periods used in controlled source EM applications (CSEM). For detailed studies we chose an approximately 30km long pipeline segment near Herford, Germany as a test site. The segment is located close to the southern margin of the Lower Saxony Basin (LSB) and part of a larger gas pipeline composed of multiple segments. The current injected into the pipeline segment originates in a rectified 50Hz AC signal which is periodically switched on and off. In contrast to the usual dipole sources used in CSEM surveys, the current distribution along the pipeline is unknown and expected to be non-uniform due to coating defects that cause current to leak into the surrounding soil. However, an accurate current distribution is needed to model the fields generated by the pipeline source. We measured the magnetic fields at several locations above the pipeline and used Biot-Savarts-Law to estimate the currents decay function. The resulting frequency dependent current distribution shows a current decay away from the injection point as well as a frequency dependent phase shift which is increasing with distance from the injection point. Electric field data were recorded at 45 stations located in an area of about 60 square kilometers in the vicinity to the pipeline. Additionally, the injected source current was recorded directly at the injection point. Transfer functions between the local electric fields and the injected source current are estimated for frequencies ranging from 0.03Hz to 15Hz using robust time series processing techniques. The resulting transfer functions are inverted for a 3D conductivity model of the subsurface using an elaborate pipeline model. We interpret the model with regards to the local geologic setting, demonstrating the methods capabilities to image the subsurface.
Ganju, Deepika; Ramesh, Sowmya; Saggurti, Niranjan
2016-06-21
Although targeted interventions in India require all high-risk groups, including injecting drug users (IDUs), to test for HIV every 6 months, testing uptake among IDUs remains far from universal. Our study estimates the proportion of IDUs who have taken an HIV test and identifies the factors associated with HIV testing uptake in Nagaland and Manipur, two high HIV prevalence states in India where the epidemic is driven by injecting drug use. Data are drawn from the cross-sectional Integrated Behavioural and Biological Assessment (2009) of 1650 male IDUs from two districts each of Manipur and Nagaland. Participants were recruited using respondent-driven sampling (RDS). Descriptive data were analysed using RDSAT 7.1. Multivariate logistic regression analysis was undertaken using STATA 11 to examine the association between HIV testing and socio-demographic, behavioural and programme exposure variables. One third of IDUs reported prior HIV testing, of whom 8 % had tested HIV-positive. Among those without prior testing, 6.2 % tested HIV-positive in the current survey. IDUs aged 25-34 years (adjusted odds ratio (OR) = 1.41; 95 % confidence interval (CI) = 1.03-1.93), married (Adjusted OR = 1.56; 95 % CI = 1.15-2.12), had a paid sexual partner (Adjusted OR = 1.64; 95 % CI = 1.24-2.18), injected drugs for more than 36 months (Adjusted OR = 1.38; 95 % CI = 1.06-1.81), injected frequently (Adjusted OR = 1.49; 95 % CI = 1.12-1.98) and had high-risk perception (Adjusted OR = 1.68; 95 % CI = 1.32-2.14) were more likely than others to test for HIV. Compared to those with no programme exposure, IDUs who received counselling, or counselling and needle/syringe services, were more likely to test for HIV. HIV testing uptake among IDUs is low in Manipur and Nagaland, and a critical group of HIV-positive IDUs who have never tested for HIV are being missed by current programmes. This study identifies key sub-groups-including early initiators, short duration and less frequent injectors, perceived to be at low risk-for promoting HIV testing. Providing needles/syringes alone is not adequate to increase HIV testing; additionally, interventions must provide counselling services to inform all IDUs about HIV testing benefits, facilitate visits to testing centres and link those testing positive to timely treatment and care.
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser
2015-08-01
In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.
Design of the Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI)
NASA Astrophysics Data System (ADS)
Sieck, P. E.; Gu, P.; Hamp, W. T.; Izzo, V. A.; McCollam, K. J.; Jarboe, T. R.; Nelson, B. A.; Redd, A. J.; Rogers, J. A.; Shumlak, U.
2000-10-01
Steady Inductive Helicity Injection (SIHI) is an inductive current drive method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma(T.R. Jarboe, Fusion Technology 36), p. 85, 1999. SIHI directly produces a rotating magnetic field structure, and the current profile is nearly time independent in the frame of the rotating field. The Helicity Injected Torus with SIHI (HIT-SI) is a ``bow tie'' spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. SIHI is accomplished using two inductive helicity injectors that operate 90^o out of phase with each other. Each helicity injector is a 180^o segment of a ZT-P size (a ≈ 8cm, R ≈ 32cm) RFP. The presence of a spheromak equilibrium will be readily apparent on several diagnostics, including the surface magnetic probes. The design of HIT-SI is presented, including the manufacturing techniques and metallurgical processes being used in the construction of the one-meter diameter close-fitting flux conserver. Several small prototype tests have been performed to prove the vacuum seal and electrical insulation capabilities of the design, and a finite element stress analysis of the flux conserver will be presented.
Superconducting technology for overcurrent limiting in a 25 kA current injection system
NASA Astrophysics Data System (ADS)
Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein
2008-09-01
Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.
Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range
Patan, Mustafa; Shah, Tosha; Sahin, Mesut
2011-01-01
Many applications of neural stimulation demand a high current density from the electrodes used for stimulus delivery. New materials have been searched that can provide such large current and charge densities where the traditional noble metal and capacitor electrodes are inadequate. Titanium nitride, which has been used in cardiac pacemaker leads for many years, is one of these materials recently considered for neural stimulation. In this short report, we investigated the charge injection capacity of TiN electrodes for an extended range of cathodic voltages. The injected charge increased first slowly as a function of the electrode voltage, and then at a faster rate beyond −1.6 V. The maximum charge was 4.45 mC/cm2 (n=6) for a cathodic voltage peak of −3.0 V and a bias voltage of −0.8 V. There was no evidence of bubble generation under microscopic observation. The unrecoverable charges remained under 7% of the total injected charge for the largest cathodic voltage tested. These large values of charge injection capacity and relatively small unrecoverable charges warrant further investigation of the charge injection mechanism in TiN interfaces at this extended range of electrode voltages. PMID:17946870
NASA Technical Reports Server (NTRS)
Somsel, James P.
1998-01-01
The development of a water injected Orbital Combustion Process (OCP) engine was conducted to assess the viability of using the powerplant for high altitude NASA aircraft and General Aviation (GA) applications. An OCP direct fuel injected, 1.2 liter, three cylinder, two-stroke engine has been enhanced to independently inject water directly into the combustion chamber. The engine currently demonstrates low brake specific fuel consumption capability and an excellent power to weight ratio. With direct water injection, significant improvements can be made to engine power, to knock limits/ignition advance timing, and to engine NO(x) emissions. The principal aim of the testing was to validate a cyclic model developed by the Systems Analysis Branch at NASA Ames Research Center. The work is a continuation of Ames' investigations into a Phased Direct Fuel Injection Engine with High Pressure Charging (PDFI-ITPC).
Measurements of high impedance two-terminal device with SMU NI PXIe-4139
NASA Astrophysics Data System (ADS)
Bogdanov, S. V.; Lelekov, E. T.; Kovalev, I. V.; Zelenkov, P. V.; Lelekov, A. T.
2016-11-01
To measure high-frequency and low-frequency impedance of betavoltaic power sources (it can be represented as two-terminal device), measurement stand was created. To measure high-frequency part need to inject external test signal through the current transformer with waveform generator and need to use external high-frequency current sensor, because of SMU PXIe-4139 current channel limitations.
Artificial recharge to a freshwater-sensitive brackish-water sand aquifer, Norfolk, Virginia
Brown, Donald L.; Silvey, William Dudley
1977-01-01
Fresh water was injected into a brackish-water sand for storage and retrieval. The initial injection rate of 400 gpm decreased to 70 gpm during test 3. The specific capacity of the well decreased also, from 15.4 to 0.93 gpm. Current-meter surveys indicated uniform reduction in hydraulic conductivity of all contributing zones in the aquifer. Hydraulic and chemical data indicate this was caused by dispersion of the interstitial clay upon introduction of the calcium bicarbonate water into the sodium chloride bearing sand aquifer. The clay dispersion also caused particulate rearrangement and clogging of well screen. A pre-flush of 0.2 N calcium chloride solution injected in front of the fresh water at the start of test 4 stabilized the clay. However, it did not reverse the particulate clogging that permanently reduced permeability and caused sanding during redevelopment. Clogging can be prevented by stabilization of the clay using commercially available trivalent aluminum compounds. Test 1 and test 2 showed that 85 percent of the water injected can be recovered, and the water meets U.S. Public Health Standards. Storage of fresh water in a brackish-water aquifer appears feasible provided proper control measures are used. (Woodard-USGS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladino, Domenico; Auban, Olivier; Zboray, Robert
The benefits of using codes with 3-D capabilities to address safety issues of LWRs will be applicable to both the current generation of nuclear reactors as well to future ALWRs. The phenomena governing the containment response in case of some postulated severe accident scenarios include gas (air, hydrogen, steam) stratification in the containment, gas distribution between containment compartments, wall condensation, etc. These phenomena are driven by buoyant high momentum injection (jets) and/or low momentum injection (plumes). For instance, mixing in the immediate vicinity of the postulated line break is mainly dominated by very high velocity efflux, while low-momentum flows aremore » responsible for most of the transport processes within the containment. A project named SETH is currently in progress under the auspices of 15 OECD countries, with the aim of creating an experimental database suitable to assess the 3-D code capabilities in analyzing key-physical phenomena relevant for LWR safety analysis. This paper describes some results of two SETH tests, performed in the PANDA facility (located at PSI in Switzerland), focusing on plumes flowing near a containment wall. The plumes are generated by injecting a constant amount of steam in one of two interconnected vessels initially filled with air. In one of the two tests the temperature of the injected steam and the initial containment wall and fluid temperatures allowed for condensation during the test. (authors)« less
Non-Solenoidal Startup Research Directions on the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Fonck, R. J.; Bongard, M. W.; Lewicki, B. T.; Reusch, J. A.; Winz, G. R.
2017-10-01
The Pegasus research program has been focused on developing a physical understanding and predictive models for non-solenoidal tokamak plasma startup using Local Helicity Injection (LHI). LHI employs strong localized electron currents injected along magnetic field lines in the plasma edge that relax through magnetic turbulence to form a tokamak-like plasma. Pending approval, the Pegasus program will address a broader, more comprehensive examination of non-solenoidal tokamak startup techniques. New capabilities may include: increasing the toroidal field to 0.6 T to support critical scaling tests to near-NSTX-U field levels; deploying internal plasma diagnostics; installing a coaxial helicity injection (CHI) capability in the upper divertor region; and deploying a modest (200-400 kW) electron cyclotron RF capability. These efforts will address scaling of relevant physics to higher BT, separate and comparative studies of helicity injection techniques, efficiency of handoff to consequent current sustainment techniques, and the use of ECH to synergistically improve the target plasma for consequent bootstrap and neutral beam current drive sustainment. This has an ultimate goal of validating techniques to produce a 1 MA target plasma in NSTX-U and beyond. Work supported by US DOE Grant DE-FG02-96ER54375.
Oliveira, Maria de Lourdes Aguiar; Hacker, Mariana A; Oliveira, Sabrina Alberti Nóbrega de; Telles, Paulo Roberto; O, Kycia Maria Rodrigues do; Yoshida, Clara Fumiko Tachibana; Bastos, Francisco I
2006-04-01
The context of first drug injection and its association with ongoing injecting practices and HCV (hepatitis C virus) infection were investigated. Injection drug users (IDUs) (N = 606) were recruited in "drug scenes" (public places, bars) in Rio de Janeiro, Brazil, interviewed, and tested for HCV. Sharing of needles/syringes was more prevalent at the first injection (51.3%) than at the baseline interview (36.8%). Those who shared syringes/needles at first injection were more likely to be currently engaged in direct/indirect sharing practices. Among young injectors (< 30 years), those reporting sharing of needles/ syringes at the first injection were about four times more likely to have been infected by HCV. Hepatitis C virus prevalence among active IDUs (n = 272) was 11%. Prison history and longer duration of drug injection were identified as independent predictors of HCV infection. To effectively curb HCV transmission among IDUs and minimize harms associated with risk behaviors, preventive strategies should target individuals initiating drug injection beginning with their very first injection and discourage the transition from non-injecting use to the self-injection of illicit drugs.
The CarbFix Pilot Project in Iceland - CO2 capture and mineral storage in basaltic rocks
NASA Astrophysics Data System (ADS)
Sigurdardottir, H.; Sigfusson, B.; Aradottir, E. S.; Gunnlaugsson, E.; Gislason, S. R.; Alfredsson, H. A.; Broecker, W. S.; Matter, J. M.; Stute, M.; Oelkers, E.
2010-12-01
The overall objective of the CarbFix project is to develop and optimize a practical and cost-effective technology for capturing CO2 and storing it via in situ mineral carbonation in basaltic rocks, as well as to train young scientist to carry the corresponding knowledge into the future. The project consists of a field injection of CO2 charged water at the Hellisheidi geothermal power plant in SW Iceland, laboratory experiments, numerical reactive transport modeling, tracer tests, natural analogue and cost analysis. The CO2 injection site is situated about 3 km south of the Hellisheidi geothermal power plant. Reykjavik Energy operates the power plant, which currently produces 60,000 tons/year CO2 of magmatic origin. The produced geothermal gas mainly consists of CO2 and H2S. The two gases will be separated in a pilot gas treatment plant, and CO2 will be transported in a pipeline to the injection site. There, CO2 will be fully dissolved in 20 - 25°C water during injection at 25 - 30 bar pressure, resulting in a single fluid phase entering the storage formation, which consists of relatively fresh basaltic lavas. The CO2 charged water is reactive and will dissolve divalent cations from the rock, which will combine with the dissolved carbon to form solid thermodynamically stable carbonate minerals. The injection test is designed to inject 2200 tons of CO2 per year. In the past three years the CarbFix project has been addressing background fluid chemistries at the injection site and characterizing the target reservoir for the planned CO2 injection. Numerous groundwater samples have been collected and analysed. A monitoring and accounting plan has been developed, which integrates surface, subsurface and atmospheric monitoring. A weather station is operating at the injection site for continuous monitoring of atmospheric CO2 and to track all key parameters for the injection. Environmental authorities have granted licenses for the CO2 injection and the use of tracers, based on the monitoring plan. Pipelines, injection and monitoring wells have been installed and equipment test runs are in the final phase. A bailer has been constructed to be used to retrieve samples at reservoir conditions. Hydrological parameters of a three dimensional field model have been calibrated and reactive transport simulations are ongoing. The key risks that the project is currently facing are technical and financial. Until now the project has been facing incidences that have already impacted the time schedule in the CarbFix project. Furthermore the project is facing world-wide exchange rate uncertainty plus the inherited uncertainty that innovative research projects contain. However, the CarbFix group remains optimistic that injection will start in near future.
Cooper, H. L. F.; Arasteh, K.; Feelemyer, J.; McKnight, C.; Ross, Z.
2018-01-01
Objective We identified potential geographic “hotspots” for drug-injecting transmission of HIV and hepatitis C virus (HCV) among persons who inject drugs (PWID) in New York City. The HIV epidemic among PWID is currently in an “end of the epidemic” stage, while HCV is in a continuing, high prevalence (> 50%) stage. Methods We recruited 910 PWID entering Mount Sinai Beth Israel substance use treatment programs from 2011–2015. Structured interviews and HIV/ HCV testing were conducted. Residential ZIP codes were used as geographic units of analysis. Potential “hotspots” for HIV and HCV transmission were defined as 1) having relatively large numbers of PWID 2) having 2 or more HIV (or HCV) seropositive PWID reporting transmission risk—passing on used syringes to others, and 3) having 2 or more HIV (or HCV) seronegative PWID reporting acquisition risk—injecting with previously used needles/syringes. Hotspots for injecting drug use initiation were defined as ZIP codes with 5 or more persons who began injecting within the previous 6 years. Results Among PWID, 96% injected heroin, 81% male, 34% White, 15% African-American, 47% Latinx, mean age 40 (SD = 10), 7% HIV seropositive, 62% HCV seropositive. Participants resided in 234 ZIP codes. No ZIP codes were identified as potential hotspots due to small numbers of HIV seropositive PWID reporting transmission risk. Four ZIP codes were identified as potential hotspots for HCV transmission. 12 ZIP codes identified as hotspots for injecting drug use initiation. Discussion For HIV, the lack of potential hotspots is further validation of widespread effectiveness of efforts to reduce injecting-related HIV transmission. Injecting-related HIV transmission is likely to be a rare, random event. HCV prevention efforts should include focus on potential hotspots for transmission and on hotspots for initiation into injecting drug use. We consider application of methods for the current opioid epidemic in the US. PMID:29596464
Bulk Current Injection Testing of Close Proximity Cable Current Return, 1kHz to 1 MHz
NASA Technical Reports Server (NTRS)
Bradley, Arthur T.; Lee, William M.; Singh, Vivek; Yavoich, Brian
2010-01-01
This paper presents the results of an experiment examining the percentage of current that returns on adjacent wires or through a surrounding cable shield rather than through a shared conducting chassis. Simulation and measurement data are compared from 1 kHz 1 MHz for seven common cable configurations. The phenomenon is important to understand, because minimizing the return current path is vital in developing systems with low radiated emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, T.
The Warden ASP project has progressed from the initial planning stage to construction of an injection plant. An ASP chemical system was designed based on laboratory evaluations that included interfacial tension, mobility requirements, rock-alkali interaction, fluid capabilities, and core tests. Field cores were obtained from the Permian No. 5 and No. 6 sands on the Warden lease in Sho-Vel-Tum oil field. A separate tank battery for the pilot pattern area was installed, and a field tracer test is currently being evaluated. Tracer test results to date indicate that there is no major fracturing in the No. 5 sand. There ismore » indication, however, of some channeling through high permeability sand. The field injection plant was designed, and construction is in progress. Several variations of injection plant design have been evaluated. Some plant design details, such as alkali storage, were found to be dependent on the availability of use equipment and project budget. The surfactant storage facility design was shown to be dependent on surfactant rheology.« less
Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations
NASA Astrophysics Data System (ADS)
Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.
2012-12-01
Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast reaction of the injected CO2 with the ambient reservoir fluid and rocks. Mixing and in situ CO2-water-rock reactions are detected by changes in the different tracer ratios. The feasibility of 14C as a reactive tracer for geologic CO2 storage also depends on the analytical technique used to measure 14C activities. Currently, 14C is analyzed using Accelerator Mass Spectrometery (AMS), which is expensive and requires centralized facilities. To enable real time online monitoring and verification, we are developing an alternative detection method for radiocarbon. The IntraCavity OptoGalvanic Spectroscopy (ICOGS) system is using a CO2 laser to detect carbon isotope ratios at environmental levels. Results from our prototype of this bench-top technology demonstrate that an ICOGS system can be used in a continuous mode with analysis times of the order of minutes, and can deliver data of similar quality as AMS.
Low Cost Injection Mold Creation via Hybrid Additive and Conventional Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Watkins, Thomas R.; List, III, Frederick Alyious
2015-12-01
The purpose of the proposed project between Cummins and ORNL is to significantly reduce the cost of the tooling (machining and materials) required to create injection molds to make plastic components. Presently, the high cost of this tooling forces the design decision to make cast aluminum parts because Cummins typical production volumes are too low to allow injection molded plastic parts to be cost effective with the amortized cost of the injection molding tooling. In addition to reducing the weight of components, polymer injection molding allows the opportunity for the alternative cooling methods, via nitrogen gas. Nitrogen gas cooling offersmore » an environmentally and economically attractive cooling option, if the mold can be manufactured economically. In this project, a current injection molding design was optimized for cooling using nitrogen gas. The various components of the injection mold tooling were fabricated using the Renishaw powder bed laser additive manufacturing technology. Subsequent machining was performed on the as deposited components to form a working assembly. The injection mold is scheduled to be tested in a projection setting at a commercial vendor selected by Cummins.« less
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Studies of beam injection with a compensated bump and uncompensated bump in a synchrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar Fakhri, Ali; Prajapati, S. K.; Ghodke, A. D.
2013-08-15
Synchrotron radiation sources Indus-1 and Indus-2 have a synchrotron as the common injector. A three kicker compensated bump injection scheme was employed for beam injection into this synchrotron. The stored beam current in the synchrotron is higher, when all the three kickers are operated at the same current than when kickers are operated at currents required to generate compensated bump. Beam dynamics studies have been done to understand why this happens. Theoretical studies indicate that higher stored current in the later case is attributed to smaller residual oscillations of injected beam. These studies also reveal that if the angle ofmore » the injected beam during beam injection is kept varying, the performance could be further improved. This is experimentally confirmed by injecting the beam on rising part of the injection septum magnet current pulse.« less
Impedance of an intense plasma-cathode electron source for tokamak startup
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.
2016-05-01
An impedance model is formulated and tested for the ˜1 kV , 1 kA/cm2 , arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma ( narc≈1021 m-3 ) within the electron source, and the less dense external tokamak edge plasma ( nedge≈1018 m-3 ) into which current is injected at the applied injector voltage, Vinj . Experiments on the Pegasus spherical tokamak show that the injected current, Iinj , increases with Vinj according to the standard double layer scaling Iinj˜Vinj3 /2 at low current and transitions to Iinj˜Vinj1 /2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density nb˜Iinj/Vinj1 /2 . For low tokamak edge density nedge and high Iinj , the inferred beam density nb is consistent with the requirement nb≤nedge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, nb˜narc is observed, consistent with a limit to nb imposed by expansion of the double layer sheath. These results suggest that narc is a viable control actuator for the source impedance.
NASA Astrophysics Data System (ADS)
Klammler, Harald; Layton, Leif; Nemer, Bassel; Hatfield, Kirk; Mohseni, Ana
2017-06-01
Hydraulic conductivity and its anisotropy are fundamental aquifer properties for groundwater flow and transport modeling. Current in-well or direct-push field measurement techniques allow for relatively quick determination of general conductivity profiles with depth. However, capabilities for identifying local scale conductivities in the horizontal and vertical directions are very limited. Here, we develop the theoretical basis for estimating horizontal and vertical conductivities from different types of steady-state single-well/probe injection tests under saturated conditions and in the absence of a well skin. We explore existing solutions and a recent semi-analytical solution approach to the flow problem under the assumption that the aquifer is locally homogeneous. The methods are based on the collection of an additional piece of information in the form of a second injection (or recirculation) test at a same location, or in the form of an additional head or flow observation along the well/probe. Results are represented in dimensionless charts for partial validation against approximate solutions and for practical application to test interpretation. The charts further allow for optimization of a test configuration to maximize sensitivity to anisotropy ratio. The two methods most sensitive to anisotropy are found to be (1) subsequent injection from a lateral screen and from the bottom of an otherwise cased borehole, and (2) single injection from a lateral screen with an additional head observation along the casing. Results may also be relevant for attributing consistent divergences in conductivity measurements from different testing methods applied at a same site or location to the potential effects of anisotropy. Some practical aspects are discussed and references are made to existing methods, which appear easily compatible with the proposed procedures.
Equipment testing with damped sinewaves between 1 and 50 MHz
NASA Astrophysics Data System (ADS)
Hardwick, C. John; Baldwin, R. E.
1992-11-01
Present lightning equipment test standards such as RTCA DO160C call for damped sinusoidal tests at 1 and 10 MHz. There has been some discussion in the lightning community about extending these tests to 50 frequencies in the region 1-50 MHz. This paper presents characteristics of such tests on cable bundles and notes the relationship between bundle current and injected voltage; important parameters are the cable loss and Q of the driving waveform.
Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering
Gu, Zhen; Jamal, Syed; Detamore, Michael S.
2013-01-01
Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275
Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil
NASA Astrophysics Data System (ADS)
Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi
2016-10-01
A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.
NASA Astrophysics Data System (ADS)
Ioannidis, Andronique; Facci, John S.; Abkowitz, Martin A.
1998-08-01
Injection efficiency from evaporated Au contacts on a molecularly doped polymer (MDP) system has been previously observed to evolve from blocking to ohmic over time. In the present article this contact forming phenomenon is analyzed in detail. The initially blocking nature of the Au contact is in contrast with that expected from the relative workfunctions of Au and of the polymer which suggest Au should inject holes efficiently. It is also in apparent contrast to a differently prepared interface of the same materials. The phenomenon is not unique to this interface, having been confirmed also for evaporated Ag and mechanically made liquid Hg contacts on the same MDP. The MDP is a disordered solid state solution of electroactive triarylamine hole transporting TPD molecules in a polycarbonate matrix. The trap-free hole-transport MDP provides a model system for the study of metal/polymer interfaces by enabling the use of a recently developed technique that gives a quantitative measure of contact injection efficiency. The technique combines field-dependent steady state injection current measurements at a contact under test with time-of-flight (TOF) mobility measurements made on the same sample. In the present case, MDP films were prepared with two top vapor-deposited contacts, one of Au (test contact) and one of Al (for TOF), and a bottom carbon-loaded polymer electrode which is known to be ohmic for hole injection. The samples were aged at various temperatures below the glass transition of the MDP (85 °C) and the evolution of current versus field and capacitance versus frequency behaviors are followed in detail over time and analyzed. Control measurements ensure that the evolution of the electrical properties is due to the Au/polymer interface behavior and not the bulk. All evaporated Au contacts eventually achieved ohmic injection. The evaporated Au/MDP interface was also investigated by transmission electron microscopy as a function of time and showed no evidence of Au interdiffusion in the MDP layer, remaining abrupt to within ˜10 Å over the course of the evolution in injection efficiency. Mechanisms related to Au penetration into the MDP are therefore unlikely. Rapid sequence data acquisition enabled the detection of two main processes in the injection evolution. The evolving injection efficiency is very well fit by two exponentials, enabling the characterization of time and temperature dependence of the evolution processes.
Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system
NASA Astrophysics Data System (ADS)
James, Mark D.
The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.
Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.
2011-04-05
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Properties of Lightning Strike Protection Coatings
NASA Astrophysics Data System (ADS)
Gagne, Martin
Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.
Profiling of the injected charge drift current transients by cross-sectional scanning technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.
2014-02-07
The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less
Hatch, R J; Jennings, E A; Ivanusic, J J
2013-08-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p < 0.05). The mechanical hypersensitivity generated by CFA injection was blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system. © 2012 European Federation of International Association for the Study of Pain Chapters.
Fry, Craig L; Lintzeris, Nick
2003-02-01
To develop a standard measure of blood-borne virus transmission risk behaviour, and examine the underlying psychometric properties. The Blood-borne Virus Transmission Risk Assessment Questionnaire (BBV-TRAQ) was developed over three consecutive phases of the original BBV-TRAQ study in adherence to classical scale development procedures, culminating in the recruitment of a development sample of current injecting drug users via convenience and snowball sampling. Needle and syringe programmes (NSPs), medical clinics, alcohol/drug agencies, peer-based and outreach organizations across inner and outer metropolitan Melbourne. Two hundred and nine current injecting drug users. The mean age was 27 years, 68% were male, 65% unemployed, 36% with prison history and 25% in methadone maintenance. BBV-TRAQ items cover specific injecting, sexual and skin penetration risk practices. BBV-TRAQ characteristics were assessed via measures of internal and test-retest reliability; collateral validation; and principal components analyses. The BBV-TRAQ has satisfactory psychometric properties. Internal (a=0.87), test-retest (r=0.84) and inter-observer reliability results were high, suggesting that the instrument provides a reliable measure of BBV risk behaviour and is reliable over time and across interviewers. A principal components analysis with varimax rotation produced a parsimonious factor solution despite modest communality, and indicated that three factors (injecting, sex and skin penetration/hygiene risks) are required to describe BBV risk behaviour. The BBV-TRAQ is reliable and represents the first risk assessment tool to incorporate sufficient coverage of injecting, sex and other skin penetration risk practices to be considered truly content valid. The questionnaire is indicated for use in addictions research, clinical, peer education and BBV risk behaviour surveillance settings.
NASA Astrophysics Data System (ADS)
DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB
2018-03-01
Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.
NASA Astrophysics Data System (ADS)
Lenferna, Georges Alexandre; Russotto, Rick D.; Tan, Amanda; Gardiner, Stephen M.; Ackerman, Thomas P.
2017-06-01
In this paper, we focus on stratospheric sulfate injection as a geoengineering scheme, and provide a combined scientific and ethical analysis of climate response tests, which are a subset of outdoor tests that would seek to impose detectable and attributable changes to climate variables on global or regional scales. We assess the current state of scientific understanding on the plausibility and scalability of climate response tests. Then, we delineate a minimal baseline against which to consider whether certain climate response tests would be relevant for a deployment scenario. Our analysis shows that some climate response tests, such as those attempting to detect changes in regional climate impacts, may not be deployable in time periods relevant to realistic geoengineering scenarios. This might pose significant challenges for justifying stratospheric sulfate aerosol injection deployment overall. We then survey some of the major ethical challenges that proposed climate response tests face. We consider what levels of confidence would be required to ethically justify approving a proposed test; whether the consequences of tests are subject to similar questions of justice, compensation, and informed consent as full-scale deployment; and whether questions of intent and hubris are morally relevant for climate response tests. We suggest further research into laboratory-based work and modeling may help to narrow the scientific uncertainties related to climate response tests, and help inform future ethical debate. However, even if such work is pursued, the ethical issues raised by proposed climate response tests are significant and manifold.
Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.
2013-10-01
Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sovinec, Carl R.
1995-11-01
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S -0.18 for the root-mean-square magnetic fluctuation level for 2.5x10 3≤S≤4x10 4. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate meansmore » of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.« less
[Development of a novel liquid injection system].
Chen, Kai; Lv, Yong-Gui
2009-11-01
A liquid jet injector employs compressed gas or spring to produce a high-velocity stream to deliver liquid drug into human body through skin. There are many clinical jet injection products available, none of which is domestic. A new liquid jet injector is designed based on a comprehensive analysis of the current products. The injector consists of an ejector, trigger and a re-positioning mechanism. The jets characteristics of sample injector are tested, and the results show that the maximum exit pressure is above 15 MPa, a threshold value for penetrating into the skin.
Baker, A; Kochan, N; Dixon, J; Wodak, A; Heather, N
1995-04-01
This study compares the injecting and sexual risk-taking behaviour among injecting drug users (IDUs) currently, previously and never enrolled in methadone maintenance treatment (MMT). All subjects had injected during the 6 months prior to the day of interview. The current MMT group showed significantly lower injecting risk-taking behaviour subscale scores on the HIV Risk-taking Behaviour Scale (HRBS) of the Opiate Treatment Index than the previous MMT and non-MMT groups together. The current MMT group differed from the other two groups in the frequency of injecting and cleaning of injection equipment with bleach. There was no difference between the current MMT group and the other two groups combined in sexual risk-taking behaviour scores on the HRBS. There were no differences between the previous MMT and non-MMT groups in injecting and sexual risk-taking behaviour. HIV seroprevalence was low and there was no difference in seroprevalence between groups. Thus, IDUs currently enrolled in MMT are at reduced risk for HIV infection when compared with IDUs who have previously or never been enrolled in MMT. However, the absence of a difference between the current MMT and other two groups in frequency of sharing behaviours suggests the need for additional strategies among MMT clients to reduce needle-sharing. Possible strategies include the application of relapse prevention interventions and the availability of sterile injecting equipment in MMT clinics. Further research is needed to identify factors which increase attraction and retention of IDUs to MMT.
Pitpitan, Eileen V; Patterson, Thomas L; Abramovitz, Daniela; Vera, Alicia; Martinez, Gustavo; Staines, Hugo; Strathdee, Steffanie A
2016-01-01
We aim to use conditional or moderated mediation to simultaneously test how and for whom an injection risk intervention was efficacious at reducing receptive needle sharing among female sex workers who inject drugs (FSWs-IDUs) in Mexico. Secondary analysis of data from a randomized trial. A total of 300 FSW-IDUs participated in Mujer Mas Segura in Ciudad Juarez, Mexico, and were randomized to an interactive injection risk intervention or a didactic injection risk intervention. We measured safe injection self-efficacy as the hypothesized mediator and policing behaviors (being arrested and syringe confiscation) as hypothesized moderators. In total, 213 women provided complete data for the current analyses. Conditional (moderated) mediation showed that the intervention affected receptive needle sharing through safe injection self-efficacy among women who experienced syringe confiscation. On average, police syringe confiscation was associated with lower safe injection self-efficacy (p = .04). Among those who experienced syringe confiscation, those who received the interactive (vs. didactic) intervention reported higher self-efficacy, which in turn predicted lower receptive needle sharing (p = .04). Whereas syringe confiscation by the police negatively affected safe injection self-efficacy and ultimately injection risk behavior, our interactive intervention helped to "buffer" this negative impact of police behavior on risky injection practices. The theory-based, active skills building elements included in the interactive condition, which were absent from the didactic condition, helped participants' self-efficacy for safer injection in the face of syringe confiscation. (c) 2015 APA, all rights reserved).
Pitpitan, Eileen V.; Patterson, Thomas L.; Abramovitz, Daniela; Vera, Alicia; Martinez, Gustavo; Staines, Hugo; Strathdee, Steffanie A.
2015-01-01
Objective We aim to use conditional, or moderated mediation to simultaneously test how and for whom an injection risk intervention was efficacious at reducing receptive needle sharing among female sex workers who inject drugs (FSWs-IDUs) in Mexico. Methods Secondary analysis of data from a randomized trial. A total of 300 FSW-IDUs participated in Mujer Mas Segura in Ciudad Juarez, Mexico and were randomized to an interactive injection risk intervention or a didactic injection risk intervention. We measured safe injection self-efficacy as the hypothesized mediator, and policing behaviors (being arrested and syringe confiscation) as hypothesized moderators. 213 women provided complete data for the current analyses. Results Conditional (moderated) mediation showed that the intervention affected receptive needle sharing through safe injection self-efficacy among women who experienced syringe confiscation. On average, police syringe confiscation was associated with lower safe injection self-efficacy (p = 0.04). Among those who experienced syringe confiscation, those who received the interactive (vs. didactic) intervention reported higher self-efficacy, which in turn predicted lower receptive needle sharing (p = 0.04). Conclusions Whereas syringe confiscation by the police negatively impacted safe injection self-efficacy and ultimately injection risk behavior, our interactive intervention helped to “buffer” this negative impact of police behavior on risky injection practices. The theory-based, active skills building elements included in the interactive condition, which were absent from the didactic condition, helped participants’ self-efficacy for safer injection in the face of syringe confiscation. PMID:26120851
Current-limited electron beam injection
NASA Technical Reports Server (NTRS)
Stenzel, R. L.
1977-01-01
The injection of an electron beam into a weakly collisional, magnetized background plasma was investigated experimentally. The injected beam was energetic and cold, the background plasma was initially isothermal. Beam and plasma dimensions were so large that the system was considered unbounded. The temporal and spatial evolution of the beam-plasma system was dominated by collective effects. High-frequency electrostatic instabilities rapidly thermalized the beam and heated the background electrons. The injected beam current was balanced by a return current consisting of background electrons drifting toward the beam source. The drift between electrons and ions gave rise to an ion acoustic instability which developed into strong three-dimensional turbulence. It was shown that the injected beam current was limited by the return current which is approximately given by the electron saturation current. Non-Maxwellian electron distribution functions were observed.
Fast Acting Eddy Current Driven Valve for Massive Gas Injection on ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyttle, Mark S; Baylor, Larry R; Carmichael, Justin R
2015-01-01
Tokamak plasma disruptions present a significant challenge to ITER as they can result in intense heat flux, large forces from halo and eddy currents, and potential first-wall damage from the generation of multi-MeV runaway electrons. Massive gas injection (MGI) of high Z material using fast acting valves is being explored on existing tokamaks and is planned for ITER as a method to evenly distribute the thermal load of the plasma to prevent melting, control the rate of the current decay to minimize mechanical loads, and to suppress the generation of runaway electrons. A fast acting valve and accompanying power supplymore » have been designed and first test articles produced to meet the requirements for a disruption mitigation system on ITER. The test valve incorporates a flyer plate actuator similar to designs deployed on TEXTOR, ASDEX upgrade, and JET [1 3] of a size useful for ITER with special considerations to mitigate the high mechanical forces developed during actuation due to high background magnetic fields. The valve includes a tip design and all-metal valve stem sealing for compatibility with tritium and high neutron and gamma fluxes.« less
Tests of positive ion beams from a microwave ion source for AMS
NASA Astrophysics Data System (ADS)
Schneider, R. J.; von Reden, K. F.; Hayes, J. M.; Wills, J. S. C.; Kern, W. G. E.; Kim, S.-W.
2000-10-01
A test facility has been constructed to evaluate high-current positive ion beams from small gaseous samples for AMS applications. The major components include a compact permanent magnet microwave ion source built at the AECL Chalk River Laboratory and now on loan from the University of Toronto, and a double-focusing spectrometer magnet on loan from Argonne National Laboratory. Samples are introduced by means of a silica capillary injection system. Loop injection into a carrier gas provides a stable feed for the microwave driven plasma. The magnetic analysis system is utilized to isolate carbon ions derived from CO 2 samples from other products of the plasma discharge, including argon ions of the carrier gas. With a smaller discharge chamber, we hope to exceed a conversion efficiency of 14% for carbon ions produced per atom, which we reported at AMS-7. The next step will be to construct an efficient charge-exchange cell, to produce negative ions for injection into the WHOI recombinator injector.
Verdun di Cantogno, Elisabetta; Russell, Susan; Snow, Tom
2011-01-01
Background: All established disease-modifying drugs for multiple sclerosis require parenteral administration, which can cause difficulties for some patients, sometimes leading to suboptimal adherence. A new electronic autoinjection device has been designed to address these issues. Methods: Patients with relapsing multiple sclerosis currently receiving subcutaneous or intramuscular interferon beta-1a, interferon beta-1b, or glatiramer acetate completed an online questionnaire (July 4–25, 2008) that surveyed current injection practices, experiences with current injection methods, and impressions and appeal of the new device. Results: In total, 422 patients completed the survey, of whom 44% used autoinjectors, 43% prefilled syringes, and 13% syringes and vials; overall, 66% currently self-injected. Physical and psychological barriers to self-injection included difficulty with injections, needle phobia, and concerns over correct injection technique. Only 40% of respondents were “very satisfied” with their current injection method. The new electronic autoinjector was rated as “very appealing” by 65% of patients. The benefits of the new device included the ability to customize injection settings and to review dosing history. Conclusion: New technologies may help patients overcome physical and psychological barriers to self-injection. The combination of a reliable and flexible autoinjection device with dose-monitoring technology may improve communication between health care professionals and patients, and improve treatment adherence. PMID:21573048
Neutralization of beam-emitting spacecraft by plasma injection
NASA Technical Reports Server (NTRS)
Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.
1987-01-01
An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.
Point-source helicity injection for ST plasma startup in Pegasus
NASA Astrophysics Data System (ADS)
Redd, A. J.; Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Schlossberg, D. J.
2009-11-01
Plasma current guns are used as point-source DC helicity injectors for forming non-solenoidal tokamak plasmas in the Pegasus Toroidal Experiment. Discharges driven by this injection scheme have achieved Ip>= 100 kA using Iinj<= 4 kA. They form at the outboard midplane, transition to a tokamak-like equilibrium, and continue to grow inward as Ip increases due to helicity injection and outer- PF induction. The maximum Ip is determined by helicity balance (injection rate vs resistive dissipation) and a Taylor relaxation limit, in which Ip√ITF Iinj/w, where w is the radial thickness of the gun-driven edge. Preliminary experiments tentatively confirm these scalings with ITF, Iinj, and w, increasing confidence in this simple relaxation model. Adding solenoidal inductive drive during helicity injection can push Ip up to, but not beyond, the predicted relaxation limit, demonstrating that this is a hard performance limit. Present experiments are focused on increasing the injection voltage (i.e., helicity injection rate) and reducing w. Near-term goals are to further test scalings predicted by the simple relaxation model and to study in detail the observed bursty n=1 activity correlated with rapid increases in Ip.
Effect of cationic contaminants on polymer electrolyte fuel cell performance
NASA Astrophysics Data System (ADS)
Qi, Jing; Wang, Xiaofeng; Ozdemir, M. Ozan; Uddin, Md. Aman; Bonville, Leonard; Pasaogullari, Ugur; Molter, Trent
2015-07-01
The effect of cationic contaminants on polymer electrolyte fuel cell (PEFC) performance is investigated via in-situ injection of dilute cationic salt solutions. Four foreign cations (K+, Ba2+, Ca2+, Al3+) are chosen as contaminants in this study due to their prevalence and chemical structure (e.g. valence), however contaminants that have already received extensive coverage in the literature like sodium and iron are excluded. It is found that the cells with Ba(ClO4)2 and Ca(ClO4)2 injection exhibit little cell performance change during the current hold test, and the cells with Al(ClO4)3 and KClO4 injection show larger cell performance changes, i.e. decreasing cell voltage and increasing cell resistance. These cells with in-situ contaminant injection have a tendency to recover a portion of the lost performance after the recovery test when switched back to supersaturated air. The degradation in cell performance with the presence of cationic contaminants is mainly due, in addition to the membrane resistance increase associated with replacing protons on the sulfonate groups, to the increase in mass transport resistance and decrease in electrochemical surface area.
Association between prescription drug misuse and injection among runaway and homeless youth
Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula
2013-01-01
Background The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Methods Homeless youth were surveyed between October, 2011 and February, 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Results Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Conclusions Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. PMID:24300900
Association between prescription drug misuse and injection among runaway and homeless youth.
Al-Tayyib, Alia A; Rice, Eric; Rhoades, Harmony; Riggs, Paula
2014-01-01
The nonmedical use of prescription drugs is the fastest growing drug problem in the United States, disproportionately impacting youth. Furthermore, the population prevalence of injection drug use among youth is also on the rise. This short communication examines the association between current prescription drug misuse (PDM) and injection among runaway and homeless youth. Homeless youth were surveyed between October 2011 and February 2012 at two drop-in service agencies in Los Angeles, CA. Prevalence ratios (PR) and 95% confidence intervals (CI) for the association between current PDM and injection behavior were estimated. The outcome of interest was use of a needle to inject any illegal drug into the body during the past 30 days. Of 380 homeless youth (median age, 21; IQR, 17-25; 72% male), 84 (22%) reported current PDM and 48 (13%) reported currently injecting. PDM during the past 30 days was associated with a 7.7 (95% CI: 4.4, 13.5) fold increase in the risk of injecting during that same time. Among those reporting current PDM with concurrent heroin, cocaine, and methamphetamine use, the PR with injection was 15.1 (95% CI: 8.5, 26.8). Runaway and homeless youth are at increased risk for a myriad of negative outcomes. Our preliminary findings are among the first to show the strong association between current PDM and injection in this population. Our findings provide the basis for additional research to delineate specific patterns of PDM and factors that enable or inhibit transition to injection among homeless and runaway youth. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gunawan, R.; Sugiarti, E.; Isnaeni; Purawiardi, R. I.; Widodo, H.; Muslimin, A. N.; Yuliasari; Ronaldus, C. E.; Prastomo, N.; Hastuty, S.
2018-03-01
The optical, electrical and structural characteristics of InGaN-based blue light-emitting diodes (LEDs) were investigated to identify the degradation of LED before and after current injection. The sample was injected by high current of 200 A/cm2 for 5 and 20 minutes. It was observed that injection of current shifts light intensity and wavelength characteristics that indicated defect generation. Transmission Electron Microscopy (TEM) characterization was carried out in order to clarify the structure degradation caused by defect in active layer which consisted of 14 quantum well with thickness of about 5 nm and confined with barrier layer with thickness of about 12 nm. TEM results showed pre-existing defect in LED before injection with high current. Furthermore, discontinue and edge defect was found in dark spot region of LED after injection with high current.
Critical Review of the ECSS-E-ST-20-07C ESD Test Set-Up for Testing Spacecraft Equipment
NASA Astrophysics Data System (ADS)
Pelissou, P.; Daout, B.; Romero, C.; Wolf, K.-F. J.
2016-05-01
Satellite equipment needs to be immune to electrostatic discharges (ESD) likely to occur in flight. Testing the susceptibility against ESD on spacecraft equipment is therefore an important part of the EMC test program. The test method according to ECSS-E-ST- 20-07C [1], which is commonly used in space industry, leaves undesirable degrees of freedom on how the test is performed, which in turn has an influence on the injected current and therefore on the test results. Because of the indirect coupling of ESD to circuits, the current waveform applied during the test and its repeatability are of high importance. In the frame of an ESTEC research contract (4000109887/13/NL/GLC), a critical review of the ECSS-E-ST-20-07C is performed to identify the influence factors which have an impact on the test repeatability.
2007-06-01
massive RF power to the antenna feed points without providing an inductive path to earth. Given all the above challenges, and especially the... circuit theory currents are flowing limited by the three parallel 50 ohm resistances and low inductive reactance. This plateaus at eigencurrent...relative to nett TEM cell input power has been calculated: Figure 86 Expected power output from probe, neglecting probe inductance DSTO-RR-0329
Induced earthquake magnitudes are as large as (statistically) expected
Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran
2016-01-01
A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.
Vicknasingam, B; Dazali, M N M; Singh, D; Schottenfeld, R S; Chawarski, M C
2015-07-01
Medication assisted treatment with buprenorphine/naloxone (Bup/Nx), including prescribing and dispensing practices of general practitioners (GPs) in Malaysia and their patients' experiences with this treatment have not been systematically examined. The current study surveyed GPs providing Bup/Nx treatment and patients receiving office-based Bup/Nx treatment in Malaysia. Two cross-sectional surveys of GPs (N=115) providing outpatient Bup/Nx maintenance treatment and of patients (N=253) currently receiving Bup/Nx treatment throughout peninsular Malaysia. Physicians prescribed Bup/Nx dosages in the range of 2-4mg daily for 70% of patients and conducted urine testing in the past month on approximately 16% of their patients. In the patient survey, 79% reported taking daily Bup/Nx doses of 2mg or less; 82% reported that no urine toxicology testing had been conducted on them in the past month, 36% had an opiate positive urine test at the time of the survey, 43% reported illicit opiate use, 15% reported injection of heroin and 22% reported injection of Bup/Nx in the past month. Low daily Bup/Nx doses, lack of behavioral monitoring or counseling, and high rates of continued drug use, including injection of drugs and medications during Bup/Nx treatment in Malaysia, indicate continuing problems with implementation and less than optimal treatment effectiveness. High cost of Bup/Nx in Malaysia may deter patients from seeking treatment and contribute to taking low Bup/Nx dosages. Improved training of physicians and establishing standards for Bup/Nx dosing, routine toxicology testing, and counseling may be needed to improve care and treatment response. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Yamane, Ayaka; Higuchi, Hitoshi; Tomoyasu, Yumiko; Ishii-Maruhama, Minako; Maeda, Shigeru; Miyawaki, Takuya
2015-04-01
Recently, attention has been paid to dexmedetomidine, a selective α-2 adrenoceptor agonist, as a possible additive for local anesthesia. However, the effect of locally injected dexmedetomidine on the anesthetic action in humans has not fully been clarified. Thus, the purpose of the present study was to evaluate the effect of dexmedetomidine injected into the oral mucosa in combination with lidocaine on local anesthetic potency in humans. Twenty healthy volunteers were included in the present crossover double-blinded study. Lidocaine solution or lidocaine plus dexmedetomidine solution was submucosally injected into the alveolar mucosa in a crossover and double-blinded manner. The local anesthetic effect of the solutions was evaluated by measuring the current perception threshold (CPT) in the oral mucosa for 120 minutes after injection. Furthermore, the sedation level, blood pressure, and heart rate of the volunteers were evaluated. For statistical analysis, the Wilcoxon signed rank test and 2-way repeated measures analysis of variation were used. The CPT was increased with the 2 solutions and peaked 10 minutes after injection. CPT values 10 and 20 minutes after injection of lidocaine plus dexmedetomidine solution were considerably higher than those with lidocaine solution. The duration of an important increase in the CPT after injection with lidocaine plus dexmedetomidine solution was longer than that with lidocaine. Furthermore, the area under the time curve of CPT was considerably higher with lidocaine plus dexmedetomidine solution than with lidocaine solution. No volunteer showed a change in sedation level, blood pressure, or heart rate after injection with either test solution throughout the experiment. The present study showed that a combination of dexmedetomidine plus lidocaine considerably enhances the local anesthetic potency of lidocaine without any major influences on the cardiovascular system when locally injected into the oral mucosa. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M.; O'Brien, T. P.; Toffoletto, F.; Sazykin, S.; Wolf, R.; Kumar, V.
2006-12-01
We present simulation results of the Rice Convection Model-Equilibrium (RCM-E) that test and compare the effect on the storm time ring current of varying the plasma sheet source population characteristics at 6.6 Re during magnetic storms. Previous work has shown that direct injection of ionospheric plasma into the ring current is not a significant source of ring current plasma, suggesting that the plasma sheet is the only source. However, storm time processes in the plasma sheet and inner magnetosphere are very complex, due in large part to the feedback interactions between the plasma distribution, magnetic field, and electric field. We are particularly interested in understanding the role of the plasma sheet entropy parameter (PV^{5/3}, where V=\\int ds/B) in determining the strength and distribution of the ring current in both the main and recovery phases of a storm. Plasma temperature and density can be measured from geosynchrorous orbiting satellites, and these are often used to provide boundary conditions for ring current simulations. However, magnetic field measurements in this region are less commonly available, and there is a relatively poor understanding of the interplay between the plasma and the magnetic field during magnetic storms. The entropy parameter is a quantity that incorporates both the plasma and the magnetic field, and understanding its role in the ring current injection and recovery is essential to describing the processes that are occuring during magnetic storms. The RCM-E includes the physics of feedback between the plasma and both the electric and magnetic fields, and is therefore a valuable tool for understanding these complex storm-time processes. By contrasting the effects of different plasma boundary conditions at geosynchronous orbit, we shed light on the physical processes involved in ring current injection and recovery.
Impedance of an intense plasma-cathode electron source for tokamak startup
Hinson, Edward Thomas; Barr, Jayson L.; Bongard, Michael W.; ...
2016-05-31
In this study, an impedance model is formulated and tested for the ~1kV, ~1kA/cm 2, arc-plasma cathode electron source used for local helicity injection tokamak startup. A double layer sheath is established between the high-density arc plasma (n arc ≈ 10 21 m -3) within the electron source, and the less dense external tokamak edge plasma (n edge ≈ 10 18 m -3) into which current is injected at the applied injector voltage, V inj. Experiments on the Pegasus spherical tokamak show the injected current, I inj, increases with V inj according to the standard double layer scaling I injmore » ~ V inj 3/2 at low current and transitions to I inj ~ V inj 1/2 at high currents. In this high current regime, sheath expansion and/or space charge neutralization impose limits on the beam density n b ~ I inj/V inj 1/2. For low tokamak edge density n edge and high I inj, the inferred beam density n b is consistent with the requirement n b ≤ n edge imposed by space-charge neutralization of the beam in the tokamak edge plasma. At sufficient edge density, n b ~ n arc is observed, consistent with a limit to n b imposed by expansion of the double layer sheath. These results suggest that n arc is a viable control actuator for the source impedance.« less
Vansandt, L M; Kutzler, M A; Fischer, A E; Morris, K N; Swanson, W F
2017-04-01
Sterilization is a key strategy to reduce the number of domestic cats entering and killed in shelters each year. However, surgical sterilization is expensive and labour-intensive and cannot fully address the 70 million free-roaming cats estimated to exist in the United States. GonaCon™ is a gonadotropin-releasing hormone vaccine originally developed for use as a wildlife immunocontraceptive. An earlier formulation was tested in domestic cats and found to be safe and effective for long-term contraception. However, the current Environmental Protection Agency (EPA)-registered formulation consists of a different antigen-carrier protein and increased antigen concentration and has never been tested in cats. A pilot study was undertaken to evaluate the short-term safety of a single GonaCon immunization, assess the consequences of vaccinated cats receiving an accidental second GonaCon injection and determine the humoral immune response to immunization. During Phase 1, cats in Group A (n = 3) received a single intramuscular injection of GonaCon and Group B (n = 3) received a single intramuscular injection of saline. During Phase 2, Group A received a second GonaCon injection and Group B received their initial GonaCon injection. All cats developed GnRH antibodies within 30 days of vaccine administration. The endpoint titre (1:1,024,000) was similar among all cats, and levels remained high throughout the duration of the study. Four cats developed a sterile, painless, self-limiting mass at the site of injection. The mean number of days to mass development was 110.3 (range, 18-249 days). In conclusion, this preliminary study suggests that the EPA-registered GonaCon formulation is safe for continued testing in domestic cats, an accidental revaccination should not increase the risk of a vaccine reaction and the EPA-registered formulation effectively elicits a strong humoral immune response. © 2016 Blackwell Verlag GmbH.
Patrick, Rudy; Greenberg, Alan; Magnus, Manya; Opoku, Jenevieve; Kharfen, Michael; Kuo, Irene
2017-07-01
We developed an HIV testing dashboard to complement the HIV care continuum in selected high-risk populations. Using National HIV Behavioral Surveillance (NHBS) data, we examined trends in HIV testing and care for men who have sex with men (MSM), persons who inject drugs (PWID), and heterosexuals at elevated risk (HET). Between 2007 and 2015, 4792 participants ≥18 years old completed a behavioral survey and were offered HIV testing. For the testing dashboard, proportions ever tested, tested in the past year, testing HIV-positive, and newly testing positive were calculated. An abbreviated care continuum for self-reported positive (SRP) persons included ever engagement in care, past year care, and current antiretroviral (ARV) use. The testing dashboard and care continuum were calculated separately for each population. Chi-square test for trend was used to assess significant trends over time. Among MSM, lifetime HIV testing and prevalence significantly increased from 96% to 98% (P = 0.01) and 14%-20% (P = 0.02) over time; prevalence was highest among black MSM at all time points. HIV prevalence among female persons who inject drugs was significantly higher in 2015 vs. 2009 (27% and 13%; P < 0.01). Among heterosexuals at elevated risk from 2010 to 2013, annual testing increased significantly (45%-73%; P < 0.001) and the proportion newly diagnosed decreased significantly (P < 0.01). Self-reported positive MSM had high levels of care engagement and antiretroviral use; among self-reported positive persons who inject drugs and heterosexuals at elevated risk, past year care engagement and antiretroviral use increased over time. The HIV testing dashboard can be used to complement the HIV care continuum to display improvements and disparities in HIV testing and care over time.
Development and simulation study of a new inverse-pinch high Coulomb transfer switch
NASA Technical Reports Server (NTRS)
Choi, Sang H.
1989-01-01
The inverse-pinch plasma switch was studied using a computer simulation code. The code was based on a 2-D, 2-temperature magnetohydrodynamic (MHD) model. The application of this code was limited to the disk-type inverse-pinch plasma switch. The results of the computer analysis appear to be in agreement with the experimental results when the same parameters are used. An inverse-pinch plasma switch for closing has been designed and tested for high-power switching requirements. An azimuthally uniform initiation of breakdown is a key factor in achieving an inverse-pinch current path in the switch. Thus, various types of triggers, such as trigger pins, wire-brush, ring trigger, and hypocycloidal-pinch (HCP) devices have been tested for uniform breakdown. Recently, triggering was achieved by injection of a plasma-ring (plasma puff) that is produced separately with hypocycloidal-pinch electrodes placed under the cathode of the main gap. The current paths at switch closing, initiated by the injection of a plasma-ring from the HCP trigger are azimuthally uniform, and the local current density is significantly reduced, so that damage to the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes and the insulator surfaces is minimized. The test results indicate that electron bombardment on the electrodes is four orders of magnitude less than that of a spark-gap switch for the same switching power. Indeed, a few thousand shots with peak current exceeding a mega-ampere and with hold-off voltage up to 20 kV have been conducted without showing measurable damage to the electrodes and insulators.
Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U.
Raman, R; Jarboe, T R; Nelson, B A; Gerhardt, S P; Lay, W-S; Plunkett, G J
2014-11-01
Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.
Design and operation of a fast electromagnetic inductive massive gas injection valve for NSTX-U
NASA Astrophysics Data System (ADS)
Raman, R.; Jarboe, T. R.; Nelson, B. A.; Gerhardt, S. P.; Lay, W.-S.; Plunkett, G. J.
2014-11-01
Results from the operation of an electromagnetic valve, that does not incorporate ferromagnetic materials, are presented. Image currents induced on a conducting disc placed near a pancake solenoid cause it to move away from the solenoid and open the vacuum seal. A new and important design feature is the use of Lip Seals for the sliding piston. The pressure rise in the test chamber is measured directly using a fast time response Baratron gauge. The valve injects over 200 Torr l of nitrogen in less than 3 ms, which remains unchanged at moderate magnetic fields.
Formation and dissipation of runaway current by MGI on J-TEXT
NASA Astrophysics Data System (ADS)
Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong
2017-10-01
Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.
Matsumura, M; Mashima, H
1976-01-01
Ca ions were ionophoretically injected through an intracellular microelectrode into the single muscle fiber of a crayfish, and the resulting contraction sphere was observed under a microscope and photographed with a movie camera. The minimum contraction produced by the threshold current involved usually three or four, sometimes two, sarcomers on both sides of the injecting pipette but contraction involving only one sarcomere was not observered. The rheobase of the Ca-injecting current was 3.2 X 10(-9) A. The strength-duration curves were determined for Ca-, Sr-, and Ba-injecting currents; all fitted a similar hyperbolic equation. The threshold amount of Ca above rheobasic injection was 2.1 X 10(-15)mol, and the ratios between threshold amounts were Ca: Sr: Ba=1: 1.9: 3.0. The effects of Ca and Sr were additive for the contraction. More current was required for the Ca-injection to produce the contraction in the K-depolarized-or 15mM-procaine-treated muscle, although less current was sufficient for the muscle treated with 0.5-1.0 mM of caffeine. The participation of the Ca-induced Ca release mechanism in the contraction produced by Ca injection and the role of Sr or Ba as a substitute for Ca were discussed.
Gillespie, Caroline C; Adams, Stephen B; Moore, George E
2016-11-01
To determine common methods for intra-articular injections and variables associated with the risk of septic arthritis following intra-articular injection in the horse. Cross-sectional survey. Equine veterinarians. A link to an online survey was distributed to equine practitioners in 2014. Responses for descriptive data were tabulated. Data on infection rates obtained from medical records were analyzed. Variables associated with the risk of septic arthritis were determined using χ 2 or Fisher's exact tests and logistic regression. Common current methods for intra-articular injections were determined from 241 surveys. Sixty-four of 241 surveys (26.6%) contained data with numbers of joints injected and number of infections obtained from review of medical records. Eight different injection methods were used by more than 2/3 of responding veterinarians. A total of 67 out of 319,760 injected joints reported became septic following injection, giving an incidence of 2.10 septic joints per 10,000 intra-articular injections. Based on multivariate analysis, infection rates were significantly lower when veterinarians prepared their own injection sites (OR=0.10) and had <20 years of practice experience (OR=0.025), whereas infection rates were significantly higher when hair was removed at the injection site (OR=19.70). There is a low incidence of septic arthritis following intra-articular injection and a large number of injection methods reported by responding veterinarians. The low reported incidence of infection may be related to the large number of practitioners frequently using common methods. © Copyright 2016 by The American College of Veterinary Surgeons.
Farnoushi, Y; Cipok, M; Kay, S; Jan, H; Ohana, A; Naparstek, E; Goldstein, R S; Deutsch, V R
2011-01-01
Background: The best current xenograft model of multiple myeloma (MM) in immune-deficient non-obese diabetic/severe-combined immunodeficient mice is costly, animal maintenance is complex and several weeks are required to establish engraftment and study drug efficacy. More practical in vivo models may reduce time and drug development cost. We recently described a rapid low-cost xenograft model of human blood malignancies in pre-immune turkey. Here, we report application of this system for studying MM growth and the preclinical assessment of anticancer therapies. Methods: Cell lines and MM patient cells were injected intravenously into embryonic veins on embryonic day 11 (E11). Engraftment of human cells in haematopoietic organs was detected by quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry and circulating free light chain. Results: Engraftment was detected after 1 week in all embryos injected with cell lines and in 50% of those injected with patient cells. Injection of bortezomib or lenalinomide 48 h after cell injection at therapeutic levels that were not toxic to the bone marrow dramatically reduced MM engraftment. Conclusion: The turkey embryo provides a practical, xenograft system to study MM and demonstrates the utility of this model for rapid and affordable testing therapeutics in vivo. With further development, this model may enable rapid, inexpensive personalised drug screening. PMID:22045188
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming
2017-01-01
The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.
Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming
2017-01-01
The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth. PMID:29176916
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panneer Chelvam, Prem Kumar; Raja, Laxminarayan L.
2015-12-28
Electron emission from the electrode surface plays an important role in determining the structure of a direct-current microdischarge. Here we have developed a computational model of a direct-current microdischarge to study the effect of external electron injection from the cathode surface into the discharge to manipulate its properties. The model provides a self-consistent, multi-species, multi-temperature fluid representation of the plasma. A microdischarge with a metal-insulator-metal configuration is chosen for this study. The effect of external electron injection on the structure and properties of the microdischarge is described. The transient behavior of the microdischarge during the electron injection is examined. Themore » nonlinearities in the dynamics of the plasma result in a large increase of conduction current after active electron injection. For the conditions simulated a switching time of ∼100 ns from a low-current to high-current discharge state is realized.« less
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1976-01-01
Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.
Hydrologic data for the southwest subsurface-injection test site, St. Petersburg, Florida
Hickey, John J.; Spechler, R.M.
1978-01-01
Three injection wells and nine observation wells were constructed at the Southwest St. Petersburg, Fla., site to determine feasibility of injecting wastewater treatment plant effluent into permeable zones containing saline water. Two withdrawal tests and one injection test were performed. Both withdrawal tests ran for about 3 days; one discharging 650 gallons per minute, and the other discharging 6,490 gallons per minute. The injection test was run in one well for 91.1 days at an average rate of 2,830 gallons per minute. Injection well pressure reached a maximum of 48.1 pounds per square inch near the end of the test. Rhodamine WT was used as a tracer during the injection test and was identified in three wells. Before the injection test, chloride concentration in a well 35 feet from the injection well, and in a well 733 feet distant, ranged from 19,000 to 21,000 milligrams per liter. At the end of the test, chloride concentration in one well was 1,800 milligrams per liter and 5,400 milligrams per liter in another. Eleven wells near the site were sampled before the test for water-quality analyses and chlorides ranged from 18 to 1,400 milligrams per liter. (Woodard-USGS)
Optimal design strategy of switching converters employing current injected control
NASA Astrophysics Data System (ADS)
Lee, F. C.; Fang, Z. D.; Lee, T. H.
1985-01-01
This paper analyzes a buck/boost regulator employing current-injected control (CIC). It reveals the complex interactions between the dc loop and the current-injected loop and underlines the fundamental principle that governs the loop gain determination. Three commonly used compensation techniques are compared. The integral and lead/lag compensation are shown to be most desirable for performance optimization and stability.
Alper, Michael; Meyer, Randal; Dekkers, Chris; Ezcurra, Diego; Schertz, Joan; Kelly, Eduardo
2008-01-01
Background The current study was designed to determine if follitropin alfa (recombinant human follicle-stimulating hormone; r-hFSH) and lutropin alfa (recombinant human luteinizing hormone; r-hLH) biopotencies were unchanged by reconstituting in sterile water for injection and mixing prior to injection. Methods The biopotencies of r-hFSH and r-hLH were determined following injection of female Sprague-Dawley rats with a mixture of follitropin alfa revised formulation female (RFF) and lutropin alfa (1:1, r-hFSH:r-hLH). Biopotencies of follitropin alfa RFF and lutropin alfa were measured using ovarian weight and ascorbic acid depletion assays, respectively, and compared with a reference standard. Stock mixtures of follitropin alfa RFF and lutropin alfa (1:1) were prepared within 1 h prior to each respective assay's injection and stored at 6 +/- 2°C. Separate low dose (follitropin alfa RFF 1.5 IU/rat, lutropin alfa 2 IU/rat) and high dose (follitropin alfa RFF 3 IU/rat, lutropin alfa 8 IU/rat) treatments were prepared from stock mixtures or individual solutions by diluting with 0.22% bovine serum albumin saline solution and injected within 1 h of preparation. The main outcome measures were ovarian weight and ovarian ascorbic acid depletion. Results FSH bioactivities were similar (p > 0.10) between the individual follitropin alfa RFF test solution (84.2 IU) and follitropin alfa RFF/lutropin alfa (87.6 IU) mixtures prepared within 1 h of injection and stored at 6 +/- 2°C. LH bioactivities were similar (p > 0.10) between lutropin alfa (94.7 IU) test solution and lutropin alfa/follitropin alfa RFF (85.3 IU) mixtures prepared within 1 h of injection and stored at 6 +/- 2°C for not more than 1 h prior to injection. Conclusion Mixing follitropin alfa RFF and lutropin alfa did not alter the bioactivity of either FSH or LH. PMID:18647398
Arkesteijn, Irene T M; Mouser, Vivian H M; Mwale, Fackson; van Dijk, Bart G M; Ito, Keita
2016-05-01
In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed.
Prognostic health monitoring in switch-mode power supplies with voltage regulation
NASA Technical Reports Server (NTRS)
Hofmeister, James P (Inventor); Judkins, Justin B (Inventor)
2009-01-01
The system includes a current injection device in electrical communication with the switch mode power supply. The current injection device is positioned to alter the initial, non-zero load current when activated. A prognostic control is in communication with the current injection device, controlling activation of the current injection device. A frequency detector is positioned to receive an output signal from the switch mode power supply and is able to count cycles in a sinusoidal wave within the output signal. An output device is in communication with the frequency detector. The output device outputs a result of the counted cycles, which are indicative of damage to an a remaining useful life of the switch mode power supply.
Current drive by spheromak injection into a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, M.R.; Bellan, P.M.
1990-04-30
We report the first observation of current drive by injection of a spheromak plasma into a tokamak (Caltech ENCORE small reasearch tokamak) due to the process of helicity injection. After an abrupt 30% increase, the tokamak current decays by a factor of 3 due to plasma cooling caused by the merging of the relatively cold spheromak with the tokamak. The tokamak density profile peaks sharply due to the injected spheromak plasma ({ital {bar n}}{sub 3} increases by a factor of 6) then becomes hollow, suggestive of an interchange instability.
NASA Astrophysics Data System (ADS)
Clapp, L. W.; Cabezas, J.; Gamboa, Y.; Fernandez, W.
2011-12-01
State and federal regulations require that groundwater at in-situ recovery (ISR) uranium mining operations be restored to pre-mining conditions. Reverse osmosis (RO) filtration of several pore volumes of the post-leached groundwater and reinjection of the clean permeate is the most common technology currently used for restoring groundwater at uranium ISR sites. However, this approach does not revert the formation back to its initial reducing conditions, which can potentially impede timely groundwater restoration. In-situ biostimulation of indigenous iron- and sulfate reducing bacteria by injection of organic electron donors (e.g., ethanol, acetate, and lactate) to promote soluble uranium reduction and immobilization has been the subject of previous studies. However, injection of organic substrates has been observed to cause aquifer clogging near the injection point. In addition, U(VI) solubility may be enhanced through complexation with carbonate generated by organic carbon oxidation. An alternative approach that may overcome these problems involves the use of hydrogen as a reductant to promote microbial reduction and immobilization of U(VI) in situ. To test this approach, approximately 100,000 scf of compressed hydrogen gas was injected into a leached unconsolidated sand zone over two months at an ISR mining site. During this time groundwater was recirculated between injection and extraction wells (separated by 130 ft) at a rate of about 40 gpm and bromide was coinjected as a conservative tracer. A well monitoring program has been executed since June 2009 to evaluate the performance of the hydrogen injection. Current results show that U(VI) has been reduced from 4.2 to 0.05 ppm in the area surrounding the injection well and to 2.0 ± 0.3 ppm in the area surrounding the extraction well and two intermediate monitoring wells. Other water quality changes near the injection well include significant decreases in concentrations of Mo, sulfate, Fe, Mn, bicarbonate, Ca, and Eh, and increases in pH, methane, and sulfide. No significant rebound of soluble uranium concentrations was observed, but significant rebounds in molybdenum and sulfate have been observed. Ongoing studies are evaluating the effective zone of influence of the hydrogen injection.
Donatti, Alberto Ferreira; Soriano, Renato Nery; Leite-Panissi, Christie Ramos Andrade; Branco, Luiz G S; de Souza, Albert Schiaveto
2017-03-06
Hydrogen sulfide (H 2 S), an endogenous gaseous mediator, modulates many physiological functions in mammals but evidence of its involvement in emotional and behavioral aspects is currently scarce. We hypothesized that this gas plays a modulatory role in behavioral parameters in rats submitted to tests (for 5min) in the open field (OF) and elevated plus-maze (EPM - test and retest). Male Wistar rats (200-250g) were intraperitoneally injected with saline or Na 2 S (a H 2 S donor; 4, 8 and 12mg/kg) either once or for 8days, and submitted to the OF test or to the EPM test and retest. A third group (naïve) was not injected but exposed to the same experimental protocols. In the OF test, Na 2 S injected for 8days caused a decrease in self-cleaning (4, 8 and 12mg/kg) and freezing behaviors (8 and 12mg/kg), and a rise in the rate of line crossings in the central part of the arena (12mg/kg). In the EPM test and retest, Na 2 S at 12mg/kg for 8days caused an increase in the number of open arm entries and in the percentage of time spent on open arms. Our data are consistent with the notion that H 2 S exerts anxiolytic-like effects in rats submitted to the EPM and OF tests. Moreover, this gaseous modulator reduces aversive learning in the EPM retest. Copyright © 2017 Elsevier B.V. All rights reserved.
Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors
NASA Astrophysics Data System (ADS)
Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.
2017-05-01
We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.
Hickey, John J.
1982-01-01
Potential benefits or hazards to freshwater resources could result from subsurface injection of treated wastewater. Recognizing this, the U.S. Geological Survey, in cooperation with Pinellas County and the city of St. Petersburg, undertook an evaluation of the hydrogeology and injection of wastewater at proposed test sites on the Pinellas peninsula. The injection sites are underlain by sedimentary rocks ranging in age from Cretaceous to Pleistocene. Lower Eocene carbonate rocks were penetrated to a maximum depth of 3,504 feet and were found to have relatively low water yields. The most permeable part of the investigated section was in rocks of middle Eocene age within the Floridan aquifer. At the injection sites, the Floridan aquifer was subdivided into four permeable zones and three semiconfining beds. The test injection zone is within the Avon Park Limestone, the most productive of the identified permeable zones, with a transmissivity of about 1,000,000 feet squared per day. Two semiconfining beds are above the injection zone in the Suwannee Limestone and Ocala Limestone and have vertical hydraulic conductivities estimated to range from about 0.1 to 1 foot per day where these beds do not contain clay. Limited fresh ground-water supplies exist in the Floridan aquifer within the Pinellas peninsula. At all test sites, chloride concentration in the injection zone ranged from 19,000 to 20,000 milligrams per liter. Injection tests ranging in duration from 3 to 91.1 days were run at three different sites. Pressure buildup occurred in permeable zones above and below the injection zone during these tests. Calculated pressure buildup in observation wells close to and at some distance from the test wells was typically less than 1 pound per square inch. Injection and formation water will probably move slowly through the semiconfining bed overlying the injection zone, and long-term injection tests will be needed to determine the effectiveness of these beds to retard flow. The injected water was well mixed with the native formation water, which, in part, is a direct consequence of the fractures in the injection zone.
Economics of water injected air screw compressor systems
NASA Astrophysics Data System (ADS)
Venu Madhav, K.; Kovačević, A.
2015-08-01
There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.
Hooper, E. B.; Sovinec, C. R.
2016-10-06
An instability observed in whole-device, resistive magnetohydrodynamic simulations of the driven phase of coaxial helicity injection in the National Spherical Torus eXperiment is identified as a current-driven resistive mode in an unusual geometry that transiently generates a current sheet. The mode consists of plasma flow velocity and magnetic field eddies in a tube aligned with the magnetic field at the surface of the injected magnetic flux. At low plasma temperatures (~10–20 eV), the mode is benign, but at high temperatures (~100 eV) its amplitude undergoes relaxation oscillations, broadening the layer of injected current and flow at the surface of themore » injected toroidal flux and background plasma. The poloidal-field structure is affected and the magnetic surface closure is generally prevented while the mode undergoes relaxation oscillations during injection. Furthermore, this study describes the mode and uses linearized numerical computations and an analytic slab model to identify the unstable mode.« less
A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Graham, Paul S; Morgan, Keith S
2008-01-01
Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less
Staged-Fault Testing of Distance Protection Relay Settings
NASA Astrophysics Data System (ADS)
Havelka, J.; Malarić, R.; Frlan, K.
2012-01-01
In order to analyze the operation of the protection system during induced fault testing in the Croatian power system, a simulation using the CAPE software has been performed. The CAPE software (Computer-Aided Protection Engineering) is expert software intended primarily for relay protection engineers, which calculates current and voltage values during faults in the power system, so that relay protection devices can be properly set up. Once the accuracy of the simulation model had been confirmed, a series of simulations were performed in order to obtain the optimal fault location to test the protection system. The simulation results were used to specify the test sequence definitions for the end-to-end relay testing using advanced testing equipment with GPS synchronization for secondary injection in protection schemes based on communication. The objective of the end-to-end testing was to perform field validation of the protection settings, including verification of the circuit breaker operation, telecommunication channel time and the effectiveness of the relay algorithms. Once the end-to-end secondary injection testing had been completed, the induced fault testing was performed with three-end lines loaded and in service. This paper describes and analyses the test procedure, consisting of CAPE simulations, end-to-end test with advanced secondary equipment and staged-fault test of a three-end power line in the Croatian transmission system.
NASA Astrophysics Data System (ADS)
Kubo-Irie, Miyoko; Uchida, Hiroki; Mastuzawa, Shotaro; Yoshida, Yasuko; Shinkai, Yusuke; Suzuki, Kenichiro; Yokota, Satoshi; Oshio, Shigeru; Takeda, Ken
2014-02-01
Titanium dioxide nanoparticles (nano-TiO2), believed to be inert and safe, are used in many products especially rutile-type in cosmetics. Detection, localization, and count of nanoparticles in tissue sections are of considerable current interest. Here, we evaluate the dose-dependent biodistribution of rutile-type nano-TiO2 exposure during pregnancy on offspring testes. Pregnant mice were subcutaneously injected five times with 0.1 ml of sequentially diluted of nano-TiO2 powder, 35 nm with primary diameter, suspensions (1, 10, 100, or 1,000 μg/ml), and received total doses of 0.5, 5, 50, and 500 μg, respectively. Prior to injection, the size distribution of nano-TiO2 was analyzed by dynamic light scattering measurement. The average diameter was increased in a dose-dependent manner. The most diluted concentration, 1 μg/ml suspension, contained small agglomerates averaging 193.3 ± 5.4 nm in diameter. The offspring testes were examined at 12 weeks postpartum. Individual particle analysis in testicular sections under scanning and transmission electron microscopy enabled us to understand the biodistribution. The correlation between nano-TiO2 doses injected to pregnant mice, and the number of agglomerates in the offspring testes was demonstrated to be dose-dependent by semiquantitative evaluation. However, the agglomerate size was below 200 nm in the testicular sections of all recipient groups, independent from the injected dose during pregnancy.
Sustained release of antibiotics from injectable and thermally responsive polypeptide depots.
Adams, Samuel B; Shamji, Mohammed F; Nettles, Dana L; Hwang, Priscilla; Setton, Lori A
2009-07-01
Biodegradable polymeric scaffolds are of interest for delivering antibiotics to local sites of infection in orthopaedic applications, such as bone and diarthrodial joints. The objective of this study was to develop a biodegradable scaffold with ease of drug loading in aqueous solution, while providing for drug depot delivery via syringe injection. Elastin-like polypeptides (ELPs) were used for this application, biopolymers of repeating pentapeptide sequences that were thermally triggered to undergo in situ depot formation at body temperature. ELPs were modified to enable loading with the antibiotics, cefazolin, and vancomycin, followed by induction of the phase transition in vitro. Cefazolin and vancomycin concentrations were monitored, as well as bioactivity of the released antibiotics, to test an ability of the ELP depot to provide for prolonged release of bioactive drugs. Further tests of formulation viscosity were conducted to test suitability as an injectable drug carrier. Results demonstrate sustained release of therapeutic concentrations of bioactive antibiotics by the ELP, with first-order time constants for drug release of approximately 25 h for cefazolin and approximately 500 h for vancomycin. These findings illustrate that an injectable, in situ forming ELP depot can provide for sustained release of antibiotics with an effect that varies across antibiotic formulation. ELPs have important advantages for drug delivery, as they are known to be biocompatible, biodegradable, and elicit no known immune response. These benefits suggest distinct advantages over currently used carriers for antibiotic drug delivery in orthopedic applications. (c) 2008 Wiley Periodicals, Inc.
Pneumatic testing in 45-degree-inclined boreholes in ash-flow tuff near Superior, Arizona
LeCain, G.D.
1995-01-01
Matrix permeability values determined by single-hole pneumatic testing in nonfractured ash-flow tuff ranged from 5.1 to 20.3 * 1046 m2 (meters squared), depending on the gas-injection rate and analysis method used. Results from the single-hole tests showed several significant correlations between permeability and injection rate and between permeability and test order. Fracture permeability values determined by cross-hole pneumatic testing in fractured ash-flow tuff ranged from 0.81 to 3.49 * 1044 m2, depending on injection rate and analysis method used. Results from the cross-hole tests monitor intervals showed no significant correlation between permeability and injection rate; however, results from the injection interval showed a significant correlation between injection rate and permeability. Porosity estimates from the 'cross-hole testing range from 0.8 to 2.0 percent. The maximum temperature change associated with the pneumatic testing was 1.2'(2 measured in the injection interval during cross-hole testing. The maximum temperature change in the guard and monitor intervals was O.Ip C. The maximum error introduced into the permeability values due to temperature fluctuations is approximately 4 percent. Data from temperature monitoring in the borehole indicated a positive correlation between the temperature decrease in the injection interval during recovery testing and the gas-injection rate. The thermocouple psychrometers indicated that water vapor was condensing in the boreholes during testing. The psychrometers in the guard and monitor intervals detected the drier injected gas as an increase in the dry bulb reading. The relative humidity in the test intervals was always higher than the upper measurement limit of the psychrometers. Although the installation of the packer system may have altered the water balance of the borehole, the gas-injection testing resulted in minimal or no changes in the borehole relative humidity.
NASA Astrophysics Data System (ADS)
Rupetsov, Velko; Mishev, Georgi; Dishliev, Stefan; Kopanov, Viktor; Chitanov, Vassiliy; Kolaklieva, Lilyana; Pashinski, Chavdar
2017-02-01
Injection molds used in production of plastic components are subject of heavy abrasion wear. The increase of their wear resistance significantly reduces the production cost. In the current work are presented research results of the wear resistance of injection molds made of steel 1.2343, coated with Ti/TiN/TiCN/nc-TiCN: a-C/nc-TiC:a -C/a-C. The study of the wear rate was done using the volumetric method and the influence of the trace length was investigated. The coating thickness, nanohardness, elastic modulus and adhesion were also tested. The coating was applied on unhardened ground specimens, hardened ground specimens and hardened polished specimens.
Wong, Kayleigh; Trudel, Guy; Laneuville, Odette
2018-01-01
Objectives A knee joint contracture, a loss in passive range of motion (ROM), can be caused by prolonged immobility. In a rat knee immobilization flexion contracture model, the posterior capsule was shown to contribute to an irreversible limitation in ROM, and collagen pathways were identified as differentially expressed over the development of a contracture. Collagenases purified from Clostridium histolyticum are currently prescribed to treat Dupuytren’s and Peyronie’s contractures due to their ability to degrade collagen. The potential application of collagenases to target collagen in the posterior capsule was tested in this model. Materials and methods Rats had one hind leg immobilized, developing a knee flexion contracture. After 4 weeks, the immobilization device was removed, and the rats received one 50 µL intra-articular injection of 0.6 mg/mL purified collagenase. Control rats were injected with only the buffer. After 2 weeks of spontaneous remobilization following the injections, ROM was measured with a rat knee arthrometer, and histological sections were immunostained with antibodies against rat collagen types I and III. Results/conclusion Compared with buffer-injected control knees, collagenase-treated knees showed increased ROM in extension by 8.0°±3.8° (p-value <0.05). Immunohistochemical analysis revealed an increase in collagen type III staining (p<0.01) in the posterior capsule of collagenase-treated knees indicating an effect on the extracellular matrix due to the collagenase. Collagen I staining was unchanged (p>0.05). The current study provides experimental evidence for the pharmacological treatment of knee flexion contractures with intra-articular collagenase injection, improving the knee ROM. PMID:29317799
NASA Astrophysics Data System (ADS)
Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.
NASA Astrophysics Data System (ADS)
Froger, E.; Marque, J. P.
The electromagnetic response of an orbiting satellite to an electrostatic discharge is compared to that of the same object subjected (in a susceptibility test) to an injection current. In the absence of actual data, the comparison was performed on the basis of two numerical simulations: one using the GEODE particle code for the orbiting case, and the other using the ALICE code for a representative injection configuration. It is found that the evolution of the electromagnetic fields is controlled in particular by the particle emission rhythm, giving rise to an ejection flux 'slit' whose rise time is about several tens of nanoseconds.
Short-Wavelength Light-Emitting Devices With Enhanced Hole Injection Currents
2005-05-01
hot-hole injector with appreciably enhancement of the injection current is proposed and developed to be integrated with commonly used vertical...structures of the emitting devices. Second, we develop the alternative design of UV-light sources on the base of lateral p+ - i - n+ superlattice structures...enhancement of the injection current is proposed and developed to be integrated with commonly used vertical structures of the emitting devices. Second
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevik, James; Pamminger, Michael; Wallner, Thomas
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of naturalmore » gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.« less
NASA Astrophysics Data System (ADS)
Kühr, C.; Spörrer, A.; Altstädt, V.
2014-05-01
The production of hard-soft-combinations via multi injection molding gained more and more importance in the last years. This is attributed to different factors. One principle reason is that the use of two-component injection molding technique has many advantages such as cancelling subsequent and complex steps and shortening the process chain. Furthermore this technique allows the combination of the properties of the single components like the high stiffness of the hard component and the elastic properties of the soft component. Because of the incompatibility of some polymers the adhesion on the interface has to be determined. Thereby adhesion is not only influenced by the applied polymers, but also by the injection molding parameters and the characteristics of the mold. Besides already known combinations of thermoplastics with thermoplastic elastomers (TPE), there consists the possibility to apply liquid silicone rubber (LSR) as soft component. A thermoplastic/LSR combination gains in importance due to the specific advantages of LSR to TPE. The faintly adhesion between LSR and thermoplastics is currently one of the key challenges when dealing with those combinations. So it is coercively necessary to improve adhesion between the two components by adding an adhesion promoter. To determine the promoters influence, it is necessary to develop a suitable testing method to investigate e.g. the peel resistance. The current German standard "VDI Richtlinie 2019', which is actually only employed for thermoplastic/TPE combinations, can serve as a model to determine the adhesion of thermoplastic/LSR combinations.
Direct memory access transfer completion notification
Chen, Dong; Giampapa, Mark E.; Heidelberger, Philip; Kumar, Sameer; Parker, Jeffrey J.; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos
2010-07-27
Methods, compute nodes, and computer program products are provided for direct memory access (`DMA`) transfer completion notification. Embodiments include determining, by an origin DMA engine on an origin compute node, whether a data descriptor for an application message to be sent to a target compute node is currently in an injection first-in-first-out (`FIFO`) buffer in dependence upon a sequence number previously associated with the data descriptor, the total number of descriptors currently in the injection FIFO buffer, and the current sequence number for the newest data descriptor stored in the injection FIFO buffer; and notifying a processor core on the origin DMA engine that the message has been sent if the data descriptor for the message is not currently in the injection FIFO buffer.
Optical intensity dynamics in a five-emitter semiconductor array laser
NASA Astrophysics Data System (ADS)
Williams, Matthew O.; Kutz, J. Nathan
2009-06-01
The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.
Removing the current-limit of vertical organic field effect transistors
NASA Astrophysics Data System (ADS)
Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir
2017-11-01
The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.
Study of local currents in low dimension materials using complex injecting potentials
NASA Astrophysics Data System (ADS)
He, Shenglai; Covington, Cody; Varga, Kálmán
2018-04-01
A complex potential is constructed to inject electrons into the conduction band, mimicking electron currents in nanoscale systems. The injected electrons are time propagated until a steady state is reached. The local current density can then be calculated to show the path of the conducting electrons on an atomistic level. The method allows for the calculation of the current density vectors within the medium as a function of energy of the conducting electron. Using this method, we investigate the electron pathway of graphene nanoribbons in various structures, molecular junctions, and black phosphorus nanoribbons. By analyzing the current flow through the structures, we find strong dependence on the structural geometry and the energy of the injected electrons. This method may be of general use in the study of nano-electronic materials and interfaces.
Kumar, M Suresh; Natale, Richard D; Langkham, B; Sharma, Charan; Kabi, Rachel; Mortimore, Gordon
2009-01-01
Manipur and Nagaland in northeast India report an antenatal HIV prevalence of > 1% and the current HIV prevalence among injecting drug users is 24% and 4.5% respectively. Through support from DFID's Challenge Fund, Emmanuel Hospital Association (EHA) established thirteen drop-in-centres across the two states to deliver opioid substitution treatment with sublingual buprenorphine for 1200 injecting drug users. Within a short span of time the treatment has been found to be attractive to the clients and currently 1248 injecting opioid users are receiving opioid substitution treatment. The project is acceptable to the drug users, the families, the communities, religious as well as the militant groups. The treatment centres operate all days of the week, have trained staff members, utilize standardized protocols and ensure a strict supervised delivery system to prevent illicit diversion of buprenorphine. The drug users receiving the substitution treatment are referred to HIV voluntary counselling and testing. As this treatment has the potential to change HIV related risk behaviours, what has been established in the two states needs to be continued and expanded with the support from the Government of India. PMID:19243636
Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions
NASA Astrophysics Data System (ADS)
Bogatu, I. N.; Galkin, S. A.
2017-10-01
Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Lime Juice and Vinegar Injections as a Cheap and Natural Alternative to Control COTS Outbreaks.
Moutardier, Grégoire; Gereva, Sompert; Mills, Suzanne C; Adjeroud, Mehdi; Beldade, Ricardo; Ham, Jayven; Kaku, Rocky; Dumas, Pascal
2015-01-01
Outbreaks of the corallivorous crown-of-thorns seastar Acanthaster planci (COTS) represent one of the greatest disturbances to coral reef ecosystems in the Indo-Pacific, affecting not only coral reefs but also the coastal communities which rely on their resources. While injection approaches are increasingly used in an attempt to control COTS densities, most of them display severe drawbacks including logistical challenges, high residual environmental impacts or low cost-effectiveness. We tested a new alternative control method based upon acidic injections of cheap, 100% natural products. We investigated the lethal doses, intra- and inter-specific disease transmission and immune responses of COTS when injected with fresh lime juice (extracted from local Citrus arantifolia) and white spirit vinegar. High COTS mortality was achieved with small volumes: 10-20 ml per seastar induced death in 89%/97% of injected specimens after an average 34.3 h/29.8 h for lime juice and vinegar respectively. Highest efficiency was reached for both solutions with double shots of (2 × 10 ml) in two different areas on the body: 100% mortality occurred within 12-24 h, which is similar or faster compared with other current injection methods. Multiple immune measures suggested that death was very likely caused by pH stress from the acidic solutions rather than a bacterial infection. Contagion to either conspecifics or a variety of other reef species was not observed, even at COTS densities 15 times higher than the highest naturally reported. 10 to 20 l lime juice/vinegar could kill up to a thousand COTS at a cost of less than 0.05 USD per specimen; no permits or special handling procedures are required. We conclude that injections of lime juice and vinegar offer great advantages when compared to current best practises and constitute a cheap and natural option for all reefs affected by COTS.
Lime Juice and Vinegar Injections as a Cheap and Natural Alternative to Control COTS Outbreaks
Moutardier, Grégoire; Gereva, Sompert; Mills, Suzanne C.; Adjeroud, Mehdi; Beldade, Ricardo; Ham, Jayven; Kaku, Rocky; Dumas, Pascal
2015-01-01
Outbreaks of the corallivorous crown-of-thorns seastar Acanthaster planci (COTS) represent one of the greatest disturbances to coral reef ecosystems in the Indo-Pacific, affecting not only coral reefs but also the coastal communities which rely on their resources. While injection approaches are increasingly used in an attempt to control COTS densities, most of them display severe drawbacks including logistical challenges, high residual environmental impacts or low cost-effectiveness. We tested a new alternative control method based upon acidic injections of cheap, 100% natural products. We investigated the lethal doses, intra- and inter-specific disease transmission and immune responses of COTS when injected with fresh lime juice (extracted from local Citrus arantifolia) and white spirit vinegar. High COTS mortality was achieved with small volumes: 10–20 ml per seastar induced death in 89%/97% of injected specimens after an average 34.3 h/29.8 h for lime juice and vinegar respectively. Highest efficiency was reached for both solutions with double shots of (2 × 10 ml) in two different areas on the body: 100% mortality occurred within 12–24 h, which is similar or faster compared with other current injection methods. Multiple immune measures suggested that death was very likely caused by pH stress from the acidic solutions rather than a bacterial infection. Contagion to either conspecifics or a variety of other reef species was not observed, even at COTS densities 15 times higher than the highest naturally reported. 10 to 20 l lime juice/vinegar could kill up to a thousand COTS at a cost of less than 0.05 USD per specimen; no permits or special handling procedures are required. We conclude that injections of lime juice and vinegar offer great advantages when compared to current best practises and constitute a cheap and natural option for all reefs affected by COTS. PMID:26356840
NASA Astrophysics Data System (ADS)
de Boer, C. V.; O'Carroll, D. M.; Sleep, B.
2014-12-01
Reactive zero-valent iron is currently being used for remediation of contaminated groundwater. Permeable reactive barriers are the current state-of-the-practice method for using zero-valent iron. Instead of an excavated trench filled with granular zero-valent iron, a relatively new and promising method is the injection of a nano-scale zero-valent iron colloid suspension (nZVI) into the subsurface using injection wells. One goal of nZVI injection can be to deposit zero valent iron in the aquifer and form a reactive permeable zone which is no longer bound to limited depths and plume treatment, but can also be used directly at the source. It is very important to have a good understanding of the transport behavior of nZVI during injection as well as the fate of nZVI after injection due to changes in the flow regime or water chemistry changes. So far transport was mainly tested using commercially available nZVI, however these studies suggest that further work is required as commercial nZVI was prone to aggregation, resulting in low physical stability of the suspension and very short travel distances in the subsurface. In the presented work, nZVI is stabilized during synthesis to significantly increase the physical suspension stability. To improve our understanding of nZVI transport, the feasibility for injection into various porous media materials and controlled deposition, a suite of column experiments are conducted. The column experiments are performed using a long 1.5m column and a novel nZVI measuring technique. The measuring technique was developed to non-destructively determine the concentration of nano-scale iron during the injection. It records the magnetic susceptibility, which makes it possible to get transient nZVI retention profiles along the column. These transient nZVI retention profiles of long columns provide unique insights in the transport behavior of nZVI which cannot be obtained using short columns or effluent breakthrough curves.
Maleki, Morteza; Hassanpour-Ezatti, Majid; Navaeian, Majid
2017-01-01
Introduction: The current study aimed at investigating the existence of the cross state-dependent learning between morphine and scopolamine (SCO) in mice by passive avoidance method, pointing to the role of CA1 area. Methods: The effects of pre-training SCO (0.75, 1.5, and 3 μg, Intra-CA1), or morphine (1, 3, and 6 mg/kg, intraperitoneal (i.p.) was evaluated on the retrieval of passive avoidance learning using step-down task in mice (n=10). Then, the effect of pretest administration of morphine (1.5, 3, and 6 mg/kg, i.p.) was examined on passive avoidance retrieval impairment induced by pre-training SCO (3 μg/mice, Intra-CA1). Next, the effect of pretest Intra-CA1 injection of scopolamine (0.75, 1.5, and 3 μg/mice) was evaluated on morphine (6 mg/kg, i.p.) pre-training deficits in this task in mice. Results: The pre-training Intra-CA1 injection of scopolamine (1.5 and 3 μg/mouse), or morphine (3 and 6 mg/kg, i.p.) impaired the avoidance memory retrieval when it was tested 24 hours later. Pretest injection of both drugs improved its pre-training impairing effects on mice memory. Moreover, the amnesia induced by the pre-training injections of scopolamine (3 μg/mice) was restored significantly (P<0.01) by pretest injections of morphine (3 and 6 mg/kg, i.p.). Similarly, pretest injection of scopolamine (3 μg/mice) restored amnesia induced by the pre-training injections of morphine (6 mg/kg, i.p.), significantly (P<0.01). Conclusion: The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice. PMID:28781727
Xiao, Gui Nan; Sun, Qing Ping; Chen, Hao An
2013-01-15
Chlorogenic acid (CA) is one of the active ingredients in some Chinese herbal injections, which may cause allergic reactions in clinic therapy. However, the criterion of test for allergen had not been employed in current Pharmacopeia of United States, European Pharmacopeia, Japanese Pharmacopeia and British Pharmacopeia. In order to find a new way to predict allergic reactions induced by CA earlier, the guinea pigs were sensitized successively by injecting CA intravenously once a day for three times, the results were compared that of Chinese Pharmacopeia by injecting CA intraperitoneally once every other day for three times, serum IL-4 and total IgE were detected by method of enzyme linked immunosorbent assay (ELISA) before guinea pigs were challenged once by injecting the same drug intravenously. The time-effectiveness and dose-effect of allergic reactions induced by CA were also studied. We found that contents of serum IL-4 and total IgE increased significantly before guinea pigs were challenged, either in D8 after intravenous sensitization (1.5 g/l CA, 0.5 ml) or in D14 and D21 after intraperitoneal sensitization (1.5 g/l CA, 0.5 ml), and allergic reactions occurred in all guinea pigs after challenged once by injecting CA (1.5 g/l, 1.0 ml) intravenously. It provides a new way to predict whether CA (or Chinese herbal injections contained CA) can provoke allergic reactions by detecting serum IL-4 and total IgE earlier; the examination period is reduced by 1-2 weeks. It has a good prospect of application in drug emergency test. Copyright © 2012 Elsevier B.V. All rights reserved.
Keidan, Ilan; Sidi, Avner; Ben-Menachem, Erez; Derazne, Estela; Berkenstadt, Haim
2015-11-01
Intravenous catheters are ubiquitous among modern medical management of patients, yet misplaced or tissued cannulas can result in serious iatrogenic injury due to infiltration or extravasation of injectate. Prevention is difficult, and currently few reliable tests exist to confirm intravascular placement of catheters in awake spontaneously breathing patients. Twenty conscious spontaneously breathing healthy volunteers were injected with 50 mL normal saline and 50 mL 4.2%, or 50 mL 2.1%, or 20 mL 4.2% sodium bicarbonate in a random order. A blinded anesthetist observed continuous sampling of exhaled carbon dioxide and was asked to differentiate between the sodium bicarbonate and saline injections. Peak increase in measured exhaled carbon dioxide was also calculated. Exhaled carbon dioxide increased significantly in participants injected with intravenous sodium bicarbonate. Mean peak increase was 7.4 mm Hg (±2.1 mm Hg) for 50 mL 4.2% sodium bicarbonate, 4.7 mm Hg (±2.5 mm Hg) for 20 mL 4.2% sodium bicarbonate, and 3.5 mm Hg (±1. 8 mm Hg) for 50 mL 2.1% sodium bicarbonate. The blinded observer correctly identified the injection as sodium bicarbonate or normal saline in every instance. Intravenous injection of dilute sodium bicarbonate with exhaled carbon dioxide monitoring reliably confirms correct intravascular placement of a catheter. A transient increase of exhaled carbon dioxide by 10% or more is an objective and reliable confirmation of intravascular location of the catheter. We recommend using 20 mL of 4.2% sodium bicarbonate to minimize the mEq dose of sodium bicarbonate required. Copyright © 2015 Elsevier Inc. All rights reserved.
Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity.
Britch, Stevie C; Wiley, Jenny L; Yu, Zhihao; Clowers, Brian H; Craft, Rebecca M
2017-06-01
Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ 9 -tetrahydrocannabinol's (THC) effects. The current study examined sex differences in CBD modulation of THC-induced antinociception, hypolocomotion, and metabolism. In Experiment 1, CBD (0, 10 or 30mg/kg) was administered 15min before THC (0, 1.8, 3.2, 5.6 or 10mg/kg), and rats were tested for antinociception and locomotion 15-360min post-THC injection. In Experiments 2 and 3, CBD (30mg/kg) was administered 13h or 15min before THC (1.8mg/kg); rats were tested for antinociception and locomotion 30-480min post-THC injection (Experiment 2), or serum samples were taken 30-360min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4-6h post-THC injection. CBD alone increased locomotor activity at 6h post-injection, but enhanced THC-induced hypolocomotion 4-6h post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC's effects when CBD was administered 13h or 15min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. These results suggest that CBD may enhance THC's antinociceptive and hypolocomotive effects, primarily prolonging THC's duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity
Britch, Stevie C.; Wiley, Jenny L.; Yu, Zhihao; Clowers, Brian H.; Craft, Rebecca M.
2017-01-01
Background Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ9-tetrahydrocannabinol’s (THC) effects. The current study examined sex differences in CBD-THC interactions on antinociception, locomotion, and THC metabolism. Methods In Experiment 1, CBD (0, 10 or 30 mg/kg) was administered 15 min before THC (0, 1.8, 3.2, 5.6 or10 mg/kg), and rats were tested for antinociception and locomotion 15–360 min post-THC injection. In Experiments 2 and 3, CBD (30 mg/kg) was administered 13 hr or 15 min before THC (1.8 mg/kg); rats were tested for antinociception and locomotion 30–480 min post-THC injection (Experiment 2), or serum samples were taken 30–360 min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). Results In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4–6 hr post-THC injection. CBD alone increased locomotor activity at 6 hr post-injection, but enhanced THC-induced hypolocomotion 4–6 hr post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC’s effects when CBD was administered 13 hr or 15 min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. Conclusions These results suggest that CBD may enhance THC’s antinociceptive and hypolocomotive effects, primarily prolonging THC’s duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. PMID:28445853
Physics of the current injection process during localized helicity injection
NASA Astrophysics Data System (ADS)
Hinson, Edward Thomas
An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, Million
2015-08-25
SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervalswhere the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Araya, Million
2015-08-21
SPEAR3 is a 234 m circular storage ring at SLAC’s synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hzmore » 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz ‘injection ready’ signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.« less
Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry
2015-01-10
We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.
Microwave plasma source for neutral-beam injection systems
NASA Astrophysics Data System (ADS)
1981-08-01
The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. The general characteristics of plasma sources in the parameter regime of interest for neutral beam applications are considered. The operational characteristics, advantages and potential problems of RFI and ECH sources are discussed.
Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B
2018-02-01
In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance characteristics of the testing environment to provide a complete interpretation of drug-induced changes to behavior. Copyright © 2018 Elsevier Inc. All rights reserved.
Hickey, John D.
1977-01-01
Lithologic, hydraulic, geophysical, and water-quality data collected at the McKay Creek subsurface waste-injection test site in Pinellas County, Florida, are reported. Data were collected to determine the possibility of subsurface injection of waste-treatment plant effluent. One exploratory hole, one test injection well, and eight observation wells were constructed between May 1973 and February 1976. The exploratory hole was drilled to a depth of 1,750 feet below land surface; the test injection well is open in dolomite between 952 and 1 ,040 feet; and the observation wells are open to intervals above , in, and below the test injection zone. The lithology of the upper 100 feet is predominantly clay. From 100 to 1,750 feet below land surface, limestone and dolomite predominate. Gypsum is present 1,210 feet below land surface. Laboratory analyses of cores taken during drilling are given for vertical intrinsic permeability, porosity, interval transit time, and compressibility. Specific capacities tested during drilling range from 4 to 2,500 gallons per minute per foot of drawdown. An 83-hour withdrawal test at 4,180 gallons per minute and a 2-month injection test at 650 gallons per minute were run. Small water-quality changes were observed in one observation well immediately above the test injection zone during and after the injection test. Formation water in all of the wells with the exception of the shallowest observation wells is saline. The vertical position of saltwater is estimated to be at about 280 feet below land surface. Thirteen wells within a 1-mile radius of the test site were located and sampled for water quality. (USGS)
Injector Design Tool Improvements: User's manual for FDNS V.4.5
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Wei, Hong; Liu, Jiwen
1998-01-01
The major emphasis of the current effort is in the development and validation of an efficient parallel machine computational model, based on the FDNS code, to analyze the fluid dynamics of a wide variety of liquid jet configurations for general liquid rocket engine injection system applications. This model includes physical models for droplet atomization, breakup/coalescence, evaporation, turbulence mixing and gas-phase combustion. Benchmark validation cases for liquid rocket engine chamber combustion conditions will be performed for model validation purpose. Test cases may include shear coaxial, swirl coaxial and impinging injection systems with combinations LOXIH2 or LOXISP-1 propellant injector elements used in rocket engine designs. As a final goal of this project, a well tested parallel CFD performance methodology together with a user's operation description in a final technical report will be reported at the end of the proposed research effort.
Over-injection and self-oscillations in an electron vacuum diode
NASA Astrophysics Data System (ADS)
Leopold, J. G.; Siman-Tov, M.; Goldman, A.; Krasik, Ya. E.
2017-07-01
We demonstrate a practical means by which one can inject more than the space-charge limiting current into a vacuum diode. This over-injection causes self-oscillations of the space-charge resulting in an electron beam current modulation at a fixed frequency, a reaction of the system to the Coulomb repulsive forces due to charge accumulation.
NASA Astrophysics Data System (ADS)
Codd, A. L.; Gross, L.
2018-03-01
We present a new inversion method for Electrical Resistivity Tomography which, in contrast to established approaches, minimizes the cost function prior to finite element discretization for the unknown electric conductivity and electric potential. Minimization is performed with the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) in an appropriate function space. BFGS is self-preconditioning and avoids construction of the dense Hessian which is the major obstacle to solving large 3-D problems using parallel computers. In addition to the forward problem predicting the measurement from the injected current, the so-called adjoint problem also needs to be solved. For this problem a virtual current is injected through the measurement electrodes and an adjoint electric potential is obtained. The magnitude of the injected virtual current is equal to the misfit at the measurement electrodes. This new approach has the advantage that the solution process of the optimization problem remains independent to the meshes used for discretization and allows for mesh adaptation during inversion. Computation time is reduced by using superposition of pole loads for the forward and adjoint problems. A smoothed aggregation algebraic multigrid (AMG) preconditioned conjugate gradient is applied to construct the potentials for a given electric conductivity estimate and for constructing a first level BFGS preconditioner. Through the additional reuse of AMG operators and coarse grid solvers inversion time for large 3-D problems can be reduced further. We apply our new inversion method to synthetic survey data created by the resistivity profile representing the characteristics of subsurface fluid injection. We further test it on data obtained from a 2-D surface electrode survey on Heron Island, a small tropical island off the east coast of central Queensland, Australia.
Olson, Benjamin Varberg; Kadlec, Emil Andrew; Kim, Jin K.; ...
2015-04-17
Our time-resolved measurements for carrier recombination are reported as a midwave infrared InAs/InAs 0.66Sb 0.34 type-II superlattice (T2SL) function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limitsmore » the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg 1-xCd xTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. Our results illustrate the potential for InAs/InAs 1-xSb x T2SLs as absorbers in infrared photodetectors.« less
NASA Astrophysics Data System (ADS)
Perry, Justin M.
Local helicity injection (LHI) is a non-solenoidal current drive capable of achieving high-Ip tokamak startup with a relatively compact and non-invasive array of current injectors in the plasma scrape-off layer. The choice of injector location within the edge region is flexible, but has a profound influence on the nature of the current drive in LHI discharges. Past experiments on the Pegasus ST with injection on the low-field-side near the outboard midplane produced plasmas dominated by inductive drive resulting primarily from plasma geometry evolution over the discharge. Recent experiments with injection on the high-field- side in the lower divertor region produce plasmas dominated by helicity injection current drive, with relatively static plasma geometry, and thus negligible inductive drive. Plasma current up to 200 kA is driven with helicity injection as the dominant current drive using a pair of 4 cm2 area injectors sourcing 8 kA of total injected current. Steady sustainment with LHI current drive alone is demonstrated, with 100 kA sustained for 18 ms. Maximum achievable plasma current is found to scale approximately linearly with a plasma-geometry- normalized form of the effective loop voltage from LHI, Vnorm = AinjVinj/Rinj, where A inj is the total injector area, Vinj is the injector bias voltage, and Rinj is the major radius of the injectors. A newly-discovered MHD regime for LHI-driven plasmas is described, in which the large-amplitude n = 1 fluctuations at 20-50 kHz which are generally dominant during LHI are abruptly reduced by an order of magnitude on the outboard side. High frequency fluctuations ( f > 400 kHz) increase inside the plasma edge at the same time. This regime results in improved plasma current and pervasive changes to plasma behavior, and may suggest short wavelength turbulence as a current drive mechanism during LHI.
Hepatitis C infection and other drug-related harms among inpatients who injected drugs in Turkey.
Alaei, A; Alaei, K; Waye, K; Tracy, M; Nalbandyan, M; Mutlu, E; Cetin, M K
2017-06-01
Hepatitis C virus (HCV) is easily spread among those who share drug injection equipment. Due to the ease of contraction and growing prevalence of HCV in Eastern Europe, the aims of this study focused on describing risky injection practices as well as the prevalence of HCV, HIV and hepatitis B virus (HBV) among people who inject drugs (PWID) who were admitted to public and private drug treatment centres in Turkey from 2012 to 2013. Other aims included identifying correlates of needle sharing and HCV infection. Of the 4694 inpatients who ever injected drugs and the 3914 who injected in the past 30 days, nearly all (98%) reported heroin as their drug of choice, the vast majority reported ever sharing a needle (73.4% and 79.3%), and the mean age at first injection was 23 years. Of current PWID, 51.9% were HCV-positive, 5.9% were HBV-positive and only 0.34% of lifetime PWID were HIV-positive. Predictors of increased needle sharing include younger age, being unemployed, having lesser education and reporting heroin as a drug of choice. Significant predictors of HCV infection included being 40 years or older, receiving treatment in the Mediterranean region of Turkey, reporting heroin as a primary substance, a longer duration of drug use and sharing needles. With this information, it is essential to improve access to clean injection equipment in Turkey, to focus on improving education on clean injection practices and to enhance efforts in testing and treating HCV-positive PWID. © 2016 John Wiley & Sons Ltd.
Enhanced Control for Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Pierren, C.; Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.
2017-10-01
Local helicity injection (LHI) experiments on Pegasus rely upon programmable control of a 250 MVA modular power supply system that drives the electromagnets and helicity injection systems. Precise control of the central solenoid is critical to experimental campaigns that test the LHI Taylor relaxation limit and the coupling efficiency of LHI-produced plasmas to Ohmic current drive. Enhancement and expansion of the present control system is underway using field programmable gate array (FPGA) technology for digital logic and control, coupled to new 10 MHz optical-to-digital transceivers for semiconductor level device communication. The system accepts optical command signals from existing analog feedback controllers, transmits them to multiple devices in parallel H-bridges, and aggregates their status signals for fault detection. Present device-level multiplexing/de-multiplexing and protection logic is extended to include bridge-level protections with the FPGA. An input command filter protects against erroneous and/or spurious noise generated commands that could otherwise cause device failures. Fault registration and response times with the FPGA system are 25 ns. Initial system testing indicates an increased immunity to power supply induced noise, enabling plasma operations at higher working capacitor bank voltage. This can increase the applied helicity injection drive voltage, enable longer pulse lengths and improve Ohmic loop voltage control. Work supported by US DOE Grant DE-FG02-96ER54375.
Garfein, Richard S; Rondinelli, Amanda; Barnes, Richard F W; Cuevas, Jazmine; Metzner, Mitcheal; Velasquez, Michele; Rodriguez, David; Reilly, Meredith; Xing, Jian; Teshale, Eyasu H
2013-06-01
San Diego, California shares the world's busiest land border crossing with Tijuana, Mexico-a city where 95 % of injection drug users (IDUs) test hepatitis C virus (HCV) antibody-positive. Yet, little is known about the prevalence and risk behaviors for HCV among IDUs in San Diego. In 2009-2010, 18-40-year-old IDUs in San Diego County completed a risk assessment interview and serologic testing for HCV and HIV infection. Recruitment involved respondent-driven sampling, venue-based sampling at a syringe exchange program, and convenience sampling. Correlates of HCV infection were identified by multivariable logistic regression. Among 510 current IDUs, 26.9 % (95 % CI 23.0-30.7 %) and 4.2 % (95 % CI 2.4-5.9 %) had been infected with HCV and HIV, respectively. Overall, median age was 28 years; 74 % were male; 60 % white and 29 % Hispanic; and 96 % were born in the U.S. Median years of injecting was 6; 41 % injected daily; 60 % injected heroin most often; 49 % receptively shared syringes and 68 % shared other injection paraphernalia; and only 22 % reported always using new syringes in the past 3 months. Two thirds had ever traveled to Mexico and 19 % injected in Mexico. HCV infection was independently associated with sharing injection paraphernalia (adjusted odds ratio [AOR] = 1.69) and SEP use (AOR = 2.17) in the previous 3 months, lifetime history of drug overdose (AOR = 2.66), and increased years of injecting (AOR = 2.82, all P values <0.05). Controlling for recruitment method did not alter results. HCV infection prevalence among IDUs in San Diego was modest compared to other US cities and much lower than Tijuana. Given that known individual-level HCV risk factors were common in San Diego, the city's lower HCV prevalence might be due to differences in social and structural factors between the cities.
Intensity dynamics in a waveguide array laser
NASA Astrophysics Data System (ADS)
Feng, Mingming; Williams, Matthew O.; Kutz, J. Nathan; Silverman, Kevin L.; Mirin, Richard P.; Cundiff, Steven T.
2011-02-01
We consider experimentally and theoretically the optical field dynamics of a five-emitter laser array subject to a ramped injection current. We have achieved experimentally an array that produces a robust oscillatory power output with a nearly constant π phase shift between the oscillations from each waveguide. The output power also decreases linearly as a function of waveguide number. Those behaviors persisted for pump currents varying between 380 and 500 mA with only a slight change in phase. Of note is the fact that the fundamental frequency of oscillation increases with injection current, and higher harmonics are produced above a threshold current of approximately 380 mA. Experimental observations and theoretical predictions are in agreement. A low dimensional model was also developed and the impact of the nonuniform injection current studied. A nonuniform injection current is capable of shifting the bifurcations of the waveguide array providing a valuable method of array tuning without additional gain or structural alterations to the array.
NASA Astrophysics Data System (ADS)
Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto
2013-04-01
Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.
Luna, M; Gastone, F; Tosco, T; Sethi, R; Velimirovic, M; Gemoets, J; Muyshondt, R; Sapion, H; Klaas, N; Bastiaens, L
2015-10-01
The paper reports a pilot injection test of microsized zerovalent iron (mZVI) dispersed in a guar gum shear thinning solution. The test was performed in the framework of the EU research project AQUAREHAB in a site in Belgium contaminated by chlorinated aliphatic hydrocarbons (CAHs). The field application was aimed to overcome those critical aspects which hinder mZVI field injection, mainly due to the colloidal instability of ZVI-based suspensions. The iron slurry properties (iron particles size and concentration, polymeric stabilizer type and concentration, slurry viscosity) were designed in the laboratory based on several tests (reactivity tests towards contaminants, sedimentation tests and rheological measurements). The particles were delivered into the aquifer through an injection well specifically designed for controlled-pressure delivery (approximately 10 bars). The well characteristics and the critical pressure of the aquifer (i.e. the injection pressure above which fracturing occurs) were assessed via two innovative injection step rate tests, one performed with water and the other one with guar gum. Based on laboratory and field preliminary tests, a flow regime at the threshold between permeation and preferential flow was selected for mZVI delivery, as a compromise between the desired homogeneous distribution of the mZVI around the injection point (ensured by permeation flow) and the fast and effective injection of the slurry (guaranteed by high discharge rates and injection pressure, resulting in the generation of preferential flow paths). A monitoring setup was designed and installed for the real-time monitoring of relevant parameters during injection, and for a fast determination of the spatial mZVI distribution after injection via non-invasive magnetic susceptibility measurements. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.
1983-01-01
Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.
Alkaline flooding for enhanced oil recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gittler, W.E.
1983-09-01
There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weightmore » concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.« less
A novel method for intraoral access to the superior head of the human lateral pterygoid muscle.
Oliveira, Aleli Tôrres; Camilo, Anderson Aparecido; Bahia, Paulo Roberto Valle; Carvalho, Antonio Carlos Pires; DosSantos, Marcos Fabio; da Silva, Jorge Vicente Lopes; Monteiro, André Antonio
2014-01-01
The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM) has been suggested to be one of the causes of temporomandibular joint (TMJ) disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX), of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects.
Bracha, H Stefan; Bienvenu, O Joseph; Eaton, William W
2007-01-01
The research agenda for the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) has emphasized the need for a more etiologically-based classification system, especially for stress-induced and fear-circuitry disorders. Testable hypotheses based on threats to survival during particular segments of the human era of evolutionary adaptedness (EEA) may be useful in developing a brain-evolution-based classification for the wide spectrum of disorders ranging from disorders which are mostly overconsolidationally such as PTSD, to fear-circuitry disorders which are mostly innate such as specific phobias. The recently presented Paleolithic-human-warfare hypothesis posits that blood-injection phobia can be traced to a "survival (fitness) enhancing" trait, which evolved in some females of reproductive-age during the millennia of intergroup warfare in the Paleolithic EEA. The study presented here tests the key a priori prediction of this hypothesis-that current blood-injection phobia will have higher prevalence in reproductive-age women than in post-menopausal women. The Diagnostic Interview Schedule (version III-R), which included a section on blood and injection phobia, was administered to 1920 subjects in the Baltimore ECA Follow-up Study. Data on BII phobia was available on 1724 subjects (1078 women and 646 males). The prevalence of current blood-injection phobia was 3.3% in women aged 27-49 and 1.1% in women over age 50 (OR 3.05, 95% CI 1.20-7.73). [The corresponding figures for males were 0.8% and 0.7% (OR 1.19, 95% CI 0.20-7.14)]. This epidemiological study provides one source of support for the Paleolithic-human-warfare (Paleolithic-threat) hypothesis regarding the evolutionary (distal) etiology of bloodletting-related phobia, and may contribute to a more brain-evolution-based re-conceptualization and classification of this fear circuitry-related trait for the DSM-V. In addition, the finding reported here may also stimulate new research directions on more proximal mechanisms which can lead to the development of evidence-based psychopharmacological preventive interventions for this common and sometimes disabling fear-circuitry disorder.
Hepatitis Infection in the Treatment of Opioid Dependence and Abuse
Kresina, Thomas F; Sylvestre, Diana; Seeff, Leonard; Litwin, Alain H; Hoffman, Kenneth; Lubran, Robert; Clark, H Westley
2008-01-01
Many new and existing cases of viral hepatitis infections are related to injection drug use. Transmission of these infections can result directly from the use of injection equipment that is contaminated with blood containing the hepatitis B or C virus or through sexual contact with an infected individual. In the latter case, drug use can indirectly contribute to hepatitis transmission through the dis-inhibited at-risk behavior, that is, unprotected sex with an infected partner. Individuals who inject drugs are at-risk for infection from different hepatitis viruses, hepatitis A, B, or C. Those with chronic hepatitis B virus infection also face additional risk should they become co-infected with hepatitis D virus. Protection from the transmission of hepatitis viruses A and B is best achieved by vaccination. For those with a history of or who currently inject drugs, the medical management of viral hepatitis infection comprising screening, testing, counseling and providing care and treatment is evolving. Components of the medical management of hepatitis infection, for persons considering, initiating, or receiving pharmacologic therapy for opioid addiction include: testing for hepatitis B and C infections; education and counseling regarding at-risk behavior and hepatitis transmission, acute and chronic hepatitis infection, liver disease and its care and treatment; vaccination against hepatitis A and B infection; and integrative primary care as part of the comprehensive treatment approach for recovery from opioid abuse and dependence. In addition, participation in a peer support group as part of integrated medical care enhances treatment outcomes. Liver disease is highly prevalent in patient populations seeking recovery from opioid addiction or who are currently receiving pharmacotherapy for opioid addiction. Pharmacotherapy for opioid addiction is not a contraindication to evaluation, care, or treatment of liver disease due to hepatitis virus infection. Successful pharmacotherapy for opioid addiction stabilizes patients and improves patient compliance to care and treatment regimens as well as promotes good patient outcomes. Implementation and integration of effective hepatitis prevention programs, care programs, and treatment regimens in concert with the pharmacological therapy of opioid addiction can reduce the public health burdens of hepatitis and injection drug use. PMID:25977607
SAPS/SAID revisited: A causal relation to the substorm current wedge
NASA Astrophysics Data System (ADS)
Mishin, Evgeny; Nishimura, Yukitoshi; Foster, John
2017-08-01
We present multispacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 min, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1 and Region 2 sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.
SAID/SAPS Revisited: A Causal Relation to the Substorm Current Wedge
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
We present multi-spacecraft observations of enhanced flow/electric field channels in the inner magnetosphere and conjugate subauroral ionosphere, i.e., subauroral polarization streams (SAPS) near dusk and subauroral ion drifts (SAID) near midnight. The channels collocate with ring current (RC) injections lagging the onset of substorms by a few to ˜20 minutes, i.e., significantly shorter than the gradient-curvature drift time of tens of keV ions. The time lag is of the order of the propagation time of reconnection-injected hot plasma jets to the premidnight plasmasphere and the substorm current wedge (SCW) to dusk. The observations confirm and expand on the previous results on the SAID features that negate the paradigm of voltage and current generators. Fast-time duskside SAPS/RC injections appear intimately related to a two-loop circuit of the substorm current wedge (SCW2L). We suggest that the poleward electric field inherent in the SCW2L circuit, which demands closure of the Region 1- and Region 2-sense field-aligned currents via meridional currents, is the ultimate cause of fast RC injections and SAPS on the duskside.
Inhibition of sympathetic sprouting in CCD rats by lacosamide.
Wang, Yuying; Huo, Fuquan
2018-05-14
Early hyperexcitability activity of injured nerve/neuron is critical for developing sympathetic nerve sprouting within dorsal root ganglia (DRG). Since lacosamide (LCM), an anticonvulsant, inhibits Na + channel. The present study tried to test the potential effect of LCM on inhibiting sympathetic sprouting in vivo. LCM (50 mg/kg) was daily injected intraperitoneally into rats subjected to chronic compression DRG (CCD), an animal model of neuropathic pain that exhibits sympathetic nerve sprouting, for the 1st 7 days after injury. Mechanical sensitivity was tested from day 3 to day 18 after injury, and then DRGs were removed off. Immunohistochemical staining for tyrosine hydroxylase (TH) was examined to observe sympathetic sprouting, and patch-clamp recording was performed to test the excitability and Na + current of DRG neurons. Early systemic LCM treatment significantly reduced TH immunoreactivity density in injured DRG, lowered the excitability level of injured DRG neurons, and increased paw withdrawal threshold (PWT). These effects on reducing sympathetic sprouting, inhibiting excitability and suppressing pain behavior were observed 10 days after the end of early LCM injection. In vitro 100 μM LCM instantly reduced the excitability of CCD neurons via inhibiting Na + current and reducing the amplitude of AP. All the findings suggest, for the first time, that early administration of LCM inhibited sympathetic sprouting and then alleviated neuropathic pain. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The effectiveness of a mail reminder system for depot medroxyprogesterone injections.
Madlon-Kay, D J
1996-04-01
To determine if a mail reminder system leads to an increase in the percentage of depot medroxyprogesterone acetate (Depo-Provera) injections administered on time, the charts of 184 women were reviewed. The reminder postcard included the due dates of both the next medroxyprogesterone injection and the next Papanicolaou test. Timeliness of injections improved with the reminder system from 64% administered on time to 76% (P < .02). Injections given late despite the reminders were late a mean of 8 days. Injections given late before the reminder system began were late a mean of 20 days (P < .05). If injections given during the injection's 14-day "grace" period are included, the on-time rate improved from 87% to 96% with the reminder system (P < .005). The reminder system was not effective in ensuring annual Papanicolaou testing. Vigilance is needed to ensure that women receiving medroxyprogesterone injections also receive timely Papanicolaou testing.
COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earl D Mattson; Mitchell Plummer; Carl Palmer
2011-02-01
Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonicmore » acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.« less
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
Lehmann, Eldon D.; Tarín, Cristina; Bondia, Jorge; Teufel, Edgar; Deutsch, Tibor
2007-01-01
Introduction AIDA v4 is an interactive educational diabetes simulator that has been made available, for over a decade, without charge via the Internet. The software is currently freely accessible at http://www.2aida.org. This report sets out a collaborative development plan to enhance the program with a new model of subcutaneous insulin absorption, which permits the simulation of rapidly acting and very long-acting insulin analogues, as well as insulin injection doses larger than 40 units. Methods A novel, generic, physiological subcutaneous insulin absorption model is overviewed and a methodology is proposed by which this can be substituted in place of the previously adopted insulin absorption model utilized within AIDA v4.3a. Apart from this substitution it is proposed to retain the existing model of the glucoregulatory system currently used in AIDA v4.3a. Results Initial simulation results based on bench testing of this approach using MATLAB are presented for the exogenous insulin flow profile (Iex) following subcutaneous injections of a rapidly acting insulin analogue, a short-acting (regular) insulin preparation, intermediate-acting insulins (both Semilente and neutral protamine Hagedorn types), and a very long-acting insulin analogue. Discussion It is proposed to implement this collaborative development plan—first by bench testing the approach in MATLAB and then by integrating the generic subcutaneous insulin absorption Iex model into the AIDA simulator in Pascal. The aim is to provide enhanced functionality and educational simulations of regimens utilizing novel insulin analogues, as well as injections larger than 40 units of insulin. PMID:19885100
Physical requirements and milestones for the HIT-PoP Experiment
NASA Astrophysics Data System (ADS)
Jarboe, Thomas
2011-10-01
Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.
Ion channel recordings on an injection-molded polymer chip.
Tanzi, Simone; Matteucci, Marco; Christiansen, Thomas Lehrmann; Friis, Søren; Christensen, Mette Thylstrup; Garnaes, Joergen; Wilson, Sandra; Kutchinsky, Jonatan; Taboryski, Rafael
2013-12-21
In this paper, we demonstrate recordings of the ion channel activity across the cell membrane in a biological cell by employing the so-called patch clamping technique on an injection-molded polymer microfluidic device. The findings will allow direct recordings of ion channel activity to be made using the cheapest materials and production platform to date and with the potential for very high throughput. The employment of cornered apertures for cell capture allowed the fabrication of devices without through holes and via a scheme comprising master origination by dry etching in a silicon substrate, electroplating in nickel and injection molding of the final part. The most critical device parameters were identified as the length of the patching capillary and the very low surface roughness on the inside of the capillary. The cross-sectional shape of the orifice was found to be less critical, as both rectangular and semicircular profiles seemed to have almost the same ability to form tight seals with cells with negligible leak currents. The devices were functionally tested using human embryonic kidney cells expressing voltage-gated sodium channels (Nav1.7) and benchmarked against a commercial state-of-the-art system for automated ion channel recordings. These experiments considered current-voltage (IV) relationships for activation and inactivation of the Nav1.7 channels and their sensitivity to a local anesthetic, lidocaine. Both IVs and lidocaine dose-response curves obtained from the injection-molded polymer device were in good agreement with data obtained from the commercial system.
1988-03-01
Applesoft language, a variant of floating-point BASIC that is supplied with the computer. As an intepreted language, Apple- soft BASIC executes fairly...fit with (VI , II ) array. I 8400 Sound bell and display warning when current limit exceeded. 8500-8510 Output HV pulse, read and display amplitude
Patterns of Drug Use and HIV-Related Risk Behaviors among Incarcerated People in a Prison in Iran
Farnia, Marziyeh; Torknejad, Alireza; Abbasi Alaei, Behrouz; Gholizadeh, Mehran; Kasraee, Farzad; Ono-Kihara, Masako; Oba, Koji; Kihara, Masahiro
2010-01-01
Previous research indicates that prisoners in Iran are at risk of drug-related harm, including acquisition of blood-borne infections. In response, several prevention interventions have been introduced into prisons in Iran, such as methadone maintenance treatment (MMT). MMT is now provided to opioid-dependent prisoners in 142 of the 230 prisons and correctional settings in Iran. A baseline behavioral survey was conducted in Karaj Central prison which mainly holds prisoners with drug-related charges. Overall, 203 male prisoners from randomly selected rooms in two prison blocks were interviewed using a structured questionnaire in 2007, just before the introduction of MMT program in this prison. Among participants, 7% reported never having used illicit drugs in their lifetime, but 51% had used non-injecting illicit drugs, and as high as 42% reported having injected an illicit drug. Up to 79% (160/203) of all participants reported using drugs, and about 6% (12/203) reported drug injecting during their current incarceration term. Same-gender sexual practice during current incarceration term was reported by 2.5% (5/203) of all male prisoners. Comparison between injecting and non-injecting drug-using prisoners indicated that drug injectors had higher rates of previous incarcerations, commenced drug use at a younger age, were more likely to have used illicit drugs in the previous week, were more likely to have been treated by a physician for drug addiction, had higher rates of registration for methadone treatment inside prison, and were more likely to have been tested for HIV infection. These study findings provide a behavioral profile of prisoners in regard to drug-related harm and can be considered in any plan to introduce or improve provision of MMT in prisons in Iran or other countries with similar features. PMID:20390391
Patterns of drug use and HIV-related risk behaviors among incarcerated people in a prison in Iran.
Zamani, Saman; Farnia, Marziyeh; Torknejad, Alireza; Alaei, Behrouz Abbasi; Gholizadeh, Mehran; Kasraee, Farzad; Ono-Kihara, Masako; Oba, Koji; Kihara, Masahiro
2010-07-01
Previous research indicates that prisoners in Iran are at risk of drug-related harm, including acquisition of blood-borne infections. In response, several prevention interventions have been introduced into prisons in Iran, such as methadone maintenance treatment (MMT). MMT is now provided to opioid-dependent prisoners in 142 of the 230 prisons and correctional settings in Iran. A baseline behavioral survey was conducted in Karaj Central prison which mainly holds prisoners with drug-related charges. Overall, 203 male prisoners from randomly selected rooms in two prison blocks were interviewed using a structured questionnaire in 2007, just before the introduction of MMT program in this prison. Among participants, 7% reported never having used illicit drugs in their lifetime, but 51% had used non-injecting illicit drugs, and as high as 42% reported having injected an illicit drug. Up to 79% (160/203) of all participants reported using drugs, and about 6% (12/203) reported drug injecting during their current incarceration term. Same-gender sexual practice during current incarceration term was reported by 2.5% (5/203) of all male prisoners. Comparison between injecting and non-injecting drug-using prisoners indicated that drug injectors had higher rates of previous incarcerations, commenced drug use at a younger age, were more likely to have used illicit drugs in the previous week, were more likely to have been treated by a physician for drug addiction, had higher rates of registration for methadone treatment inside prison, and were more likely to have been tested for HIV infection. These study findings provide a behavioral profile of prisoners in regard to drug-related harm and can be considered in any plan to introduce or improve provision of MMT in prisons in Iran or other countries with similar features.
NASA Astrophysics Data System (ADS)
Guoxing, Zheng; Minghu, Jiang; Hongliang, Gong; Nannan, Zhang; Jianguang, Wei
2018-02-01
According to basic principles of combining series of strata and demands of same-well injection-production technique, the optimization designing method of same-well injection-production technique’s injection-production circulatory system is given. Based on oil-water two-phase model with condition of arbitrarily well network, a dynamic forecast method for the application of same-well injection-production reservoir is established with considering the demands and capacity of same-well injection-production technique, sample wells are selected to launch the forecast evaluation and analysis of same-well injection-production reservoir application’s effect. Results show: single-test-well composite water cut decreases by 4.7% and test-well-group composite water cut decreases by 1.56% under the condition of basically invariant ground water injection rate. The method provides theoretical support for the proof of same-well injection-production technique’s reservoir development improving effect and further tests.
Breast EIT using a new projected image reconstruction method with multi-frequency measurements.
Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je
2012-05-01
We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.
Load flows and faults considering dc current injections
NASA Technical Reports Server (NTRS)
Kusic, G. L.; Beach, R. F.
1991-01-01
The authors present novel methods for incorporating current injection sources into dc power flow computations and determining network fault currents when electronic devices limit fault currents. Combinations of current and voltage sources into a single network are considered in a general formulation. An example of relay coordination is presented. The present study is pertinent to the development of the Space Station Freedom electrical generation, transmission, and distribution system.
Grebely, Jason; Bruneau, Julie; Lazarus, Jeffrey V; Dalgard, Olav; Bruggmann, Philip; Treloar, Carla; Hickman, Matthew; Hellard, Margaret; Roberts, Teri; Crooks, Levinia; Midgard, Håvard; Larney, Sarah; Degenhardt, Louisa; Alho, Hannu; Byrne, Jude; Dillon, John F; Feld, Jordan J; Foster, Graham; Goldberg, David; Lloyd, Andrew R; Reimer, Jens; Robaeys, Geert; Torrens, Marta; Wright, Nat; Maremmani, Icro; Norton, Brianna L; Litwin, Alain H; Dore, Gregory J
2017-09-01
Globally, it is estimated that 71.1 million people have chronic hepatitis C virus (HCV) infection, including an estimated 7.5 million people who have recently injected drugs (PWID). There is an additional large, but unquantified, burden among those PWID who have ceased injecting. The incidence of HCV infection among current PWID also remains high in many settings. Morbidity and mortality due to liver disease among PWID with HCV infection continues to increase, despite the advent of well-tolerated, simple interferon-free direct-acting antiviral (DAA) HCV regimens with cure rates >95%. As a result of this important clinical breakthrough, there is potential to reverse the rising burden of advanced liver disease with increased treatment and strive for HCV elimination among PWID. Unfortunately, there are many gaps in knowledge that represent barriers to effective prevention and management of HCV among PWID. The Kirby Institute, UNSW Sydney and the International Network on Hepatitis in Substance Users (INHSU) established an expert round table panel to assess current research gaps and establish future research priorities for the prevention and management of HCV among PWID. This round table consisted of a one-day workshop held on 6 September, 2016, in Oslo, Norway, prior to the International Symposium on Hepatitis in Substance Users (INHSU 2016). International experts in drug and alcohol, infectious diseases, and hepatology were brought together to discuss the available scientific evidence, gaps in research, and develop research priorities. Topics for discussion included the epidemiology of injecting drug use, HCV, and HIV among PWID, HCV prevention, HCV testing, linkage to HCV care and treatment, DAA treatment for HCV infection, and reinfection following successful treatment. This paper highlights the outcomes of the roundtable discussion focused on future research priorities for enhancing HCV prevention, testing, linkage to care and DAA treatment for PWID as we strive for global elimination of HCV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Overview of the Helicity Injected Torus (HIT) Program
NASA Astrophysics Data System (ADS)
Redd, A. J.; Jarboe, T. R.; Hamp, W. T.; Nelson, B. A.; O'Neill, R. G.; Sieck, P. E.; Smith, R. J.; Sutphin, G. L.; Wrobel, J. S.
2007-06-01
The Helicity Injected Torus with Steady Inductive Helicity Injection (HIT-SI) consists of a "bowtie"-shaped axisymmetric confinement region, with two half-torus helicity injectors mounted on each side of the axisymmetric flux conserver [Sieck et al, IEEE Trans. Plasma Sci., v.33, p.723 (2005); Jarboe, Fusion Technology, v.36, p.85 (1999)]. Current and flux are driven sinusoidally with time in each injector, with the goal of generating and sustaining an axisymmetric spheromak in the main confinement region. Improvements in machine conditioning have enabled systematic study of HIT-SI discharges with significant toroidal current ITOR, including cases in which this current ITOR switches sign one or more times during the discharge. Statistical studies of all HIT-SI discharges to date demonstrate a minimum injected power to form significant ITOR, and that the maximum ITOR scales approximately linearly with the total injected power.
BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.M.; Shaftan; T.
2011-03-28
Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less
NASA Astrophysics Data System (ADS)
Wang, Tao; Tong, Cunzhu; Wang, Lijie; Zeng, Yugang; Tian, Sicong; Shu, Shili; Zhang, Jian; Wang, Lijun
2016-11-01
High-power broad-area (BA) diode lasers often suffer from low beam quality, broad linewidth, and a widened slow-axis far field with increasing current. In this paper, a two-dimensional current-modulated structure is proposed and it is demonstrated that it can reduce not only the far-field sensitivity to the injection current but also the linewidth of the lasing spectra. Injection-insensitive lateral divergence was realized, and the beam parameter product (BPP) was improved by 36.5%. At the same time, the linewidth was decreased by about 45% without significant degradations of emission power and conversion efficiency.
Optimal joule heating of the subsurface
Berryman, James G.; Daily, William D.
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Longoria, Javier A; Fujiwara, Miwa; Guerra, Catalina; Lee, Jeffrey L; Sassoon, Catherine S H; Mazdisnian, Farhad
2016-10-01
Expiratory central airway collapse is an increasingly recognized abnormality of the central airways and may be present in as many as 22% of patients evaluated for chronic obstructive pulmonary disease and/or asthma. Many current treatment options require invasive procedures that have been shown to cause significant morbidity and mortality. To test the hypothesis that Teflon injection will induce sufficient fibroblast proliferation and collagen deposition, we evaluated the time course on the effect of Teflon injection in the posterior membranous trachea on the histopathology of the tracheobronchial tree. Six Yucatan Pigs were assigned to undergo general anesthesia and injection of 0.3 to 0.5 mL of sterile Teflon paste in 50% glycerin into the posterior membranous tracheal wall. A control pig received an equivalent volume of glycerin. Animals were euthanized in predefined intervals and tracheas were excised and examined under light microscopy for identifying fibroblast proliferation and collagen deposition. Compared with the control pig, the Teflon injection site showed tissue reaction of fibrohistiocytic proliferation and subsequent collagen deposition in all animals. Furthermore, the increased fibroblast proliferation and collagen deposition were time dependent (P<0.01). This pilot study demonstrates histopathologic changes in the trachea after Teflon injection, comprised of increased fibroblast activity and collagen deposition that could be of potential use in creating greater airway rigidity in patients with sever diffuse excessive dynamic airway collapse.
Stratford, Thomas R; Wirtshafter, David
2012-05-01
Previous studies have shown that large increases in food intake in nondeprived animals can be induced by injections of both the GABA(A) agonist muscimol and the μ-opioid agonist DAMGO into the nucleus accumbens shell (AcbSh), while injections of the catecholamine agonist amphetamine have little effect. In the current study we examined whether injections of these drugs are able to increase food-reinforced lever pressing in nondeprived rats. Twelve subjects were trained to lever press on a continuous reinforcement schedule while food deprived and were then tested after being placed back on ad libitum feeding. Under these conditions, responding was markedly increased by injections of either muscimol or DAMGO, although the onset of the effects of the latter drug was delayed by 30-40 min. In contrast, amphetamine injections failed to increase reinforced lever pressing, although they did enhance responding on a non-reinforced lever, presumably reflecting alterations in behavioral activation. These results demonstrate that stimulation of GABA(A) and μ-opioid receptors within the AcbSh is able to promote not only food intake, but also food-directed operant behavior. In contrast, stimulation of AcbSh dopamine receptors may enhance behavioral arousal, but does not appear to specifically potentiate behaviors directed toward food procurement. Copyright © 2012 Elsevier Inc. All rights reserved.
Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
Cui, Qiannan; Zhao, Hui
2015-04-28
Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.
Murphy, J W; Gregory, J A; Larsh, H W
1974-02-01
This study was undertaken to evaluate the potential of a cryptococcal culture filtrate antigen, cryptococcin C184, for detecting delayed hypersensitivity in Cryptococcus neoformans-injected animals. The antigen was tested on guinea pigs which had received saline or C. neoformans and on animals sensitized to Histoplasma capsulatum, Blastomyces dermatitidis, Candida albicans, or Sporothrix schenckii. A delayed-type hypersensitivity response was elicited by cryptococcin C184 in C. neoformans-injected guinea pigs, whereas no indurations or erythemas were seen at 48 h after skin testing of saline controls or heterologously sensitized guinea pigs. Besides being specific for Cryptococcus, the antigen showed a high degree of sensitivity and was reproducible. Footpad tests were conducted with the antigen on mice which had previously received either 10(5) viable C. neoformans cells or saline. Delayed hypersensitivity was indicated in the C. neoformans-injected mice by the increase in thickness of antigen-injected footpads when compared with the saline-injected footpads. In control mice, antigen- and saline-injected footpads were comparable in thickness 24 h after injection. Mice sensitized to B. dermatitidis were footpad tested with C184, and no cross-reactivity was demonstrated.
Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J.; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method’s implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System’s C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis. PMID:28886112
Mathes, Robert W; Lall, Ramona; Levin-Rector, Alison; Sell, Jessica; Paladini, Marc; Konty, Kevin J; Olson, Don; Weiss, Don
2017-01-01
The New York City Department of Health and Mental Hygiene has operated an emergency department syndromic surveillance system since 2001, using temporal and spatial scan statistics run on a daily basis for cluster detection. Since the system was originally implemented, a number of new methods have been proposed for use in cluster detection. We evaluated six temporal and four spatial/spatio-temporal detection methods using syndromic surveillance data spiked with simulated injections. The algorithms were compared on several metrics, including sensitivity, specificity, positive predictive value, coherence, and timeliness. We also evaluated each method's implementation, programming time, run time, and the ease of use. Among the temporal methods, at a set specificity of 95%, a Holt-Winters exponential smoother performed the best, detecting 19% of the simulated injects across all shapes and sizes, followed by an autoregressive moving average model (16%), a generalized linear model (15%), a modified version of the Early Aberration Reporting System's C2 algorithm (13%), a temporal scan statistic (11%), and a cumulative sum control chart (<2%). Of the spatial/spatio-temporal methods we tested, a spatial scan statistic detected 3% of all injects, a Bayes regression found 2%, and a generalized linear mixed model and a space-time permutation scan statistic detected none at a specificity of 95%. Positive predictive value was low (<7%) for all methods. Overall, the detection methods we tested did not perform well in identifying the temporal and spatial clusters of cases in the inject dataset. The spatial scan statistic, our current method for spatial cluster detection, performed slightly better than the other tested methods across different inject magnitudes and types. Furthermore, we found the scan statistics, as applied in the SaTScan software package, to be the easiest to program and implement for daily data analysis.
Thermoplastic composites for veneering posterior teeth-a feasibility study.
Gegauff, Anthony G; Garcia, Jose L; Koelling, Kurt W; Seghi, Robert R
2002-09-01
This pilot study was conducted to explore selected commercially-available thermoplastic composites that potentially had physical properties superior to currently available dental systems for restoring esthetic posterior crowns. Polyurethane, polycarbonate, and poly(ethylene/tetrafluoroethylene) (ETFE) composites and unfilled polyurethane specimens were injection molded to produce shapes adaptive to five standardized mechanical tests. The mechanical testing included abrasive wear rate, yield strength, apparent fracture toughness (strength ratio), flexural strength, and compressive strength. Compared to commercially available dental composites, abrasion wear rates were lower for all materials tested, yield strength was greater for the filled polycarbonates and filled polyurethane resins, fracture toughness testing was invalid (strength ratios were calculated for comparison of the pilot test materials), flexural strength was roughly similar except for the filled ETFE which was significantly greater, and compressive strength was lower. Commercially available thermoplastic resin composites, such as polyurethane, demonstrate the potential for development of an artificial crown material which exceeds the mechanical properties of currently available esthetic systems, if compressive strength can be improved.
Exploration of spherical torus physics in the NSTX device
NASA Astrophysics Data System (ADS)
Ono, M.; Kaye, S. M.; Peng, Y.-K. M.; Barnes, G.; Blanchard, W.; Carter, M. D.; Chrzanowski, J.; Dudek, L.; Ewig, R.; Gates, D.; Hatcher, R. E.; Jarboe, T.; Jardin, S. C.; Johnson, D.; Kaita, R.; Kalish, M.; Kessel, C. E.; Kugel, H. W.; Maingi, R.; Majeski, R.; Manickam, J.; McCormack, B.; Menard, J.; Mueller, D.; Nelson, B. A.; Nelson, B. E.; Neumeyer, C.; Oliaro, G.; Paoletti, F.; Parsells, R.; Perry, E.; Pomphrey, N.; Ramakrishnan, S.; Raman, R.; Rewoldt, G.; Robinson, J.; Roquemore, A. L.; Ryan, P.; Sabbagh, S.; Swain, D.; Synakowski, E. J.; Viola, M.; Williams, M.; Wilson, J. R.; NSTX Team
2000-03-01
The National Spherical Torus Experiment (NSTX) is being built at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical torus concept at the MA level. The NSTX nominal plasma parameters are R0 = 85 cm, a = 67 cm, R/a >= 1.26, Bt = 3 kG, Ip = 1 MA, q95 = 14, elongation κ <= 2.2, triangularity δ <= 0.5 and a plasma pulse length of up to 5 s. The plasma heating/current drive tools are high harmonic fast wave (6 MW, 5 s), neutral beam injection (5 MW, 80 keV, 5 s) and coaxial helicity injection. Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes, including very high plasma β, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well and high pressure driven sheared flow. In addition, the NSTX programme plans to explore fully non-inductive plasma startup as well as a dispersive scrape-off layer for heat and particle flux handling.
An Apparatus for Measuring Rates of Discharge of a Fuel-Injection System
NASA Technical Reports Server (NTRS)
Dutee, Francis J
1941-01-01
A portable apparatus for rapidly determining rates of discharge of a fuel-injection system is described. Satisfactory operation of this apparatus with injection-pump speeds up to 2400 r.p.m was obtained. Rate-of-discharge tests were made with several cam-plunger-valve injection systems with long injection tubes. A check valve designed to reduce secondary discharges was tested. This check valve was operated with injection-pump speeds up to 2400 r.p.m without the occurrence of large secondary discharges.
Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.
1976-06-15
A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.
Read, Phillip; Lothian, Rebecca; Chronister, Karen; Gilliver, Rosie; Kearley, John; Dore, Gregory J; van Beek, Ingrid
2017-09-01
The Kirketon Road Centre (KRC) is a community-based public health facility in Sydney, Australia, that provides healthcare to people who inject drugs (PWID), including hepatitis C virus (HCV) treatment. From March 2016, the Australian Government has provided access to direct-acting antivirals (DAA) for adults with chronic HCV, without liver disease stage or drug and alcohol use restrictions. The aim of this study was to report DAA treatment outcomes among highly marginalised PWID treated at KRC. All individuals initiating DAA treatment at KRC and due for sustained virological response (SVR12) testing by end 2016 were included. Demographic, drug use behaviour, clinical parameters, adherence support and HCV treatment outcomes, including SVR12 were recorded. Factors associated with SVR12, loss-to-follow-up (LTFU) and delayed SVR12 testing (>SVR16) were assessed by multivariate analysis. SVR12 was assessed by intention-to-treat (ITT) and modified ITT, the latter excluding individuals with an end-of-treatment response (ETR) but no SVR12 assessment, or who postponed their SVR12 date due to treatment interruption. A total of 72 individuals commencing DAAs were included, of whom 67% were male, 30% homeless, and 32% Aboriginal. All had a lifetime history of injecting drug use, with 75% having injected within the last six months, and 44% injecting at least weekly; 25% were also enrolled in opioid substitution therapy. Twenty-five (35%) individuals elected to receive an enhanced adherence-support package. Fifty-nine of 72 (82%) individuals due for SVR12 attended for testing, of whom 59/59 (100%) achieved SVR, providing an ITT SVR of 82%. A further six individuals had undetectable HCV RNA at ETR, but no SVR12 assessment, and one interrupted treatment, providing a mITT SVR of 91%. Homelessness was associated with delayed SVR12 testing (OR 24.9 95%CI 2.9-212.8, p=0.003). There was no association between LTFU and frequency of drug injection, last drug injected, or planned treatment duration. This study confirms that PWID can be successfully treated for HCV in a real-world setting using an integrated primary health care model. It also demonstrates feasibility to upscale DAA therapy in high-risk PWID populations, with potential individual and population-level public health benefits. Enhanced efforts are required to optimise post-treatment follow-up. Copyright © 2017 Elsevier B.V. All rights reserved.
Fractured reservoir characterization through injection, falloff, and flowback tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, C.P.; Singh, P.K.; Halvorsen, H.
1992-09-01
This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.
NASA Astrophysics Data System (ADS)
Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang
2017-08-01
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).
Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.
2009-04-01
Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.
Zhuang, H D; Zhang, X D
2015-05-01
A fast valve based on the double-layer eddy-current repulsion mechanism has been developed on Experimental Advanced Superconducting Tokamak (EAST). In addition to a double-layer eddy-current coil, a preload system was added to improve the security of the valve, whereby the valve opens more quickly and the open-valve time becomes shorter, making it much safer than before. In this contribution, testing platforms, open-valve characteristics, and throughput of the fast valve are discussed. Tests revealed that by choosing appropriate parameters the valve opened within 0.15 ms, and open-valve times were no longer than 2 ms. By adjusting working parameter values, the maximum number of particles injected during this open-valve time was estimated at 7 × 10(22). The fast valve will become a useful tool to further explore disruption mitigation experiments on EAST in 2015.
Test results for rotordynamic coefficients of anti-swirl self-injection seals
NASA Technical Reports Server (NTRS)
Kim, C. H.; Lee, Y. B.
1994-01-01
Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.
Reisman, D; Reader, A; Nist, R; Beck, M; Weaver, J
1997-12-01
To determine the efficacy of a supplemental intraosseous injection of 3% mepivacaine in mandibular posterior teeth with irreversible pulpitis. Intraosseous injection pain, subjective heart rate increase, and pain ratings during endodontic treatment were also assessed. Forty-eight patients with irreversible pulpitis received conventional inferior alveolar nerve blocks. Electric pulp testing was used to determine pulpal anesthesia. Patients who were positive to the pulp testing, or negative to pulp testing but felt pain during endodontic treatment, received an intraosseous injection of 1.8 ml of 3% mepivacaine. A second intraosseous injection of 3% mepivacaine (1.8 ml) was given if the first injection was unsuccessful. Seventy-five percent of patients required an initial intraosseous injection because of failure to gain pulpal anesthesia. The inferior alveolar block was 25% successful; the first intraosseous injection increased success to 80%. A second intraosseous injection further increased success to 98%. These differences were significant (p < 0.05). Eight percent (4/48) of the initial intraosseous injections resulted in solution being expressed into the oral cavity: these were considered technique failures. For mandibular posterior teeth with irreversible pulpitis, a supplemental intraosseous injection of 3% mepivacaine increased anesthetic success. A second intraosseous injection, when necessary, further improved success.
Transient Response in a Dendritic Neuron Model for Current Injected at One Branch
Rinzel, John; Rall, Wilfrid
1974-01-01
Mathematical expressions are obtained for the response function corresponding to an instantaneous pulse of current injected to a single dendritic branch in a branched dendritic neuron model. The theoretical model assumes passive membrane properties and the equivalent cylinder constraint on branch diameters. The response function when used in a convolution formula enables one to compute the voltage transient at any specified point in the dendritic tree for an arbitrary current injection at a given input location. A particular numerical example, for a brief current injection at a branch terminal, illustrates the attenuation and delay characteristics of the depolarization peak as it spreads throughout the neuron model. In contrast to the severe attenuation of voltage transients from branch input sites to the soma, the fraction of total input charge actually delivered to the soma and other trees is calculated to be about one-half. This fraction is independent of the input time course. Other numerical examples, which compare a branch terminal input site with a soma input site, demonstrate that, for a given transient current injection, the peak depolarization is not proportional to the input resistance at the injection site and, for a given synaptic conductance transient, the effective synaptic driving potential can be significantly reduced, resulting in less synaptic current flow and charge, for a branch input site. Also, for the synaptic case, the two inputs are compared on the basis of the excitatory post-synaptic potential (EPSP) seen at the soma and the total charge delivered to the soma. PMID:4424185
Peripheral Inflammation Undermines the Plasticity of the Isolated Spinal Cord
Huie, John R.; Grau, James W.
2009-01-01
Peripheral capsaicin treatment induces molecular changes that sensitize the responses of nociceptive neurons in the spinal dorsal horn. The current studies demonstrate that capsaicin also undermines the adaptive plasticity of the spinal cord, rendering the system incapable of learning a simple instrumental task. In these studies, male rats are transected at the second thoracic vertebra and are tested 24 to 48 hours later. During testing, subjects receive shock to one hindleg when it is extended (controllable stimulation). Rats quickly learn to maintain the leg in a flexed position. Rats that have been injected with capsaicin (1% or 3%) in the hindpaw fail to learn, even when tested on the leg contralateral to the injection. This learning deficit lasts at least 24 hours. Interestingly, training with controllable electrical stimulation prior to capsaicin administration protects the spinal cord against the maladaptive effects. Rats pretrained with controllable stimulation do not display a learning deficit or tactile allodynia. Moreover, controllable stimulation, combined with naltrexone, reverses the capsaicin-induced deficit. These data suggest that peripheral inflammation, accompanying spinal cord injuries, might have an adverse effect on recovery. PMID:18298266
Physical characterization and modeling of chitosan/peg blends for injectable scaffolds.
Lima, Daniel B; Almeida, Renata D; Pasquali, Matheus; Borges, Sílvia P; Fook, Marcus L; Lisboa, Hugo M
2018-06-01
Injectable scaffolds find many applications on the biomedical field due to several advantages on preformed scaffolds such as being able to fill any defect can be used in minimal invasion surgeries and are ready to use products. The most critical parameter for an injectable scaffold usage is its injectability, which can be related with rheological properties. Therefore, the objective of the present work was to increase knowledge about the critical parameters influencing injectability of biopolymers used for injectable scaffolds. Rheological and mechanical properties of a biopolymer blend in combination with injectability tests for a given design space controlled by the concentrations of both polymers and temperatures was made. Then those results were modeled to better understand the impact of parameters on injectability. The biopolymer blend chosen was Chitosan physically blended with Poly(ethylene glycol) where variations of both polymer concentrations and molecular weights were tested. Rheological and mechanical properties of all samples were determined, together with the injection force using a compression test at different injection conditions. All solutions were clear and transparent suggesting perfect miscibility. Rheological results were modeled using Ostwald-Waelle law and revealed a shear thinning pseudo-plastic solution at any composition and temperature, being chitosan concentration the most influencing variable. Compression tests results revealed mean injection forces ranging from 9.9 ± 0.06N to 29.9 ± 0.65N and it was possible to accurately estimate those results. Simulations revealed draw speed as the most influencing parameter. Cell viability tests revealed a non-cytotoxic biopolymer blend. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reducing HIV infection among new injecting drug users in the China-Vietnam Cross Border Project.
Des Jarlais, Don C; Kling, Ryan; Hammett, Theodore M; Ngu, Doan; Liu, Wei; Chen, Yi; Binh, Kieu Thanh; Friedmann, Patricia
2007-12-01
To assess an HIV prevention programme for injecting drug users (IDU) in the crossborder area between China and Vietnam. Serial cross-sectional surveys (0, 6, 12, 18, 24 and 36 months) of community-recruited current IDU. The project included peer educator outreach and the large-scale distribution of sterile injection equipment. Serial cross-sectional surveys with HIV testing of community recruited IDU were conducted at baseline (before implementation) and 6, 12, 18, 24 and 36 months post-baseline. HIV prevalence and estimated HIV incidence among new injectors (individuals injecting drugs for < 3 years) in each survey wave were the primary outcome measures. The percentages of new injectors among all subjects declined across each survey waves in both Ning Ming and Lang Son. HIV prevalence and estimated incidence fell by approximately half at the 24-month survey and by approximately three quarters at the 36-month survey in both areas (all P < 0.01). The implementation of large-scale outreach and syringe access programmes was followed by substantial reductions in HIV infection among new injectors, with no evidence of any increase in individuals beginning to inject drugs. This project may serve as a model for large-scale HIV prevention programming for IDU in China, Vietnam, and other developing/transitional countries.
Fitzpatrick, D.J.
1986-01-01
An investigation was made of the suitability of a saline, artesian limestone aquifer for the injection, storage, and recovery of freshwater from the Caloosahatchee River. The tests were conducted on a well tapping a leaky artesian system that has a transmissivity of 800 square feet per day, a storage of 1 x 10-4, and a leakance of 0.01 per day. The specific capacity of the injection well was increased through acidizing and was decreased as a result of well clogging during injection. Three injection tests were made wherein the amounts of freshwater injected, the storage duration, and the quality of water injected varied. Analysis of the test data showed that freshwater recoverability ranged from 9.7 to 38.7 percent of the total injected. Differences were attributed principally to differences in the quality of water injected and storage duration. Repeated injection-recovery cycles probably would result in greater recoverability. Head buildup, nearly 200 feet in one test, was a prime problem related chiefly to clogging from suspended material in the injected water and to bacterial growth at the wellbore-limestone interface. Regular backflushing was required. Total head buildup decreased as a result of acidizing the injection well. No coliforms or fecal streptococcus were noted in the recovered water. Growth of anaerobic bacteria occurred. Changes in the quality of the recovered water included decreases in concentration of dissolved organic carbon by as much as 15 mg/L (milligrams per liter), organic nitrogen by as much as 0.80 mg/L, and nitrate by as much as 0.50 mg/L. Increases were noted in ammonia by 0.40 mg/L, and iron by as much as 0.60 mg/L. These changes are consistent with the presence of an anaerobic bacterial ecosystem.
Deflectometric analysis of high volume injection molds for production of occupational eye wear.
Speck, Alexis; Zelzer, Benedikt; Speich, Marco; Börret, Rainer; Langenbucher, Achim; Eppig, Timo
2013-12-01
Most of the protective eye wear devices currently on the market are manufactured on simple polycarbonate shields, produced by injection molding techniques. Despite high importance of optical quality, injection molds are rarely inspected for surface quality before or during the manufacturing process. Quality degradation is mainly monitored by optical testing of the molded parts. The purpose of this work was to validate a non-contact deflectometric measurement technique for surface and shape analysis of injection molds to facilitate deterministic surface quality control and to monitor minor conformity of the injection mold with the design data. The system is based on phase-measuring deflectometry with a operating measurement field of 80×80 mm(2) (±18° slope), a lateral resolution of 60μm and a local sensitivity of some nanometers. The calibration was tested with a calibration normal and a reference sphere. The results were crosschecked against a measurement of the same object with a tactile coordinate measuring machine. Eight injection molds for production of safety goggles with radii of +58mm (convex) and -60mm (concave) were measured in this study. The molds were separated into two groups (cavity 1 and 2 of the tool with different polishing techniques) and measured to test whether the measurement tool could extract differences. The analysis was performed on difference height between the measured surface and the spherical model. The device could derive the surface change due to polishing and discriminate between both polishing techniques, on the basis of the measured data. The concave nozzle sides of the first group (cavity 1) showed good shape conformity. In comparison, the nozzle sides of the second group (cavity 2) showed local deviations from design data up to 14.4μm. Local form variations of about 5μm occurred in the field of view. All convex ejector sides of both groups (cavity 1 and 2) showed rotational symmetric errors and the molds were measured in general flatter than design data. We applied a deflectometric system for measuring and evaluating specular reflective injection molding tools to optimize the production process of occupational eye wear. The surface quality could be inline monitored in the production processes for actual spectacle models. Copyright © 2013. Published by Elsevier GmbH.
Barbash, I M; Cecchini, S; Faranesh, A Z; Virag, T; Li, L; Yang, Y; Hoyt, R F; Kornegay, J N; Bogan, J R; Garcia, L; Lederman, R J; Kotin, R M
2013-03-01
Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were administered with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with magnetic resonance imaging (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a 3-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.
A review of Curtiss-Wright rotary engine developments with respect to general aviation potential
NASA Technical Reports Server (NTRS)
Jones, C.
1979-01-01
Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.
Performance evaluation of the Russian SPT-100 thruster at NASA LeRC
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Hamley, John A.; Haag, Thomas W.
1994-01-01
Performance measurements of a Russian flight-model SPT-100 thruster were obtained as part of a comprehensive program to evaluate engineering issues pertinent to integration with Western spacecraft. Power processing was provided by a US Government developed laboratory power conditioner. When received the thruster had been subjected to only a few hours of acceptance testing by the manufacturer. Accumulated operating time during this study totalled 148 h and included operation of both cathodes. Cathode flow fraction was controlled both manually and using the flow splitter contained within the supplied xenon flow controller. Data were obtained at current levels ranging from 3 A to 5 A and thruster voltages ranging from 200 V to 300 V. Testing centered on the design power of 1.35 kW with a discharge current of 4.5 A. The effects of facility pressure on thruster operation were examined by varying the pressure via injection of xenon into the vacuum chamber. The facility pressure had a significant effect on thruster performance and stability at the conditions tested. Periods of current instabilities were noted throughout the testing period and became more frequent as testing progressed. Performance during periods of stability agreed with previous data obtained in Russian laboratories.
Application of separate pressure test in oilfield development
NASA Astrophysics Data System (ADS)
Jingjun, Guo
2018-06-01
Based on the analysis of separate pressure testing data of injection wells and the actual situations of oilfield development, this paper discusses several application examples of these testing data in evaluating the effect of reservoir development, optimizating injection wells scheme adjustment, guiding oil and water wells to increase production and injection and preventing casing damage.
Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source
NASA Astrophysics Data System (ADS)
Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.
2009-06-01
By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
NASA Astrophysics Data System (ADS)
Okada, Aoi; Nishio, Johji; Iijima, Ryosuke; Ota, Chiharu; Goryu, Akihiro; Miyazato, Masaki; Ryo, Mina; Shinohe, Takashi; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Okumura, Hajime
2018-06-01
To investigate the mechanism of contraction/expansion behavior of Shockley stacking faults (SSFs) in 4H-SiC p–i–n diodes, the dependences of the SSF behavior on temperature and injection current density were investigated by electroluminescence image observation. We investigated the dependences of both triangle- and bar-shaped SSFs on the injection current density at four temperature levels. All SSFs in this study show similar temperature and injection current density dependences. We found that the expansion of SSFs at a high current density was converted to contraction at a certain value as the current decreased and that the value is temperature-dependent. It has been confirmed that SSF behavior, which was considered complex or peculiar, might be explained mainly by the energy change caused by SSFs.
Oh, Wan-Suk; Jeong, Pan-Young; Joo, Hyoe-Jin; Lee, Jeong-Eui; Moon, Yil-Seong; Cheon, Hyang-Mi; Kim, Jung-Ho; Lee, Yong-Uk; Shim, Yhong-Hee; Paik, Young-Ki
2009-11-11
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a mycophagous and phytophagous pathogen responsible for the current widespread epidemic of the pine wilt disease, which has become a major threat to pine forests throughout the world. Despite the availability of several preventive trunk-injection agents, no therapeutic trunk-injection agent for eradication of PWN currently exists. In the characterization of basic physiological properties of B. xylophilus YB-1 isolates, we established a high-throughput screening (HTS) method that identifies potential hits within approximately 7 h. Using this HTS method, we screened 206 compounds with known activities, mostly antifungal, for antinematodal activities and identified HWY-4213 (1-n-undecyl-2-[2-fluorphenyl] methyl-3,4-dihydro-6,7-dimethoxy-isoquinolinium chloride), a highly water-soluble protoberberine derivative, as a potent nematicidal and antifungal agent. When tested on 4 year-old pinewood seedlings that were infected with YB-1 isolates, HWY-4213 exhibited a potent therapeutic nematicidal activity. Further tests of screening 39 Caenorhabditis elegans mutants deficient in channel proteins and B. xylophilus sensitivity to Ca(2+) channel blockers suggested that HWY-4213 targets the calcium channel proteins. Our study marks a technical breakthrough by developing a novel HTS method that leads to the discovery HWY-4213 as a dual-acting antinematodal and antifungal compound.
Psichogiou, Mina; Paraskevis, Dimitrios; Nikolopoulos, Georgios; Tsiara, Chrissa; Paraskeva, Dimitra; Micha, Katerina; Malliori, Meni; Pharris, Anastasia; Wiessing, Lucas; Donoghoe, Martin; Friedman, Samuel; Jarlais, Don Des; Daikos, Georgios; Hatzakis, Angelos
2017-01-01
Abstract Background. A “seek-test-treat” intervention (ARISTOTLE) was implemented in response to an outbreak of human immunodeficiency virus (HIV) infection among persons who inject drugs (PWID) in Athens. We assess trends in HIV incidence, prevalence, risk behaviors and access to prevention/treatment. Methods. Methods included behavioral data collection, provision of injection equipment, HIV testing, linkage to opioid substitution treatment (OST) programs and HIV care during 5 rounds of respondent-driven sampling (2012–2013). HIV incidence was estimated from observed seroconversions. Results. Estimated coverage of the target population was 88% (71%–100%; 7113 questionnaires/blood samples from 3320 PWID). The prevalence of HIV infection was 16.5%. The incidence per 100 person-years decreased from 7.8 (95% confidence interval, 4.6–13.1) (2012) to 1.7 (0.55–5.31) (2013; P for trend = .001). Risk factors for seroconversion were frequency of injection, homelessness, and history of imprisonment. Injection at least once daily declined from 45.2% to 18.8% (P < .001) and from 36.8% to 26.0% (P = .007) for sharing syringes, and the proportion of undiagnosed HIV infection declined from 84.3% to 15.0% (P < .001). Current OST increased from 12.2% to 27.7% (P < .001), and 48.4% of unlinked seropositive participants were linked to HIV care through 2013. Repeat participants reported higher rates of adequate syringe coverage, linkage to HIV care and OST. Conclusions. Multiple evidence-based interventions delivered through rapid recruitment in a large proportion of the population of PWID are likely to have helped mitigate this HIV outbreak. PMID:28407106
The document provides describes the current Class I UIC program, the history of Class I injection, and studies of human health risks associated with Class I injection wells, which were conducted for past regulatory efforts and policy documentation.
Diaz Weinstein, Samantha; Villafane, Joseph J; Juliano, Nicole; Bowman, Rachel E
2013-09-05
The endocrine disruptor Bisphenol-A (BPA) has been shown to modulate estrogenic, androgenic, and anti-androgenic effects. The effects of BPA exposure during early organizational periods of development have been well documented. The current study focuses on the effects of short term, low-dose BPA exposure on anxiety, spatial memory and sucrose preference in adolescent rats. Seven week old Sprague Dawley rats (n=18 male, n=18 female) received daily subcutaneous injections (40 µg/kg body weight) of BPA or vehicle for 12 days. Starting on day 6 of injections, subjects were tested on the elevated plus maze which provides a measure of anxiety, the open field test which provides a measure of anxiety and locomotor activity, and object placement, a measure of spatial memory. On the twelfth day of BPA administration, sucrose preference was tested using a standard two-bottle choice (tap versus sucrose solution). All rats gained weight during the study; there was a main effect of sex, but not BPA treatment on body weight. The results indicate that BPA exposure, regardless of sex, increased anxiety on both the elevated plus maze and open field. Spatial memory was impaired on the object recognition task with BPA animals spending significant less time with the object in the novel location than controls. Finally, a significant increase in sucrose consumption for both male and female subjects exposed to BPA was observed. The current data shows that short term BPA exposure, below the current reference safe daily limit of 50 µg/kg day set by the United States Environmental Protection Agency, during adolescent development increases anxiety, impairs spatial memory, and increases sucrose consumption independent of sex. Copyright © 2013 Elsevier B.V. All rights reserved.
Impact of cold temperature on Euro 6 passenger car emissions.
Suarez-Bertoa, Ricardo; Astorga, Covadonga
2018-03-01
Hydrocarbons, CO, NOx, NH 3 , N 2 O, CO 2 and particulate matter emissions affect air quality, global warming and human health. Transport sector is an important source of these pollutants and high pollution episodes are often experienced during the cold season. However, EU vehicle emissions regulation at cold ambient temperature only addresses hydrocarbons and CO vehicular emissions. For that reason, we have studied the impact that cold ambient temperatures have on Euro 6 diesel and spark ignition (including: gasoline, ethanol flex-fuel and hybrid vehicles) vehicle emissions using the World-harmonized Light-duty Test Cycle (WLTC) at -7 °C and 23 °C. Results indicate that when facing the WLTC at 23 °C the tested vehicles present emissions below the values set for type approval of Euro 6 vehicles (still using NEDC), with the exception of NOx emissions from diesel vehicles that were 2.3-6 times higher than Euro 6 standards. However, emissions disproportionally increased when vehicles were tested at cold ambient temperature (-7 °C). High solid particle number (SPN) emissions (>1 × 10 11 # km -1 ) were measured from gasoline direct injection (GDI) vehicles and gasoline port fuel injection vehicles. However, only diesel and GDI SPN emissions are currently regulated. Results show the need for a new, technology independent, procedure that enables the authorities to assess pollutant emissions from vehicles at cold ambient temperatures. Harmful pollutant emissions from spark ignition and diesel vehicles are strongly and negatively affected by cold ambient temperatures. Only hydrocarbon, CO emissions are currently regulated at cold temperature. Therefore, it is of great importance to revise current EU winter vehicle emissions regulation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Intrinsic superspin Hall current
NASA Astrophysics Data System (ADS)
Linder, Jacob; Amundsen, Morten; Risinggârd, Vetle
2017-09-01
We discover an intrinsic superspin Hall current: an injected charge supercurrent in a Josephson junction containing heavy normal metals and a ferromagnet generates a transverse spin supercurrent. There is no accompanying dissipation of energy, in contrast to the conventional spin Hall effect. The physical origin of the effect is an antisymmetric spin density induced among transverse modes ky near the interface of the superconductor arising due to the coexistence of p -wave and conventional s -wave superconducting correlations with a belonging phase mismatch. Our predictions can be tested in hybrid structures including thin heavy metal layers combined with strong ferromagnets and ordinary s -wave superconductors.
Performance and Reliability of Quantum Cascade Lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Cannon, Bret D.; Taubman, Matthew S.
2013-05-01
We present the burn-in behavior and power stability of multiple quantum cascade lasers (QCLs) that were measured to investigate their long-term performance. For these experiments, the current to the QCL was cycled every ten minutes, and the output power was monitored over time for durations as long as two months. A small increase in power for a given injection current is observed for almost all of the QCLs tested during the burn-in period. The data from these experiments will be presented along with the effects of packaging the QCLs to determine the impact on performance and reliability.
Non-solenoidal Startup with High-Field-Side Local Helicity Injection on the Pegasus ST
NASA Astrophysics Data System (ADS)
Perry, J. M.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.
2017-10-01
Local Helicity Injection (LHI) is a non-solenoidal startup technique utilizing electron current injectors at the plasma edge to initiate a tokamak-like plasma at high Ip . Recent experiments on Pegasus explore the inherent tradeoffs between high-field-side (HFS) injection in the lower divertor region and low-field-side (LFS) injection at the outboard midplane. Trade-offs include the relative current drive contributions of HI and poloidal induction, and the magnetic geometry required for relaxation to a tokamak-like state. HFS injection using a set of two increased-area injectors (Ainj = 4 cm2, Vinj 1.5 kV, and Iinj 8 kA) in the lower divertor is demonstrated over the full range of toroidal field available on Pegasus (BT 0 <= 0.15 T). Increased PMI on both the injectors and the lower divertor plates was observed during HFS injection, and was substantively mitigated through optimization of injector geometry and placement of local limiters to reduce scrape-off density in the divertor region. Ip up to 200 kA is achieved with LHI as the dominant current drive, consistent with expectations from helicity balance. To date, experiments support Ip increasing linearly with helicity injection rate. The high normalized current (IN >= 10) attainable with LHI and the favorable stability of the ultra-low aspect ratio, low-li LHI-driven plasmas allow access to high βt-up to 100 % , as indicated by kinetically-constrained equilibrium reconstructions. Work supported by US DOE Grant DE-FG02-96ER54375.
The Helicity Injected Torus (HIT) Program
NASA Astrophysics Data System (ADS)
Jarboe, T. R.; Gu, P.; Hamp, W.; Izzo, V.; Jewell, P.; Liptac, J.; McCollam, K. J.; Nelson, B. A.; Raman, R.; Redd, A. J.; Shumlak, U.; Sieck, P. E.; Smith, R. J.; Jain, K. K.; Nagata, M.; Uyama, T.
2000-10-01
The purpose of the Helicity Injected Torus (HIT) program is to develop current drive techniques for low-aspect-ratio toroidal plasmas. The present HIT-II spherical tokamak experiment is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. The HIT-II device itself is modestly sized (major radius R = 0.3 m, minor radius a = 0.2 m, with an on-axis magnetic field of up to Bo = 0.5 T), but has demonstrated toroidal plasma currents of up to 200 kA, using either CHI or transformer drive. An overview of ongoing research on HIT-II plasmas, including recent results, will be presented. An electron-locking model has been developed for helicity injection current drive; a description of this model will be presented, as well as comparisons to experimental results from the HIT and HIT-II devices. Empirical results from both the HIT program and past spheromak research, buttressed by theoretical developments, have led to the design of the upcoming HIT-SI (Helicity Injected Torus with Steady Inductive helicity injection) device (T.R. Jarboe, Fusion Technology 36, p. 85, 1999). HIT-SI will be able to form a high-beta spheromak, a low aspect ratio RFP or a spherical tokamak using constant inductive helicity injection. The HIT-SI design and construction progress will be presented.
NASA Astrophysics Data System (ADS)
Fruge, Keith J.
1991-09-01
An investigation was conducted to determine the feasibility of a low cost, caseless, solid fuel integral rocket ramjet (IRSFRJ) that has no ejecta. Analytical design of a ramjet powered air-to-ground missile capable of being fired from a remotely piloted vehicle or helicopter was accomplished using current JANNAF and Air Force computer codes. The results showed that an IRSFRJ powered missile can exceed the velocity and range of current systems by more than a two to one ratio, without an increase in missile length and weight. A caseless IRSFRJ with a nonejecting port cover was designed and tested. The experimental results of the static tests showed that a low cost, caseless IRSFRJ with a nonejectable port cover is a viable design. Rocket ramjet transition was demonstrated and ramjet ignition was found to be insensitive to the booster tail off to air injection timing sequence.
The IsoDAR high intensity H2+ transport and injection tests
NASA Astrophysics Data System (ADS)
Alonso, J.; Axani, S.; Calabretta, L.; Campo, D.; Celona, L.; Conrad, J. M.; Day, A.; Castro, G.; Labrecque, F.; Winklehner, D.
2015-10-01
This technical report reviews the tests performed at the Best Cyclotron Systems, Inc. facility in regards to developing a cost effective ion source, beam line transport system, and acceleration system capable of high H2+ current output for the IsoDAR (Isotope Decay At Rest) experiment. We begin by outlining the requirements for the IsoDAR experiment then provide overviews of the Versatile Ion Source (VIS), Low Energy Beam Transport (LEBT) system, spiral inflector, and cyclotron. The experimental measurements are then discussed and the results are compared with a thorough set of simulation studies. Of particular importance we note that the VIS proved to be a reliable ion source capable of generating a large amount of H2+ current. The results suggest that with further upgrades, the VIS could potentially be a suitable candidate for IsoDAR. The conclusion outlines the key results from our tests and introduces the forthcoming work this technical report has motivated.
Spelman, T; Morris, M D; Zang, G; Rice, T; Page, K; Maher, L; Lloyd, A; Grebely, J; Dore, G J; Kim, A Y; Shoukry, N H; Hellard, M; Bruneau, J
2015-08-01
Hepatitis C virus (HCV) testing and counselling have the potential to impact individual behaviour and transmission dynamics at the population level. Evidence of the impact of an HCV-positive status notification on injection risk reduction is limited. The objective of our study was to (1) assess drug and alcohol use and injection risk behaviours following notification; (2) to compare behaviour change in people who inject drugs (PWID) who received a positive test result and those who remained negative; and (3) to assess the effect of age on risk behaviour. Data from the International Collaboration of Incident HIV and HCV Infection in Injecting Cohorts (InC3 Study) were analysed. Participants who were initially HCV seronegative were followed prospectively with periodic HCV blood testing and post-test disclosure and interview-administered questionnaires assessing drug use and injection behaviours. Multivariable generalised estimating equations were used to assess behavioural changes over time. Notification of an HCV-positive test was independently associated with a small increase in alcohol use relative to notification of a negative test. No significant differences in postnotification injection drug use, receptive sharing of ancillary injecting equipment and syringe borrowing postnotification were observed between diagnosis groups. Younger PWID receiving a positive HCV test notification demonstrated a significant increase in subsequent alcohol use compared with younger HCV negative. The proportion of PWID reporting alcohol use increased among those receiving an HCV-positive notification, increased the frequency of alcohol use postnotification, while no reduction in injection drug use behaviours was observed between notification groups. These findings underscore the need to develop novel communication strategies during post-test notification to improve their impact on subsequent alcohol use and risk behaviours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C
2014-04-07
A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Electrical filtering in gerbil isolated type I semicircular canal hair cells
NASA Technical Reports Server (NTRS)
Rennie, K. J.; Ricci, A. J.; Correia, M. J.
1996-01-01
1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.
ISTAR: Project Status and Ground Test Engine Design
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2003-01-01
Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.
GaN-based superluminescent diodes with long lifetime
NASA Astrophysics Data System (ADS)
Castiglia, A.; Rossetti, M.; Matuschek, N.; Rezzonico, R.; Duelk, M.; Vélez, C.; Carlin, J.-F.; Grandjean, N.
2016-02-01
We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.
Performance of a low-power subsonic-arc-attachment arcjet thruster
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Berns, Darren H.
1993-01-01
A subsonic-arc-attachment thruster design was scaled from a 30 kW 1960's vintage thruster to operate at nominally 3 kW. Performance measurements were obtained over a 1-4 kW power range using hydrogen as the propellant. Several modes of operation were identified and were characterized by varying degrees of voltage instability. A stability map was developed showing that the voltage oscillations were brought upon by elevated current or propellant levels. At a given specific energy level the specific impulse increased asymptotically with increased flow rates. Comparisons of performance were made between radial and tangential propellant injection. When the vortex flow was eliminated using radial injection, the operating voltages were lower at a given current, and the specific impulse and efficiency decreased. Tests were also conducted to determine the effects of background pressure on operation, and performance data were obtained at pressures of 0.047 Pa and 18 Pa. For a given specific energy level, the performance increased with a decrease in facility background pressure. Lowering the background pressure also caused a dramatic change in the voltage-current characteristic and the voltage stability, a phenomenon not previously reported with conventional supersonic-arc-attachment thrusters.
Using well casing as an electrical source to monitor hydraulic fracture fluid injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilt, Michael; Nieuwenhuis, Greg; MacLennan, Kris
2016-03-09
The depth to surface resistivity (DSR) method transmits current from a source located in a cased or openhole well to a distant surface return electrode while electric field measurements are made at the surface over the target of interest. This paper presents both numerical modelling results and measured data from a hydraulic fracturing field test where conductive water was injected into a resistive shale reservoir during a hydraulic fracturing operation. Modelling experiments show that anomalies due to hydraulic fracturing are small but measureable with highly sensitive sensor technology. The field measurements confirm the model results,showing that measured differences in themore » surface fields due to hydraulic fracturing have been detected above the noise floor. Our results show that the DSR method is sensitive to the injection of frac fluids; they are detectable above the noise floor in a commercially active hydraulic fracturing operation, and therefore this method can be used for monitoring fracture fluid movement.« less
Li, S. Kevin; Lizak, Martin J.; Jeong, Eun-Kee
2008-01-01
Conventional pharmacokinetic methods for studying ocular drug delivery are invasive and cannot be conveniently applied to humans. The advancement of MRI technology has provided new opportunities in ocular drug-delivery research. MRI provides a means to non-invasively and continuously monitor ocular drug-delivery systems with a contrast agent or compound labeled with a contrast agent. It is a useful technique in pharmacokinetic studies, evaluation of drug-delivery methods, and drug-delivery device testing. Although the current status of the technology presents some major challenges to pharmaceutical research using MRI, it has a lot of potential. In the past decade, MRI has been used to examine ocular drug delivery via the subconjunctival route, intravitreal injection, intrascleral injection to the suprachoroidal space, episcleral and intravitreal implants, periocular injections, and ocular iontophoresis. In this review, the advantages and limitations of MRI in the study of ocular drug delivery are discussed. Different MR contrast agents and MRI techniques for ocular drug-delivery research are compared. Ocular drug-delivery studies using MRI are reviewed. PMID:18186077
Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, James; Li, Lei; Yu, Yang
The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminatedmore » owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.« less
Nusstein, J; Reader, A; Nist, R; Beck, M; Meyers, W J
1998-07-01
The purpose of this study was to determine the anesthetic efficacy of a supplemental intraosseous injection of 2% lidocaine with 1:100,000 epinephrine in teeth diagnosed with irreversible pulpitis. Fifty-one patients with symptomatic, vital maxillary, and mandibular posterior teeth diagnosed with irreversible pulpitis received conventional infiltrations or inferior alveolar nerve blocks. Pulp testing was used to determine pulpal anesthesia after "clinically successful" injections. Patients who were positive to the pulp tests, or were negative to the pulp tests but felt pain during endodontic access, received an intraosseous injection using 1.8 ml of 2% lidocaine with 1:100,000 epinephrine. The results demonstrated that 42% of the patients who tested negative to the pulp tests reported pain during treatment and required supplemental anesthesia. Eighty-one percent of the mandibular teeth and 12% of maxillary teeth required an intraosseous injection due to failure to gain pulpal anesthesia. Overall, the Stabident intraosseous injection was found to be 88% successful in gaining total pulpal anesthesia for endodontic therapy. We concluded that, for posterior teeth diagnosed with irreversible pulpitis, the supplemental intraosseous injection of 2% lidocaine (1:100,000 epinephrine) was successful when conventional techniques failed.
Policing, massive street drug testing and poly-substance use chaos in Georgia - a policy case study.
Otiashvili, David; Tabatadze, Mzia; Balanchivadze, Nino; Kirtadze, Irma
2016-01-16
Since early 2000, intensive policing, wide scale street drug testing, and actions aimed at limiting the availability of specific drugs have been implemented in Georgia. Supporters of this approach argue that fear of drug testing and resulting punishment compels drug users to stop using and prevents youth from initiating drug use. It has been also stated that reduction in the availability of specific drugs should be seen as an indication of the overall success of counter-drug efforts. The aim of the current review is to describe the drug-related law enforcement response in Georgia and its impact on illicit drug consumption and drug-related harm. We reviewed relevant literature that included peer-reviewed scientific articles, stand-alone research reports, annual drug situation reports, technical reports and program data. This was also supplemented by the review of relevant legislation and judicial practices for the twelve year period between 2002 and 2014. Every episode of reduced availability of any "traditional" injection drug was followed by the discovery/introduction of a new injection preparation. The pattern of drug consumption was normally driven by users' attempts to substitute their drug of choice through mixing together available alternative substances. Chaotic poly-substance use and extensive utilization of home-made injection drugs, prepared from toxic precursors, became common. Massive random street drug testing had little or no effect on the prevalence of problem drug use. Intensive harassment of drug users and exclusive focus on reducing the availability of specific drugs did not result in reduction of the prevalence of injecting drug use. Repressive response of Georgian anti-drug authorities relied heavily on consumer sanctions, which led to shifts in drug users' behavior. In most cases, these shifts were associated with the introduction and use of new toxic preparations and subsequent harm to the physical and mental health of drug consumers.
Araújo, J P; Silva, L; Andrade, R; Paços, M; Moreira, H; Migueis, N; Pereira, R; Sarmento, A; Pereira, H; Loureiro, N; Espregueira-Mendes, J
2016-01-01
The scientific literature has shown positive results regarding intra-articular injections of hyaluronic acid in osteoarthritic joints. When injecting in the hip joint, the guidance of ultrasound can provide higher injection accuracy and repeatability. However, due to the methodological limitations in the current available literature, its recommendation in the current practice is still controversial. This study shows that ultrasound-guided intra-articular injections of triamcinolone hexacetonide and hyaluronic acid can improve pain, function and quality of life in patients with symptomatic and radiographic hip osteoarthritis. In addition, the administration of triamcinolone hexacetonide and hyaluronic acid to the hip joint in these patients can delay the need for interventional surgery.
Development of multi-ampered D{sup {minus}} source for fusion applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacquot, C.; Belchenko, Y.; Bucalossi, J.
1996-07-01
Large current and high current density deuterium negative ion sources are investigated on the MANTIS test bed with the objective of producing several amperes of D{sup {minus}} beams, at an accelerated current density in the range 10{endash}20 mA/cm{sup 2}, for possible application in future neutral beam injectors, e.g. ITER. As a first step, the DRAGON source, which was built by Culham Laboratory was tested on the MANTIS test bed in order to test this large source using only {open_quote}{open_quote}pure volume{close_quote}{close_quote} production of negative ions. The accelerated negative ion current is found to be a strong function of the source operatingmore » pressure and the arc power, and a significant isotopic effect is observed. The maximum accelerated currents are 1.3 A of H{sup {minus}} (3.3 mA/cm{sup 2}) and 0.5 A (1.3 mA/cm{sup 2}) at 110 kW of arc power. Cesium injection from a non conventional dispenser together with an improved extraction system, have significantly improved the D-current. A maximum of 14 mA/cm{sup 2} of D{sup {minus}1} are accelerated at 30 kV, which corresponds potentially, to more than 5 A for a full aperture extraction with an arc power of 140 kW (2250 A of arc current). {copyright} {ital 1996 American Institute of Physics.}« less
The PHA Test Reflects Acquired T-Cell Mediated Immunocompetence in Birds
Tella, José L.; Lemus, Jesús A.; Carrete, Martina; Blanco, Guillermo
2008-01-01
Background cological immunology requires techniques to reliably measure immunocompetence in wild vertebrates. The PHA-skin test, involving subcutaneous injection of a mitogen (phytohemagglutinin, PHA) and measurement of subsequent swelling as a surrogate of T-cell mediated immunocompetence, has been the test of choice due to its practicality and ease of use in the field. However, mechanisms involved in local immunological and inflammatory processes provoked by PHA are poorly known, and its use and interpretation as an acquired immune response is currently debated. Methodology Here, we present experimental work using a variety of parrot species, to ascertain whether PHA exposure produces larger secondary than primary responses as expected if the test reflects acquired immunocompetence. Moreover, we simultaneously quantified T-lymphocyte subsets (CD4+, CD5+ and CD8+) and plasma proteins circulating in the bloodstream, potentially involved in the immunological and inflammatory processes, through flow cytometry and electrophoresis. Principal Findings Our results showed stronger responses after a second PHA injection, independent of species, time elapsed and changes in body mass of birds between first and second injections, thus supporting the adaptive nature of this immune response. Furthermore, the concomitant changes in the plasma concentrations of T-lymphocyte subsets and globulins indicate a causal link between the activation of the T-cell mediated immune system and local tissue swelling. Conclusions/Significance These findings justify the widespread use of the PHA-skin test as a reliable evaluator of acquired T-cell mediated immunocompetence in diverse biological disciplines. Further experimental research should be aimed at evaluating the relative role of innate immunocompetence in wild conditions, where the access to dietary proteins varies more than in captivity, and to ascertain how PHA responses relate to particular host-parasite interactions. PMID:18820730
van der Burg, Thomas
2011-01-01
Background Injection force is a particularly important practical aspect of therapy for patients with diabetes, especially those who have dexterity problems. This laboratory-based study compared the injection force of the SoloSTAR® insulin pen (SoloSTAR; sanofi-aventis) versus other available disposable pens at injection speeds based on the delivered volume of insulin released at the needle. Method Four different prefilled disposable pens were tested: SoloSTAR containing insulin glargine; FlexPen® and the Next Generation FlexPen® (NGFP) (Novo Nordisk), both containing insulin detemir; and KwikPen® containing insulin lispro (Eli Lilly). All pens were investigated using the maximum dispense volume for each pen type [80 units (U) for SoloSTAR; 60 U for the other pens], from the free needle tip dispensing into a beaker. Twenty pens of each type were fitted with the recommended needles and tested at two dose speeds (6 and 10 U/s); each pen was tested twice. Results Mean plateau injection force and maximum injection force were consistently lower with SoloSTAR compared with FlexPen, NGFP, and KwikPen at both injection speeds tested. An injection speed of 10 U/s was associated with higher injection force compared with 6 U/s for all the pens tested (p < .001). Conclusions SoloSTAR stands out because of its low injection force, even when compared with newer insulin pen devices such as the KwikPen and NGFP. This may enable patients, especially those with dexterity problems, to administer insulin more easily and improve management of their diabetes. PMID:21303637
Experiment data report for Semiscale Mod-1 Test S-05-1 (alternate ECC injection test)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, E. M.; Patton, Jr., M. L.; Sackett, K. E.
Recorded test data are presented for Test S-05-1 of the Semiscale Mod-1 alternate ECC injection test series. These tests are among several Semiscale Mod-1 experiments conducted to investigate the thermal and hydraulic phenomena accompanying a hypothesized loss-of-coolant accident in a pressurized water reactor (PWR) system. Test S-05-1 was conducted from initial conditions of 2263 psia and 544/sup 0/F to investigate the response of the Semiscale Mod-1 system to a depressurization and reflood transient following a simulated double-ended offset shear of the cold leg broken loop piping. During the test, cooling water was injected into the vessel lower plenum to simulatemore » emergency core coolant injection in a PWR, with the flow rate based on system volume scaling.« less
Alagandula, Ravali; Zhou, Xiang; Guo, Baochuan
2017-01-15
Liquid chromatography/tandem mass spectrometry (LC/MS/MS) is the gold standard of urine drug testing. However, current LC-based methods are time consuming, limiting the throughput of MS-based testing and increasing the cost. This is particularly problematic for quantification of drugs such as phenobarbital, which is often analyzed in a separate run because they must be negatively ionized. This study examined the feasibility of using a dilute-and-shoot flow-injection method without LC separation to quantify drugs with phenobarbital as a model system. Briefly, a urine sample containing phenobarbital was first diluted by 10 times, followed by flow injection of the diluted sample to mass spectrometer. Quantification and detection of phenobarbital were achieved by an electrospray negative ionization MS/MS system operated in the multiple reaction monitoring (MRM) mode with the stable-isotope-labeled drug as internal standard. The dilute-and-shoot flow-injection method developed was linear with a dynamic range of 50-2000 ng/mL of phenobarbital and correlation coefficient > 0.9996. The coefficients of variation and relative errors for intra- and inter-assays at four quality control (QC) levels (50, 125, 445 and 1600 ng/mL) were 3.0% and 5.0%, respectively. The total run time to quantify one sample was 2 min, and the sensitivity and specificity of the method did not deteriorate even after 1200 consecutive injections. Our method can accurately and robustly quantify phenobarbital in urine without LC separation. Because of its 2 min run time, the method can process 720 samples per day. This feasibility study shows that the dilute-and-shoot flow-injection method can be a general way for fast analysis of drugs in urine. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Klein, J-P; Boudard, D; Cadusseau, J; Palle, S; Forest, V; Pourchez, J; Cottier, M
2013-06-01
The significant expansion in the use of nanoparticles and submicron particles during the last 20 years has led to increasing concern about their potential toxicity to humans and particularly their impact on male fertility. Currently, an insufficient number of studies have focused on the testicular biodistribution of particles. The aim of our study was to assess the distribution of 450 nm fluorescent particles in mouse testes after intramuscular injection. To this end, testes were removed from 5 groups of 3 mice each at 1 h (H1), 4 days (D4), 21 days (D21), 45 days (D45) and 90 days (D90) after the injection of 7.28 × 10⁹ particles in the tibialis anterior muscles of each mouse. We examined histological sections from these samples by epifluorescence microscopy and confocal microscopy and identified testicular biodistribution of a small number of particles in groups H1, D4, D21, D45 and D90. Using CD11b immunostaining, we showed that particles were not carried into the testis by macrophages. The intratesticular repartition of particles mainly followed testicular vascularization. Finally, we found some particles in seminiferous tubules but could not determine if the blood-testis barrier was crossed.
Klein, Jean-Philippe; Boudard, Delphine; Cadusseau, Josette; Palle, Sabine; Forest, Valérie; Pourchez, Jérémie; Cottier, Michèle
2013-01-01
The significant expansion in the use of nanoparticles and submicron particles during the last 20 years has led to increasing concern about their potential toxicity to humans and particularly their impact on male fertility. Currently, an insufficient number of studies have focused on the testicular biodistribution of particles. The aim of our study was to assess the distribution of 450 nm fluorescent particles in mouse testes after intramuscular injection. To this end, testes were removed from 5 groups of 3 mice each at 1 h (H1), 4 days (D4), 21 days (D21), 45 days (D45) and 90 days (D90) after the injection of 7.28 × 109 particles in the tibialis anterior muscles of each mouse. We examined histological sections from these samples by epifluorescence microscopy and confocal microscopy and identified testicular biodistribution of a small number of particles in groups H1, D4, D21, D45 and D90. Using CD11b immunostaining, we showed that particles were not carried into the testis by macrophages. The intratesticular repartition of particles mainly followed testicular vascularization. Finally, we found some particles in seminiferous tubules but could not determine if the blood–testis barrier was crossed. PMID:23329290
A Novel Method for Intraoral Access to the Superior Head of the Human Lateral Pterygoid Muscle
Oliveira, Aleli Tôrres; Camilo, Anderson Aparecido; Bahia, Paulo Roberto Valle; Carvalho, Antonio Carlos Pires; DosSantos, Marcos Fabio; da Silva, Jorge Vicente Lopes; Monteiro, André Antonio
2014-01-01
Background. The uncoordinated activity of the superior and inferior parts of the lateral pterygoid muscle (LPM) has been suggested to be one of the causes of temporomandibular joint (TMJ) disc displacement. A therapy for this muscle disorder is the injection of botulinum toxin (BTX), of the LPM. However, there is a potential risk of side effects with the injection guide methods currently available. In addition, they do not permit appropriate differentiation between the two bellies of the muscle. Herein, a novel method is presented to provide intraoral access to the superior head of the human LPM with maximal control and minimal hazards. Methods. Computational tomography along with digital imaging software programs and rapid prototyping techniques were used to create a rapid prototyped guide to orient BTX injections in the superior LPM. Results. The method proved to be feasible and reliable. Furthermore, when tested in one volunteer it allowed precise access to the upper head of LPM, without producing side effects. Conclusions. The prototyped guide presented in this paper is a novel tool that provides intraoral access to the superior head of the LPM. Further studies will be necessary to test the efficacy and validate this method in a larger cohort of subjects. PMID:24963484
Physics of Plasma Cathode Current Injection During LHI
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J.; Bongard, M.; Burke, M. G.; Fonck, R.; Perry, J.
2015-11-01
Localized helicity injection (LHI) ST startup employs current sources at the tokamak edge. Max Ip in LHI scales with injection voltage Vinj, requiring an understanding of injector impedance. For the arc-plasma cathode electron injectors in Pegasus, impedance is plasma-determined, and typically Vinj>1kV for Iinj = 2kA. At low Iinj, Iinj Vinj3 / 2 , an indication of a double layer (DL) common to such devices. However, at Iinj> 1kA, Iinj Vinj1 / 2 occurs, a scaling expected for limited launched beam density, nb ≡Iinj / (e√{ 2eVinj /me }Ainj) Iinj /Vinj1 / 2 . An ohmic discharge injection target was created to test this hypothesis. Langmuir probe data showed Iinj/Vinj1 / 2 nedge at low nedge, consistent with a limit (nedge >=ne , b) imposed by quasineutrality. If edge fueling maintained nedge >=ne , b , spectroscopic measurements of source density narc indicated Iinj/Vinj1 / 2 narc , as expected from DL expansion. Thus nb established by narc or nedge determines Vinj up to the onset of cathode spot (CS) arcing. Technology development has increased obtainable Vinj and reduced CS damage using new ring shielding and a cathode design drawing CS's away from insulators. This involved a novel optimization of conical frustum geometry. Finally, consistent with NIMROD predictions of coherent streams in the edge during LHI, pairwise triangulation of outboard Mirnov data assuming beam m =1 motion has allowed an estimate of beam R(t), Z(t) location that is near the injector R, and consistent across the array. Supported by U.S. DOE Grant DE-FG02-96ER54375.
Tokamak startup using point-source dc helicity injection.
Battaglia, D J; Bongard, M W; Fonck, R J; Redd, A J; Sontag, A C
2009-06-05
Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.
Liu, Richard T; Case, Brady G; Spirito, Anthony
2014-09-01
Based on the interpersonal theory of suicide, pain habituation that occurs with injection substance use may raise risk for a suicide attempt. The current study tested whether injection substance use, relative to painless routes of substance administration, was related to greater risk for suicide attempts. We also assessed whether this risk was specific to suicide attempts and not suicidal ideation or suicide plans. Data on 2095 substance-using adolescents aged 12-17 who endorsed clinically significant depression symptoms and answered questions on suicidal thoughts and behavior were drawn from the 2004-2011 National Survey on Drug Use and Health, a nationally representative household survey. Logistic regression analyses were conducted to assess the associations between injection substance use and suicidal ideation, plans, and attempts. Injection substance use was associated with suicide attempts (OR = 3.02, 95% CI = 1.75-5.23) but not ideation or plans. These findings were not accounted for by sex, age, race/ethnicity, family income, abuse and dependence symptoms, and depression symptoms. Among ideators, injection substance use was associated with suicide attempts (OR = 2.92, 95% CI = 1.58-5.06), but not plans. Among suicide planners, injection substance use was associated with suicide attempts (OR = 5.16, 95% CI = 1.88-14.17). Consistent with the interpersonal theory of suicide, adolescent injection drug use was associated with specific risk for suicide attempts but not ideation or planning. Hence, consideration of the manner in which adolescents use substances is important in evaluating suicide risk in this population. Copyright © 2014 Elsevier Ltd. All rights reserved.
Werner, Brian C; Cancienne, Jourdan M; Burrus, M Tyrrell; Park, Joseph S; Perumal, Venkat; Cooper, M Truitt
2016-02-01
To employ a national database to evaluate the association between intraoperative corticosteroid injection at the time of ankle arthroscopy and postoperative infection rates in Medicare patients. A national insurance database was queried for Medicare patients who underwent ankle arthroscopy, including arthroscopic removal of loose body, synovectomy, and limited or extensive debridement. Two groups were created: ankle arthroscopy with concomitant local steroid injection (n = 459) and a control group of patients who underwent ankle arthroscopy without intraoperative local steroid injection (n = 9,327). The demographics and Charlson Comorbidity Index of each group were compared. Infection rates within 6 months postoperatively were assessed using International Classification of Diseases, 9th revision, and Current Procedural Terminology codes and compared between groups using χ(2)-tests. A total of 9,786 unique patients who underwent ankle arthroscopy were included in the study. There were no statistically significant differences between the steroid injection study group and controls for the assessed infection-related variables, including gender, age group, obesity, smoking, and average Charlson Comorbidity Index. The infection rate for patients who had a local steroid injection at the time of surgery was 3.9% (18/459 patients), compared with 1.8% (168/9,327 patients) in the control group (odds ratio, 2.2; 95% confidence interval, 1.4 to 3.7; P = .002.) The majority of this difference was noted between the 65 and 79 years age groups. The use of intraoperative intraarticular corticosteroid injection at the time of ankle arthroscopy in Medicare patients is associated with significantly increased rates of postoperative infection compared with controls without intraoperative steroid injections. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer.
Goddard, Erica T; Fischer, Jacob; Schedin, Pepper
2016-12-26
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Katrina V.; Brown, Richard S.; Deng, Zhiqun
The miniaturization of acoustic transmitters may allow greater flexibility in terms of the size and species of fish available to tag. New downsized injectable acoustic tags similar in shape to passive integrated transponder tags can be rapidly injected rather than surgically implanted through a sutured incision, as is current practice. Before wide-scale field use of these injectable transmitters, standard protocols to ensure the most effective and least damaging methods of implantation must be developed. Three implantation methods were tested in various sizes of juvenile Chinook salmon Oncorhynchus tschawytscha. Methods included a needle bevel-down injection, a needle bevel-up injection with amore » 90-degree rotation, and tag implantation through an unsutured incision. Tagged fish were compared to untagged control groups. Weight and wound area were measured at tagging and every week for 3 weeks; holding tanks were checked daily for mortalities and tag losses. No differences among treatments were found in growth, tag loss, or survival, but wound area was significantly reduced among incision-treated fish. The bevel-up injection had the worst results in terms of tag loss and wound area and also had high mortality. Implantation through an incision resulted in the lowest tag loss but the highest mortality. Fish from the bevel-down treatment group had the least mortality; wound areas also were smaller than the bevel-up treatment group. Cumulatively, the data suggest that the unsutured incision and bevel-down injection methods were the most effective; the drawbacks of both methods are described in detail. However, we further recommend larger and longer studies to find more robust thresholds for tagging size that include more sensitive measures.« less
Pain referral and regional deep tissue hyperalgesia in experimental human hip pain models.
Izumi, Masashi; Petersen, Kristian Kjær; Arendt-Nielsen, Lars; Graven-Nielsen, Thomas
2014-04-01
Hip disorder patients typically present with extensive pain referral and hyperalgesia. To better understand underlying mechanisms, an experimental hip pain model was established in which pain referrals and hyperalgesia could be studied under standardized conditions. In 16 healthy subjects, pain was induced by hypertonic saline injection into the gluteus medius tendon (GMT), adductor longus tendon (ALT), or gluteus medius muscle (GMM). Isotonic saline was injected contralaterally as control. Pain intensity was assessed on a visual analogue scale (VAS), and subjects mapped the pain distribution. Before, during, and after injections, passive hip joint pain provocation tests were completed, together with quantitative sensory testing as follows: pressure pain thresholds (PPTs), cuff algometry pain thresholds (cuff PPTs), cutaneous pin-prick sensitivity, and thermal pain thresholds. Hypertonic saline injected into the GMT resulted in higher VAS scores than hypertonic injections into the ALT and GMM (P<.05). Referred pain areas spread to larger parts of the leg after GMT and GMM injections compared with more regionalized pain pattern after ALT injections (P<.05). PPTs at the injection site were decreased after hypertonic saline injections into GMT and GMM compared with baseline, ALT injections, and isotonic saline. Cuff PPTs from the thigh were decreased after hypertonic saline injections into the ALT compared with baseline, GMT injections, and isotonic saline (P<.05). More subjects had positive joint pain provocation tests after hypertonic compared with isotonic saline injections (P<.05), indicating that this provocation test also assessed hyperalgesia in extra-articular soft tissues. The experimental models may open for better understanding of pain mechanisms associated with painful hip disorders. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
The combustion properties analysis of various liquid fuels based on crude oil and renewables
NASA Astrophysics Data System (ADS)
Grab-Rogalinski, K.; Szwaja, S.
2016-09-01
The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.
NASA Astrophysics Data System (ADS)
Molz, F. J.; Melville, J. G.; Gueven, O.; Parr, A. D.
1983-09-01
In March 1980 Auburn University began a series of aquifer thermal energy storage (ATES) experiments using the doublet well configuration. The test site was in Mobile, Alabama. The objectives of the three experimental cycles were to demonstrate the technical feasibility of the ATES concept, to identify and resolve operational problems, and to acquire a data base for developing and testing mathematical models. Pre-injection tests were performed and analyses of hydraulic, geochemical, and thermodynamic data were completed. Three injection-storage-recovery cycles had injection volumes of 25,402 m(3), 58,010 m(3), and 58,680 m(3) and average injection temperatures of 58.50C, 81.00C. and 79.00C, respectively. The first cycle injection began in February 1981 and the third cycle recovery was completed in November 1982. Attributable to the doublet well configuration no clogging of injection wells occurred. Energy recovery percentages based on recovery volumes equal to the injection volumes were 56, 45, and 42%. Thermal convection effects were observed. Aquifer nonhomogeneity, not detectable using standard aquifer testing procedures, was shown to reduce recovery efficiency.
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-07-07
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.
Hickey, J.J.; Ehrlich, G.G.
1984-01-01
The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Treated sewage with a mean chloride concentration of 170 mg/ml was injected through a single well for 12 months at a mean rate of 4.7 x 105 cubic feet per day. The volume of water injected during the year was 1.7x108 cubic feet. Dissolved oxygen was contained in the sewage prior to injection. Water removed from the injection zone during injection was essentially free of oxygen. Probable growth of denitrifying bacteria and, thus, microbial denitrification, was suggested by bacterial counts in water from two observation wells that were close to the injection well. The volume fraction of treated sewage in water from wells located 35 feet and 733 feet from the injection well and open to the upper part of the injection zone stabilized at about 0.9 and 0.75, respectively. Chloride concentrations stabilized at about 1,900 mg/l in water from the well that was 35 feet from the injection well and stabilized at about 4,000 mg/l in water from the well that was 733 feet from the injection well. These and other data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.The city of St. Petersburg is testing subsurface injection of treated sewage into the Floridan aquifer as a means of eliminating discharge of sewage to surface waters and as a means of storing treated sewage for future nonpotable reuse. The injection zone at the test site at the start of injection contained saline water with chloride concentrations ranging from 14,000 to 20,000 milligrams per liter (mg/l). Data suggest that very little near injection-quality treated sewage would be recoverable from storage in the injection zone.
REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION
The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...
Cope, Elise C; Morris, Deborah R; Scrimgeour, Angus G; Levenson, Cathy W
2012-09-01
While treatments for the behavioral deficits associated with traumatic brain injury (TBI) are currently limited, animal models suggest that zinc supplementation may increase resilience to TBI. This work tests the hypothesis that zinc supplementation after TBI can be used as treatment to improve behavioral outcomes such as anxiety, depression, and learning and memory. TBI was induced by controlled cortical impact to the medial frontal cortex. After TBI, rats were fed either a zinc adequate (ZA, 30 ppm) or zinc supplemented (ZS, 180 ppm) diet. Additional rats in each dietary group (ZA or ZS) were given a single intraperitoneal (ip) injection of zinc (30 mg/kg) 1 hour following injury. Brain injury resulted in significant increases in anxiety-like and depression-like behaviors as well as impairments in learning and memory. None of the zinc treatments (dietary or ip zinc) improved TBI-induced anxiety. The 2-bottle saccharin preference test for anhedonia revealed that dietary ZS also did not improve depression-like behaviors. However, dietary ZS combined with an early ip zinc injection significantly reduced anhedonia (P < .001). Dietary supplementation after injury, but not zinc injection, significantly improved (P < .05) cognitive behavior as measured by the time spent finding the hidden platform in the Morris water maze test compared with injured rats fed a ZA diet. These data suggest that zinc supplementation may be an effective treatment option for improving behavioral deficits such as cognitive impairment and depression following TBI.
Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E
2009-08-04
We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.
Can Steady Magnetospheric Convection Events Inject Plasma into the Ring Current?
NASA Astrophysics Data System (ADS)
Lemon, C.; Chen, M. W.; Guild, T. B.
2009-12-01
Steady Magnetospheric Convection (SMC) events are characterized by several-hour periods of enhanced convection that are devoid of substorm signatures. There has long been a debate about whether substorms are necessary to inject plasma into the ring current, or whether enhanced convection is sufficient. If ring current injections occur during SMC intervals, this would suggest that substorms are unnecessary. We use a combination of simulations and data observations to examine this topic. Our simulation model computes the energy-dependent plasma drift in a self-consistent electric and magnetic field, which allows us to accurately model the transport of plasma from the plasma sheet (where the plasma pressure is much larger than the magnetic pressure) into the inner magnetosphere (where plasma pressure is much less than the magnetic pressure). In regions where the two pressures are comparable (i.e. the inner plasma sheet), feedback between the plasma and magnetic field is critical for accurately modeling the physical evolution of the system. Our previous work has suggested that entropy losses in the plasma sheet (such as caused by substorms) may be necessary to inject a ring current. However, it is not yet clear whether other small-scale processes (e.g. bursty bulk flows) can provide sufficient entropy loss in the plasma sheet to allow for the penetration of plasma into the ring current. We combine our simulation results with data observations in order to better understand the physical processes required to inject a ring current.
Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone.
Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya
To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may be reduced, while transfer to oral mucosa and blood may be increased.
Effect of Injection Pressure of Infiltration Anesthesia to the Jawbone
Yoshida, Kenji; Tanaka, Eri; Kawaai, Hiroyoshi; Yamazaki, Shinya
2016-01-01
To obtain effective infiltration anesthesia in the jawbone, high concentrations of local anesthetic are needed. However, to reduce pain experienced by patients during local anesthetic administration, low-pressure injection is recommended for subperiosteal infiltration anesthesia. Currently, there are no studies regarding the effect of injection pressure on infiltration anesthesia, and a standard injection pressure has not been clearly determined. Hence, the effect of injection pressure of subperiosteal infiltration anesthesia on local anesthetic infiltration to the jawbone was considered by directly measuring lidocaine concentration in the jawbone. Japanese white male rabbits were used as test animals. After inducing general anesthesia with oxygen and sevoflurane, cannulation to the femoral artery was performed and arterial pressure was continuously recorded. Subperiosteal infiltration anesthesia was performed by injecting 0.5 mL of 2% lidocaine containing 1/80,000 adrenaline, and injection pressure was monitored by a pressure transducer for 40 seconds. After specified time intervals (10, 20, 30, 40, 50, and 60 minutes), jawbone and blood samples were collected, and the concentration of lidocaine at each time interval was measured. The mean injection pressure was divided into 4 groups (100 ± 50 mm Hg, 200 ± 50 mm Hg, 300 ± 50 mm Hg, and 400 ± 50 mm Hg), and comparison statistical analysis between these 4 groups was performed. No significant change in blood pressure during infiltration anesthesia was observed in any of the 4 groups. Lidocaine concentration in the blood and jawbone were highest 10 minutes after the infiltration anesthesia in all 4 groups and decreased thereafter. Lidocaine concentration in the jawbone increased as injection pressure increased, while serum lidocaine concentration was significantly lower. This suggests that when injection pressure of subperiosteal infiltration anesthesia is low, infiltration of local anesthetic to the jawbone may be reduced, while transfer to oral mucosa and blood may be increased. PMID:27585416
Titchener, Andrew G; Booker, Simon J; Bhamber, Nivraj S; Tambe, Amol A; Clark, David I
2015-11-01
Tennis elbow is a common condition with a variety of treatment options, but little is known about which of these options specialists choose most commonly. Corticosteroid injections in tennis elbow may reduce pain in the short-term but delay long-term recovery. We have undertaken a UK-wide survey of upper limb specialists to assess current practice. Cross-sectional electronic survey of current members of the British Elbow and Shoulder Society (BESS) and the British Society for Surgery of the Hand (BSSH). 271 of 1047 eligible members responded (25.9%); consultant surgeons constituted the largest group (232/271, 85%). 131 respondents (48%) use corticosteroid injections as their first-line treatment for tennis elbow. 206 respondents (77%) believed that corticosteroid injections are not potentially harmful in the treatment of tennis elbow, while 31 (11%) did not use them in their current practice. In light of recent evidence of the potential harmful effects of corticosteroid therapy, 136 (50%) had not changed their practice while 108 (40.1%) had reduced or discontinued their use. 43 respondents (16%) reported having used platelet-rich plasma injections. Recent high-quality evidence that corticosteroids may delay recovery in tennis elbow appears to have had a limited effect on current practice. Treatment is not uniform among specialists and a proportion of them use platelet-rich plasma injections. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Zinc induces long-term upregulation of T-type calcium current in hippocampal neurons in vivo.
Ekstein, Dana; Benninger, Felix; Daninos, Moshe; Pitsch, Julika; van Loo, Karen M J; Becker, Albert J; Yaari, Yoel
2012-11-15
Extracellular zinc can induce numerous acute and persistent physiological and toxic effects in neurons by acting at their plasma membrane or intracellularly following permeation or uptake into them. Zinc acutely and reversibly blocks T-type voltage-gated calcium current (I(CaT)), but the long-term effect of zinc on this current has not been studied. Because chemically induced status epilepticus (SE) results in the release of zinc into the extracellular space, as well as in a long-lasting increase in I(CaT) in CA1 pyramidal cells, we hypothesized that zinc may play a causative role in I(CaT) upregulation. We tested this hypothesis by monitoring for 18 days the effects of zinc and ibotenic acid (a neurotoxic agent serving as control for zinc), injected into the right lateral ventricle, on I(CaT) in rat CA1 pyramidal cells. Both zinc and ibotenic acid caused marked hippocampal lesions on the side of injection, but only minor damage to contralateral hippocampi. Zinc, but not ibotenic acid, caused upregulation of a nickel-sensitive I(CaT) in a subset of contralateral CA1 pyramidal cells, appearing 2 days after injection and lasting for about 2 weeks thereafter. In contrast, acute application of zinc to CA1 pyramidal cells promptly blocked I(CaT). These data indicate that extracellular zinc has a dual effect on I(CaT), blocking it acutely while causing its long-term upregulation. Through the latter effect, zinc may regulate the intrinsic excitability of principal neurons, particularly in pathological conditions associated with enhanced release of zinc, such as SE.
Schöneich, Stefan; Hedwig, Berthold
2012-01-01
The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets. PMID:23170234
Efficient spin-current injection in single-molecule magnet junctions
NASA Astrophysics Data System (ADS)
Xie, Haiqing; Xu, Fuming; Jiao, Hujun; Wang, Qiang; Liang, J.-Q.
2018-01-01
We study theoretically spin transport through a single-molecule magnet (SMM) in the sequential and cotunneling regimes, where the SMM is weakly coupled to one ferromagnetic and one normal-metallic leads. By a master-equation approach, it is found that the spin polarization injected from the ferromagnetic lead is amplified and highly polarized spin-current can be generated, due to the exchange coupling between the transport electron and the anisotropic spin of the SMM. Moreover, the spin-current polarization can be tuned by the gate or bias voltage, and thus an efficient spin injection device based on the SMM is proposed in molecular spintronics.
NASA Astrophysics Data System (ADS)
Hossack, A. C.; Sutherland, D. A.; Jarboe, T. R.
2017-02-01
A derivation is given showing that the current inside a closed-current volume can be sustained against resistive dissipation by appropriately phased magnetic perturbations. Imposed-dynamo current drive theory is used to predict the toroidal current evolution in the helicity injected torus with steady inductive helicity injection (HIT-SI) experiment as a function of magnetic fluctuations at the edge. Analysis of magnetic fields from a HIT-SI discharge shows that the injector-imposed fluctuations are sufficient to sustain the measured toroidal current without instabilities whereas the small, plasma-generated magnetic fluctuations are not sufficiently large to sustain the current.
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
NASA Astrophysics Data System (ADS)
Boaga, J.; Mary, B.; Peruzzo, L.; Schmutz, M.; Wu, Y.; Hubbard, S. S.; Cassiani, G.
2017-12-01
The interest on non-invasive geophysical monitoring of soil properties and root architecture is rapidly growing. Despite this, few case studies exist concerning vineyards, which are economically one of the leading sectors of agriculture. In this study, we integrate different geophysical methods in order to gain a better imaging of the vine root system, with the aim of quantifying root development, a key factor to understand roots-soil interaction and water balance. Our test site is a vineyard located in Bordeaux (France), where we adopted the Mise-a-la-Masse method (MALM) and micro-scale electrical resistivity tomography (ERT) on the same 3D electrode configuration. While ERT is a well-established technique to image changes in soil moisture content by root activity, MALM is a relatively new approach in this field of research. The idea is to inject current directly in the plant trunk and verify the resulting voltage distribution in the soil, as an effect of current distribution through the root system. In order to distinguish the root effect from other phenomena linked to the soil heterogeneities, we conducted and compared MALM measurements acquired through injecting current into the stem and into the soil near the stem. Moreover, the MALM data measured in the field were compared with numerical simulations to improve the confidence in the interpretation. Differences obtained between the stem and soil injection clearly validated the assumption that the whole root system is acting as a current pathway, thus highlighting the locations at depth where current is entering the soil from the fine roots. The simulation results indicated that the best fit is obtained through considering distributed sources with depth, reflecting a probable root zone area. The root location and volume estimated using this procedure are in agreement with vineyard experimental evidence. This work suggests the promising application of electrical methods to locate and monitor root systems. Further work is necessary to effectively integrate the geophysical and plant physiology information.
DMA shared byte counters in a parallel computer
Chen, Dong; Gara, Alan G.; Heidelberger, Philip; Vranas, Pavlos
2010-04-06
A parallel computer system is constructed as a network of interconnected compute nodes. Each of the compute nodes includes at least one processor, a memory and a DMA engine. The DMA engine includes a processor interface for interfacing with the at least one processor, DMA logic, a memory interface for interfacing with the memory, a DMA network interface for interfacing with the network, injection and reception byte counters, injection and reception FIFO metadata, and status registers and control registers. The injection FIFOs maintain memory locations of the injection FIFO metadata memory locations including its current head and tail, and the reception FIFOs maintain the reception FIFO metadata memory locations including its current head and tail. The injection byte counters and reception byte counters may be shared between messages.
Direct current hybrid breakers: A design and its realization
NASA Astrophysics Data System (ADS)
Atmadji, Ali Mahfudz Surya
2000-12-01
The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.
Lin, Guangyang; Chen, Ningli; Zhang, Lu; Huang, Zhiwei; Huang, Wei; Wang, Jianyuan; Xu, Jianfang; Chen, Songyan; Li, Cheng
2016-01-01
Direct band electroluminescence (EL) from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300–1400 nm and 1600–1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL (L) and injection current density (J) with L~Jm shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH) valance band at higher temperatures. PMID:28773923
Lin, Guangyang; Chen, Ningli; Zhang, Lu; Huang, Zhiwei; Huang, Wei; Wang, Jianyuan; Xu, Jianfang; Chen, Songyan; Li, Cheng
2016-09-27
Direct band electroluminescence (EL) from tensile-strained Si 0.13 Ge 0.87 /Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge wells was observed at around 1550 nm. As injection current density increases, additional emission shoulders from Γ2-HH2 transition in Ge wells and Ge VS appeared at around 1300-1400 nm and 1600-1700 nm, respectively. The peak energy of EL shifted to the lower energy side superquadratically with an increase of injection current density as a result of the Joule heating effect. During the elevation of environmental temperature, EL intensity increased due to a reduction of energy between L and Γ valleys of Ge. Empirical fitting of the relationship between the integrated intensity of EL ( L ) and injection current density ( J ) with L ~ J m shows that the m factor increased with injection current density, suggesting higher light emitting efficiency of the diode at larger injection current densities, which can be attributed to larger carrier occupations in the Γ valley and the heavy hole (HH) valance band at higher temperatures.
Tsuboyama, Takahiro; Jost, Gregor; Pietsch, Hubertus; Tomiyama, Noriyuki
2017-09-01
The aim of this study was to compare power versus manual injection in bolus shape and image quality on contrast-enhanced magnetic resonance angiography (CE-MRA). Three types of CE-MRA (head-neck 3-dimensional [3D] MRA with a test-bolus technique, thoracic-abdominal 3D MRA with a bolus-tracking technique, and thoracic-abdominal time-resolved 4-dimensional [4D] MRA) were performed after power and manual injection of gadobutrol (0.1 mmol/kg) at 2 mL/s in 12 pigs (6 sets of power and manual injections for each type of CE-MRA). For the quantitative analysis, the signal-to-noise ratio was measured on ascending aorta, descending aorta, brachiocephalic trunk, common carotid artery, and external carotid artery on the 6 sets of head-neck 3D MRA, and on ascending aorta, descending aorta, brachiocephalic trunk, abdominal aorta, celiac trunk, and renal artery on the 6 sets of thoracic-abdominal 3D MRA. Bolus shapes were evaluated on the 6 sets each of test-bolus scans and 4D MRA. For the qualitative analysis, arterial enhancement, superimposition of nontargeted enhancement, and overall image quality were evaluated on 3D MRA. Visibility of bolus transition was assessed on 4D MRA. Intraindividual comparison between power and manual injection was made by paired t test, Wilcoxon rank sum test, and analysis of variance by ranks. Signal-to-noise ratio on 3D MRA was statistically higher with power injection than with manual injection (P < 0.001). Bolus shapes (test-bolus, 4D MRA) were represented by a characteristic standard bolus curve (sharp first-pass peak followed by a gentle recirculation peak) in all the 12 scans with power injection, but only in 1 of the 12 scans with manual injection. Standard deviations of time-to-peak enhancement were smaller in power injection than in manual injection. Qualitatively, although both injection methods achieved diagnostic quality on 3D MRA, power injection exhibited significantly higher image quality than manual injection (P = 0.001) due to significantly higher arterial enhancement (P = 0.031) and less superimposition of nontargeted enhancement (P = 0.001). Visibility of bolus transition on 4D MRA was significantly better with power injection than with manual injection (P = 0.031). Compared with manual injection, power injection provides more standardized bolus shapes and higher image quality due to higher arterial enhancement and less superimposition of nontargeted vessels.
Morris, Meghan D; Lemus, Hector; Wagner, Karla D; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A
2013-01-01
To identify factors associated with time to initiation of (i) sex work prior to injecting drugs initiation; (ii) injection drug use prior to sex work initiation; and (iii) concurrent sex work and injection drug use (i.e. initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Parametric survival analysis of baseline data for time to initiation event. Tijuana and Ciudad Juarez situated on the Mexico-US border. A total of 557 FSW-IDUs aged ≥18 years. Interview-administered surveys assessing context of sex work and injection drug use initiation. Nearly half (n = 258) initiated sex work prior to beginning to inject, a third (n = 163) initiated injection first and a quarter (n = 136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one-third initiate injection drug use before beginning sex work and one-quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Morris, Meghan D.; Lemus, Hector; Wagner, Karla D.; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A.
2012-01-01
Aims To identify factors associated with time to initiation of (1) sex work prior to injecting drugs, (2) injection drug use, and (3) concurrent sex work and injection drug use (i.e., initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Design Parametric survival analysis of baseline data for time to initiation event. Setting Tijuana and Ciudad Juarez situated on the Mexico-U.S. border. Participants 575 FSW-IDUs aged ≥18. Measurements Interview-administered surveys assessing context of sex work and injection drug use initiation. Findings Nearly half (n=256) initiated sex work prior to beginning to inject, a third (n=163) initiated injection first, and a quarter (n=136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Conclusions Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one third initiate injection drug use before beginning sex work, and one quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. PMID:22775475
NASA Astrophysics Data System (ADS)
Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.
2018-02-01
Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of fault reactivation.
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.
Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit
2015-10-20
Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.
Experiences from First Top-Off Injection at the Stanford Synchrotron Radiation Lightsource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, J.M.; Liu, J.C.; Prinz, A.
2009-12-11
As the Stanford Synchrotron Radiation Lightsource (SSRL) of the SLAC National Accelerator Laboratory (SLAC) is moving toward Top-Off injection mode, SLAC's Radiation Protection Department is working with SSRL on minimizing the radiological hazards of this mode. One such hazard is radiation that is created inside the accelerator concrete enclosure by injected beam. Since during Top-Off injection the stoppers that would otherwise isolate the storage ring from the experimental area stay open, the stoppers no longer prevent such radiation from reaching the experimental area. The level of this stray radiation was measured in April 2008 during the first Top-Off injection tests.more » They revealed radiation dose rates of up to 18 microSv/h (1.8 millirem/h) outside the experimental hutches, significantly higher than our goal of 1 microSv/h (0.1 millirem/h). Non-optimal injection increased the measured dose rates by a factor two. Further tests in 2008 indicated that subsequent improvements by SSRL to the injection system have reduced the dose rates to acceptable levels. This presentation describes the studies performed before the Top-Off tests, the tests themselves and their major results (both under initial conditions and after improvements were implemented), and presents the controls being implemented for full and routine Top-Off injection.« less
An Overview of Research Activity at the Launch Systems Testbed
NASA Technical Reports Server (NTRS)
Vu, Bruce; Kandula, Max
2003-01-01
This paper summarizes the acoustic testing and analysis activities at the Launch System Testbed (LST) of Kennedy Space Center (KSC). A major goal is to develop passive methods of mitigation of sound from rocket exhaust jets with ducted systems devoid of traditional water injection. Current testing efforts are concerned with the launch-induced vibroacoustic behavior of scaled exhaust jets. Numerical simulations are also developed to study the sound propagation from supersonic jets in free air and through enclosed ducts. Scaling laws accounting for the effects of important parameters such as jet Mach number, jet velocity, and jet temperature on the far-field noise are investigated in order to deduce full-scale environment from small-scale tests.
Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine
NASA Technical Reports Server (NTRS)
Cosgrove, D. V.; Kempke, E. E.
1979-01-01
A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.
Lange, Jakob; Richard, Philipp; Bradley, Nick
2015-01-01
This article presents a late-stage formative usability study of an autoinjector platform device. Such devices are used for the subcutaneous delivery of biopharmaceuticals, primarily for self-administration by the patient. Previous usability work on autoinjectors reported in the literature has been specific to single indications. This study was instead conducted with a broad user population, defined to represent user characteristics across a range of indications. The goals of the study were to evaluate whether users could use the devices safely and effectively, and could understand the instructions for use (IFU) as well as the accompanying training. Further objectives were to capture any usability issues and to obtain participants' subjective ratings on the IFU and training as well as the confidence and comfort in using the device. A total of 43 participants in 5 groups received training and performed simulated injections either into an injection pad or a mannequin. All participants were able to successfully use the device. The device was well appreciated by all users, with a reported degree of confidence in using the device of 98%, of user comfort of 93%, and of comprehensibility of IFU and training of 98%. These values are higher than other comparable results reported in the literature. The presence of both audible and visible feedback during injection was seen to be a significant factor contributing to injection success. The observation that the device can be safely and efficiently used by all tested user groups provides confidence that the device and IFU in their current form will pass future summative testing in specific applications.
NON-INVASIVE RADIOFREQUENCY ABLATION OF CANCER TARGETED BY GOLD NANOPARTICLES
Cardinal, Jon; Klune, John Robert; Chory, Eamon; Jeyabalan, Geetha; Kanzius, John S.; Nalesnik, Michael; Geller, David A.
2008-01-01
Introduction Current radiofrequency ablation (RFA) techniques require invasive needle placement and are limited by accuracy of targeting. The purpose of this study was to test a novel non-invasive radiowave machine that uses RF energy to thermally destroy tissue. Gold nanoparticles were designed and produced to facilitate tissue heating by the radiowaves. Methods A solid state radiowave machine consisting of a power generator and transmitting/receiving couplers which transmit radiowaves at 13.56 MHz was used. Gold nanoparticles were produced by citrate reduction and exposed to the RF field either in solutions testing or after incubation with HepG2 cells. A rat hepatoma model using JM-1 cells and Fisher rats was employed using direct injection of nanoparticles into the tumor to focus the radiowaves for select heating. Temperatures were measured using a fiber-optic thermometer for real-time data. Results Solutions containing gold nanoparticles heated in a time- and power-dependent manner. HepG2 liver cancer cells cultured in the presence of gold nanoparticles achieved adequate heating to cause cell death upon exposure to the RF field with no cytotoxicity attributable to the gold nanoparticles themselves. In vivo rat exposures at 35W using gold nanoparticles for tissue injection resulted in significant temperature increases and thermal injury at subcutaneous injection sites as compared to vehicle (water) injected controls. Discussion These data show that non-invasive radiowave thermal ablation of cancer cells is feasible when facilitated by gold nanoparticles. Future studies will focus on tumor selective targeting of nanoparticles for in vivo tumor destruction. PMID:18656617
Neurotensin inversely modulates maternal aggression
Gammie, Stephen C.; D’Anna, Kimberly L.; Gerstein, Hilary; Stevenson, Sharon A.
2008-01-01
Neurotensin (NT) is a versatile neuropeptide involved in analgesia, hypothermia, and schizophrenia. Although NT is released from and acts upon brain regions involved in social behaviors, it has not been linked to a social behavior. We previously selected mice for high maternal aggression (maternal defense), an important social behavior that protects offspring, and found significantly lower NT expression in the CNS of highly protective females. Our current study directly tested NT’s role in maternal defense. Intracerebroventricular (icv) injections of NT significantly impaired defense in terms of time aggressive and number of attacks at all doses tested (0.05, 0.1, 1.0, and 3.0 μg). Other maternal behaviors, including pup retrieval, were unaltered following NT injections (0.05 μg) relative to vehicle, suggesting specificity of NT action on defense. Further, icv injections of the NT receptor 1 (NT1) antagonist, SR 48692 (30 μg), significantly elevated maternal aggression in terms of time aggressive and attack number. To understand where NT may regulate aggression, we examined Fos following injection of either 0.1 μg NT or vehicle. 13 of 26 brain regions examined exhibited significant Fos increases with NT, including regions expressing NT1 and previously implicated in maternal aggression, such as lateral septum, bed nucleus of stria terminalis, paraventricular nucleus, and central amygdala. Together, our results indicate that NT inversely regulates maternal aggression and provide the first direct evidence that lowering of NT signaling can be a mechanism for maternal aggression. To our knowledge, this is the first study to directly link NT to a social behavior. PMID:19118604
Wei, Yan; Fu, Yong; Liu, Shaosheng; Xia, Guihua; Pan, Song
2013-01-01
The purposes of the current study were to assess the feasibility of post-auricular microinjection of lentiviruses carrying enhanced green fluorescent protein (EGFP) into the scala media through cochleostomies in rats, determine the expression of viral gene in the cochlea, and record the post-operative changes in the number and auditory function of cochlear hair cells (HCs). Healthy rats were randomly divided into two groups. The left ears of the animals in group I were injected with lentivirus carrying EGFP (n=10) via scala media lateral wall cochleostomies, and the left ears of the animals in group II were similarly injected with artificial endolymph (n=10). Prior to and 30 days post-injection, auditory function was assessed with click-auditory brainstem response (ABR) testing, EGFP expression was determined with cochlear frozen sections under fluorescence microscopy, and survival of HCs was estimated based on whole mount preparations. Thirty days after surgery, click-ABR testing revealed that there were significant differences in the auditory function, EGFP expression, and survival of HCs in the left ears before and after surgery in the same rats from each group. In group I, EGFP was noted in the strial marginal cells of the scala media, the organ of Corti, spiral nerves, and spiral ganglion cells. Lentiviruses were successfully introduced into the scala media through cochleostomies in rats, and the EGFP reporter gene was efficiently expressed in the organ of Corti, spiral nerves, and spiral ganglion cells. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.
2014-12-01
Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was injected. The most remarkable difference is that water injection induces mechanical instability and failure, whereas oil injection does not. This was confirmed by the analysis of acoustic emissions activity and post-mortem sample imaging using CT scan. Contrasting evolutions of the P wave velocity during the fluid front propagation were also observed in both experiments.
NASA Technical Reports Server (NTRS)
Papazian, Peter B.; Perala, Rodney A.; Curry, John D.; Lankford, Alan B.; Keller, J. David
1988-01-01
Using three different current injection methods and a simple voltage probe, transfer impedances for Solid Rocket Motor (SRM) joints, wire meshes, aluminum foil, Thorstrand and a graphite composite motor case were measured. In all cases, the surface current distribution for the particular current injection device was calculated analytically or by finite difference methods. The results of these calculations were used to generate a geometric factor which was the ratio of total injected current to surface current density. The results were validated in several ways. For wire mesh measurements, results showed good agreement with calculated results for a 14 by 18 Al screen. SRM joint impedances were independently verified. The filiment wound case measurement results were validated only to the extent that their curve shape agrees with the expected form of transfer impedance for a homogeneous slab excited by a plane wave source.
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
Bird, A. G.; Gore, S. M.; Hutchinson, S. J.; Lewis, S. C.; Cameron, S.; Burns, S.
1997-01-01
OBJECTIVES: (a) To determine both the frequency of injecting inside prison and use of sterilising tablets to clean needles in the previous four weeks; (b) to assess the efficiency of random mandatory drugs testing at detecting prisoners who inject heroin inside prison; (c) to determine the percentage of prisoners who had been offered vaccination against hepatitis B. DESIGN: Cross sectional willing anonymous salivary HIV surveillance linked to a self completion risk factor questionnaire. SETTING: Lowmoss prison, Glasgow, and Aberdeen prison on 11 and 30 October 1996. SUBJECTS: 293 (94%) of all 312 inmates at Lowmoss and 146 (93%) of all 157 at Aberdeen, resulting in 286 and 143 valid questionnaires. MAIN OUTCOME MEASURES: Frequency of injecting inside prison in the previous four weeks by injector inmates who had been in prison for at least four weeks. RESULTS: 116 (41%) Lowmoss and 53 (37%) Aberdeen prisoners had a history of injecting drug use but only 4% of inmates (17/395; 95% confidence interval 2% to 6%) had ever been offered vaccination against hepatitis B. 42 Lowmoss prisoners (estimated 207 injections and 258 uses of sterilising tablets) and 31 Aberdeen prisoners (229 injections, 221 uses) had injected inside prison in the previous four weeks. The prisons together held 112 injector inmates who had been in prison for more than four weeks, of whom 57 (51%; 42% to 60%) had injected in prison in the past four weeks; their estimated mean number of injections was 6.0 (SD 5.7). Prisoners injecting heroin six times in four weeks will test positive in random mandatory drugs testing on at most 18 days out of 28. CONCLUSIONS: Sterilising tablets and hepatitis B vaccination should be offered to all prisoners. Random mandatory drugs testing seriously underestimates injector inmates' harm reduction needs. PMID:9233321
Shiraki, D.; Commaux, N.; Baylor, L. R.; ...
2016-06-27
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
Tawfik, Wael Z; Lee, June Key
2018-03-01
The influence of temperature on the characteristics of a GaN-based 460-nm light-emitting diode (LED) prepared on sapphire substrate was simulated using the SiLENSe and SpeCLED software programs. High temperatures impose negative effects on the performance of GaN-based LEDs. As the temperature increases, electrons acquire higher thermal energies, and therefore LEDs may suffer more from high-current loss mechanisms, which in turn causes a reduction in the radiative recombination rate in the active region. The internal quantum efficiency was reduced by about 24% at a current density of 35 A/cm2, and the electroluminescence spectral peak wavelength was redshifted. The LED operated at 260 K and exhibited its highest light output power of ~317.5 mW at a maximum injection current of 350 mA, compared to 212.2 mW for an LED operated at 400 K. However, increasing temperature does not cause a droop in efficiency under high injection conditions. The peak efficiency at 1 mA of injection current decreases more rapidly by ~15% with increasing temperature from 260 to 400 K than the efficiency at high injection current of 350 mA by ~11%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraki, D.; Commaux, N.; Baylor, L. R.
Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrates control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. This mixed species SPI technique provides a possible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less
Current injection and transport in polyfluorene
NASA Astrophysics Data System (ADS)
Yang, Chieh-Kai; Yang, Chia-Ming; Liao, Hua-Hsien; Horng, Sheng-Fu; Meng, Hsin-Fei
2007-08-01
A comprehensive numerical model is established for the electrical processes in a sandwich organic semiconductor device with high carrier injection barrier. The charge injection at the anode interface with 0.8eV energy barrier is dominated by the hopping among the gap states of the semiconductor caused by disorders. The Ohmic behavior at low voltage is demonstrated to be not due to the background doping but the filaments formed by conductive clusters. In bipolar devices with low work function cathode it is shown that near the anode the electron traps significantly enhance hole injection through Fowler-Nordheim tunneling, resulting in rapid increases of the hole carrier and current in comparison with the hole-only devices.
Plasma Sheet Injections into the Inner Magnetosphere: Two-way Coupled OpenGGCM-RCM model results
NASA Astrophysics Data System (ADS)
Raeder, J.; Cramer, W. D.; Toffoletto, F.; Gilson, M. L.; Hu, B.
2017-12-01
Plasma sheet injections associated with low flux tube entropy bubbles have been found to be the primary means of mass transport from the plasma sheet to the inner magnetosphere. A two-way coupled global magnetosphere-ring current model, where the magnetosphere is modeled by the OpenGGCM MHD model and the ring current is modeled by the Rice Convection Model (RCM), is used to determine the frequency of association of bubbles with injections and inward plasma transport, as well as typical injection characteristics. Multiple geomagnetic storms and quiet periods are simulated to track and characterize inward flow behavior. Dependence on geomagnetic activity levels or drivers is also examined.
Admissions of injection drug users to drug abuse treatment following HIV counseling and testing.
McCusker, J; Willis, G; McDonald, M; Lewis, B F; Sereti, S M; Feldman, Z T
1994-01-01
The outcomes of counseling and testing programs related to human immunodeficiency virus (HIV) infection and risk of infection among injection drug users (IDUs) are not well known or understood. A counseling and testing outcome of potential public health importance is attaining admission to drug abuse treatment by those IDUs who are either infected or who are at high risk of becoming infected. The authors investigated factors related to admission to drug abuse treatment among 519 IDUs who received HIV counseling and testing from September 1987 through December 1990 at a men's prison and at community-based testing sites in Worcester, MA. By June 1991, 123 of the 519 IDUs (24 percent) had been admitted to treatment. Variables associated with their admission included a long history of drug injection, frequent recent drug injection, cleaning injection equipment using bleach, prior drug treatment, and a positive HIV test result. Logistic regression analyses, controlling for effects of recruitment site, year, sex, and area of residence, generally confirmed the associations. IDUs in the study population who were HIV-infected sought treatment or were admitted to treatment more frequently than those who were not infected. The results indicate that access to drug abuse treatment should be facilitated for high-risk IDUs and for those who have begun to inject drugs recently.
PRELIMINARY TEST RESULTS OF A PROTOTYPE FAST KICKER FOR APS MBA UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, C.-Y.; Morrison, L.; Sun, X.
The APS multi-bend achromatic (MBA) upgrade storage ring plans to support two bunch fill patterns: a 48-bunch and a 324-bunch. A “swap out” injection scheme is required. In order to provide the required kick to injected beam, to minimize the beam loss and residual oscillation of injected beam, and to minimize the perturbation to stored beam during injection, the rise, fall, and flat-top parts of the kicker pulse must be within a 16.9-ns interval. Stripline-type kickers are chosen for both injection and extraction. We developed a prototype kicker that supports a ±15kV differential pulse voltage. We performed high voltage discharge,more » TDR measurement, high voltage pulse test and beam test of the kicker. We report the final design of the fast kicker and the test results.« less
High Field Side MHD Activity During Local Helicity Injection
NASA Astrophysics Data System (ADS)
Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.
2017-10-01
MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.
Numerical Study of Suspension Plasma Spraying
NASA Astrophysics Data System (ADS)
Farrokhpanah, Amirsaman; Coyle, Thomas W.; Mostaghimi, Javad
2017-01-01
A numerical study of suspension plasma spraying is presented in the current work. The liquid suspension jet is replaced with a train of droplets containing the suspension particles injected into the plasma flow. Atomization, evaporation, and melting of different components are considered for droplets and particles as they travel toward the substrate. Effect of different parameters on particle conditions during flight and upon impact on the substrate is investigated. Initially, influence of the torch operating conditions such as inlet flow rate and power is studied. Additionally, effect of injector parameters like injection location, flow rate, and angle is examined. The model used in the current study takes high-temperature gradients and non-continuum effects into account. Moreover, the important effect of change in physical properties of suspension droplets as a result of evaporation is included in the model. These mainly include variations in heat transfer properties and viscosity. Utilizing this improved model, several test cases have been considered to better evaluate the effect of different parameters on the quality of particles during flight and upon impact on the substrate.
Advanced information processing system: Fault injection study and results
NASA Technical Reports Server (NTRS)
Burkhardt, Laura F.; Masotto, Thomas K.; Lala, Jaynarayan H.
1992-01-01
The objective of the AIPS program is to achieve a validated fault tolerant distributed computer system. The goals of the AIPS fault injection study were: (1) to present the fault injection study components addressing the AIPS validation objective; (2) to obtain feedback for fault removal from the design implementation; (3) to obtain statistical data regarding fault detection, isolation, and reconfiguration responses; and (4) to obtain data regarding the effects of faults on system performance. The parameters are described that must be varied to create a comprehensive set of fault injection tests, the subset of test cases selected, the test case measurements, and the test case execution. Both pin level hardware faults using a hardware fault injector and software injected memory mutations were used to test the system. An overview is provided of the hardware fault injector and the associated software used to carry out the experiments. Detailed specifications are given of fault and test results for the I/O Network and the AIPS Fault Tolerant Processor, respectively. The results are summarized and conclusions are given.
Birmes, Philippe; Ferry, Barbara
2018-01-01
Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals. Following this, in an open-label study 70% of patients with PTSD treated with propranolol during reactivation of traumatic memory exhibited full remission. However, the reason why 30% of these patients did not respond positively to propranolol treatment is still unclear. One of the major candidates as factor of treatment resistance is the patient's early-life traumatic history. To test the role of this factor, mice with pre- or postnatal stress are being tested in fear conditioning and in a new behavioral task, the "city-like", specifically designed as a mouse model of PTSD. After reactivation of the traumatic event, mice received propranolol injection to block the noradrenergic system during memory reconsolidation. Results show that, in the “city-like” test, control mice strongly avoided the shock compartment but also the compartments containing cues associated with the electric shocks. Injection of propranolol after reactivation greatly reduced the memory of the traumatic event, but this effect was not present when mice had received pre- or postnatal stress. Moreover, propranolol produced only a very weak effect in the fear conditioning test, and never changed the corticosterone level whatever the behavioral experiment. Taken together our results suggest that our new behavioural paradigm is well adapted to PTSD study in mice, and that early stress exposure may have an impact on propranolol PTSD treatment outcome. These data are critical to understanding the effect of propranolol treatment, in order to improve the therapeutic protocol currently used in humans. PMID:29352277
Villain, Hélène; Benkahoul, Aïcha; Birmes, Philippe; Ferry, Barbara; Roullet, Pascal
2018-01-01
Post-traumatic stress disorder (PTSD) is a common consequence of exposure to a life-threatening event. Currently, pharmacological treatments are limited by high rates of relapse, and novel treatment approaches are needed. We have recently demonstrated that propranolol, a β-adrenergic antagonist, inhibited aversive memory reconsolidation in animals. Following this, in an open-label study 70% of patients with PTSD treated with propranolol during reactivation of traumatic memory exhibited full remission. However, the reason why 30% of these patients did not respond positively to propranolol treatment is still unclear. One of the major candidates as factor of treatment resistance is the patient's early-life traumatic history. To test the role of this factor, mice with pre- or postnatal stress are being tested in fear conditioning and in a new behavioral task, the "city-like", specifically designed as a mouse model of PTSD. After reactivation of the traumatic event, mice received propranolol injection to block the noradrenergic system during memory reconsolidation. Results show that, in the "city-like" test, control mice strongly avoided the shock compartment but also the compartments containing cues associated with the electric shocks. Injection of propranolol after reactivation greatly reduced the memory of the traumatic event, but this effect was not present when mice had received pre- or postnatal stress. Moreover, propranolol produced only a very weak effect in the fear conditioning test, and never changed the corticosterone level whatever the behavioral experiment. Taken together our results suggest that our new behavioural paradigm is well adapted to PTSD study in mice, and that early stress exposure may have an impact on propranolol PTSD treatment outcome. These data are critical to understanding the effect of propranolol treatment, in order to improve the therapeutic protocol currently used in humans.
NASA Astrophysics Data System (ADS)
Stishkov, Yu. K.; Zakir'yanova, R. E.
2018-04-01
We have solved the problem of injection-type through electrohydrodynamic (EHD) flow in a closed channel. We have considered a model of a liquid with four types of ions. It is shown that a through EHD flow without internal vortices in the electrode gap is formed for the ratio 2 : 1 of the initial injection current from the electrodes in the channel. The structure of the flow in different parts of the channel and the integral characteristics of the flow have been analyzed. It is shown that for a quadratic function of injection at the electrodes, the current-voltage characteristic of the flow is also quadratic.
PAB3D Simulations of a Nozzle with Fluidic Injection for Yaw Thrust-Vector Control
NASA Technical Reports Server (NTRS)
Deere, Karen A.
1998-01-01
An experimental and computational study was conducted on an exhaust nozzle with fluidic injection for yaw thrust-vector control. The nozzle concept was tested experimentally in the NASA Langley Jet Exit Test Facility (JETF) at nozzle pressure ratios up to 4 and secondary fluidic injection flow rates up to 15 percent of the primary flow rate. Although many injection-port geometries and two nozzle planforms (symmetric and asymmetric) were tested experimentally, this paper focuses on the computational results of the more successful asymmetric planform with a slot injection port. This nozzle concept was simulated with the Navier-Stokes flow solver, PAB3D, invoking the Shih, Zhu, and Lumley algebraic Reynolds stress turbulence model (ASM) at nozzle pressure ratios (NPRs) of 2,3, and 4 with secondary to primary injection flow rates (w(sub s)/w(sub p)) of 0, 2, 7 and 10 percent.
2014-01-01
Background Hydrogen sulfide (H2S), an endogenous gaseotransmitter/modulator, is becoming appreciated that it may be involved in a wide variety of processes including inflammation and nociception. However, the role for H2S in nociceptive processing in trigeminal ganglion (TG) neuron remains unknown. The aim of this study was designed to investigate whether endogenous H2S synthesizing enzyme cystathionine-β-synthetase (CBS) plays a role in inflammatory pain in temporomandibular joint (TMJ). Methods TMJ inflammatory pain was induced by injection of complete Freund’s adjuvant (CFA) into TMJ of adult male rats. Von Frey filaments were used to examine pain behavioral responses in rats following injection of CFA or normal saline (NS). Whole cell patch clamp recordings were employed on acutely isolated TG neurons from rats 2 days after CFA injection. Western blot analysis was carried out to measure protein expression in TGs. Results Injection of CFA into TMJ produced a time dependent hyperalgesia as evidenced by reduced escape threshold in rats responding to VFF stimulation. The reduced escape threshold was partially reversed by injection of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor for CBS, in a dose-dependent manner. CFA injection led to a marked upregulation of CBS expression when compared with age-matched controls. CFA injection enhanced neuronal excitability as evidenced by depolarization of resting membrane potentials, reduction in rheobase, and an increase in number of action potentials evoked by 2 and 3 times rheobase current stimulation and by a ramp current stimulation of TG neurons innervating the TMJ area. CFA injection also led to a reduction of IK but not IA current density of TG neurons. Application of AOAA in TMJ area reduced the production of H2S in TGs and reversed the enhanced neural hyperexcitability and increased the IK currents of TG neurons. Conclusion These data together with our previous report indicate that endogenous H2S generating enzyme CBS plays an important role in TMJ inflammation, which is likely mediated by inhibition of IK currents, thus identifying a specific molecular mechanism underlying pain and sensitization in TMJ inflammation. PMID:24490955
Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2010-01-01
Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.
Surgical versus injection treatment for injection-confirmed chronic sacroiliac joint pain
Spiker, William Ryan; Lawrence, Brandon D.; Raich, Annie L.; Skelly, Andrea C.; Brodke, Darrel S.
2012-01-01
Study design: Systematic review. Study rationale: Chronic sacroiliac joint pain (CSJP) is a common clinical entity with highly controversial treatment options. A recent systematic review compared surgery with denervation, but the current systematic review compares outcomes of surgical intervention with therapeutic injection for the treatment of CSJP and serves as the next step for evaluating current evidence on the comparative effectiveness of treatments for non-traumatic sacroiliac joint pain. Objective or clinical question: In adult patients with injection-confirmed CSJP, does surgical treatment lead to better outcomes and fewer complications than injection therapy? Methods: A systematic review of the English-language literature was undertaken for articles published between 1970 and June 2012. Electronic databases and reference lists of key articles were searched to identify studies evaluating surgery or injection treatment for injection-confirmed CSJP. Studies involving traumatic onset or non-injection–confirmed CSJP were excluded. Two independent reviewers assessed the level of evidence quality using the grading of recommendations assessment, development and evaluation (GRADE) system, and disagreements were resolved by consensus. Results: We identified twelve articles (seven surgical and five injection treatment) meeting our inclusion criteria. Regardless of the type of treatment, most studies reported over 40% improvement in pain as measured by Visual Analog Scale or Numeric rating Scale score. Regardless of the type of treatment, most studies reported over 20% improvement in functionality. Most complications were reported in the surgical studies. Conclusion: Surgical fusion and therapeutic injections can likely provide pain relief, improve quality of life, and improve work status. The comparative effectiveness of these interventions cannot be evaluated with the current literature. PMID:23526911
Overview and First Results of an In-situ Stimulation Experiment in Switzerland
NASA Astrophysics Data System (ADS)
Amann, F.; Gischig, V.; Doetsch, J.; Jalali, M.; Valley, B.; Evans, K. F.; Krietsch, H.; Dutler, N.; Villiger, L.
2017-12-01
A decameter-scale in-situ stimulation and circulation (ISC) experiment is currently being conducted at the Grimsel Test Site in Switzerland with the objective of improving our understanding of key seismo-hydro-mechanical coupled processes associated with high pressure fluid injections in a moderately fractured crystalline rock mass. The ISC experiment activities aim to support the development of EGS technology by 1) advancing the understanding of fundamental processes that occur within the rock mass in response to relatively large-volume fluid injections at high pressures, 2) improving the ability to estimate and model induced seismic hazard and risks, 3) assessing the potential of different injection protocols to keep seismic event magnitudes below an acceptable threshold, 4) developing novel monitoring and imaging techniques for pressure, temperature, stress, strain and displacement as well as geophysical methods such as ground penetration radar, passive and active seismic and 5) generating a high-quality benchmark datasets that facilitates the development and validation of numerical modelling tools. The ISC experiment includes six fault slip and five hydraulic fracturing experiments at an intermediate scale (i.e. 20*20*20m) at 480m depth, which allows high resolution monitoring of the evolution of pore pressure in the stimulated fault zone and the surrounding rock matrix, fault dislocations including shear and dilation, and micro-seismicity in an exceptionally well characterized structural setting. In February 2017 we performed the fault-slip experiments on interconnected faults. Subsequently an intense phase of post-stimulation hydraulic characterization was performed. In Mai 2017 we performed hydraulic fracturing tests within test intervals that were free of natural fractures. In this contribution we give an overview and show first results of the above mentioned stimulation tests.
Bates, M L Shawn; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana
2014-09-01
Adolescent opioid abuse is on the rise, and current treatments are not effective in reducing rates of relapse. Our previous studies demonstrated that social housing conditions alter the acquisition rate of morphine conditioned place preference (CPP) in adolescent mice. Specifically, the acquisition rate of morphine CPP is slower in morphine-treated animals housed with drug-naïve animals. Thus, here we tested the effect of social housing conditions on the development of morphine dependence and the extinction rate of an acquired morphine CPP. Adolescent male mice were group-housed in one of two housing conditions. They were injected for 6 days (PND 28-33) with 20 mg/kg morphine. Morphine only mice are animals where all four mice in the cage received morphine. Morphine cage-mate mice are morphine-injected animals housed with drug-naïve animals. Mice were individually tested for spontaneous withdrawal signs by quantifying jumping behavior 4, 8, 24, and 48 h after the final morphine injection. Then, mice were conditioned to acquire morphine CPP and were tested for the rate of extinction. Morphine cage-mates express less jumping behavior during morphine withdrawal as compared to morphine only mice. As expected, morphine cage-mate animals acquired morphine CPP more slowly than the morphine only animals. Additionally, morphine cage-mates extinguished morphine CPP more readily than morphine only mice. Social housing conditions modulate morphine dependence and the extinction rate of morphine CPP. Extinction testing is relevant to human addiction because rehabilitations like extinction therapy may be used to aid human addicts in maintaining abstinence from drug use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goodman, H.
2017-12-01
This investigation seeks to develop sealant technology that can restore containment to completed wells that suffer CO2 gas leakages currently untreatable using conventional technologies. Experimentation is performed at the Mont Terri Underground Research Laboratory (MT-URL) located in NW Switzerland. The laboratory affords investigators an intermediate-scale test site that bridges the gap between the laboratory bench and full field-scale conditions. Project focus is the development of CO2 leakage remediation capability using sealant technology. The experimental concept includes design and installation of a field scale completion package designed to mimic well systems heating-cooling conditions that may result in the development of micro-annuli detachments between the casing-cement-formation boundaries (Figure 1). Of particular interest is to test novel sealants that can be injected in to relatively narrow micro-annuli flow-paths of less than 120 microns aperture. Per a special report on CO2 storage submitted to the IPCC[1], active injection wells, along with inactive wells that have been abandoned, are identified as one of the most probable sources of leakage pathways for CO2 escape to the surface. Origins of pressure leakage common to injection well and completions architecture often occur due to tensile cracking from temperature cycles, micro-annulus by casing contraction (differential casing to cement sheath movement) and cement sheath channel development. This discussion summarizes the experiment capability and sealant testing results. The experiment concludes with overcoring of the entire mock-completion test site to assess sealant performance in 2018. [1] IPCC Special Report on Carbon Dioxide Capture and Storage (September 2005), section 5.7.2 Processes and pathways for release of CO2 from geological storage sites, page 244
Control and monitoring method and system for electromagnetic forming process
Kunerth, Dennis C.; Lassahn, Gordon D.
1990-01-01
A process, system, and improvement for a process for electromagnetic forming of a workpiece in which characteristics of the workpiece such as its geometry, electrical conductivity, quality, and magnetic permeability can be determined by monitoring the current and voltage in the workcoil. In an electromagnet forming process in which a power supply provides current to a workcoil and the electromagnetic field produced by the workcoil acts to form the workpiece, the dynamic interaction of the electromagnetic fields produced by the workcoil with the geometry, electrical conductivity, and magnetic permeability of the workpiece, provides information pertinent to the physical condition of the workpiece that is available for determination of quality and process control. This information can be obtained by deriving in real time the first several time derivatives of the current and voltage in the workcoil. In addition, the process can be extended by injecting test signals into the workcoil during the electromagnetic forming and monitoring the response to the test signals in the workcoil.
[Management and new current French recommendations for tetanus care].
Nicolai, Dominique; Farcet, Anaïs; Molines, Catherine; Delalande, Géraldine; Retornaz, Frédérique
2015-06-01
Tetanus is an acute severe disease induced by an exotoxin, often lethal. All cases occur in untreated or inadequately vaccinated patients and mainly in elderly patients who accumulate many risk factors. The current management of wounds faced difficulties in the assessment of immunization status and wound risks status. Indeed, all injuries can potentially lead to tetanus. Minor risks and chronic wounds are mainly found as tetanus cause. Vaccination remains the key element in reducing the morbidity and mortality associated with tetanus. It is estimated that the vaccine's coverage is fairly good, but decreases with age. To improve tetanus prevention, new vaccine recommendations have been established which recommend vaccine's injections at fixed age, but their impact seems to be limited especially in the elderly. The immunochromatographic tests have demonstrated cost-effectiveness in the Emergency department settings. They are currently not available outside hospital while general practionners also face a significant risk. Effectiveness of these tests should be studied in outpatients population including cost-effectiveness.
Guan, Yue Hugh; Hewitson, Peter; van den Heuvel, Remco N A M; Zhao, Yan; Siebers, Rick P G; Zhuang, Ying-Ping; Sutherland, Ian
2015-12-11
Manufacturing high-value added biotech biopharmaceutical products (e.g. therapeutic proteins) requires quick-to-develop, GMP-compliant, easy-to-scale and cost effective preparatory chromatography technologies. In this work, we describe the construction and testing of a set of 5-mm inner diameter stainless steel toroidal columns for use on commercially available preparatory scale synchronous J-type counter-current chromatography (CCC) machinery. We used a 20.2m long column with an aqueous two-phase system containing 14% (w/w) PEG1000 and 14% (w/w) potassium phosphate at pH 7, and tested a sample loading of 5% column volume and a mobile phase flow rate of 20ml/min. We then satisfactorily demonstrated the potential for a weekly protein separation and preparation throughput of ca. 11g based on a normal weekly routine for separating a pair of model proteins by making five stacked injections on a single portion of stationary phase with no stripping. Compared to our previous 1.6mm bore PTFE toroidal column, the present columns enlarged the nominal column processing throughput by nearly 10. For an ideal model protein injection modality, we observed a scaling up factor of at least 21. The 2 scales of protein separation and purification steps were realized on the same commercial CCC device. Copyright © 2015 Elsevier B.V. All rights reserved.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
NASA Astrophysics Data System (ADS)
Parke, E.; Anderson, J. K.; Brower, D. L.; Den Hartog, D. J.; Ding, W. X.; Johnson, C. A.; Lin, L.
2016-05-01
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q0 by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].
Ricard, Clément; Stanchi, Fabio; Rougon, Geneviève; Debarbieux, Franck
2014-04-21
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors with no curative treatments available to date. Murine models of this pathology rely on the injection of a suspension of glioma cells into the brain parenchyma following incision of the dura-mater. Whereas the cells have to be injected superficially to be accessible to intravital two-photon microscopy, superficial injections fail to recapitulate the physiopathological conditions. Indeed, escaping through the injection tract most tumor cells reach the extra-dural space where they expand abnormally fast in absence of mechanical constraints from the parenchyma. Our improvements consist not only in focally implanting a glioma spheroid rather than injecting a suspension of glioma cells in the superficial layers of the cerebral cortex but also in clogging the injection site by a cross-linked dextran gel hemi-bead that is glued to the surrounding parenchyma and sealed to dura-mater with cyanoacrylate. Altogether these measures enforce the physiological expansion and infiltration of the tumor cells inside the brain parenchyma. Craniotomy was finally closed with a glass window cemented to the skull to allow chronic imaging over weeks in absence of scar tissue development. Taking advantage of fluorescent transgenic animals grafted with fluorescent tumor cells we have shown that the dynamics of interactions occurring between glioma cells, neurons (e.g. Thy1-CFP mice) and vasculature (highlighted by an intravenous injection of a fluorescent dye) can be visualized by intravital two-photon microscopy during the progression of the disease. The possibility to image a tumor at microscopic resolution in a minimally compromised cerebral environment represents an improvement of current GBM animal models which should benefit the field of neuro-oncology and drug testing.
Preliminary Development and Testing of a Self-Injecting Gallium MPD Thruster
NASA Technical Reports Server (NTRS)
Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.
2008-01-01
Discharge current and terminal voltage measurements were performed on a gallium electromagnetic thruster at discharge currents in the range of 20-54 kA. It was found that the arc impedance has a value of 6-7 m(Omega) at peak current. The absence of high-frequency oscillations in the terminal voltage trace indicates lack of the "onset" condition often seen in MPD arcs, suggesting that a sufficient number of charge carriers are present for current conduction. The mass ablated per pulse was not measured experimentally; however the mass flow rate was calculated using an ion current assumption and an anode power balance. Measurement of arc impedance predicts a temperature of 3.5 eV which from Saha equilibrium corresponds to Z = 2.0 - 3.5, and assuming Z = 2 yields an Isp of 3000 s and thrust efficiency of 50%.
Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Pachicano, Jessica L. [University of Wisconsin-Madison] (ORCID:0000000207255693); Pierren, Christopher [University of Wisconsin-Madison] (ORCID:0000000228289825); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Rhodes, Alexander T. [University of Wisconsin-Madison] (ORCID:0000000280735714); Richner, Nathan J. [University of Wisconsin-Madison] (ORCID:0000000155443915); Rodriguez Sanchez, Cuauhtemoc [University of Wisconsin-Madison] (ORCID:0000000334712586); Schaefer, Carolyn E. [University of Wisconsin-Madison] (ORCID:0000000248848727); Weberski, Justin D. [University of Wisconsin-Madison] (ORCID:0000000256267914)
2018-05-22
This public data set contains openly-documented, machine readable digital research data corresponding to figures published in J.M. Perry et al., 'Initiation and Sustainment of Tokamak Plasmas with Local Helicity Injection as the Majority Current Drive,' accepted for publication in Nuclear Fusion.
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, W.D.; Ramirez, A.L.
1999-06-22
An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.
Electrical resistance tomography using steel cased boreholes as electrodes
Daily, William D.; Ramirez, Abelardo L.
1999-01-01
An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.
NASA Astrophysics Data System (ADS)
Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo
2018-06-01
In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.
NASA Astrophysics Data System (ADS)
Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.
2015-11-01
Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.
Millar, A M; O'Brien, L M
1998-05-01
Reports have suggested that when sodium chloride injections from a plastic ampoule are used during the preparation of 99Tcm-mercaptoacetyltriglycine (99Tcm-MAG3), the radiochemical purity of the final product might be reduced. A study was therefore undertaken to examine the effect of sodium chloride injections from five manufacturers on the radiochemical purity and stability of 99Tcm-MAG3. One sodium chloride injection was supplied in a glass vial, three in plastic ampoules and one in a plastic infusion bag. Three batches of sodium chloride injections from each manufacturer were tested. The radiopharmaceutical was prepared at a radioactive concentration of 1.1 GBq in 10 ml according to the instructions of the manufacturer of TechneScan MAG3. Analysis of radiochemical purity was performed by high-performance liquid chromatography immediately after preparation and 6 h later. Using 95% as the minimum acceptable radiochemical purity, all the products were satisfactory over the 6 h test period. No manufacturer's sodium chloride injection was found to have a statistically significant effect on the radiochemical purity. Based on the 15 batches of sodium chloride injection tested, this study cannot confirm that sodium chloride injections from a plastic container affect the radiochemical purity of 99Tcm-MAG3. However, in view of the known sensitivity of some 99Tcm radiopharmaceuticals to external influences, it is probably good practice to test radiochemical purity when new batches of ancillary materials, such as sodium chloride injections, are introduced.
Klonoff, David; Nayberg, Irina; Thonius, Marissa; See, Florian; Abdel-Tawab, Mona; Erbstein, Frank; Haak, Thomas
2015-08-26
To deliver insulin glargine 300 U/mL (Gla-300), the widely used SoloSTAR(®) pen has been modified to allow for accurate and precise delivery of required insulin units in one-third of the volume compared with insulin glargine 100 U/mL, while improving usability. Here we compare the accuracy and injection force of 3 disposable insulin pens: Gla-300 SoloSTAR(®), FlexPen(®), and KwikPen™. For the accuracy assessment, 60 of each of the 3 tested devices were used for the delivery of 3 different doses (1 U, half-maximal dose, and maximal dose), which were measured gravimetrically. For the injection force assessment, 20 pens of each of the 3 types were tested twice at half-maximal and once at maximal dose, at an injection speed of 6 U/s. All tested pens met the International Organization for Standardization (ISO) requirements for dosing accuracy, with Gla-300 SoloSTAR showing the lowest between-dose variation (greatest reproducibility) at all dose levels. Mean injection force was significantly lower for Gla-300 SoloSTAR than for the other 2 pens at both half maximal and maximal doses (P < .0271). All tested pens were accurate according to ISO criteria, and the Gla-300 SoloSTAR pen displayed the greatest reproducibility and lowest injection force of any of the 3 tested devices. © 2015 Diabetes Technology Society.
A Combined Ethical and Scientific Analysis of Large-scale Tests of Solar Climate Engineering
NASA Astrophysics Data System (ADS)
Ackerman, T. P.
2017-12-01
Our research group recently published an analysis of the combined ethical and scientific issues surrounding large-scale testing of stratospheric aerosol injection (SAI; Lenferna et al., 2017, Earth's Future). We are expanding this study in two directions. The first is extending this same analysis to other geoengineering techniques, particularly marine cloud brightening (MCB). MCB has substantial differences to SAI in this context because MCB can be tested over significantly smaller areas of the planet and, following injection, has a much shorter lifetime of weeks as opposed to years for SAI. We examine issues such as the role of intent, the lesser of two evils, and the nature of consent. In addition, several groups are currently considering climate engineering governance tools such as a code of ethics and a registry. We examine how these tools might influence climate engineering research programs and, specifically, large-scale testing. The second direction of expansion is asking whether ethical and scientific issues associated with large-scale testing are so significant that they effectively preclude moving ahead with climate engineering research and testing. Some previous authors have suggested that no research should take place until these issues are resolved. We think this position is too draconian and consider a more nuanced version of this argument. We note, however, that there are serious questions regarding the ability of the scientific research community to move to the point of carrying out large-scale tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, K.; Doughty, C.
2010-01-15
Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns tomore » fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).« less
Spacecraft Fire Suppression: Testing and Evaluation
NASA Technical Reports Server (NTRS)
Abbud-Madrid, Angel; McKinnon, J. Thomas; Delplanque, Jean-Pierre; Kailasanath, Kazhikathra; Gokoglu, Suleyman; Wu, Ming-Shin
2004-01-01
The objective of this project is the testing and evaluation of the effectiveness of a variety of fire suppressants and fire-response techniques that will be used in the next generation of spacecraft (Crew Exploration Vehicle, CEV) and planetary habitats. From the many lessons learned in the last 40 years of space travel, there is common agreement in the spacecraft fire safety community that a new fire suppression system will be needed for the various types of fire threats anticipated in new space vehicles and habitats. To date, there is no single fire extinguishing system that can address all possible fire situations in a spacecraft in an effective, reliable, clean, and safe way. The testing conducted under this investigation will not only validate the various numerical models that are currently being developed, but it will provide new design standards on fire suppression that can then be applied to the next generation of spacecraft extinguishment systems. The test program will provide validation of scaling methods by conducting small, medium, and large scale fires. A variety of suppression methods will be tested, such as water mist, carbon dioxide, and nitrogen with single and multiple injection points and direct or distributed agent deployment. These injection methods cover the current ISS fire suppression method of a portable hand-held fire extinguisher spraying through a port in a rack and also next generation spacecraft units that may have a multi-point suppression delivery system built into the design. Consideration will be given to the need of a crew to clean-up the agent and recharge the extinguishers in flight in a long-duration mission. The fire suppression methods mentioned above will be used to extinguish several fire scenarios that have been identified as the most relevant to spaceflight, such as overheated wires, cable bundles, and circuit boards, as well as burning cloth and paper. Further testing will be conducted in which obstructions and ventilation will be added to represent actual spacecraft conditions (e.g., a series of cards in a card rack).
NASA Astrophysics Data System (ADS)
Cetiner, S. O.; Stoltz, P.; Messmer, P.; Cambier, J.-L.
2008-01-01
The prebreakdown and breakdown phases of a pseudospark discharge are investigated using the two-dimensional kinetic plasma simulation code OOPIC™ PRO. Trends in the peak electron current at the anode are presented as function of the hollow cathode dimensions and mean seed injection velocities at the cavity back wall. The plasma generation process by ionizing collisions is examined, showing the effect on supplying the electrons that determine the density of the beam. The mean seed velocities used here are varied between the velocity corresponding to the energy of peak ionization cross section, 15 times this value and no mean velocity (i.e., electrons injected with a temperature of 2.5eV). The reliance of the discharge characteristics on the penetrating electric field is shown to decrease as the mean seed injection velocity increases because of its ability to generate a surplus plasma independent of the virtual anode. As a result, the peak current increases with the hollow cathode dimensions for the largest average injection velocity, while for the smallest value it increases with the area of penetration of the electric field in the hollow cathode interior. Additionally, for a given geometry an increase in the peak current with the surplus plasma generated is observed. For the largest seed injection velocity used a dependence of the magnitude of the peak current on the ratio of the hole thickness and hollow cathode depth to the hole height is demonstrated. This means similar trends of the peak current are generated when the geometry is resized. Although the present study uses argon only, the variation in the discharge dependencies with the seed injection energy relative to the ionization threshold is expected to apply independently of the gas type. Secondary electrons due to electron and ion impact are shown to be important only for the largest impact areas and discharge development times of the study.
Methods of Helium Injection and Removal for Heat Transfer Augmentation
NASA Technical Reports Server (NTRS)
Haight, Harlan; Kegley, Jeff; Bourdreaux, Meghan
2008-01-01
While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives usually involve simulation of an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Cryogenic Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.
Methods of Helium Injection and Removal for Heat Transfer Augmentation
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey
2008-01-01
While augmentation of heat transfer from a test article by helium gas at low pressures is well known, the method is rarely employed during space simulation testing because the test objectives are to simulate an orbital thermal environment. Test objectives of cryogenic optical testing at Marshall Space Flight Center's X-ray Calibration Facility (XRCF) have typically not been constrained by orbital environment parameters. As a result, several methods of helium injection have been utilized at the XRCF since 1999 to decrease thermal transition times. A brief synopsis of these injection (and removal) methods including will be presented.
Vail, III, William B.
1993-01-01
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Vail, W.B. III.
1993-02-16
A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.
Differential effects of context on psychomotor sensitization to ethanol and cocaine.
Didone, Vincent; Quoilin, Caroline; Dieupart, Julie; Tirelli, Ezio; Quertemont, Etienne
2016-04-01
Repeated drug injections lead to sensitization of their stimulant effects in mice, a phenomenon sometimes referred to as drug psychomotor sensitization. Previous studies showed that sensitization to cocaine is context dependent as its expression is reduced in an environment that was not paired with cocaine administration. In contrast, the effects of the test context on ethanol sensitization remain unclear. In the present study, female OF1 mice were repeatedly injected with 1.5 g/kg ethanol to test for both the effects of context novelty/familiarity and association on ethanol sensitization. A first group of mice was extensively pre-exposed to the test context before ethanol sensitization and ethanol injections were paired with the test context (familiar and paired group). A second group was not pre-exposed to the test context, but ethanol injections were paired with the test context (nonfamiliar and paired group). Finally, a third group of mice was not pre-exposed to the test context and ethanol was repeatedly injected in the home cage (unpaired group). Control groups were similarly exposed to the test context, but were injected with saline. In a second experiment, cocaine was used as a positive control. The same behavioral procedure was used, except that mice were injected with 10 mg/kg cocaine instead of ethanol. The results show a differential involvement of the test context in the sensitization to ethanol and cocaine. Cocaine sensitization is strongly context dependent and is not expressed in the unpaired group. In contrast, the expression of ethanol sensitization is independent of the context in which it was administered, but is strongly affected by the relative novelty/familiarity of the environment. Extensive pre-exposure to the test context prevented the expression of ethanol sensitization. One possible explanation is that expression of ethanol sensitization requires an arousing environment.
Sinno, Sammy; Mehta, Karan; Reavey, Patrick L; Simmons, Christopher; Stuzin, James M
2015-07-01
Fat grafting can be used to improve the results of face lifting. The extent to which plastic surgeons use fat grafting in their face-lift practices is unknown. The goals of this study were to understand the current use of fat grafting during facial rejuvenation surgery and identify the most common techniques used. A 28-item questionnaire was formulated for distribution to a randomized cohort of American Society of Plastic Surgeons members. Data were collected and statistically analyzed using Pearson chi-square and Fisher's exact tests. A total of 309 questionnaires were collected. The questionnaire revealed that 85.2 percent of respondents use fat grafting during face lifts. Currently, the most common techniques used include abdominal harvest, centrifuge processing, blunt cannula injection without pretunneling, and placing less than 0.1 cc per pass. The deep central malar, lower lid cheek junction, and nasolabial folds are the most commonly injected areas. Combining surgical repositioning of fat with fat grafting offers surgeons a greater degree of aesthetic control for correcting contour in the aging face. Although there is controversy regarding the best method to surgically reposition fat, there is a growing consensus that volume augmentation is preferred by most face-lift surgeons.
Designing optimal stimuli to control neuronal spike timing
Packer, Adam M.; Yuste, Rafael; Paninski, Liam
2011-01-01
Recent advances in experimental stimulation methods have raised the following important computational question: how can we choose a stimulus that will drive a neuron to output a target spike train with optimal precision, given physiological constraints? Here we adopt an approach based on models that describe how a stimulating agent (such as an injected electrical current or a laser light interacting with caged neurotransmitters or photosensitive ion channels) affects the spiking activity of neurons. Based on these models, we solve the reverse problem of finding the best time-dependent modulation of the input, subject to hardware limitations as well as physiologically inspired safety measures, that causes the neuron to emit a spike train that with highest probability will be close to a target spike train. We adopt fast convex constrained optimization methods to solve this problem. Our methods can potentially be implemented in real time and may also be generalized to the case of many cells, suitable for neural prosthesis applications. With the use of biologically sensible parameters and constraints, our method finds stimulation patterns that generate very precise spike trains in simulated experiments. We also tested the intracellular current injection method on pyramidal cells in mouse cortical slices, quantifying the dependence of spiking reliability and timing precision on constraints imposed on the applied currents. PMID:21511704
Design and Testing of Trace Contaminant Injection and Monitoring Systems
NASA Technical Reports Server (NTRS)
Broerman, Craig D.; Sweterlitsch, Jeff
2009-01-01
In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.
Galay, Remil Linggatong; Matsuo, Tomohide; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Kusakisako, Kodai; Umemiya-Shirafuji, Rika; Mochizuki, Masami; Fujisaki, Kozo; Tanaka, Tetsuya
2018-04-01
Due to the continuous threat of ticks and tick-borne diseases to human and animal health worldwide, and the drawbacks of chemical acaricide application, many researchers are exploring vaccination as an alternative tick control method. Earlier studies have shown that host antibodies can circulate in the ticks, but it has not been confirmed whether these antibodies can be passed on to the eggs. We previously reported that ticks infesting rabbits immunized with a recombinant secretory ferritin of Haemaphysalis longicornis (HlFER2) had reduced egg production and hatching. Here we attempted to detect the presence of antibodies against HlFER2 in the ovary and eggs of female ticks through immunofluorescent visualization. Purified anti-HlFER2 antibodies or rabbit IgG for control was directly injected to engorged female H. longicornis. Ovaries and eggs after oviposition were collected and prepared for an indirect immunofluorescent antibody test. Positive fluorescence was detected in ovaries one day post-injection of anti-HlFER2 antibodies. Through silencing of Hlfer2 gene, we also determined whether the injected antibodies can specifically bind to native HlFER2. Immunofluorescence was observed in the oocytes of dsLuciferase control ticks injected with anti-HlFER2 antibodies, but not in the oocytes of Hlfer2-silenced ticks also injected with anti-HlFER2 antibodies. Our current findings suggest that host antibodies can be passed on to the oocytes, which is significant in formulating a vaccine that can disrupt tick reproduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Ranolazine attenuation of CFA-induced mechanical hyperalgesia.
Casey, Gregory P; Roberts, Jomar S; Paul, Dennis; Diamond, Ivan; Gould, Harry J
2010-01-01
To determine whether ranolazine, a new anti-angina medication, could be an effective analgesic agent in complete Freund's adjuvant-induced inflammatory pain. Plantar injection of complete Freund's adjuvant (CFA) produces an extended period of hyperalgesia that is associated with a dramatic up-regulation of Na(v) 1.7 sodium channels in populations of large and small dorsal root ganglion neurons related to the injection site. Ranolazine appears to produce its anti-angina effect through blocking the late sodium current associated with the voltage-gated sodium channel, Na(v) 1.5. Because ranolazine also inhibits Na(v) 1.7, and 1.8, we sought to determine whether it could be an effective analgesic agent in CFA-induced inflammatory pain. Baseline determinations of withdrawal from thermal and mechanical stimulation were made in Sprague-Dawley rats ( approximately 300-350 x g). Following determination of baseline, one hindpaw in each group was injected with 0.1 mL of CFA. The contralateral paw received saline. Thermal and mechanical stimulation was repeated on the third day post-injection. Vehicle (0.9% isotonic saline; pH 3.0) or ranolazine was then administered in randomized and blinded doses either by intraperitoneal (ip) injection (0, 10, 20, and 50 mg/kg) or by oral gavage (po; 0, 20, 50, 100, and 200 mg/kg). Animals were again tested 30 minutes (ip) and 1 hour (po) after drug administration. Ranolazine produced dose-dependant analgesia on mechanical allodynia induced by CFA injection, but had no effect on thermal hyperalgesia. Ranolazine's potential as a new option for managing both angina and chronic inflammatory pain warrants further study.
The new Section 23 of DO160C/ED14C lightning testing of externally mounted electrical equipment
NASA Astrophysics Data System (ADS)
Burrows, B. J. C.
1991-08-01
The new Section 23 is introduced which has only very recently been fully approved by the RTCA for incorporation into the first revision of DO160C/ED14C. Full threat lightning direct effects testing of equipment is entirely new to DO160, the only existing lightning testing is transient testing for LRU's (Line Replaceable Units) by pin or cable bundle injection methods, for equipment entirely contained within the airframe and assumed to be unaffected by direct effects. This testing required transients of very low amplitude compared with lightning itself, whereas the tests now to be described involve full threat lightning testing, that is using the previously established severe parameters of lightning appropriate to the Zone, such as 200 kA for Zone 1A as in AC20-136. Direct effects (i.e., damage) testing involves normally the lightning current arc attaching to the object under test (or very near to it) so submitting it to full potential for the electric, mechanical, thermal and shock damage which is caused by high current arcing. Since equipment for any part of the airframe require qualification, tests to demonstrate safety of equipment in fuel vapor regions of the airframe are also included.
Zhang, Guoliang; Shi, Geming; Tan, Huibing; Kang, Yunxiao; Cui, Huixian
2011-04-01
Currently, testosterone (T) replacement therapy is typically provided by oral medication, injectable T esters, surgically implanted T pellets, transdermal patches and gels. However, most of these methods of administration are still not ideal for targeting the central nervous system. Recently, therapeutic intranasal T administration (InT) has been considered as another option for delivering T to the brain. In the present study, the effects of 21-day InT treatment were assessed on open field behavior in gonadectomized (GDX) rats and intact rats. Subcutaneous injections of T at same dose were also tested in GDX rats. A total of 12 behavioral events were examined in GDX groups with or without T and in intact groups with or without InT. Significant decreases in open field activity were observed in rats after GDX without InT compared to sham-operated rats. The open field activity scores for most tests significantly increased with InT treatment in GDX rats and in intact rats compared with the corresponding GDX rats and intact rats. Intranasal administration of T improved the reduced behaviors resulted from T deficiency better than subcutaneous injection of T, demonstrating that T can be delivered to the brain by intranasal administration. Our results suggest that intranasal T delivery is an effective option for targeting the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.
2016-05-01
Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.
Assessment of regional management strategies for controlling seawater intrusion
Reichard, E.G.; Johnson, T.A.
2005-01-01
Simulation-optimization methods, applied with adequate sensitivity tests, can provide useful quantitative guidance for controlling seawater intrusion. This is demonstrated in an application to the West Coast Basin of coastal Los Angeles that considers two management options for improving hydraulic control of seawater intrusion: increased injection into barrier wells and in lieu delivery of surface water to replace current pumpage. For the base-case optimization analysis, assuming constant groundwater demand, in lieu delivery was determined to be most cost effective. Reduced-cost information from the optimization provided guidance for prioritizing locations for in lieu delivery. Model sensitivity to a suite of hydrologic, economic, and policy factors was tested. Raising the imposed average water-level constraint at the hydraulic-control locations resulted in nonlinear increases in cost. Systematic varying of the relative costs of injection and in lieu water yielded a trade-off curve between relative costs and injection/in lieu amounts. Changing the assumed future scenario to one of increasing pumpage in the adjacent Central Basin caused a small increase in the computed costs of seawater intrusion control. Changing the assumed boundary condition representing interaction with an adjacent basin did not affect the optimization results. Reducing the assumed hydraulic conductivity of the main productive aquifer resulted in a large increase in the model-computed cost. Journal of Water Resources Planning and Management ?? ASCE.
NASA Astrophysics Data System (ADS)
Kazemiroodsari, Hadi
Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.
Sypsa, Vana; Paraskevis, Dimitrios; Malliori, Meni; Nikolopoulos, Georgios K.; Panopoulos, Anastasios; Kantzanou, Maria; Katsoulidou, Antigoni; Psichogiou, Mina; Fotiou, Anastasios; Pharris, Anastasia; Van De Laar, Marita; Wiessing, Lucas; Jarlais, Don Des; Friedman, Samuel R.
2015-01-01
Objectives. We examined HIV prevalence and risk factors among injection drug users (IDUs) in Athens, Greece, during an HIV outbreak. Methods. We used respondent-driven sampling (RDS) to recruit 1404 IDUs to the Aristotle intervention in August to October 2012. We interviewed participants and tested for HIV. We performed bivariate and multivariate analyses. Results. Estimated HIV prevalence was 19.8% (RDS-weighted prevalence = 14.8%). Odds of infection were 2.3 times as high in homeless as in housed IDUs and 2.1 times as high among IDUs who injected at least once per day as among less frequent injectors (both, P < .001). Six percent of men and 23.5% of women reported transactional sex in the past 12 months, and condom use was low. Intercourse with non-IDUs was common (53.2% of men, 25.6% of women). Among IDUs who had been injecting for 2 years or less the estimated incidence rate was 23.4 new HIV cases per 100 person-years at risk. Conclusions. Efforts to reduce HIV transmission should address homelessness as well as scaling up prevention services, such as needle and syringe distribution and other risk reduction interventions. PMID:24524508
A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.
Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-11-21
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
Diffusion of drag-reducing polymer solutions within a rough-walled turbulent boundary layer
NASA Astrophysics Data System (ADS)
Elbing, Brian R.; Dowling, David R.; Perlin, Marc; Ceccio, Steven L.
2010-04-01
The influence of surface roughness on diffusion of wall-injected, drag-reducing polymer solutions within a turbulent boundary layer was studied with a 0.94 m long flat-plate test model at speeds of up to 10.6 m s-1 and Reynolds numbers of up to 9×106. The surface was hydraulically smooth, transitionally rough, or fully rough. Mean concentration profiles were acquired with planar laser induced fluorescence, which was the primary flow diagnostic. Polymer concentration profiles with high injection concentrations (≥1000 wppm) had the peak concentration shifted away from the wall, which was partially attributed to a lifting phenomenon. The diffusion process was divided into three zones—initial, intermediate, and final. Studies of polymer injection into a polymer ocean at concentrations sufficient for maximum drag reduction indicated that the maximum initial zone length is of the order of 100 boundary layer thicknesses. The intermediate zone results indicate that friction velocity and roughness height are important scaling parameters in addition to flow and injection conditions. Lastly, the current results were combined with those in Petrie et al. ["Polymer drag reduction with surface roughness in flat-plate turbulent boundary layer flow," Exp. Fluids 35, 8 (2003)] to demonstrate that the influence of polymer degradation increases with increased surface roughness.
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
Filling behaviour of wood plastic composites
NASA Astrophysics Data System (ADS)
Duretek, I.; Lucyshyn, T.; Holzer, C.
2017-01-01
Wood plastic composites (WPC) are a young generation of composites with rapidly growing usage within the plastics industry. The advantages are the availability and low price of the wood particles, the possibility of partially substituting the polymer in the mixture and sustainable use of the earth’s resources. The current WPC products on the market are to a large extent limited to extruded products. Nowadays there is a great interest in the market for consumer products in more use of WPC as an alternative to pure thermoplastics in injection moulding processes. This work presents the results of numerical simulation and experimental visualisation of the mould filling process in injection moulding of WPC. The 3D injection moulding simulations were done with the commercial software package Autodesk® Moldflow® Insight 2016 (AMI). The mould filling experiments were conducted with a box-shaped test part. In contrast to unfilled polymers the WPC has reduced melt elasticity so that the fountain flow often does not develop. This results in irregular flow front shapes in the moulded part, especially at high filler content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parini, Mauro; Acuna, Jorge A.; Laudiano, Michele
1996-01-24
The first 55 MW power plant at Miravalles started operation in March, 1994. During the first few months of production, a gradual increase in chloride content was observed in some production wells. The cause was assumed to be a rapid return of injectate from two in.jection wells located fairly near to the main production area. A tracer test was performed and showed a relatively rapid breakthrough, confirming the assumption made. Numerical modeling was then carried out to try to reproduce the observed behavior. The reservoir was modelled with an idealized three-dimensional network of fractures embedded into a low permeability matrix.more » The “two waters” feature of TOUGH2 simulator was used. The numerical simulation showed good agreement with observations. A “porous medium” model with equivalent hydraulic characteristics was unable to reproduce the observations. The fractured model, when applied to investigate the mid and long term expected behavior, indicated a reservoir cooling risk associated to the present injection scheme. Work is currently underway to modify this scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parini, M.; Laudiano, M.; Acuna, J.A.
1996-12-31
The first 55 MW power plant at Miravalles started operation in March, 1994. During the first few months of production, a gradual increase in chloride content was observed in some production wells. The cause was assumed to be a rapid return of injectate from two injection wells located fairly near to the main production area. A tracer test was performed and showed a relatively rapid breakthrough, confirming the assumption made. Numerical modeling was then carried out to try to reproduce the observed behavior. The reservoir was modelled with an idealized three-dimensional network of fractures embedded into a low permeability matrix.more » The {open_quotes}two waters{close_quotes} feature of TOUGH2 simulator was used. The numerical simulation showed good agreement with observations. A {open_quotes}porous medium{close_quotes} model with equivalent hydraulic characteristics was unable to reproduce the observations. The fractured model, when applied to investigate the mid and long term expected behavior, indicated a reservoir cooling risk associated to the present injection scheme. Work is currently underway to modify this scheme.« less
Currents Induced by Injected Charge in Junction Detectors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas
2013-01-01
The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586
Fluidic Thrust Vectoring of an Axisymmetric Exhaust Nozzle at Static Conditions
NASA Technical Reports Server (NTRS)
Wing, David J.; Giuliano, Victor J.
1997-01-01
A sub-scale experimental static investigation of an axisymmetric nozzle with fluidic injection for thrust vectoring was conducted at the NASA Langley Jet Exit Test Facility. Fluidic injection was introduced through flush-mounted injection ports in the divergent section. Geometric variables included injection-port geometry and location. Test conditions included a range of nozzle pressure ratios from 2 to 10 and a range of injection total pressure ratio from no-flow to 1.5. The results indicate that fluidic injection in an axisymmetric nozzle operating at design conditions produced significant thrust-vector angles with less reduction in thrust efficiency than that of a fluidically-vectored rectangular jet. The axisymmetric geometry promoted a pressure relief mechanism around the injection slot, thereby reducing the strength of the oblique shock and the losses associated with it. Injection port geometry had minimal effect on thrust vectoring.
Microseismic Monitoring of the Mounds Drill Cuttings Injection Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branagan, P.T.; Mahrer, K.D.; Moschovidis, Z.A.
This paper describes the microseismic mapping of repeated injections of drill cuttings into two separate formations at a test site near Mounds, OK. Injections were performed in sandstone and shale formations at depths of 830 and 595 m, respectively. Typical injection disposal was simulated using multiple small-volume injections over a three-day period, with long shut-in periods interspersed between the injections. Microseismic monitoring was achieved using a 5-level array of wireline-run, triaxial- accelerometer receivers in a monitor well 76 m from the disposed well. Results of the mapped microseismic locations showed that the disposal domti W= generally aligns with the majormore » horizontal stress with some variations in azimuth and that wide variations in height and length growth occurred with continued injections. These experiments show that the cuttings injection process cm be adequately monitored from a downhole, wireline-run receiver array, thus providing process control and environmental assurance.« less
NASA Astrophysics Data System (ADS)
Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij
2015-03-01
The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.
Park, Sunju; Sun, Seung-Ho
2015-09-01
The aim of the study is to investigate both the single-dose intramuscular injection toxicity and the approximate lethal dose of water-soluble Carthami-flos and Cervi cornu parvum pharmacopuncture (WCFC) in male and female Sprague-Dawley (SD) rats. The study was conducted at Biotoxtech Co. according to the Good Laboratory Practice (GLP) regulation and the toxicity test guidelines of the Ministry of Food and Drug Safety (MFDS) after approval of the Institutional Animal Care and Use Committee. Dosages for the control, high dose, middle dose and low dose groups were 0.5 mL/animal of saline and 0.5, 0.25 and 0.125 mL/animal of WCFC, respectively. WCFC was injected into the muscle of the left femoral region by using a disposable syringe (1 mL, 26 gauge). The general symptoms and mortality were observed 30 minutes, 1, 2, 4, and 6 hours after the first injection and then daily for 14 days after the injection. The body weights of the SD rats were measured on the day of the injection (before injection) and on the third, seventh, and fourteenth days after the injection. Serum biochemical and hematologic tests, necropsy examinations, and histopathologic examinations at the injection site were performed after the observation period. No deaths, abnormal clinical symptoms, or significant weight changes were observed in either male or female SD rats in the control or the test (0.125, 0.25, and 0.5 mL/animal) groups during the observation period. No significant differences in hematology and serum biochemistry and no macroscopic abnormalities at necropsy were found. No abnormal reactions at injection sites were noted on the topical tolerance tests. The results of this single-dose toxicity study show that WCFC is safe, its lethal doses in male and female SD rats being estimated to be higher than 0.5 mL/animal.
NASA Technical Reports Server (NTRS)
Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel
2002-01-01
The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36 fuel injectors and fuel-air mixers that replaced two fuel injectors in a conventional dual-annular combustor. During tests, inlet temperatures were up to 870 K and inlet pressures were up to 5400 kPa. A correlation was developed that related the NOx emissions with the inlet temperature, inlet pressure, fuel-air ratio, and pressure drop. At low-power conditions, fuel staging was used so that high combustion efficiency was obtained with only one-fourth of the fuel injectors flowing. The test facility had optical access, and visual images showed the flame to be very short, approximately 25 mm long.
NASA Astrophysics Data System (ADS)
Gaffney, Kevin P.; Aghaei, Faranak; Battiste, James; Zheng, Bin
2017-03-01
Detection of residual brain tumor is important to evaluate efficacy of brain cancer surgery, determine optimal strategy of further radiation therapy if needed, and assess ultimate prognosis of the patients. Brain MR is a commonly used imaging modality for this task. In order to distinguish between residual tumor and surgery induced scar tissues, two sets of MRI scans are conducted pre- and post-gadolinium contrast injection. The residual tumors are only enhanced in the post-contrast injection images. However, subjective reading and quantifying this type of brain MR images faces difficulty in detecting real residual tumor regions and measuring total volume of the residual tumor. In order to help solve this clinical difficulty, we developed and tested a new interactive computer-aided detection scheme, which consists of three consecutive image processing steps namely, 1) segmentation of the intracranial region, 2) image registration and subtraction, 3) tumor segmentation and refinement. The scheme also includes a specially designed and implemented graphical user interface (GUI) platform. When using this scheme, two sets of pre- and post-contrast injection images are first automatically processed to detect and quantify residual tumor volume. Then, a user can visually examine segmentation results and conveniently guide the scheme to correct any detection or segmentation errors if needed. The scheme has been repeatedly tested using five cases. Due to the observed high performance and robustness of the testing results, the scheme is currently ready for conducting clinical studies and helping clinicians investigate the association between this quantitative image marker and outcome of patients.
A new simple screening method for the detection of paralytic shellfish poisoning toxins
NASA Astrophysics Data System (ADS)
Cheng, Jinping; Pi, Shuaishuai; Ye, Shufeng; Gao, Haomin; Yao, Lei; Jiang, Zhenyi; Song, Yuling; Xi, Lei
2012-09-01
The current testing for paralytic shellfish poisoning (PSP) in shellfish is based on the mouse bioassay (MBA). To alleviate animal welfare concerns, we evaluated the utility of using sublethal indicators of toxicity as an alternative to measuring time to death. Live mice were injected with a PSP congener and the changes in neurotransmitter levels were measured 60, 90, and 120 min after injection. Acetylcholine (ACh) was the most sensitive marker for PSP toxicity. The changes in neurotransmitter levels were most pronounced in the blood. Thus, measurement of Ach levels in the blood may serve as a sensitive predictor for PSP that would not require sacrifice of the mice. This method was relatively simple, sensitive (less than 1 μg/kg weight, equivalent to 20 ng/mL), low maintenance, and rapid (less than 60 min).
NASA Astrophysics Data System (ADS)
Liewald, C.; Reiser, D.; Westermeier, C.; Nickel, B.
2016-08-01
We use a pentacene transistor with asymmetric source drain contacts to test the sensitivity of scanning photocurrent microscopy (SPCM) for contact resistance and charge traps. The drain current of the device strongly depends on the choice of the drain electrode. In one case, more than 94% of the source drain voltage is lost due to contact resistance. Here, SPCM maps show an enhanced photocurrent signal at the hole-injecting contact. For the other bias condition, i.e., for ohmic contacts, the SPCM signal peaks heterogeneously along the channel. We argue from basic transport models that bright areas in SPCM maps indicate areas of large voltage gradients or high electric field strength caused by injection barriers or traps. Thus, SPCM allows us to identify and image the dominant voltage loss mechanism in organic field-effect transistors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Bongjun; Liang, Kelly; Dodabalapur, Ananth, E-mail: ananth.dodabalapur@engr.utexas.edu
We show that double-gate ambipolar thin-film transistors can be operated to enhance minority carrier injection. The two gate potentials need to be significantly different for enhanced injection to be observed. This enhancement is highly beneficial in devices such as light-emitting transistors where balanced electron and hole injections lead to optimal performance. With ambipolar single-walled carbon nanotube semiconductors, we demonstrate that higher ambipolar currents are attained at lower source-drain voltages, which is desired for portable electronic applications, by employing double-gate structures. In addition, when the two gates are held at the same potential, the expected advantages of the double-gate transistors suchmore » as enhanced on-current are also observed.« less
Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests
NASA Astrophysics Data System (ADS)
Brombin, M.; Spolaore, M.; Serianni, G.; Barzon, A.; Franchin, L.; Pasqualotto, R.; Pomaro, N.; Schiesko, L.; Taliercio, C.; Trevisan, L.
2014-02-01
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.
Electrostatic sensors for SPIDER experiment: design, manufacture of prototypes, and first tests.
Brombin, M; Spolaore, M; Serianni, G; Barzon, A; Franchin, L; Pasqualotto, R; Pomaro, N; Schiesko, L; Taliercio, C; Trevisan, L
2014-02-01
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioning tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.
Electrostatic sensors for SPIDER experiment: Design, manufacture of prototypes, and first tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Spolaore, M.; Serianni, G.
2014-02-15
A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature. The first commissioningmore » tests provided ion saturation current values in the range assumed for the design, so the deduced plasma density estimate is consistent with the expected values.« less
NASA Astrophysics Data System (ADS)
Urakoshi, T.; Kawagoe, T.; Ohta, T.
2017-12-01
Effluent from rock muck piles consisting of waste rock, as a by-product of construction, sometimes contains heavy metals that affects human health and environment. Rain is the key to estimate water quality of the effluent because infiltrated rain to piles reacts with minerals of rocks. Thus, we newly proposed a dissolution test, namely cyclic injection test, considering rain events, as the following steps: Firstly, we crushed rock sample to particles of size of between 2 and 20 mm, and filled them into the column with 54 mm in diameter and 300 mm in length. Secondly, we saturated void in the column with pure water. One hour after, we opened a valve of the bottom of the column, and collected effluent. Thirdly, we preserved the column for 14 days. After then, we injected 200 ml of pure water from the top of the column within about 15 minutes, and collected efflent. We repeated injection of pure water every 14 days. We conducted the cyclic injection test for altered volcanic rock sample, and observed that the effluent just after the injection showed highest concentration. This result indicated that dissolved chemicals were released from minerals to capillary water after an injection, and advected outside of the column at the next injection.
Gelam Honey Has a Protective Effect against Lipopolysaccharide (LPS)-Induced Organ Failure
Kassim, Mustafa; Mansor, Marzida; Al-Abd, Nazeh; Yusoff, Kamaruddin Mohd
2012-01-01
Gelam honey exerts anti-inflammatory and antioxidant activities and is thought to have potent effects in reducing infections and healing wounds. The aim of this study was to investigate the effects of intravenously-injected Gelam honey in protecting organs from lethal doses of lipopolysaccharide (LPS). Six groups of rabbits (N = 6) were used in this study. Two groups acted as controls and received only saline and no LPS injections. For the test groups, 1 mL honey (500 mg/kg in saline) was intravenously injected into two groups (treated), while saline (1 mL) was injected into the other two groups (untreated); after 1 h, all four test groups were intravenously-injected with LPS (0.5 mg/kg). Eight hours after the LPS injection, blood and organs were collected from three groups (one from each treatment stream) and blood parameters were measured and biochemical tests, histopathology, and myeloperoxidase assessment were performed. For survival rate tests, rabbits from the remaining three groups were monitored over a 2-week period. Treatment with honey showed protective effects on organs through the improvement of organ blood parameters, reduced infiltration of neutrophils, and decreased myeloperoxidase activity. Honey-treated rabbits also showed reduced mortality after LPS injection compared with untreated rabbits. Honey may have a therapeutic effect in protecting organs during inflammatory diseases. PMID:22754370
Michel, R; Berger, F; Ravelonarivo, J; Dussart, P; Dia, M; Nacher, M; Rogier, S; Moua, D; Sarr, F D; Diop, O M; Sall, A A; Baril, L
2015-05-11
The use of 2 live attenuated vaccines (LAV) is recommended to be simultaneous or after an interval of at least four weeks between injections. The primary objective of this study was to compare the humoral response to yellow fever (YF) and measles vaccines among children vaccinated against these two diseases, either simultaneously or separated by an interval of 7-28 days. A prospective, multicenter observational study was conducted among children aged 9-15 months. The primary endpoint was the occurrence of positive yellow fever antibodies after YF vaccine by estimating the titers of neutralizing antibodies from venous blood samples. Children vaccinated against YF 7-28 days after receiving the vaccine against measles (test group) were compared with children vaccinated the same day against these two diseases (referent group). Analysis was performed on 284 children. Of them, fifty-four belonged to the test group. Measles serology was positive in 91.7% of children. Neutralizing antibodies against YF were detected in 90.7% of the test group and 92.9 of the referent group (p=0.6). In addition, quantitative analysis of the immune response did not show a lower response to YF vaccination when it took place 1-28 days after measles vaccination. In 1965, Petralli showed a lower response to the smallpox vaccine when injected 4-20 days after measles vaccination. Since then, recommendations are to observe an interval of four weeks between LAV not injected on the same day. Other published studies failed to show a significant difference in the immune response to a LAV injected 1-28 days after another LAV. These results suggest that the usual recommendations for immunization with two LAV may not be correct. In low income countries, the current policy should be re-evaluated. This re-evaluation should also be applied to travelers to yellow fever endemic countries. Copyright © 2015 Elsevier Ltd. All rights reserved.
Low HIV testing rate and its correlates among men who inject drugs in Iran.
Shokoohi, Mostafa; Karamouzian, Mohammad; Osooli, Mehdi; Sharifi, Hamid; Fahimfar, Noushin; Haghdoost, AliAkbar; Zamani, Omid; Mirzazadeh, Ali
2016-06-01
Iran has a concentrated HIV epidemic among people who inject drugs (PWID). Low HIV testing uptake could contribute to the significant number HIV-infected PWID, who go undiagnosed. This study aims to assess HIV testing uptake and its correlates among PWID in Iran. Data were collected through a national cross-sectional bio-behavioral study in 2010. Adult male HIV-negative PWID were included in the current analysis. All estimates were adjusted for the clustering effect of the sampling sites. Multivariable logistic regression was used to examine the correlates of recent HIV testing and adjusted odds ratios (AOR) were reported. Out of the 2146 eligible PWID for this study, 49.8% reported having ever tested for HIV. However, only 24.9% had tested in the previous year and received their test results. Around 65.2% of PWID knew an HIV testing site. In the multivariable analysis, knowing an HIV testing site (AOR=13.9; P-value<0.001), ≥24 years of age (AOR=3.30; P-value=0.027), and multiple incarcerations (AOR=1.71; P-value<0.001) were positively, and a monthly income of ≥65 US dollar (AOR=0.23; P-value=0.009) was negatively associated with having been tested and received the results. Despite the availability of free HIV counselling and testing for PWID in Iran, only one-fourth of adult male PWID had been tested for HIV and received their results. Implementing policies and strategies to normalize routine HIV testing among PWID are crucial steps to help curb the epidemic among Iranian PWID. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awida, Mohamed H.; Passarelli, Donato; Berrutti, Paolo
A total of ten jacketed single-spoke resonators type 1 (SSR1) have been fabricated for Fermilab' injection experiment (PIP2IT). PIP2IT is a test bed for Fermilab's future accelerator named proton improvement plan II that is currently under development. SSR1 cavities operate at 325 MHz to accelerate a proton beam at a relative (to speed of light) velocity (β = 0.22). In this study, we present Fermilab's experience in developing those spoke resonators starting from the design and analysis phase, to fabrication and extensive testing to qualify cavities for cryomodule assembly.
Awida, Mohamed H.; Passarelli, Donato; Berrutti, Paolo; ...
2017-08-18
A total of ten jacketed single-spoke resonators type 1 (SSR1) have been fabricated for Fermilab' injection experiment (PIP2IT). PIP2IT is a test bed for Fermilab's future accelerator named proton improvement plan II that is currently under development. SSR1 cavities operate at 325 MHz to accelerate a proton beam at a relative (to speed of light) velocity (β = 0.22). In this study, we present Fermilab's experience in developing those spoke resonators starting from the design and analysis phase, to fabrication and extensive testing to qualify cavities for cryomodule assembly.
The report gives results of parametric test to evaluate the injection powdered activated carbon to control volatile pollutants in municipal waste combustor (MWC) flue gas. he tests were conducted at a spray dryer absorber/electrostatic precipitator (SD/ESP)-equipped MWC in Camden...
NASA Astrophysics Data System (ADS)
LaForce, T.; Ennis-King, J.; Paterson, L.
2013-12-01
Residual CO2 saturation is a critically important parameter in CO2 storage as it can have a large impact on the available secure storage volume and post-injection CO2 migration. A suite of single-well tests to measure residual trapping was conducted at the Otway test site in Victoria, Australia during 2011. One or more of these tests could be conducted at a prospective CO2 storage site before large-scale injection. The test involved injection of 150 tonnes of pure carbon dioxide followed by 454 tonnes of CO2-saturated formation water to drive the carbon dioxide to residual saturation. This work presents a brief overview of the full test sequence, followed by the analysis and interpretation of the tests using noble gas tracers. Prior to CO2 injection krypton (Kr) and xenon (Xe) tracers were injected and back-produced to characterise the aquifer under single-phase conditions. After CO2 had been driven to residual the two tracers were injected and produced again. The noble gases act as non-partitioning aqueous-phase tracers in the undisturbed aquifer and as partitioning tracers in the presence of residual CO2. To estimate residual saturation from the tracer test data a one-dimensional radial model of the near-well region is used. In the model there are only two independent parameters: the apparent dispersivity of each tracer and the residual CO2 saturation. Independent analysis of the Kr and Xe tracer production curves gives the same estimate of residual saturation to within the accuracy of the method. Furthermore the residual from the noble gas tracer tests is consistent with other measurements in the sequence of tests.
Noh, S J; Kim, M J; Shim, S; Han, J K
1998-08-01
In Xenopus oocytes, both sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) activate Ca2+-dependent oscillatory Cl- currents by acting through membrane-bound receptors. External application of 50 microM S1P elicited a long-lasting oscillatory current that continued over 30 min from the beginning of oscillation, with 300 nA (n = 11) as a usual maximum peak of current, whereas 1-microM LPA treatment showed only transiently oscillating but more vigorous current responses, with 2,800 nA (n = 18) as a maximum peak amplitude. Both phospholipid-induced Ca2+-dependent Cl- currents were observed in the absence of extracellular Ca2+, were blocked by intracellular injection of the Ca2+ chelator, EGTA, and could not be elicited by treatment with thapsigargin, an inhibitor of endoplasmic reticulum (ER) Ca2+ ATPase. Intracellular Ca2+ release appeared to be from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ store, because Cl- currents were blocked by heparin injection. Pretreatment with the aminosteroid, U-73122, an inhibitor of G protein-mediated phospholipase C (PLC) activation, to oocytes inhibited the current responses evoked both by S1P and LPA. However, when they were injected with 10 ng of antisense oligonucleotide (AS-ODN) against Xenopus phospholipase C (PLC-xbeta), oocytes could not respond to S1P application, whereas they responded normally to LPA, indicating that the S1P signaling pathway goes through PLC-xbeta, whereas LPA signaling goes through another unknown PLC. To determine the types of G proteins involved, we introduced AS-ODNs against four types of G-protein alpha subunits that were identified in Xenopus laevis; G(q)alpha, G11alpha, G0alpha, and G(i1)alpha. Among AS-ODNs against the G alphas tested, AS-G(q)alpha and AS-G(i1)alpha to S1P and AS-G(q)alpha and AS-G11alpha to LPA specifically reduced current responses, respectively, to about 20-30% of controls. These results demonstrate that LPA and S1P, although they have similar structural features, release intracellular Ca2+ from the IP3-sensitive pool, use different components in their signal transduction pathways in Xenopus oocytes.
Experiences in extraction of contact parameters from process-evaluation test-structures
NASA Technical Reports Server (NTRS)
Lieneweg, Udo
1988-01-01
Six-terminal-contact test structures are introduced for characterizing ohmic contacts between a metal and a heavily doped semiconductor layer. Specifically, the six-terminal test structure supplies the additional information needed in order to calculate the transmission length and eventual corrections to the characteristic resistance per unit width due to finite contact length. The essential feature of this test structure is a square contact with four taps in the lower (semiconductor) layer. Every other one of these taps is used for current injection ('front'). From the voltage drop at the opposite tap and the side taps, the 'end' resistance and the 'side' resistances are calculated. The test structures are shown to give valuable information complementary to the common front resistance measurements. The interfacial resistivity is obtained directly after proper correction for flange effects.
Plasma response to sustainment with imposed-dynamo current drive in HIT-SI and HIT-SI3
NASA Astrophysics Data System (ADS)
Hossack, A. C.; Jarboe, T. R.; Chandra, R. N.; Morgan, K. D.; Sutherland, D. A.; Penna, J. M.; Everson, C. J.; Nelson, B. A.
2017-07-01
The helicity injected torus—steady inductive (HIT-SI) program studies efficient, steady-state current drive for magnetic confinement plasmas using a novel experimental method. Stable, high-beta spheromaks have been sustained using steady, inductive current drive. Externally induced loop voltage and magnetic flux are oscillated together so that helicity and power injection are always positive, sustaining the edge plasma current indefinitely. Imposed-dynamo current drive (IDCD) theory further shows that the entire plasma current is sustained. The method is ideal for low aspect ratio, toroidal geometries with closed flux surfaces. Experimental studies of spheromak plasmas sustained with IDCD have shown stable magnetic profiles with evidence of pressure confinement. New measurements show coherent motion of a stable spheromak in response to the imposed perturbations. On the original device two helicity injectors were mounted on either side of the spheromak and the injected mode spectrum was predominantly n = 1. Coherent, rigid motion indicates that the spheromak is stable and a lack of plasma-generated n = 1 energy indicates that the maximum q is maintained below 1 during sustainment. Results from the HIT-SI3 device are also presented. Three inductive helicity injectors are mounted on one side of the spheromak flux conserver. Varying the relative injector phasing changes the injected mode spectrum which includes n = 2, 3, and higher modes.
Ghaly, Michael; Links, Jonathan M; Frey, Eric C
2015-01-01
Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6–5 and acquisition energy window widths of 16–22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16–22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose. PMID:26083239
Noroozi, Alireza; Mirzazadeh, Ali; Farhoudian, Ali; Hajebi, Ahmad; Khankeh, Hamid Reza; Higgs, Peter; Sharifi, Hamid; Armoon, Bahram; Noroozi, Mehdi
2016-01-01
It is unclear whether knowing of current HIV status is associated with change in injecting behaviors among people who inject drugs (PWID) in Iran. The objective of the present study was to determine whether awareness of HIV positive status is associated with a reduction in injecting risk behaviors, after matching for socio-demographic characteristics. Five hundred male PWID were recruited in 2014 from two drop-in centers (DICs) in Kermanshah west of Iran. Trained interviewers collected data on socio-demographic characteristics, HIV testing and drug-related risk behaviors over the last month prior to interview using a structured questionnaire. Our primary exposure of interest was awareness of HIV status, used to group participants into three categories: positive, negative, unaware. We used coarsened exact matching to make the three groups statistically equivalent based on age, place of residence, education and income, and then compared them regarding the proportion of borrowing, lending and reuse of syringes. Matched sample (n=320) had a mean age ± standard deviation (SD) of 33.5 ±7.6 yr. Overall, 25% (95% CI: 14%, 32%) of participants reported "borrowing a syringe" in the past month and 15% (95% CI: 7%, 22%) of them reported "lending a used syringe" to others in the past month. In comparison to PWID who were unaware of their HIV status, those knew they were HIV positive (OR 1.68, CI95%1.32-2.81) or negative (OR 1.54; 95% CI: 1.28, 2.71) were both more likely to report borrowing syringes in past month. PWID WHO know they are positive for HIV are more likely to borrow another person's syringe, to report reuse of their own used syringes and less likely to report lending their syringes to others. Strategies to scale up HIV testing and counseling for PWID, which also increase awareness of HIV status, may decrease injecting related the risk behaviors.
Clemens, Kelly J; Van Nieuwenhuyzen, Petra S; Li, Kong M; Cornish, Jennifer L; Hunt, Glenn E; McGregor, Iain S
2004-05-01
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) are illicit drugs that are increasingly used in combination. The acute and long-term effects of MDMA/METH combinations are largely uncharacterised. The current study investigated the behavioural, thermal and neurotoxic effects of MDMA and METH when given alone or in combined low doses. Male rats received four injections, one every 2 h, of vehicle, MDMA (2.5 or 5 mg/kg per injection), METH (2.5 or 5 mg/kg per injection) or combined MDMA/METH (1.25+1.25 mg/kg per injection or 2+2 mg/kg per injection). Drugs were given at an ambient temperature of 28 degrees C to simulate hot nightclub conditions. Body temperature, locomotor activity and head-weaving were assessed during acute drug administration while social interaction, anxiety-related behavior on the emergence test and neurochemical parameters were assessed 4-7 weeks later. All treatments acutely increased locomotor activity, while pronounced head-weaving was seen with both MDMA/METH treatments and the higher dose METH treatment. Acute hyperthermia was greatest with the higher dose MDMA/METH treatment and was also seen with MDMA but not METH treatment. Several weeks after drug administration, both MDMA/METH groups, both METH groups and the higher dose MDMA group showed decreased social interaction relative to controls, while both MDMA/METH groups and the lower dose MDMA group showed increased anxiety-like behaviour on the emergence test. MDMA treatment caused 5-HT and 5-HIAA depletion in several brain regions, while METH treatment reduced dopamine in the prefrontal cortex. Combined MDMA/METH treatment caused 5-HT and 5-HIAA depletion in several brain regions and a unique depletion of dopamine and DOPAC in the striatum. These results suggest that MDMA and METH in combination may have greater adverse acute effects (head-weaving, body temperature) and long-term effects (decreased social interaction, increased emergence anxiety, dopamine depletion) than equivalent doses of either drug alone.
NASA Technical Reports Server (NTRS)
Smith, Robert S.
1993-01-01
The result of a literature search to consider what technologies should be represented in a totally automated water quality monitor for extended space flight is presented. It is the result of the first summer in a three year JOVE project. The next step will be to build a test platform at the Authors' school, St. John Fisher College. This will involve undergraduates in NASA related research. The test flow injection analysis system will be used to test the detection limit of sensors and the performance of sensors in groups. Sensor companies and research groups will be encouraged to produce sensors which are not currently available and are needed for this project.
A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure
NASA Technical Reports Server (NTRS)
Murch, Austin M.
2008-01-01
A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.
Airframe-integrated propulsion system for hypersonic cruise vehicles
NASA Technical Reports Server (NTRS)
Jones, R. A.; Huber, P. W.
1978-01-01
The paper describes a new hydrogen-burning airframe-integrated scramjet concept which offers good potential for efficient hypersonic cruise vehicles. The characteristics of the engine which assure good performance are extensive engine-airframe integration, fixed geometry, low cooling, and control of heat release in the supersonic combustor by mixed modes of fuel injection from the combustor entrance. The present paper describes the concept and presents results from inlet tests, direct-connect combustor tests, and tests of two subscale boiler-plate research engines currently underway under conditions which simulate flight at Mach 4 and 7. It is concluded that this engine concept has the potential for high thrust and efficiency, low drag and weight, low cooling requirement, and application to a wide range of vehicle sizes.
Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia
2015-12-21
Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less
Skin-electrode impedance measurement during ECG acquisition: method’s validation
NASA Astrophysics Data System (ADS)
Casal, Leonardo; La Mura, Guillermo
2016-04-01
Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.
New injectors and the social context of injection initiation
Harocopos, Alex; Goldsamt, Lloyd A.; Kobrak, Paul; Jost, John J.; Clatts, Michael C.
2009-01-01
Background Preventing the onset of injecting drug use is an important public health objective yet there is little understanding of the process that leads to injection initiation. This paper draws extensively on narrative data to describe how injection initiation is influenced by social environment. We examine how watching other people inject can habitualise non-injectors to administering drugs with a needle and consider the process by which the stigma of injecting is replaced with curiosity. Method In-depth interviews (n=54) were conducted as part of a two-year longitudinal study examining the behaviours of new injecting drug users. Results Among our sample, injection initiation was the result of a dynamic process during which administering drugs with a needle became acceptable or even appealing. Most often, this occurred as a result of spending time with current injectors in a social context and the majority of this study’s participants were given their first shot by a friend or sexual partner. Initiates could be tenacious in their efforts to acquire an injection trainer and findings suggest that once injecting had been introduced to a drug-using network, it was likely to spread throughout the group. Conclusion Injection initiation should be viewed as a communicable process. New injectors are unlikely to have experienced the negative effects of injecting and may facilitate the initiation of their drug-using friends. Prevention messages should therefore aim to find innovative ways of targeting beginning injectors and present a realistic appraisal of the long-term consequences of injecting. Interventionists should also work with current injectors to develop strategies to refuse requests from non-injectors for their help to initiate. PMID:18790623
Compact Torus Acceleration and Injection Experiment
NASA Astrophysics Data System (ADS)
Fukumoto, Naoyuki; Fujiwara, Makoto; Nagata, Masayoshi; Uyama, Tadao; Oda, Yasushi; Azuma, Kingo
1996-11-01
The spheromak-type compact torus (CT) acceleration and injection experiment has been carried out using the Himeji Institute of Technology Compact Torus Injector (HIT-CTI). We explore the possibility of refueling, density control, current drive, and edge electric field control of tokamak plasma by means of CT injection. In last September the new HIT-CTI was built up to achieve higher speed (Vct>200 km/s) and higher density CT plasmoid by improving the capacitor bank system and eliminating the impurity and neutral particles. At initial formation discharge tests the gun for formation and compression successfully produced a CT plasmoid and injected it between electrodes for acceleration. (Initial velocity Vct.ini. 32 km/s, Bct 1 kG, Rct=5.5 cm). The formation capacitor bank will be upgraded to two 36 mF capacitors operating at 20 kV (14.4 kJ). The acceleration capacitor bank will be also upgraded to two 36 mF capacitors operating at 20 kV (14.4 kJ). The HIT-CTI will be optimized to obtain suitable CT parameters after acceleration (Bct>5 kG, Lct 20 cm, Vct>200 km/s). In the respect of CT parameter measurement magnetic probes and a He-Ne laser interferometer will be employed in order to measure the CT magnetic field, velocity, density, and length. CT acceleration experimental data on the HIT-CTI and the plan of CT injection experiment on the JFT-2M tokamak (JAERI) will be presented at the meeting.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Constraints on Smoke Injection Height, Source Strength, and Transports from MISR and MODIS
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.; Petrenko, Mariya; Val Martin, Maria; Chin, Mian
2014-01-01
The AeroCom BB (Biomass Burning) Experiment AOD (Aerosol Optical Depth) motivation: We have a substantial set of satellite wildfire plume AOD snapshots and injection heights to help calibrate model/inventory performance; We are 1) adding more fire source-strength cases 2) using MISR to improve the AOD constrains and 3) adding 2008 global injection heights; We selected GFED3-daily due to good overall source strength performance, but any inventory can be tested; Joint effort to test multiple, global models, to draw robust BB injection height and emission strength conclusions. We provide satellite-based injection height and smoke plume AOD climatologies.
Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.; Clifford, T.; Giordano, S.
1984-01-01
The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less
Design of a new nozzle for direct current plasma guns with improved spraying parameters
NASA Astrophysics Data System (ADS)
Jankovic, M.; Mostaghimi, J.; Pershin, V.
2000-03-01
A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.
Optical gain in colloidal quantum dots achieved with direct-current electrical pumping
NASA Astrophysics Data System (ADS)
Lim, Jaehoon; Park, Young-Shin; Klimov, Victor I.
2018-01-01
Chemically synthesized semiconductor quantum dots (QDs) can potentially enable solution-processable laser diodes with a wide range of operational wavelengths, yet demonstrations of lasing from the QDs are still at the laboratory stage. An important challenge--realization of lasing with electrical injection--remains unresolved, largely due to fast nonradiative Auger recombination of multicarrier states that represent gain-active species in the QDs. Here we present population inversion and optical gain in colloidal nanocrystals realized with direct-current electrical pumping. Using continuously graded QDs, we achieve a considerable suppression of Auger decay such that it can be outpaced by electrical injection. Further, we apply a special current-focusing device architecture, which allows us to produce high current densities (j) up to ~18 A cm-2 without damaging either the QDs or the injection layers. The quantitative analysis of electroluminescence and current-modulated transmission spectra indicates that with j = 3-4 A cm-2 we achieve the population inversion of the band-edge states.
Controlling heat and particle currents in nanodevices by quantum observation
NASA Astrophysics Data System (ADS)
Biele, Robert; Rodríguez-Rosario, César A.; Frauenheim, Thomas; Rubio, Angel
2017-07-01
We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient, but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place, the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow in a quantum material can go against the natural temperature and voltage gradients. Dynamical quantum observation offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.
Incarceration and injection drug use in Baltimore, Maryland.
Genberg, Becky L; Astemborski, Jacquie; Vlahov, David; Kirk, Gregory D; Mehta, Shruti H
2015-07-01
There is limited longitudinal research examining incarceration and subsequent changes in drug use among people who inject drugs (PWID) in the United States. The objective of the current study was to characterize the frequency of incarceration and estimate the association between incarceration and subsequent injection drug use among current and former PWIDs in one US city. ALIVE (AIDS Linked to the Intravenous Experience) is a prospective cohort study of current and former PWIDs, with semi-annual follow-up occurring since 1988. Baltimore, Maryland, USA. A total of 3245 participants with 48 738 study visits were included. Participants enrolled from 1988 to 2012 with a median of 13 follow-up visits per participant (Interquartile range = 7-25). Incarcerations were defined as any self-reported jail or prison stays in the previous 6 months that were ≥7 days or longer. The primary outcome was defined as any self-reported injection drug use in the previous 6 months. At baseline, 29% were female, 90% African American and 33% HIV-positive. Fifty-seven per cent of participants experienced at least one incarceration episode. After adjusting for confounders, there was a positive association between incarceration and subsequent injection drug use [adjusted odds ratio (AOR) = 1.48, 95% confidence interval (CI) = 1.37-1.59]; however, stratified analysis showed that the effect was restricted to those who were not injecting at the time of incarceration (AOR = 2.11, 95% CI = 1.88-2.37). In the United States, incarceration of people who had previously stopped injecting drugs appears to be associated with an increased risk of subsequent injecting. © 2015 Society for the Study of Addiction.
Wang, W; Wideman, R F; Chapman, M E; Bersi, T K; Erf, G F
2003-12-01
Commercial broilers are constantly exposed to airborne microorganisms and endotoxin (lipopolysaccharide, LPS). It has been shown that microbial contamination of the air was higher in broiler houses using floor litter than in broiler houses using netting-type floors. The current study evaluated the effect of housing conditions on blood leukocyte profiles and tested the hypothesis that, when compared to broilers reared in clean stainless steel cages (Cage group), broilers raised on floor litter (Floor group) should experience a higher environmental challenge and have a desensitized immune system that may exhibit better tolerance/resistance to subsequent intravenous LPS challenge. Hematological parameters were evaluated prior to and following i.v. administration of 1 mg/kg BW Salmonella typhimurium LPS (dissolved at 1 mg/0.25 mL in PBS) or i.v. injection of 0.25 mL/kg BW PBS alone. The results showed that prior to LPS/PBS injection, broilers in the cage group had higher heterophil and monocyte concentrations, a higher B cell percentage within the lymphocyte population, and a higher heterophil to lymphocyte (H:L) ratio in the blood. The i.v. LPS injection resulted in 25% mortality in the cage group and 42% mortality in the floor group within 8 h post-injection. LPS reduced the concentrations of total white blood cells (WBC) and all differential WBC except eosinophils and increased thrombocyte concentrations within 1 h post-injection in both groups. All of these values returned to their respective pre-injection levels within 48 h post-injection in the surviving birds. The two groups exhibited similar overall hematological changes after LPS injection except that the cage group showed a higher H:L ratio at 8 h post-injection and a lower B-cell percentage within the lymphocyte population at 48 h post-injection when compared with the floor group. We concluded that the immune systems of broilers reared on floor litter were desensitized and exhibited less pronounced leukocyte responses to i.v. LPS when compared with those of broilers reared in clean stainless steel cages. However, such desensitization of the immune system did not help broilers survive subsequent i.v. LPS challenge.
A Portal Vein Injection Model to Study Liver Metastasis of Breast Cancer
Goddard, Erica T.; Fischer, Jacob; Schedin, Pepper
2016-01-01
Breast cancer is the leading cause of cancer-related mortality in women worldwide. Liver metastasis is involved in upwards of 30% of cases with breast cancer metastasis, and results in poor outcomes with median survival rates of only 4.8 - 15 months. Current rodent models of breast cancer metastasis, including primary tumor cell xenograft and spontaneous tumor models, rarely metastasize to the liver. Intracardiac and intrasplenic injection models do result in liver metastases, however these models can be confounded by concomitant secondary-site metastasis, or by compromised immunity due to removal of the spleen to avoid tumor growth at the injection site. To address the need for improved liver metastasis models, a murine portal vein injection method that delivers tumor cells firstly and directly to the liver was developed. This model delivers tumor cells to the liver without complications of concurrent metastases in other organs or removal of the spleen. The optimized portal vein protocol employs small injection volumes of 5 - 10 μl, ≥ 32 gauge needles, and hemostatic gauze at the injection site to control for blood loss. The portal vein injection approach in Balb/c female mice using three syngeneic mammary tumor lines of varying metastatic potential was tested; high-metastatic 4T1 cells, moderate-metastatic D2A1 cells, and low-metastatic D2.OR cells. Concentrations of ≤ 10,000 cells/injection results in a latency of ~ 20 - 40 days for development of liver metastases with the higher metastatic 4T1 and D2A1 lines, and > 55 days for the less aggressive D2.OR line. This model represents an important tool to study breast cancer metastasis to the liver, and may be applicable to other cancers that frequently metastasize to the liver including colorectal and pancreatic adenocarcinomas. PMID:28060292
Magnetic Helicity Injection and Thermal Transport
NASA Astrophysics Data System (ADS)
Moses, Ronald; Gerwin, Richard; Schoenberg, Kurt
1999-11-01
In magnetic helicity injection, a current is driven between electrodes, parallel to the magnetic field in the edge plasma of a machine.^1 Plasma instabilities distribute current throughout the plasma. To model the injection of magnetic helicity, K, into an arbitrary closed surface, K is defined as the volume integral of A^.B. To make K unique, a gauge is chosen where the tangential surface components of A are purely solenoidal. If magnetic fields within a plasma are time varying, yet undergo no macroscopic changes over an extended period, and if the plasma is subject to an Ohm’s law with Hall terms, then it is shown that no closed magnetic surfaces with sustained internal currents can exist continuously within the plasma.^2 It is also shown that parallel thermal transport connects all parts of the plasma to the helicity injection electrodes and requires the electrode voltage difference to be at least 2.5 to 3 times the peak plasma temperature. This ratio is almost independent of the length of the electron mean-free path. If magnetic helicity injection is to be used for fusion-grade plasmas, then high-voltage, high-impedance injection techniques must be developed. ^1T. R. Jarboe, Plasma Physics and Controlled Fusion, V36, 945-990 (June 1994). ^2R. W. Moses, 1991 Sherwood International Fusion Theory Conference, Seattle, WA (April 22-24, 1991).
Performance characteristics of LOX-H2, tangential-entry, swirl-coaxial, rocket injectors
NASA Technical Reports Server (NTRS)
Howell, Doug; Petersen, Eric; Clark, Jim
1993-01-01
Development of a high performing swirl-coaxial injector requires an understanding of fundamental performance characteristics. This paper addresses the findings of studies on cold flow atomic characterizations which provided information on the influence of fluid properties and element operating conditions on the produced droplet sprays. These findings are applied to actual rocket conditions. The performance characteristics of swirl-coaxial injection elements under multi-element hot-fire conditions were obtained by analysis of combustion performance data from three separate test series. The injection elements are described and test results are analyzed using multi-variable linear regression. A direct comparison of test results indicated that reduced fuel injection velocity improved injection element performance through improved propellant mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brummert, A.C.
1990-09-01
A carbon dioxide pilot test was conducted in the Griffithsville Field, Lincoln County, West Virginia, on a 90-acre tract containing nine 10-acre, normal, five-spot patterns arranged in a 3 {times} 3 matrix. This post-flood simulation study evaluates the initial pressure buildup phase of water injection, the carbon dioxide injection phase, and the chase water injection phase. Core data, geophysical well logs, fluid property data, well test data, and injection/production histories were used in setting up the data input record for the reservoir simulator. The reservoir simulator was IMEX, a four-component, black-oil reservoir simulator. 23 refs., 15 figs., 3 tabs.
Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V
2007-07-17
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.
Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.
2007-01-01
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612
Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction
Khattab, Ahmad; Islam, Mohammad Ariful; Hweij, Khaled Abou; Zeitouny, Joya; Waters, Renae; Sayegh, Malek; Hossain, Md Monowar; Paul, Arghya
2015-01-01
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI. PMID:27668147
Contact-metal dependent current injection in pentacene thin-film transistors
NASA Astrophysics Data System (ADS)
Wang, S. D.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Aoyagi, Y.
2007-11-01
Contact-metal dependent current injection in top-contact pentacene thin-film transistors is analyzed, and the local mobility in the contact region was found to follow the Meyer-Neldel rule. An exponential trap distribution, rather than the metal/organic hole injection barrier, is proposed to be the dominant factor of the contact resistance in pentacene thin-film transistors. The variable temperature measurements revealed a much narrower trap distribution in the copper contact compared with the corresponding gold contact, and this is the origin of the smaller contact resistance for copper despite a lower work function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A
2015-09-01
For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less
Aboveground Injection Sytem Construction and Mecahnical Integrity Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jun
An In-Situ Bioremediation (ISB) Pilot Test Treatability Study is planned at Sandia National Laboratories, New Mexico (SNL/NM) Technical Area-V (TA-V) Groundwater Area of Concern. The Treatability Study is designed to gravity inject an electron-donor substrate and bioaugmentation bacteria into groundwater using an injection well. The constituents of concern (COCs) are nitrate and trichloroethene (TCE). The Pilot Test Treatability Study will evaluate the effectiveness of bioremediation and COC treatment over a prescribed period of time. Results of the pilot test will provide data that will be used to evaluate the cost and effectiveness of a fullscale system.
Coyle, Catelyn; Viner, Kendra; Hughes, Elizabeth; Kwakwa, Helena; Zibbell, Jon E; Vellozzi, Claudia; Holtzman, Deborah
2015-05-08
Approximately three million persons in the United States are infected with hepatitis C virus (HCV), a blood-borne pathogen that is an increasing cause of liver disease and mortality in the United States. Treatments for HCV are curative, of short duration, and have few associated side effects, increasing the importance of identifying HCV-infected persons. Many persons with HCV infection were infected decades ago, before implementation of prevention measures and most are unaware of their infection, regardless of when it occurred. Most newly diagnosed cases are associated with injection drug use. Persons born during 1945-1965 have a fivefold higher risk of HCV infection than other adults and the highest risk for HCV-related morbidity and mortality. CDC recommends testing for this group, for persons who inject drugs, and others at risk for HCV infection. From October 2012 through July 2014, the National Nursing Centers Consortium (NNCC) carried out a project to integrate routine HCV testing and linkage-to-care in five federally qualified health centers in Philadelphia, PA, that primarily serve homeless persons and public housing residents. During the project period, 4,514 patients across the five centers were tested for HCV. Of these, 595 (13.2%) were HCV-antibody positive and 550 (92.4%) had a confirmatory HCV-RNA test performed. Of those who had a confirmatory HCV-RNA test performed, 390 (70.9%) were identified as having current (i.e., chronic) HCV infection (overall prevalence = 8.6%). Of those currently infected with HCV, 90% were informed of their status, 78% were referred to an HCV care specialist, and 62% went to the referred specialist for care. Replicable system modifications that improved HCV testing and care included enhancements to electronic medical records (EMRs), simplification of HCV testing protocols, and addition of a linkage-to-care coordinator. Findings from this project highlight the need for innovative strategies for HCV testing, care, and treatment, as well as the important role of community health centers in expanding access for patient populations disproportionately affected by HCV infection.
Jordan, Ashly E; Perlman, David C
2017-02-23
Hepatitis C virus (HCV) infection is hyperendemic among people who inject drugs; nonsterile drug injection is the principle risk for HCV acquisition. Due to gaps in the HCV care continuum, there have been recommendations in the United States emphasizing age-rather than risk-based testing strategies. The central research focus of this project is to explore the meanings and implications of the shift in emphasis from risk-based to age-based HCV testing with regard to people who use drugs. Content analysis and critical discourse analysis, informed by eco-social theory, were used to examine relevant documents. Fifteen documents were assessed for eligibility; 6 documents comprised the final set reviewed. In content analysis, age-based testing was both mentioned more frequently and was supported more strongly than risk-based testing. Risk-based testing was frequently mentioned in terms minimizing its use and drug use was often mentioned only euphemistically. The reframed emphasis largely removed discussion of injection drug use from discussion of HCV risks. Shifting the emphasis of HCV testing from testing based on specific routes of transmission and risk to testing based on age removes injection drug use from HCV discourse. This has the potential to either facilitate HCV care for drug users or to further stigmatize and marginalize drug use and people who use drugs. The potential implications of this shift in testing emphasis for public health merit further investigation.
NASA Astrophysics Data System (ADS)
Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas
2017-10-01
The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.
Cable coupling lightning transient qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of instrumentation cabling on the redesigned solid rocket motor was performed. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of instrumentation cable transients on cables within the system tunnel. The maximum short-circuit current induced onto a United Space Boosters, Inc., operational flight cable within the systems tunnel was 92 A, and the maximum induced open-circuit voltage was 316 V. These levels were extrapolated to the worst-case (200 kA) condition of NASA specification NSTS 07636 and were also scaled to full-scale redesigned solid rocket motor dimensions. Testing showed that voltage coupling to cables within the systems tunnel can be reduced 40 to 90 dB and that current coupling to cables within the systems tunnel can be reduced 30 to 70 dB with the use of braided metallic sock shields around cables that are external to the systems tunnel. Testing also showed that current and voltage levels induced onto cables within the systems tunnel are partially dependant on the cables' relative locations within the systems tunnel. Results of current injections to the systems tunnel indicate that the dominant coupling mode on cables within the systems tunnel is not from instrumentation cables but from coupling through the systems tunnel cover seam apertures. It is recommended that methods of improving the electrical bonding between individual sections of the systems tunnel covers be evaluated. Further testing to better characterize redesigned solid rocket motor cable coupling effects as an aid in developing methods to reduce coupling levels, particularly with respect to cable placement within the systems tunnel, is also recommended.
Current profile redistribution driven by neutral beam injection in a reversed-field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parke, E.; Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706; Anderson, J. K.
2016-05-15
Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm withmore » neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].« less
Design of a variable area diffuser for a 15-inch Mach 6 open-jet tunnel
NASA Technical Reports Server (NTRS)
Loney, Norman W.
1994-01-01
The Langley 15-inch Mach 6 High Temperature Tunnel was recently converted from a Mach 10 Hypersonic Flow Apparatus. This conversion was effected to improve the capability of testing in Mach 6 air at relatively high reservoir temperatures not previously possible at Langley. Elevated temperatures allow the matching of the Mach numbers, Reynolds numbers, and ratio of wall-to-adiabatic-wall temperatures (TW/Taw) between this and the Langley 20-inch Mach 6 CF4 Tunnel. This ratio is also matched for Langley's 31-inch Mach 10 Tunnel and is an important parameter useful in the simulation of slender bodies such as National Aerospace Plane (NASP) configurations currently being studied. Having established the nozzle's operating characteristics, the decision was made to install another test section to provide model injection capability. This test section is an open-jet type, with an injection system capable of injecting a model from retracted position to nozzle centerline between 0.5 and 2 seconds. Preliminary calibrations with the new test section resulted in Tunnel blockage. This blockage phenomenon was eliminated when the conical center body in the diffuser was replaced. The issue then, is to provide a new and more efficient variable area diffuser configuration with the capability to withstand testing of larger models without sending the Tunnel into an unstart condition. Use of the 1-dimensional steady flow equation with due regard to friction and heat transfer was employed to estimate the required area ratios (exit area / throat area) in a variable area diffuser. Correlations between diffuser exit Mach number and area ratios, relative to the stagnation pressure ratios and diffuser inlet Mach number were derived. From these correlations, one can set upper and lower operating pressures and temperatures for a given diffuser throat area. In addition, they will provide appropriate input conditions for the full 3-dimensional computational fluid dynamics (CFD) code for further simulation studies.
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...
2015-01-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.
New Strainmeters used to Monitor Deformation During Injection and Withdrawal
NASA Astrophysics Data System (ADS)
DeWolf, S.; Murdoch, L. C.; Germanovich, L. N.; Moysey, S. M.; Hanna, A. C.; Hu, J.; Blais, R.; Plunkett, G.; Johnson, W.
2017-12-01
Injecting or removing fluids from reservoirs or aquifers causes deformation that can be used as a diagnostic signal in some cases, while it can interfere with geodetic interpretations in other cases. This has motivated us to develop instrumentation and methods to characterize the strain field resulting from injection and pumping. Three new instruments have been deployed at our field stations near Clemson University and at the Avant Field north of Tulsa, OK. Two use non-contact eddy current transducers configured to measure four components of strain and two tilts to 1 part-per-billion. One system is designed for permanent installation, the other is removable for short term deployments. Another system is a low cost volumetric strainmeter consisting of an embedded optical fiber that is interrogated using laser interferometry. This strainmeter is designed to be a permanently installed and has a resolution of several parts-per-trillion. The field sites are designed to characterize strains during pumping or injection over different scales and in different geologic settings. The Clemson field station is underlain by biotite gneiss, a low permeability crystalline rock overlain by moderate permeability, soft saprolite above 30m depth. The water table is at approximately 9m depth. The strainmeters are in the crystalline rock at approximately 40m depth, and pumping occurs in the overlying saprolite. In contrast, wells at the Avant Field site are much deeper. They are approximately 500m deep and completed in a 25-m-thick oil-bearing sandstone. Strainmeters at the Avant Field are at 30m depth. These two sites provide contrasting approaches to characterizing strain at 30-40m depth. Water is pumped from an overlying formation at the Clemson site, whereas it is pumped from a much deeper underlying formation at the Avant Field. Preliminary results are available from a brief injection test, and from a longer shut-in test at the Avant Field. Injection is characterized by an increase in tensile strains in both the radial and circumferential directions approximately 220m from the well. The shut-in was characterized by radial tension and circumferential compression in response to a well approximately 1km from the strainmeter. These are the expected signals caused by injection and shut-in according to poroelastic simulations.
Disruption mitigation by injection of small quantities of noble gas in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Pautasso, G.; Bernert, M.; Dibon, M.; Duval, B.; Dux, R.; Fable, E.; Fuchs, J. C.; Conway, G. D.; Giannone, L.; Gude, A.; Herrmann, A.; Hoelzl, M.; McCarthy, P. J.; Mlynek, A.; Maraschek, M.; Nardon, E.; Papp, G.; Potzel, S.; Rapson, C.; Sieglin, B.; Suttrop, W.; Treutterer, W.; The ASDEX Upgrade Team; The EUROfusion MST1 Team
2017-01-01
The most recent experiments of disruption mitigation by massive gas injection in ASDEX Upgrade have concentrated on small—relatively to the past—quantities of noble gas injected, and on the search for the minimum amount of gas necessary for the mitigation of the thermal loads on the divertor and for a significant reduction of the vertical force during the current quench. A scenario for the generation of a long-lived runaway electron beam has been established; this allows the study of runaway current dissipation by moderate quantities of argon injected. This paper presents these recent results and discusses them in the more general context of physical models and extrapolation, and of the open questions, relevant for the realization of the ITER disruption mitigation system.
Hardin, K. Dan
1977-01-01
The disclosure relates to a gas injected vacuum switch comprising a housing having an interior chamber, a conduit for evacuating the interior chamber, within the chamber an anode and a cathode spaced from the anode, and a detonator for injecting electrically conductive gas into the chamber between the anode and the cathode to provide a current path therebetween.
Wang, Cheng; Schires, Kevin; Osiński, Marek; Poole, Philip J.; Grillot, Frédéric
2016-01-01
In semiconductor lasers, current injection not only provides the optical gain, but also induces variation of the refractive index, as governed by the Kramers-Krönig relation. The linear coupling between the changes of the effective refractive index and the modal gain is described by the linewidth broadening factor, which is responsible for many static and dynamic features of semiconductor lasers. Intensive efforts have been made to characterize this factor in the past three decades. In this paper, we propose a simple, flexible technique for measuring the linewidth broadening factor of semiconductor lasers. It relies on the stable optical injection locking of semiconductor lasers, and the linewidth broadening factor is extracted from the residual side-modes, which are supported by the amplified spontaneous emission. This new technique has great advantages of insensitivity to thermal effects, the bias current, and the choice of injection-locked mode. In addition, it does not require the explicit knowledge of optical injection conditions, including the injection strength and the frequency detuning. The standard deviation of the measurements is less than 15%. PMID:27302301
Horyniak, Danielle; Stoové, Mark; Degenhardt, Louisa; Aitken, Campbell; Kerr, Thomas; Dietze, Paul
2015-01-01
Changes in drug market characteristics have been shown to affect drug use patterns but few studies have examined their impacts on injecting initiation experiences and subsequent patterns of injecting drug use (IDU). We collected data on self-reported injecting initiation experiences and past-month patterns of IDU from 688 regular heroin and methamphetamine injectors in Melbourne, Australia, who initiated injecting across three different drug market periods (prior to the Australian heroin shortage ('high heroin')/immediately following the shortage ('low heroin')/'contemporary' markets (fluctuating heroin and methamphetamine availability)). We used univariable and multivariable logistic regression to examine the relationship between period of injecting initiation and first drug injected, and multinomial logistic regression for the relationship between period of injecting initiation and current injecting patterns. 425 participants (62%) reported initiating injecting in the high heroin period, 146 (21%) in the low heroin period, and 117 (17%) in the contemporary period. Participants who initiated injecting during the low heroin period were twice as likely to initiate injecting using a drug other than heroin (AOR: 1.94, 95% CI: 1.27-2.95). The most common patterns of drug use among study participants in the month preceding interview were polydrug use (44%) and primary heroin use (41%). Injecting initiation period was either non-significantly or weakly associated with current drug use pattern, which was more strongly associated with other socio-demographic and drug use characteristics, particularly self-reported drug of choice. The drug market period in which injecting initiation occurred influenced the first drug injected and influenced some aspects of subsequent drug use. In the context of highly dynamic drug markets in which polydrug use is common there is a need for broad harm reduction and drug treatment services which are flexible and responsive to changing patterns of drug use. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.
2013-12-01
Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology. While BC emissions were 96% higher for the GDI technology. The GDI technology had a smaller effect on CO2 emissions with a 4% rise compared to the other emissions. Additional results will discuss the emission rates converted to reflect total yearly passenger vehicular emissions in the U.S. Overall, the results show increases of global warming emissions from GDI passenger vehicle technology.
NASA Technical Reports Server (NTRS)
Kniskern, Marc W.
1990-01-01
The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.
Reservoir response to thermal and high-pressure well stimulation efforts at Raft River, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plummer, Mitchell; Bradford, Jacob; Moore, Joseph
An injection stimulation test begun at the Raft River geothermal reservoir in June, 2013 has produced a wealth of data describing well and reservoir response via high-resolution temperature logging and distributed temperature sensing, seismic monitoring, periodic borehole televiewer logging, periodic stepped flow rate tests and tracer injections before and after stimulation efforts. One of the primary measures of response to the stimulation is the relationship between fluid pressure and flow rate, short-term during forced flow rate changes and the long-term change in injectivity. In this paper we examine that hydraulic response using standard pumping test analysis methods, largely because pressuremore » response to the stimulation was not detected, or measurable, in other wells. Analysis of stepped rate flow tests supports the inference from other data that a large fracture, with a radial extent of one to several meters, intersects the well in the target reservoir, suggests that the flow regime is radial to a distance of only several meters and demonstrates that the pressure build-up cone reaches an effective constant head at that distance. The well’s longer term hydraulic response demonstrated continually increasing injectivity but at a dramatically faster rate later from ~2 years out and continuing to the present. The net change in injectivity is significantly greater than observed in other longterm injectivity monitoring studies, with an approximately 150–fold increase occurring over ~2.5 years. While gradually increasing injectivity is a likely consequence of slow migration of a cooling front, and consequent dilation of fractures, the steady, ongoing, rate of increase is contrary to what would be expected in a radial or linear flow regime, where the cooling front would slow with time. As a result, occasional step-like changes in injectivity, immediately following high-flow rate tests suggest that hydro shearing during high-pressure testing altered the near-well permeability structure.« less
Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my
2015-07-22
Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Randommore » orientation of fibers was noted in the composites test bars produced from divergent melt flow.« less
Gomes, Guilherme M; Dalmolin, Gerusa D; Cordeiro, Marta do Nascimento; Gomez, Marcus V; Ferreira, Juliano; Rubin, Maribel A
2013-12-15
Potassium channels regulate many neuronal functions, including neuronal excitability and synaptic plasticity, contributing, by these means, to mnemonic processes. In particular, A-type K(+) currents (IA) play a key role in hippocampal synaptic plasticity. Therefore, we evaluated the effect of the peptidic toxin Tx3-1, a selective blocker of IA currents, extracted from the venom of the spider Phoneutria nigriventer, on memory of mice. Administration of Tx3-1 (i.c.v., 300 pmol/site) enhanced both short- and long-term memory consolidation of mice tested in the novel object recognition task. In comparison, 4-aminopyridine (4-AP; i.c.v., 30-300 pmol/site), a non-selective K(+) channel blocker did not alter long-term memory and caused toxic side effects such as circling, freezing and tonic-clonic seizures. Moreover, Tx3-1 (i.c.v., 10-100 pmol/site) restored memory of Aβ25-35-injected mice, and exhibited a higher potency to improve memory of Aβ25-35-injected mice when compared to control group. These results show the effect of the selective blocker of IA currents Tx3-1 in both short- and long-term memory retention and in memory impairment caused by Aβ25-35, reinforcing the role of IA in physiological and pathological memory processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
On the wide-range bias dependence of transistor d.c. and small-signal current gain factors.
NASA Technical Reports Server (NTRS)
Schmidt, P.; Das, M. B.
1972-01-01
Critical reappraisal of the bias dependence of the dc and small-signal ac current gain factors of planar bipolar transistors over a wide range of currents. This is based on a straightforward consideration of the three basic components of the dc base current arising due to emitter-to-base injected minority carrier transport, base-to-emitter carrier injection, and emitter-base surface depletion layer recombination effects. Experimental results on representative n-p-n and p-n-p silicon devices are given which support most of the analytical findings.
Lethal Injection for Execution: Chemical Asphyxiation?
Zimmers, Teresa A; Sheldon, Jonathan; Lubarsky, David A; López-Muñoz, Francisco; Waterman, Linda; Weisman, Richard; Koniaris, Leonidas G
2007-01-01
Background Lethal injection for execution was conceived as a comparatively humane alternative to electrocution or cyanide gas. The current protocols are based on one improvised by a medical examiner and an anesthesiologist in Oklahoma and are practiced on an ad hoc basis at the discretion of prison personnel. Each drug used, the ultrashort-acting barbiturate thiopental, the neuromuscular blocker pancuronium bromide, and the electrolyte potassium chloride, was expected to be lethal alone, while the combination was intended to produce anesthesia then death due to respiratory and cardiac arrest. We sought to determine whether the current drug regimen results in death in the manner intended. Methods and Findings We analyzed data from two US states that release information on executions, North Carolina and California, as well as the published clinical, laboratory, and veterinary animal experience. Execution outcomes from North Carolina and California together with interspecies dosage scaling of thiopental effects suggest that in the current practice of lethal injection, thiopental might not be fatal and might be insufficient to induce surgical anesthesia for the duration of the execution. Furthermore, evidence from North Carolina, California, and Virginia indicates that potassium chloride in lethal injection does not reliably induce cardiac arrest. Conclusions We were able to analyze only a limited number of executions. However, our findings suggest that current lethal injection protocols may not reliably effect death through the mechanisms intended, indicating a failure of design and implementation. If thiopental and potassium chloride fail to cause anesthesia and cardiac arrest, potentially aware inmates could die through pancuronium-induced asphyxiation. Thus the conventional view of lethal injection leading to an invariably peaceful and painless death is questionable. PMID:17455994
Current clinical use of reteplase for thrombolysis. A pharmacokinetic-pharmacodynamic perspective.
Martin, U; Kaufmann, B; Neugebauer, G
1999-04-01
Clinical evaluation of a new thrombolytic agent should start with a dose that provides adequate efficacy and has an acceptably low bleeding risk; this results in a narrow therapeutic window at the upper end of the dose-response curve. Angiographic patency of the infarct-related artery is still the clinical surrogate end-point for mortality in phase II dose-ranging studies. There is experimental and clinical evidence that the area under the concentration-time curve (AUC) for plasminogenolytic activity of a thrombolytic agent is positively correlated with patency of the infarct-related artery. Dose-ranging studies of the novel recombinant plasminogen activator reteplase in healthy volunteers enabled computation of a linear regression curve by which a clinical starting dose could be calculated for an adapted target AUC that would be clinically effective. Pharmacokinetic analysis also revealed that the half-life of reteplase is 4 times longer than that of the reference thrombolytic alteplase, thus allowing bolus injection. The suggested single bolus starting dose of 10U was supported by results from studies in a canine model of coronary thrombolysis. The feedback of insufficiently high patency rates compared with the increased efficacy of front-loaded and accelerated alteplase demanded optimisation strategies for reteplase. Animal experiments suggested that a double bolus regimen of reteplase would be preferable to doubling the single bolus dose. Pharmacokinetic modelling suggested a time interval of 30 min between the 2 bolus injections. Selection of the tested double bolus regimens was conservative and empirical. First, the previously tested single bolus of 15U was divided to 10 + 5U; secondly, the second bolus dose was increased to 10U. This strategy proved to be successful. The current dosage recommendation for reteplase is a double bolus intravenous injection of 10 + 10U, each over 2 min, 30 min apart. This produces a reduction in mortality in patients with acute myocardial infarction that is equivalent to that produced by front-loaded and accelerated infusion of alteplase.
Wouda, Jelte A.; Diergaarde, Leontien; Riga, Danai; van Mourik, Yvar; Schoffelmeer, Anton N. M.; De Vries, Taco J.
2010-01-01
Disrupting reconsolidation of drug-related memories may be effective in reducing the incidence of relapse. In the current study we examine whether alcohol-related memories are prone to disruption by the β-adrenergic receptor antagonist propranolol (10 mg/kg) and the NMDA receptor antagonist MK801 (0.1 mg/kg) following their reactivation. In operant chambers, male Wistar rats were trained to self-administer a 12% alcohol solution. After 3 weeks of abstinence, the animals were placed in the self-administration cages and were re-exposed to the alcohol-associated cues for a 20-min retrieval period, immediately followed by a systemic injection of either propranolol, MK801 or saline. Rats were tested for cue-induced alcohol seeking on the following day. Retrieval session, injection and test were repeated on two further occasions at weekly intervals. Both propranolol and MK801 administration upon reactivation did not reduce alcohol seeking after the first reactivation test. However, a significant reduction of alcohol seeking was observed over three post-training tests in propranolol treated animals, and MK801 treated animals showed a strong tendency toward reduced alcohol seeking (p = 0.06). Our data indicate that reconsolidation of alcohol-related memories can be disrupted after a long post-training interval and that particularly β-adrenergic receptors may represent novel targets for pharmacotherapy of alcoholism, in combination with cue-exposure therapies. PMID:21152256
High Pressure Low NOx Emissions Research: Recent Progress at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Chi-Ming, Lee; Tacina, Kathleen M.; Wey, Changlie
2007-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been at demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9- injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Glenn High Pressure Low NOx Emissions Research
NASA Technical Reports Server (NTRS)
Tacina, Kathleen M.; Wey, Changlie
2008-01-01
In collaboration with U.S. aircraft engine companies, NASA Glenn Research Center has contributed to the advancement of low emissions combustion systems. For the High Speed Research Program (HSR), a 90% reduction in nitrogen oxides (NOx) emissions (relative to the then-current state of the art) has been demonstrated in sector rig testing at General Electric Aircraft Engines (GEAE). For the Advanced Subsonic Technology Program (AST), a 50% reduction in NOx emissions relative to the 1996 International Civil Aviation Organization (ICAO) standards has been demonstrated in sector rigs at both GEAE and Pratt & Whitney (P&W). During the Ultra Efficient Engine Technology Program (UEET), a 70% reduction in NOx emissions, relative to the 1996 ICAO standards, was achieved in sector rig testing at Glenn in the world class Advanced Subsonic Combustion Rig (ASCR) and at contractor facilities. Low NOx combustor development continues under the Fundamental Aeronautics Program. To achieve these reductions, experimental and analytical research has been conducted to advance the understanding of emissions formation in combustion processes. Lean direct injection (LDI) concept development uses advanced laser-based non-intrusive diagnostics and analytical work to complement the emissions measurements and to provide guidance for concept improvement. This paper describes emissions results from flametube tests of a 9-injection-point LDI fuel/air mixer tested at inlet pressures up to 5500 kPa. Sample results from CFD and laser diagnostics are also discussed.
NASA Astrophysics Data System (ADS)
Plamondon, Etienne
Using biodiesel/diesel fuel blends and multiple injection strategies in diesel engines have shown promising results in improving the trade-off relationship between nitrous oxides and particulate matters, but their effects are still not completely understood. In this context, this thesis focuses on the characterization of the multiple injection strategies and biodiesel impacts on pollutant emissions, performances and injection system behavior. To reach this goal, an experimental campaign on a diesel engine was performed and a model simulating the injection process was developed. The engine tests at low load with pilot injection allowed the reduction of NOx emissions up to 27% and those of PM up to 22.3% compared to single injection, provided that a precise tuning of the injection parameters was previously realized. This simultaneous reduction is explained by the reduction of the premixed combustion phase and injected fuel quantity during principal injection when a pilot injection is used. With triple injection for the tested engine load, the post-injection did not result in PM reduction since it contributes by itself to the PM production while the preinjection occurred too soon to burn conveniently and caused perturbations in the injection system as well. Using B20 blend in single injection caused a PM increase and a NOx reduction which might be explained by the poorer fuel atomization. However, pilot injection with B20 allowed to get a simultaneous reduction of NOx and PM, as observed with diesel. An injection simulation model was also developed and experimentally validated for different injection pressures as well as different energizing times and dwell times. When comparing the use of biodiesel with diesel, simulation showed that there was a critical energizing time for which both fuels yielded the same injection duration. For shorter energizing times, the biodiesel injection duration was shorter than for diesel, while longer energizing times presented the opposite behavior. The injection duration for the different blends falls between the pure-fuel situations. The use of constant properties (density, viscosity) and constant discharge coefficient showed no major loss in the precision of the flow-rate estimation, but revealed a great gain in calculus time. The use of pressure dependent bulk modulus and fluctuating injection pressure proved to be essential in order to have no drastic changes in the final predictions. Finally, the proposed model relevance in a case of engine testing was demonstrated with multiple injection strategies as well as with biodiesel since it allows a precise adjustment of the injection parameters while considering the dynamic effects caused by the injection. Keywords : Diesel engine, multiple injection, biodiesel, pollutant emission, heat release, mathematical model, injection simulation.
Direct push injection logging for high resolution characterization of low permeability zones
NASA Astrophysics Data System (ADS)
Liu, G.; Knobbe, S.; Butler, J. J., Jr.; Reboulet, E. C.; Borden, R. C.; Bohling, G.
2017-12-01
One of the grand challenges for groundwater protection and contaminated site remediation efforts is dealing with the slow, yet persistent, release of contaminants from low permeability zones. In zones of higher permeability, groundwater flow is relatively fast and contaminant transport can be more effectively affected by treatment activities. In the low permeability zones, however, groundwater flow and contaminant transport are slow and thus become largely insensitive to many in-situ treatment efforts. Clearly, for sites with low permeability zones, accurate depiction of the mass exchange between the low and higher permeability zones is critical for designing successful groundwater protection and remediation systems, which requires certain information such as the hydraulic conductivity (K) and porosity of the subsurface. The current generation of field methods is primarily developed for relatively permeable zones, and little work has been undertaken for characterizing zones of low permeability. For example, the direct push injection logging (DPIL) approach (e.g., Hydraulic Profiling Tool by Geoprobe) is commonly used for high resolution estimation of K over a range of 0.03 to 23 m/d. When K is below 0.03 m/d, the pressure responses from the current DPIL are generally too high for both the formation (potential formation alteration at high pressure) and measuring device (pressure exceeding the upper sensor limit). In this work, we modified the current DPIL tool by adding a low-flow pump and flowmeter so that injection logging can be performed with much reduced flow rates when K is low. Numerical simulations showed that the reduction in injection rates (reduced from 250 to 1 mL/min) allowed pressures to be measurable even when K was as low as 0.001 m/d. They also indicated that as the K decreased, the pore water pressure increase induced by probe advancement had a more significant impact on DPIL results. A new field DPIL profiling procedure was developed for reducing that impact. Our preliminary test results in both the lab and at a field site have demonstrated the promise of the modified DPIL approach as a practical method for characterizing low permeability zones.
A fault injection experiment using the AIRLAB Diagnostic Emulation Facility
NASA Technical Reports Server (NTRS)
Baker, Robert; Mangum, Scott; Scheper, Charlotte
1988-01-01
The preparation for, conduct of, and results of a simulation based fault injection experiment conducted using the AIRLAB Diagnostic Emulation facilities is described. An objective of this experiment was to determine the effectiveness of the diagnostic self-test sequences used to uncover latent faults in a logic network providing the key fault tolerance features for a flight control computer. Another objective was to develop methods, tools, and techniques for conducting the experiment. More than 1600 faults were injected into a logic gate level model of the Data Communicator/Interstage (C/I). For each fault injected, diagnostic self-test sequences consisting of over 300 test vectors were supplied to the C/I model as inputs. For each test vector within a test sequence, the outputs from the C/I model were compared to the outputs of a fault free C/I. If the outputs differed, the fault was considered detectable for the given test vector. These results were then analyzed to determine the effectiveness of some test sequences. The results established coverage of selt-test diagnostics, identified areas in the C/I logic where the tests did not locate faults, and suggest fault latency reduction opportunities.
NASA Astrophysics Data System (ADS)
Starov, A. V.; Goldfeld, M. A.
2017-10-01
The efficiency of using two variants of hydrogen injection (distributed and non-distributed injection from vertical pylons) is experimentally investigated. The tests are performed in the attached pipeline regime with the Mach number at the model combustor entrance M=2. The combustion chamber has a backward-facing step at the entrance and slotted channels for combustion stabilization. The tested variants of injection differ basically by the shapes of the fuel jets and, correspondingly, by the hydrogen distribution over the combustor. As a result, distributed injection is found to provide faster ignition, upstream displacement of the elevated pressure region, and more intense combustion over the entire combustor volume.
The Effects of Promethazine on Human Performance, Mood States, and Motion Sickness Tolerance
NASA Technical Reports Server (NTRS)
Cowings, Patricia S.; Stout, Cynthia; Toscano, William B.; Reynoso, Samuel; DeRoshia, Charles
1996-01-01
Intramuscular (IM) injections of promethazine in 25 mg or 50 mg dosages are commonly used to treat space motion sickness in astronauts. The present study examined the effects of IM injections of promethazine on neuropsy-chological performance, mood states, and motion sickness tolerance in humans. Twelve men, mean age 36 plus or minus 3.1 participated in one training (no injections) and three treatment conditions: a 25 mg injection of promethazine, a 50 mg injection of promethazine, and a placebo injection of sterile saline. Each condition, spaced at 7 day intervals, required an 8-10 hr session in which subjects were given four repetitions of 12 performance tasks, and one rotating chair motion sickness test. On the training day subjects were trained on each task to establish stability and proficiency. On treatment days, the order in which the drug or placebo was assigned to subjects was counter-balanced and a double-blind technique was used. Statistically significant decrements in performance were observed on 10 of 12 tasks when subjects were given 25 mg or 50 mg of promethazine as compared to the placebo. Performance decrements were associated with mean blood alcohol dose equivalency levels of 0.085% for 25 mg and 0. 1 37% for 50 mg dosages. The mood scale results showed significant changes in individual subjective experiences with maximum deterioration in the arousal state and fatigue level. When compared to placebo significant increases in motion sickness tolerance were found for both dosages of promethazine. These data suggest that effective dosages of promethazine currently used to counteract motion sickness in astronauts may significantly impair task components of their operational performance.
Steady state scenario development with elevated minimum safety factor on DIII-D
Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...
2014-08-15
On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Robert C.; Szecsody, James; Rigali, Mark J.
We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests tomore » study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.« less
The HyperV Full-Scale Contoured-Gap Coaxial Plasma Railgun
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Elton, Raymond; Wu, Linchun; Witherspoon, F. Douglas
2009-11-01
HyperV has been developing pulsed plasma injected coaxial railguns with a contoured gap profile designed to mitigate the blowby instability. Previous work using half-scale guns has been successful in launching 150 μg plasmas at 90 km/s [1]. In order to meet the original goal of 200 μg at 200 km/s the full-scale coaxial plasma gun has been constructed, and initial testing is beginning. This new plasma gun consists of two machined aluminum electrodes and a UHMW polyethylene breech insulator. The gun is breech fed by 64 ablative polyethylene capillary discharge units identical to the half-scale gun units. Maximum accelerator energy storage has also been increased 50%. Refractory coatings may be necessary to allow full current (˜800 kA) operation. The outer electrode includes 24 small diagnostic ports for optical and magnetic probe access to the plasma inside the gun to allow direct measurement of the plasma armature dynamics. Initial test data from the full-scale coax gun will be presented along with plans for future testing. Work supported by the U.S. DOE Office of Fusion Energy Sciences.[4pt] [1] F. D. Witherspoon, A. Case, S. Messer, R. Bomgardner, M. Phillips, S. Brockington, R. Elton, ``Contoured Gap Coaxial Plasma Gun with Injected Plasma Armature'' Rev. Sci. Instr. submitted (2009)
Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem.
Eldesouky, Ibrahim; Harrysson, Ola; Marcellin-Little, Denis J; West, Harvey; El-Hofy, Hassan
2017-11-01
In total hip arthroplasty (THA), the femoral stem can be fixed with or without bone cement. Cementless stem fixation is recommended for young and active patients as it eliminates the risk of loss of fixation at the bone-cement and cement-implant interfaces. Cementless fixation, however, suffers from a relatively high early revision rate. In the current research, a novel low-stiffness hip stem was designed, fabricated and tested. The stem design provided the option to inject biodegradable bone cement that could enhance initial stem stability. The stem was made of Ti6Al4V alloy. The proximal portion of the stem was porous, with cubic cells. The stem was fabricated using electron beam melting (EBM) technology and tested in compression and bending. Finite-element analysis was used to evaluate stem performance under a dynamic load representing a stair descending cycle and compare it to the performance of a solid stem with similar geometry. The von Mises stresses and maximum principal strains generated within the bone increased after porous stem insertion compared to solid stem insertion. The low-modulus stem tested in this study has acceptable mechanical properties and generates strain patterns in bone that appear compatible with clinical use.
MHD and Reconnection Activity During Local Helicity Injection
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.
2016-10-01
Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.
Injection practices in a metropolis of North India: perceptions, determinants and issues of safety.
Kotwal, A; Priya, R; Thakur, R; Gupta, V; Kotwal, J; Seth, T
2004-08-01
At least 50 percent of the injections administered each year are unsafe, more particularly in developing countries, posing serious health risks. An initial assessment to describe injection practices; their determinants and adverse effects can prevent injection-associated transmission of blood borne pathogens by reducing injection frequency and adoption of safe injection practices. To assess the injection practices in a large metropolitan city encompassing varied socio-cultural scenarios. STUDY SETTING AND DESIGN: Field based cross sectional survey covering urban non-slum, slum and peri-urban areas of a large metropolitan city. Injection prescribers, providers and community members selected by random sampling from the study areas. Pre tested questionnaires assessed knowledge and perceptions of study subjects towards injections and their possible complications. Observation of the process of injection and prescription audit also carried out. MS Access for database and SPSS ver 11 for analysis. Point estimates, 95% confidence intervals, Chi Square, t test, one-way ANOVA. The per capita injection rate was 5.1 per year and ratio of therapeutic to immunization injections was 4.4:1. Only 22.5%of injections were administered with a sterile syringe and needle. The level of knowledge about HIV and HBV transmission by unsafe injections was satisfactory amongst prescribers and community, but inadequate amongst providers. HCV was known to a very few in all the groups. The annual incidence of needle stick injuries among providers was quite high. A locally relevant safe injection policy based on multi disciplinary approach is required to reduce number of injections, unsafe injections and their attendant complications.
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
High Temperature Modification of SNCR Technology and its Impact on NOx Removal Process
NASA Astrophysics Data System (ADS)
Blejchař, Tomáš; Konvička, Jaroslav; von der Heide, Bernd; Malý, Rostislav; Maier, Miloš
2018-06-01
SNCR (Selective non-catalytic reduction) Technology is currently being used to reach the emission limit for nitrogen oxides at fossil fuel fired power plant and/or heating plant and optimum temperature for SNCR process is in range 850 - 1050°C. Modified SNCR technology is able to reach reduction 60% of nitrogen oxides at temperature up to 1250°C. So the technology can also be installed where the flue gas temperature is too high in combustion chamber. Modified SNCR was tested using generally known SNCR chemistry implemented in CFD (Computation fluid dynamics) code. CFD model was focused on detail simulation of reagent injection and influence of flue gas temperature. Than CFD simulation was compared with operating data of boiler where the modified SNCR technology is installed. By comparing the experiment results with the model, the effect on nitrous oxides removal process and temperature of flue gas at the injection region.
Electrohydrodynamic convective heat transfer in a square duct.
Grassi, Walter; Testi, Daniele
2009-04-01
Laminar to weakly turbulent forced convection in a square duct heated from the bottom is strengthened by ion injection from an array of high-voltage points opposite the heated strip. Both positive and negative ion injection are activated within the working liquid HFE-7100 (C(4)F(9)OCH(3)), with transiting electrical currents on the order of 0.1 mA. Local temperatures on the heated wall are measured by liquid crystal thermography. The tests are conducted in a Reynolds number range from 510 to 12,100. In any case, heat transfer is dramatically augmented, almost independently from the flow rate. The pressure drop increase caused by the electrohydrodynamically induced flow is also measured. A profitable implementation of the technique in the design of heat sinks and heat exchangers is foreseen; possible benefits are pumping power reduction, size reduction, and heat exchange capability augmentation.
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...
2015-03-01
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
The Physics of Tokamak Start-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Mueller
Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. ITER, the National Spherical Torus eXperiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in the solenoid. Alternative start-upmore » techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less
The physics of tokamak start-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, D.
Tokamak start-up on present-day devices usually relies on inductively induced voltage from a central solenoid. In some cases, inductive startup is assisted with auxiliary power from electron cyclotron radio frequency heating. International Thermonuclear Experimental Reactor, the National Spherical Torus Experiment Upgrade and JT60, now under construction, will make use of the understanding gained from present-day devices to ensure successful start-up. Design of a spherical tokamak (ST) with DT capability for nuclear component testing would require an alternative to a central solenoid because the small central column in an ST has insufficient space to provide shielding for the insulators in themore » solenoid. Alternative start-up techniques such as induction using outer poloidal field coils, electron Bernstein wave start-up, coaxial helicity injection, and point source helicity injection have been used with success, but require demonstration of scaling to higher plasma current.« less
Modeling of rapid shutdown in the DIII-D tokamak by core deposition of high-Z material
Izzo, Valerie A.; Parks, Paul B.
2017-06-22
MHD modeling of shell-pellet injection for disruption mitigation is carried out under the assumption of idealized delivery of the radiating payload to the core, neglecting the physics of shell ablation. The shell pellet method is designed to produce an inside-out thermal quench in which core thermal heat is radiated while outer flux surfaces remain intact, protecting the divertor from large conducted heat loads. In the simulation, good outer surfaces remain until the thermal quench is nearly complete, and a high radiated energy fraction is achieved. As a result, when the outermost surfaces are destroyed, runaway electron test orbits indicate thatmore » the rate of runaway electron loss is very fast compared with prior massive gas injection simulations, which is attributed to the very different current profile evolution that occurs with central cooling.« less
Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C
2016-02-15
Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.
Breadboard stellar tracker system test report
NASA Technical Reports Server (NTRS)
Kollodge, J. C.; Parrish, K. A.
1984-01-01
BASD has, in the past, developed several unique position tracking algorithms for charge transfer device (CTD) sensors. These algorithms provide an interpixel transfer function with the following characteristics: (1) high linearity; (2) simplified track logic; (3) high gain; and (4) high noise rejection. A previous test program using the GE charge injection device (CID) showed that accuracy for BASD's breadboard was limited to approximately 2% of a pixel (1 sigma) whereas analysis and simulation indicated the limit should be less than 0.5% of a pixel, assuming the limit to be detector response and dark current noise. The test program was conducted under NASA contract No. NAS8-34263. The test approach for that program did not provide sufficient data to identify the sources of error and left open the amount of contribution from parameters such as image distribution, geometric distortion and system alignment errors.
Physics of Intense Electron Current Sources for Helicity Injection
NASA Astrophysics Data System (ADS)
Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Winz, G. R.
2014-10-01
DC helicity injection (HI) for non-solenoidal ST startup requires sources of current at the tokamak edge. Since the rate of HI scales with injection voltage, understanding of the physics setting injector impedance is necessary for a predictive model of the HI rate and subsequent growth of Ip. In Pegasus, arc plasma sources are used for current injection. They operate immersed in tokamak edge plasma, and are biased at ~1-2 kV with respect to the vessel to draw current densities J ~ 1 kA/cm2 from an arc plasma cathode. Prior to tokamak formation, impedance data manifests two regimes, one at low current (< 1 kA) with I ~V 3 / 2 , and a higher current mode where I ~V 1 / 2 holds. The impedance in the I ~V 3 / 2 regime is consistent with an electrostatic double layer. Current in the I ~V 1 / 2 regime is linear in arc gas fueling rate, suggesting a space-charge limit set by nedge. In the presence of tokamak plasmas, voltage oscillations of the order 100s of volts are measured during MHD relaxation activity. These fluctuations occur at the characteristic frequencies of the n = 1 and n = 0 MHD activity observed on magnetic probes, and are suggestive of dynamic activity found in LHI simulations in NIMROD. Advanced injector design techniques have allowed higher voltage operation. These include staged shielding to prevent external arcing, and shaped cathodes, which minimize the onset and material damage due to cathode spot formation. Work supported by US DOE Grant DE-FG02-96ER54375.
Agonist- and subunit-dependent potentiation of glutamate receptors by a nootropic drug aniracetam.
Tsuzuki, K; Takeuchi, T; Ozawa, S
1992-11-01
GluR1 and GluR2 cDNAs encoding non-NMDA subtypes of glutamate receptor were isolated from a rat brain cDNA library by Boulter et al. (Science, 249 (1990) 1033-1037). Functional receptors activated by kainate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and glutamate were expressed in Xenopus oocytes injected with GluR1, GluR2 or a mixture of GluR1 and GluR2 RNAs. In GluR1-expressed oocytes, 1 mM aniracetam potentiated AMPA-induced currents by 99 +/- 10% (mean +/- S.E.M., n = 5) and glutamate-induced currents by 140 +/- 8% (n = 4), but little affected kainate-induced currents. Aniracetam was effective from a concentration of 0.1 mM, and it exhibited more conspicuous effects with the increase of the dose. In oocytes injected with GluR1 plus GluR2 RNAs, aniracetam more markedly potentiated current responses to AMPA and glutamate than those in oocytes injected with GluR1 RNA alone. For example, 1 mM aniracetam potentiated AMPA-induced currents by 396 +/- 76% (n = 4) and glutamate-induced currents by 970 +/- 65% (n = 5) in oocytes injected with 10% GluR1 and 90% GluR2 RNAs. In these oocytes, however, the potentiation of kainate-induced currents by 1 mM aniracetam was only 8 +/- 5% (n = 4). Thus, we conclude that the potentiation of the AMPA/kainate receptor by aniracetam depends on both species of agonists and subunit composition of the receptor.
Wenz, Benjamin; Nielsen, Stine; Gassowski, Martyna; Santos-Hövener, Claudia; Cai, Wei; Ross, R Stefan; Bock, Claus-Thomas; Ratsch, Boris-Alexander; Kücherer, Claudia; Bannert, Norbert; Bremer, Viviane; Hamouda, Osamah; Marcus, Ulrich; Zimmermann, Ruth
2016-09-05
People who inject drugs (PWID) are at increased risk of acquiring and transmitting HIV and Hepatitis C (HCV) due to sharing injection paraphernalia and unprotected sex. To generate seroprevalence data on HIV and HCV among PWID and related data on risk behaviour, a multicentre sero- and behavioural survey using respondent driven sampling (RDS) was conducted in eight German cities between 2011 and 2014. We also evaluated the feasibility and effectiveness of RDS for recruiting PWID in the study cities. Eligible for participation were people who had injected drugs within the last 12 months, were 16 years or older, and who consumed in one of the study cities. Participants were recruited, using low-threshold drop-in facilities as study sites. Initial seeds were selected to represent various sub-groups of people who inject drugs (PWID). Participants completed a face-to-face interview with a structured questionnaire about socio-demographics, sexual and injecting risk behaviours, as well as the utilisation of health services. Capillary blood samples were collected as dried blood spots and were anonymously tested for serological and molecular markers of HIV and HCV. The results are shown as range of proportions (min. and max. values (%)) in the respective study cities. For evaluation of the sampling method we applied criteria from the STROBE guidelines. Overall, 2,077 PWID were recruited. The range of age medians was 29-41 years, 18.5-35.3 % of participants were female, and 9.2-30.6 % were foreign born. Median time span since first injection were 10-18 years. Injecting during the last 30 days was reported by 76.0-88.4 % of participants. Sharing needle/syringes (last 30 days) ranged between 4.7 and 22.3 %, while sharing unsterile paraphernalia (spoon, filter, water, last 30 days) was reported by 33.0-43.8 %. A majority of participants (72.8-85.8 %) reported incarceration at least once, and 17.8-39.8 % had injected while incarcerated. Between 30.8 and 66.2 % were currently in opioid substitution therapy. Unweighted HIV seroprevalence ranged from 0-9.1 %, HCV from 42.3-75.0 %, and HCV-RNA from 23.1-54.0 %. The implementation of RDS as a recruiting method in cooperation with low-threshold drop in facilities was well accepted by both staff and PWID. We reached our targeted sample size in seven of eight cities. In the recruited sample of mostly current injectors with a long duration of injecting drug use, seroprevalence for HIV and HCV varied greatly between the city samples. HCV was endemic among participants in all city samples. Our results demonstrate the necessity of intensified prevention strategies for blood-borne infections among PWID in Germany.
ARACHIDONIC ACID PRODUCTS IN AIRWAY NOCICEPTOR ACTIVATION DURING ACUTE LUNG INJURY
Lin, Shuxin; Li, Huafeng; Xu, Ling; Moldoveanu, Bogdan; Guardiola, Juan; Yu, Jerry
2011-01-01
We have reported that airway nociceptors [C fiber receptors (CFRs) and high threshold A-delta fiber receptors (HTARs)] are activated during oleic acid (OA) induced acute lung injury. In the current studies, we tested the hypothesis that this nociceptor activation is mediated by arachidonic acid products. In anesthetized, open chest, and mechanically ventilated rabbits, we examined the response of the nociceptors to intravenous injection of OA before and after blocking the cyclo-oxygenase pathways by indomethacin. Pre-treatment with indomethacin (20 mg/kg) decreased the background activities of both CFRs (from 0.48±0.12 to 0.25±0.08, n=7, p<0.05) and HTARs (from 0.54±0.14 to 0.23±0.08, n=10, p<0.01). It also blocked the nociceptors’ response to OA. Similarly, pre-treatment with thromboxane synthase inhibitor (ketoconazole) also blocked the nociceptor response to OA. In addition, local microinjection or intravenous injection of a thromboxane mimetic stimulated CFRs and HTARs. The current results clearly indicate that arachidonic acid metabolites mediate airway nociceptor activation during OA-induced acute lung injury and suggest that thromboxane may be a key mediator. PMID:21622966
Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L; Banks, William A; Morley, John E
2014-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production. This antisense rapidly crosses the blood-brain barrier, reverses learning and memory impairments, reduces oxidative stress, and restores brain-to-blood efflux of Aβ in SAMP8 mice. Here, we examined the effects of this AβPP antisense in the Tg2576 mouse model of AD. We administered the OL-1 antisense into the lateral ventricle 3 times at 2week intervals. Seventy-two hours after the third injection, we tested learning and memory in T-maze foot shock avoidance. In the second study, we injected the mice with OL-1 antisense 3 times at 2-week intervals via the tail vein. Seventy-two hours later, we tested learning and memory T-maze, novel object recognition, and elevated plus maze. At the end of behavioral testing, brain tissue was collected. OL-1 antisense administered centrally improved acquisition and retention of T-maze foot shock avoidance. OL-1 antisense administered via tail vein improved learning and memory in both T-maze foot shock avoidance and novel object-place recognition. In the elevated plus maze, the mice which received OL-1 antisense spent less time in the open arms and had fewer entries into the open arms indicating reduced disinhibitation. Biochemical analyses reveal significant reduction of AβPP signal and a reduction of measures of neuroinflammation. The current findings support the therapeutic potential of OL-1 AβPP antisense.
Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST
NASA Astrophysics Data System (ADS)
Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2010-11-01
The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).
Fungicide Injection to Control Dutch Elm Disease: Understanding the Options
Linda Haugen; Mark Stennes
1999-01-01
In some situations, injecting trees with fungicides is an effective treatment for the management of Dutch elm disease (DED). Several injection products are on the market, and various means of application are recommended. Each product and method has pros and cons. The "best" product depends on the individual tree? its current condition, the objectives of the...
Fritz, Jan; Niemeyer, Thomas; Clasen, Stephan; Wiskirchen, Jakub; Tepe, Gunnar; Kastler, Bruno; Nägele, Thomas; König, Claudius W; Claussen, Claus D; Pereira, Philippe L
2007-01-01
If low back pain does not improve with conservative management, the cause of the pain must be determined before further therapy is initiated. Information obtained from the patient's medical history, physical examination, and imaging may suffice to rule out many common causes of chronic pain (eg, fracture, malignancy, visceral or metabolic abnormality, deformity, inflammation, and infection). However, in most cases, the initial clinical and imaging findings have a low predictive value for the identification of specific pain-producing spinal structures. Diagnostic spinal injections performed in conjunction with imaging may be necessary to test the hypothesis that a particular structure is the source of pain. To ensure a valid test result, diagnostic injection procedures should be monitored with fluoroscopy, computed tomography, or magnetic resonance imaging. The use of controlled and comparative injections helps maximize the reliability of the test results. After a symptomatic structure has been identified, therapeutic spinal injections may be administered as an adjunct to conservative management, especially in patients with inoperable conditions. Therapeutic injections also may help hasten the recovery of patients with persistent or recurrent pain after spinal surgery. RSNA, 2007
The Helicity Injected Torus Program
NASA Astrophysics Data System (ADS)
Jarboe, T. R.; Nelson, B. A.; Jewell, P. D.; Liptac, J. E.; McCollam, K. J.; Raman, R.; Redd, A. J.; Rogers, J. A.; Sieck, P. E.; Shumlak, U.; Smith, R. J.; Nagata, M.; Uyama, T.
1999-11-01
The Helicity Injected Torus--II (HIT--II) spherical torus is capable of both Coaxial Helicity Injection (CHI) and transformer action current drive. HIT--II has a major radius R = 0.3, minor radius a = 0.2, aspect ratio A = R/a = 1.5, with an on axis magnetic field of up to Bo = 0.67 T. HIT--II provides equilibrium control, CHI flux boundary conditions, and transformer action using 28 poloidal field coils, using active flux feedback control. HIT--II has driven up to 200 kA of plasma current, using either CHI or transformer drive. An overview and recent results of the HIT--II program will be presented. The development of a locked-electron current drive model for HIT and HIT--II has led to the design of a constant inductive helicity injection method for spherical torii. This method is incorporated in the design of the Helicity Injected Torus -- Steady Inductive (HIT-- SI)(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 experiment. HIT--SI can form a high-beta spheromak, a low aspect ratio RFP, or a spherical tokamak in a steady-state manner without using electrodes. The HIT--SI design and methodology will be presented.
NASA Technical Reports Server (NTRS)
Winglee, Robert M.
1991-01-01
The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Oxidative and antioxidative status in the testes of rats with acute epididymitis.
Kaya, Mete; Boleken, Mehmet Emin; Zeyrek, Fadile; Ozardali, Ilyas; Kanmaz, Turan; Erel, Ozcan; Yücesan, Selçuk
2006-01-01
Epididymitis is an inflammation or infection of the epididymis, a convoluted duct that lies on the posterior surface of the testicle. Oxidative stress due to excessive production of reactive oxygen species in epididymitis, impaired antioxidant defense mechanisms, or both, precipitates a range of pathologies that are currently believed to negatively affect the male reproductive function. How oxidative stress affects the testes is still unknown. We aimed to investigate the oxidative and antioxidative status of testes of rats with unilateral acute Escherichia coli epididymitis. The study included 36 male Wistar albino rats which were divided into three groups. In the epididymitis group (n = 12), an E. coli suspension was injected into the right ductus deferens of rats, and the same amount of saline was injected in the saline groups (n = 12). No surgery was performed in the control group (n = 12) for baseline values. Rats were sacrificed after 24 h and the epididymis and testes removed. The infection was confirmed by histopathologic evaluation and microbiological tests. The oxidative status of testes was evaluated by measuring myeloperoxidase (MPO) activity, and antioxidative status was evaluated by measuring total antioxidant response (TAR) and total antioxidant capacity levels (TAC). MPO activity in both the ipsilateral and contralateral testes of the epididymitis group was significantly higher than those of the saline and control groups (p < 0.05). The TAR and TAC levels in both testes were also significantly elevated in the epididymitis group versus the two other groups (p < 0.05). Acute epididymitis causes an increase of oxidative stress in the ipsilateral and contralateral testes, but this condition is strived for to tolerate the increase of endogenous antioxidants. 2006 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Taha, Z.; Rahim, MF Abdul; Mamat, R.
2017-10-01
The injection characteristics of direct injector affect the mixture formation and combustion processes. In addition, the injector is converted from gasoline operation for CNG application. Thus measurement of CNG direct injector mass flow rate was done by independently tested a single injector on a test bench. The first case investigated the effect of CNG injection pressure and the second case evaluate the effect of pulse-width of injection duration. An analytical model was also developed to predict the mass flow rate of the injector. The injector was operated in a choked condition in both the experiments and simulation studies. In case 1, it was shown that mass flow rate through the injector is affected by injection pressure linearly. Based on the tested injection pressure of 20 bar to 60 bar, the resultant mass flow rate are in the range of 0.4 g/s to 1.2 g/s which are met with theoretical flow rate required by the engine. However, in Case 2, it was demonstrated that the average mass flow rate at short injection durations is lower than recorded in Case 1. At injection pressure of 50 bar, the average mass flow rate for Case 2 and Case 1 are 0.7 g/s and 1.1 g/s respectively. Also, the measured mass flow rate at short injection duration showing a fluctuating data in the range of 0.2 g/s - 1.3 g/s without any noticeable trends. The injector model able to predict the trend of the mass flow rate at different injection pressure but unable to track the fluctuating trend at short injection duration.
Reconstituting botulinum toxin drugs: shaking, stirring or what?
Dressler, Dirk; Bigalke, Hans
2016-05-01
Most botulinum toxin (BT) drugs are stored as powders which need to be reconstituted with normal saline before clinical use. As botulinum neurotoxin (BNT), the therapeutically active ingredient, is a large double-stranded protein the process of reconstitution should be performed with special attention to mechanical stress applied. We wanted to test the mechanical stability of BNT during the reconstitution process. For this, 100 MU onabotulinumtoxinA (Botox(®), Irvine, CA, USA) was reconstituted with 2.0 ml of NaCl/H2O. Gentle reconstitution (GR) was performed with a 5 ml syringe, a 0.90 × 70 mm injection needle, one cycle of injection-aspiration-injection and two gentle shakes of the vial. Aggressive reconstitution (AR) was performed with a 5 ml syringe, a 0.40 × 40 mm injection needle, ten injection-aspiration-injection cycles and 30 s of continuous shaking of the vial. AR increased the time to paralysis in the mouse hemidiaphragm assay (HDA) from 72.0 ± 4.6 to 106.0 ± 16.0 min (*p = 0.002, two-tailed t test after Kolmogorov-Smirnova test with Lilliefors correction for normal distribution). Construction of a calibration curve revealed that the increase in the time to paralysis was correlated with a loss of potency of from 100 to 58 MU (-42 %). BT users should use large diameter injection needles for reconstitution, apply two or three injection-aspiration-injection cycles and, maybe, shake the vials a few times to rinse the entire glass wall. Aggressive reconstitution with small diameter needles, prolonged injection-aspiration-injection and violent shaking should be avoided.
Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures
NASA Astrophysics Data System (ADS)
Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng
2018-03-01
Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.
Injectable scaffolds: Preparation and application in dental and craniofacial regeneration
Chang, Bei; Ahuja, Neelam; Ma, Chi; Liu, Xiaohua
2016-01-01
Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including natural, synthetic, and composite biomaterials. Next, we discuss a variety of characteristic parameters and gelation mechanisms of the injectable scaffolds. The advanced injectable scaffolding systems developed in recent years are then illustrated. Furthermore, we summarize the applications of the injectable scaffolds for the regeneration of dental and craniofacial tissues that include pulp, dentin, periodontal ligament, temporomandibular joint, and alveolar bone. Finally, our perspectives on the injectable scaffolds for dental and craniofacial tissue regeneration are offered as signposts for the future advancement of this field. PMID:28649171
Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats.
De Paz-Campos, Marco A; Ortiz, Mario I; Chávez Piña, Aracely E; Zazueta-Beltrán, Liliana; Castañeda-Hernández, Gilberto
2014-10-15
The association of non-steroidal anti-inflammatory drugs with certain plant extracts can increase antinociceptive activity, permitting the use of lower doses and thus limiting side effects. Therefore, the aim objective of the current study was to examine the effects of curcumin on the nociception and pharmacokinetics of diclofenac in rats. Antinociception was assessed using the formalin test. Diluted formalin was injected subcutaneously into the dorsal surface of the right hind paw. Nociceptive behavior was quantified as the number of flinches of the injected paw during 60 min after injection, and a reduction in formalin-induced flinching was interpreted as an antinociceptive response. Rats were treated with oral diclofenac (1-31 mg/kg), curcumin (3.1-100 mg/kg) or the diclofenac-curcumin combination (2.4-38.4 mg/kg). To determine the possibility of a pharmacokinetic interaction, the oral bioavailability of diclofenac (10 mg/kg) was studied in presence and the absence of curcumin (31 mg/kg). Diclofenac, curcumin, or diclofenac-curcumin combination produced an antinociceptive effect on the formalin test. ED30 values were estimated for the individual drugs, and an isobologram was constructed. The derived theoretical ED30 for the antinociceptive effect (19.2 mg/kg) was significantly different from the observed experimental ED30 value (9.8 mg/kg); hence, the interaction between diclofenac and curcumin that mediates the antinociceptive effect was synergistic. Notwithstanding, the interaction does not appear to involve pharmacokinetic mechanisms, as oral curcumin failed to produce any significant alteration in oral diclofenac bioavailability. Data suggest that the diclofenac-curcumin combination can interact at the systemic level and may have therapeutic advantages for the clinical treatment of inflammatory pain. Copyright © 2014 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Major, J. R.; Eichhubl, P.; Callahan, O. A.
2015-12-01
The coupled chemical and mechanical response of reservoir and seal rocks to injection of CO2 have major implications on the short and long term security of sequestered carbon. Many current numerical models evaluating behavior of reservoirs and seals during and after CO2 injection in the subsurface consider chemistry and mechanics separately and use only simple mechanical stability criteria while ignoring time-dependent failure parameters. CO2 injection irreversibly alters the subsurface chemical environment which can then affect geomechanical properties on a range of time scales by altering rock mineralogy and cements through dissolution, remobilization, and precipitation. It has also been documented that geomechanical parameters such as fracture toughness (KIC) and subcritical index (SCI) are sensitive to chemical environment. Double torsion fracture mechanics testing of reservoir lithologies under controlled environmental conditions relevant to CO2 sequestration show that chemical environment can measurably affect KIC and SCI. This coupled chemical-mechanical behavior is also influenced by rock composition, grains, amount and types of cement, and fabric. Fracture mechanics testing of the Aztec Sandstone, a largely silica-cemented, subarkose sandstone demonstrate it is less sensitive to chemical environment than Entrada Sandstone, a silty, clay-rich sandstone. The presence of de-ionized water lowers KIC by approximately 20% and SCI 30% in the Aztec Sandstone relative to tests performed in air, whereas the Entrada Sandstone shows reductions on the order of 70% and 90%, respectively. These results indicate that rock composition influences the chemical-mechanical response to deformation, and that the relative chemical reactivity of target reservoirs should be recognized in context of CO2 sequestration. In general, inert grains and cements such as quartz will be less sensitive to the changing subsurface environment than carbonates and clays.
Methamphetamine-induced behavioral sensitization in a rodent model of posttraumatic stress disorder.
Eagle, Andrew L; Perrine, Shane A
2013-07-01
Single prolonged stress (SPS) is a rodent model of posttraumatic stress disorder (PTSD)-like characteristics. Given that PTSD is frequently comorbid with substance abuse and dependence, including methamphetamine (METH), the current study sought to investigate the effects of SPS on METH-induced behavioral sensitization. In experiment 1, Sprague-Dawley rats were subject to SPS or control treatment and subsequently tested across four sessions of an escalating METH dosing paradigm. METH was injected (i.p.) in escalating doses (0, 0.032, 0.1, 0.32, 1.0, and 3.2mg/kg; dissolved in saline) every 15min and ambulatory activity was recorded. In experiment 2, SPS and control treated rats were injected (i.p.) with either saline or METH (5mg/kg) for five consecutive daily sessions and tested for stereotypy as well as ambulatory activity. Two days later, all animals were injected with a challenge dose of METH (2.5mg/kg) and again tested for activity. No differences in the acute response to METH were observed between SPS and controls. SPS enhanced METH induced ambulatory activity across sessions, compared to controls. METH-induced stereotypy increased across sessions, indicative of behavioral sensitization; however, SPS attenuated, not enhanced, this effect suggesting that SPS may prevent the development of stereotypy sensitization. Collectively, results show that SPS increases repeated METH-induced ambulatory activity while preventing the transition across sessions from ambulatory activity to stereotypy. These findings suggest that SPS alters drug-induced neuroplasticity associated with behavioral sensitization to METH, which may reflect an effect on the shared neurocircuitry underlying PTSD and substance dependence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Marchionna, N. R.; Diehl, L. A.; Trout, A. M.
1973-01-01
The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.
Pharmacy practice and injection use in community pharmacies in Pokhara city, Western Nepal.
Gyawali, Sudesh; Rathore, Devendra Singh; Adhikari, Kishor; Shankar, Pathiyil Ravi; K C, Vikash Kumar; Basnet, Suyog
2014-04-28
Community pharmacies in Nepal serve as the first point of contact for the public with the health care system and provide many services, including administering injections. However, there is a general lack of documented information on pharmacy practice and injection use in these pharmacies. This study aims to provide information about pharmacy practice in terms of service and drug information sources, and injection use, including the disposal of used injection equipment. A mixed method, cross-sectional study was conducted in 54 community pharmacies in Pokhara city. Data was collected using a pre-tested, semi-structured questionnaire, and also by the direct observation of pharmacy premises. Interviews with pharmacy supervisors (proprietors) were also conducted to obtain additional information about certain points. Interviews were carried out with 54 pharmacy supervisors/proprietors (47 males and 7 females) with a mean age and experience of 35.54 and 11.73 years, respectively. Approximately a half of the studied premises were operated by legally recognized pharmaceutical personnel, while the remainder was run by people who did not have the legal authority to operate pharmacies independently. About a quarter of pharmacies were providing services such as the administration of injections, wound dressing, and laboratory and consultation services in addition to medicine dispensing and counseling services. The 'Current Index of Medical Specialties' was the most commonly used source for drug information. Almost two-thirds of patients visiting the pharmacies were dispensed medicines without a prescription. Tetanus Toxoid, Depot-Medroxy Progesterone Acetate, and Diclofenac were the most commonly-used/administered injections. Most of the generated waste (including sharps) was disposed of in a municipal dump without adhering to the proper procedures for the disposal of hazardous waste. Community pharmacies in Pokhara offer a wide range of services including, but not limited to, drug dispensing, counseling, dressing of wounds, and administering injections. However, the lack of qualified staff and adequate infrastructure may be compromising the quality of the services offered. Therefore, the health authorities should take the necessary measures to upgrade the qualifications of the personnel and to improve the infrastructure for the sake of good pharmacy practice and the safer use of injections.
The lethal injection quandary: how medicine has dismantled the death penalty.
Denno, Deborah W
2007-10-01
On February 20, 2006, Michael Morales was hours away from execution in California when two anesthesiologists declined to participate in his lethal injection procedure, thereby halting all state executions. The events brought to the surface the long-running schism between law and medicine, raising the question of whether any beneficial connection between the professions ever existed in the execution context. History shows it seldom did. Decades of botched executions prove it. This Article examines how states ended up with such constitutionally vulnerable lethal injection procedures, suggesting that physician participation in executions, though looked upon with disdain, is more prevalent--and perhaps more necessary--than many would like to believe. The Article also reports the results of this author's unique nationwide study of lethal injection protocols and medical participation. The study demonstrates that states have continued to produce grossly inadequate protocols that severely restrict sufficient understanding of how executions are performed and heighten the likelihood of unconstitutionality. The analysis emphasizes in particular the utter lack of medical or scientific testing of lethal injection despite the early and continuous involvement of doctors but ongoing detachment of medical societies. Lastly, the Article discusses the legal developments that led up to the current rush of lethal injection lawsuits as well as the strong and rapid reverberations that followed, particularly with respect to medical involvement. This Article concludes with two recommendations. First, much like what occurred in this country when the first state switched to electrocution, there should be a nationwide study of proper lethal injection protocols. An independent commission consisting of a diverse group of qualified individuals, including medical personnel, should conduct a thorough assessment of lethal injection, especially the extent of physician participation. Second, this Article recommends that states take their execution procedures out of hiding. Such visibility would increase public scrutiny, thereby enhancing the likelihood of constitutional executions. By clarifying the standards used for determining what is constitutional in Baze v. Rees, the U.S. Supreme Court can then provide the kind of Eighth Amendment guidance states need to conduct humane lethal injections.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
High current liquid metal ion source using porous tungsten multiemitters.
Tajmar, M; Vasiljevich, I; Grienauer, W
2010-12-01
We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-μA up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (μPIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. Copyright © 2010 Elsevier B.V. All rights reserved.
Advances in cardiac CT contrast injection and acquisition protocols.
Scholtz, Jan-Erik; Ghoshhajra, Brian
2017-10-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.
Advances in cardiac CT contrast injection and acquisition protocols
Scholtz, Jan-Erik
2017-01-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688
Variable N-type negative resistance in an injection-gated double-injection diode
NASA Technical Reports Server (NTRS)
Kapoor, A. K.; Henderson, H. T.
1981-01-01
Double-injection (DI) switching devices consist of p+ and n+ contacts (for hole and electron injection, respectively), separated by a near intrinsic semiconductor region containing deep traps. Under proper conditions, these devices exhibit S-type differential negative resistance (DNR) similar to silicon-controlled rectifiers. With the added influence of a p+ gate appropriately placed between the anode (p+) and cathode (n+), the current-voltage characteristic of the device has been manipulated for the first time to exhibit a variable N-type DNR. The anode current and the anode-to-cathode voltage levels at which this N-type DNR is observed can be varied by changing the gate-to-cathode bias. In essence, the classical S-type DI diode can be electronically transformed into an N-type diode. A first-order phenomenological model is proposed for the N-type DNR.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
NASA Astrophysics Data System (ADS)
Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe
2015-03-01
Photopolymerization is a common tool to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler simply by illumination. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. However, at the device level, surgical endoscopic probes are required. We present a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 1 mm in diameter. Beside basic injection mechanics, the tool consists of an optical fiber guiding the light required for photopolymerization and for chemical analysis. Combining photorheology and fluorescence spectroscopy, the current state of the photopolymerization is inferred and monitored in real time. Biocompatible and highly tuneable Poly-Ethylene-Glycol (PEG) hydrogels were used as the injection material. The device was tested on a model for intervertebral disc replacement. Gels were successfully implanted into a bovine caudal model and mechanically tested in-vitro during two weeks. The photopolymerized gel was evaluated at the tissue level (adherence and mechanical properties of the implant), at the cellular level (biocompatibility and cytotoxicity) and ergonomic level (sterilization procedure and feasibility study). This paper covers the monitoring aspect of the device.
Deportation along the U.S.-Mexico border: its relation to drug use patterns and accessing care.
Brouwer, K C; Lozada, R; Cornelius, W A; Firestone Cruz, M; Magis-Rodríguez, C; Zúñiga de Nuncio, M L; Strathdee, S A
2009-02-01
Since migration has been linked to new drug trends and risky behaviors, and deported individuals face unique economic and social stressors, we investigated behaviors of injection drug users (IDUs) from Tijuana, Mexico in relation to deportation history. In 2005, IDUs > or =18 years old who injected within the prior month were recruited by respondent-driven sampling, administered a questionnaire, and underwent antibody testing for HIV, HCV, and syphilis. Logistic regression compared IDUs who reported coming to Tijuana due to deportation from the U.S. versus others in the study. Of 219 participants, 16% were deportees. Prevalence of HIV, HCV and syphilis was 3, 95 and 13%, respectively. Deportees had lived in Tijuana for a shorter time (median: 2 vs. 16 years), were more likely to inject multiple times/day (OR: 5.52; 95%CI: 1.62-18.8), but less likely to have smoked/inhaled methamphetamine (OR: 0.17; 95%CI: 0.17-0.86). Deportation history was inversely associated with receiving drug treatment (OR: 0.41; 95%CI: 0.19-0.89), recent medical care (OR: 0.37; 95%CI: 0.13-1.00), or HIV testing (OR: 0.44; 95%CI: 0.19-1.02). Deportees had different drug use patterns and less interaction with public health services than other study participants. Our study is an indication that migration history might relate to current risk behaviors and access to health care. More in-depth studies to determine factors driving such behaviors are needed.
Loewinger, Gabriel; Sharma, Bishnu; Karki, Deepak Kumar; Khatiwoda, Prasana; Kainee, Sher; Poudel, Krishna C
2016-07-01
In Nepal, prevalence of Hepatitis C (HCV) among injecting drug users (IDUs) has been measured at 50% and knowledge of the virus is low. Rehabilitation and harm reduction attendees constitute populations to whom health care providers can deliver services. As such, characterizing their drug use and risk profiles is important for developing targeted service delivery. We measured drug use and risk patterns of IDUs participating in residential rehabilitation as well as those contacted through needle exchanges to identify correlates of drug use frequency, risky injection practices as well as HCV testing, knowledge and perceived risk. We collected cross-sectional data from one-on-one structured interviews of IDUs contacted through needle-exchange outreach workers (n=202) and those attending rehabilitation centres (behaviour immediately prior to joining rehabilitation) (n=167). Roughly half of participants reported injecting at least 30 times in the past 30 days and individuals with previous residential rehabilitation experience reported frequent injection far more than those without it. About one in fourteen respondents reported past week risky injection practices. Participants were over three times as likely to report risky injection if they consumed alcohol daily (17.2%) than if they did not (5.0%) (p=0.002). Those who reported injecting daily reported risky injection practices (11.9%) significantly more than non-daily injectors (1.8%) (p<0.001). Respondents reported high HCV infection rates, low perceived risk, testing history and knowledge. HCV knowledge was not associated with differences in risky injecting. Treatment centres should highlight the link between heavy drinking, frequent injection and risky injecting practices. The link between rehabilitation attendance and frequent injection may suggest IDUs with more severe use patterns are more likely to attend rehabilitation. Rehabilitation centres and needle exchanges should provide testing and education for HCV. Education alone may not be sufficient to initiate change since knowledge did not predict lower risk. Copyright © 2016 Elsevier B.V. All rights reserved.
Formation and termination of runaway beams in ITER disruptions
NASA Astrophysics Data System (ADS)
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2017-06-01
A self-consistent analysis of the relevant physics regarding the formation and termination of runaway beams during mitigated disruptions by Ar and Ne injection is presented for selected ITER scenarios with the aim of improving our understanding of the physics underlying the runaway heat loads onto the plasma facing components (PFCs) and identifying open issues for developing and accessing disruption mitigation schemes for ITER. This is carried out by means of simplified models, but still retaining sufficient details of the key physical processes, including: (a) the expected dominant runaway generation mechanisms (avalanche and primary runaway seeds: Dreicer and hot tail runaway generation, tritium decay and Compton scattering of γ rays emitted by the activated wall), (b) effects associated with the plasma and runaway current density profile shape, and (c) corrections to the runaway dynamics to account for the collisions of the runaways with the partially stripped impurity ions, which are found to have strong effects leading to low runaway current generation and low energy conversion during current termination for mitigated disruptions by noble gas injection (particularly for Ne injection) for the shortest current quench times compatible with acceptable forces on the ITER vessel and in-vessel components ({τ\\text{res}}∼ 22~\\text{ms} ). For the case of long current quench times ({τ\\text{res}}∼ 66~\\text{ms} ), runaway beams up to ∼10 MA can be generated during the disruption current quench and, if the termination of the runaway current is slow enough, the generation of runaways by the avalanche mechanism can play an important role, increasing substantially the energy deposited by the runaways onto the PFCs up to a few hundreds of MJs. Mixed impurity (Ar or Ne) plus deuterium injection proves to be effective in controlling the formation of the runaway current during the current quench, even for the longest current quench times, as well as in decreasing the energy deposited on the runaway electrons during current termination.
Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics.
Remenar, Julius F
2014-06-02
There are now long-acting versions of six antipsychotic drugs on the U.S. market, and with them, five unique combinations of molecular form and delivery strategy long-acting-injectable-antipsychotics (LAIAs) show evidence of reduced relapses of schizophrenia, but their introduction has been slow, taking at least nine years after the approval of each oral drug. Oily solutions of lipophilic prodrugs were the first to enter the LAIA market, but they relied on esterification of a hydroxyl handle that was lost with the emergence of the atypical antipsychotics. A review of the literature and patents shows that companies tested many different approaches before reaching the currently marketed versions, including aqueous suspensions of poorly soluble salts, polymeric microspheres, and new approaches to making prodrugs. Yet, very little has been published to support faster development of safe long-acting injectables (LAIs). This review introduces some of the critical considerations in creating an LAI; then it analyzes the existing products and discusses areas where further research is needed. The available literature suggests that lipophilic prodrugs may be inherently safer than poorly soluble salts as LAIs. Other areas needing additional study include (1) the range of physical properties acceptable for LAIs and the effect of prodrug tail length in achieving them, and (2) the role of physiological responses at the injection site in the release of drug from a depot.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huynh, Cong Tuan; Ryu, Chang-Mo, E-mail: ryu201@postech.ac.kr
A theoretical model of current filaments predicting preferential acceleration/deceleration and magnetic field enhancement in a plasma with e{sup +}/e{sup −} beam injection is presented. When the e{sup +}/e{sup −} beams are injected into a plasma, current filaments are formed. The beam particles are accelerated or decelerated depending on the types of current filaments in which they are trapped. It is found that in the electron/ion ambient plasma, the e{sup +} beam particles are preferentially accelerated, while the e{sup −} beam particles are preferentially decelerated. The preferential particle acceleration/deceleration is absent when the ambient plasma is the e{sup +}/e{sup −} plasma.more » We also find that the particle momentum decrease can explain the magnetic field increase during the development of Weibel/filamentation instability. Supporting simulation results of particle acceleration/deceleration and magnetic field enhancement are presented. Our findings can be applied to a wide range of astrophysical plasmas with the e{sup +}/e{sup −} beam injection.« less
Large spin current injection in nano-pillar-based lateral spin valve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp
We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization bymore » the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.« less
Lovett, Michael L; Wang, Xiaoqin; Yucel, Tuna; York, Lyndsey; Keirstead, Marc; Haggerty, Linda; Kaplan, David L
2015-09-01
Silk hydrogels were formulated with anti-vascular endothelial growth factor (anti-VEGF) therapeutics for sustained ocular drug delivery. Using silk fibroin as a vehicle for delivery, bevacizumab-loaded hydrogel formulations demonstrated sustained release of 3 months or greater in experiments in vitro as well as in vivo using an intravitreal injection model in Dutch-belted rabbits. Using both standard dose (1.25mg bevacizumab/50 μL injection) and high dose (5.0mg bevacizumab/50 μL injection) hydrogel formulations, release concentrations were achieved at day 90 that were equivalent or greater than those achieved at day 30 with the positive standard dose control (single injection (50 μL) of 1.25mg bevacizumab solution), which is estimated to be the therapeutic threshold based on the current dosage administration schedule of 1 injection/month. These gels also demonstrated signs of biodegradation after 3 months, suggesting that repeated injections may be possible (e.g., one injection every 3-6 months or longer). Due to its pharmacokinetic and biodegradation profiles, this delivery system may be used to reduce the frequency of dosing for patients currently enduring treatment using bevacizumab or other anti-VEGF therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.
The Pathogenesis and Management of Achalasia: Current Status and Future Directions.
Ates, Fehmi; Vaezi, Michael F
2015-07-01
Achalasia is an esophageal motility disorder that is commonly misdiagnosed initially as gastroesophageal reflux disease. Patients with achalasia often complain of dysphagia with solids and liquids but may focus on regurgitation as the primary symptom, leading to initial misdiagnosis. Diagnostic tests for achalasia include esophageal motility testing, esophagogastroduodenoscopy and barium swallow. These tests play a complimentary role in establishing the diagnosis of suspected achalasia. High-resolution manometry has now identified three subtypes of achalasia, with therapeutic implications. Pneumatic dilation and surgical myotomy are the only definitive treatment options for patients with achalasia who can undergo surgery. Botulinum toxin injection into the lower esophageal sphincter should be reserved for those who cannot undergo definitive therapy. Close follow-up is paramount because many patients will have a recurrence of symptoms and require repeat treatment.
Kalcheim, Yoav; Katzir, Eran; Zeides, Felix; Katz, Nadav; Paltiel, Yossi; Millo, Oded
2017-05-10
Control over the vortex potential at the nanoscale in a superconductor is a subject of great interest for both fundamental and technological reasons. Many methods for achieving artificial pinning centers have been demonstrated, for example, with magnetic nanostructures or engineered imperfections, yielding many intriguing effects. However, these pinning mechanisms do not offer dynamic control over the strength of the patterned vortex potential because they involve static nanostructures created in or near the superconductor. Dynamic control has been achieved with scanning probe methods on the single vortex level but these are difficult so scale up. Here, we show that by applying controllable nanopatterned current injection, the superconductor can be locally driven out of equilibrium, creating an artificial vortex potential that can be tuned by the magnitude of the injected current, yielding a unique vortex channeling effect.
Using predictive uncertainty analysis to optimise tracer test design and data acquisition
NASA Astrophysics Data System (ADS)
Wallis, Ilka; Moore, Catherine; Post, Vincent; Wolf, Leif; Martens, Evelien; Prommer, Henning
2014-07-01
Tracer injection tests are regularly-used tools to identify and characterise flow and transport mechanisms in aquifers. Examples of practical applications are manifold and include, among others, managed aquifer recharge schemes, aquifer thermal energy storage systems and, increasingly important, the disposal of produced water from oil and shale gas wells. The hydrogeological and geochemical data collected during the injection tests are often employed to assess the potential impacts of injection on receptors such as drinking water wells and regularly serve as a basis for the development of conceptual and numerical models that underpin the prediction of potential impacts. As all field tracer injection tests impose substantial logistical and financial efforts, it is crucial to develop a solid a-priori understanding of the value of the various monitoring data to select monitoring strategies which provide the greatest return on investment. In this study, we demonstrate the ability of linear predictive uncertainty analysis (i.e. “data worth analysis”) to quantify the usefulness of different tracer types (bromide, temperature, methane and chloride as examples) and head measurements in the context of a field-scale aquifer injection trial of coal seam gas (CSG) co-produced water. Data worth was evaluated in terms of tracer type, in terms of tracer test design (e.g., injection rate, duration of test and the applied measurement frequency) and monitoring disposition to increase the reliability of injection impact assessments. This was followed by an uncertainty targeted Pareto analysis, which allowed the interdependencies of cost and predictive reliability for alternative monitoring campaigns to be compared directly. For the evaluated injection test, the data worth analysis assessed bromide as superior to head data and all other tracers during early sampling times. However, with time, chloride became a more suitable tracer to constrain simulations of physical transport processes, followed by methane. Temperature data was assessed as the least informative of the solute tracers. However, taking costs of data acquisition into account, it could be shown that temperature data when used in conjunction with other tracers was a valuable and cost-effective marker species due to temperatures low cost to worth ratio. In contrast, the high costs of acquisition of methane data compared to its muted worth, highlighted methanes unfavourable return on investment. Areas of optimal monitoring bore position as well as optimal numbers of bores for the investigated injection site were also established. The proposed tracer test optimisation is done through the application of common use groundwater flow and transport models in conjunction with publicly available tools for predictive uncertainty analysis to provide modelers and practitioners with a powerful yet efficient and cost effective tool which is generally applicable and easily transferrable from the present study to many applications beyond the case study of injection of treated CSG produced water.
Drozd, N N; Shagdarova, B Ts; Il'ina, A V; Varlamov, V P
2017-07-01
Intravenous injection of protamine sulfate or quarternized chitosan derivative to guinea pigs after injection of 70 aIIa U/kg non-fractionated heparin shortened plasma clotting time (shown by partial activated thromboplastin time, thrombin time, and prothrombin time). Intravenous injection of protamine sulfate or quarternized chitosan derivative to guinea pigs after injection of 1 mg/kg (100 aXa U/kg) low-molecular-weight heparin (clexane) led to shortening of plasma clotting time in the ReaClot Heparin test and to prolongation of plasma amidolytic activity in the factor Xa chromogenic substrate test.
Integrated semiconductor twin-microdisk laser under mutually optical injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling-Xiu; Liu, Bo-Wen; Lv, Xiao-Meng
2015-05-11
We experimentally study the characteristics of an integrated semiconductor twin-microdisk laser under mutually optical injection through a connected optical waveguide. Based on the lasing spectra, four-wave mixing, injection locking, and period-two oscillation states are observed due to the mutually optical injection by adjusting the injected currents applied to the two microdisks. The enhanced 3 dB bandwidth is realized for the microdisk laser at the injection locking state, and photonic microwave is obtained from the electrode of the microdisk laser under the period-two oscillation state. The plentifully dynamical states similar as semiconductor lasers subject to external optical injection are realized due tomore » strong optical interaction between the two microdisks.« less
Program for impact testing of spar-shell fan blades, test report
NASA Technical Reports Server (NTRS)
Ravenhall, R.; Salemme, C. T.
1978-01-01
Six filament-wound, composite spar-shell fan blades were impact tested in a whirligig relative to foreign object damage resulting from ingestion of birds into the fan blades of a QCSEE-type engine. Four of the blades were tested by injecting a simulated two pound bird into the path of the rotating blade and two were tested by injecting a starling into the path of the blade.
Numerical simulation of surfactant-enhanced remediation using UTCHEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeze, G.A.; Fountain, J.C.; Pope, G.A.
1995-12-31
The UTCHEM multiphase compositional simulator was used to model the migration and surfactant-enhanced remediation of perchloroethylene (PCE) in a test cell at Canadian Forces Base Borden, Ontario. A line of five injection wells was installed on one side of the test cell and a line of five withdrawal wells was installed on the opposite side of the cell. The injection and withdrawal wells penetrated the entire depth of the sand aquifer. A total of 231 liters of PCE was injected into a shallow well in the center of the test cell. Prior to surfactant flushing, 47 liters of free-phase PCE,more » which flowed into the injection and withdrawal wells over a two week period, was removed using a small-diameter plastic tube and a peristaltic pump. One to two months of water flooding (pump-and-treat), using the injection-withdrawal well system, flushed an additional 12 liters of PCE. Following the water flooding, an aqueous surfactant solution of 1% nonyl phenol ethoxylate and 1% phosphate ester of the nonyl phenol ethoxylate was circulated through the test cell via the injection-withdrawal wells. Between November 11, 1990 and May 29, 1991, a total of 130,000 liters of surfactant solution were recirculated through the test cell, during which time 62 liters of PCE were recovered. This paper describes preliminary scoping simulations of the surfactant flushing process at the Borden test site to demonstrate the capability of UTCHEM to model surfactant-enhanced remediation of a non-aqueous-phase liquid (NAPL). A discussion of efforts to simulate PCE migration is also presented.« less
Injection of a Body into a Geodesic: Lessons Learnt from the LISA Pathfinder Case
NASA Technical Reports Server (NTRS)
Bortoluzzi, Daniele; Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.;
2016-01-01
Launch lock and release mechanisms constitute a common space business, however, some science missions due to very challenging functional and performance requirements need the development and testing of dedicated systems. In the LISA Pathfinder mission, a gold-coated 2-kg test mass must be injected into a nearly pure geodesic trajectory with a minimal residual velocity with respect to the spacecraft. This task is performed by the Grabbing Positioning and Release Mechanism, which has been tested on-ground to provide the required qualification. In this paper, we describe the test method that analyzes the main contributions to the mechanism performance and focuses on the critical parameters affecting the residual test mass velocity at the injection into the geodesic trajectory. The test results are also presented and discussed.
NASA Astrophysics Data System (ADS)
Virro, A. L.; Eliseev, P. G.; Lyuk, P. A.; Fridental, Ya K.; Khaller, Yu E.
1988-11-01
An experimental dependence of the threshold current density jth on the thickness of the active region was used to find the reduced threshold current density for AlGaAsSb (λ = 1.59μm, T = 295K) lasers: this density was 8 kA·cm-2·μm-1. The minimum threshold current was jth = 1.8 kA/cm2. Wide-contact lasers exhibited cw operation down to 175 K.