Sample records for current light water

  1. 77 FR 62270 - Proposed Revision Treatment of Non-Safety Systems for Passive Advanced Light Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... for Passive Advanced Light Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Standard... Passive Advanced Light Water Reactors.'' The current SRP does not contain guidance on the proposed RTNSS for Passive Advance Light Water Reactors. DATES: Submit comments by November 13, 2012. Comments...

  2. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less

  3. Development of Radiation-Resistant In-Water Wireless Transmission System Using Light Emitting Diodes and Photo Diodes

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Shibata, H.; Otsuka, N.; Uehara, T.; Tsuchiya, K.; Shibagaki, T.; Komanome, H.

    2016-10-01

    Several kinds of commercially available light emitting diodes (LED) and photo diodes (PD) were irradiated with 60Co gamma ray up to 1 MGy for development of a radiation-resistant in-water wireless transmission system using visible light. The lens parts of the LEDs turned brown by the irradiation and their colors became dark with the absorbed dose. The total luminous fluxes decreased with the absorbed dose and the LED with shorter emission wavelength had the higher decrease rate. Meanwhile, the current-voltage characteristics hardly changed. These results indicate that the decreases of the total luminous flux of the LEDs were mainly caused not by the degradation of the semiconductor parts but by the coloring of the lens parts by the irradiation. On the other hand, the light sensitivities of the PDs decreased with the absorbed dose. The PDs with the window part which turned a darker color had the higher decrease rate. These results indicate that the decreases of light sensitivities of the PDs were also mainly caused by the coloring of the resin parts by the irradiation. If the wireless transmission is performed using the candidate LED and PD between 5 meters in water, using a few LEDs and PDs, the PD's output current generated by the emission light of the LED is estimated to be detectable even considering the effects of the absorption of the light in water and the increased dark current by the irradiation. Therefore, a radiation resistant in-water transmission system can be constructed using commercially available LEDs and PDs in principle.

  4. The Physics of Marine Biology.

    ERIC Educational Resources Information Center

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  5. Artificial light on water attracts turtle hatchlings during their near shore transit

    PubMed Central

    Thums, Michele; Whiting, Scott D.; Reisser, Julia; Pendoley, Kellie L.; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G.

    2016-01-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  6. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

  7. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  8. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  9. 40 CFR 230.11 - Factual determinations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...

  10. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    PubMed

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  11. Investigating Factors that Affect Dissolved Oxygen Concentration in Water

    ERIC Educational Resources Information Center

    Jantzen, Paul G.

    1978-01-01

    Describes activities that demonstrate the effects of factors such as wind velocity, water temperature, convection currents, intensity of light, rate of photosynthesis, atmospheric pressure, humidity, numbers of decomposers, presence of oxidizable ions, and respiration by plants and animals on the dissolved oxygen concentration in water. (MA)

  12. Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae

    USGS Publications Warehouse

    Wood, Tamara M.; Gartner, Jeffrey W.

    2010-01-01

    Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.

  13. Accurate determination of the charge transfer efficiency of photoanodes for solar water splitting.

    PubMed

    Klotz, Dino; Grave, Daniel A; Rothschild, Avner

    2017-08-09

    The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes is critical for photoelectrochemical water splitting. This reaction involves photo-generated holes that oxidize water via charge transfer at the photoanode/electrolyte interface. However, a certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise to the surface recombination loss. The charge transfer efficiency, η t , defined as the ratio between the flux of holes that contribute to the water oxidation reaction and the total flux of holes that reach the surface, is an important parameter that helps to distinguish between bulk and surface recombination losses. However, accurate determination of η t by conventional voltammetry measurements is complicated because only the total current is measured and it is difficult to discern between different contributions to the current. Chopped light measurement (CLM) and hole scavenger measurement (HSM) techniques are widely employed to determine η t , but they often lead to errors resulting from instrumental as well as fundamental limitations. Intensity modulated photocurrent spectroscopy (IMPS) is better suited for accurate determination of η t because it provides direct information on both the total photocurrent and the surface recombination current. However, careful analysis of IMPS measurements at different light intensities is required to account for nonlinear effects. This work compares the η t values obtained by these methods using heteroepitaxial thin-film hematite photoanodes as a case study. We show that a wide spread of η t values is obtained by different analysis methods, and even within the same method different values may be obtained depending on instrumental and experimental conditions such as the light source and light intensity. Statistical analysis of the results obtained for our model hematite photoanode show good correlation between different methods for measurements carried out with the same light source, light intensity and potential. However, there is a considerable spread in the results obtained by different methods. For accurate determination of η t , we recommend IMPS measurements in operando with a bias light intensity such that the irradiance is as close as possible to the AM1.5 Global solar spectrum.

  14. Separation of scintillation and Cherenkov lights in linear alkyl benzene

    DOE PAGES

    Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...

    2016-09-11

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mohan; Guo, Ziyi; Yeh, Minfang

    To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less

  16. EVALUATION OF A PILOT-SCALE ULTRAVIOLET (UV) LIGHT AND OZONE TREATMENT SYSTEM FOR REMOVAL OF MTBE FROM DRINKING WATER SOURCES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is currently evaluating package plant advanced oxidation process (AOP) systems to treat methyl tertiary butyl ether (MTBE) in drinking water supplies (e.g., surface water, groundwater). MTBE has been identified as a potential carcin...

  17. Low-cost, light-switched, forward-osmosis desalination system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warner, John C.

    The looming water crisis is the second largest issue facing humanity after energy. In order to meet the increasing demand for clean water, new efficient and low-cost methods of water purification must be developed. A promising method for dry regions with sea borders is the desalination of seawater. While there remain many disadvantages to current desalination techniques, such as environmental pollution and high cost, there is a strong opportunity for new technology development in this area. In this Phase I program, the development of a light-switchable, low-cost desalination system was explored. The system requires photoselective switching of water solubility. Ninemore » new light-switchable spiropyran-based small molecule and polymeric materials were synthesized, and methods to evaluate their desalination potential were developed and utilized. Severable promising spiropyran analogues proved to be photoswitchable, but so far sufficient photoswitchablity of solubility for a commercial desalination system was not achieved. More development is required.« less

  18. Diffuse radiation increases global ecosystem-level water-use efficiency

    NASA Astrophysics Data System (ADS)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  19. Light-Dependent Sulfide Oxidation in the Anoxic Zone of the Chesapeake Bay Can Be Explained by Small Populations of Phototrophic Bacteria

    PubMed Central

    Bennett, Alexa J.; Hanson, Thomas E.; Luther, George W.

    2015-01-01

    Microbial sulfide oxidation in aquatic environments is an important ecosystem process, as sulfide is potently toxic to aerobic organisms. Sulfide oxidation in anoxic waters can prevent the efflux of sulfide to aerobic water masses, thus mitigating toxicity. The contribution of phototrophic sulfide-oxidizing bacteria to anaerobic sulfide oxidation in the Chesapeake Bay and the redox chemistry of the stratified water column were investigated in the summers of 2011 to 2014. In 2011 and 2013, phototrophic sulfide-oxidizing bacteria closely related to Prosthecochloris species of the phylum Chlorobi were cultivated from waters sampled at and below the oxic-anoxic interface, where measured light penetration was sufficient to support populations of low-light-adapted photosynthetic bacteria. In 2012, 2013, and 2014, light-dependent sulfide loss was observed in freshly collected water column samples. In these samples, extremely low light levels caused 2- to 10-fold increases in the sulfide uptake rate over the sulfide uptake rate under dark conditions. An enrichment, CB11, dominated by Prosthecochloris species, oxidized sulfide with a Ks value of 11 μM and a Vmax value of 51 μM min−1 (mg protein−1). Using these kinetic values with in situ sulfide concentrations and light fluxes, we calculated that a small population of Chlorobi similar to those in enrichment CB11 can account for the observed anaerobic light-dependent sulfide consumption activity in natural water samples. We conclude that Chlorobi play a far larger role in the Chesapeake Bay than currently appreciated. This result has potential implications for coastal anoxic waters and expanding oxygen-minimum zones as they begin to impinge on the photic zone. PMID:26296727

  20. Method for Measuring the Volume-Scattering Function of Water

    NASA Technical Reports Server (NTRS)

    Agrawal, Yogesh C.

    2009-01-01

    The volume scattering function (VSF) of seawater affects visibility, remote sensing properties, in-water light propagation, lidar performance, and the like. Currently, it s possible to measure only small forward angles of VSF, or to use cumbersome, large, and non-autonomous systems. This innovation is a method of measuring the full range of VSF using a portable instrument. A single rapid-sensing photosensor is used to scan a green laser beam, which delivers the desired measurement. By using a single sensor, inter-calibration is avoided. A compact design is achieved by using drift-free detector electronics, fiber optics, and a new type of photomultiplier. This provides a high angular resolution of 1 or better, as well as the ability to focus in on a VSF region of particular interest. Currently, the total scattering of light is measured as a difference from the other two parts of the light budget equation. This innovation will allow the direct calculation of the total scattering of light by taking an integral of the VSF over all angles. This directly provides one of the three components of the light budget equation, allowing greater versatility in its calculation.

  1. Patterns and properties of polarized light in air and water

    PubMed Central

    Cronin, Thomas W.; Marshall, Justin

    2011-01-01

    Natural sources of light are at best weakly polarized, but polarization of light is common in natural scenes in the atmosphere, on the surface of the Earth, and underwater. We review the current state of knowledge concerning how polarization and polarization patterns are formed in nature, emphasizing linearly polarized light. Scattering of sunlight or moonlight in the sky often forms a strongly polarized, stable and predictable pattern used by many animals for orientation and navigation throughout the day, at twilight, and on moonlit nights. By contrast, polarization of light in water, while visible in most directions of view, is generally much weaker. In air, the surfaces of natural objects often reflect partially polarized light, but such reflections are rarer underwater, and multiple-path scattering degrades such polarization within metres. Because polarization in both air and water is produced by scattering, visibility through such media can be enhanced using straightforward polarization-based methods of image recovery, and some living visual systems may use similar methods to improve vision in haze or underwater. Although circularly polarized light is rare in nature, it is produced by the surfaces of some animals, where it may be used in specialized systems of communication. PMID:21282165

  2. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

    PubMed Central

    Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F. Sánchez; Primo, Ana; Garcia, Hermenegildo

    2016-01-01

    Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system. PMID:27264495

  3. 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting.

    PubMed

    Mateo, Diego; Esteve-Adell, Iván; Albero, Josep; Royo, Juan F Sánchez; Primo, Ana; Garcia, Hermenegildo

    2016-06-06

    Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold-graphene interaction occurring in the composite system.

  4. On a nonlocal reaction-diffusion-advection system modelling the growth of phytoplankton with cell quota structure

    NASA Astrophysics Data System (ADS)

    Hsu, Sze-Bi; Mei, Linfeng; Wang, Feng-Bin

    2015-11-01

    Phytoplankton species in a water column compete for mineral nutrients and light, and the existing models usually neglect differences in the nutrient content and the amount of light absorbed of individuals. In this current paper, we examine a size-structured and nonlocal reaction-diffusion-advection system which describes the dynamics of a single phytoplankton species in a water column where the species depends simply on light for its growth. Our model is under the assumption that the amount of light absorbed by individuals is proportional to cell size, which varies for populations that reproduce by simple division into two equally-sized daughters. We first establish the existence of a critical death rate and our analysis indicates that the phytoplankton survives if and only if its death rate is less than the critical death rate. The critical death rate depends on a general reproductive rate, the characteristics of the water column (e.g., turbulent diffusion rate, sinking, depth), cell growth, cell division, and cell size.

  5. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  6. Phytoplankton Bloom in the Barents Sea [Detail

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 31, 2010 To see the full view of this image go to: www.flickr.com/photos/gsfc/4970549945 In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  7. Phytoplankton Bloom in the Barents Sea

    NASA Image and Video Library

    2017-12-08

    NASA image acquired August 31, 2010 To see a detail of this image go to: www.flickr.com/photos/gsfc/4971318856/ In this natural-color image from August 31, 2010, the ocean’s canvas swirls with turquoise, teal, navy, and green, the abstract art of the natural world. The colors were painted by a massive phytoplankton bloom made up of millions of tiny, light-reflecting organisms growing in the sunlit surface waters of the Barents Sea. Such blooms peak every August in the Barents Sea. The variations in color are caused by different species and concentrations of phytoplankton. The bright blue colors are probably from coccolithophores, a type of phytoplankton that is coated in a chalky shell that reflects light, turning the ocean a milky turquoise. Coccolithophores dominate the Barents Sea in August. Shades of green are likely from diatoms, another type of phytoplankton. Diatoms usually dominate the Barents Sea earlier in the year, giving way to coccolithophores in the late summer. However, field measurements of previous August blooms have also turned up high concentrations of diatoms. The Barents Sea is a shallow sea sandwiched between the coastline of northern Russia and Scandinavia and the islands of Svalbard, Franz Josef Land, and Novaya Zemlya. Within the shallow basin, currents carrying warm, salty water from the Atlantic collide with currents carrying cold, fresher water from the Arctic. During the winter, strong winds drive the currents and mix the waters. When winter’s sea ice retreats and light returns in the spring, diatoms thrive, typically peaking in a large bloom in late May. The shift between diatoms and coccolithophores occurs as the Barents Sea changes during the summer months. Throughout summer, perpetual light falls on the waters, gradually warming the surface. Eventually, the ocean stratifies into layers, with warm water sitting on top of cooler water. The diatoms deplete most of the nutrients in the surface waters and stop growing. Coccolithophores, on the other hand, do well in warm, nutrient-depleted water with a lot of light. In the Barents Sea, these conditions are strongest in August. The shifting conditions and corresponding change in species lead to strikingly beautiful multicolored blooms such as this one. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite acquired this image. NASA image courtesy Norman Kuring, NASA Ocean Color Group. Caption by Holli Riebeek. Instrument: Aqua - MODIS Click here to see more images from NASA Goddard’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  8. Photoelectrolysis of water at high current density - Use of laser light excitation of semiconductor-based photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Wrighton, M. S.; Bocarsley, A. B.; Bolts, J. M.

    1978-01-01

    In the present paper, some results are given for UV laser light irradiation of the photoanode (SnO2, SrTiO3, or TiO2) in a cell for the light-driven electrolysis of H2O, at radiation intensities of up to 380 W/sq cm. The properties of the anode material are found to be independent of light intensity. Conversion of UV light to stored chemical energy in the form of 2H2/O2 from H2O was driven at a rate of up to 30 W/sq cm. High O2 evolution rates at the irradiated anodes without changes in the current-voltage curves are attributed to the excess oxidizing power associated with photogenerated holes. A test for this sort of hypothesis for H2 evolution at p-type materials is proposed.

  9. Relationship between Secchi disc readings and light penetration in Lake Huron

    USGS Publications Warehouse

    Beeton, Alfred M.

    1958-01-01

    Fifty-seven paired photometer and Secchi disc measurements made at 18 stations in Saginaw Bay and Lake Huron support the view that a counter-clockwise current usually occurs in the Bay with more transparent Lake Huron water flowing in along the northwest shore and less transparent Bay water flowing out along the southeast shore. The average percentage transmission of surface light intensity, at the Secchi disc depth, was 14.7 percent. Discrepancies in the relationship of disc readings to percentage transmission of surface light are related to the condition of the sky and sea. It is suggested that these discrepancies can best be explained on the basis of the spectral sensitivity of the human eye and its response to surface glare.

  10. Runoff simulation in the Ferghana Valley (Central Asia) using conceptual hydrological HBV-light model

    NASA Astrophysics Data System (ADS)

    Radchenko, Iuliia; Breuer, Lutz; Forkutsa, Irina; Frede, Hans-Georg

    2013-04-01

    Glaciers and permafrost on the ranges of the Tien Shan mountain system are primary sources of water in the Ferghana Valley. The water artery of the valley is the Syr Darya River that is formed by confluence of the Naryn and Kara Darya rivers, which originate from the mountain glaciers of the Ak-Shyrak and the Ferghana ranges accordingly. The Ferghana Valley is densely populated and main activity of population is agriculture that heavily depends on irrigation especially in such arid region. The runoff reduction is projected in future due to global temperature rise and glacier shrinkage as a consequence. Therefore, it is essential to study climate change impact on water resources in the area both for ecological and economic aspects. The evaluation of comparative contribution of small upper catchments (n=24) with precipitation predominance in discharge and the large Naryn and Karadarya River basins, which are fed by glacial melt water, to the Fergana Valley water balance under current and future climatic conditions is general aim of the study. Appropriate understanding of the hydrological cycle under current climatic conditions is significant for prognosis of water resource availability in the future. Thus, conceptual hydrological HBV-light model was used for analysing of the water balance of the small upper catchments that surround the Ferghana Valley. Three trial catchments (the Kugart River basin, 1010 km²; the Kurshab River basin, 2010 km2; the Akbura River basin, 2260 km²) with relatively good temporal quality data were chosen to setup the model. Due to limitation of daily temperature data the MODAWEC weather generator, which converts monthly temperature data into daily based on correlation with rainfall, was tested and applied for the HBV-light model.

  11. Spent fuel data base: commercial light water reactors. [PWR; BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  12. An empirical study on energy efficiency improvement through photovoltaic systems and a LED lighting control system

    NASA Astrophysics Data System (ADS)

    Choi, Young Kwan; Lee, Jae Hyeong

    2015-09-01

    In this research, a facility was constructed and its performance was analyzed to improve the energy efficiency of a vertical-type water treatment building. After the design and construction of a fixed tilt Photovoltaic in Building (PVIB) on the rooftop using a crystalline silicon solar cell module and photovoltaic generator integrated with the building by using a Building Integrated Photovoltaic System (BIPV), a thin-film module on the rooftop and outer wall of water treatment building, and the generation efficiency was analyzed. Also, a DC distribution was established for use of a brushless DC (BLDC) pump motor, and the existing lighting-facility-based manual on-off method was turned into a system for energy conservation by controlling light emitting diode (LED) through a wireless motion sensor and dimming control. In addition, a Building Energy Management System (BEMS) for a real-time analysis of the energy efficiency for a vertical0type water treatment building was prepared and tested. The vertical-type water treatment building developed in this study is currently operating the BEMS. The vertical-type water treatment building reported in this paper is expected to reduce energy consumption by about 30% compared to existing water treatment systems.

  13. First laboratory insight on the behavioral rhythms of the bathyal crab Geryon longipes

    NASA Astrophysics Data System (ADS)

    Nuñez, J. D.; Sbragaglia, V.; García, J. A.; Company, J. B.; Aguzzi, J.

    2016-10-01

    The deep sea is the largest and at the same time least explored biome on Earth, but quantitative studies on the behavior of bathyal organisms are scarce because of the intrinsic difficulties related to in situ observations and maintaining animals in aquaria. In this study, we reported, for the first time, laboratory observations on locomotor rhythms and other behavioral observations (i.e. feeding, exploring and self-grooming) for the bathyal crab Geryon longipes. Crabs were collected on the middle-lower slope (720-1750 m) off the coast of Blanes (Spain). Inertial (18 h) water currents and monochromatic blue (i.e. 470 nm) light-darkness (24 h) cycles were simulated in two different experiments in flume tanks endowed with burrows. Both cycles were simulated in order to investigate activity rhythms regulation in Mediterranean deep-sea benthos. Crabs showed rhythmic locomotor activity synchronized to both water currents and light-darkness cycles. In general terms, feeding and exploring behaviors also followed the same pattern. Results presented here indicate the importance of local inertial (18 h) periodicity of water currents at the seabed as a temporal cue regulating the behavior of bathyal benthic fauna in all continental margin areas where the effects of tides is negligible.

  14. Light scattering sensor for real-time identification of Vibrio parahaemolyticus, V. vulnificus and V. cholera colonies on solid agar plates

    USDA-ARS?s Scientific Manuscript database

    The three most common pathogenic species of Vibrio, V. cholerae, V. parahemolyticus and V. vulnificus, are of major concern as water- and food-borne pathogens because of an increasing incidence of water and seafood related outbreaks and illnesses worldwide. Current methods are time-consuming and req...

  15. LENS: Light Transport

    NASA Astrophysics Data System (ADS)

    Yokley, Zachary

    2013-04-01

    The LENS detector uses an optically segmented 3D lattice, a scintillation lattice (SL), that channels light via total internal reflection from a scintillation event down channels parallel to the 3 primary Cartesian axes to the edge of the detector. This unique design provides spatial and temporal resolution required to distinguish the internal background of ^115In from the neutrino signal. Optical segmentation is achieved with Teflon films. Currently a 400 liter prototype, miniLENS, is being developed to demonstrate the internal background rejection techniques needed for LENS. This requires that miniLENS be shielded from external backgrounds from the surrounding materials and the photomultiplier tubes (PMTs). This shielding is provided by a water tank that surrounds miniLENS. In order to retain the channel information and separate the PMTs from the detector the LENS collaboration has developed light guides (LGs) made from multilayer films. These LGs transport light both by total internal and specular reflection providing an efficient means of coupling the SL through the water shield to the PMTs outside the water tank. This talk will discuss light transport in the SL as well as the design and construction of the LGs in the context of miniLENS.

  16. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.

    PubMed

    Wang, Yuanfeng; Wang, Xiaowen; Lai, Chuilin; Hu, Huawen; Kong, Yeeyee; Fei, Bin; Xin, John H

    2016-02-10

    To develop an efficient water-collecting surface that integrates both fast water-capturing and easy drainage properties is of high current interest for addressing global water issues. In this work, a superhydrophobic surface was fabricated on cotton fabric via manipulation of both the surface roughness and surface energy. This was followed by a subsequent spray coating of TiO2 nanosol that created light-induced superhydrophilic bumps with a unique raised structure as a result of the interfacial tension of the TiO2 nanosol sprayed on the superhydrophobic fiber surface. These raised TiO2 bumps induce both a wettability gradient and a shape gradient, synergistically accelerating water coalescence and water collection. The in-depth study revealed that the quantity and the distribution of the TiO2 had a significant impact on the final water collection efficiency. This inexpensive and facilely fabricated fabric biomimicks the desert beetle's back and spider silk, which are capable of fog harvesting without additional energy consumption.

  17. Enhancing swimming pool safety by the use of range-imaging cameras

    NASA Astrophysics Data System (ADS)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  18. Visible light-harvesting photoanodes for solar energy conversion: A comparison of anchoring groups to titanium dioxide

    NASA Astrophysics Data System (ADS)

    Martini, Lauren A.

    Environmental concerns related to climate change and geopolitical issues related to energy security have led to a widespread pursuit of alternative, non-fossil fuel energy sources capable of meeting our increasing global energy demands. Solar energy, which strikes the earth's surface at a rate vastly exceeding our current worldwide power demand, presents itself as a promising source of clean, abundant and renewable energy. The capture and conversion of solar energy into electricity as well as storable, transportable chemical fuels has therefore become major area of chemical research. Inspired by photosynthesis in nature, in which plants and algae convert sunlight, water, and carbon dioxide into oxygen and stored chemical fuel in the form of sugars, recent work has focused on visible light-driven water-splitting technologies for the production of solar fuels. Honda and Fujishima reported the first example of photoelectrochemical water oxidation in 1972. In their system, an inexpensive titanium dioxide semiconductor irradiated with ultraviolet light produced oxygen at the photoanode surface and hydrogen at the surface of a platinum counter electrode. In attempt to harness visible light instead, titanium dioxide and other inexpensive wide band gap photoanodes have been functionalized with visible light-absorbing molecular dyes. These dye-sensitized photoanodes have been used successfully to convert solar energy into electrical current, as in dye-sensitized solar cells, and to drive chemical processes like water oxidation, as in photocatalytic cells. In both systems, a long-lived charge separation is established upon illumination of the photoanode surface when a photoexcited molecular chromophore transfers an electron to the semiconductor conduction band. Following this electron injection process, a nearby redox-active species is oxidized and refills the hole left behind on the molecular chromophore. While the steps of this scheme are relatively straightforward, the integration of efficient visible-light absorption, ultrafast forward electron transfer, and stable charge separation is quite complicated. The work presented here is devoted to the design, synthesis, spectroscopy, and computational study of dye-sensitized photoanodes. In particular, we explore the relative stability and performance of different anchoring groups for the surface attachment of light-harvesting molecular dyes to titanium dioxide. Here we present the first systematic study that directly compares carboxylate, phosphonate, acetylacetonate, and hydroxamate anchors using the same molecular chromophore framework. We discuss a number of novel methods for the incorporation of anchoring group functionalities on each chromophore framework. We also assess the relative water stability of each of the anchoring groups on titanium dioxide as well as the relative efficiency of electron transfer from photoexcited molecular chromophores through each anchoring group into the conduction band of titanium dioxide. We hope that the work presented here will contribute to the rational design of better photoanodes for light-driven water splitting.

  19. Highly-efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO 2 photoanodes

    Treesearch

    Zhaodong Li; Chunhua Yao; Yanhao Yu; Zhiyong Cai; Xudong Wang

    2014-01-01

    Among current endeavors to explore renewable energy technologies, photoelectrochemical (PEC) water splitting holds great promise for conversion of solar energy to chemical energy. [ 1–4 ] Light absorption, charge separation, and appropriate interfacial redox reactions are three key aspects that lead to highly efficient solar energy conversion. [ 5–10 ] Therefore,...

  20. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.

  1. Strange bedfellows - A deep-water hermatypic coral reef superimposed on a drowned barrier island; Southern Pulley Ridge, SW Florida platform margin

    USGS Publications Warehouse

    Jarrett, B.D.; Hine, A.C.; Halley, R.B.; Naar, D.F.; Locker, S.D.; Neumann, A.C.; Twichell, D.; Hu, C.; Donahue, B.T.; Jaap, W.C.; Palandro, D.; Ciembronowicz, K.

    2005-01-01

    The southeastern component of a subtle ridge feature extending over 200 km along the western ramped margin of the south Florida platform, known as Pulley Ridge, is composed largely of a non-reefal, coastal marine deposit. Modern biostromal reef growth caps southern Pulley Ridge (SPR), making it the deepest hermatypic reef known in American waters. Subsurface ridge strata are layered, lithified, and display a barrier island geomorphology. The deep-water reef community is dominated by platy scleractinian corals, leafy green algae, and coralline algae. Up to 60% live coral cover is observed in 60-75 m of water, although only 1-2% of surface light is available to the reef community. Vertical reef accumulation is thin and did not accompany initial ridge submergence during the most recent sea-level rise. The delayed onset of reef growth likely resulted from several factors influencing Gulf waters during early stages of the last deglaciation (???14 kyr B.P.) including; cold, low-salinity waters derived from discrete meltwater pulses, high-frequency sea-level fluctuations, and the absence of modern oceanic circulation patterns. Currently, reef growth is supported by the Loop Current, the prevailing western boundary current that impinges upon the southwest Florida platform, providing warm, clear, low-nutrient waters to SPR. The rare discovery of a preserved non-reefal lowstand shoreline capped by rich hermatypic deep-reef growth on a tectonically stable continental shelf is significant for both accurate identification of late Quaternary sea-level position and in better constraining controls on the depth limits of hermatypic reefs and their capacity for adaptation to extremely low light levels. ?? 2004 Elsevier B.V. All rights reserved.

  2. Deep ultraviolet light-emitting and laser diodes

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Asif, Fatima; Muhtadi, Sakib

    2016-02-01

    Nearly all the air-water purification/polymer curing systems and bio-medical instruments require 250-300 nm wavelength ultraviolet light for which mercury lamps are primarily used. As a potential replacement for these hazardous mercury lamps, several global research teams are developing AlGaN based Deep Ultraviolet (DUV) light emitting diodes (LEDs) and DUV LED Lamps and Laser Diodes over Sapphire and AlN substrates. In this paper, we review the current research focus and the latest device results. In addition to the current results we also discuss a new quasipseudomorphic device design approach. This approach which is much easier to integrate in a commercial production setting was successfully used to demonstrate UVC devices on Sapphire substrates with performance levels equal to or better than the conventional relaxed device designs.

  3. Development of high yielding photonic light delivery system for photodynamic therapy of esophageal carcinomas

    NASA Astrophysics Data System (ADS)

    Premasiri, Amaranath; Happawana, Gemunu; Rosen, Arye

    2007-02-01

    Photodynamic therapy (PDT) is an approved treatment modality for Barrett's and invasive esophageal carcinoma. Proper Combination of photosentizing agent, oxygen, and a specific wavelength of light to activate the photosentizing agents is necessary for the cytotoxic destruction of cancerous cells by PDT. As a light source expensive solid-state laser sources currently are being used for the treatment. Inexpensive semiconductor lasers have been suggested for the light delivery system, however packaging of semiconductor lasers for optimal optical power output is challenging. In this paper, we present a multidirectional direct water-cooling of semiconductor lasers that provides a better efficiency than the conventional unidirectional cooling. AlGaAsP lasers were tested under de-ionized (DI) water and it is shown that the optical power output of the lasers under the DI water is much higher than that of the uni-directional cooling of lasers. Also, in this paper we discuss how direct DI water-cooling can optimize power output of semiconductor lasers. Thereafter an optimal design of the semiconductor laser package is shown with the DI water-cooling system. Further, a microwave antenna is designed which is to be imprinted on to a balloon catheter in order to provide local heating of esophagus, leading to an increase in local oxygenation of the tumor to generate an effective level of singlet oxygen for cellular death. Finally the optimal level of light energy that is required to achieve the expected level of singlet oxygen is modeled to design an efficient PDT protocol.

  4. Impact of natural photosensitizer extraction solvent upon light absorbance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Suhaimi, Suriati; Mohamed Siddick, Siti Zubaidah; Ahmad Hambali, Nor Azura Malini; Retnasamy, Vithyacharan; Abdul Wahid, Mohamad Halim; Mohamad Shahimin, Mukhzeer

    2017-02-01

    Natural pigmentations of Ardisia, Bawang Sabrang, Harum Manis mango, Oxalis Triangularis and Rosella were used to study the general trend in performance of dyes as a photosensitizer in the application of dye-sensitized solar cells (DSSCs) based on optical light absorbance and photoelectrochemical characteristics. From the Ultraviolet-Visible Spectrophotometer with the recorded absorption measurements in the range between 400 nm to 800 nm, the dyes extracted from Rosella and Oxalis Triangularis in water solvent exhibited the conversion efficiency up to 0.68% and 0.67%, respectively. The light absorbance peak for dye extracted from Ardisia, Bawang Sabrang, Oxalis Triangularis and Rosella in water and ethanol solvent resulted in the range between 500 nm to 650 nm, while the Harum Manis mango resulted in the broader spectra in both water and ethanol solvent. The light absorbance spectra of each the dyes shows shifted wavelength spectrum when the extracted dye is adsorbed onto TiO2 film surface that might influenced the absorption of light by TiO2 particle in the visible region. The capabilities of the dyes to absorb light when bonded onto the TiO2 photoanode was found to be significant with the current-voltage conversion of the cell. The results demonstrates just the tip of the vastness of natural dyes' (native to tropical region) feasibility and applicability as a photosensitizer.

  5. The role of water in the formation of reversed micelles: An antimicellization agent

    USGS Publications Warehouse

    Yu, Z.-J.; Zhou, N.-F.; Neuman, R.D.

    1992-01-01

    Micellization of sodium bis(2-ethylhexyl) phosphate in n-heptane has been studied under controlled environmental conditions by dynamic and static light scattering. The results clearly show that a trace amount of water has a very dramatic effect on reversed micellization. In contrast with results in the literature, water can function as an antimicellization agent. The generality of and the evidence for supporting the current view that water is a prerequisite for the formation of reversed micelles are discussed and criticized. ?? 1992 American Chemical Society.

  6. Environmental Impact Statement Space Shuttle Program, Vandenberg AFB, California. Supplement.

    DTIC Science & Technology

    1983-07-01

    area, will induce significant population growth and aggravate current housing and water availability problems . Six appendices offer more detailed...impacts have been reevaluated in light of recent changes in the p-ogram, research studies in problem areas, and newly- acquired knowledge of the...aggravate short-term problems concerning housing, and the quality and quantity of available water. x 7. PERMITS AND OTHER ENTITLEMENTS Air quality

  7. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Bélanger, S.; Matsuoka, A.; Babin, M.

    2013-07-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (Malina project) is analyzed in order to describe apparent optical properties (AOPs) in this sea, which has been subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean color sensor. The data set includes offshore clear waters of the Beaufort Basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by colored dissolved organic matter (CDOM) is responsible for these high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This questions the role of ocean color remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g., the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  8. Apparent optical properties of the Canadian Beaufort Sea - Part 1: Observational overview and water column relationships

    NASA Astrophysics Data System (ADS)

    Antoine, D.; Hooker, S. B.; Belanger, S.; Matsuoka, A.; Babin, M.

    2013-03-01

    A data set of radiometric measurements collected in the Beaufort Sea (Canadian Arctic) in August 2009 (MALINA project) is analysed in order to describe apparent optical properties (AOPs) in this sea, which is subject to dramatic environmental changes for several decades. The two properties derived from the measurements are the spectral diffuse attenuation coefficient for downward irradiance, Kd, and the spectral remote sensing reflectance, Rrs. The former controls light propagation in the upper water column. The latter determines how light is backscattered out of the water and becomes eventually observable from a satellite ocean colour sensor. The data set includes offshore clear waters of the Beaufort basin as well as highly turbid waters of the Mackenzie River plumes. In the clear waters, we show Kd values that are much larger in the ultraviolet and blue parts of the spectrum than what could be anticipated considering the chlorophyll concentration. A larger contribution of absorption by coloured dissolved organic matter (CDOM) is responsible for this high Kd values, as compared to other oligotrophic areas. In turbid waters, attenuation reaches extremely high values, driven by high loads of particulate materials and also by a large CDOM content. In these two extreme types of waters, current satellite chlorophyll algorithms fail. This is questioning the role of ocean colour remote sensing in the Arctic when Rrs from only the blue and green bands are used. Therefore, other parts of the spectrum (e.g. the red) should be explored if one aims at quantifying interannual changes in chlorophyll in the Arctic from space. The very peculiar AOPs in the Beaufort Sea also advocate for developing specific light propagation models when attempting to predict light availability for photosynthesis at depth.

  9. Multilayer white lighting polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gong, Xiong; Wang, Shu; Heeger, Alan J.

    2006-08-01

    Organic and polymer light-emitting diodes (OLEDs/PLEDs) that emit white light are of interest and potential importance for use in active matrix displays (with color filters) and because they might eventually be used for solid-state lighting. In such applications, large-area devices and low-cost of manufacturing will be major issues. We demonstrated that high performance multilayer white emitting PLEDs can be fabricated by using a blend of luminescent semiconducting polymers and organometallic complexes as the emission layer, and water-soluble (or ethanol-soluble) polymers/small molecules (for example, PVK-SO 3Li) as the hole injection/transport layer (HIL/HTL) and water-soluble (or ethanol-soluble) polymers/small molecules (for example, t-Bu-PBD-SO 3Na) as the electron injection/transport layer (EIL/HTL). Each layer is spin-cast sequentially from solutions. Illumination quality light is obtained with stable Commission Internationale d'Eclairage coordinates, stable color temperatures, and stable high color rendering indices, all close to those of "pure" white. The multilayer white-emitting PLEDs exhibit luminous efficiency of 21 cd/A, power efficiency of 6 lm/W at a current density of 23 mA/cm2 with luminance of 5.5 x 10 4 cd/m2 at 16 V. By using water-soluble (ethanol-soluble) polymers/small molecules as HIL/HTL and polymers/small molecules as EIL/ETL, the interfacial mixing problem is solved (the emissive polymer layer is soluble in organic solvents, but not in water/ ethanol). As a result, this device architecture and process technology can potentially be used for printing large-area multiplayer light sources and for other applications in "plastic" electronics. More important, the promise of producing large areas of high quality white light with low-cost manufacturing technology makes the white multilayer white-emitting PLEDs attractive for the development of solid state light sources.

  10. Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean

    PubMed Central

    Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave

    2009-01-01

    Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729

  11. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    PubMed

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  12. Characteristics of III-nitride based laser diode employed for short range underwater wireless optical communications

    NASA Astrophysics Data System (ADS)

    Xue, Bin; Liu, Zhe; Yang, Jie; Feng, Liangsen; Zhang, Ning; Wang, Junxi; Li, Jinmin

    2018-03-01

    An off-the-shelf green laser diode (LD) was measured to investigate its temperature dependent characteristics. Performance of the device was severely restricted by rising temperature in terms of increasing threshold current and decreasing modulation bandwidth. The observation reveals that dynamic characteristics of the LD is sensitive to temperature. Influence of light attenuation on the modulation bandwidth of the green LD was also studied. The impact of light attenuation on the modulation bandwidth of the LD in short and low turbid water channel was not obvious while slight difference in modulation bandwidth under same injection level was observed between water channel and free space even at short range.

  13. Transportation Shock and Vibration Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

    2013-06-06

    This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casksmore » to be realistically modeled.« less

  14. Summary of oceanographic measurements for characterizing light attenuation and sediment resuspension in the Barnegat Bay-Little Egg Harbor Estuary, New Jersey, 2013

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Ganju, Neil K.; Montgomery, Ellyn T.

    2015-08-28

    The U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection, measured suspended-sediment concentrations, currents, waves, light attenuation, and a variety of other water-quality parameters in the summer of 2013 in Barnegat Bay-Little Egg Harbor, New Jersey. These measurements quantified light attenuation and sediment resuspension in three seagrass meadows. Data were acquired sequentially at three paired channel-shoal sites, as the equipment was moved from south to north in the estuary. Data were collected for approximately 3 weeks at each site.

  15. Fire, wind, earth, and water: raising the education threshold through teacher self-awareness.

    PubMed

    Stolder, Mary Ellen; Hydo, Sharon K; Zorn, Cecelia R; Bottoms, Marjorie S

    2007-07-01

    The ancient Greeks, as well as current writers, prompt us to examine the self as teacher. Seeing the self as a border crosser is used to reveal both the light-side and shadow-side of self, as metaphorically suggested by fire, wind, earth, and water. Only through teacher self-awareness can respect be used to expand our lives as teachers and enrich students' learning and growth.

  16. Versatile Oxide Films Protect FeCrAl Alloys Under Normal Operation and Accident Conditions in Light Water Power Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2018-02-01

    The US has currently a fleet of 99 nuclear power light water reactors which generate approximately 20% of the electricity consumed in the country. Near 90% of the reactors are at least 30 years old. There are incentives to make the existing reactors safer by using accident tolerant fuels (ATF). Compared to the standard UO2-zirconium-based system, ATF need to tolerate loss of active cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. Ferritic iron-chromium-aluminum (FeCrAl) alloys have been identified as an alternative to replace current zirconium alloys. They contain Fe (base) + 10-22 Cr + 4-6 Al and may contain smaller amounts of other elements such as molybdenum and traces of others. FeCrAl alloys offer outstanding resistance to attack by superheated steam by developing an alumina oxide on the surface in case of a loss of coolant accident like at Fukushima. FeCrAl alloys also perform well under normal operation conditions both in boiling water reactors and pressurized water reactors because they are protected by a thin oxide rich in chromium. Under normal operation condition, the key element is Cr and under accident conditions it is Al.

  17. Direct injection GC method for measuring light hydrocarbon emissions from cooling-tower water.

    PubMed

    Lee, Max M; Logan, Tim D; Sun, Kefu; Hurley, N Spencer; Swatloski, Robert A; Gluck, Steve J

    2003-12-15

    A Direct Injection GC method for quantifying low levels of light hydrocarbons (C6 and below) in cooling water has been developed. It is intended to overcome the limitations of the currently available technology. The principle of this method is to use a stripper column in a GC to strip waterfrom the hydrocarbons prior to entering the separation column. No sample preparation is required since the water sample is introduced directly into the GC. Method validation indicates that the Direct Injection GC method offers approximately 15 min analysis time with excellent precision and recovery. The calibration studies with ethylene and propylene show that both liquid and gas standards are suitable for routine calibration and calibration verification. The sampling method using zero headspace traditional VOA (Volatile Organic Analysis) vials and a sample chiller has also been validated. It is apparent that the sampling method is sufficient to minimize the potential for losses of light hydrocarbons, and samples can be held at 4 degrees C for up to 7 days with more than 93% recovery. The Direct Injection GC method also offers <1 ppb (w/v) level method detection limits for ethylene, propylene, and benzene. It is superior to the existing El Paso stripper method. In addition to lower detection limits for ethylene and propylene, the Direct Injection GC method quantifies individual light hydrocarbons in cooling water, provides better recoveries, and requires less maintenance and setup costs. Since the instrumentation and supplies are readily available, this technique could easily be established as a standard or alternative method for routine emission monitoring and leak detection of light hydrocarbons in cooling-tower water.

  18. Assessment of Current Inservice Inspection and Leak Monitoring Practices for Detecting Materials Degradation in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Michael T.; Simonen, Fredric A.; Muscara, Joseph

    2016-09-01

    An assessment was performed to determine the effectiveness of existing inservice inspection (ISI) and leak monitoring techniques, and recommend improvements, as necessary, to the programs as currently performed for light water reactor (LWR) components. Information from nuclear power plant (NPP) aging studies and from the U. S. Nuclear Regulatory Commission’s Generic Aging Lessons Learned (GALL) report (NUREG-1801) was used to identify components that have already experienced, or are expected to experience, degradation. This report provides a discussion of the key aspects and parameters that constitute an effective ISI program and a discussion of the basis and background against which themore » effectiveness of the ISI and leak monitoring programs for timely detection of degradation was evaluated. Tables based on the GALL components were used to systematically guide the process, and table columns were included that contained the ISI requirements and effectiveness assessment. The information in the tables was analyzed using histograms to reduce the data and help identify any trends. The analysis shows that the overall effectiveness of the ISI programs is very similar for both boiling water reactors (BWRs) and pressurized water reactors (PWRs). The evaluations conducted as part of this research showed that many ISI programs are not effective at detecting degradation before its extent reached 75% of the component wall thickness. This work should be considered as an assessment of NDE practices at this time; however, industry and regulatory activities are currently underway that will impact future effectiveness assessments. A number of actions have been identified to improve the current ISI programs so that degradation can be more reliably detected.« less

  19. Effects of light conditions and temperature gradients on vertical migration behavior of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma)

    NASA Astrophysics Data System (ADS)

    Flanders, K. R.; Laurel, B.

    2016-02-01

    Early life stages of marine fishes must maximize growth while minimizing vulnerability to predators. Larval stages in particular are subject to ocean currents, but encounter favorable habitats by adjusting their vertical position in the water column. The investigation of environmental cues that change larval fish behavior is therefore crucial to understanding larval drift and dispersal modeling, and subsequently population structure and connectivity. In this study, the behavioral responses of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogramma) in a vertical water column were examined. Two prominent environmental variables, light and temperature, were manipulated over 3 h during observational trials. Light intensity was studied at two levels (1.484 x 101 μE m-2 s-1 ; 2.54 x102 μE m-2 s-1), and a diel effect was studied through the removal of light after 2 h. Light intensity did not significantly impact the position of either species in a vertical water column. However, a significant difference by species was apparent when all light levels were considered: the mean position of Arctic cod was closer to the surface of the water than that of walleye pollock. The effect of temperature through the introduction of a thermocline (range 5.6°C - 1.5°C) was limited to walleye pollock given the Arctic cod larvae were surface oriented across all light treatments. However, the thermocline did not significantly impact the relative change in position from light to dark in walleye pollock, likely because they were also surface oriented in control treatments. These results could be incorporated into future larval dispersal and survival models, particularly in Alaskan and Arctic waters, to investigate changes in species distributions resulting from global warming impacts. These results also indicate population structures of Arctic cod and walleye pollock could be affected, which may be reflected in ecosystem and trophic interactions. Because Arctic cod larvae were found to be significantly surface-oriented, rising sea surface temperatures pose a considerable threat while walleye pollock could continue territorial expansion northward.

  20. 75 FR 18567 - Agency Information Collection; Activity Under OMB Review; Omnibus Household Survey Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ...'s strategic goals (safety, reduced congestion, global connectivity, environmental stewardship and..., as well as other governmental agencies, to survey the public about current transportation issues, and... transit (subway, streetcar, or light rail) Commuter rail Water transportation (taxis, ferries, ships...

  1. Natural enamel caries in polarized light microscopy: differences in histopathological features derived from a qualitative versus a quantitative approach to interpret enamel birefringence.

    PubMed

    De Medeiros, R C G; Soares, J D; De Sousa, F B

    2012-05-01

    Lesion area measurement of enamel caries using polarized light microscopy (PLM) is currently performed in a large number of studies, but measurements are based mainly on a mislead qualitative interpretation of enamel birefringence in a single immersion medium. Here, five natural enamel caries lesions are analysed by microradiography and in PLM, and the differences in their histopathological features derived from a qualitative versus a quantitative interpretation of enamel birefringence are described. Enamel birefringence in different immersion media (air, water and quinoline) is interpreted by both qualitative and quantitative approaches, the former leading to an underestimation of the depth of enamel caries mainly when the criterion of validating sound enamel as a negatively birefringent area in immersion in water is used (a current common practice in dental research). Procedures to avoid the shortcomings of a qualitative interpretation of enamel birefringence are presented and discussed. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  2. Syntheses, structures and photoelectrochemical properties of three water-stable, visible light absorbing mental-organic frameworks based on tetrakis(4-carboxyphenyl)silane and 1,4-bis(pyridyl)benzene mixed ligands

    NASA Astrophysics Data System (ADS)

    Guo, Tiantian; Yang, Xiaowei; Li, Ruyan; Liu, Xiaoyu; Gao, Yanling; Dai, Zhihui; Fang, Min; Liu, Hong-Ke; Wu, Yong

    2017-09-01

    Photovoltaics (PV), which directly convert solar energy into electricity generally using semiconductors, offer a practical and sustainable solution to the current energy shortage and environmental pollution crisis. Photovoltaic applications of metal-organic frameworks (MOFs) belong to a relatively new area of research. Given that UV light accounts for only 4% while visible light contributes 43% of solar energy, it is rather imperative to develop semiconductors with narrow band gaps so that they could absorb visible light. In this work, three water-stable, narrow band semiconducting MOFs of [Cu(H2TCS)(H2O)] (1), [Co(H2TCS)(BPB)] (2) and [Ni(H2TCS)(BPB)] (3) were synthesized using tetrakis(4-carboxyphenyl)silane (H4TCS) and 1,4-bis (pyridyl)benzene (BPB) in water, and structurally characterized by single-crystal X-ray diffractions. MOF 1 has a 2D structure. MOF 2 and 3 are isostructrual and have 3D frameworks formed by interwoven 2D layers. All three MOFs are stable in acidic water solutions and can be stable in water for 7 days. MOFs 1-3 absorb UV and visible light and have band gaps of 0.50, 1.77 and 1.49 eV, respectively. Rapid and stable photocurrent responses of MOFs 1-3 under UV and visible light illuminations are observed. This work demonstrates that using electron rich Cu2+, Co2+, or Ni2+ as metal nodes can effectively decrease the band gaps of MOFs to make them absorbing visible light. To increase the conjugation in the linker is generally considered to be the method to decrease the band gap of MOFs. The conjugation in H4TCS is not significant and this ligand basically only absorbs UV light. However, by using electron rich Cu2+ ions as metal nodes, the prepared [Cu(H2TCS)(H2O)]·H2O (1) absorbs broadly in the visible light region. Thus, this work suggests that by using electron rich Cu2+, many narrow-band semiconductor MOFs can be prepared even by using ligands which only absorbs UV light.

  3. Alloy Selection for Accident Tolerant Fuel Cladding in Commercial Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2015-12-01

    As a consequence of the March 2011 events at the Fukushima site, the U.S. congress asked the Department of Energy (DOE) to concentrate efforts on the development of nuclear fuels with enhanced accident tolerance. The new fuels had to maintain or improve the performance of current UO2-zirconium alloy rods during normal operation conditions and tolerate the loss of active cooling in the core for a considerably longer time period than the current system. DOE is funding cost-shared research to investigate the behavior of advanced steels both under normal operation conditions in high-temperature water [ e.g., 561 K (288 °C)] and under accident conditions for reaction with superheated steam. Current results show that, under accident conditions, the advanced ferritic steels (1) have orders of magnitude lower reactivity with steam, (2) would generate less hydrogen and heat than the current zirconium alloys, (3) are resistant to stress corrosion cracking under normal operation conditions, and (4) have low general corrosion in water at 561 K (288 °C).

  4. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  5. Spring phytoplankton communities of the Labrador Sea (2005-2014): pigment signatures, photophysiology and elemental ratios

    NASA Astrophysics Data System (ADS)

    Fragoso, Glaucia M.; Poulton, Alex J.; Yashayaev, Igor M.; Head, Erica J. H.; Purdie, Duncan A.

    2017-03-01

    The Labrador Sea is an ideal region to study the biogeographical, physiological, and biogeochemical implications of phytoplankton community composition due to sharp transitions between distinct water masses across its shelves and central basin. We have investigated the multi-year (2005-2014) distributions of late spring and early summer (May to June) phytoplankton communities in the various hydrographic settings of the Labrador Sea. Our analysis is based on pigment markers (using CHEMTAX analysis), and photophysiological and biogeochemical characteristics associated with each phytoplankton community. Diatoms were the most abundant group, blooming first in shallow mixed layers of haline-stratified Arctic shelf waters. Along with diatoms, chlorophytes co-dominated at the western end of the section (particularly in the polar waters of the Labrador Current (LC)), whilst Phaeocystis co-dominated in the east (modified polar waters of the West Greenland Current (WGC)). Pre-bloom conditions occurred in deeper mixed layers of the central Labrador Sea in May, where a mixed assemblage of flagellates (dinoflagellates, prasinophytes, prymnesiophytes, particularly coccolithophores, and chrysophytes/pelagophytes) occurred in low-chlorophyll areas, succeeding to blooms of diatoms and dinoflagellates in thermally stratified Atlantic waters in June. Light-saturated photosynthetic rates and saturation irradiance levels were highest at stations where diatoms were the dominant phytoplankton group ( > 70 % of total chlorophyll a), as opposed to stations where flagellates were more abundant (from 40 up to 70 % of total chlorophyll a). Phytoplankton communities from the WGC (Phaeocystis and diatoms) had lower light-limited photosynthetic rates, with little evidence of photoinhibition, indicating greater tolerance to a high light environment. By contrast, communities from the central Labrador Sea (dinoflagellates and diatoms), which bloomed later in the season (June), appeared to be more sensitive to high light levels. Ratios of accessory pigments (AP) to total chlorophyll a (TChl a) varied according to phytoplankton community composition, with polar phytoplankton (cold-water related) having lower AP : TChl a. Polar waters (LC and WGC) also had higher and more variable particulate organic carbon (POC) to particulate organic nitrogen (PON) ratios, suggesting the influence of detritus from freshwater input, derived from riverine, glacial, and/or sea ice meltwater. Long-term observational shifts in phytoplankton communities were not assessed in this study due to the short temporal frame (May to June) of the data. Nevertheless, these results add to our current understanding of phytoplankton group distribution, as well as an evaluation of the biogeochemical role (in terms of C : N ratios) of spring phytoplankton communities in the Labrador Sea, which will assist our understanding of potential long-term responses of phytoplankton communities in high-latitude oceans to a changing climate.

  6. Sulfur isotope geochemistry of the central Japan Sea sediments (IODP Exp. 346) 20 150 kyr ago: Implications for the evolution of Asian Monsoon climate system

    NASA Astrophysics Data System (ADS)

    Oshio, S.; Yamaguchi, K. E.; Takahashi, S.; Naraoka, H.; Ikehara, M.

    2016-12-01

    Asian monsoon climate system has started about 50 Ma, after the collision of the Indian and Eurasian continents followed by uplift of the Himalaya and Tibetan Plateau. It has influenced sediments in the Japan Sea, where cm-scale alternation of Corg-rich dark layers and Corg-poor light layers occurs. This is most likely due to temporal changes in the nutrient status and/or oceanic redox conditions, which are likely caused by the fluctuations in the intensity of continental weathering and ocean currents, both of which were ultimately caused by the variable monsoon system. In order to obtain insights into the evolving oceanic redox state and the monsoon system, we conducted sulfur speciation and isotope study for the marine sediment core samples recovered in the central Japan Sea by IODP Exp. 346. The light layers have lower Spy (0.03-0.25 wt.%) contents when compared to the dark layers (0.26-1.49 wt.%). The Corg contents have similar distribution (0.34-1.10 wt.% for light layers and 1.16-3.38 wt.% for dark layers). However, the SSO4 contents (0.02-.64 wt.%) and the δ34S values (-34 to -38‰) did not show such light-dark distinction. Elevated Spy/Corg ratios (0.03-1.00) in the dark layers are interpreted to represent sulfide formation in the anoxic water column by bacterial sulfate reduction. During deposition of light layers, oxidation of sulfide minerals could have resulted in formation of sulfate minerals without significant isotope fractionation, as observed in this study. Regardless of the type of the sediments (dark vs. light), sulfate was not limiting during bacterial sulfate reduction, as reflected in the sulfur isotope compositions. We speculate that, during deposition of dark layers, enhanced summer monsoon activity caused heavy rainfall and increased source-rock weathering, runoff of the Yangtze River, and nutrient input into the East China Sea and the Tsushima Warm Current. Inflow of nutrient-rich and less salty water into the Japan Sea triggered enhanced biological activity, water-column density stratification, transport of organic matter into deeper ocean and consumption of dissolved oxygen, and ultimately the creation of anoxic water body to allow bacterial sulfate reduction. (syngenetic sulfide formation)

  7. Coast of Isla Cerralvo, Baja, California as seen from STS-62

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Though it did not reproduce well, this photo gives scientific information to aid in studying all types of Earth's processes. It documents ocean features in the sunglint in the Gulf of California, off the Isla Cerralvo, southern Baja, California. Biological oils collect on the surface of the water and take the form of the currents. The sun reflects off the oily surface and shows current patterns, eddies and ship wakes. The small bright spot on the edge of the eddy is a ship dumping oily water from its bilges. The line in the brighter area is a light wind gust roughening the surface.

  8. Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhao, Chunsong; Dai, Xuezeng; Lin, Hong; Cui, Bai; Li, Jianbao

    2013-12-01

    A novel amorphous cobalt potassium phosphate hydrate compound (KCoPO4·H2O) is identified to be active photocatalyst for oxygen evolution reaction (OER) to facilitate hydrogen generation from water photolysis. It has been synthesized through a facile and cost-effective solution-based precipitation method using earth-abundant materials. Its highly porous structure and large surface areas are found to be responsible for the excellent electrochemical performance featuring a low OER onset at ∼550 mVSCE and high current density in alkaline condition. Unlike traditional cobalt-based spinel oxides (Co3O4, NiCo2O4) and phosphate (Co-Pi, Co(PO3)2) electrocatalysts, with proper energy band alignment for light-assisted water oxidation, cobalt potassium phosphate hydrate also exhibits robust visible-light response, generating a photocurrent density of ∼200 μA cm-2 at 0.7 VSCE. This catalyst could thus be considered as a promising candidate to perform photoelectrochemical water splitting.

  9. Characterization of water in hydrated Bombyx mori silk fibroin fiber and films by 2H NMR relaxation and 13C solid state NMR.

    PubMed

    Asakura, Tetsuo; Isobe, Kotaro; Kametani, Shunsuke; Ukpebor, Obehi T; Silverstein, Moshe C; Boutis, Gregory S

    2017-03-01

    The mechanical properties of Bombyx mori silk fibroin (SF), such as elasticity and tensile strength, change remarkably upon hydration. However, the microscopic interaction with water is not currently well understood on a molecular level. In this work, the dynamics of water molecules interacting with SF was studied by 2 H solution NMR relaxation and exchange measurements. Additionally, the conformations of hydrated [3- 13 C]Ala-, [3- 13 C]Ser-, and [3- 13 C]Tyr-SF fibers and films were investigated by 13 C DD/MAS NMR. Using an inverse Laplace transform algorithm, we were able to identify four distinct components in the relaxation times for water in SF fiber. Namely, A: bulk water outside the fiber, B: water molecules trapped weakly on the surface of the fiber, C: bound water molecules located in the inner surface of the fiber, and D: bound water molecules located in the inner part of the fiber were distinguishable. In addition, four components were also observed for water in the SF film immersed in methanol for 30s, while only two components for the film immersed in methanol for 24h. The effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. The mechanical properties of Bombyx mori silk fibroin (SF) change remarkably upon hydration. However, the microscopic interaction between SF and water is not currently well understood on a molecular level. We were able to identify four distinct components in the relaxation times for water in SF fiber by 2 H solution NMR relaxation and exchange measurements. In addition, the effects of hydration on the conformation of Ser and Tyr residues in the site-specific crystalline and non-crystalline domains of 13 C selectively labeled SF, respectively, could be determined independently. Thus, our measurements provide new insight relating the characteristics of water and the hydration structure of silk, which are relevant in light of current interest in the design of novel silk-based biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Recent Advances of Light-Mediated Theranostics

    PubMed Central

    Ai, Xiangzhao; Mu, Jing; Xing, Bengang

    2016-01-01

    Currently, precision theranostics have been extensively demanded for the effective treatment of various human diseases. Currently, efficient therapy at the targeted disease areas still remains challenging since most available drug molecules lack of selectivity to the pathological sites. Among different approaches, light-mediated therapeutic strategy has recently emerged as a promising and powerful tool to precisely control the activation of therapeutic reagents and imaging probes in vitro and in vivo, mostly attributed to its unique properties including minimally invasive capability and highly spatiotemporal resolution. Although it has achieved initial success, the conventional strategies for light-mediated theranostics are mostly based on the light with short wavelength (e.g., UV or visible light), which may usually suffer from several undesired drawbacks, such as limited tissue penetration depth, unavoidable light absorption/scattering and potential phototoxicity to healthy tissues, etc. Therefore, a near-infrared (NIR) light-mediated approach on the basis of long-wavelength light (700-1000 nm) irradiation, which displays deep-tissue penetration, minimized photo-damage and low autofluoresence in living systems, has been proposed as an inspiring alternative for precisely phototherapeutic applications in the last decades. Despite numerous NIR light-responsive molecules have been currently proposed for clinical applications, several inherent drawbacks, such as troublesome synthetic procedures, low water solubility and limited accumulation abilities in targeted areas, heavily restrict their applications in deep-tissue therapeutic and imaging studies. Thanks to the amazing properties of several nanomaterials with large extinction coefficient in the NIR region, the construction of NIR light responsive nanoplatforms with multifunctions have become promising approaches for deep-seated diseases diagnosis and therapy. In this review, we summarized various light-triggered theranostic strategies and introduced their great advances in biomedical applications in recent years. Moreover, some other promising light-assisted techniques, such as photoacoustic and Cerenkov radiation, were also systemically discussed. Finally, the potential challenges and future perspectives for light-mediated deep-tissue diagnosis and therapeutics were proposed. PMID:27877246

  11. Spatially explicit feedbacks between seagrass meadow structure, sediment and light: Habitat suitability for seagrass growth

    USGS Publications Warehouse

    Carr, Joel; D'Odorico, Paul; McGlathery, Karen; Wiberg, Patricia L.

    2016-01-01

    In shallow coastal bays where nutrient loading and riverine inputs are low, turbidity, and the consequent light environment are controlled by resuspension of bed sediments due to wind-waves and tidal currents. High sediment resuspension and low light environments can limit benthic primary productivity; however, both currents and waves are affected by the presence of benthic plants such as seagrass. This feedback between the presence of benthic primary producers such as seagrass and the consequent light environment has been predicted to induce bistable dynamics locally. However, these vegetated areas influence a larger area than they footprint, including a barren adjacent downstream area which exhibits reduced shear stresses. Here we explore through modeling how the patchy structure of seagrass meadows on a landscape may affect sediment resuspension and the consequent light environment due to the presence of this sheltered region. Heterogeneous vegetation covers comprising a mosaic of randomly distributed patches were generated to investigate the effect of patch modified hydrodynamics. Actual cover of vegetation on the landscape was used to facilitate comparisons across landscape realizations. Hourly wave and current shear stresses on the landscape along with suspended sediment concentration and light attenuation characteristics were then calculated and spatially averaged to examine how actual cover and mean water depth affect the bulk sediment and light environment. The results indicate that an effective cover, which incorporates the sheltering area, has important controls on the distributions of shear stress, suspended sediment, light environment, and consequent seagrass habitat suitability. Interestingly, an optimal habitat occurs within a depth range where, if actual cover is reduced past some threshold, the bulk light environment would no longer favor seagrass growth.

  12. Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability.

    PubMed

    Cavatte, Paulo C; Rodríguez-López, Nélson F; Martins, Samuel C V; Mattos, Mariela S; Sanglard, Lílian M V P; Damatta, Fábio M

    2012-05-01

    In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR.

  13. Opinion: the red-light response of stomatal movement is sensed by the redox state of the photosynthetic electron transport chain.

    PubMed

    Busch, Florian A

    2014-02-01

    Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.

  14. New PANDA Tests to Investigate Effects of Light Gases on Passive Safety Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paladino, D.; Auban, O.; Candreia, P.

    The large- scale thermal-hydraulic PANDA facility (located at PSI in Switzerland), has been used over the last few years for investigating different passive decay- heat removal systems and containment phenomena for the next generation of light water reactors (Simplified Boiling Water Reactor: SBWR; European Simplified Boiling Water Reactor: ESBWR; Siedewasserreaktor: SWR-1000). Currently, as part of the European Commission 5. EURATOM Framework Programme project 'Testing and Enhanced Modelling of Passive Evolutionary Systems Technology for Containment Cooling' (TEMPEST), a new series of tests is being planned in the PANDA facility to experimentally investigate the distribution of non-condensable gases inside the containment andmore » their effect on the performance of the 'Passive Containment Cooling System' (PCCS). Hydrogen release caused by the metal-water reaction in the case of a postulated severe accident will be simulated in PANDA by injecting helium into the reactor pressure vessel. In order to provide suitable data for Computational Fluid Dynamic (CFD) code assessment and improvement, the instrumentation in PANDA has been upgraded for the new tests. In the present paper, a detailed discussion is given of the new PANDA tests to be performed to investigate the effects of light gas on passive safety systems. The tests are scheduled for the first half of the year 2002. (authors)« less

  15. Making C4 crops more water efficient under current and future climate: Tradeoffs between carbon gain and water loss

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Pignon, C.

    2017-12-01

    C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their stomatal behavior and leaf nitrogen distribution and by decreasing stomatal conductance and redistributing nitrogen away from carbon concentrating mechanism and towards carboxylation machinery, we can significantly decrease transpiration and increase carbon assimilation thereby increasing water use efficiency.

  16. Water jacket for solid particle solar receiver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasyluk, David T.

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel aremore » welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.« less

  17. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  18. View of cold water eddies in Falkland Current off southern Argentina

    NASA Image and Video Library

    1973-12-14

    SL4-137-3608 (14 Dec. 1973) --- A view of cold water eddies in the Falkland Current off the South Atlantic coast of southern Argentina as seen from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crewmen using a hand-held 70mm Hasselblad camera. This land area (left corner) extends south along the coast from Puerto Deseado (center left border) for about 50 miles. Within the ocean, several light blue areas are visible and represent the occurrence of plankton with the Falkland Current. Over the ocean, the cold water eddies are identified by the circular cloud-free areas within the cloud street pattern and bordered by cumulus cloud buildup (white). The cloud streets indicate the wind is from the southwest and do not form over eddies because energy form the atmosphere is absorbed by the cold ocean water. On the downwind side of the eddies, cumulus clouds tend to form as the cold moist air flows over the warmer water. Similar cloud and eddy features have been observed by the Skylab 4 crewmen in the Yucatan Current off Yucatan Peninsula and in some parts of the South Pacific. Studies are underway by Dr. George Maul, NOAA, and Dr. Robert Stevenson, ONR, to determine the significance of the cold water eddies to ocean dynamics. Photo credit: NASA

  19. Water Treatment Using Advanced Ultraviolet Light Sources Final Report CRADA No. TC02089.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppes, W.; Oster, S.

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and Teknichal Services, LLC (TkS), to develop water treatment systems using advanced ultraviolet light sources. The Russian institutes involved with this project were The High Current Electronics Institute (HCEI) and Russian Institute of Technical Physics-Institute of Experimental Physics (VNIIEF). HCEI and VNIIEF developed and demonstrated the potential commercial viability of short-wavelength ultraviolet excimer lamps under a Thrust 1 Initiatives for Proliferation Prevention (IPP) Program. The goals of this collaboration were to demonstrate both the commercial viability of excilampbased watermore » disinfection and achieve further substantial operational improvement in the lamps themselves; particularly in the area of energy efficiency.« less

  20. Periodically Ordered Nanoporous Perovskite Photoelectrode for Efficient Photoelectrochemical Water Splitting.

    PubMed

    Shi, Li; Zhou, Wei; Li, Zhao; Koul, Supriya; Kushima, Akihiro; Yang, Yang

    2018-06-18

    Nonmetallic materials with localized surface plasmon resonance (LSPR) have a great potential for solar energy harvesting applications. Exploring nonmetallic plasmonic materials is desirable yet challenging. Herein, an efficient nonmetallic plasmonic perovskite photoelectrode, namely, SrTiO 3 , with a periodically ordered nanoporous structure showing an intense LSPR in the visible light region is reported. The crystalline-core@amorphous-shell structure of the SrTiO 3 photoelectrode enables a strong LSPR due to the high charge carrier density induced by oxygen vacancies in the amorphous shell. The reversible tunability in LSPR of the SrTiO 3 photoelectrode was observed by oxidation/reduction treatment and incident angle adjusting. Such a nonmetallic plasmonic SrTiO 3 photoelectrode displays a dramatic plasmon-enhanced photoelectrochemical water splitting performance with a photocurrent density of 170.0 μA cm -2 under visible light illumination and a maximum incident photon-to-current-conversion efficiency of 4.0% in the visible light region, which are comparable to the state-of-the-art plasmonic noble metal sensitized photoelectrodes.

  1. Superabsorbents in Personal Care Industry

    NASA Astrophysics Data System (ADS)

    Li, Yong

    1997-10-01

    Water swellable hydrogels, often called Superabsorbent Polymers, are used as a major component in many absorbent products such as baby diapers. The superabsorbents used in personal care industry are typically lightly crosslinked sodium polyacrylate polymers. The current annual worldwide production of the material is close to one million metric tons. These hydrogels can absorb water more than 100 times of their own weight. The absorbed liquid is tightly held inside the superabsorbent materials even against pressure. The balance of many different properties will be discussed.

  2. Photocatalytic dye degradation with copper-titanium dioxide nanocomposites under sunlight and visible light irradiation

    NASA Astrophysics Data System (ADS)

    Qayyum Khan, Abdul; Yuan, Shuai; Niu, Sheng; Liu, Fengjiang; Feng, Guang; Jiang, Mengci; Zeng, Heping

    2018-01-01

    Photocatalytic methalyne blue dye degradation was carried out with copper (Cu)-titanium dioxide (TiO2) nanocomposites under sunlight and visible light irradiation. The Cu-TiO2 nanocomposites were fabricated via femtosecond laser ablation of pressed targets in water. The current method provides a facile route for Cu-TiO2 nanocomposites preparation, which is free from impurities on the catalysts surface. The Cu-TiO2 nanocomposites (with Cu content of 5 wt%) have shown 3 folds faster dye degradation kinetics compared with TiO2 nanoparticles under sunlight irradiation. While under visible light irradiation, the same nanocomposites exhibited 2.6 folds faster kinetics compared with TiO2 nanoparticles. The faster light harvesting efficiency of the catalysts is attributed to more hydroxyl radical generation.

  3. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2014-10-01 2014-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...

  4. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... chapter and be international orange in color. (2) Each water light must be approved under subpart 161.010... 46 Shipping 7 2012-10-01 2012-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549... lights. (a)(1) The minimum number of life buoys and the minimum number to which water lights must be...

  5. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    NASA Astrophysics Data System (ADS)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  7. Iron-chrome-aluminum alloy cladding for increasing safety in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    2017-12-01

    After a tsunami caused plant black out at Fukushima, followed by hydrogen explosions, the US Department of Energy partnered with fuel vendors to study safer alternatives to the current UO2-zirconium alloy system. This accident tolerant fuel alternative should better tolerate loss of cooling in the core for a considerably longer time while maintaining or improving the fuel performance during normal operation conditions. General electric, Oak ridge national laboratory, and their partners are proposing to replace zirconium alloy cladding in current commercial light water power reactors with an iron-chromium-aluminum (FeCrAl) cladding such as APMT or C26M. Extensive testing and evaluation is being conducted to determine the suitability of FeCrAl under normal operation conditions and under severe accident conditions. Results show that FeCrAl has excellent corrosion resistance under normal operation conditions and FeCrAl is several orders of magnitude more resistant than zirconium alloys to degradation by superheated steam under accident conditions, generating less heat of oxidation and lower amount of combustible hydrogen gas. Higher neutron absorption and tritium release effects can be minimized by design changes. The implementation of FeCrAl cladding is a near term solution to enhance the safety of the current fleet of commercial light water power reactors.

  8. Integrating a Silicon Solar Cell with a Triboelectric Nanogenerator via a Mutual Electrode for Harvesting Energy from Sunlight and Raindrops.

    PubMed

    Liu, Yuqiang; Sun, Na; Liu, Jiawei; Wen, Zhen; Sun, Xuhui; Lee, Shuit-Tong; Sun, Baoquan

    2018-03-27

    Solar cells, as promising devices for converting light into electricity, have a dramatically reduced performance on rainy days. Here, an energy harvesting structure that integrates a solar cell and a triboelectric nanogenerator (TENG) device is built to realize power generation from both sunlight and raindrops. A heterojunction silicon (Si) solar cell is integrated with a TENG by a mutual electrode of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film. Regarding the solar cell, imprinted PEDOT:PSS is used to reduce light reflection, which leads to an enhanced short-circuit current density. A single-electrode-mode water-drop TENG on the solar cell is built by combining imprinted polydimethylsiloxane (PDMS) as a triboelectric material combined with a PEDOT:PSS layer as an electrode. The increasing contact area between the imprinted PDMS and water drops greatly improves the output of the TENG with a peak short-circuit current of ∼33.0 nA and a peak open-circuit voltage of ∼2.14 V, respectively. The hybrid energy harvesting system integrated electrode configuration can combine the advantages of high current level of a solar cell and high voltage of a TENG device, promising an efficient approach to collect energy from the environment in different weather conditions.

  9. Inactivation of bacterial biothreat agents in water, a review.

    PubMed

    Rose, L J; Rice, E W

    2014-12-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed.

  10. Inactivation of bacterial biothreat agents in water, a review

    PubMed Central

    Rice, E. W.

    2016-01-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed. PMID:25473971

  11. A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes.

    PubMed

    Ndong, Mouhamed; Bird, David; Nguyen Quang, Tri; Kahawita, René; Hamilton, David; de Boutray, Marie Laure; Prévost, Michèle; Dorner, Sarah

    2017-12-15

    Toxic cyanobacteria (CB) blooms are being reported in an increasing number of water bodies worldwide. As drinking water (DW) treatment can be disrupted by CB, in addition to long term management plans, short term operational decision-making tools are needed that enable an understanding of the temporal variability of CB movement in relation to drinking water intakes. In this paper, we propose a novel conservative model based on a Eulerian framework and compare results with data from CB blooms in Missisquoi Bay (Québec, Canada). The hydrodynamic model considered the effects of wind and light intensity, demonstrated that current understanding of cell buoyancy in relation to light intensity in full-scale systems is incomplete and some factors are yet to be fully characterized. Factors affecting CB buoyancy play a major role in the formation of a thin surface layer that could be of ecological importance with regards to cell concentrations and toxin production. Depending on velocities, wind contributes either to the accumulation or to the dispersion of CB. Lake recirculation effects have a tendency to create zones of low CB concentrations in a water body. Monitoring efforts and future research should focus on short-term variations of CB throughout the water column and the characterization of factors other than light intensity that affect cell buoyancy. These factors are critical for understanding the risk of breakthrough into treatment plants as well as the formation of surface scums and subsequent toxin production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals.

    PubMed

    Bollati, Elena; Plimmer, Daniel; D'Angelo, Cecilia; Wiedenmann, Jörg

    2017-07-04

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments.

  13. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals

    PubMed Central

    Bollati, Elena; Plimmer, Daniel; D’Angelo, Cecilia; Wiedenmann, Jörg

    2017-01-01

    Photoconvertible fluorescent proteins (pcRFPs) are a group of fluorophores that undergo an irreversible green-to-red shift in emission colour upon irradiation with near-ultraviolet (near-UV) light. Despite their wide application in biotechnology, the high-level expression of pcRFPs in mesophotic and depth-generalist coral species currently lacks a biological explanation. Additionally, reduced penetration of near-UV wavelengths in water poses the question whether light-driven photoconversion is relevant in the mesophotic zone, or whether a different mechanism is involved in the post-translational pigment modification in vivo. Here, we show in a long-term mesocosm experiment that photoconversion in vivo is entirely dependent on near-UV wavelengths. However, a near-UV intensity equivalent to the mesophotic underwater light field at 80 m depth is sufficient to drive the process in vitro, suggesting that photoconversion can occur near the lower distribution limits of these corals. Furthermore, live coral colonies showed evidence of efficient Förster Resonance Energy Transfer (FRET). Our simulated mesophotic light field maintained the pcRFP pool in a partially photoconverted state in vivo, maximising intra-tetrameric FRET and creating a long-range wavelength conversion system with higher quantum yield than other native RFPs. We hypothesise that efficient conversion of blue wavelengths, abundant at depth, into orange-red light could constitute an adaptation of corals to life in light-limited environments. PMID:28677653

  14. An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

    PubMed Central

    Zheng, Shufang; Lu, Jun; Yan, Dongpeng; Qin, Yumei; Li, Hailong; Evans, David G.; Duan, Xue

    2015-01-01

    In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electron transfer (PET) process between the intercalated DAS (donor) and DNS (acceptor) anions. This was confirmed by the matched HOMO/LUMO energy levels alignment of the intercalated DAS and DNS anions, which was also compatible for water splitting. The DAS(50%)-DNS/LDHs composite was fabricated as the photoanode and Pt as the cathode. Under the UV-visible light illumination, the enhanced photo-generated current (4.67 mA/cm2 at 0.8 V vs. SCE) was generated in the external circuit, and the photoelectrochemical water split was realized. Furthermore, this photoelectrochemical water splitting performance had excellent crystalline, electrochemical and optical stability. Therefore, this novel inorganic/organic hybrid photoanode exhibited potential application prospect in photoelectrochemical water splitting. PMID:26174201

  15. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean

    USGS Publications Warehouse

    Biscaye, P.E.; Eittreim, S.L.

    1977-01-01

    Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.

  16. Holographic Aquaculture

    NASA Astrophysics Data System (ADS)

    Ian, Richard; King, Elisabeth

    1988-01-01

    Proposed is an exploratory study to verify the feasibility of an inexpensive micro-climate control system for both marine and freshwater pond and tank aquaculture, offering good control over water temperature, incident light flux, and bandwidth, combined with good energy efficiency. The proposed control system utilizes some familiar components of passive solar design, together with a new holographic glazing system which is currently being developed by, and proprietary to Advanced Environmental Research Group (AERG). The use of solar algae ponds and tanks to warm and purify water for fish and attached macroscopic marine algae culture is an ancient and effective technique, but limited seasonally and geographically by the availability of sunlight. Holographic Diffracting Structures (HDSs) can be made which passively track, accept and/or reject sunlight from a wide range of altitude and azimuth angles, and redirect and distribute light energy as desired (either directly or indirectly over water surface in an enclosed, insulated structure), effectively increasing insolation values by accepting sunlight which would not otherwise enter the structure.

  17. On the seasonal response of the Lower St Lawrence Estuary to buoyancy forcing by regulated river runoff

    NASA Astrophysics Data System (ADS)

    Koutitonsky, V. G.; Wilson, R. E.; El-Sabh, M. I.

    1990-10-01

    The seasonal current fluctuations recorded from May to September 1979 in the Lower St Lawrence Estuary (LSLE) were re-examined using complex empirical orthogonal functions analysis. The first mode explained 88% of the seasonal variability, and revealed the presence of an estuary-wide anticyclonic eddy near the mouth, which lasted for 40 days in June and July. Careful inspection of the (regulated) 1979 freshwater runoff and salinity time series indicated that light surface water pulses from the St Lawrence River and the Saguenay fjord arrived in the LSLE during that time. Their duration was about 40 days. The contention is that the anticyclonic eddy results from buoyancy forcing by these light water pulses, isolated in the LSLE by denser waters upwelled upstream and by the buoyancy front at the mouth. A reduced gravity model is used to show that when the width of the LSLE becomes greater than two internal Rossby radii, an initial dynamic height elevation will adjust through geostrophy to an anticyclonic eddy. This seems to occur downstream of Rimouski. The eddy will form within a time scale 0 (f -1), and in the absence of instabilities in the current field, it will conserve potential energy for extended periods of time. During August, the advected river runoff decreased, unstable wave activity developed, and denser Gulf waters entered the LSLE from the north shore producing a cyclonic eddy near the mouth. Concurrent satellite thermal imagery tends to support these findings.

  18. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  19. Rapid chlorophyll a fluorescence transient of Lemna gibba leaf as an indication of light and hydroxylamine effect on photosystem II activity.

    PubMed

    Dewez, David; Ali, Nadia Ait; Perreault, François; Popovic, Radovan

    2007-05-01

    Rapid chlorophyll fluorescence transient induced by saturating flash (3000 micromol of photons m-2 s-1) was investigated when Lemna gibba had been exposed to light (100 micromol of photons m-2 s-1) causing the Kautsky effect or in low light intensity unable to trigger PSII photochemistry. Measurements were made by using, simultaneously, a pulse amplitude modulated fluorometer and plant efficiency analyzer system, either on non-treated L. gibba leaf or those treated with different concentrations of hydroxylamine (1-50 mM) causing gradual inhibition of the water splitting system. When any leaf was exposed to continuous light during the Kautsky effect, a rapid fluorescence transient may reflect current activity of photosystem II within the photosystem II complex. Under those conditions, a variation of transition steps appearing over time was related to a drastic change to the photosystem II functional properties. This value indicated that the energy dissipation through non-photochemical pathways was undergoing extreme change. The change of rapid fluorescence transient, induced under continuous light, when compared to those obtained under very low light intensity, confirmed the ability of photosystem II to be capable to undergo rapid adaptation lasting about two minutes. When the water splitting system was inhibited and electron donation partially substituted by hydroxylamine, the adaptation ability of photosystem II to different light conditions was lost. In this study, the change of rapid fluorescence kinetic and transient appearing over time was shown to be a good indication for the change of the functional properties of photosystem II induced either by light or by hydroxylamine.

  20. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-01

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  1. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M.

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclearmore » waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.« less

  2. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux ofmore » 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.« less

  3. Procedure to Generate the MPACT Multigroup Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kang Seog

    The CASL neutronics simulator MPACT is under development for the neutronics and T-H coupled simulation for the light water reactor. The objective of this document is focused on reviewing the current procedure to generate the MPACT multigroup library. Detailed methodologies and procedures are included in this document for further discussion to improve the MPACT multigroup library.

  4. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    PubMed Central

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  5. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    PubMed

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  6. Photocatalytic effects of titanium dioxide nanoparticles on aquatic organisms-Current knowledge and suggestions for future research.

    PubMed

    Haynes, Vena N; Ward, J Evan; Russell, Brandon J; Agrios, Alexander G

    2017-04-01

    Nanoparticles are entering natural systems through product usage, industrial waste and post-consumer material degradation. As the production of nanoparticles is expected to increase in the next decade, so too are predicted environmental loads. Engineered metal-oxide nanomaterials, such as titanium dioxide, are known for their photocatalytic capabilities. When these nanoparticles are exposed to ultraviolet radiation in the environment, however, they can produce radicals that are harmful to aquatic organisms. There have been a number of studies that have reported the toxicity of titanium dioxide nanoparticles in the absence of light. An increasing number of studies are assessing the interactive effects of nanoparticles and ultraviolet light. However, most of these studies neglect environmentally-relevant experimental conditions. For example, researchers are using nanoparticle concentrations and light intensities that are too high for natural systems, and are ignoring water constituents that can alter the light field. The purpose of this review is to summarize the current knowledge of the photocatalytic effects of TiO 2 nanoparticles on aquatic organisms, discuss the limitations of these studies, and outline environmentally-relevant factors that need to be considered in future experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Design Considerations for a Water Treatment System Utilizing Ultra-Violet Light Emitting Diodes

    DTIC Science & Technology

    2014-03-27

    DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...the United States. ii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING DIODES...DISTRIBUTION UNLIMITED. iii AFIT-ENV-14-M-58 DESIGN CONSIDERATIONS FOR A WATER TREATMENT SYSTEM UTILIZING ULTRA-VIOLET LIGHT EMITTING

  8. Radiation Power as Function of Current in Wall-stabilized AC Arc of Water-cooled Vortex Type with Small Caliber

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji

    2016-10-01

    The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.

  9. Assessment of a bidirectional reflectance distribution correction of above-water and satellite water-leaving radiance in coastal waters.

    PubMed

    Hlaing, Soe; Gilerson, Alexander; Harmel, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-10

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm. This confirms the advantages of the proposed model over the current one, demonstrating the need for a specific case 2 water BRDF correction algorithm as well as the feasibility of enhancing performance of current and future satellite ocean color remote sensing missions for monitoring of typical coastal waters. © 2012 Optical Society of America

  10. Water Velocities and the Potential for the Movement of Bed Sediments in Sinclair Inlet of Puget Sound, Washington

    USGS Publications Warehouse

    Gartner, Jeffrey W.; Prych, E.A.; Tate, G.B.; Cacchione, D.A.; Cheng, R.T.; Bidlake, W.R.; Ferreira, J.T.

    1998-01-01

    Sinclair Inlet is a small embayment of Puget Sound in the State of Washington. The inlet, about 6.5 kilometers long and 1.5 kilometers wide, is the site of Puget Sound Naval Shipyard. There are concerns that bed sediments in the inlet may have been contaminated as a result of activities at the shipyard, and that these sediments could be resuspended by tide- and wind-driven currents and transported within the inlet or out of the inlet to other parts of Puget Sound. This study was conducted to provide information concerning the potential for sediment resuspension in the inlet. To obtain the necessary data, vertical profiles of water current from about 2 meters above the bed to 2 meters below the water surface were monitored with acoustic Doppler current profilers (ADCPs) at three locations during a 6.5-week winter period and a 4.5-week summer period in 1994. In addition, during the winter period, water velocites between 0.19 and 1.20 meters above the bed were measured with current meters using an instrument package called Geoprobe, which was deployed near one of the ADCPs. Other instruments on the Geoprobe measured light transmissivity, and a camera periodically took photographs of the bottom. Instruments on the Geoprobe and on the ADCPs also measured conductivity (for determining salinity), temperature, and pressure (for determinining tide). Samples of bed sediment and water samples for determining suspended-sediment concentration were collected at each of the current-measurement stations. Wind speed and direction were measured at three stations during a 12-month period, and tide was measured at one of these stations. Water currents measured at the three locations in Sinclair Inlet were relatively weak. Typical speeds were 5 to 10 centimeters per second, and the RMS (root-mean-square) speeds were less than 8 centimeters per second. Tidal and residual currents were of similar magnitude. Residual currents near the bottom typically were flowing in the opposite direction of the prevailing wind, while surface currents were in the same direction as the prevailing wind. During most of the year, the prevailing wind was from the soutwest quadrant; however, during July and August, the prevailing wind was usually from the northeast quadrant. The RMS of the total shear velocity for each ADCP station and measurement period, which was estimated from observed profiles of current velocity, ranged from 0.31 centimeters per second to 0.44 centimeters per second. The skin-friction component of the shear velocity was estimated to be no more than half the total. Critical shear velocity, estimated from particle sizes and density of the bed material, was 0.39 centimeters per second or larger. Comparisons of the skin-friction components of total bottom shear velocities with estimates of the critical shear velocity necessary for resuspension of the bed sediments indicate that resuspension occurs only infrequently, usually at times of maximum current during the tidal cycle. This conclusion is supported by measurements near the bed of light transmissivity, which is related to suspended-sediment concentration.

  11. Distribution of oxygen isotopes in the water masses of Drake Passage and the South Atlantic

    NASA Astrophysics Data System (ADS)

    Meredith, Michael P.; Grose, Katie E.; McDonagh, Elaine L.; Heywood, Karen J.; Frew, Russell D.; Dennis, Paul F.

    1999-09-01

    Measurements of the ratio of stable isotopes of oxygen (18O and 16O) from samples collected on World Ocean Circulation Experiment sections SR1b (eastern Drake Passage) and A11 (Punta Arenas to Cape Town) are used, together with hydrographic data, to deduce information about the formation and variability of South Atlantic and Southern Ocean water masses. The Drake Passage surface waters south of the Polar Front (PF) are isotopically light (δ18O around -0.4‰) owing to the influence of meteoric waters. The salinity and δ18O of the A11 surface waters yield an apparent freshwater end-member which is much isotopically lighter than the local precipitation, thus advection of these waters from farther south dominates over local effects in determining the surface water properties. The Drake Passage section shows unusual proximity of the two main fronts of the Antarctic Circumpolar Current (the PF and Subantarctic Front (SAF)), and we observe cold, fresh, and isotopically light water derived from the temperature-minimum Winter Water at the SAF. This water is of the correct density to freshen the intermediate water north of the SAF and thus play a role in the formation of the comparatively fresh Antarctic Intermediate Water (AAIW) of the South Atlantic. This confirms the role of Antarctic water in forming the South Atlantic variety of AAIW. Across the A11 section the oxygen isotope and salinity data at the AAIW core show very similar traces, with waters in the Malvinas Current loop showing lowest values of both. At the eastern boundary of the South Atlantic, the input of Red Sea Water from east of South Africa is observed via the presence of anomalously isotopically heavy AAIW. We deduce potentially significant temporal variability in the isotopic composition of Weddell Sea Deep Water (WSDW) by comparing the Drake Passage data to earlier data covering the outflow of the Weddell Sea. The A11 data show WSDW consistent with such variability, indicating that its effects could persist in the waters as they flow north into the western South Atlantic. We speculate that such variability could be due to small changes in the amount of glacial ice melt in WSDW.

  12. A novel drill design for photoacoustic guided surgeries

    NASA Astrophysics Data System (ADS)

    Shubert, Joshua; Lediju Bell, Muyinatu A.

    2018-02-01

    Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.

  13. Inert matrix fuel neutronic, thermal-hydraulic, and transient behavior in a light water reactor

    NASA Astrophysics Data System (ADS)

    Carmack, W. J.; Todosow, M.; Meyer, M. K.; Pasamehmetoglu, K. O.

    2006-06-01

    Currently, commercial power reactors in the United States operate on a once-through or open cycle, with the spent nuclear fuel eventually destined for long-term storage in a geologic repository. Since the fissile and transuranic (TRU) elements in the spent nuclear fuel present a proliferation risk, limit the repository capacity, and are the major contributors to the long-term toxicity and dose from the repository, methods and systems are needed to reduce the amount of TRU that will eventually require long-term storage. An option to achieve a reduction in the amount, and modify the isotopic composition of TRU requiring geological disposal is 'burning' the TRU in commercial light water reactors (LWRs) and/or fast reactors. Fuel forms under consideration for TRU destruction in light water reactors (LWRs) include mixed-oxide (MOX), advanced mixed-oxide, and inert matrix fuels. Fertile-free inert matrix fuel (IMF) has been proposed for use in many forms and studied by several researchers. IMF offers several advantages relative to MOX, principally it provides a means for reducing the TRU in the fuel cycle by burning the fissile isotopes and transmuting the minor actinides while producing no new TRU elements from fertile isotopes. This paper will present and discuss the results of a four-bundle, neutronic, thermal-hydraulic, and transient analyses of proposed inert matrix materials in comparison with the results of similar analyses for reference UOX fuel bundles. The results of this work are to be used for screening purposes to identify the general feasibility of utilizing specific inert matrix fuel compositions in existing and future light water reactors. Compositions identified as feasible using the results of these analyses still require further detailed neutronic, thermal-hydraulic, and transient analysis study coupled with rigorous experimental testing and qualification.

  14. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris

    PubMed Central

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-01-01

    Background and Aims For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Methods Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Key Results Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. Conclusions R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation. PMID:21896573

  15. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris.

    PubMed

    Momokawa, Naoko; Kadono, Yasuro; Kudoh, Hiroshi

    2011-11-01

    For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris. Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology. Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface. R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.

  16. Addition of luminescence process in Monte Carlo simulation to precisely estimate the light emitted from water during proton and carbon-ion irradiation.

    PubMed

    Yabe, Takuya; Sasano, Makoto; Hirano, Yoshiyuki; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Hayashi, Masateru; Azuma, Tetsushi; Sakamoto, Yusuku; Komori, Masataka; Yamamoto, Seiichi

    2018-06-20

    Although luminescence of water lower in energy than the Cerenkov-light threshold during proton and carbon-ion irradiation has been found, the phenomenon has not yet been implemented for Monte Carlo simulations. The results provided by the simulations lead to misunderstandings of the physical phenomenon in optical imaging of water during proton and carbon-ion irradiation. To solve the problems, as well as to clarify the light production of the luminescence of water, we modified a Monte Carlo simulation code to include the light production from the luminescence of water and compared them with the experimental results of luminescence imaging of water. We used GEANT4 for the simulation of emitted light from water during proton and carbon-ion irradiation. We used the light production from the luminescence of water using the scintillation process in GEANT4 while those of Cerenkov light from the secondary electrons and prompt gamma photons in water were also included in the simulation. The modified simulation results showed similar depth profiles to those of the measured data for both proton and carbon-ion. When the light production of 0.1 photons/MeV was used for the luminescence of water in the simulation, the simulated depth profiles showed the best match to those of the measured results for both the proton and carbon-ion compared with those used for smaller and larger numbers of photons/MeV. We could successively obtain the simulated depth profiles that were basically the same as the experimental data by using GEANT4 when we assumed the light production by the luminescence of water. Our results confirmed that the inclusion of the luminescence of water in Monte Carlo simulation is indispensable to calculate the precise light distribution in water during irradiation of proton and carbon-ion.

  17. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements

    PubMed Central

    Lanoue, Jason; Leonardos, Evangelos D.; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production. PMID:28676816

  18. The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements.

    PubMed

    Lanoue, Jason; Leonardos, Evangelos D; Ma, Xiao; Grodzinski, Bernard

    2017-01-01

    Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato ( Solanum lycopersicum ) leaves under short-term illumination and lisianthus ( Eustoma grandiflorum ) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H 2 O and CO 2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO 2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

  19. Scalable Energy Networks to Promote Energy Security

    DTIC Science & Technology

    2011-07-01

    commodity. Consider current challenges of converting energy and synchronizing sources with loads—for example, capturing solar energy to provide hot water...distributed micro-generation1 (for example, roof-mounted solar panels) and plug-in elec- tric/hybrid vehicles. The imperative extends to our national...transformers, battery chargers ■■ distribution: pumps, pipes, switches, cables ■■ applications: lighting, automobiles, personal electronic devices

  20. Aquatic Toxicity Screening of Fire Fighting Agents; 2003 Report

    DTIC Science & Technology

    2003-06-02

    Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an acute, static, range-finding...five concentrations of 3M Light Water Brand Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an...experimental foam concentrates against current Military Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam

  1. Role of the photosynthetic electron transfer chain in electrogenic activity of cyanobacteria.

    PubMed

    Pisciotta, John M; Zou, Yongjin; Baskakov, Ilia V

    2011-07-01

    Certain anaerobic bacteria, termed electrogens, produce an electric current when electrons from oxidized organic molecules are deposited to extracellular metal oxide acceptors. In these heterotrophic "metal breathers", the respiratory electron transport chain (R-ETC) works in concert with membrane-bound cytochrome oxidases to transfer electrons to the extracellular acceptors. The diversity of bacteria able to generate an electric current appears more widespread than previously thought, and aerobic phototrophs, including cyanobacteria, possess electrogenic activity. However, unlike heterotrophs, cyanobacteria electrogenic activity is light dependent, which suggests that a novel pathway could exist. To elucidate the electrogenic mechanism of cyanobacteria, the current studies used site-specific inhibitors to target components of the photosynthetic electron transport chain (P-ETC) and cytochrome oxidases. Here, we show that (1) P-ETC and, particularly, water photolysed by photosystem II (PSII) is the source of electrons discharged to the environment by illuminated cyanobacteria, and (2) water-derived electrons are transmitted from PSII to extracellular electron acceptors via plastoquinone and cytochrome bd quinol oxidase. Two cyanobacterial genera (Lyngbya and Nostoc) displayed very similar electrogenic responses when treated with P-ETC site-specific inhibitors, suggesting a conserved electrogenic pathway. We propose that in cyanobacteria, electrogenic activity may represent a form of overflow metabolism to protect cells under high-intensity light. This study offers insight into electron transfer between phototrophic microorganisms and the environment and expands our knowledge into biologically based mechanisms for harnessing solar energy.

  2. Fuel from water: the photochemical generation of hydrogen from water.

    PubMed

    Han, Zhiji; Eisenberg, Richard

    2014-08-19

    Hydrogen has been labeled the fuel of the future since it contains no carbon, has the highest specific enthalpy of combustion of any chemical fuel, yields only water upon complete oxidation, and is not limited by Carnot considerations in the amount of work obtained when used in a fuel cell. To be used on the scale needed for sustainable growth on a global scale, hydrogen must be produced by the light-driven splitting of water into its elements, as opposed to reforming of methane, as is currently done. The photochemical generation of H2, which is the reductive side of the water splitting reaction, is the focus of this Account, particularly with regard to work done in the senior author's laboratory over the last 5 years. Despite seminal work done more than 30 years ago and the extensive research conducted since then on all aspects of the process, no viable system has been developed for the efficient and robust photogeneration of H2 from water using only earth abundant elements. For the photogeneration of H2 from water, a system must contain a light absorber, a catalyst, and a source of electrons. In this Account, the discovery and study of new Co and Ni catalysts are described that suggest H2 forms via a heterocoupling mechanism from a metal-hydride and a ligand-bound proton. Several complexes with redox active dithiolene ligands are newly recognized to be effective in promoting the reaction. A major new development in the work described is the use of water-soluble CdSe quantum dots (QDs) as light absorbers for H2 generation in water. Both activity and robustness of the most successful systems are impressive with turnover numbers (TONs) approaching 10(6), activity maintained over 15 days, and a quantum yield for H2 of 36% with 520 nm light. The water solubilizing capping agent for the first system examined was dihydrolipoic acid (DHLA) anion, and the catalyst was determined to be a DHLA complex of Ni(II) formed in situ. Dissociation of DHLA from the QD surface proved problematic in assessing other catalysts and stimulated the synthesis of tridentate trithiolate (S3) capping agents that are inert to dissociation. In this way, CdSe QD's having these S3 capping agents were used in systems for the photogeneration of H2 that allowed meaningful comparison of the relative activity of different catalysts for the light-driven production of H2 from water. This new chemistry also points the way to the development of new photocathodes based on S3-capped QDs for removal of the chemical sacrificial electron donor and its replacement electrochemically in photoelectrosynthetic cells.

  3. Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors

    PubMed Central

    Gómez, Javier V.; Sandnes, Frode E.; Fernández, Borja

    2012-01-01

    Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points. PMID:22438746

  4. Light Water Reactor Sustainability Program: Risk-Informed Safety Margins Characterization (RISMC) Pathway Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Curtis; Rabiti, Cristian; Martineau, Richard

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). As the current Light Water Reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of Systems, Structures, and Components (SSCs) degradations or failures that initiate safety-significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degreemore » of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated, primarily based on “engineering judgment.”« less

  5. Sunlight intensity based global positioning system for near-surface underwater sensors.

    PubMed

    Gómez, Javier V; Sandnes, Frode E; Fernández, Borja

    2012-01-01

    Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.

  6. Research, Development and Demonstration (RD&D) Needs for Light Water Reactor (LWR) Technologies A Report to the Reactor Technology Subcommittee of the Nuclear Energy Advisory Committee (NEAC) Office of Nuclear Energy U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Adams, Bradley J.

    The LWR RD&D Working Group developed a detailed list of RD&D suggestions and recommendations, which are provided in Appendix D. The Working Group then undertook a systematic ranking process, described in Appendix E. The results of the ranking process are not meant to be a strict set of priorities, but rather should provide insight into how the items generally ranked within the Working Group. Future discussions and investigation into these items could provide information that would support a change in these priorities or in their emphasis. The results of this prioritization are provided below. Note that in general, many RD&Dmore » ideas are applicable to both new Advanced Light Water Reactor (ALWR) plants and currently operating plants.« less

  7. Proposed Advanced Reactor Adaptation of the Standard Review Plan NUREG-0800 Chapter 4 (Reactor) for Sodium-Cooled Fast Reactors and Modular High-Temperature Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Poore, III, Willis P.; Brown, Nicholas R.

    2017-03-01

    This report proposes adaptation of the previous regulatory gap analysis in Chapter 4 (Reactor) of NUREG 0800, Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR [Light Water Reactor] Edition. The proposed adaptation would result in a Chapter 4 review plan applicable to certain advanced reactors. This report addresses two technologies: the sodium-cooled fast reactor (SFR) and the modular high temperature gas-cooled reactor (mHTGR). SRP Chapter 4, which addresses reactor components, was selected for adaptation because of the possible significant differences in advanced non-light water reactor (non-LWR) technologies compared with the current LWR-basedmore » description in Chapter 4. SFR and mHTGR technologies were chosen for this gap analysis because of their diverse designs and the availability of significant historical design detail.« less

  8. A Water Cherenkov Detector prototype for the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Longo, Megan; Mostafa, Miguel; Salesa Greus, Francisco; Warner, David

    2011-10-01

    A full-size Water Cherenkov Detector (WCD) prototype for the High Altitude Water Cherenkov (HAWC) gamma-ray Observatory was deployed, and is currently being operated at Colorado State University (CSU). The HAWC Observatory will consist of 300 WCDs at the very high altitude (4100m) site in Sierra Negra, Mexico. Each WCD will have 4 baffled upward-facing Photomultiplier Tubes (PMTs) anchored to the bottom of a self made multilayer hermetic plastic bag containing 200,000 liters of purified water, inside a 5m deep by 7.3m diameter steel container. The full size WCD at CSU is the only full size prototype outside of the HAWC site. It is equipped with seven HAWC PMTs and has scintillators both under and above the volume of water. It has been in operation since March 1, 2011. This prototype also has the same laser calibration system that the detectors deployed at the HAWC site will have. The CSU WCD serves as a testbed for the different subsystems before deployment at high altitude, and for optimizing the location of the PMTs, the design of the light collectors, deployment procedures, etc. Simulations of the light inside the detectors and the expected signals in the PMTs can also be benchmarked with this prototype.

  9. Assessment of a Bidirectional Reflectance Distribution Correction of Above-Water and Satellite Water-Leaving Radiance in Coastal Waters

    NASA Technical Reports Server (NTRS)

    Hlaing, Soe; Gilerson, Alexander; Harmal, Tristan; Tonizzo, Alberto; Weidemann, Alan; Arnone, Robert; Ahmed, Samir

    2012-01-01

    Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data. In order to analyze the bidirectional reflectance distribution function (BRDF) of case 2 waters, a dataset of typical remote sensing reflectances was generated through radiative transfer simulations for a large range of viewing and illumination geometries. Based on this simulated dataset, a case 2 water focused remote sensing reflectance model is proposed to correct above-water and satellite water-leaving radiance data for bidirectional effects. The proposed model is first validated with a one year time series of in situ above-water measurements acquired by collocated multispectral and hyperspectral radiometers, which have different viewing geometries installed at the Long Island Sound Coastal Observatory (LISCO). Match-ups and intercomparisons performed on these concurrent measurements show that the proposed algorithm outperforms the algorithm currently in use at all wavelengths, with average improvement of 2.4% over the spectral range. LISCO's time series data have also been used to evaluate improvements in match-up comparisons of Moderate Resolution Imaging Spectroradiometer satellite data when the proposed BRDF correction is used in lieu of the current algorithm. It is shown that the discrepancies between coincident in-situ sea-based and satellite data decreased by 3.15% with the use of the proposed algorithm.

  10. Materials and Mechanisms of Photo-Assisted Chemical Reactions under Light and Dark Conditions: Can Day-Night Photocatalysis Be Achieved?

    PubMed

    Sakar, M; Nguyen, Chinh-Chien; Vu, Manh-Hiep; Do, Trong-On

    2018-03-09

    The photoassisted catalytic reaction, conventionally known as photocatalysis, is expanding into the field of energy and environmental applications. It is widely known that the discovery of TiO 2 -assisted photochemical reactions has led to several unique applications, such as degradation of pollutants in water and air, hydrogen production through water splitting, fuel conversion, cancer treatment, antibacterial activity, self-cleaning glasses, and concrete. These multifaceted applications of this phenomenon can be enriched and expanded further if this process is equipped with more tools and functions. The term "photoassisted" catalytic reactions clearly emphasizes that photons are required to activate the catalyst; this can be transcended even into the dark if electrons are stored in the material for the later use to continue the catalytic reactions in the absence of light. This can be achieved by equipping the photocatalyst with an electron-storage material to overcome current limitations in photoassisted catalytic reactions. In this context, this article sheds lights on the materials and mechanisms of photocatalytic reactions under light and dark conditions. The manifestation of such systems could be an unparalleled technology in the near future that could influence all spheres of the catalytic sciences. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Photovoltaic powered ultraviolet and visible light-emitting diodes for sustainable point-of-use disinfection of drinking waters.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas; Jagals, Paul; Stuetz, Richard

    2014-09-15

    For many decades, populations in rural and remote developing regions will be unable to access centralised piped potable water supplies, and indeed, decentralised options may be more sustainable. Accordingly, improved household point-of-use (POU) disinfection technologies are urgently needed. Compared to alternatives, ultraviolet (UV) light disinfection is very attractive because of its efficacy against all pathogen groups and minimal operational consumables. Though mercury arc lamp technology is very efficient, it requires frequent lamp replacement, involves a toxic heavy metal, and their quartz envelopes and sleeves are expensive, fragile and require regular cleaning. An emerging alternative is semiconductor-based units where UV light emitting diodes (UV-LEDs) are powered by photovoltaics (PV). Our review charts the development of these two technologies, their current status, and challenges to their integration and POU application. It explores the themes of UV-C-LEDs, non-UV-C LED technology (e.g. UV-A, visible light, Advanced Oxidation), PV power supplies, PV/LED integration and POU suitability. While UV-C LED technology should mature in the next 10 years, research is also needed to address other unresolved barriers to in situ application as well as emerging research opportunities especially UV-A, photocatalyst/photosensitiser use and pulsed emission options. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat.

    PubMed

    Ludlow, M M; Björkman, O

    1984-11-01

    Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31-42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.

  13. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  14. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...

  15. The Hawaiian bobtail squid as a model system for selective particle capture in microfluidic systems.

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; McFall-Ngai, Margaret; Dabiri, John

    2013-11-01

    Juvenile Hawaiian bobtail squids reliably capture and isolate a single species of bacteria, Vibrio fischeri, from inhaled coastal water containing a huge background of living and non-living particles of comparable size. Biochemical mechanisms orchestrate a chain of specific interactions as soon as V.fischeri attach to the squid's internal light organ. It remains unclear, however, how the bacteria carried by the squid's ventilation currents are initially attracted to the light organ's surface. Here we present preliminary experimental data showing how arrangement and coordination of the cilia covering the light organ create a 3D flow field that facilitates advection, sieving and selective retention of flow-borne particles. These studies may inspire novel microfluidic tools for detection and capture of specific cells and particles.

  16. Earth observations taken during STS-83 mission

    NASA Image and Video Library

    2016-08-12

    STS083-747-026 (4-8 April 1997) --- Aswan Dam and Lake Nasser along the Nile River, Egypt. The Aswan Dam controls the flow of the Nile River forming Lake Nasser. Lake Nasser is reaching relatively high water levels due to the plentiful rains since December 1996 in Kenya, near the headwaters of the Nile river. The light colored areas in the Lake are where the sun is reflecting off the surface of the water. These areas are fairly calm and not disturbed by wind gusts enabling the sunglint to show water current patterns on the surface. The Aswan runway is seen as a dark set of lines west of the Aswan Dam.

  17. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    PubMed

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  18. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers.

    PubMed

    Teymurazyan, A; Pang, G

    2012-03-01

    Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector response, and water-equivalence of dose response have been investigated. It has been found that the zero frequency DQE of the proposed detector can be up to 37% at 6 MV. The detector, also, is water-equivalent with a relatively uniform response to different energy x-rays as compared to current EPIDs. The results of our simulations show that, using plastic scintillating fibers, it is possible to construct a water-equivalent EPID that has a better energy response and a higher detection efficiency than current flat panel based EPIDs.

  19. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems

    PubMed Central

    2018-01-01

    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called “Z-scheme” systems, which are inspired by the photosystem II–photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field. PMID:29676566

  20. Bactericidal activity of TiO[sub 2] photocatalyst in aqueous media. Toward a solar-assisted water disinfection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, C.; Lin, W.Y.; Zainal, Z.

    Irradiation of suspensions of Escherichia coli ([approximately] 10[sup 6] cells/mL) and TiO[sub 2] (anatase) with UV-visible light of wave-lengths longer than 380 nm resulted in the killing of the bacteria within minutes. Oxygen was found to be a prerequisite for the bactericidal properties of the photocatalyst. Bacterial killing was found to adhere to first-order kinetics. The rate constant was proportional to the square root of the concentration of TiO[sub 2] and proportional to the incident light intensity in the range [approximately] 180- [approximately] 1660 [mu]E s[sup [minus]1] m[sup [minus]2]. The trends in these simulated laboratory experiments were mimicked by outdoormore » tests conducted under the summer noonday sun in Texas. The implications of these results as well as those of previous investigations in terms of practical applicability to solar-assisted water treatment and disinfection at remote sites are discussed relative to water technologies currently considered as viable as alternatives to chlorination. 24 refs., 8 figs.« less

  1. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  2. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  3. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems.

    PubMed

    Wang, Yiou; Suzuki, Hajime; Xie, Jijia; Tomita, Osamu; Martin, David James; Higashi, Masanobu; Kong, Dan; Abe, Ryu; Tang, Junwang

    2018-05-23

    Visible light-driven water splitting using cheap and robust photocatalysts is one of the most exciting ways to produce clean and renewable energy for future generations. Cutting edge research within the field focuses on so-called "Z-scheme" systems, which are inspired by the photosystem II-photosystem I (PSII/PSI) coupling from natural photosynthesis. A Z-scheme system comprises two photocatalysts and generates two sets of charge carriers, splitting water into its constituent parts, hydrogen and oxygen, at separate locations. This is not only more efficient than using a single photocatalyst, but practically it could also be safer. Researchers within the field are constantly aiming to bring systems toward industrial level efficiencies by maximizing light absorption of the materials, engineering more stable redox couples, and also searching for new hydrogen and oxygen evolution cocatalysts. This review provides an in-depth survey of relevant Z-schemes from past to present, with particular focus on mechanistic breakthroughs, and highlights current state of the art systems which are at the forefront of the field.

  4. Studying infrared light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2016-03-01

    Alzheimer's disease (AD) is an extensive neurodegenerative disease. It is generally believed that there are some connections between AD and amyloid protein plaques in the brain. AD is a chronic disease that usually starts slowly and gets worse over time. The typical symptoms are memory loss, language disorders, mood swings and behavioral issues. Gradual losses of somatic functions eventually lead patients to death. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. No current treatment can reverse AD's deterioration. Infrared (IR) light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research, we have verified the effect of infrared light on AD through Alzheimer's disease mouse model. This transgenic mouse model is made by co-injecting two vectors encoding mutant amyloid precursor protein (APP) and mutant presenilin-1 (PSEN1). We designed an experimental apparatus for treating mice, which primarily includes a therapeutic box and a LED array, which emits infrared light. After the treatment, we assessed the effects of infrared light by testing cognitive performance of the mice in Morris water maze. Our results show that infra-red therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  5. A real-time early warning system for pathogens in water

    NASA Astrophysics Data System (ADS)

    Adams, John A.; McCarty, David; Crousore, Kristina

    2006-05-01

    The events of September 11, 2001 represented an escalation in the means and effects of terrorist attacks and raised awareness of the vulnerability of major infrastructures such as transportation, finance, power and energy, communications, food, and water. A re-examination of the security of critical assets was initiated. Actions were taken in the United States to protect our drinking water. Anti-terrorism monitoring systems that allow us to take action before contaminated water can reach the consumer have been under development since then. This presentation will discuss the current performance of a laser-based, multi-angle light scattering (MALS) technology for continuous, real-time detection and classification of microorganisms for security applications in all drinking and process water applications inclusive of protection of major assets, potable and distributed water. Field test data for a number of waterborne pathogens will also be presented.

  6. Quick and Easy Measurements of the Inherent Optical Property of Water by Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Dina; Hajiesmaeilbaigi, Fereshteh

    2009-04-19

    To generate realistic images of natural waters, one must consider in some detail the interaction of light with the water body. The reflectance and attenuation coefficient of the second harmonic of Nd:YAG laser light through distilled water and a sample of water from the Oman Sea were measured in a solid-state laser laboratory to estimate inherent optical properties of natural waters. These measurements determined the bottom conditions and the impurities of the water. The water's reflectivity varied depending on the angle of incidence, height of the laser from water surface, wavelength of laser light, radiant intensities, and depth of water.more » In these experiments laser light propagated through the water nonlinearly, and different reflectance showed different bottom slopes. The differences among various water samples were obtained taking into account the exponential equation in attenuation coefficient versus depth graphs.« less

  7. Light water detritiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorchenko, O.A.; Aleksee, I.A.; Bondarenko, S.D.

    2015-03-15

    Hundreds of thousands of tons of tritiated light water have been accumulating from the enterprises of nuclear fuel cycles around the world. The Dual-Temperature Water-Hydrogen (DTWH) process looks like the only practical alternative to Combined Electrolysis and Catalytic Exchange (CECE). In DTWH power-consuming lower reflux device (electrolytic cell) is replaced by a so-called 'hot tower' (LPCE column operating at conditions which ensure relatively small value of elementary separation factor α(hot)). In the upper, cold tower, the tritium transfers from hydrogen to water while in the lower, hot tower - in the opposite direction - from water to hydrogen. The DTWHmore » process is much more complicated compared to CECE; it must be thoroughly computed and strictly controlled by an automatic control system. The use of a simulation code for DTWH is absolutely important. The simulation code EVIO-5 deals with 3 flows inside a column (hydrogen gas, water vapour and liquid water) and 2 simultaneous isotope exchange sub-processes (counter-current phase exchange and co-current catalytic exchange). EVIO-5 takes into account the strong dependence of process performance on given conditions (temperature and pressure). It calculates steady-state isotope concentration profiles considering a full set of reversible exchange reactions between different isotope modifications of water and hydrogen (12 molecular species). So the code can be used for simulation of LPCE column operation for detritiation of hydrogen and water feed, which contains H and D not only at low concentrations but above 10 at.% also. EVIO-5 code is used to model a Tritium Removal Facility with a throughput capacity of about 400 m{sup 3}/day. Simulation results show that a huge amount of wet-proofed catalyst is required (about 6000 m{sup 3}), mainly (90%) in the first stage. One reason for these large expenses (apart from a big scale of the problem itself) is the relatively high tritium separation factor in the hot tower. The introduction of some quantity of deuterium into the gaseous flow before the hot tower lowers the tritium separation factor in that column. One possible variant of deuterium introduction to the hot tower of the first stage was modelled. The decontamination capacity increases by a 2.5 factor.« less

  8. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.

    2013-10-01

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.

  9. Changes of Water Hydrogen Bond Network with Different Externalities

    PubMed Central

    Zhao, Lin; Ma, Kai; Yang, Zi

    2015-01-01

    It is crucial to uncover the mystery of water cluster and structural motif to have an insight into the abundant anomalies bound to water. In this context, the analysis of influence factors is an alternative way to shed light on the nature of water clusters. Water structure has been tentatively explained within different frameworks of structural models. Based on comprehensive analysis and summary of the studies on the response of water to four externalities (i.e., temperature, pressure, solutes and external fields), the changing trends of water structure and a deduced intrinsic structural motif are put forward in this work. The variations in physicochemical and biological effects of water induced by each externality are also discussed to emphasize the role of water in our daily life. On this basis, the underlying problems that need to be further studied are formulated by pointing out the limitations attached to current study techniques and to outline prominent studies that have come up recently. PMID:25884333

  10. Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    van Haren, H.; Taupier-Letage, I.; Aguilar, J. A.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Flaminio, V.; Fratini, K.; Fritsch, U.; Fuda, J.-L.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, G.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Schoeck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-08-01

    An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s-1 in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.

  11. A novel chlorophyll solar cell

    NASA Astrophysics Data System (ADS)

    Ludlow, J. C.

    The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.

  12. Electricity generation from digitally printed cyanobacteria.

    PubMed

    Sawa, Marin; Fantuzzi, Andrea; Bombelli, Paolo; Howe, Christopher J; Hellgardt, Klaus; Nixon, Peter J

    2017-11-06

    Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

  13. Series circuit of organic thin-film solar cells for conversion of water into hydrogen.

    PubMed

    Aoki, Atsushi; Naruse, Mitsuru; Abe, Takayuki

    2013-07-22

    A series circuit of bulk hetero-junction (BHJ) organic thin-film solar cells (OSCs) is investigated for electrolyzing water to gaseous hydrogen and oxygen. The BHJ OSCs applied consist of poly(3-hexylthiophene) as a donor and [6,6]-phenyl C61 butyric acid methyl ester as an acceptor. A series circuit of six such OSC units has an open circuit voltage (V(oc)) of 3.4 V, which is enough to electrolyze water. The short circuit current (J(sc)), fill factor (FF), and energy conversion efficiency (η) are independent of the number of unit cells. A maximum electric power of 8.86 mW cm(-2) is obtained at the voltage of 2.35 V. By combining a water electrolysis cell with the series circuit solar cells, the electrolyzing current and voltage obtained are 1.09 mA and 2.3 V under a simulated solar light irradiation (100 mW cm(-2), AM1.5G), and in one hour 0.65 mL hydrogen is generated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by KB Science and Engineering and is currently patented by KB Science. The buoy's purpose was to collected hyperspectral optical signatures for analysis and resulting estimation of water quality parameters such as chlorophyll-a, seston and dissolved organic matter (DOC). The ultimate goal of the project was to develop a buoy that would integrate a probe to measure upwelling light from a source and thus relate this backscattered light to water quality parameters.

  15. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water.

    PubMed

    Lv, Xiao-Tong; Zhang, Xue; Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying

    2017-11-15

    Chlorinated reclaimed water is widely used for landscaping and recreational purposes, resulting in human exposure to toxic disinfection byproducts. Although the quality of chlorinated reclaimed water might be affected by sunlight during storage, the effects of solar light irradiation on the toxicity remain unknown. This study investigated the changes in cytotoxicity and total organic halogen (TOX) of chlorinated reclaimed water exposed to solar light. Irradiation with solar light for 12 h was found to significantly reduce the cytotoxicity of chlorinated reclaimed water by about 75%, with ultraviolet light being responsible for the majority of this reduction. Chlorine residual in reclaimed water tended to increase the cytotoxicity, and the synergy between solar light and free chlorine could not enhance the reduction of cytotoxicity. Adding hydroxyl radical scavengers revealed that the contribution of hydroxyl radical to cytotoxicity reduction was limited. Solar light irradiation concurrently reduced TOX. The low molecular weight (<1 kDa) fraction was the major contributor of cytotoxicity and TOX in chlorinated reclaimed water. Detoxification of the low molecular weight fraction by light irradiation was mainly a result of TOX dehalogenation, while detoxification of the high molecular weight (>1 kDa) fraction was probably caused by photoconversion from high toxic TOX to low toxic TOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Eleuthera Island, Bahamas seen from STS-66

    NASA Image and Video Library

    1994-11-14

    The striking views provided by the Bahama Islands lend insights into the important problems of limestone (CaCO3) production and transport. This photograph includes the southern part of Eleuthera Island in the northern Bahamas. The hook-shaped island encloses a relatively shallow platform (light blue) which is surrounded by deep water (dark blue). The feathery pattern along the western edge of Eleuthera's platform are sand bars and sand channels created by tidal currents sweeping on and off the platform. The channels serve to funnel large amounts of CaCO3 off the platform and into the deeper water.

  17. Crossing turbulent boundaries: interfacial flux in environmental flows.

    PubMed

    Grant, Stanley B; Marusic, Ivan

    2011-09-01

    Advances in the visualization and prediction of turbulence are shedding new light on mass transfer in the turbulent boundary layer. These discoveries have important implications for many topics in environmental science and engineering, from the transport of earth-warming CO2 across the sea-air interface, to nutrient processing and sediment erosion in rivers, lakes, and the ocean, to pollutant removal in water and wastewater treatment systems. In this article we outline current understanding of turbulent boundary layer flows, with particular focus on coherent turbulence and its impact on mass transport across the sediment-water interface in marine and freshwater systems.

  18. Method and apparatus for separation of heavy and tritiated water

    DOEpatents

    Lee, Myung W.

    2001-01-01

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  19. Development of an integrated endoscopic device for multiplexed low coherence interferometry measurements of microbicide gel coating thickness

    NASA Astrophysics Data System (ADS)

    Drake, Tyler K.; Robles, Francisco E.; DeSoto, Michael; Henderson, Marcus H.; Katz, David F.; Wax, Adam P.

    2009-02-01

    Microbicide gels are topical products that have recently been developed to combat sexually transmitted diseases including HIV/AIDS. The extent of gel coverage, thickness, and structure are crucial factors in gel effectiveness. It is necessary to be able to monitor gel distribution and behavior under various circumstances, such as coatis, and over an extended time scale in vivo. We have developed a multiplexed, Fourier-domain low coherence interferometry (LCI) system as a practical method of measuring microbicide gel distribution, with precision and accuracy comparable to currently used fluorometric techniques techniques. The multiplexed system achieved a broad scanning area without the need for a mechanical scanning device, typical of OCT systems, by utilizing six parallel channels with simultaneous data collection. We now propose an imaging module which will allow the integration of the multiplexed LCI system into the current fluorescence system in conjunction with an endoscope. The LCI imaging module will meet several key criteria in order to be compatible with the current system. The fluorescent system features a 4-mm diameter rigid endsoscope enclosed in a 27-mm diameter polycarbonate tube, with a water immersion tip. Therefore, the LCI module must be low-profile as well as water-resistant to fit inside the current design. It also must fulfill its primary function of delivering light from each of the six channels to the gel and collecting backscattered light. The performance of the imaging module will be characterized by scanning a calibration socket which contains grooves of known depths, and comparing these measurements to the fluorometric results.

  20. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  1. Unique and facile solvothermal synthesis of mesoporous WO3 using a solid precursor and a surfactant template as a photoanode for visible-light-driven water oxidation

    PubMed Central

    2014-01-01

    Mesoporous tungsten trioxide (WO3) was prepared from tungstic acid (H2WO4) as a tungsten precursor with dodecylamine (DDA) as a template to guide porosity of the nanostructure by a solvothermal technique. The WO3 sample (denoted as WO3-DDA) prepared with DDA was moulded on an electrode to yield efficient performance for visible-light-driven photoelectrochemical (PEC) water oxidation. Powder X-ray diffraction (XRD) data of the WO3-DDA sample calcined at 400°C indicate a crystalline framework of the mesoporous structure with disordered arrangement of pores. N2 physisorption studies show a Brunauer-Emmett-Teller (BET) surface area up to 57 m2 g-1 together with type IV isotherms and uniform distribution of a nanoscale pore size in the mesopore region. Scanning electron microscopy (SEM) images exhibit well-connected tiny spherical WO3 particles with a diameter of ca. 5 to 20 nm composing the mesoporous network. The WO3-DDA electrode generated photoanodic current density of 1.1 mA cm-2 at 1.0 V versus Ag/AgCl under visible light irradiation, which is about three times higher than that of the untemplated WO3. O2 (1.49 μmol; Faraday efficiency, 65.2%) was evolved during the 1-h photoelectrolysis for the WO3-DDA electrode under the conditions employed. The mesoporous electrode turned out to work more efficiently for visible-light-driven water oxidation relative to the untemplated WO3 electrode. PMID:25313301

  2. BLAM (Benthic Light Availability Model): A Proposed Model of Hydrogeomorphic Controls on Light in Rivers

    NASA Astrophysics Data System (ADS)

    Julian, J. P.; Doyle, M. W.; Stanley, E. H.

    2006-12-01

    Light is vital to the dynamics of aquatic ecosystems. It drives photosynthesis and photochemical reactions, affects thermal structure, and influences behavior of aquatic biota. Despite the fundamental role of light to riverine ecosystems, light studies in rivers have been mostly neglected because i) boundary conditions (e.g., banks, riparian vegetation) make ambient light measurements difficult, and ii) the optical water quality of rivers is highly variable and difficult to characterize. We propose a benthic light availability model (BLAM) that predicts the percent of incoming photosynthetically active radiation (PAR) available at the river bed. BLAM was developed by quantifying light attenuation of the five hydrogeomorphic controls that dictate riverine light availability: topography, riparian vegetation, channel geometry, optical water quality, and water depth. BLAM was calibrated using hydrogeomorphic data and light measurements from two rivers: Deep River - a 5th-order, turbid river in central North Carolina, and Big Spring Creek - a 2nd-order, optically clear stream in central Wisconsin. We used a series of four PAR sensors to measure i) above-canopy PAR, ii) PAR above water surface, iii) PAR below water surface, and iv) PAR on stream bed. These measurements were used to develop empirical light attenuation coefficients, which were then used in combination with optical water quality measurements, shading analyses, channel surveys, and flow records to quantify the spatial and temporal variability in riverine light availability. Finally, we apply BLAM to the Baraboo River - a 6th-order, 120-mile, unimpounded river in central Wisconsin - in order to characterize light availability along the river continuum (from headwaters to mouth).

  3. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis.

    PubMed

    Flores-Flores, E; Torres-Hurtado, S A; Páez, R; Ruiz, U; Beltrán-Pérez, G; Neale, S L; Ramirez-San-Juan, J C; Ramos-García, R

    2015-10-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters.

  4. Trapping and manipulation of microparticles using laser-induced convection currents and photophoresis

    PubMed Central

    Flores-Flores, E.; Torres-Hurtado, S. A.; Páez, R.; Ruiz, U.; Beltrán-Pérez, G.; Neale, S. L.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2015-01-01

    In this work we demonstrate optical trapping and manipulation of microparticles suspended in water due to laser-induced convection currents. Convection currents are generated due to laser light absorption in an hydrogenated amorphous silicon (a:Si-H) thin film. The particles are dragged towards the beam's center by the convection currents (Stokes drag force) allowing trapping with powers as low as 0.8 mW. However, for powers >3 mW trapped particles form a ring around the beam due to two competing forces: Stokes drag and thermo-photophoretic forces. Additionally, we show that dynamic beam shaping can be used to trap and manipulate multiple particles by photophotophoresis without the need of lithographically created resistive heaters. PMID:26504655

  5. Earth Observation

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011843 (24 June 2013) --- Gravity waves and sunglint on Lake Superior are featured in this image photographed by an Expedition 36 crew member on the International Space Station. From the vantage point of the space station, crew members frequently observe Earth atmospheric and surface phenomena in ways impossible to view from the ground. Two such phenomena?gravity waves and sunglint?are illustrated in this photograph of northeastern Lake Superior. The Canadian Shield of southern Ontario (bottom) is covered with extensive green forest canopy typical of early summer. Offshore, and to the west and southwest of Pukaskwa National Park several distinct sets of parallel cloud bands are visible. Gravity waves are produced when moisture-laden air encounters imbalances in air density, such as might be expected when cool air flows over warmer air; this can cause the flowing air to oscillate up and down as it moves, causing clouds to condense as the air rises (cools) and evaporate away as the air sinks (warms). This produces parallel bands of clouds oriented perpendicular to the wind direction. The orientation of the cloud bands visible in this image, parallel to the coastlines, suggests that air flowing off of the land surfaces to the north is interacting with moist, stable air over the lake surface, creating gravity waves. The second phenomenon?sunglint?effects the water surface around and to the northeast of Isle Royale (upper right). Sunglint is caused by light reflection off a water surface; some of the reflected light travels directly back towards the observer, resulting in a bright mirror-like appearance over large expanses of water. Water currents and changes in surface tension (typically caused by presence of oils or surfactants) alter the reflective properties of the water, and can be highlighted by sunglint. For example, surface water currents are visible to the east of Isle Royale that are oriented similarly to the gravity waves ? suggesting that they too are the product of winds moving off of the land surface.

  6. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.

  7. Th/U-233 multi-recycle in pressurized water reactors : feasibility study of multiple homogeneous and heterogeneous assembly designs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, D.; Taiwo, T. A.; Kim, T. K.

    2010-10-01

    The use of thorium in current or advanced light water reactors (LWRs) has been of interest in recent years. These interests have been associated with the need to increase nuclear fuel resources and the perceived non-proliferation advantages of the utilization of thorium in the fuel cycle. Various options have been considered for the use of thorium in the LWR fuel cycle. The possibility for thorium utilization in a multi-recycle system has also been considered in past literature, primarily because of the potential for near breeders with Th/U-233 in the thermal energy range. The objective of this study is to evaluatemore » the potential of Th/U-233 fuel multi-recycle in current LWRs, focusing on pressurized water reactors (PWRs). Approaches for sustainable multi-recycle without the need for external fissile material makeup have been investigated. The intent is to obtain a design that allows existing PWRs to be used with minimal modifications.« less

  8. Defining wet season water quality target concentrations for ecosystem conservation using empirical light attenuation models: A case study in the Great Barrier Reef (Australia).

    PubMed

    Petus, Caroline; Devlin, Michelle; Teixera da Silva, Eduardo; Lewis, Stephen; Waterhouse, Jane; Wenger, Amelia; Bainbridge, Zoe; Tracey, Dieter

    2018-05-01

    Optically active water quality components (OAC) transported by flood plumes to nearshore marine environments affect light levels. The definition of minimum OAC concentrations that must be maintained to sustain sufficient light levels for conservation of light-dependant coastal ecosystems exposed to flood waters is necessary to guide management actions in adjacent catchments. In this study, a framework for defining OAC target concentrations using empirical light attenuation models is proposed and applied to the Wet Tropics region of the Great Barrier Reef (GBR) (Queensland, Australia). This framework comprises several steps: (i) light attenuation (Kd(PAR)) profiles and OAC measurements, including coloured dissolved organic matter (CDOM), chlorophyll-a (Chl-a) and suspended particulate matter (SPM) concentrations collected in flood waters; (ii) empirical light attenuation models used to define the contribution of CDOM, Chl-a and SPM to the light attenuation, and; (iii) translation of empirical models into manageable OAC target concentrations specific for wet season conditions. Results showed that (i) Kd(PAR) variability in the Wet Tropics flood waters is driven primarily by SPM and CDOM, with a lower contribution from Chl-a (r2 = 0.5, p < 0.01), (ii) the relative contributions of each OAC varies across the different water bodies existing along flood waters and strongest Kd(PAR) predictions were achieved when the in-situ data were clustered into water bodies with similar satellite-derived colour characteristics ('brownish flood waters', r2 = 0.8, p < 0.01, 'greenish flood waters', r2 = 0.5, p < 0.01), and (iii) that Kd(PAR) simulations are sensitive to the angular distribution of the light field in the clearest flood water bodies. Empirical models developed were used to translate regional light guidelines (established for the GBR) into manageable OAC target concentrations. Preliminary results suggested that a 90th percentile SPM concentration of 11.4 mg L -1 should be maintained during the wet season to sustain favourable light levels for Wet Tropics coral reefs and seagrass ecosystems exposed to 'brownish' flood waters. Additional data will be collected to validate the light attenuation models and the wet season target concentration which in future will be incorporated into wider catchment modelling efforts to improve coastal water quality in the Wet Tropics and the GBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Influence of boron content on the microstructure and tribological properties of Cr-B-N coatings in water lubrication

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Zhou, Fei; Gao, Song; Wu, Zhiwei; Wang, Qianzhi; Chen, Kangmin; Zhou, Zhifeng; Li, Lawrence Kwok-Yan

    2016-07-01

    Cr-B-N coatings with different boron contents were deposited on Si(1 0 0) wafers and 316 L stainless steels using unbalanced magnetron sputtering system by way of adjusting the CrB2 target currents. The microstructure and mechanical properties of Cr-B-N coatings were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), white light interferometric three dimensional profilometer and nano-indentation tester, respectively. The tribological properties of Cr-B-N/SiC tribopairs in water were studied using ball-on-disk tribometer. The results showed that the Cr-B-N coatings showed a fine nanocomposite structure consisted of CrN nanograins and amorphous BN phase regardless of boron contents, and the typical columnar structure became featureless with increasing the CrB2 target current. The hardness and reduced elastic modulus first increased to 28.9 GPa and 330 GPa at the CrB2 target current of 2 A, and then decreased gradually with further increasing the CrB2 target current to 4 A. As compared with the CrN/SiC tribopairs, the lowest friction coefficient of Cr-B-N/SiC ball tribopairs in water was 0.15, and the wear resistance of Cr-B-N coatings was effectively enhanced.

  10. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    NASA Astrophysics Data System (ADS)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  11. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Drake, David E.; Cacchione, David A.

    1994-08-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the SMITH [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient γ 0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of γ 0 as low as 5 × 10 -5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with γ 0 ≈ 0.002. The effects of limiting availability and employing a higher γ 0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed.

  12. Sediment resuspension and bed armoring during high bottom stress events on the northern California inner continental shelf: measurements and predictions

    USGS Publications Warehouse

    Wiberg, P.L.; Drake, D.E.; Cacchione, D.A.

    1994-01-01

    Geoprobe bottom tripods were deployed during the winter of 1990-1991 on the northern California inner continental shelf as part of the STRESS field experiment. Transmissometer measurements of light beam attenuation were made at two levels and current velocity was measured at four levels in the bottom 1.2 m of water. Intervals of high measured bottom wave velocity were generally correlated with times of both high attenuation and high attenuation gradient in the bottom meter of the water column. Measured time series of light attenuation and attenuation gradient are compared to values computed using a modified version of the Smith [(1977) The sea, Vol. 6, Wiley-Interscience, New York, pp. 539-577] steady wave-current bottom-boundary-layer model. Size-dependent transmissometer calibrations, which show significantly enhanced attenuation with decreasing grain size, are used to convert calculated suspended sediment concentration to light attenuation. The finest fractions of the bed, which are the most easily suspended and attenuate the most light, dominate the computed attenuation signal although they comprise only about 5-7% of the bed sediment. The calculations indicate that adjusting the value of the coefficient ??0 in the expression for near-bed sediment concentration cannot in itself give both the correct magnitudes of light attenuation and attenuation gradient. To supply the volumes of fine sediment computed to be in suspension during peak events, even with values of ??0 as low as 5 ?? 10-5, requires suspension of particles from unreasonably large depths in the bed. A limit on the depth of sediment availability is proposed as a correction to suspended sediment calculations. With such a limit, reasonable attenuation values are computed with ??0 ??? 0.002. The effects of limiting availability and employing a higher ??0 are to reduce the volume of the finest sediment in suspension and to increase the suspended volumes of the coarser fractions. As a consequence, the average size and settling velocity of suspended sediment increases as bottom shear stress increases, with accompanying increases in near-bed concentration gradients. Higher concentration gradients produce larger stratification effects, particularly near the top of the wave boundary layer at times when wave shear velocities are high and current shear velocities are low. These are the conditions under which maximum attenuation gradients are observed. ?? 1994.

  13. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    PubMed

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  15. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  16. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  17. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights. (b...

  18. Earth Observations taken by the Expedition 27 Crew

    NASA Image and Video Library

    2011-04-02

    ISS027-E-009771 (2 April 2011) --- Bassas da India is featured in this image photographed by an Expedition 27 crew member on the International Space Station. The vantage point of crew members onboard the space station provides many dramatic views of Earth?s surface. This detailed photograph of the Bassas da India, an uninhabited atoll in the Indian Ocean (between the Mozambique coast of Africa and the island of Madagascar) has an almost surreal quality due to varying degrees of sunglint. Sunglint is an optical phenomena caused by light reflecting off of a water surface directly back towards the observer. Variations in the roughness of the water surface?presence or absence of waves due to wind and water currents?will cause differences in the intensity of the sunglint. The presence of other materials, such as oils or surfactants, can also change the properties of the water surface. Here the presence of currents is highlighted as darker patches or streaks (left and upper right). In contrast, shallow water in the lagoon (center) presents a more uniform, mirror-like appearance in sunglint suggesting that there are no subsurface currents present. Wave crests visible around the atoll are likely the result of both surface winds and subsurface currents. The Bassas da India atoll is part of the French Southern and Antarctic Lands. It is uninhabited due to its complete submergence during high tide ? there is no vegetation established on the atoll for the same reason. The atoll is approximately 10 kilometers in diameter, and covers an area (including the lagoon) of approximately 80 square kilometers.

  19. Interfacial Granular Intrusions

    NASA Astrophysics Data System (ADS)

    Linden, Paul; Zheng, Zhong; Huppert, Herbert; Vriend, Nathalie; Neufeld, Jerome

    2017-11-01

    We study experimentally the intrusion of light granular material into an inviscid fluid of greater density. Despite a rich set of related geophysical and environmental phenomena, such as the spreading of calved ice and volcanic ash and debris flows, there are few previous studies on this topic. We conduct a series of lock-release experiments of light spherical beads into a rectangular tank initially filled with either fresh water or salt water, and record the time evolution of the interface shape and the front location of the current of beads. In particular, we find that the front location obeys a power-law behaviour during an intermediate time period following the release of the lock before the nose of beads reaches a maximum runout distance within a finite time. We investigate the dependence of the scaling exponent and runout distance on the total amount of beads, the initial lock length, and the properties of the liquid that fills the tank in the experiments. Appropriate scaling arguments are provided to collapse the raw experimental data into universal curves, which can be used to describe the front dynamics of light granular intrusions with different size and buoyancy effects and initial aspect ratios.

  20. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    DOE PAGES

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; ...

    2016-04-28

    Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less

  1. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien

    Here, the seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positivelymore » to precipitation when rainfall is < 2000 mm yr -1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000 mm yr -1.« less

  2. Water oxidation by a nickel-glycine catalyst.

    PubMed

    Wang, Dong; Ghirlanda, Giovanna; Allen, James P

    2014-07-23

    The utilization of solar energy requires an efficient means for its storage as chemical energy. In bioinspired artificial photosynthesis, light energy can be used to drive water oxidation, but catalysts that produce molecular oxygen from water are needed to avoid excessive driving potentials. In this paper, we demonstrate the utility of a novel complex utilizing earth-abundant Ni in combination with glycine as an efficient catalyst with a modest overpotential of 0.475 ± 0.005 V at a current density of 1 mA/cm(2) at pH 11. Catalysis requires the presence of the amine moiety with the glycine most likely coordinating the Ni in a 4:1 molar ratio. The production of molecular oxygen at a high potential is verified by measurement of the change in oxygen concentration, yielding a Faradaic efficiency of 60 ± 5%. The catalytic species is most likely a heterogeneous Ni-hydroxide formed by electrochemical oxidation. This Ni species can achieve a current density of 4 mA/cm(2) that persists for at least 10 h. Based upon the observed pH dependence of the current amplitude and oxidation/reduction peaks, the catalytic mechanism is an electron-proton coupled process.

  3. Underwater detectibility of a lighting system on a helicopter escape exit.

    PubMed

    O'Neill, Brendan D; Kozey, John W; Brooks, Chris J

    2004-06-01

    When a helicopter ditches into water, it immediately inverts due to the weight of the engines and then fills with water. Locating the emergency exit for escape under such conditions is a difficult task. A new lighting system for an escape exit has been developed that illuminates on contact with water. The detectibility of the lighting was investigated under varying conditions of ambient illumination, water turbidity, and viewing distance. A total of 288 underwater detection trials were carried out by 9 subjects with an illuminated hatch placed at 2 distances (1.5 m and 3.1 m), under 2 ambient illuminations (bright: > 3000 lux and dark: < 0.1 lux), and in 2 conditions of water turbidity. The water temperature was 12 degrees C for all conditions. At 1.5 m, the lighting system was detectable in less than 1.5 s by all subjects in both clear and turbid water and under both bright and dark conditions. At 3.1 m, the lights were detectable in both clear and turbid water under the dark condition and in clear water under the bright condition. However, the lighting was not reliably detected in turbid water under bright condition. The system met original design requirements in terms of detectibility at 1.5 m. The detection time was always under 1.5 s. It could also be detected at 3.1 m in clear and turbid water, under dark conditions. However, the detectibility at 3.1 m in turbid water, under bright condition was less reliable.

  4. Understory vegetation composition and abundance in relation to light, water, and nutrient supply gradients in upland oak woodlands

    Treesearch

    Elizabeth K. Olson; John M. Kabrick

    2014-01-01

    The Ozark Highlands of Missouri have experienced a complicated series of exploitive events (Flader 2004). The area was heavily cut over for timber at the turn of the last century and was overgrazed by privately owned livestock through the early 1900s. Decades of fire suppression since the 1940s further altered plant composition and structure. The current state of...

  5. Construction of Gallium Arsenide Solar Concentrator for Space Use.

    DTIC Science & Technology

    1988-03-01

    electrical current from absorbed sunlight. This can only happen if the sun- light hits an electron in the valence band with enough energy to cause an... impact on its design. There are four different environments that the SCA will encounter during its lifetime, namely, terrestrial, launch, space, and...solutions are not 100 percent effective. Solder becomes porous during temperature cycling, and the adhesive absorbs water during the curing process. The

  6. Monitoring Telluric Water Absorption with CAMAL

    NASA Astrophysics Data System (ADS)

    Baker, Ashley; Blake, Cullen; Sliski, David

    2017-01-01

    Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.

  7. Diffuse optical tomography with structured-light patterns to quantify breast density

    NASA Astrophysics Data System (ADS)

    Kwong, Jessica; Nouizi, Farouk; Cho, Jaedu; Zheng, Jie; Li, Yifan; Chen, Jeon-hor; Su, Min-Ying; Gulsen, Gultekin

    2016-02-01

    Breast density is an independent risk factor for breast cancer, where women with denser breasts are more likely to develop cancer. By identifying women at higher risk, healthcare providers can suggest screening at a younger age to effectively diagnose and treat breast cancer in its earlier stages. Clinical risk assessment models currently do not incorporate breast density, despite its strong correlation with breast cancer. Current methods to measure breast density rely on mammography and MRI, both of which may be difficult to use as a routine risk assessment tool. We propose to use diffuse optical tomography with structured-light to measure the dense, fibroglandular (FGT) tissue volume, which has a different chromophore signature than the surrounding adipose tissue. To test the ability of this technique, we performed simulations by creating numerical breast phantoms from segmented breast MR images. We looked at two different cases, one with a centralized FGT distribution and one with a dispersed distribution. As expected, the water and lipid volumes segmented at half-maximum were overestimated for the dispersed case. However, it was noticed that the recovered water and lipid concentrations were lower and higher, respectively, than the centralized case. This information may provide insight into the morphological distribution of the FGT and can be a correction in estimating the breast density.

  8. Replication of the Apparent Excess Heat Effect in a Light Water-Potassium Carbonate-Nickel Electrolytic Cell

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Myers, Ira T.; Fralick, Gustave C.; Baldwin, Richard S.

    1996-01-01

    Replication of experiments claiming to demonstrate excess heat production in light water-Ni-K2CO3 electrolytic cells was found to produce an apparent excess heat of 11 W maximum, for 60 W electrical power into the cell. Power gains range from 1.06 to 1.68. The cell was operated at four different dc current levels plus one pulsed current run at 1 Hz, 10% duty cycle. The 28 liter cell used in these verification tests was on loan from a private corporation whose own tests with similar cells are documented to produce 50 W steady excess heat for a continuous period exceeding hundreds of days. The apparent excess heat can not be readily explained either in terms of nonlinearity of the cell's thermal conductance at a low temperature differential or by thermoelectric heat pumping. However, the present data do admit efficient recombination of dissolved hydrogen-oxygen as an ordinary explanation. Calorimetry methods and heat balance calculations for the verification tests are described. Considering the large magnitude of benefit if this effect is found to be a genuine new energy source, a more thorough investigation of evolved heat in the nickel-hydrogen system in both electrolytic and gaseous loading cells remains warranted.

  9. Changes in olive oil volatile organic compounds induced by water status and light environment in canopies of Olea europaea L. trees.

    PubMed

    Benelli, Giovanni; Caruso, Giovanni; Giunti, Giulia; Cuzzola, Angela; Saba, Alessandro; Raffaelli, Andrea; Gucci, Riccardo

    2015-09-01

    Light and water are major factors in fruit development and quality. In this study, the effect of water and light in Olea europaea trees on volatile organic compounds (VOCs) in olive oil was studied over 2 years. Mature fruits were harvested from three zones of the canopy with different light exposure (64%, 42% and 30% of incident light) of trees subjected to full, deficit or complementary irrigation. VOCs were determined by SPME GC-MS and analysed by principal component analysis followed by discriminant analysis to partition treatment effects. Fruit fresh weight and mesocarp oil content decreased in zones where intercepted light was less. Low light levels significantly slowed down fruit maturation, whereas conditions of water deficit accelerated the maturation process. The presence of cyclosativene and α-muurulene was associated with water deficit, nonanal, valencene with full irrigation; α-muurulene, (E)-2-hexanal were related to low light conditions, while trans-β-ocimene, α-copaene, (Z)-2-penten-1-ol, hexanal and nonanal to well exposed zones. The year strongly affected the VOC profile of olive oil. This is the first report on qualitative changes in VOCs induced by light environment and/or water status. This information is valuable to better understand the role of environmental factors on the sensory quality of virgin olive oil. © 2014 Society of Chemical Industry.

  10. [The "light" water effect on lenticular opacity development in mice after repeated low dose gamma-irradiation].

    PubMed

    Abrosimova, A N; Rakov, D V; Siniak, Iu E

    2009-01-01

    Action of "light" water with reduced quantities of heavy stable hydrogen and 18O ions on incidence and progress of lenticular opacity was studied in gamma-irradiated mice (60Co, 1.0 Gy). The animals were subjected to electroophthalmoscopy regularly till end of life time. The observation showed that chronic intake of "light" water safeguarded the irradiated mice against lenticular opacity. The experimental data indicate that "light" water strengthens the general body resistance as well as slows down aging of mammals.

  11. Earthshots: Satellite images of environmental change – Lake Urmia, Iran

    USGS Publications Warehouse

    Adamson, Thomas

    2015-01-01

    The lake’s southern basin is shallower than its northern basin, so recent images show the water disappearing from the southern basin first. These Landsat images use the shortwave-infrared, near-infrared, and green wavelengths of light. Because water absorbs infrared light, water (dark blue to black) contrasts with the surrounding land areas. As the water becomes shallower, light is reflected off of the lakebed in shades of light blue. Lighter blue and bright areas immediately surrounding the lake are where the receding shoreline has exposed the lake bottom.

  12. 75 FR 13142 - Florida Power and Light Company; Turkey Point, Units 3 and 4; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... Light Company; Turkey Point, Units 3 and 4; Exemption 1.0 Background Florida Power and Light Company... ferritic materials of pressure-retaining components of the reactor coolant pressure boundary of light water... reactor coolant pressure boundary of light water nuclear power reactors to provide adequate margins of...

  13. 33 CFR 118.70 - Lights on swing bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on swing bridges. 118.70 Section 118.70 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.70 Lights on swing bridges. (a) Swing span lights on through bridges. Each...

  14. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment.

    PubMed

    Wang, Wei; Tadé, Moses O; Shao, Zongping

    2015-08-07

    Meeting the growing global energy demand is one of the important challenges of the 21st century. Currently over 80% of the world's energy requirements are supplied by the combustion of fossil fuels, which promotes global warming and has deleterious effects on our environment. Moreover, fossil fuels are non-renewable energy and will eventually be exhausted due to the high consumption rate. A new type of alternative energy that is clean, renewable and inexpensive is urgently needed. Several candidates are currently available such as hydraulic power, wind force and nuclear power. Solar energy is particularly attractive because it is essentially clean and inexhaustible. A year's worth of sunlight would provide more than 100 times the energy of the world's entire known fossil fuel reserves. Photocatalysis and photovoltaics are two of the most important routes for the utilization of solar energy. However, environmental protection is also critical to realize a sustainable future, and water pollution is a serious problem of current society. Photocatalysis is also an essential route for the degradation of organic dyes in wastewater. A type of compound with the defined structure of perovskite (ABX3) was observed to play important roles in photocatalysis and photovoltaics. These materials can be used as photocatalysts for water splitting reaction for hydrogen production and photo-degradation of organic dyes in wastewater as well as for photoanodes in dye-sensitized solar cells and light absorbers in perovskite-based solar cells for electricity generation. In this review paper, the recent progress of perovskites for applications in these fields is comprehensively summarized. A description of the basic principles of the water splitting reaction, photo-degradation of organic dyes and solar cells as well as the requirements for efficient photocatalysts is first provided. Then, emphasis is placed on the designation and strategies for perovskite catalysts to improve their photocatalytic activity and/or light adsorption capability. Comments on current and future challenges are also provided. The main purpose of this review paper is to provide a current summary of recent progress in perovskite materials for use in these important areas and to provide some useful guidelines for future development in these hot research areas.

  15. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances might be the causes of the diversity of water quality parameters in Hulun Buir plateau. CDOM absorption in river waters was significantly lower than terminal waters (p < 0.01). Analysis of ratio of absorption at 250-365 nm (E250 : 365), specific UV absorbance (SUVA254), and spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  16. Level Alignment as Descriptor for Semiconductor/Catalyst Systems in Water Splitting: The Case of Hematite/Cobalt Hexacyanoferrate Photoanodes.

    PubMed

    Hegner, Franziska Simone; Cardenas-Morcoso, Drialys; Giménez, Sixto; López, Núria; Galan-Mascaros, Jose Ramon

    2017-11-23

    The realization of artificial photosynthesis may depend on the efficient integration of photoactive semiconductors and catalysts to promote photoelectrochemical water splitting. Many efforts are currently devoted to the processing of multicomponent anodes and cathodes in the search for appropriate synergy between light absorbers and active catalysts. No single material appears to combine both features. Many experimental parameters are key to achieve the needed synergy between both systems, without clear protocols for success. Herein, we show how computational chemistry can shed some light on this cumbersome problem. DFT calculations are useful to predict adequate energy-level alignment for thermodynamically favored hole transfer. As proof of concept, we experimentally confirmed the limited performance enhancement in hematite photoanodes decorated with cobalt hexacyanoferrate as a competent water-oxidation catalyst. Computational methods describe the misalignment of their energy levels, which is the origin of this mismatch. Photoelectrochemical studies indicate that the catalyst exclusively shifts the hematite surface state to lower potentials, which therefore reduces the onset for water oxidation. Although kinetics will still depend on interface architecture, our simple theoretical approach may identify and predict plausible semiconductor/catalyst combinations, which will speed up experimental work towards promising photoelectrocatalytic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    NASA Astrophysics Data System (ADS)

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  18. Acclimations to light quality on plant and leaf level affect the vulnerability of pepper (Capsicum annuum L.) to water deficit.

    PubMed

    Hoffmann, Anna M; Noga, Georg; Hunsche, Mauricio

    2015-03-01

    We investigated the influence of light quality on the vulnerability of pepper plants to water deficit. For this purpose plants were cultivated either under compact fluorescence lamps (CFL) or light-emitting diodes (LED) providing similar photon fluence rates (95 µmol m(-2) s(-1)) but distinct light quality. CFL emit a wide-band spectrum with dominant peaks in the green and red spectral region, whereas LEDs offer narrow band spectra with dominant peaks at blue (445 nm) and red (665 nm) regions. After one-week acclimation to light conditions plants were exposed to water deficit by withholding irrigation; this period was followed by a one-week regeneration period and a second water deficit cycle. In general, plants grown under CFL suffered more from water deficit than plants grown under LED modules, as indicated by the impairment of the photosynthetic efficiency of PSII, resulting in less biomass accumulation compared to respective control plants. As affected by water shortage, plants grown under CFL had a stronger decrease in the electron transport rate (ETR) and more pronounced increase in heat dissipation (NPQ). The higher amount of blue light suppressed plant growth and biomass formation, and consequently reduced the water demand of plants grown under LEDs. Moreover, pepper plants exposed to high blue light underwent adjustments at chloroplast level (e.g., higher Chl a/Chl b ratio), increasing the photosynthetic performance under the LED spectrum. Differently than expected, stomatal conductance was comparable for water-deficit and control plants in both light conditions during the stress and recovery phases, indicating only minor adjustments at the stomatal level. Our results highlight the potential of the target-use of light quality to induce structural and functional acclimations improving plant performance under stress situations.

  19. Photocatalytic Oxidation of Oil Contaminated Water Using TiO2/UV

    NASA Astrophysics Data System (ADS)

    Vargas Solla, Monica; Romero Rojas, Jairo

    2017-04-01

    Currently, oil is one of the most used energy sources all around the world, for example to make motor engines work. That prevailing usage of oil is the reason why water sources are under serious pollution risks with compounds that are hard to remove, such as hydrocarbons. There are a few water treatment processes known as Advanced Oxidation Processes, which search for a way to treat polluted water with toxic refractory compounds, to make its reuse more feasible and to avoid or at least appease the injurious effects of pollution over ecosystems. A heterogeneous photocatalysis water treatment technology, sorted as an Advanced Oxidation Process, which is intended to treat refractory compound polluted water by the use of TiO2 and UV light, is presented in this investigation. The evidence about its efficiency in hydrocarbon removal from used motor oil polluted water, since it is an extremely important pollutant due to its complexity, toxicity and recalcitrant characteristics, is also presented through COD, Oil and Grease and Hydrocarbons analysis.

  20. Integrated urban water cycle management: the UrbanCycle model.

    PubMed

    Hardy, M J; Kuczera, G; Coombes, P J

    2005-01-01

    Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.

  1. Ecological relevance of current water quality assessment unit designations in impaired rivers

    USGS Publications Warehouse

    Layhee, Megan J.; Sepulveda, Adam; Ray, Andrew; Mladenka, Greg; Van Every, Lynn

    2016-01-01

    Managers often nest sections of water bodies together into assessment units (AUs) to monitor and assess water quality criteria. Ideally, AUs represent an extent of waters with similar ecological, watershed, habitat and land-use conditions and no overlapping characteristics with other waters. In the United States, AUs are typically based on political or hydrologic boundaries rather than on ecologically relevant features, so it can be difficult to detect changes in impairment status. Our goals were to evaluate if current AU designation criteria of an impaired water body in southeastern Idaho, USA that, like many U.S. waters, has three-quarters of its mainstem length divided into two AUs. We focused our evaluation in southeastern Idaho's Portneuf River, an impaired river and three-quarters of the river is divided into two AUs. We described biological and environmental conditions at multiple reaches within each AU. We used these data to (1) test if variability at the reach-scale is greater within or among AUs and, (2) to evaluate alternate AU boundaries based on multivariate analyses of reach-scale data. We found that some biological conditions had greater variability within an AU than between AUs. Multivariate analyses identified alternative, 2- and 3-group, AUs that reduced this variability. Our results suggest that the current AU designations in the mainstem Portneuf River contain ecologically distinct sections of river and that the existing AU boundaries should be reconsidered in light of the ecological conditions measured at the reach scale. Variation in biological integrity within designated AUs may complicate water quality and biological assessments, influence management decisions or affect where monitoring or mitigation resources are directed.

  2. Techniques for detecting the Cherenkov light from cascade showers in water

    NASA Astrophysics Data System (ADS)

    Khomyakov, V. A.; Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2018-01-01

    The NEVOD Cherenkov water detector (CWD) features a denser lattice of sensitive elements than the existing large-scale CWDs, whereby the spatial distribution of Cherenkov light from cascade showers is sampled with a superior resolution of 0.5 m, which is close to one radiation length for water (36 cm). The experimental techniques for investigating the Cherenkov light generated by particle cascades in water is proposed. The dependence of light intensity on the depth of shower development is for the first time measured at different distances from the shower axis. The results are compared with the Cherenkov light distributions predicted by various model descriptions for the scattering of cascade particles.

  3. Effects of low-dose light-emitting-diode therapy in combination with water bath for atopic dermatitis in NC/Nga mice.

    PubMed

    Kim, Chang-Hyun; Cheong, Kyung Ah; Lim, Won Suk; Park, Hyung-Moo; Lee, Ai-Young

    2016-01-01

    Light-emitting diode (LED) phototherapy and water bath therapy have beneficial effect on atopic dermatitis (AD)-like skin disease. However, not all current treatments work well and alternative therapies are need. The contribution of combination therapy with low-dose 850 nm LED and water bath was investigated on dermatophagoides farina (Df)-induced dermatitis in NC/Nga mice. Low-dose LED (10, 15, and 20 J/cm(2) ) irradiation, water bath (36 ± 1°C) were administered separately and together to the Df-induced NC/Nga mice in acrylic jar once a day for 2 weeks. Combined therapy with low-dose LED therapy and water bath therapy significantly ameliorated the development of AD-like skin lesions. These effects were correlated with the suppression of total IgE, NO, histamine, and Th2-mediated immune responses. Furthermore, combination therapy significantly reduced the infiltration of inflammatory cells and the induction of thymic stromal lymphopoietin (TSLP) in the skin lesions. The beneficial therapeutic effects of this combination therapy might regulate by the inhibition of various immunological responses including Th2-mediated immune responses, inflammatory mediators such as IgE, histamine, and NO, as well as inflammatory cells. The combination therapy of LED and water bath might be used as an efficacious, safe, and steroid-free alternative therapeutic strategy for the treatment of AD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  5. A light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2017-02-01

    It is generally believed that there are some connections between Alzheimer's disease and amyloid protein plaques in the brain. The typical symptoms of Alzheimer's disease are memory loss, language disorders, mood swings, loss of motivation and behavioral issues. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. Infrared light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research we have studied the effect of infrared light on Alzheimer's disease through transgenic mouse model. We designed an experimental apparatus for treating mice, which primarily included a therapeutic box and a LED array, which emitted infrared light. After the treatment, we assessed the effects of infrared light by performing two tests: cognitive performance of mice in Morris water maze, and plaque load by immunofluorescence analysis. Immunofluorescence analysis was based on measuring the quantity of plaques in mouse brain slices. Our results show that infrared therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  6. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  7. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  8. 46 CFR 169.549 - Ring lifebuoys and water lights.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ring lifebuoys and water lights. 169.549 Section 169.549 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Lifesaving and Firefighting Equipment Additional Lifesaving Equipment § 169.549 Ring lifebuoys and water lights. (a)(1) The minimum number of...

  9. 76 FR 18753 - City of Springfield, Illinois, City Water, Light and Power; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-31-000] City of Springfield, Illinois, City Water, Light and Power; Notice of Filing Take notice that on March 24, 2011, The City of Springfield, Illinois, City Water, Light and Power (CWLP), filed its proposed rate schedule...

  10. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    EPA Science Inventory

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  11. 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel

    NASA Astrophysics Data System (ADS)

    van Duysen, J. C.; Meric de Bellefon, G.

    2017-02-01

    The first light water nuclear reactor dedicated to electricity production was commissioned in Shippingport, Pennsylvania in the United States in 1957. Sixty years after the event, it is clear that this type of reactor will be a major source of electricity and one of the key solutions to limit climate change in the 21st century. This article pays homage to the teams that contributed to this achievement by their involvement in research and development and their determination to push back the frontiers of knowledge. Via a few examples of scientific or technological milestones, it describes the evolution of ideas, models, and techniques during the last 60 years, and gives the current state-of-the-art in areas related to the safety of the reactor pressure vessel. Among other topics, it focuses on vessel manufacturing, steel fracture mechanics analysis, and understanding of irradiation-induced damage.

  12. A Bioelectrochemical Approach to Characterize Extracellular Electron Transfer by Synechocystis sp. PCC6803

    PubMed Central

    Cereda, Angelo; Hitchcock, Andrew; Symes, Mark D.; Cronin, Leroy; Bibby, Thomas S.; Jones, Anne K.

    2014-01-01

    Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport. PMID:24637387

  13. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE PAGES

    Banerjee, Tirtha; Linn, Rodman Ray

    2018-04-11

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  14. Effect of vertical canopy architecture on transpiration, thermoregulation and carbon assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Tirtha; Linn, Rodman Ray

    Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This work demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation inmore » a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI) but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.« less

  15. A status of progress for the Laser Isotope Separation (LIS) process

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1976-01-01

    An overview of the Laser Isotope Separation (LIS) methodology is given together with illustrations showing a simplified version of the LIS technique, an example of the two-photon photoionization category, and a diagram depicting how the energy levels of various isotope influence the LIS process. Applications were proposed for the LIS system which, in addition to enriching uranium, could in themselves develop into programs of tremendous scope and breadth. These include the treatment of radioactive wastes from light-water nuclear reactors, enriching the deuterium isotope to make heavy-water, and enriching the light isotopes of such elements as titanium for aerospace weight-reducing programs. Economic comparisons of the LIS methodology with the current method of gaseous diffusion indicate an overwhelming advantage; the laser process promises to be 1000 times more efficient. The technique could also be utilized in chemical reactions with the tuned laser serving as a universal catalyst to determine the speed and direction of a chemical reaction.

  16. Systematic technology evaluation program for SiC/SiC composite-based accident-tolerant LWR fuel cladding and core structures: Revision 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Terrani, Kurt A.

    2015-08-01

    Fuels and core structures in current light water reactors (LWR’s) are vulnerable to catastrophic failure in severe accidents as unfortunately evidenced by the March 2011 Fukushima Dai-ichi Nuclear Power Plant Accident. This vulnerability is attributed primarily to the rapid oxidation kinetics of zirconium alloys in a water vapor environment at very high temperatures. Zr alloys are the primary material in LWR cores except for the fuel itself. Therefore, alternative materials with reduced oxidation kinetics as compared to zirconium alloys are sought to enable enhanced accident-tolerant fuels and cores.

  17. Safety and Regulatory Issues of the Thorium Fuel Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Brian; Worrall, Andrew; Powers, Jeffrey

    2014-02-01

    Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less

  18. Synthesis of crystalline gels on a light-induced polymerization 3D printer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Mao, Yuchen; Miyazaki, Takuya; Zhu, Meifang

    2017-04-01

    3D printing, also knows as Additive Manufacturing (AM), was first commercialized in 1986, and has been growing at breakneck speed since 2009 when Stratasys' key patent expired. Currently the 3D printing machines coming on the market can be broadly classified into three categories from the material state point of view: plastic filament printers, powder (or pellet) printers, film printers and liquid photopolymer printers. Much of the work in our laboratory revolves around the crystalline gels. We have succeeded in developing them with high toughness, high flexibility, particularly with many functions as shape memory, energy storage, freshness-retaining, water-absorbing, etc. These crystalline gels are synthesized by light-induced radical polymerization that involves light-reactive monomer having the property of curing with light of a sufficient energy to drive the reaction from liquid to solid. Note that the light-induced polymerized 3D printing uses the same principle. To open up the possibilities for broader application of our crystalline functional gels, we are interested in making them available for 3D printing. In this paper, we share the results of our latest research on the 3D printing of crystalline gels on light-induced 3D printers.

  19. Gas monitoring in human sinuses using tunable diode laser spectroscopy.

    PubMed

    Persson, Linda; Andersson, Mats; Cassel-Engquist, Märta; Svanberg, Katarina; Svanberg, Sune

    2007-01-01

    We demonstrate a novel nonintrusive technique based on tunable diode laser absorption spectroscopy to investigate human sinuses in vivo. The technique relies on the fact that free gases have spectral imprints that are about 10.000 times sharper than spectral structures of the surrounding tissue. Two gases are detected; molecular oxygen at 760 nm and water vapor at 935 nm. Light is launched fiber optically into the tissue in close proximity to the particular maxillary sinus under study. When investigating the frontal sinuses, the fiber is positioned onto the caudal part of the frontal bone. Multiply scattered light in both cases is detected externally by a handheld probe. Molecular oxygen is detected in the maxillary sinuses on 11 volunteers, of which one had constantly recurring sinus problems. Significant oxygen absorption imprint differences can be observed between different volunteers and also left-right asymmetries. Water vapor can also be detected, and by normalizing the oxygen signal on the water vapor signal, the sinus oxygen concentration can be assessed. Gas exchange between the sinuses and the nasal cavity is also successfully demonstrated by flushing nitrogen through the nostril. Advantages over current ventilation assessment methods using ionizing radiation are pointed out.

  20. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Significant alterations in Biological Clock responses have been reported following sidereal time changes (e.g., Jet-lag), and exposure to microgravity (e.g., daytime sleepiness). Additionally, light reduces circulating melatonin (spectral specificity greatest between 450-500 nm). It was hypothesized that LEDs can replace the current light sources used in zero gravity and terrestrial research laboratories because of their small size, low mass, low energy consumption and long functional life. This report evaluates the capacity of LEDs to entrain the circadian system of rats as judged by measurement of overt behavioral circadian rhythms (activity, feeding, drinking). These data were collected in highly controlled environments similar to the shuttle Animal Enclosure Modules. Two groups were compared: control - animals exposed to standard cool-white fluorescent lights, and test - animals exposed to LEDs with a spectral power distribution matching the fluorescent lights. Gross locomotor activity, feeding and drinking frequencies were continuously monitored and stored at 10 minute intervals. Animals were exposed to the following photoperiods: 28 days of 12L:12D, 19 days of 24L:0D and 16 days of 12L:12D. Light intensities tested varied between 0.1 to 100 lux. Rats received food and water ad libitum, and temperature and humidity were controlled throughout the study. The general health status of all rats was acceptable for each day of this study. No incidents of aggressive behavior were observed. Growth, locomotor activity, food and water consumption were comparable for all groups of animals, i.e, the circadian characteristics of the animals under these conditions were comparable. These results indicate that LED arrays are as effective in maintaining circadian rhythm stability as the commonly used cool-white fluorescent light sources. LEDs with their flexible spectrum, low energy requirements and minimal heat production have advantages for some chronopharmacology studies and for microgravity animal habitats.

  1. Involved, United, and Efficacious: Could Self-Affirmation Be the Solution to California's Drought?

    PubMed

    Walter, Nathan; Demetriades, Stefanie Z; Murphy, Sheila T

    2017-09-01

    Self-affirmation theory posits that thoughts and actions that affirm an important aspect of the self-concept can make people more susceptible to change by casting their self in a positive light. Whereas much of the current literature has been restricted to individual-level concerns, the current study provides longitudinal evidence for behavioral outcomes in the context of the California drought, advancing our theoretical knowledge regarding the underlying processes that lead self-affirmed individuals to address societal risks and collective concerns. The results of a three-wave experimental study (N = 91) indicated that relative to nonaffirmed counterparts, self-affirmed participants reported on higher levels of support for water conservation policies, as well as on reduction of water use that endured for 30 days following the self-affirming manipulation. In both cases, the effects were mediated by collective-efficacy but not by self-efficacy. Relevant explanations are considered and practical and theoretical implications are discussed.

  2. Evolution of mechanical response of sodium montmorillonite interlayer with increasing hydration by molecular dynamics.

    PubMed

    Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S

    2005-08-16

    The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.

  3. Crew Earth Observations (CEO) taken during Expedition Six

    NASA Image and Video Library

    2003-01-01

    ISS006-E-51456 (2003) --- Marias Islands, Mexico is featured in this image photographed by an Expedition Six crewmember on the International Space Station. The view shows the land-sea interactions along a section of Mexico's west coast just south of Mazatlan and the Isla Marias archipelago. The islands are a manifestation of intersecting plate boundaries -- the East Pacific Rise spreading center that traces south from the Gulf of California, and the subduction zone that consumes the Cocos plate beneath southern Mexico. These islands are biologically important: they comprise the Islas Marias Biosphere Reserve and contain endemic species of raccoons and rabbits, and important habitat for birds and marine life. Between the islands and the mainland, swirling surface currents are highlighted by the sun glint reflecting off the ocean surface. Along the Mexican coast, water flows out from a coastal lagoon, and near shore currents carry sediment (light colored water) along the beach front.

  4. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    NASA Astrophysics Data System (ADS)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  5. Development of a visible-light-sensitized europium complex for time-resolved fluorometric application.

    PubMed

    Jiang, Lina; Wu, Jing; Wang, Guilan; Ye, Zhiqiang; Zhang, Wenzhu; Jin, Dayong; Yuan, Jingli; Piper, James

    2010-03-15

    The time-resolved luminescence bioassay technique using luminescent lanthanide complexes as labels is a highly sensitive and widely used bioassay method for clinical diagnostics and biotechnology. A major drawback of the current technique is that the luminescent lanthanide labels require UV excitation (typically less than 360 nm), which can damage living biological systems and is holding back further development of time-resolved luminescence instruments. Herein we describe two approaches for preparing a visible-light-sensitized Eu(3+) complex in aqueous media for time-resolved fluorometric applications: a dissociation enhancement aqueous solution that can be excited by visible light for ethylenediaminetetraacetate (EDTA)-Eu(3+) detection and a visible-light-sensitized water-soluble Eu(3+) complex conjugated bovine serum albumin (BSA) for biolabeling and time-resolved luminescence bioimaging. In the first approach, a weakly acidic aqueous solution consisting of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-o-terphenyl (BHHT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), and Triton X-100 was prepared. This solution shows a strong luminescence enhancement effect for EDTA-Eu(3+) with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm) and a long luminescence lifetime (520 micros), to provide a novel dissociation enhancement solution for time-resolved luminescence detection of EDTA-Eu(3+). In the second approach, a ternary Eu(3+) complex, 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+)-DPBT, was covalently bound to BSA to form a water-soluble BSA-BHHCT-Eu(3+)-DPBT conjugate. This biocompatible conjugate is of the visible-light excitable feature in aqueous media with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm), a long luminescence lifetime (460 micros), and a higher quantum yield (27%). The conjugate was successfully used for streptavidin (SA) labeling and time-resolved luminescence imaging detection of three environmental pathogens, Giardia lamblia , Cryptosporidium muris , and Cryptosporidium parvum , in water samples. Our strategy gives a general idea for designing a visible-light-sensitized Eu(3+) complex for time-resolved luminescence bioassay applications.

  6. Safety Parameter Considerations of Anodal Transcranial Direct Current Stimulation in Rats

    DTIC Science & Technology

    2017-10-01

    under standard laboratory conditions, including a 12 hour light/ dark cycle with food and water available ad libitum. Following a ten day quarantine...values greater than 7.04619 A/m2 are presented in dark red. The maximum threshold was determined by preliminary analysis corresponding the first...increased. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 11

  7. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... behavior of the reactor system during a loss-of-coolant accident. Comparisons to applicable experimental...

  8. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  9. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  10. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  11. SEEING THE LIGHT: A WATER CLARITY INDEX FOR INTEGRATED WATER QUALITY ASSESSMENTS

    EPA Science Inventory

    Smith, Lisa M. and Linda C. Harwell. In press. Seeing the Light: A Water Clarity Index for Integrated Water Quality Assessments (Abstract). To be presented at EMAP Symposium 2004: Integrated Monitoring & Assessment for Effective Water Quality Management. 1 p. (ERL,GB R970).
    <...

  12. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and aerosol profiles are displayed in real-time. The transmitter is capable of operating at any spectral position along the selected water vapor absorption line allowing for year round operation at various geographical locations using a single line. Water vapor and aerosol profiles have been recorded up to 6 km and 15 km with 10 m and 1 m temporal averaging, respectively, allowing for mesoscale monitoring of boundary layer dynamics during both daytime and nighttime operation. A brief description of the current status of the water vapor DIAL instrument will be presented. Nighttime and daytime water vapor and aerosol profiles/inversions from the DIAL instrument will also be presented and favorable comparisons against collocated radiosonde, in situ, and column averaged data from SUOMINET and AERONET will also be discussed. A future outlook towards instrument enhancements that will allow the diode-laser-based DIAL technique/technology to become a viable candidate for deployment in multi-point sensor networks will also be discussed.

  13. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.

    PubMed

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-12-23

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.

  14. High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems

    PubMed Central

    Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long

    2016-01-01

    This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530

  15. Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing.

    PubMed

    Zhao, Zeang; Wu, Jiangtao; Mu, Xiaoming; Chen, Haosen; Qi, H Jerry; Fang, Daining

    2017-07-01

    Self-folding origami is of great interest in current research on functional materials and structures, but there is still a challenge to develop a simple method to create freestanding, reversible, and complex origami structures. This communication provides a feasible solution to this challenge by developing a method based on the digit light processing technique and desolvation-induced self-folding. In this new method, flat polymer sheets can be cured by a light field from a commercial projector with varying intensity, and the self-folding process is triggered by desolvation in water. Folded origami structures can be recovered once immersed in the swelling medium. The self-folding process is investigated both experimentally and theoretically. Diverse 3D origami shapes are demonstrated. This method can be used for responsive actuators and the fabrication of 3D electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.

    PubMed

    Lin, Junqi; Han, Qing; Ding, Yong

    2018-06-04

    Exploration of water oxidation catalyst (WOC) with excellent performance is the key for the overall water splitting reaction, which is a feasible strategy to convert solar energy to chemical energy. Although some compounds composed of noble metals, mainly Ru and Ir, have been reported to catalyze water oxidation with high efficiency, catalysts based on low-cost and earth-abundant transition metals are essential for realizing economical and large-scale light-driven water splitting. Various WOCs containing earth-abundant metals (mainly Mn, Fe, Co, Ni, Cu) have been utilized for visible light-driven water oxidation in recent years. In this Personal Account, we summarize our recent developments in WOCs based on earth-abundant transition metals including polyoxometalates (POMs), metal oxides or bimetal oxides, and metal complexes containing multidentate ligand scaffolds for visible light-driven water oxidation reaction. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Flood-inundation maps for the Tippecanoe River at Winamac, Indiana

    USGS Publications Warehouse

    Menke, Chad D.; Bunch, Aubrey R.

    2015-09-25

    For this study, flood profiles were computed for the Tippecanoe River reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relations at the Tippecanoe River streamgage, in combination with the current (2014) Federal Emergency Management Agency flood-insurance study for Pulaski County. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The 1-percent annual exceedance probability (AEP) flood stage (flood with recurrence intervals within 100 years) has not been determined yet for this streamgage location. The rating has not been developed for the 1-percent AEP because the streamgage dates to only 2001. The simulated water-surface profiles were then used with a geographic information system (GIS) digital elevation model (DEM, derived from Light Detection and Ranging [lidar]) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage 03331753, Tippecanoe River at Winamac, Ind., and forecast stream stages from the NWS AHPS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  18. Sea Ice Flows, Sea of Okhotsk, CIS

    NASA Image and Video Library

    1991-05-06

    STS039-84-29AL (28 April-6 May 1991) --- This nearly vertical photograph of the North Atlantic, taken outside of the sunglint pattern, illustrates the extreme contrast between highly reflective ice, having a large percentage of between-crystal air space, and the low-reflectance water, which absorbs most of the light that propagates into it from the air. The ice drifts along with the surface currents and wind and may therefore be used as a natural Langranian* tracer. Photographs such as this, taken several times over the course of a mission, may be used to investigate near-surface circulation in high-latitude oceans. *A Langranian tracer is anything that can be tracked as it drifts along with the water, as opposed to staying in one position and measuring how fast the water goes by.

  19. The structure and ultrastructure of the egg capsules of stoneflies of the genus Isoperla (Insecta, Plecoptera, Perlodidae).

    PubMed

    Michalik, Anna; Miliša, Marko; Michalik, Katarzyna; Rościszewska, Elżbieta

    2017-11-01

    The egg capsules of five systellognathan stoneflies species representing the genus Isoperla (Plecoptera, Perlodidae) have been investigated using light and electron microscopes (SEM and TEM). We consider the structural modifications of egg coverings (egg capsules, eggshells) like: a shape of a capsule, presence of structures fixing an egg to the substratum under water, intrachorionic aeropylar system facilitating gas exchange as a factor adapting an egg/embryo to the environment. The structures protecting eggs against desiccation during a female flight before oviposition into water as well as against the dangers of external mechanical injury caused by turbulences in rapid water currents of mountain streams are described and discussed. The ground plan of the egg capsule in arctoperlarian stoneflies is also discussed. © 2017 Wiley Periodicals, Inc.

  20. Regulation of Isotopic Composition of Water - way of Improvement of Cosmonauts Drinking Water Functional Properties

    NASA Astrophysics Data System (ADS)

    Kulikova, Ekaterina; Utina, Dina; Vorozhtsova, Svetlana; Severyuhin, Yuri; Abrosimova, Anna; Sinyak, Yuri; Ivanov, Alexander

    The problem in providing drinking water to cosmonauts is solved - at this moment there is a task to improve the functional properties of the water. One of the perspectives of this trend is the use of light isotopic water. The animal studies have shown that long-term consumption of water with a depletion of deuterium and oxygen heavy isotopes accelerates the rise of mass non-irradiated mice, the phase fluctuations reducing or increasing hematological parameters were having adaptive nature. These fluctuations didn’t overcome values beyond the physiological norm of this type of animal. It is established that the therapeutic use of light isotopic water with 35 - 90 ppm in deuterium increases the survival of irradiated mice by an average of 30%, contributes to the preservation of irradiated animals body weight. Treatment of acute radiation sickness with light isotopic water stimulates hematopoietic recovery. At the same time, keeping mice drinking light isotopic water for 7 - 8 days before the irradiation (from 4 to 8.5 Gr) has no effect on the level of radio resistance. Longer keeping mice on light isotopic water, for 14 -21 days - reduction in life expectancy, animal mass, bone marrow cellularity and the level of white blood cells in irradiated animals is noted. It was established that keeping mice on light isotopic water for 14 days before exposure in experimental animals causes an increase in the mitotic index and the frequency of formation of aberrant mitosis after 24 hours of Co(60) gamma radiation in doses of 1 , 2, and 4 Gr. Thus, it is clear that the regulation of the isotopic composition of drinking water - way to improve its functional properties.

  1. Photocatalytic conversion of methane to methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R.

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifiermore » product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.« less

  2. 33 CFR 118.65 - Lights on fixed bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on fixed bridges. 118.65 Section 118.65 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.65 Lights on fixed bridges. (a) Each fixed bridge span over a navigable...

  3. Diffusing Wave Spectroscopy Used to Study Foams

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Durian, Douglas J.

    2000-01-01

    The white appearance of familiar objects such as clouds, snow, milk, or foam is due to the random scattering of light by the sample. As we all know, pure water is clear and easily passes a beam of light. However, tiny water droplets, such as those in a cloud, scatter light because the air and water droplet have different indexes of refraction. When many droplets, or scattering sites, are present, the incident light is scattered in random directions and the sample takes on a milky white appearance. In a glass of milk, the scattering is due to small colloidal particles. The white appearance of shaving cream, or foam, is due to the scattering of light at the water-bubble interface. Diffusing wave spectroscopy (DWS) is a laser light-scattering technique used to noninvasively probe the particle dynamics in systems that strongly scatter light. The technique takes advantage of the diffuse nature of light, which is reflected or transmitted from samples such as foams, dense colloidal suspensions (such as paint and milk), emulsions, liquid crystals, sandpiles, and even biological tissues.

  4. New Experimental Capabilities and Theoretical Insights of High Pressure Compression Waves

    NASA Astrophysics Data System (ADS)

    Orlikowski, Daniel; Nguyen, Jeffrey H.; Patterson, J. Reed; Minich, Roger; Martin, L. Peter; Holmes, Neil C.

    2007-12-01

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. An impedance gradient through the length of the impactor provides the pressure pulse upon impact to the subject material. Applications and results are given concerning high-pressure strength and the liquid-to-solid, phase transition of water giving its first associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution of these RWC waves as they propagate through the thickness of the subject material. This model equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possibility of quantifying dissipation, through which RWC experiments may be analyzed.

  5. The impact of poor governance on water and sediment quality: a case study in the Pitimbu River, Brazil

    NASA Astrophysics Data System (ADS)

    Moreira, L.; Adamowski, J.; Gaskin, S.; Saraiva, A.

    2014-09-01

    Applying a collaborative approach under a power-sharing institutional structure, coupled with a shift in paradigms, sustainable water resources management often requires political-institutional reform to achieve its goals. Most of Brazil's river basins are subject to rapid urbanization; however, basin stakeholders generally lack sufficient institutional capacity to address the attending water resource issues. Subject to urbanisation, the Pitimbu River basin supplies potable water to approximately 280 000 people in Brazil's Natal region. This study investigated how current institutional models influence both water management and fluvial contamination by metals. Sediment samples collected at eight sites along the river revealed elevated levels of Pb, Fe, Al, Ni and Zn, whose sources were linked to industries, vehicles, as well as agricultural and construction wastes. Aluminium enrichment of surface waters was mainly linked to inadequate sanitation infrastructure. In light of this, the region's poor institutional capacity must be addressed through institutional reform, including a new management structure open to public collective water management planning. In so doing, Brazil's water policies should acknowledge capacity building as a critical element of institutional reform.

  6. Modeling water clarity in oceans and coasts

    EPA Science Inventory

    In oceans and coastal waters, phytoplankton is the primary producer of organic compounds which form the base for the food chain. The concentration of phytoplankton is a major factor controlling water clarity and the depth to which light penetrates in the water column. The light i...

  7. Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs

    DOE PAGES

    Omasta, Travis J.; Park, Andrew M.; LaManna, Jacob M.; ...

    2018-02-08

    A majority of anion exchange membrane fuel cells (AEMFCs) reported in the literature have been unable to achieve high current or power. A recently proposed theory is that the achievable current is largely limited by poorly balanced water during cell operation. In this article, we present convincing experimental results – coupling operando electrochemical measurements and neutron imaging – supporting this theory and allowing the amount and distribution of water, and its impact on AEMFC performance, to be quantified for the first time. We also create new electrode compositions by systematically manipulating the ionomer and carbon content in the anode catalystmore » layer, which allowed us to alleviate the mass transport behavior limitations of H 2/O 2 AEMFCs and achieve a new record-setting peak power density of 1.9 W cm -2 – a step-change to existing literature. Our efforts cast a new light on the design and optimization of AEMFCs – potentially changing the way that AEMFCs are constructed and operated.« less

  8. Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omasta, Travis J.; Park, Andrew M.; LaManna, Jacob M.

    A majority of anion exchange membrane fuel cells (AEMFCs) reported in the literature have been unable to achieve high current or power. A recently proposed theory is that the achievable current is largely limited by poorly balanced water during cell operation. In this article, we present convincing experimental results – coupling operando electrochemical measurements and neutron imaging – supporting this theory and allowing the amount and distribution of water, and its impact on AEMFC performance, to be quantified for the first time. We also create new electrode compositions by systematically manipulating the ionomer and carbon content in the anode catalystmore » layer, which allowed us to alleviate the mass transport behavior limitations of H 2/O 2 AEMFCs and achieve a new record-setting peak power density of 1.9 W cm -2 – a step-change to existing literature. Our efforts cast a new light on the design and optimization of AEMFCs – potentially changing the way that AEMFCs are constructed and operated.« less

  9. Evaluation of time required for water-only decontamination of an oil-based agent.

    PubMed

    Moffett, Peter M; Baker, Benjamin L; Kang, Christopher S; Johnson, Melinda S

    2010-03-01

    The objective was to evaluate the time to decontaminate an area of skin exposed to an oil-based agent using a water-only decontamination protocol. A fluorescent mock chemical/biological agent was created. Each of 20 subjects had his/her forearm sprayed with the agent. Each subject placed his/her arm under a decontamination shower, which provided water at a pressure of 60-70 psi and 35 degrees C. After 30 sec a black light was used by three evaluators to determine whether the agent was removed. The process of 30 sec decontamination and re-evaluation was repeated for a total of 5 min. The primary endpoint was proportion decontaminated over time. After 90 sec, 100% of subjects were decontaminated. Whereas the data suggest the possibility of rapid water-only decontamination, the applicability of this data in current form is doubtful, but provides a model as a basis for future study.

  10. Efficient water reduction with gallium phosphide nanowires

    PubMed Central

    Standing, Anthony; Assali, Simone; Gao, Lu; Verheijen, Marcel A.; van Dam, Dick; Cui, Yingchao; Notten, Peter H. L.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2015-01-01

    Photoelectrochemical hydrogen production from solar energy and water offers a clean and sustainable fuel option for the future. Planar III/V material systems have shown the highest efficiencies, but are expensive. By moving to the nanowire regime the demand on material quantity is reduced, and new materials can be uncovered, such as wurtzite gallium phosphide, featuring a direct bandgap. This is one of the few materials combining large solar light absorption and (close to) ideal band-edge positions for full water splitting. Here we report the photoelectrochemical reduction of water, on a p-type wurtzite gallium phosphide nanowire photocathode. By modifying geometry to reduce electrical resistance and enhance optical absorption, and modifying the surface with a multistep platinum deposition, high current densities and open circuit potentials were achieved. Our results demonstrate the capabilities of this material, even when used in such low quantities, as in nanowires. PMID:26183949

  11. Modeling of water lighting process and calculation of the reactor-clarifier to improve energy efficiency

    NASA Astrophysics Data System (ADS)

    Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy

    2017-10-01

    The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.

  12. Characterization of Chromophoric Dissolved Organic Matter across the Eastern and the Central Arctic Regions using PARAFAC Modelling

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Amon, R. M. W.

    2016-12-01

    In this study the optical properties (absorption and fluorescence intensity) of chromophoric dissolved organic matter (CDOM) were investigated in water samples collected during the cruise conducted in August and September 2007 across the Eastern and Central Arctic regions. The fluorescence spectroscopy analysis was complimented with the parallel factor analysis (PARAFAC) and the identified six components were compared to other water properties including salinity, in situ fluorescence, dissolved organic carbon, and specific ultraviolet absorbance at 254 nm. The principal component analysis was conducted to distinguish between the water masses and identify the features such as the Trans Polar Drift and the North Atlantic Current. The preliminary results indicate that investigation of the optical properties of CDOM are able to provide better understanding of Arctic Ocean circulation and environmental changes such as the loss of the perennial sea ice and more light penetrating the water column.

  13. Smart LED lighting for major reductions in power and energy use for plant lighting in space

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie

    Launching or resupplying food, oxygen, and water into space for long-duration, crewed missions to distant destinations, such as Mars, is currently impossible. Bioregenerative life-support systems under development worldwide involving photoautotrophic organisms offer a solution to the food dilemma. However, using traditional Earth-based lighting methods, growth of food crops consumes copious energy, and since sunlight will not always be available at different space destinations, efficient electric lighting solutions are badly needed to reduce the Equivalent System Mass (ESM) of life-support infrastructure to be launched and transported to future space destinations with sustainable human habitats. The scope of the present study was to demonstrate that using LEDs coupled to plant detection, and optimizing spectral and irradiance parameters of LED light, the model crop lettuce (Lactuca sativa L. cv. Waldmann's Green) can be grown with significantly lower electrical energy for plant lighting than using traditional lighting sources. Initial experiments aimed at adapting and troubleshooting a first-generation "smart" plant-detection system coupled to LED arrays resulted in optimizing the detection process for plant position and size to the limits of its current design. Lettuce crops were grown hydroponically in a growth chamber, where temperature, relative humidity, and CO2 level are controlled. Optimal irradiance and red/blue ratio of LED lighting were determined for plant growth during both lag and exponential phases of crop growth. Under optimizing conditions, the efficiency of the automatic detection system was integrated with LED switching and compared to a system in which all LEDs were energized throughout a crop-production cycle. At the end of each cropping cycle, plant fresh and dry weights and leaf area were measured and correlated with the amount of electrical energy (kWh) consumed. Preliminary results indicated that lettuce plants grown under optimizing conditions with red and blue LED lighting required 12 times less energy than with a traditional high-intensity discharge lighting system. This study paves the way for refinement of the smart lighting system and further, major reductions in ESM for space life-support systems and for ground-based controlled-environment agriculture. Project supported by NASA grant number NNX09AL99G.

  14. Magneto-optic current sensor

    DOEpatents

    Lanagan, Michael T.; Valsko-Vlasov, Vitalii K.; Fisher, Brandon L.; Welp, Ulrich

    2003-10-07

    An optical current transducer configured to sense current in the conductor is disclosed. The optical current transducer includes a light source and a polarizer that generates linearly polarized light received from a the light source. The light is communicated to a magneto-optic garnet that includes, among other elements, bismuth, iron and oxygen and is coupled to the conductor. The magneto-optic garnet is configured to rotate the polarization of the linearly polarized light received from the polarizer. The optical current transducer also includes an analyzer in optical communication with the magneto-optic garnet. The analyzer detects the rotation of the linearly polarized light caused by the magneto-optic garnet.

  15. Modeling Water Clarity and Light Quality in Oceans

    EPA Science Inventory

    Phytoplankton is a primary producer of organic compounds, and it forms the base of the food chain in ocean waters. The concentration of phytoplankton in the water column controls water clarity and the amount and quality of light that penetrates through it. The availability of ade...

  16. Alloying-assisted phonon engineering of layered BiInSe3@nickel foam for efficient solar-enabled water evaporation.

    PubMed

    Yao, J D; Zheng, Z Q; Yang, G W

    2017-11-02

    The fresh water crisis has emerged as one of the most urgent bottlenecks hindering the rapid development of modern industry and society. Solar energy-driven water evaporation represents a potential green and sustainable solution to address this issue. Herein, for the first time, centimeter-scale BiInSe 3 -coated nickel foam (BiInSe 3 @NF) as an efficient solar-enabled evaporator was successfully achieved and exploited for solar energy-driven water evaporation. Benefitting from multiple scattering-induced light trapping of the rough substrate, strong light-matter interaction and intermediate band (IB)-induced efficient phonon emission of BiInSe 3 , the BiInSe 3 @NF device achieved a high evaporation rate of 0.83 kg m -2 h -1 under 1 sun irradiation, which is 2.5 times that of pure water. These figures-of-merit are superior to recently reported state-of-the-art photothermal conversion materials, such as black titania, plasmonic assembly and carbon black. In addition, superior stability over a period of 60 days was demonstrated. In summary, the current contribution depicts a facile scenario for design, production and application of an economical and efficient solar-enabled BiInSe 3 @NF evaporator. More importantly, the phonon engineering strategy based on alloying induced IB states can be readily applied to other analogous van der Waals materials and a series of superior vdWM alloys toward photothermal applications can be expected in the near future.

  17. Circadian Behavioral Study: LED vs Cool White Fluorescent - 0.1, 1, 10, 40, 80 lux. Part 2

    NASA Technical Reports Server (NTRS)

    Holley, Daniel C.; Syrkin, N.; Mele, G.

    2000-01-01

    Currently, the light source most commonly used in animal habitat lighting is cool white fluorescent (CWF) light. It was the objective of this study to evaluate a novel LED light source for use in animal habitat lighting by comparing its effectiveness to CWF light in producing and maintaining a normal circadian entrainment. The LED and CWF lights had similar spectral power distributions. Sprague-Dawley rats (175-350 g) were kept individually in metabolic cages, under a strict lighting control: 4 days of acclimation at 12:12 LD, 14 days of 12:12 LD, 14 days of 24:0 LD (free-run), and finally 12:12 LD. Food and water were provided ad libitum. Three behavioral parameters were monitored continuously: gross locomotor activity, drinking, and feeding. Combined mean free run periods (tau) were (mean +/- SEM): 24.6 +/- 0.1 and 24.7 +/- 0.2 at 0.1 lux, 25.5 +/- 0.1 and 25.7 +/- 0.1 at 1.0 lux, 25.3 +/- 0.2 and 25.4 +/- 0.2 at 10 lux, 25.8 +/- 0.1 and 25.9 +/- 0.1 at 40 lux, and 25.9 +/- 0.1 and 25.9 +/- 0.1 at 80 lux, CWF and LED respectively. ANOVA found a significant effect (p < 0.05) due to light level, but no difference in tau between rats exposed to constant CWF light and rats exposed to constant LED light. This study has shown that LED light can produce the same entrainment pattern as a conventional CWT light at similar intensities (0.1, 1, 10, 40, and 80 lux). LED light sources may be a suitable replacement for conventional light sources used in animal habitat lighting while providing many mechanical and economical advantages.

  18. Description of photovoltaic village power systems in the United States and Africa

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.; Bifano, W. J.

    1979-01-01

    The paper describes the designs, hardware, and installations of NASA photovoltaic power systems in the village of Schuchuli in Arizona and Tangaye in Upper Volta, Africa. The projects were designed to demonstrate that current photovoltaic system technology can provide electrical power for domestic services for small, remote communities. The Schuchuli system has a 3.5 kW peak solar array which provides power for water pumping, a refrigerator for each family, lights, and community washing and sewing machines. The 1.8 kW Tangaye system provides power for pumping, flour milling, and lights in the milling building. Both are stand-alone systems operated by local personnel, and they are monitored by NASA to measure design adequacy and refine future designs.

  19. The compositional change of Fluorescent Dissolved Organic Matter across Fram Strait assessed with use of a multi channel in situ fluorometer.

    NASA Astrophysics Data System (ADS)

    Raczkowska, A.; Kowalczuk, P.; Sagan, S.; Zabłocka, M.; Pavlov, A. K.; Granskog, M. A.; Stedmon, C. A.

    2016-02-01

    Observations of Colored Dissolved Organic Matter absorption (CDOM) and fluorescence (FDOM) from water samples and an in situ fluorometer and of Inherent Optical Properties (IOP; light absorption and scattering) were carried out along a section across Fram Strait at 79°N. A 3 channel Wetlabs Wetstar fluorometer was deployed, with channels for humic- and protein-like DOM and used to assess distribution of different FDOM fractions. A relationship between fluorescence intensity of the protein-like fraction of FDOM and chlorophyll a fluorescence was found and indicated the importance of phytoplankton biomass in West Spitsbergen Current waters as a significant source of protein-like FDOM. East Greenland Current waters has low concentration of chlorophyll a, and were characterized by high humic-like FDOM fluorescence. An empirical relationship between humic-like FDOM fluorescence intensity and CDOM absorption was derived and confirms the dominance of terrigenous like CDOM on the composition of DOM in the East Greenland Current. These high resolution profile data offer a simple approach to fractionate the contribution of these two DOM source to DOM across the Fram Strait and may help refine estimates of DOC fluxes in and out of the Arctic through this region.

  20. Suppression of white light generation (supercontinuum) in biological media: a pilot study using human salivary proteins

    NASA Astrophysics Data System (ADS)

    Santhosh, C.; Dharmadhikari, A. K.; Alti, K.; Dharmadhikari, J. A.; Mathur, D.

    2007-02-01

    Propagation of ultrashort pulses of intense, infrared light through transparent medium gives rise to a visually spectacular phenomenon known as supercontinuum (white light) generation wherein the spectrum of transmitted light is very considerably broader than that of the incident light. We have studied the propagation of ultrafast (<45 fs) pulses of intense infrared light through biological media (water, and water doped with salivary proteins) which reveal that white light generation is severely suppressed in the presence of a major salivary protein, α-amylase.

  1. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  2. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  3. 10 CFR Appendix I to Part 50 - Numerical Guides for Design Objectives and Limiting Conditions for Operation To Meet the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... in Light-Water-Cooled Nuclear Power Reactor Effluents I Appendix I to Part 50 Energy NUCLEAR... Criterion “As Low as is Reasonably Achievable” for Radioactive Material in Light-Water-Cooled Nuclear Power... light-water-cooled nuclear power reactors licensed under 10 CFR part 50 or part 52 of this chapter. The...

  4. Low cost sonoluminescence experiment in pressurized water

    NASA Astrophysics Data System (ADS)

    Bernal, L.; Insabella, M.; Bilbao, L.

    2012-06-01

    We present a low cost design for demostration and mesurements of light emmision from a sonoluminescence experiment. Using presurized water introduced in an acrylic cylinder and one piezoelectric from an ultrasonic cleaner, we are able to generate cavitacion zones with emission of light. The use of argon to pressurize the water improves the emission an the light can be seen at naked eye in a softlit ambient.

  5. Oil Slick, Arabian Sea, Oman

    NASA Image and Video Library

    1992-04-02

    In this sunglint view of the Arabian Seacoast of Oman (19.0N, 59.0E) an oil slick is highlighted on the water's surface by sunglint lighting conditions. Nearly 50 percent of the oil transported worldwide passes through the Gulf of Oman, en route from the Persian Gulf and numerous ship wakes can be seen in this view. The oil slick, rounding the tip of Cape Ras Al Hadd, has formed a counterclockwise bright spiral indicating the local ocean currents.

  6. Veggies in Space: Salad Crop Production on the ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia

    2016-01-01

    NASA is currently testing Veggie, a low mass, low energy, salad crop production system on the International Space Station (ISS). Veggie grows crops with LED lights using ISS cabin air and passive watering that has presented challenges in microgravity. Initial tests included red romaine lettuce and zinnia, with testing of Chinese cabbage, and tomatoes planned. A goal is to add supplemental salad foods to the astronaut diet as we prepare for a future journey to Mars.

  7. Light assisted drying (LAD) for protein stabilization: optimization of laser processing parameters

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; Antczak, Andrew T.; Elliott, Gloria D.; Trammell, Susan R.

    2017-02-01

    In this study, a novel light-based processing method to create an amorphous trehalose matrix for the stabilization of proteins is discussed. Near-IR radiation is used to remove water from samples, leaving behind an amorphous solid with embedded protein. This method has potential applications in the stabilization of protein-based therapeutics and diagnostics that are becoming widely used in the treatment and diagnosis of a variety of diseases. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is to determine processing parameters that result in fast processing times and low end moisture contents (EMC), while maintaining the functionality of embedded proteins. We compare the effect of changing processing wavelength, power and resulting sample temperature, and substrate material on the EMC for two NIR laser sources (1064 nm and 1850 nm). The 1850 nm laser resulted in the lowest EMC (0.1836+/-0.09 gH2O/gDryWeight) after 10 minutes of processing on borosilicate glass microfiber paper. This suggests a storage temperature of 3°C.

  8. Technologies For Maintaining Animals In Space: Lighting, Air Quality, Noise, Food And Water

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Skidmore, M. G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1995-01-01

    In the terrestrial environment multiple time cues exist. Zeitgebers have been identified and studied for their ability to convey temporal information to various physiological systems. In the microgravity experiment it is necessary to define time cues within the flight hardware prior to flight. During flight if changes in the Circadian System (e.g., mean, phase angle, period) occur this would indicate that the gravity vector is important relative to biological timing. This presentation is concerned with the environmental parameter: to support rodent experiments in microgravity. The Animal Enclosure Module (AEM) provides solid food bars and water via lixits and ad libitum. Flight animals (Sprague-Dawley rats, 60 - 300g) when compared to ground controls show similar growth (mean growth per day g, plus or minus SD; flight 5.4 plus or minus 2.0, ground 5.9 plus or minus 2.1). Current AEMs use incandescent lighting (approx. 5 Lux). Light emitting diode (LED) arrays are being developed that provide a similar light environment as cool-white fluorescent sources (40 Lux). In ground based tests (12L:12D), these arrays show normal circadian entrainment (Tau = 24.0) with respect to the behavioral responses, measured (drinking, eating, gross locomotor activity). A newly developed ultra high efficiency filter system can entrap all feces, urine and odors from 6 rats for 24 days. Maximum sound level exposure limits (per octave band 22 Hz - 179 kHz) have been established. The AEM will effectively support animal experiments in microgravity.

  9. Technologies for Maintaining Animals in Space: Lighting, Air Quality, Noise, Food and Water

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Skidmore, M. G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1995-01-01

    In the terrestrial environment multiple time cues exist. Zeitgebers have been identified and studied for their ability to convey temporal information to various physiological systems, In the microgravity experiment it is necessary to define time cues within the flight hardware prior to flight. During flight if changes in the Circadian System (e.g., mean, phase angle, period) occur this would indicate that the gravity vector is important relative to biological timing. This presentation is concerned with the environmental parameters to support rodent experiments in microgravity. The Animal Enclosure Module (AEM) provides solid food bars and water via lixits ad libitum. Flight animals (Sprague-Dawley rats, 60 - 300g) when compared to ground controls show similar growth (mean growth per day, g +/- SD; flight 5.4 +/- 2.0, ground 5.9 +/- 2.1). Current AEMs use incandescent lighting (approx. 5 Lux). Light emitting diode (LED) arrays are being developed that provide a similar light environment as cool-white fluorescent sources (40 Lux). In ground based tests (12L:12D), these arrays show normal circadian entrainment (Tau = 24.0) with respect to the behavioral responses. measured (drinking, eating, gross locomotor activity). A newly developed ultra high efficiency filter system can entrap all feces, urine and odors from 6 rats for 24 days. Maximum sound level exposure limits (per octave band 22 Hz - 179 kHz) have been established. The AEM will effectively support animal experiments in microgravity.

  10. Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark.

    PubMed

    Nauš, Jan; Šmecko, Slavomír; Špundová, Martina

    2016-08-01

    In the context of global climate change, drought is one of the major stress factors with negative effect on photosynthesis and plant productivity. Currently, chlorophyll fluorescence parameters are widely used as indicators of plant stress, mainly owing to the rapid, non-destructive and simple measurements this technique allows. However, these parameters have been shown to have limited sensitivity for the monitoring of water deficit as leaf desiccation has relatively small effect on photosystem II photochemistry. In this study, we found that blue light-induced increase in leaf transmittance reflecting chloroplast avoidance movement was much more sensitive to a decrease in relative water content (RWC) than chlorophyll fluorescence parameters in dark-desiccating leaves of tobacco (Nicotiana tabacum L.) and barley (Hordeum vulgare L.). Whereas the inhibition of chloroplast avoidance movement was detectable in leaves even with a small RWC decrease, the chlorophyll fluorescence parameters (F V/F M, V J, Ф PSII, NPQ) changed markedly only when RWC dropped below 70 %. For this reason, we propose light-induced chloroplast avoidance movement as a sensitive indicator of the decrease in leaf RWC. As our measurement of chloroplast movement using collimated transmittance is simple and non-destructive, it may be more suitable in some cases for the detection of plant stresses including water deficit than the conventionally used chlorophyll fluorescence methods.

  11. Light-front Ward-Takahashi identity for two-fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinho, J. A. O.; Frederico, T.; Pace, E.

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less

  12. Do differences in understory light contribute to species distributions along a tropical rainfall gradient?

    PubMed

    Brenes-Arguedas, T; Roddy, A B; Coley, P D; Kursar, Thomas A

    2011-06-01

    In tropical forests, regional differences in annual rainfall correlate with differences in plant species composition. Although water availability is clearly one factor determining species distribution, other environmental variables that covary with rainfall may contribute to distributions. One such variable is light availability in the understory, which decreases towards wetter forests due to differences in canopy density and phenology. We established common garden experiments in three sites along a rainfall gradient across the Isthmus of Panama in order to measure the differences in understory light availability, and to evaluate their influence on the performance of 24 shade-tolerant species with contrasting distributions. Within sites, the effect of understory light availability on species performance depended strongly on water availability. When water was not limiting, either naturally in the wetter site or through water supplementation in drier sites, seedling performance improved at higher light. In contrast, when water was limiting at the drier sites, seedling performance was reduced at higher light, presumably due to an increase in water stress that affected mostly wet-distribution species. Although wetter forest understories were on average darker, wet-distribution species were not more shade-tolerant than dry-distribution species. Instead, wet-distribution species had higher absolute growth rates and, when water was not limiting, were better able to take advantage of small increases in light than dry-distribution species. Our results suggest that in wet forests the ability to grow fast during temporary increases in light may be a key trait for successful recruitment. The slower growth rates of the dry-distribution species, possibly due to trade-offs associated with greater drought tolerance, may exclude these species from wetter forests.

  13. A pulsed light system for the disinfection of flow through water in the presence of inorganic contaminants.

    PubMed

    Garvey, Mary; Rowan, Neil

    2015-06-01

    The use of ultraviolet (UV) light for water disinfection has become increasingly popular due to on-going issues with drinking water and public health. Pulsed UV light has proved to be an effective form of inactivating a range of pathogens including parasite species. However, there are limited data available on the use of pulsed UV light for the disinfection of flowing water in the absence or presence of inorganic contaminants commonly found in water sources. Here, we report on the inactivation of test species including Bacillus endospores following pulsed UV treatment as a flow through system. Significant levels of inactivation were obtained for both retention times tested. The presence of inorganic contaminants iron and/or manganese did affect the rate of disinfection, predominantly resulting in an increase in the levels of inactivation at certain UV doses. The findings of this study suggest that pulsed UV light may provide a method of water disinfection as it successfully inactivated bacterial cells and bacterial endospores in the absence and presence of inorganic contaminants.

  14. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  15. Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes.

    PubMed

    Komtchou, Simon; Dirany, Ahmad; Drogui, Patrick; Robert, Didier; Lafrance, Pierre

    2017-11-15

    Atrazine (ATZ) is one of the most common pesticides detected in surface water in Quebec (Canada). The present study was mainly focused on the degradation of ATZ and its by-products using electrochemical advanced oxidation processes such as photo-electro-Fenton (PEF), electro-Fenton (EF) and anodic-oxidation with simultaneous H 2 O 2 formation (AO - H 2 O 2 ). The comparison of these processes showed that PEF process was found to be the most effective process in removing ATZ and its by-products from both synthetic solution (ATZ 0  = 100 μg L -1 ) and real agricultural surface water enriched with ATZ (ATZ 0  = 10 μg L -1 ). Different operating parameters, including wavelength of the light, pH, current density and the presence of natural organic matter (humic acids) were investigated for PEF process using boron-doped diamond (BDD) anode and graphite cathode. The current density and the wavelength of the light were the most important parameters in the ATZ degradation efficiency. The best operating conditions were recorded for the synthetic samples at a current density of 18.2 mA cm -2 , a pH of 3.0 and treatment time of 45 min. Results showed that atrazine-desethyl-desisopropyl (DEDIA) was the most important by-product recorded. More than 99% of ATZ oxidation was recorded after 15 min of treatment and all the concentrations of major by-products were less than the limit of detection after 45 min of treatment. The PEF process was also tested for real surface water contaminated by ATZ: i) with and without addition of iron; ii) without pH adjustment (pH ∼ 6.7) and with pH adjustment (pH ∼ 3.1). In spite of the presence of radical scavenger and iron complexation the PEF process was more effective to remove ATZ from real surface water when the pH value was adjusted near to 3.0. The ATZ removal was 96.0% with 0.01 mM of iron (k app  = 0.13 min -1 ) and 100% with 0.1 mM of iron (k app  = 0.17 min -1 ). Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  17. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  18. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  19. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  20. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  1. 33 CFR 127.1109 - Lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.1109 Section 127.1109 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1109 Lighting systems...

  2. Aircraft versus spacecraft for remote monitoring of water quality in U.S. coastal zones

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.

    1977-01-01

    To provide guidance for conducting future water monitoring missions over U.S. coasts, aircraft and spacecraft approaches were defined and quantitatively compared. Sensors, aircraft and spacecraft were selected from current or developmental types for the hardware concepts and monitoring was assumed to begin in 1981-1983. Comparative data are presented on capabilities and costs to monitor both recognized pollution sites and broad shelf areas. For these mission requirements, a large fleet of light aircraft provided better coverage and at lower costs generally than one spacecraft, assuming a single, multi-spectral sensor on each platform. This result could change, however, should additional useful sensors with low cost penalties be found for the spacecraft.

  3. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10-6 g m-2 day-1 range

    NASA Astrophysics Data System (ADS)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  4. Wireless powering of e -swimmers

    NASA Astrophysics Data System (ADS)

    Roche, Jérome; Carrara, Serena; Sanchez, Julien; Lannelongue, Jérémy; Loget, Gabriel; Bouffier, Laurent; Fischer, Peer; Kuhn, Alexander

    2014-10-01

    Miniaturized structures that can move in a controlled way in solution and integrate various functionalities are attracting considerable attention due to the potential applications in fields ranging from autonomous micromotors to roving sensors. Here we introduce a concept which allows, depending on their specific design, the controlled directional motion of objects in water, combined with electronic functionalities such as the emission of light, sensing, signal conversion, treatment and transmission. The approach is based on electric field-induced polarization, which triggers different chemical reactions at the surface of the object and thereby its propulsion. This results in a localized electric current that can power in a wireless way electronic devices in water, leading to a new class of electronic swimmers (e-swimmers).

  5. Energy loss and impact of various stunning devices used for the slaughtering of water buffaloes.

    PubMed

    Glardon, Matthieu; Schwenk, Barbara K; Riva, Fabiano; von Holzen, Adrian; Ross, Steffen G; Kneubuehl, Beat P; Stoffel, Michael H

    2018-01-01

    Stock management of the Swiss water buffalo livestock results in the slaughtering of about 350 animals per year. As the stunning of water buffaloes still is an unresolved issue, we investigated the terminal ballistics of currently used perforating stunning devices. Cartridge fired captive bolt devices, handguns and a bullet casing gun were tested in a shooting steep by firing on bisected heads, forehead plates and soap blocks. Energy loss of captive bolts confirmed their inadequacy when used for heavy water buffaloes, notably adult males. As for the free projectiles, ballistics revealed that beyond the impact energy, bullet deformation has a strong impact on the outcome. Light 9mm Luger or .38 Spl bullets as well as large deformable .44 Rem. Magnum bullets should be avoided in favor of heavier .357 Magnum deformation ammunition. These data have been translated into the development of a new stunning device for water buffaloes meeting both animal welfare and occupational safety requirements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Monitoring strategies for drill cutting discharge in the vicinity of cold-water coral ecosystems.

    PubMed

    Purser, Autun; Thomsen, Laurenz

    2012-11-01

    Cold-water coral reefs represent some of the most biodiverse and biomass rich ecosystems in the marine environment. Despite this, ecosystem functioning is still poorly understood and the susceptibility of key species to anthropogenic activities and pollutants is unknown. In European waters, cold-water corals are often found in greatest abundance on the continental margin, often in regions rich in hydrocarbon reserves. In this viewpoint paper we discuss some of the current strategies employed in predicting and minimizing exposure of cold-water coral reef ecosystems on the Norwegian margin to waste materials produced during offshore drilling operations by the oil and gas industry. In the light of recent in situ and experimental research conducted with the key reef species Lophelia pertusa, we present some possible improvements to these strategies which may be utilized by industry and managers to further reduce the likelihood of exposure. We further highlight important outstanding research questions in this field. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.

    PubMed

    Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jürgen

    2015-11-01

    To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Flooding Experiments and Modeling for Improved Reactor Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solmos, M.; Hogan, K. J.; Vierow, K.

    2008-09-14

    Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less

  9. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    NASA Astrophysics Data System (ADS)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2016-02-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p < 0.01). Principal component analysis (PCA) indicated that non-water light absorption and anthropogenic nutrient disturbances were the likely causes of the diversity of water quality parameters. CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E250 : 365), specific ultraviolet (UV) absorbance (SUVA254), and the spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC concentration and water quality factors may help contribute to regional estimates of carbon sources and fate for catchment carbon budget assessments.

  10. Unchartered innovation? Local reforms of national formal water management in the Mkoji sub-catchment, Tanzania

    NASA Astrophysics Data System (ADS)

    Mehari, Abraham; Koppen, Barbara Van; McCartney, Matthew; Lankford, Bruce

    Tanzania is currently attempting to improve water resources management through formal water rights and water fees systems, and formal institutions. The water rights system is expected to facilitate water allocation. The water fees system aims at cost-recovery for water resources management services. To enhance community involvement in water management, Water User Associations (WUAs) are being established and, in areas with growing upstream-downstream conflicts, apex bodies of all users along the stressed river stretch. The Mkoji sub-catchment (MSC) in the Rufiji basin is one of the first where these formal water management systems are being attempted. This paper analyzes the effectiveness of these systems in the light of their expected merits and the consequences of the juxtaposition of contemporary laws with traditional approaches. The study employed mainly qualitative, but also quantitative approaches on social and technical variables. Major findings were: (1) a good mix of formal (water fees and WUAs) and traditional (rotation-based water sharing, the Zamu) systems improved village-level water management services and reduced intra-scheme conflicts; (2) the water rights system has not brought abstractions into line with allocations and (3) so far, the MSC Apex body failed to mitigate inter-scheme conflicts. A more sophisticated design of allocation infrastructure and institutions is recommended.

  11. [NiFeSe]-hydrogenase chemistry.

    PubMed

    Wombwell, Claire; Caputo, Christine A; Reisner, Erwin

    2015-11-17

    The development of technology for the inexpensive generation of the renewable energy vector H2 through water splitting is of immediate economic, ecological, and humanitarian interest. Recent interest in hydrogenases has been fueled by their exceptionally high catalytic rates for H2 production at a marginal overpotential, which is presently only matched by the nonscalable noble metal platinum. The mechanistic understanding of hydrogenase function guides the design of synthetic catalysts, and selection of a suitable hydrogenase enables direct applications in electro- and photocatalysis. [FeFe]-hydrogenases display excellent H2 evolution activity, but they are irreversibly damaged upon exposure to O2, which currently prevents their use in full water splitting systems. O2-tolerant [NiFe]-hydrogenases are known, but they are typically strongly biased toward H2 oxidation, while H2 production by [NiFe]-hydrogenases is often product (H2) inhibited. [NiFeSe]-hydrogenases are a subclass of [NiFe]-hydrogenases with a selenocysteine residue coordinated to the active site nickel center in place of a cysteine. They exhibit a combination of unique properties that are highly advantageous for applications in water splitting compared with other hydrogenases. They display a high H2 evolution rate with marginal inhibition by H2 and tolerance to O2. [NiFeSe]-hydrogenases are therefore one of the most active molecular H2 evolution catalysts applicable in water splitting. Herein, we summarize our recent progress in exploring the unique chemistry of [NiFeSe]-hydrogenases through biomimetic model chemistry and the chemistry with [NiFeSe]-hydrogenases in semiartificial photosynthetic systems. We gain perspective from the structural, spectroscopic, and electrochemical properties of the [NiFeSe]-hydrogenases and compare them with the chemistry of synthetic models of this hydrogenase active site. Our synthetic models give insight into the effects on the electronic properties and reactivity of the active site upon the introduction of selenium. We have utilized the exceptional properties of the [NiFeSe]-hydrogenase from Desulfomicrobium baculatum in a number of photocatalytic H2 production schemes, which are benchmark systems in terms of single site activity, tolerance toward O2, and in vitro water splitting with biological molecules. Each system comprises a light-harvesting component, which allows for light-driven electron transfer to the hydrogenase in order for it to catalyze H2 production. A system with [NiFeSe]-hydrogenase on a dye-sensitized TiO2 nanoparticle gives an enzyme-semiconductor hybrid for visible light-driven generation of H2 with an enzyme-based turnover frequency of 50 s(-1). A stable and inexpensive polymeric carbon nitride as a photosensitizer in combination with the [NiFeSe]-hydrogenase shows good activity for more than 2 days. Light-driven H2 evolution with the enzyme and an organic dye under high O2 levels demonstrates the excellent robustness and feasibility of water splitting with a hydrogenase-based scheme. This has led, most recently, to the development of a light-driven full water splitting system with a [NiFeSe]-hydrogenase wired to the water oxidation enzyme photosystem II in a photoelectrochemical cell. In contrast to the other systems, this photoelectrochemical system does not rely on a sacrificial electron donor and allowed us to establish the long sought after light-driven water splitting with an isolated hydrogenase.

  12. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  13. Earth Observation

    NASA Image and Video Library

    2013-06-23

    ISS036-E-010628 (24 June 2013) --- Strait of Tiran, Red Sea and Gulf of Aqaba are featured in this image photographed by an Expedition 36 crew member on the International Space Station. The approximately six-kilometer wide Strait of Tiran (also known as the Straits of Tiran) between the Egyptian mainland and Tiran Island separates the Gulf of Aqaba from the Red Sea, and provides two channels (290 meters and 73 meters deep, respectively) navigable by large ships bound for ports in Jordan and Israel. A smaller passage also exists between the east side of Tiran Island and Saudi Arabia, but this a single channel that is 16 meters deep. Due to its strategic position, control of the Strait has been an important factor in historical conflicts of the region, such as the Suez Crisis in 1956 and the Six-Day War in 1967. This photograph illustrates the morphology of the Strait. The relatively clear, deep-water passages of the western Strait of Tiran are visible at right, while the more sinuous shallow-water passage on the Saudi Arabia side can be seen at bottom center. Light blue to turquoise areas around Tiran Island indicate shallow water, while the island itself is arid and largely free of vegetation. Coral reefs are also found in the Straits of Tiran and are a popular diving destination. The silvery sheen on the water surface within the Strait and the south of Tiran Island is sunglint – light reflecting off the water surface back towards the observer on the space station. Disturbance to the water surface, as well as presence of substances such as oils and surfactants, can change the reflective properties of the water surface and highlight both surface waves and subsurface currents. For example, a large wave set is highlighted by sunglint at upper left.

  14. A reassessment of North American river basin water balances in light of new estimates of mountain snow accumulation

    NASA Astrophysics Data System (ADS)

    Wrzesien, M.; Durand, M. T.; Pavelsky, T.

    2017-12-01

    The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.

  15. Visualization of the contact line during the water exit of flat plates

    NASA Astrophysics Data System (ADS)

    Tassin, A.; Breton, T.; Forest, B.; Ohana, J.; Chalony, S.; Le Roux, D.; Tancray, A.

    2017-08-01

    We investigate experimentally the time evolution of the wetted surface during the lifting of a body initially floating at the water surface. This phenomenon is referred to as the water exit problem. The water exit experiments were conducted with transparent (PMMA) mock-ups of two different shapes: a circular disc and a square flat plate. Two different lighting systems were used to diffuse light in the mock-up material: a central high-power LED light normal to the surface and an edge-lighting system featuring an array of LED lights. These setups make it possible to illuminate the contact line, which delimits the surface of contact between the mock-up and the water. The characteristic size of the mock-ups is about 20 cm and the acceleration of the mock-up oscillates between 0 and 25 m/s^2. We show that the central light setup gives satisfactory results for the circular disc and that the edge lighting technique makes it possible to follow a contact line with a time-evolving complex shape (strong changes of convexity) up to 1000 fps. The observations presented in the paper support the possibility of extending this promising technique to more general three-dimensional bodies with arbitrary motion (e.g., including pitch motion).

  16. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    NASA Astrophysics Data System (ADS)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  17. 33 CFR 168.40 - Applicable waters and number of escort vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a line drawn from Cape Hinchinbrook Light, to Seal Rocks Light, to a point on Montague Island at 60... waters and number of escort vessels. The requirements of this part apply to the following waters: (a... vessels in those navigable waters of the United States within Prince William Sound, Alaska, and the...

  18. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  19. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  20. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring over time scales of months to years utilizing in situ sensors can provide an understanding of processes controlling water transport, respiration and the fate and impacts of accidental and natural gas and oil releases.

  1. Recent developments in hydrologic instrumentation

    USGS Publications Warehouse

    Latkovich, Vito J.; Futrell, James C.; Kane, Douglas L.

    1986-01-01

    The programs of the U.S. Geological Survey require instrumentation for collecting and monitoring hydrologic data in cold regions. The availability of space-age materials and implementation of modern electronics and mechanics is making possible the recent developments of hydrologic instrumentation, especially in the area of measuring streamflow under ice cover. Material developments include: synthetic-fiber sounding and tag lines; polymer (plastic) sheaves, pulleys, and sampler components; and polymer (plastic) current-meter bucket wheels. Electronic and mechanical developments include: a current-meter digitizer; a fiber-optic closure system for current-meters; non-contact water-level sensors; an adaptable hydrologic data acquisition system; a minimum data recorder; an ice rod; an ice foot; a handled sediment sampler; a light weight ice auger with improved cutter head and blades; and an ice chisel.

  2. SU-F-J-56: The Connection Between Cherenkov Light Emission and Radiation Absorbed Dose in Proton Irradiated Phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darafsheh, A; Kassaee, A; Finlay, J

    Purpose: Range verification in proton therapy is of great importance. Cherenkov light follows the photon and electron energy deposition in water phantom. The purpose of this study is to investigate the connection between Cherenkov light generation and radiation absorbed dose in a water phantom irradiated with proton beams. Methods: Monte Carlo simulation was performed by employing FLUKA Monte Carlo code to stochastically simulate radiation transport, ionizing radiation dose deposition, and Cherenkov radiation in water phantoms. The simulations were performed for proton beams with energies in the range 50–600 MeV to cover a wide range of proton energies. Results: The mechanismmore » of Cherenkov light production depends on the initial energy of protons. For proton energy with 50–400 MeV energy that is below the threshold (∼483 MeV in water) for Cherenkov light production directly from incident protons, Cherenkov light is produced mainly from the secondary electrons liberated as a result of columbic interactions with the incident protons. For proton beams with energy above 500 MeV, in the initial depth that incident protons have higher energy than the Cherenkov light production threshold, the light has higher intensity. As the slowing down process results in lower energy protons in larger depths in the water phantom, there is a knee point in the Cherenkov light curve vs. depth due to switching the Cherenkov light production mechanism from primary protons to secondary electrons. At the end of the depth dose curve the Cherenkov light intensity does not follow the dose peak because of the lack of high energy protons to produce Cherenkov light either directly or through secondary electrons. Conclusion: In contrast to photon and electron beams, Cherenkov light generation induced by proton beams does not follow the proton energy deposition specially close to the end of the proton range near the Bragg peak.« less

  3. Copper Oxide Nanograss for Efficient and Stable Photoelectrochemical Hydrogen Production by Water Splitting

    NASA Astrophysics Data System (ADS)

    Borkar, Rajnikant; Dahake, Rashmi; Rayalu, Sadhana; Bansiwal, Amit

    2018-03-01

    A biphasic copper oxide thin film of grass-like appendage morphology is synthesized by two-step electro-deposition method and later investigated for photoelectrochemical (PEC) water splitting for hydrogen production. Further, the thin film was characterized by UV-Visible spectroscopy, x-ray diffraction (XRD), Scanning electron microscopy (SEM) and PEC techniques. The XRD analysis confirms formation of biphasic copper oxide phases, and SEM reveals high surface area grass appendage-like morphology. These grass appendage structures exhibit a high cathodic photocurrent of - 1.44 mAcm-2 at an applied bias of - 0.7 (versus Ag/AgCl) resulting in incident to photon current efficiency (IPCE) of ˜ 10% at 400 nm. The improved light harvesting and charge transport properties of grass appendage structured biphasic copper oxides makes it a potential candidate for PEC water splitting for hydrogen production.

  4. Mars Sample Return mission utilizing in-situ propellant production

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Price, Steve

    1995-01-01

    This report presents the results of a study examining the potential of in-situ propellant production (ISPP) on Mars to aid in achieving a low cost Mars Sample Return (MSR) mission. Two versions of such a mission were examined: a baseline version employing a dual string spacecraft, and a light weight version employing single string architecture with selective redundancy. Both systems employed light weight avionics currently being developed by Lockheed Martin, Jet Propulsion Lab and elsewhere in the aerospace community, both used a new concept for a simple, light weight parachuteless sample return capsule, both used a slightly modified version of the Mars Surveyor lander currently under development at Lockheed Martin for flight in 1998, and both used a combination of the Sabatier-electrolysis and reverse water gas shift ISPP systems to produce methane/oxygen propellant on Mars by combining a small quantity of imported hydrogen with the Martian CO2 atmosphere. It was found that the baseline mission could be launched on a Delta 7925 and return a 0.5 kg sample with 82 percent mission launch margin;over and beyond subsystem allocated contingency masses . The lightweight version could be launched on a Mid-Lite vehicle and return a 0.25 kg sample with 11 percent launch margin, over and above subsystem contingency mass allocations.

  5. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    NASA Technical Reports Server (NTRS)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  6. Continuous water-quality and suspended-sediment transport monitoring in the San Francisco Bay, California, water years 2011–13

    USGS Publications Warehouse

    Buchanan, Paul A.; Downing-Kunz, Maureen; Schoellhamer, David H.; Shellenbarger, Gregory; Weidich, Kurt

    2014-01-01

    The U.S. Geological Survey (USGS) monitors water quality and suspended-sediment transport in the San Francisco Bay. The San Francisco Bay area is home to millions of people, and the bay teems with both resident and migratory wildlife, plants, and fish. Fresh water mixes with salt water in the bay, which is subject both to riverine and marine (tides, waves, influx of salt water) influences. To understand this environment, the USGS, along with its partners, has been monitoring the bay’s waters continuously since 1988. Several water-quality variables are of particular importance to State and Federal resource managers and are monitored at key locations throughout the bay. Salinity, which indicates the relative mixing of fresh and ocean waters in the bay, is derived from specific conductance measurements. Water temperature, along with salinity, affects the density of water, which causes gravity driven circulation patterns and stratification in the water column. Turbidity is measured using light-scattering from suspended solids in water, and is used as a surrogate for suspended-sediment concentration (SSC). Suspended sediment often carries adsorbed contaminants; attenuates sunlight in the water column; deposits on tidal marsh and intertidal mudflats, which can help sustain these habitats as sea level rises; and deposits in ports and shipping channels, which can necessitate dredging. Dissolved oxygen, which is essential to a healthy ecosystem, is a fundamental indicator of water quality, and its concentration is affected by water temperature, salinity, ecosystem metabolism, tidal currents, and wind. Tidal currents in the bay reverse four times a day, and wind direction and intensity typically change on a daily cycle: consequently, salinity, water temperature, suspendedsediment concentration, and dissolvedoxygen concentration vary spatially and temporally throughout the bay, and continuous measurements are needed to observe these changes. The purpose of this fact sheet is to inform the public and resource managers of the availability of these water-quality data.

  7. Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation.

    PubMed

    Yao, Jiandong; Zheng, Zhaoqiang; Yang, Guowei

    2018-02-08

    Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m -2 h -1 , which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m -2 h -1 ) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m -2 h -1 ) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

  8. The Plant Research Unit: An International Space Station Habitat

    NASA Technical Reports Server (NTRS)

    Morrow, Robert; Reiss-Bubenheim, Debra; Schaefer, Ronald L.

    2003-01-01

    The Plant Research Unit (PRU) is one of six life science habitats being developed as part of the Space Station Biological Research Program. The PRU is designed for experiments in microgravity and will utilize the ISS Centrifuge Facility to provide gravity levels between microgravity and 29. The PRU will provide and control all aspects of a plant s needs in a nearly closed system. In other words, the shoot and root environments will not be open to the astronaut s environment except for experiment maintenance such as planting, harvesting and plant sampling. This also means that all lighting, temperature and humidity control, "watering," and air filtering and cleaning .must be done within strict limitations of volume, weight, power, and crew time while at the same time providing a very high level of reliability and a service life in excess of 10 years. The PRU will contain two plant chambers 31.5 cm tall, each with independent control of temperature, humidity, light level and photoperiod, CO2 level, nutrient and water delivery, and video and data acquisition. The PRU is currently in the preliminary design phase and a number of subsystem components have been prototyped for testing, including the temperature and humidity control systems, the plant chambers, the LED lighting system, the atmospheric control system and a variety of nutrient delivery systems. The LED prototype provides independent feedback control of 5 separate spectral bands and variable output between 0 and 1000 micro-mol sq m/sec. The water and nutrient delivery system (WNDS) prototypes have been used to test particulate based, thin film, and gel-based WNDS configurations.

  9. Passivation of silicon surfaces by heat treatment in liquid water at 110 °C

    NASA Astrophysics Data System (ADS)

    Nakamura, Tomohiko; Sameshima, Toshiyuki; Hasumi, Masahiko; Mizuno, Tomohisa

    2015-10-01

    We report the effective passivation of silicon surfaces by heating single-crystalline silicon substrates in liquid water at 110 °C for 1 h. High photo-induced effective minority carrier lifetimes τeff were obtained ranging from 8.3 × 10-4 to 3.1 × 10-3 s and from 1.2 × 10-4 to 6.0 × 10-4 s for the n- and p-type samples, respectively, under 635 nm light illumination, while the τeff values of the initial bare samples were lower than 1.2 × 10-5 s. The heat treatment in liquid water at 110 °C for 1 h resulted in low surface recombination velocities ranging from 7 to 34 cm/s and from 49 to 250 cm/s for the n- and p-type samples, respectively. The photo-conductivity of the n-type sample was increased from 3.8 × 10-3 (initial) to 1.4 × 10-1 S/cm by the present heat treatment under air-mass (AM) 1.5 light illumination at 100 mW/cm2. The thickness of the passivation layer was estimated to be only approximately 0.7 nm. Metal-insulator-semiconductor-type solar cells were demonstrated with Al and Au metal formation on the passivated surface. Rectified current voltage and solar cell characteristics were observed. The open circuit voltages were obtained to be 0.52 and 0.49 V under AM 1.5 light illumination at 100 mW/cm2 for the n- and p-type samples, respectively.

  10. Short-term effects of light quality on leaf gas exchange and hydraulic properties of silver birch (Betula pendula).

    PubMed

    Niglas, Aigar; Papp, Kaisa; Sekiewicz, Maciej; Sellin, Arne

    2017-09-01

    Leaves have to acclimatize to heterogeneous radiation fields inside forest canopies in order to efficiently exploit diverse light conditions. Short-term effects of light quality on photosynthetic gas exchange, leaf water use and hydraulic traits were studied on Betula pendula Roth shoots cut from upper and lower thirds of the canopy of 39- to 35-year-old trees growing in natural forest stand, and illuminated with white, red or blue light in the laboratory. Photosynthetic machinery of the leaves developed in different spectral conditions acclimated differently with respect to incident light spectrum: the stimulating effect of complete visible spectrum (white light) on net photosynthesis is more pronounced in upper-canopy layers. Upper-canopy leaves exhibit less water saving behaviour, which may be beneficial for the fast-growing pioneer species on a daily basis. Lower-canopy leaves have lower stomatal conductance resulting in more efficient water use. Spectral gradients existing within natural forest stands represent signals for the fine-tuning of stomatal conductance and tree water relations to afford lavish water use in sun foliage and enhance leaf water-use efficiency in shade foliage sustaining greater hydraulic limitations. Higher sensitivity of hydraulic conductance of shade leaves to blue light probably contributes to the efficient use of short duration sunflecks by lower-canopy leaves. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Measurement of the water content in oil and oil products using IR light-emitting diode-photodiode optrons

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Kabanau, D. M.; Lebiadok, Y. V.; Shpak, P. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shchemelev, M. A.; Andreev, I. A.; Kunitsyna, E. V.; Ivanov, E. V.; Yakovlev, Yu. P.

    2017-02-01

    The feasibility of using light-emitting devices, the radiation spectrum of which has maxima at wavelengths of 1.7, 1.9, and 2.2 μm for determining the water concentration in oil and oil products (gasoline, kerosene, diesel fuel) has been demonstrated. It has been found that the measurement error can be lowered if (i) the temperature of the light-emitting diode is maintained accurate to 0.5-1.0°C, (ii) by using a cell through which a permanently stirred analyte is pumped, and (iii) by selecting the repetition rate of radiation pulses from the light-emitting diodes according to the averaging time. A meter of water content in oil and oil products has been developed that is built around IR light-emitting device-photodiode optrons. This device provides water content on-line monitoring accurate to 1.5%.

  12. Analysis of the light-water flooding of the HFBR thimble tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carew, J.F.; Aronson, A.L.; Cokinos, D.M.

    The fuel elements surrounding the central vertical thimble tubes in the Brookhaven National Laboratory High-Flux Beam Reactor (HFBR) are highly undermoderated, and light-water flooding of these irradiation thimbles results in a positive core reactivity insertion. The light-water contamination of the D{sub 2}O thimble tube coolant is the result of a postulated double-ended guillotine break of a U tube in the experimental facilities heat exchanger during the HFBR light-water flooding (LWF) event. While this event has a low probability (1.3 x 10{sup {minus}4}/yr), the HFBR protection system must ensure adequate thermal margin during the power transient. This paper summarizes the analysismore » of the HFBR thimble-tube LWF event.« less

  13. Spatial distribution of Cherenkov light from cascade showers in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khomyakov, V. A., E-mail: VAKhomyakov@mephi.ru; Bogdanov, A. G.; Kindin, V. V.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  14. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-11-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions. Thus, export of DOM from this stream will be less under conditions that increase the light available for DOM photo-degradation (i.e., low flows, sunny days).

  15. Design and characterization of a low cost CubeSat multi-band optical receiver to map water ice on the lunar surface for the Lunar Flashlight mission

    NASA Astrophysics Data System (ADS)

    Vinckier, Quentin; Crabtree, Karlton; Paine, Christopher G.; Hayne, Paul O.; Sellar, Glenn R.

    2017-08-01

    Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.

  16. Methodological advances: using greenhouses to simulate climate change scenarios.

    PubMed

    Morales, F; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Irigoyen, J J; Goicoechea, N; Antolín, M C; Oyarzun, M; Urdiain, A

    2014-09-01

    Human activities are increasing atmospheric CO2 concentration and temperature. Related to this global warming, periods of low water availability are also expected to increase. Thus, CO2 concentration, temperature and water availability are three of the main factors related to climate change that potentially may influence crops and ecosystems. In this report, we describe the use of growth chamber - greenhouses (GCG) and temperature gradient greenhouses (TGG) to simulate climate change scenarios and to investigate possible plant responses. In the GCG, CO2 concentration, temperature and water availability are set to act simultaneously, enabling comparison of a current situation with a future one. Other characteristics of the GCG are a relative large space of work, fine control of the relative humidity, plant fertirrigation and the possibility of light supplementation, within the photosynthetic active radiation (PAR) region and/or with ultraviolet-B (UV-B) light. In the TGG, the three above-mentioned factors can act independently or in interaction, enabling more mechanistic studies aimed to elucidate the limiting factor(s) responsible for a given plant response. Examples of experiments, including some aimed to study photosynthetic acclimation, a phenomenon that leads to decreased photosynthetic capacity under long-term exposures to elevated CO2, using GCG and TGG are reported. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.

    PubMed

    Caccamo, Lorenzo; Hartmann, Jana; Fàbrega, Cristian; Estradé, Sonia; Lilienkamp, Gerhard; Prades, Joan Daniel; Hoffmann, Martin W G; Ledig, Johannes; Wagner, Alexander; Wang, Xue; Lopez-Conesa, Lluis; Peiró, Francesca; Rebled, José Manuel; Wehmann, Hergo-Heinrich; Daum, Winfried; Shen, Hao; Waag, Andreas

    2014-02-26

    3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In ∼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.

  18. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.

    PubMed

    Varadhan, Purushothaman; Fu, Hui-Chun; Priante, Davide; Retamal, Jose Ramon Duran; Zhao, Chao; Ebaid, Mohamed; Ng, Tien Khee; Ajia, Idirs; Mitra, Somak; Roqan, Iman S; Ooi, Boon S; He, Jr-Hau

    2017-03-08

    Hydrogen production via photoelectrochemical water-splitting is a key source of clean and sustainable energy. The use of one-dimensional nanostructures as photoelectrodes is desirable for photoelectrochemical water-splitting applications due to the ultralarge surface areas, lateral carrier extraction schemes, and superior light-harvesting capabilities. However, the unavoidable surface states of nanostructured materials create additional charge carrier trapping centers and energy barriers at the semiconductor-electrolyte interface, which severely reduce the solar-to-hydrogen conversion efficiency. In this work, we address the issue of surface states in GaN nanowire photoelectrodes by employing a simple and low-cost surface treatment method, which utilizes an organic thiol compound (i.e., 1,2-ethanedithiol). The surface-treated photocathode showed an enhanced photocurrent density of -31 mA/cm 2 at -0.2 V versus RHE with an incident photon-to-current conversion efficiency of 18.3%, whereas untreated nanowires yielded only 8.1% efficiency. Furthermore, the surface passivation provides enhanced photoelectrochemical stability as surface-treated nanowires retained ∼80% of their initial photocurrent value and produced 8000 μmol of gas molecules over 55 h at acidic conditions (pH ∼ 0), whereas the untreated nanowires demonstrated only <4 h of photoelectrochemical stability. These findings shed new light on the importance of surface passivation of nanostructured photoelectrodes for photoelectrochemical applications.

  19. Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi

    2018-03-01

    Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.

  20. Improving online risk assessment with equipment prognostics and health monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Liu, Xiaotong; Briere, Chris

    The current approach to evaluating the risk of nuclear power plant (NPP) operation relies on static probabilities of component failure, which are based on industry experience with the existing fleet of nominally similar light water reactors (LWRs). As the nuclear industry looks to advanced reactor designs that feature non-light water coolants (e.g., liquid metal, high temperature gas, molten salt), this operating history is not available. Many advanced reactor designs use advanced components, such as electromagnetic pumps, that have not been used in the US commercial nuclear fleet. Given the lack of rich operating experience, we cannot accurately estimate the evolvingmore » probability of failure for basic components to populate the fault trees and event trees that typically comprise probabilistic risk assessment (PRA) models. Online equipment prognostics and health management (PHM) technologies can bridge this gap to estimate the failure probabilities for components under operation. The enhanced risk monitor (ERM) incorporates equipment condition assessment into the existing PRA and risk monitor framework to provide accurate and timely estimates of operational risk.« less

  1. Microbiological spoilage of fish and fish products.

    PubMed

    Gram, L; Huss, H H

    1996-11-01

    Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative biochemical indicators of spoilage. Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram-positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish is well understood, much less is known about spoilage of lightly preserved fish products. It is concluded that the spoilage is probably caused by lactic acid bacteria, certain psychotrophic Enterobacteriaceae and/or Photobacterium phosphoreum. However, more work is needed in this area.

  2. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    NASA Astrophysics Data System (ADS)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  3. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE PAGES

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  4. Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, T.Y.; Bentz, J.H.; Bergeron, K.D.

    1994-04-01

    The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array canmore » deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.« less

  5. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward

    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less

  6. Novel tiO2 nanocatalysts for wastewater purification: tapping energy from the sun.

    PubMed

    Liu, Y; Li, J; Qiu, X; Burda, C

    2006-01-01

    Water treatment using TiO2 semiconductor as a durable heterogeneous photocatalyst has been the focus of environmentalists in recent years. Currently, we developed an inexpensive and highly efficient approach for synthesizing nitrogen-doped TiO2 with lower band-gap energy that can respond to visible light. Doping on the molecular scale led to an enhanced nitrogen concentration of up to 21.8%. Reflectance measurements showed the synthesized N-doped TiO2 nanoparticles are catalytically active with the absorbance that extends into the visible region up to 600 nm. The water purification potential of this new class of compound was evaluated by studying the photodegradation of Acid Orange 7 (AO7) and E. coli. Experiments were conducted to compare the photocatalytic activities of N-doped TiO2 nanocatalysts and commercially available Degussa P25 power under identical solar light exposure. N-doped TiO2 demonstrated superior photocatalytic activities in both chemical compound degradation and bactericidal reactions. The result of this study shows the potential of applying new generations of catalyst for wastewater purification and disinfection.

  7. LWRS ATR Irradiation Testing Readiness Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristine Barrett

    2012-09-01

    The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less

  8. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  9. Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less

  10. Rapid water disinfection using vertically aligned MoS 2 nanofilms and visible light

    DOE PAGES

    Liu, Chong; Kong, Desheng; Hsu, Po -Chun; ...

    2016-08-15

    Here, solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water (SODIS) mostly relies on ultraviolet light, which represents only 4% of total solar energy, and this leads to slow treatment speed. The development of new materials that can harvest visible light for water disinfection, and speed up solar water purification, is therefore highly desirable. Here, we show that few-layered vertically aligned MoS 2 (FLV-MoS 2) films can be used to harvest the whole spectrum of visible light (~ 50% of solar energy) and achieve highly efficient water disinfection.more » The bandgap of MoS 2 was increased from 1.3 eV to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS 2 to generate reactive oxygen species (ROS) for bacterial inactivation in water. The FLV-MoS 2 showed ~15 times better log inactivation efficiency of indicator bacteria compared to bulk MoS 2, and much faster inactivation of bacteria under both visible light and sunlight illumination compared to widely used TiO 2. Moreover, by using a 5 nm copper film on top of the FLV-MoS 2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was further increased 6 fold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 minutes with a small amount of material (1.6 mg/L) under simulated visible light.« less

  11. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    NASA Astrophysics Data System (ADS)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  12. Polyaniline as a new type of hole-transporting material to significantly increase the solar water splitting performance of BiVO4 photoanodes

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojun; Ye, Kai-Hang; Yu, Xiang; Zhu, Jiaqian; Zhu, Yi; Zhang, Yuanming

    2018-07-01

    Polyaniline (PANI), with its low cost, chemical stability and high conductivity, is used as a hole transporting layer to fabricate NiOOH/PANI/BiVO4 (NPB) photoanode, of which the photoelectrochemical (PEC) water splitting performance is significantly enhanced. The remarkable water oxidation photocurrent of NPB photoanode achieves 3.31 mA cm-2 at 1.23 V vs. RHE under AM 1.5G solar light irradiation, which is greatly increased compared with that of pristine BiVO4 (0.89 mA cm-2 under the same condition). The maximal incident photon-to-current conversion efficiency achieves 83.3% at 430 nm at 1.23 V vs. RHE and the maximal applied bias photo-to-current efficiency reaches 1.20% at 0.68 V vs. RHE, which are nearly five and ten times higher than that of pristine BiVO4 photoanode, respectively. This NPB photoanode exhibits excellent stability with about 97.22% Faraday efficiency after PEC water splitting for 3 h. The exciting results demonstrate that PANI shows great potential as a hole-transporting layer for photoanode and NPB is an efficient and stable photoanode material with a great potential application in PEC water splitting. Overall, this work provides an excellent reference on designing and fabricating photoanode materials for the future.

  13. 33 CFR 81.20 - Lights and sound signal appliances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: IMPLEMENTING RULES Exemptions § 81.20 Lights and sound signal...

  14. 33 CFR 81.20 - Lights and sound signal appliances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: IMPLEMENTING RULES Exemptions § 81.20 Lights and sound signal...

  15. 33 CFR 81.20 - Lights and sound signal appliances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: IMPLEMENTING RULES Exemptions § 81.20 Lights and sound signal...

  16. 33 CFR 81.20 - Lights and sound signal appliances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: IMPLEMENTING RULES Exemptions § 81.20 Lights and sound signal...

  17. Data Report for Calibration of a Bio-Optical Model for Narragansett Bay

    EPA Science Inventory

    Bio-optical models describe the quality and quantity of the light field at various depths in the water column. The absorption and scattering of light within the water column are wavelength dependent. The behavior of light also varies depending on the specific dissolved and partic...

  18. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  19. 33 CFR 81.20 - Lights and sound signal appliances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights and sound signal appliances. 81.20 Section 81.20 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: IMPLEMENTING RULES Exemptions § 81.20 Lights and sound signal...

  20. 33 CFR 90.5 - Lights for moored vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights for moored vessels. 90.5 Section 90.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.5 Lights for moored vessels. A vessel at anchor...

  1. 33 CFR 82.5 - Lights for moored vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights for moored vessels. 82.5 Section 82.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.5 Lights for moored vessels. For the purposes of Rule...

  2. 33 CFR 90.5 - Lights for moored vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights for moored vessels. 90.5 Section 90.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.5 Lights for moored vessels. A vessel at anchor...

  3. 33 CFR 82.5 - Lights for moored vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights for moored vessels. 82.5 Section 82.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.5 Lights for moored vessels. For the purposes of Rule...

  4. 33 CFR 90.5 - Lights for moored vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights for moored vessels. 90.5 Section 90.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.5 Lights for moored vessels. A vessel at anchor...

  5. 33 CFR 90.5 - Lights for moored vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Lights for moored vessels. 90.5 Section 90.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.5 Lights for moored vessels. A vessel at anchor...

  6. 33 CFR 90.5 - Lights for moored vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights for moored vessels. 90.5 Section 90.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.5 Lights for moored vessels. A vessel at anchor...

  7. 33 CFR 82.5 - Lights for moored vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Lights for moored vessels. 82.5 Section 82.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.5 Lights for moored vessels. For the purposes of Rule...

  8. 33 CFR 82.5 - Lights for moored vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Lights for moored vessels. 82.5 Section 82.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.5 Lights for moored vessels. For the purposes of Rule...

  9. 33 CFR 82.5 - Lights for moored vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Lights for moored vessels. 82.5 Section 82.5 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.5 Lights for moored vessels. For the purposes of Rule...

  10. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    NASA Astrophysics Data System (ADS)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause a decrease of about 35% of CO2 uptake. As a result, the incorporation of stress and damage into SVAT models could considerably improve our ability to predict global responses to climate change.

  11. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    USDA-ARS?s Scientific Manuscript database

    Experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle. Boneless, skinless p. major were collected 6-8 h postmortem from deboning lines at a commercial processing plant, and separated into light, ...

  12. Marination effects on water states and water-holding capacity of broiler pectoralis major muscle with different color lightness

    USDA-ARS?s Scientific Manuscript database

    A total of four experiments were carried out to investigate the effect of marination on water states and water-holding capacity (WHC) of broiler pectoralis (p.) major muscle selected based on raw muscle color lightness. Boneless, skinless p. major were collected at 6-8 h postmortem from deboning li...

  13. Rapid, quantitative determination of bacteria in water. [adenosine triphosphate

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Thomas, R. R.; Jeffers, E. L.; Deming, J. W. (Inventor)

    1978-01-01

    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction.

  14. Large Plant Growth Chambers: Flying Soon on a Space Station near You!

    NASA Technical Reports Server (NTRS)

    Massa, Gioia D.; Morrow, Robert C.; Levine, Howard G.

    2014-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species, and those capabilities continue to grow. The Veggie vegetable production system will be deployed to the ISS in Spring of 2014 to act as an applied research platform with goals of studying food production in space, providing the crew with a source of fresh food, allowing behavioral health and plant microbiology experimentation, and being a source of recreation and enjoyment for the crew. Veggie was conceived, designed, and constructed by Orbital Technologies Corporation (ORBITEC, Madison, WI). Veggie is the largest plant growth chamber that NASA has flown to date, and is capable of growing a wide array of horticultural crops. It was designed for low energy usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) light emitting diodes. Interfacing with the light cap is an extendable bellows baseplate secured to the light cap via magnetic closures and stabilized with extensible flexible arms. The baseplate contains vents allowing air from the ISS cabin to be pulled through the plant growth area by a fan in the light cap. The baseplate holds a Veggie root mat reservoir that will supply water to plant pillows attached via elastic cords. Plant pillows are packages of growth media and seeds that will be sent to ISS dry and installed and hydrated on orbit. Pillows can be constructed in various sizes for different plant types. Watering will be via passive wicking from the root mat to the pillows. Science procedures will include photography or videography, plant thinning, pollination, harvesting, microbial sampling, water sampling, etcetera. Veggie is one of the ISS flight options currently available for research investigations on plants. The Plant Habitat (PH) is being designed and constructed through a NASA-ORBITEC collaboration, and is scheduled to fly on ISS around 2016. This large plant chamber will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional monitoring capabilities include leaf temperature sensing and root zone moisture and oxygen sensing. The PH light cap will have red (630 nanometers), blue (450 nanometers), green (525 nanometers), far red (730 nanometers) and broad spectrum white light emitting diodes. There will be several internal cameras to monitor and record plant growth and operations.

  15. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China.

    PubMed

    Jiang, Xia; Jin, Xiangcan; Yao, Yang; Li, Lihe; Wu, Fengchang

    2008-04-01

    Effects of biological activity, light, temperature and oxygen on the phosphorus (P) release processes at the sediment and water interface of a shallow lake, Taihu Lake, China, were investigated. The results show that organisms at the sediment and water interface can stimulate P release from sediments, and their metabolism can alter the surrounding micro-environmental conditions. The extent of P release and its effects on P concentration in the overlying water were affected by factors such as light, temperature and dissolved oxygen. The organism biomass increased as temperature increased, which was beneficial for P release. Dissolved total phosphorus (DTP) and dissolved inorganic phosphorus (DIP) concentrations in the corresponding overlying water were mainly controlled by light. P release occurred in both aerobic and anoxic conditions with the presence of organisms. However in the presence of light , P release in an anoxic environment was much greater than in an aerobic environment, which may stimulate alga bloom and result in an increase in total phosphorus (TP) in the overlying water. This information aids the understanding of P biogeochemical cycling at the interface and its relationship with eutrophication in shallow lakes.

  16. The associative relation underlying autoshaping in the pigeon1

    PubMed Central

    Woodruff, Guy; Williams, D. R.

    1976-01-01

    Fifteen pigeons were exposed to either response-independent or response-dependent schedules of water reinforcement, whereby water was injected directly into the unrestrained pigeons' mandibles. Key-contact responses were released by a lighted key correlated with water, but not by a lighted key uncorrelated with water. A negative response-reinforcer contingency suppressed autoshaped key-contact responses, resulting in responding directed away from the lighted key. In all pigeons, water injected directly into the mandibles elicited a consummatory fixed-action pattern of “mumbling” and swallowing. The lighted key correlated with water released a broader set of both appetitive and consummatory responses: approach to the lighted key, “bowing”, “rooting”, “mumbling”, and swallowing. Key-contact responses were “rooting” and “mumbling” motions of the beak on the surface of the key. Views of autoshaping based on stimulus substitution or stimulus surrogation do not fully explain the origin of autoshaped responses not previously elicited by the reinforcer. The present findings are consonant with views of conditioning that emphasize the large degree of biological pre-organization in conditioned response patterns, and the importance of associative factors in the control of such patterns. PMID:16811924

  17. Elimination of disinfection byproduct formation potential in reclaimed water during solar light irradiation.

    PubMed

    Qian-Yuan, Wu; Chao, Li; Ye, Du; Wen-Long, Wang; Huang, Huang; Hong-Ying, Hu

    2016-05-15

    Ecological storage of reclaimed water in ponds and lakes is widely applied in water reuse. During reclaimed water storage, solar light can degrade pollutants and improve water quality. This study investigated the effects of solar light irradiation on the disinfection byproduct formation potential in reclaimed water, including haloacetonitriles (HANs), trichloronitromethane (TCNM), trihalomethanes (THMs), haloketones (HKs) and chloral hydrate (CH). Natural solar light significantly decreased the formation potential of HANs, TCNM, and HKs in reclaimed water, but had a limited effect on the formation potential of THMs and CH. Ultraviolet (UV) light in solar radiation played a dominant role in the decrease of the formation potential of HANs, TCNM and HKs. Among the disinfection byproducts, the removal kinetic constant of dichloroacetonitrile (DCAN) with irradiation dose was much larger than those for dichloropropanone (1,1-DCP), trichloropropanone (1,1,1-TCP) and TCNM. During solar irradiation, fluorescence spectra intensities of reclaimed water also decreased significantly. The removal of tyrosine (Tyr)-like and tryptophan (Trp)-like protein fluorescence spectra intensity volumes was correlated to the decrease in DCAN formation potential. Solar irradiation was demonstrated to degrade Trp, Tyr and their DCAN formation potential. The photolysis products of Trp after solar irradiation were detected as kynurenine and tryptamine, which had chloroform, CH and DCAN formation potential lower than those of Trp. Copyright © 2016. Published by Elsevier Ltd.

  18. Design and fabrication of light weight current collectors for direct methanol fuel cells using the micro-electro mechanical system technique

    NASA Astrophysics Data System (ADS)

    Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min

    The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.

  19. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination

    NASA Astrophysics Data System (ADS)

    Guo, Zhenzhen; Ming, Xin; Wang, Gang; Hou, Baofei; Liu, Xinghang; Mei, Tao; Li, Jinhua; Wang, Jianying; Wang, Xianbao

    2018-02-01

    Solar steam technology is one of the simplest, most direct and effective ways to harness solar energy through water evaporation. Here, we report the development using super-hydrophilic copper sulfide (CuS) films with double-layer structures as light absorbers for solar steam generation. In the double-layer structure system, a porous mixed cellulose ester (MCE) membrane is used as a supporting layer, which enables water to get into the CuS light absorbers through a capillary action to provide continuous water during solar steam generation. The super-hydrophilic property of the double-layer system (CuS/MCE) leads to a thinner water film close to the air-water interface where the surface temperature is sufficiently high, leading to more efficient evaporation (˜80 ± 2.5%) under one sun illumination. Furthermore, the evaporation efficiencies still keep a steady value after 15 cycles of testing. The super-hydrophilic CuS film is promising for practical application in water purification and evaporation as a light absorption material.

  20. Evaluation of Data on Solubility of Simple Apolar Gases in Light and Heavy Water at High Temperature

    NASA Astrophysics Data System (ADS)

    Prini, Roberto Fernández; Crovetto, Rosa

    1989-07-01

    The solubility data of apolar gases in light and heavy water over the temperature range covered experimentally have been evaluated, laying particular emphasis to the region above the normal boiling points of the solvents. The systems that have been included in this work are the inert gases and CH4 in light water and heavy water, H2, O2, N2, and C2H6 in light water and D2 in heavy water. Data in the original sources have been brought to the same footing by calculating from the raw experimental data P, T, and x when they were not reported by the author. This step is considered necessary to assess critically the available sets of data. The temperature dependence of Henry's constants for all the binary systems have been expressed in terms of two different polynomial equations. The formulations presented are discussed and the limits of application given.

  1. Convection currents enhancement of the spring constant in optical tweezers

    NASA Astrophysics Data System (ADS)

    Zenteno-Hernández, J. A.; Gómez-Vieyra, A.; Torres-Hurtado, S. A.; Ramirez-San-Juan, J. C.; Ramos-García, R.

    2016-09-01

    In this work we demonstrate the increasing of the trap stiffness (spring constant) constant of an optical trap of particles suspended in water by laser-induced convection currents. These currents are the result of thermal gradients created by a light absorption in a thin layer of hydrogenated amorphous silicon (a:Si-H) deposited at the bottom of cell. Since convection currents (and therefore drag forces) are symmetric around the beam focus particles trapped by the beam are further contained. Around the focus the drag force is directed upwards and partially compensated by radiation pressure depending on the laser power increasing the stiffness of the optical trapping increases significatively so a particle trapped could dragged (by moving the translation stage leaving the beam fixed) at velocities as high as 90μm/s without escaping the trap, whereas with no a:Si-H film, the particle escapes from the trap at lower velocities (30μm/s).

  2. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  3. Contingency plan to provide safe drinking water for the city of Milan, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talbot, J.J.; Brew, P.

    1994-12-31

    The city of Milan, in western Tennessee, supplies drinking water to approximately 4,000 customers. Environmental investigations conducted by the US Army have detected low concentrations of RDX, a compound used in the manufacture of explosives, in two of the three city water supply wells. The RDX is traceable to the Milan Army Ammunition Plant nearby. The levels of RDX are being monitored and current trends indicate that levels in the wells will exceed the EPA Health Advisory Limits in the near term. In order to ensure an uninterrupted supply of acceptable quality drinking water for the city residents, the Armymore » prepared and is implementing a Contingency Plan. The plan evaluated remedial alternatives to be implemented once a trigger level of RDX is reached, including institutional controls, installation of an RDX treatment system for the water supply system, and construction of a new well field. Institutional controls include: shutting down existing wells; continued monitoring; and promulgation of ground water ordinances. Treatment technologies evaluated include: ultraviolet light and hydrogen peroxide; or removal using granular activated carbon.« less

  4. Influence of light intensity and water content of medium on total dendrobine of Dendrobium nobile Lindl.

    PubMed

    Li, Jin-Ling; Zhao, Zhi; Liu, Hong-Chang; Luo, Chun-Li; Wang, Hua-Lei

    2017-11-01

    To ascertain the influence of light intensity and water content of medium on the total dendrobine of Dendrobium nobile (D. nobile). The principal component analysis combined with total dendrobine accumulation was conducted to assess the yield and quality of D. nobile in all treatments. In the experiment, D. nobile plants were cultivated in greenhouse as tested materials, and complete test of 9 treatments was adopted with relative light intensities 75.02%, 39.74%, 29.93% and relative water content of medium 50%, 65%, 80%. The plants were treated in June and harvested till December. Indexes including agronomic traits, fresh weight and dry weight of stem and leaf, ash content, extract, and dendrobine were measured. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, the basal stems of plants were comparatively thicker with more leaves, and the fresh weight and dry weight of stems and leaves were significantly higher than other 6 treatments. Leaves in all treatments contained dendrobine. Under the light intensity treatments of 75.02% with 50%, 65%, 80% water content of medium, dendrobine content of leaves was lower while dendrobine contents of other treatments were more than 0.60%. After comprehensive assessment through the principal component analysis and total dendrobine accumulation, the results showed that 3 treatments with relative light intensity of 75.02% ranked the top three. In brief, the moderately strong light intensity and water content of medium from low to medium can facilitate the growth and yield of D. nobile plants, while light intensity from moderately weak to weak can enhance the dendrobine content. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  5. Wind influence on a coastal buoyant outflow

    NASA Astrophysics Data System (ADS)

    Whitney, Michael M.; Garvine, Richard W.

    2005-03-01

    This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.

  6. Solar fuels production by artificial photosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ager, Joel W., E-mail: JWAger@lbl.gov; Lee, Min-Hyung; Javey, Ali

    2013-12-10

    A practical method to use sunlight to generate storable chemical energy could dramatically change the landscape of global energy generation. One of the fundamental requirements of such an “artificial photosynthesis” scheme is a light capture and conversion approach capable of generating the required chemical potentials (e.g. >1.23 V for splitting water into H{sub 2} and O{sub 2}). An approach based on inorganic light absorbers coupled directly to oxidation and reduction catalysts is being developed in the Joint Center for Artificial Photosynthesis (JCAP). P-type III-V semiconductors with a high surface area can be used as high current density photocathodes. The longevitymore » under operation of these photocathodes can be improved by the use of conformal metal oxides deposited by atomic layer deposition.« less

  7. Multimodal Imaging and Lighting Bias Correction for Improved μPAD-based Water Quality Monitoring via Smartphones

    NASA Astrophysics Data System (ADS)

    McCracken, Katherine E.; Angus, Scott V.; Reynolds, Kelly A.; Yoon, Jeong-Yeol

    2016-06-01

    Smartphone image-based sensing of microfluidic paper analytical devices (μPADs) offers low-cost and mobile evaluation of water quality. However, consistent quantification is a challenge due to variable environmental, paper, and lighting conditions, especially across large multi-target μPADs. Compensations must be made for variations between images to achieve reproducible results without a separate lighting enclosure. We thus developed a simple method using triple-reference point normalization and a fast-Fourier transform (FFT)-based pre-processing scheme to quantify consistent reflected light intensity signals under variable lighting and channel conditions. This technique was evaluated using various light sources, lighting angles, imaging backgrounds, and imaging heights. Further testing evaluated its handle of absorbance, quenching, and relative scattering intensity measurements from assays detecting four water contaminants - Cr(VI), total chlorine, caffeine, and E. coli K12 - at similar wavelengths using the green channel of RGB images. Between assays, this algorithm reduced error from μPAD surface inconsistencies and cross-image lighting gradients. Although the algorithm could not completely remove the anomalies arising from point shadows within channels or some non-uniform background reflections, it still afforded order-of-magnitude quantification and stable assay specificity under these conditions, offering one route toward improving smartphone quantification of μPAD assays for in-field water quality monitoring.

  8. Light-driven water oxidation for solar fuels

    PubMed Central

    Young, Karin J.; Martini, Lauren A.; Milot, Rebecca L.; III, Robert C. Snoeberger; Batista, Victor S.; Schmuttenmaer, Charles A.; Crabtree, Robert H.; Brudvig, Gary W.

    2014-01-01

    Light-driven water oxidation is an essential step for conversion of sunlight into storable chemical fuels. Fujishima and Honda reported the first example of photoelectrochemical water oxidation in 1972. In their system, TiO2 was irradiated with ultraviolet light, producing oxygen at the anode and hydrogen at a platinum cathode. Inspired by this system, more recent work has focused on functionalizing nanoporous TiO2 or other semiconductor surfaces with molecular adsorbates, including chromophores and catalysts that absorb visible light and generate electricity (i.e., dye-sensitized solar cells) or trigger water oxidation at low overpotentials (i.e., photocatalytic cells). The physics involved in harnessing multiple photochemical events for multielectron reactions, as required in the four-electron water oxidation process, has been the subject of much experimental and computational study. In spite of significant advances with regard to individual components, the development of highly efficient photocatalytic cells for solar water splitting remains an outstanding challenge. This article reviews recent progress in the field with emphasis on water-oxidation photoanodes inspired by the design of functionalized thin film semiconductors of typical dye-sensitized solar cells. PMID:25364029

  9. Laser control of natural disperse systems

    NASA Astrophysics Data System (ADS)

    Vlasova, Olga L.; Bezrukova, Alexandra G.

    2003-10-01

    Different water disperse systems were studied by integral (spectroturbidemetry) and differential light scattering method with a laser as a source of light. The investigation done concerns the state of kaolin dispersions at storage and under dilution as an example of mineral dispersion systems such as natural water. The role of some light scattering parameters for an optical analysis of water dispersions, like the dispersion of erythrocytes and bacterial cells -Escherichia coli is discussed. The results obtained can help to elaborate the methods for on-line optical control fo natural disperse systems (water, air) with mineral and biological particles.

  10. Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel

    DOE PAGES

    Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...

    2017-03-26

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less

  11. Light Water Reactor Sustainability Program Integrated Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Kathryn A.; Busby, Jeremy; Hallbert, Bruce

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution tomore » the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.« less

  12. Advanced Steels for Accident Tolerant Fuel Cladding in Current Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Rebak, Raul B.

    After the March 2011 Fukushima events, the U.S. Congress directed the Department of Energy (DOE) to focus efforts on the development of fuel cladding materials with enhanced accident tolerance. In comparison with the stand-ard UO2-Zirconium based system, the new fuels need to tolerate loss of active cooling in the core for a considerably longer time period while maintaining or improving the fuel performance during normal operation conditions. Advanced steels such as iron-chromium-aluminum (FeCrAl) alloys are being investigated for degradation behavior both under normal operation conditions in high temperature water (e.g. 288°C) and under accident conditions for reaction with steam up to 1400°C. Commercial and experimental alloys were tested for several periods of time in 100% superheated steam from 800°C to 1475°C. Results show that FeCrAl alloys significantly outperform the resistance in steam of the current zirconium alloys.

  13. The dentist’s role in promoting community water fluoridation

    PubMed Central

    Melbye, Molly L.R.; Armfield, Jason M.

    2013-01-01

    Background and Overview Community water fluoridation is an important public health intervention that reduces oral health disparities and increases the health of the population. Promotion of its safety and effectiveness is critical to maintaining its widespread acceptance and ensuring its continued use. Dentists are a potentially important source of knowledge regarding the oral health benefits and safety of water fluoridation. However, few dentists regularly discuss fluorides, and water fluoridation in particular, with patients. The authors aim to describe and discuss the role and importance of dentists’ promotion of public water fluoridation, barriers to dentists’ involvement and some approaches that might influence dentists to promote water fluoridation more actively. Conclusions and Practice Implications Ongoing promotion of fluoridation by dentists is a key factor in ensuring sustained municipal water fluoridation. However, current undergraduate dental curricula do not adequately prepare dentists for this role, and continuing dental education may be insufficient to change clinical practice. Although smoking-cessation literature can shed some light on how to proceed, changing dentists’ practice behavior remains a largely unstudied topic. Dental associations are a key resource for dentists, providing information that can assist them in becoming advocates for water fluoridation. PMID:23283928

  14. Systems and Methods for Automated Water Detection Using Visible Sensors

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  15. Toxicity of sediment collected upriver and downriver of major cities along the lower Mississippi River

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.

    1998-01-01

    The Lower Mississippi River contributes significantly to the biodiversity and ecological stability of the alluvial valley. Agricultural, industrial and municipal developments have historically impacted environmental quality of the river. Toxicity of sediment and sediment pore water was used to assess the current effects of major cities on sediment quality along the Lower Mississippi River. Composite sediment samples were collected from four sites upriver and four sites downriver of five major cities: Cairo, IL; Memphis, TN; Vicksburg, MS; Baton Rouge, LA; and New Orleans, LA. Following EPA's standard methods for acute toxicity testing of freshwater solid-phase sediment, Hyalella azteca were exposed to the sediments for 10 d with two water renewals per day. Hyalella azteca were also exposed for 96 h to pore water extracted from the sediments. After the initial tests, the animals were exposed to ultraviolet light for 12 h. Sediments were analyzed for organics (organochlorine pesticides, PCBs, organophosphate insecticides, and PAHs) and metals (Cr, Cu, Pb, Mn, Ni, Zn). With the exception of upriver from Memphis, solid-phase sediments were not toxic to H. azteca. Pore water from sediments collected upriver of Memphis showed slight toxicity. Exposure of H. azteca to ultraviolet light did not increase the toxicity of the sediment or pore-water samples, indicating a lack of PAH toxicity. Chemical analyses did not reveal any contaminant levels of concern in the sediments. Based on toxicity testing and chemical analyses, quality of sediments collected from the Lower Mississippi was good, with the exception of sites sampled upriver of Memphis.

  16. Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics.

    PubMed

    Miniussi, Matilda; Del Terra, Lorenzo; Savi, Tadeja; Pallavicini, Alberto; Nardini, Andrea

    2015-10-01

    Plant aquaporins (AQPs) are involved in the transport of water and other small solutes across cell membranes, and thus play major roles in the regulation of plant water balance, as well as in growth regulation and response to abiotic stress factors. Limited information is currently available about the presence and role of AQPs in Coffea arabica L., despite the economic importance of the species and its vulnerability to drought stress. We identified candidate AQP genes by screening a proprietary C. arabica transcriptome database, resulting in the identification of nine putative aquaporins. A phylogenetic analysis based on previously characterized AQPs from Arabidopsis thaliana and Solanum tuberosum allowed to assign the putative coffee AQP sequences to the Tonoplast (TIP) and Plasma membrane (PIP) subfamilies. The possible functional role of coffee AQPs was explored by measuring hydraulic conductance and aquaporin gene expression on leaf and root tissues of two-year-old plants (C. arabica cv. Pacamara) subjected to different experimental conditions. In a first experiment, we tested plants for root and leaf hydraulic conductance both before dawn and at mid-day, to check the eventual impact of light on AQP activity and plant hydraulics. In a second experiment, we measured plant hydraulic responses to different water stress levels as eventually affected by changes in AQPs expression levels. Our results shed light on the possible roles of AQPs in the regulation of C. arabica hydraulics and water balance, opening promising research lines to improve the sustainability of coffee cultivation under global climate change scenarios. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Multi-characteristic opsin enabled vision restoration

    NASA Astrophysics Data System (ADS)

    Wright, Weldon; Pradhan, Sanjay; Bhattacharya, Sulgana; Mahapatra, Vasu; Tripathy, Ashutosh; Gajjeraman, Sivakumar; Mohanty, Samarendra

    2017-02-01

    Photodegenerative retinal diseases such as retinitis pigmentosa (RP) and dry age related macular degeneration (dry- AMD) lead to loss of vision in millions of individuals. Currently, no surgical or medical treatment is available though optogenetic therapies are in clinical development. Here, we demonstrate vision restoration using Multi- Characteristics Opsin (MCO1) in animal models with photo-degenerated retina. MCO1 is reliably delivered to specific retinal cells via intravitreal injection of Adeno-Associated Virus, leading to significant improvement in visually guided behavior conducted using a radial-arm water maze. The time to reach platform significantly reduced after delivery of MCO1. Notably, the improvement in visually guided behavior was observed even at light intensity levels orders of magnitude lower than that required for Channelrhodopsin-2 opsin. Chronic light exposure study showed that chronic light exposure did not compromise viability of vMCO1-treated retina. Safe virus-mediated MCO1-delivery has potential for effective gene therapy of diverse retinal degenerations in patients.

  18. Experiments on the Interaction of Light and Sound for the Advanced Laboratory

    ERIC Educational Resources Information Center

    Pierce, D. T.; Byer, R. L.

    1973-01-01

    An experiment in which both Raman-Nath and Bragg diffraction of light by acoustic waves in water are observed in the sound frequency range from 5 to 45 MHz. The apparatus consists of a laser, light detector, rf power source, quartz transducer, and homemade water cell. (Author/DF)

  19. Laser light scattering from wood samples soaked in water or in benzyl benzoate

    NASA Astrophysics Data System (ADS)

    Simonaho, S.-P.; Tolonen, Y.; Rouvinen, J.; Silvennoinen, R.

    Laser light scattering from Scots pine (Pinus Sylvesteris L.) wood samples soaked in two different liquids, which were tap water and benzyl benzoate, has been experimentally investigated. Differences in the characteristics of the scattering pattern as function of the soaking time as well as the moisture effect in the orientation of scattering pattern has been experimentally investigated. The wood samples soaked in the test liquids altered the laser light scattering in along and across the grain directions. No correlation between the content of the water in the wood sample and the orientation of laser light scattering pattern was observed.

  20. Chromoproteins Protect Blue-pigmented Corals Under Normal Conditions But May Exacerbate Stress During Bleaching Events

    NASA Astrophysics Data System (ADS)

    Richards Donà, A.

    2016-02-01

    Light in the yellow range of the visible spectrum is abundant in shallow water and is second only to ultraviolet light in potential to cause photodamage to the symbiotic algal partners living within coral cells. Chromoproteins (CPs) provide photoprotection to corals by absorbing yellow light energy and transferring it into heat that is dissipated. Because CPs absorb yellow light they are responsible for blue/purple coral pigmentation and presumably permit corals such as the endemic Hawaiian Montipora flabellata to thrive on shallow, high irradiance reefs where light is commonly supersaturating. But increasing sea surface temperatures (SSTs) are causing these corals to bleach before most other species, particularly, in Kane'ohe Bay, Hawai'i. Following the bleaching event of 2014, we observed that blue montiporids recovered more slowly and suffered more mortality than other species at similar depths. Thus it seems that while CPs provide a photoprotective advantage under normal environmental conditions, they may play a role in blue coral mortality when SSTs remain too high for too long. Through this investigation, we seek to better understand the functional role of CPs in Hawaiian coral species and determine the benefits and drawbacks to CP possession given predicted climate change scenarios. Preliminary experimental results and direct observation of currently bleaching corals in the field seem to indicate that highly blue-pigmented colonies of M. flabellata are more likely to bleach and suffer subsequent mortality than colonies with fainter blue pigmentation. It is vital we understand these phenomena since Hawaiian corals are currently experiencing the second consecutive year of higher-than-normal SSTs and our results could help elucidate the mechanisms that determine species susceptibility to thermal bleaching.

  1. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    PubMed

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  2. Continuous optical monitoring of a near-shore sea-water column

    NASA Astrophysics Data System (ADS)

    Bensky, T. J.; Neff, B.

    2006-12-01

    Cal Poly San Luis Obispo runs the Central Coast Marine Sciences Center, south-facing, 1-km-long pier in San Luis Bay, on the west coast of California, midway between Los Angeles and San Fransisco. The facility is secure and dedicated to marine science research. We have constructed an automated optical profiling system that collects sunlight samples, in half-foot increments, from a 30 foot vertical column of sea-water below the pier. Our implementation lowers a high quality, optically pure fiber cable into the water at 30 minute intervals. Light collected by the submersed fiber aperture is routed to the pier surface where it is spectrally analyzed using an Ocean Optics HR2000 spectrometer. The spectrometer instantly yields the spectrum of the light collected at a given depth. The "spectrum" here is light intensity as a function of wavelength between 200 and 1100 nm in increments of 0.1 nm. Each dive of the instrument takes approximately 80 seconds, lowers the fiber from the surface to a depth of 30 feet, and yields approximately 60 spectra, each one taken at a such successively larger depth. A computer logs each spectra as a function of depth. From such data, we are able to extract total downward photon flux, quantify ocean color, and compute attenuation coefficients. The system is entirely autonomous, includes an integrated data-browser, and can be checked-on, or even controlled over the Internet, using a web-browser. Linux runs the computer, data is logged directly to a mySQL database for easy extraction, and a PHP-script ties the system together. Current work involves studying light-energy deposition trends and effects of surface action on downward photon flux. This work has been funded by the Office of Naval Research (ONR) and the California Central Coast Research Park Initiative (C3RP).

  3. Biomechanical factors contributing to self-organization in seagrass landscapes

    USGS Publications Warehouse

    Fonseca, M.S.; Koehl, M.A.R.; Kopp, B.S.

    2007-01-01

    Field observations have revealed that when water flow is consistently from one direction, seagrass shoots align in rows perpendicular to the primary axis of flow direction. In this study, live Zostera marina shoots were arranged either randomly or in rows perpendicular to the flow direction and tested in a seawater flume under unidirectional flow and waves to determine if shoot arrangement: a) influenced flow-induced force on individual shoots, b) differentially altered water flow through the canopy, and c) influenced light interception by the canopy. In addition, blade breaking strength was compared with flow-induced force to determine if changes in shoot arrangement might reduce the potential for damage to shoots. Under unidirectional flow, both current velocity in the canopy and force on shoots were significantly decreased when shoots were arranged in rows as compared to randomly. However, force on shoots was nearly constant with downstream distance, arising from the trade-off of shoot bending and in-canopy flow reduction. The coefficient of drag was higher for randomly-arranged shoots at low velocities (< 30 cm s- 1) but converged rapidly among the two shoot arrangements at higher velocities. Shoots arranged in rows tended to intercept slightly more light than those arranged randomly. Effects of shoot arrangement under waves were less clear, potentially because we did not achieve the proper plant size?row spacing ratio. At this point, we may only suggest that water motion, as opposed to light capture, is the dominant physical mechanism responsible for these shoot arrangements. Following a computation of the Environmental Stress Factor, we concluded that even photosynthetically active blades may be damaged or broken under frequently encountered storm conditions, irrespective of shoot arrangement. We hypothesize that when flow is generally from one direction, seagrass bed patterns over multiple scales of consideration may arise as a cumulative effect of individual shoot self-organization driven by reduced force and drag on the shoots and somewhat improved light capture.

  4. Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light.

    PubMed

    Li, Yi; Li, Yanan; Ma, Shuanglong; Wang, Pengfei; Hou, Qianlei; Han, Jingjing; Zhan, Sihui

    2017-09-15

    Ag 2 WO 4 /g-C 3 N 4 composite photocatalyst was synthesized by polymerization of thiourea and ammonia chloride combined with the deposition-precipitation method, which was applied as an efficient visible-light driven photocatalyst for inactivating Escherichia coli (E. coli). The physicochemical properties of these photocatalysts were systematically characterized by various techniques such as SEM, TEM, XRD, FT-IR, BET, UV-vis DRS and PL. The synthesized photocatalysts exhibited outstandingly enhanced photocatalytic disinfection efficiency compared with that of pure g-C 3 N 4 and Ag 2 WO 4 under visible light. Furthermore, the optimal mass ratio of the Ag 2 WO 4 to g-C 3 N 4 was 5wt%, and a number of live bacteria could be completely inactivated with Ag 2 WO 4 (5%)/g-C 3 N 4 (100μg/mL) after 90min under visible light irradiation. The high disinfection efficiency is due to the synergetic effect between g-C 3 N 4 and Ag 2 WO 4 , including a good distribution of Ag 2 WO 4 particles on the surface of g-C 3 N 4 and an improved separation rate of photogenerated electron-hole pairs. The enhanced disinfection mechanism was also investigated using photogenerated current densities and electrochemical impedance spectroscopy (EIS). Considering the bulk availability and excellent disinfection activity of Ag 2 WO 4 /g-C 3 N 4 composite, it is a promising solar-driven photocatalyst for cleaning the microbial contaminated water. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Flood-inundation maps for the Iroquois River at Rensselaer, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Bunch, Aubrey R.

    2013-01-01

    Digital flood-inundation maps for a 4.0-mile reach of the Iroquois River at Rensselaer, Indiana (Ind.), were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind. Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at (http://waterdata.usgs.gov/in/nwis/uv?site_no=05522500). In addition, the National Weather Service (NWS) forecasts flood hydrographs at the Rensselaer streamgage. That forecasted peak-stage information, also available on the Internet (http://water.weather.gov/ahps/), may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. For this study, flood profiles were computed for the Iroquois River reach by means of a one-dimensional step-backwater model developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated by using the most current (June 27, 2012) stage-discharge relations at USGS streamgage 05522500, Iroquois River at Rensselaer, Ind., and high-water marks from the flood of July 2003. The calibrated hydraulic model was then used to determine nine water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at Rensselaer, Ind., and forecasted stream stages from the NWS, provides emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. A review of light-scattering techniques for the study of colloids in natural waters

    USGS Publications Warehouse

    Rees, T.F.

    1987-01-01

    In order to understand the movement of colloidal materials in natural waters, we first need to have a means of quantifying their physical characteristics. This paper reviews three techniques which utilize light-scattering phenomena to measure the translational diffusion coefficient, the rotational diffusion coefficient, and the electrophoretic mobility of colloids suspended in water. Primary emphasis is to provide sufficient theoretical detail so that hydrologists can evaluate the utility of photon correlation spectrometry, electrophoretic light scattering, and electric birefringence analysis. ?? 1987.

  7. Essentials for Successful and Widespread LED Lighting Adoption

    NASA Astrophysics Data System (ADS)

    Khan, Nisa

    2011-03-01

    Solid-state lighting (SSL), with light-emitting diodes (LEDs) as the light source, is a growing and essential field, particularly in regard to the heightened need for global energy efficiency. In recent years, SSL has experienced remarkable advances in efficiency, light output magnitude and quality. Thus such diverse applications as signage, message centers, displays, and special lighting are now adopting LEDs, taking 2010's market to 9.1 billion - 68% growth from the previous year! While this is promising, future growth in both display and lighting applications will rely upon unveiling deeper understanding and key innovations in LED lighting science and technologies. In this presentation, some LED lighting fundamentals, engineering challenges and novel solutions will be discussed to address reduction in efficiency (a.k.a. droop) at high currents, and to obtain uniform light distribution for overcoming LEDs' directional nature. The droop phenomenon has been a subject of much controversy in the industry and despite several studies and claims, a widely-accepted explanation still lacks because of counter arguments and experiments. Recently several research studies have identified that the droop behavior in nitride-based LEDs beyond certain current density ranges can only be comprehensively explained if the current leaking beyond the LED active region is included. Although such studies have identified a few useful current leakage mechanisms outside the active region, no one has included current leakage, due to non-ideal, 3-D device structures that create undesirable current distribution inside and outside the active region. This talk will address achieving desirable current distributions from optimized 3-D device structures that should reduce current leakage and hence the droop behavior. In addition to novel LED design solutions for droop reduction and uniform light distribution, the talk will address cost and yield concerns as they pertain to core material scarcity. Such solutions are expected to make LED lights more energy efficient, pleasant in appearance, longer-lasting, affordable, and thus suitable for green living.

  8. Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Logvinova, Christie L.; Frey, Karen E.; Mann, Paul J.; Stubbins, Aron; Spencer, Robert G. M.

    2015-11-01

    A warming and shifting climate in the Arctic has led to significant declines in sea ice over the last several decades. Although these changes in sea ice cover are well documented, large uncertainties remain in how associated increases in solar radiation transmitted to the underlying ocean water column will impact heating, biological, and biogeochemical processes in the Arctic Ocean. In this study, six under-ice marine, two ice-free marine, and two ice-free terrestrially influenced water samples were irradiated using a solar simulator for 72 h (representing ~10 days of ambient sunlight) to investigate dissolved organic matter (DOM) dynamics from the Chukchi and Beaufort Seas. Solar irradiation caused chromophoric DOM (CDOM) light absorption at 254 nm to decrease by 48 to 63%. An overall loss in total DOM fluorescence intensity was also observed at the end of all experiments, and each of six components identified by parallel factor (PARAFAC) analysis was shown to be photoreactive in at least one experiment. Fluorescent DOM (FDOM) also indicated that the majority of DOM in under-ice and ice-free marine waters was likely algal-derived. Measurable changes in dissolved organic carbon (DOC) were only observed for sites influenced by riverine runoff. Losses of CDOM absorbance at shorter wavelengths suggest that the beneficial UV protection currently received by marine organisms may decline with the increased light transmittance associated with sea ice melt ponding and overall reductions of sea ice. Our FDOM analyses demonstrate that DOM irrespective of source was susceptible to photobleaching. Additionally, our findings suggest that photodegradation of CDOM in under-ice waters is not currently a significant source of carbon dioxide (CO2) (i.e., we did not observe systematic DOC loss). However, increases in primary production and terrestrial freshwater export expected under future climate change scenarios may cause an increase in CDOM quantity and shift in quality throughout Arctic Ocean surface waters. As Arctic temperatures continue to warm and summer sea ice further declines, examination of the resulting enhanced photodegradation processes and their impacts on the interplay between primary production, carbon cycling, and surface ocean heating processes will be paramount.

  9. 77 FR 55877 - Initial Test Program of Condensate and Feedwater Systems for Light-Water Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ...-492- 3668; email: [email protected] . NRC's Agencywide Documents Access and Management System... Systems for Light-Water Reactors AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Systems for Boiling Water Reactor Power Plants.'' This regulatory guide is being revised to: (1) Expand...

  10. 40 CFR 141.600 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary or residual disinfectant other than ultraviolet light or delivers water that has been treated with... noncommunity water system that serves at least 10,000 people and uses a primary or residual disinfectant other than ultraviolet light or delivers water that has been treated with a primary or residual disinfectant...

  11. Important fossil source contribution to brown carbon in Beijing during winter

    NASA Astrophysics Data System (ADS)

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-03-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources.

  12. Important fossil source contribution to brown carbon in Beijing during winter

    PubMed Central

    Yan, Caiqing; Zheng, Mei; Bosch, Carme; Andersson, August; Desyaterik, Yury; Sullivan, Amy P.; Collett, Jeffrey L.; Zhao, Bin; Wang, Shuxiao; He, Kebin; Gustafsson, Örjan

    2017-01-01

    Organic aerosol (OA) constitutes a substantial fraction of fine particles and affects both human health and climate. It is becoming clear that OA absorbs light substantially (hence termed Brown Carbon, BrC), adding uncertainties to global aerosol radiative forcing estimations. The few current radiative-transfer and chemical-transport models that include BrC primarily consider sources from biogenic and biomass combustion. However, radiocarbon fingerprinting here clearly indicates that light-absorbing organic carbon in winter Beijing, the capital of China, is mainly due to fossil sources, which contribute the largest part to organic carbon (OC, 67 ± 3%) and its sub-constituents (water-soluble OC, WSOC: 54 ± 4%, and water-insoluble OC, WIOC: 73 ± 3%). The dual-isotope (Δ14C/δ13C) signatures, organic molecular tracers and Beijing-tailored emission inventory identify that this fossil source is primarily from coal combustion activities in winter, especially from the residential sector. Source testing on Chinese residential coal combustion provides direct evidence that intensive coal combustion could contribute to increased light-absorptivity of ambient BrC in Beijing winter. Coal combustion is an important source to BrC in regions such as northern China, especially during the winter season. Future modeling of OA radiative forcing should consider the importance of both biomass and fossil sources. PMID:28266611

  13. Effects of melatonin and green-wavelength LED light on the physiological stress and immunity of goldfish, Carassius auratus, exposed to high water temperature.

    PubMed

    Jung, Seo Jin; Kim, Na Na; Choi, Young Jae; Choi, Ji Yong; Choi, Young-Ung; Heo, Youn Seong; Choi, Cheol Young

    2016-10-01

    This study investigated the effects of increasing water temperature (22-30 °C) on the physiological stress response and immunity of goldfish, Carassius auratus, and the ability of green light-emitting diode (LED) irradiation or melatonin injections to mitigate this temperature-induced stress. To evaluate the effects of either green-wavelength LED light or melatonin on stress in goldfish, we measured plasma triiodothyronine (T3), thyroxine (T4), and thyroid hormone receptor (TR) mRNA expression; plasma cortisol and glucose; and immunoglobulin M (IgM) and lysozyme mRNA expression. The thyroid hormone activities, TR mRNA expression, and plasma cortisol and glucose were higher in goldfish exposed to high-temperature water, but were lower after exposure to melatonin or green-wavelength LED light. Lysozyme mRNA expression and plasma IgM activity and protein expression were lower after exposure to high water temperatures and higher after melatonin or green-wavelength LED light treatments. Therefore, high water temperature induced stress and decreased immunity; however, green-wavelength LED light and melatonin treatments mitigated the effects of stress and enhanced immunity. The benefits of melatonin decreased with time, whereas those of green-wavelength LED treatment did not.

  14. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Kong, Desheng; Hsu, Po-Chun; Yuan, Hongtao; Lee, Hyun-Wook; Liu, Yayuan; Wang, Haotian; Wang, Shuang; Yan, Kai; Lin, Dingchang; Maraccini, Peter A.; Parker, Kimberly M.; Boehm, Alexandria B.; Cui, Yi

    2016-12-01

    Solar energy is readily available in most climates and can be used for water purification. However, solar disinfection of drinking water mostly relies on ultraviolet light, which represents only 4% of the total solar energy, and this leads to a slow treatment speed. Therefore, the development of new materials that can harvest visible light for water disinfection, and so speed up solar water purification, is highly desirable. Here we show that few-layered vertically aligned MoS2 (FLV-MoS2) films can be used to harvest the whole spectrum of visible light (∼50% of solar energy) and achieve highly efficient water disinfection. The bandgap of MoS2 was increased from 1.3 to 1.55 eV by decreasing the domain size, which allowed the FLV-MoS2 to generate reactive oxygen species (ROS) for bacterial inactivation in the water. The FLV-MoS2 showed a ∼15 times better log inactivation efficiency of the indicator bacteria compared with that of bulk MoS2, and a much faster inactivation of bacteria under both visible light and sunlight illumination compared with the widely used TiO2. Moreover, by using a 5 nm copper film on top of the FLV-MoS2 as a catalyst to facilitate electron-hole pair separation and promote the generation of ROS, the disinfection rate was increased a further sixfold. With our approach, we achieved water disinfection of >99.999% inactivation of bacteria in 20 min with a small amount of material (1.6 mg l-1) under simulated visible light.

  15. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials

    PubMed Central

    Pallas, J. E.; Michel, B. E.; Harris, D. G.

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg. Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential. Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects. Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels. Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered. Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity. PMID:16656488

  16. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection.

    PubMed

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A

    2018-02-06

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume-that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration.

  17. UV Absorption Spectroscopy in Water-Filled Antiresonant Hollow Core Fibers for Pharmaceutical Detection

    PubMed Central

    Nissen, Mona; Doherty, Brenda; Hamperl, Jonas; Kobelke, Jens; Weber, Karina; Henkel, Thomas; Schmidt, Markus A.

    2018-01-01

    Due to a worldwide increased use of pharmaceuticals and, in particular, antibiotics, a growing number of these substance residues now contaminate natural water resources and drinking supplies. This triggers a considerable demand for low-cost, high-sensitivity methods for monitoring water quality. Since many biological substances exhibit strong and characteristic absorption features at wavelengths shorter than 300 nm, UV spectroscopy presents a suitable approach for the quantitative identification of such water-contaminating species. However, current UV spectroscopic devices often show limited light-matter interaction lengths, demand sophisticated and bulky experimental infrastructure which is not compatible with microfluidics, and leave large fractions of the sample analyte unused. Here, we introduce the concept of UV spectroscopy in liquid-filled anti-resonant hollow core fibers, with large core diameters and lengths of approximately 1 m, as a means to overcome such limitations. This extended light-matter interaction length principally improves the concentration detection limit by two orders of magnitude while using almost the entire sample volume—that is three orders of magnitude smaller compared to cuvette based approaches. By integrating the fibers into an optofluidic chip environment and operating within the lowest experimentally feasible transmission band, concentrations of the application-relevant pharmaceutical substances, sulfamethoxazole (SMX) and sodium salicylate (SS), were detectable down to 0.1 µM (26 ppb) and 0.4 µM (64 ppb), respectively, with the potential to reach significantly lower detection limits for further device integration. PMID:29415468

  18. The Electron Runaround: Understanding Electric Circuit Basics Through a Classroom Activity

    NASA Astrophysics Data System (ADS)

    Singh, Vandana

    2010-05-01

    Several misconceptions abound among college students taking their first general physics course, and to some extent pre-engineering physics students, regarding the physics and applications of electric circuits. Analogies used in textbooks, such as those that liken an electric circuit to a piped closed loop of water driven by a water pump, do not completely resolve these misconceptions. Mazur and Knight,2 in particular, separately note that such misconceptions include the notion that electric current on either side of a light bulb in a circuit can be different. Other difficulties and confusions involve understanding why the current in a parallel circuit exceeds the current in a series circuit with the same components, and include the role of the battery (where students may assume wrongly that a dry cell battery is a fixed-current rather than a fixed-voltage device). A simple classroom activity that students can play as a game can resolve these misconceptions, providing an intellectual as well as a hands-on understanding. This paper describes the "Electron Runaround," first developed by the author to teach extremely bright 8-year-old home-schooled children the basics of electric circuits and subsequently altered (according to the required level of instruction) and used for various college physics courses.

  19. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Licht, J. R.; Bergeron, A.; Dionne, B.

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cmmore » 2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).« less

  20. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    PubMed

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice.

  1. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals

    PubMed Central

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-01-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as “chemical herder” is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air–sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice. PMID:26601197

  2. Flood-inundation maps for the Big Blue River at Shelbyville, Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.

    2017-02-13

    Digital flood-inundation maps for a 4.1-mile reach of the Big Blue River at Shelbyville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The floodinundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at https://water. usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage on the Big Blue River at Shelbyville, Ind. (station number 03361500). Near-real-time stages at this streamgage may be obtained from the USGS National Water Information System at https://waterdata. usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at https://water.weather.gov/ ahps/, which also forecasts flood hydrographs at this site (SBVI3). Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The hydraulic model was calibrated by using the most current stage-discharge relation at the Big Blue River at Shelbyville, Ind., streamgage. The calibrated hydraulic model was then used to compute 12 water-surface profiles for flood stages referenced to the streamgage datum and ranging from 9.0 feet, or near bankfull, to 19.4 feet, the highest stage of the current stage-discharge rating curve. The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 0.98-foot vertical accuracy and 4.9-foot horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage at the Big Blue River at Shelbyville, Ind., and forecasted stream stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures as well as for post-flood recovery efforts.

  3. Light-evoked currents in retinal ganglion cells from dystrophic RCS rats.

    PubMed

    Liu, Kang; Wang, Yi; Yin, Zhengqin; Weng, Chuanhuang

    2013-01-01

    To study the electrophysiological properties of the light-evoked currents in ganglion cells in situations of retinal degeneration. We investigated light-evoked currents in ganglion cells by performing whole-cell patch-clamp recordings from ganglion cells using a retina-stretched preparation from Royal College of Surgeons (RCS) rats, a model of retinal degeneration and congenic controls at different ages. Pharmacological inhibitors of the AMPA receptor (NBQX), GABA receptor (BMI), and sodium channels (TTX) were used to identify the components of the light-evoked currents in ON, OFF and ON-OFF retinal ganglion cells. We found that the light-evoked currents in ganglion cells from control rats were inhibited by NBQX, BMI and TTX, suggesting that AMPA receptors, GABA receptors and sodium channels contribute to these currents in ganglion cells. However, only AMPA receptor-mediated currents were recorded in RCS rats. Light-evoked inward currents were absent in the majority of ganglion cells from RCS rats, particularly at the later stages of retinal degeneration. At earlier stages of retinal degeneration, we found that both the timing and amplitude of light-evoked currents are significantly different in ganglion cells from RCS and control rats. Our study furthers the understanding of the electrophysiological characteristics of retinal ganglion cells during retinal degeneration, and provides insight into the optimal timing for the treatment of retinal degeneration. Copyright © 2013 S. Karger AG, Basel.

  4. A remote sensing laser fluorometer. [for detecting oil, ligninsulfonates, and chlorophyll in water

    NASA Technical Reports Server (NTRS)

    Oneill, R. A.; Davis, A. R.; Gross, H. G.; Kruus, J.

    1975-01-01

    A sensor is reported which is able to identify certain specific substances in water by means of their fluorescence spectra. In particular, the sensor detects oil, ligninsulfonates and chlorophyll. The device is able to measure the fluorescence spectra of water at ranges up to 75 m and to detect oil spills on water at altitudes up to 300 m. Blue light from a laser is used to excite the fluorescence of the target. Any light from the ambient background illumination, from the reflected laser light or from the induced fluorescence is gathered by a small telescope focused on the target. Optical filters are used to block the reflected laser light and to select the wavelengths of interest in the fluorescence spectrum of the target. The remaining light is detected with a photomultiplier tube. The amplitude of the laser induced fluorescence in the wavelength interval selected by the optical filters is displayed on a meter or strip chart recorder.

  5. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells.

    PubMed

    Kageshima, Yosuke; Shinagawa, Tatsuya; Kuwata, Takaaki; Nakata, Josuke; Minegishi, Tsutomu; Takanabe, Kazuhiro; Domen, Kazunari

    2016-04-18

    A novel "photovoltaics (PV) + electrolyzer" concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named "SPHELAR." SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm(2) (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm(2)) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  6. State of Florida as seen from Skylab

    NASA Image and Video Library

    1974-01-10

    SL4-139-4029 (10 Jan. 1974) --- An oblique view of the State of Florida, looking northward up the peninsula, as photographed from the Skylab space station in Earth orbit by one of the Skylab 4 crewman. The camera used was a hand-held 70mm Hasselblad, with SO-368 medium-speed Ektachrome. This view shows almost the entire state, except the panhandle region. The Bahama Banks area appears in the southeast part of the picture as the light blue water. Andros Island in the Bahamas group is the island in the lower right corner. The Gulfstream flows between Florida and the Bahama Banks. This fast-moving, warm-water current transports energy from the tropics to the northern latitudes. The effect of the warmer Gulfstream waters on the atmosphere is seen as increased convection (caused by the warmer water heating the air from below) resulting in the fair weather cumulus seen confined primarily over the Gulfstream. A portion of Cuba is seen in the lower left corner of the picture. Photo credit: NASA

  7. Estimation of reservoir storage capacity using multibeam sonar and terrestrial lidar, Randy Poynter Lake, Rockdale County, Georgia, 2012

    USGS Publications Warehouse

    Lee, K.G.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Rockdale County Department of Water Resources, conducted a bathymetric and topographic survey of Randy Poynter Lake in northern Georgia in 2012. The Randy Poynter Lake watershed drains surface area from Rockdale, Gwinnett, and Walton Counties. The reservoir serves as the water supply for the Conyers-Rockdale Big Haynes Impoundment Authority. The Randy Poynter reservoir was surveyed to prepare a current bathymetric map and determine storage capacities at specified water-surface elevations. Topographic and bathymetric data were collected using a marine-based mobile mapping unit to estimate storage capacity. The marine-based mobile mapping unit operates with several components: multibeam echosounder, singlebeam echosounder, light detection and ranging system, navigation and motion-sensing system, and data acquisition computer. All data were processed and combined to develop a triangulated irregular network, a reservoir capacity table, and a bathymetric contour map.

  8. Short-Chain Polysaccharide Analysis in Ethanol-Water Solutions.

    PubMed

    Yan, Xun

    2017-07-01

    This study demonstrates that short-chain polysaccharides, or oligosaccharides, could be sufficiently separated with hydrophilic interaction LC (HILIC) conditions and quantified by evaporative light-scattering detection (ELSD). The multianalyte calibration approach improved the efficiency of calibrating the nonlinear detector response. The method allowed easy quantification of short-chain carbohydrates. Using the HILIC method, the oligosaccharide solubility and its profile in water/alcohol solutions at room temperature were able to be quantified. The results showed that the polysaccharide solubility in ethanol-water solutions decreased as ethanol content increased. The results also showed oligosaccharides to have minimal solubility in pure ethanol. In a saturated maltodextrin ethanol (80%) solution, oligosaccharide components with a degree of polymerization >12 were practically insoluble and contributed less than 0.2% to the total solute dry weight. The HILIC-ELSD method allows for the identification and quantification of low-MW carbohydrates individually and served as an alternative method to current gel permeation chromatography procedures.

  9. Modeling and Simulations in Photoelectrochemical Water Oxidation: From Single Level to Multiscale Modeling.

    PubMed

    Zhang, Xueqing; Bieberle-Hütter, Anja

    2016-06-08

    This review summarizes recent developments, challenges, and strategies in the field of modeling and simulations of photoelectrochemical (PEC) water oxidation. We focus on water splitting by metal-oxide semiconductors and discuss topics such as theoretical calculations of light absorption, band gap/band edge, charge transport, and electrochemical reactions at the electrode-electrolyte interface. In particular, we review the mechanisms of the oxygen evolution reaction, strategies to lower overpotential, and computational methods applied to PEC systems with particular focus on multiscale modeling. The current challenges in modeling PEC interfaces and their processes are summarized. At the end, we propose a new multiscale modeling approach to simulate the PEC interface under conditions most similar to those of experiments. This approach will contribute to identifying the limitations at PEC interfaces. Its generic nature allows its application to a number of electrochemical systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-05-09

    ISS013-E-16599 (9 May 2006) --- Wave sets and tidal currents in the Gulf of California are featured in this image photographed by an Expedition 13 crewmember on the International Space Station. In this image, sunglint off the Gulf of California gives the water a silver-gray appearance rather than the usual azure blue color. The sunglint allows us to see several active features which would not be visible otherwise. In this view of Punta Perihuete, Mexico we can see three major features: biological or man-made oils floating on the surface; the out-going tidal current; and complex wave patterns. The oils on the surface are recognizable as light grey, curved and variable-width streamers shaped by the local winds and currents. Plankton, fish, natural oil seeps and boats dumping bilges are all potential sources for these oils.

  11. Spotlight on fish: light pollution affects circadian rhythms of European perch but does not cause stress.

    PubMed

    Brüning, Anika; Hölker, Franz; Franke, Steffen; Preuer, Torsten; Kloas, Werner

    2015-04-01

    Flora and fauna evolved under natural day and night cycles. However, natural light is now enhanced by artificial light at night, particularly in urban areas. This alteration of natural light environments during the night is hypothesised to alter biological rhythms in fish, by effecting night-time production of the hormone melatonin. Artificial light at night is also expected to increase the stress level of fish, resulting in higher cortisol production. In laboratory experiments, European perch (Perca fluviatilis) were exposed to four different light intensities during the night, 0 lx (control), 1 lx (potential light level in urban waters), 10 lx (typical street lighting at night) and 100 lx. Melatonin and cortisol concentrations were measured from water samples every 3h during a 24 hour period. This study revealed that the nocturnal increase in melatonin production was inhibited even at the lowest light level of 1 lx. However, cortisol levels did not differ between control and treatment illumination levels. We conclude that artificial light at night at very low intensities may disturb biological rhythms in fish since nocturnal light levels around 1 lx are already found in urban waters. However, enhanced stress induction could not be demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Boreal Tree Light- and Water-Use: Asynchronous, Diverging, yet Complementary

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Baltzer, J. L.; Barr, A.; Black, T. A.; Bohrer, G.; Detto, M.; Maillet, J.; Matheny, A. M.; Roy, A.; Sonnentag, O.; Stephens, J.

    2017-12-01

    Water stress has been suggested as a key mechanism behind the contemporary increase in tree mortality rates in northwestern North America. However, a detailed analysis of boreal tree light- and water-use strategies as well as their interspecific differences are still lacking. Here, we examine the tree hydraulic behaviour of co-occurring larch (Larix laricina) and black spruce (Picea mariana), two characteristic boreal tree species, near the southern limit of the boreal ecozone in central Canada. Sap flux density (Js) and concurrently recorded stem radius fluctuations and meteorological conditions are used to quantify tree hydraulic functioning and to scrutinize tree light- and water-use strategies. Our analysis reveals an asynchrony in the diel hydrodynamics of the two species with the initial rise in Js occurring two hours earlier in larch than in black spruce. Structural differences in the crown architecture of larch and black spruce lead to interspecific differences in light harvesting that can explain the observed asynchrony in their hydraulic function. Furthermore, the two species exhibit diverging stomatal regulation strategies with larch employing relatively isohydric whereas black spruce anisohydric behaviour. Such asynchronous and diverging tree-level light- and water-use strategies provide new insights into the ecosystem-level complementarity of tree form and function, with implications for understanding boreal forests' water and carbon dynamics and resilience to environmental stress.

  13. Driver circuit for solid state light sources

    DOEpatents

    Palmer, Fred; Denvir, Kerry; Allen, Steven

    2016-02-16

    A driver circuit for a light source including one or more solid state light sources, a luminaire including the same, and a method of so driving the solid state light sources are provided. The driver circuit includes a rectifier circuit that receives an alternating current (AC) input voltage and provides a rectified AC voltage. The driver circuit also includes a switching converter circuit coupled to the light source. The switching converter circuit provides a direct current (DC) output to the light source in response to the rectified AC voltage. The driver circuit also includes a mixing circuit, coupled to the light source, to switch current through at least one solid state light source of the light source in response to each of a plurality of consecutive half-waves of the rectified AC voltage.

  14. The fabrication and optical detection of a vertical structure organic thin film transistor

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wang, D.; Jia, P.

    2014-03-01

    Using vacuum evaporation and sputtering process, we prepared a photoelectric transistor with the vertical structure of Cu/copper phthalocyanine (CuPc)/Al/copper phthalocyanine (CuPc)/ITO. The material of CuPc semiconductor has good photosensitive properties. Excitons will be generated after the optical signal irradiation in semiconductor material, and then transformed into photocurrent under the built-in electric field formed by the Schottky contact, as the organic transistor drive current makes the output current enlarged. The results show that the I-V characteristics of transistor are unsaturated. When device was irradiated by full band (white) light, its working current significantly increased. In full band white light, when Vec = 3 V, the ratio of light and no light current was ranged for 2.9-6.4 times. Device in the absence of light current amplification coefficient is 16.5, and white light amplification coefficient is 98.65.

  15. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation

    NASA Astrophysics Data System (ADS)

    Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W.

    2015-07-01

    We investigated how absorption of sunlight by chromophoric dissolved organic matter (CDOM) controls the degradation and export of DOM from Imnavait Creek, a beaded stream in the Alaskan Arctic. We measured concentrations of dissolved organic carbon (DOC), as well as concentrations and characteristics of CDOM and fluorescent dissolved organic matter (FDOM), during ice-free periods of 2011-2012 in the pools of Imnavait Creek and in soil waters draining to the creek. Spatial and temporal patterns in CDOM and FDOM in Imnavait Creek were analyzed in conjunction with measures of DOM degradation by sunlight and bacteria and assessments of hydrologic residence times and in situ UV exposure. CDOM was the dominant light attenuating constituent in the UV and visible portion of the solar spectrum, with high attenuation coefficients ranging from 86 ± 12 m-1 at 305 nm to 3 ± 1 m-1 in the photosynthetically active region (PAR). High rates of light absorption and thus light attenuation by CDOM contributed to thermal stratification in the majority of pools in Imnavait Creek under low-flow conditions. In turn, thermal stratification increased the residence time of water and DOM, and resulted in a separation of water masses distinguished by contrasting UV exposure (i.e., UV attenuation by CDOM with depth resulted in bottom waters receiving less UV than surface waters). When the pools in Imnavait Creek were stratified, DOM in the pool bottom water closely resembled soil water DOM in character, while the concentration and character of DOM in surface water was reproduced by experimental photo-degradation of bottom water. These results, in combination with water column rates of DOM degradation by sunlight and bacteria, suggest that photo-degradation is the dominant process controlling DOM fate and export in Imnavait Creek. A conceptual model is presented showing how CDOM amount and lability interact with incident UV light and water residence time to determine whether photo-degradation is "light-limited" or "substrate-limited". We suggest that degradation, and thus export, of DOM in CDOM-rich streams or ponds similar to Imnavait is typically light-limited under most flow conditions.

  16. 33 CFR 118.60 - Characteristics of lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Characteristics of lights. 118.60... LIGHTING AND OTHER SIGNALS § 118.60 Characteristics of lights. All lights required or authorized under this.... Lights must meet the requirements of this part. Lights shall be fixed lights excepting as provided in...

  17. 33 CFR 118.60 - Characteristics of lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Characteristics of lights. 118.60... LIGHTING AND OTHER SIGNALS § 118.60 Characteristics of lights. All lights required or authorized under this.... Lights must meet the requirements of this part. Lights shall be fixed lights excepting as provided in...

  18. 33 CFR 118.60 - Characteristics of lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Characteristics of lights. 118.60... LIGHTING AND OTHER SIGNALS § 118.60 Characteristics of lights. All lights required or authorized under this.... Lights must meet the requirements of this part. Lights shall be fixed lights excepting as provided in...

  19. 33 CFR 118.60 - Characteristics of lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Characteristics of lights. 118.60... LIGHTING AND OTHER SIGNALS § 118.60 Characteristics of lights. All lights required or authorized under this.... Lights must meet the requirements of this part. Lights shall be fixed lights excepting as provided in...

  20. 33 CFR 118.60 - Characteristics of lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Characteristics of lights. 118.60... LIGHTING AND OTHER SIGNALS § 118.60 Characteristics of lights. All lights required or authorized under this.... Lights must meet the requirements of this part. Lights shall be fixed lights excepting as provided in...

  1. Light assisted drying (LAD) for protein stabilization: optical characterization of samples

    NASA Astrophysics Data System (ADS)

    Young, Madison A.; McKinnon, Madison E.; Elliott, Gloria D.; Trammell, Susan R.

    2018-02-01

    Light-Assisted Drying (LAD) is a novel biopreservation technique which allows proteins to be immobilized in a dry, amorphous solid at room temperature. Indicator proteins are used in a variety of diagnostic assays ranging from highthroughput 96-well plates to new microfluidic devices. A challenge in the development of protein-based assays is preserving the structure of the protein during production and storage of the assay, as the structure of the protein is responsible for its functional activity. Freeze-drying or freezing are currently the standard for the preservation of proteins, but these methods are expensive and can be challenging in some environments due to a lack of available infrastructure. An inexpensive, simple processing method that enables supra-zero temperature storage of proteins used in assays is needed. Light-assisted drying offers a relatively inexpensive method for drying samples. Proteins suspended in a trehalose solution are dehydrated using near-infrared laser light. The laser radiation speeds drying and as water is removed the sugar forms a protective matrix. The goal of this study is optically characterize samples processed with LAD. We use polarized light imaging (PLI) to look at crystallization kinetics of samples and determine optimal humidity. PLI shows a 62.5% chance of crystallization during LAD processing and negligible crystallization during low RH storage.

  2. Multi-purpose hydrogen isotopes separation plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overallmore » plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)« less

  3. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    PubMed

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  5. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  6. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  7. 40 CFR 86.1434 - Equipment preparation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...

  8. Super sensitive UV detector using polymer functionalized nanobelts

    DOEpatents

    Wang, Zhong L; Lao, Changshi; Zhou, Jun

    2012-10-23

    An ultraviolet light sensor includes an elongated metal oxide nanostructure, a layer of an ultraviolet light-absorbing polymer, a current source and a current detector. The elongated metal oxide nanostructure has a first end and an opposite second end. The layer of an ultraviolet light-absorbing polymer is disposed about at least a portion of the metal oxide nanostructure. The current source is configured to provide electrons to the first end of the metal oxide nanostructure. The current detector is configured to detect an amount of current flowing through the metal oxide nanostructure. The amount of current flowing through the metal oxide nanostructure corresponds to an amount of ultraviolet light impinging on the metal oxide nanostructure.

  9. Atmospheric correction of AVIRIS data in ocean waters

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Arnone, Robert

    1992-01-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.

  10. Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Seika; Hasegawa, Makoto

    2017-08-01

    Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.

  11. Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole.

    PubMed

    Rao, Balaji; Wang, Wei; Cai, Qingsong; Anderson, Todd; Gu, Baohua

    2013-01-15

    The insensitive munitions compound 2,4-dinitroanisole (DNAN) is increasingly being used as a replacement for traditional, sensitive munitions compounds (e.g., trinitrotoluene [TNT]), but the environmental fate and photo-transformation of DNAN in natural water systems are currently unknown. In this study, we investigated the photo-transformation rates of DNAN with both ultraviolet (UV) and sunlight irradiation under different environmentally relevant conditions. Sunlight photo-transformation of DNAN in water was found to follow predominantly pseudo-first-order decay kinetics with an average half-life (t(1/2)) of approximately 0.70 d and activation energy (E(a)) of 53 kJ mol(-1). Photo-transformation rates of DNAN were dependent on the wavelength of the light source: irradiation with UV-B light (280-315 nm) resulted in a greater quantum yield of transformation (φ(UV-B)=3.7×10(-4)) than rates obtained with UV-A light (φ(UV-A)=2.9×10(-4) at 316-400 nm) and sunlight (φ(sun)=1.1×10(-4)). Photo-oxidation was the dominant mechanism for DNAN photo-transformation, based on the formation of nitrite (NO(2)(-)) and nitrate (NO(3)(-)) as major N species and 2,4-dinitrophenol as the minor species. Environmental factors (e.g., temperature, pH, and the presence or absence of naturally dissolved organic matter) displayed modest to little effects on the rate of DNAN photo-transformation. These observations indicate that sunlight-induced photo-transformation of DNAN may represent a significant abiotic degradation pathway in surface water, which may have important implications in evaluating the potential impacts and risks of DNAN in the environment. Published by Elsevier B.V.

  12. Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation.

    PubMed

    Chen, Fei; Yang, Qi; Zhong, Yu; An, Hongxue; Zhao, Jianwei; Xie, Ting; Xu, Qiuxiang; Li, Xiaoming; Wang, Dongbo; Zeng, Guangming

    2016-09-15

    Bromate (BrO3(-)), an oxyhalide disinfection by-product (DBP) in drinking water, has been demonstrated to be carcinogenic and genotoxic. In the current work, metallic Ag and reduced graphene oxide (RGO) co-modified BiVO4 was successfully synthesized by a stepwise chemical method coupling with a photo-deposition process and applied in the photo-reduction of BrO3(-) under visible light irradiation. In this composite, metallic Ag acted as an electron donor or mediator and RGO enhanced the BrO3(-) adsorption onto the surface of catalysts as well as an electron acceptor to restrict the recombination of photo-generated electron-hole pairs. The Ag@BiVO4@RGO composite exhibited greater photo-reduction BrO3(-) performance than pure BiVO4, Ag@BiVO4 and RGO@BiVO4 under identical experimental conditions: initial BrO3(-) concentration 150 μg/L, catalyst dosage 0.5 g/L, pH 7.0 and visible light (λ > 420 nm). The photoluminescence spectra (PL), electron-spin resonance (ESR), photocurrent density (PC) and electrochemical impedance spectroscopy (EIS) measurements indicated that the modified BiVO4 enhanced the photo-generated electrons and separated the electron-hole pairs. The photocatalytic reduction efficiency for BrO3(-) removal decreased with the addition of electron quencher K2S2O8, suggesting that electrons were the primary factor in this photo-reduction process. The declining photo-reduction efficiency of BrO3(-) in tap water should attribute to the consumption of photo-generated electrons by coexisting anions and the adsorption of dissolved organic matter (DOM) on graphene surface. The overall results indicate a promising application potential for photo-reduction in the DBPs removal from drinking water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Water content and the conversion of phytochrome regulation of lettuce dormancy

    NASA Technical Reports Server (NTRS)

    Vertucci, C. W.; Vertucci, F. A.; Leopold, A. C.

    1987-01-01

    In an effort to determine which biological reactions can occur in relation to the water content of seeds, the regulation of lettuce seed dormancy by red and far red light was determined at various hydration levels. Far red light had an inhibiting effect on germination for seeds at all moisture contents from 4 to 32% water. Germination was progressively stimulated by red light as seed hydration increased from 8 to 15%, and reached a maximum at moisture contents above 18%. Red light was ineffective at moisture contents below 8%. Seeds that had been stimulated by red light and subsequently dried lost the enhanced germinability if stored at moisture contents above 8%. The contrast between the presumed photoconversion of phytochrome far red-absorbing (Pfr) to (Pr) occurring at any moisture content and the reverse reaction occurring only if the seed moisture content is greater than 8% may be explained on the basis of the existence of unstable intermediates in the Pr to Pfr conversion. Our results suggest that the initial photoreaction involved in phytochrome conversion is relatively independent of water content, while the subsequent partial reactions become increasingly facilitated as water content increases from 8 to 18%.

  14. An overview of approaches and challenges for retrieving marine inherent optical properties from ocean color remote sensing

    NASA Astrophysics Data System (ADS)

    Werdell, P. Jeremy; McKinna, Lachlan I. W.; Boss, Emmanuel; Ackleson, Steven G.; Craig, Susanne E.; Gregg, Watson W.; Lee, Zhongping; Maritorena, Stéphane; Roesler, Collin S.; Rousseaux, Cécile S.; Stramski, Dariusz; Sullivan, James M.; Twardowski, Michael S.; Tzortziou, Maria; Zhang, Xiaodong

    2018-01-01

    Ocean color measured from satellites provides daily global, synoptic views of spectral water-leaving reflectances that can be used to generate estimates of marine inherent optical properties (IOPs). These reflectances, namely the ratio of spectral upwelled radiances to spectral downwelled irradiances, describe the light exiting a water mass that defines its color. IOPs are the spectral absorption and scattering characteristics of ocean water and its dissolved and particulate constituents. Because of their dependence on the concentration and composition of marine constituents, IOPs can be used to describe the contents of the upper ocean mixed layer. This information is critical to further our scientific understanding of biogeochemical oceanic processes, such as organic carbon production and export, phytoplankton dynamics, and responses to climatic disturbances. Given their importance, the international ocean color community has invested significant effort in improving the quality of satellite-derived IOP products, both regionally and globally. Recognizing the current influx of data products into the community and the need to improve current algorithms in anticipation of new satellite instruments (e.g., the global, hyperspectral spectroradiometer of the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission), we present a synopsis of the current state of the art in the retrieval of these core optical properties. Contemporary approaches for obtaining IOPs from satellite ocean color are reviewed and, for clarity, separated based their inversion methodology or the type of IOPs sought. Summaries of known uncertainties associated with each approach are provided, as well as common performance metrics used to evaluate them. We discuss current knowledge gaps and make recommendations for future investment for upcoming missions whose instrument characteristics diverge sufficiently from heritage and existing sensors to warrant reassessing current approaches.

  15. Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.

    1990-01-01

    Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.

  16. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  17. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl.

    PubMed

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M Teresa; Martinez, Jose C; Luque, Irene

    2010-01-22

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design.

  18. A unified model of bedforms in water, Earth and other planetary bodies

    NASA Astrophysics Data System (ADS)

    Duran Vinent, O.; Claudin, P.; Winter, C.; Andreotti, B.

    2017-12-01

    The emergence of bedforms as result of the coupling between a fluid flow and sediment transport is a remarkable example of self-organized natural patterns. Subaqueous bedforms generated by unidirectional water flows, like ripples, dunes or compound bedforms, have been shown to depend on grain size, water depth and flow velocity. However, this variety of morphologies, empirically classified according to their size, is still not understood in terms of mechanical and hydrodynamical mechanisms. We present a process-based model that simultaneously explain the scaling of bedforms for Water, Air, Mars and Venus, and can be potentially applied to other planetary bodies such as Titan or Pluto. The model couples hydrodynamics over a modulated bed to sediment transport and relaxation laws, and resolves pattern coarsening from initial to mature bedforms. We find two fundamental types of bedforms, called `laminar' and `turbulent' and analogous to water ripples and dunes, and the conditions leading to their formation. By relating morphology to hydrodynamic and sediment transport details, our model opens the way to extract hydrodynamic information from the stratigraphy record and shed a light to past and current planetary conditions.

  19. Radiation chemistry for modern nuclear energy development

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Szołucha, Monika M.

    2016-07-01

    Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.

  20. Is the use of underwater polarized light by fish restricted to crepuscular time periods?

    PubMed

    Novales Flamarique, I; Hawryshyn, C W

    1997-04-01

    We measured the spectral distributions of the underwater total and polarized light fields in the upper photic zone of meso-eutrophic waters (i.e., blue-green waters containing medium to high chlorophyll a concentrations). Per cent polarization levels during the day were always lower than 40%, but at crepuscular times these values could increase to 67%. A corresponding change occurred in the spectral distribution, with proportionately more shorter wavelength photons contributing to the total spectrum during crepuscular periods. Electrophysiological recordings from the optic nerve of rainbow trout subjected to light stimuli of varying polarization percentages show that the animal's threshold for detecting polarized light is between 63 and 72%. These physiological findings suggest that the use of water-induced polarized light cues by rainbow trout and similar percomorph fish should be restricted to crepuscular time periods.

  1. The integration of habits maintained by food and water reinforcement through stimulus compounding.

    PubMed Central

    Weiss, S J; Schindler, C W; Eason, R

    1988-01-01

    In Experiment 1, a light and a tone were correlated independently with water reinforcement of bar pressing by rats. With different naive subjects in Experiment 2, one of these stimuli was correlated with food and the other with water reinforcement (counterbalanced). In both experiments the absence of tone and light signaled extinction. Tests of stimulus-reinforcer independence in Experiment 2 indicated that tone and light controlled behavior whose rate was specifically affected by deprivation state. In the stimulus-compounding tests of both experiments, response rates were higher to tone-plus-light than to tone or light presented alone (additive summation). This is the first report of additive summation produced through compounding stimuli paired with different reinforcers. The results are discussed in the context of the effects of incentive motivation on operant performance. PMID:3193056

  2. Effect of Light on Anthocyanin Levels in Submerged, Harvested Cranberry Fruit

    PubMed Central

    Singh, Bal Ram

    2004-01-01

    Anthocyanins are a group of plant antioxidants known for their therapeutic use. The effects of natural light, red light, and far-red light on individual as well as total anthocyanin content in cranberry fruit (Vaccinium macrocarpon Ait) were examined in an experimental setting designed to mimic water-harvesting conditions. The reversed-phase high-performance liquid chromatography (HPLC) method was used to separate and analyze the anthocyanins. In contrast to the case of the control sample that was kept in the dark, natural light increased the total anthocyanin level by 75.3% and 87.2% after 24 and 48 hours of water immersion, respectively. Red light and far-red light increased the total anthocyanin level by 41.5% and 34.7%, respectively. The amount of each individual anthocyanin increased differently under natural light, red light, and far-red light, suggesting that expressions of enzymes that catalyze the anthocyanin biosynthesis are regulated differently by environments. PMID:15577187

  3. A Cu-Zn nanoparticle promoter for selective carbon dioxide reduction and its application in visible-light-active Z-scheme systems using water as an electron donor.

    PubMed

    Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro

    2018-04-17

    Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.

  4. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    PubMed

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-02

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  6. Characterizing Scitillation and Cherenkov Light Yield in Water-Based Liquid Scintillators

    NASA Astrophysics Data System (ADS)

    Land, B. J.; Caravaca, J.; Descamps, F. B.; Orebi Gann, G. D.

    2016-03-01

    The recent development of Water-based Liquid Scintillator (WbLS) has made it possible to produce scintillating materials with highly tunable light yields and excellent optical clarity. This allows for a straightforward combination of the directional properties of Cherenkov light with the greater energy resolution afforded by the typically brighter scintillation light, which lends itself well to a broad program of neutrino physics. Here we explore the light yields and optical properties of WbLS materials in development for Theia (formerly ASDC) as measured in our benchtop Theia R&D at Berkeley Lab and extrapolate to larger detectors.

  7. The Estrogenic Content of Rodent Diets, Bedding, Cages, and Water Bottles and Its Effect on Bisphenol A Studies

    PubMed Central

    Thigpen, Julius E; Setchell, Kenneth DR; Kissling, Grace E; Locklear, Jacqueline; Caviness, Gordon F; Whiteside, Tanya; Belcher, Scott M; Brown, Nadine M; Collins, Bradley J; Lih, Fred B; Tomer, Kenneth B; Padilla-Banks, Elizabeth; Camacho, Luísa; Adsit, Floyd G; Grant, Mary

    2013-01-01

    The lowest observed adverse effect level for bisphenol A (BPA) in mice and rats is currently poorly defined due to inconsistent study designs and results in published studies. The objectives of the current study were to (1) compare the estrogenic content of rodent diets, bedding, cages, and water bottles to evaluate their impact on the estrogenic activity of BPA and (2) review the literature on BPA to determine the most frequently reported diets, beddings, cages, and water bottles used in animal studies. Our literature review indicated that low-dose BPA animal studies have inconsistent results and that factors contributing to this inconsistency are the uses of high-phytoestrogen diets and the different routes of exposure. In 44% (76 of 172) of all reports, rodents were exposed to BPA via the subcutaneous route. Our literature review further indicated that the type of diet, bedding, caging, and water bottles used in BPA studies were not always reported. Only 37% (64 of 172) of the reports described the diet used. In light of these findings, we recommend the use of a diet containing low levels of phytoestrogen (less than 20 µg/g diet) and metabolizable energy (approximately 3.1 kcal/g diet) and estrogen-free bedding, cages, and water bottles for studies evaluating the estrogenic activity of endocrine-disrupting compounds such as BPA. The oral route of BPA exposure should be used when results are to be extrapolated to humans. PMID:23562095

  8. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  9. Parameterizing ecosystem light use efficiency and water use efficiency to estimate maize gross primary production and evapotranspiration using MODIS EVI

    USDA-ARS?s Scientific Manuscript database

    Quantifying global carbon and water balances requires accurate estimation of gross primary production (GPP) and evapotranspiration (ET), respectively, across space and time. Models that are based on the theory of light use efficiency (LUE) and water use efficiency (WUE) have emerged as efficient met...

  10. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: a mini-review

    NASA Astrophysics Data System (ADS)

    Taffa, Dereje H.; Dillert, Ralf; Ulpe, Anna C.; Bauerfeind, Katharina C. L.; Bredow, Thomas; Bahnemann, Detlef W.; Wark, Michael

    2017-01-01

    Solar-assisted water splitting using photoelectrochemical cells (PECs) is one of the promising pathways for the production of hydrogen for renewable energy storage. The nature of the semiconductor material is the primary factor that controls the overall energy conversion efficiency. Finding semiconductor materials with appropriate semiconducting properties (stability, efficient charge separation and transport, abundant, visible light absorption) is still a challenge for developing materials for solar water splitting. Owing to the suitable bandgap for visible light harvesting and the abundance of iron-based oxide semiconductors, they are promising candidates for PECs and have received much research attention. Spinel ferrites are subclasses of iron oxides derived from the classical magnetite (FeIIFe2IIIO4) in which the FeII is replaced by one (some cases two) additional divalent metals. They are generally denoted as MxFe3-xO4 (M=Ca, Mg, Zn, Co, Ni, Mn, and so on) and mostly crystallize in spinel or inverse spinel structures. In this mini review, we present the current state of research in spinel ferrites as photoelectrode materials for PECs application. Strategies to improve energy conversion efficiency (nanostructuring, surface modification, and heterostructuring) will be presented. Furthermore, theoretical findings related to the electronic structure, bandgap, and magnetic properties will be presented and compared with experimental results.

  11. Methodology, status, and plans for development and assessment of the RELAP5 code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.W.; Riemke, R.A.

    1997-07-01

    RELAP/MOD3 is a computer code used for the simulation of transients and accidents in light-water nuclear power plants. The objective of the program to develop and maintain RELAP5 was and is to provide the U.S. Nuclear Regulatory Commission with an independent tool for assessing reactor safety. This paper describes code requirements, models, solution scheme, language and structure, user interface validation, and documentation. The paper also describes the current and near term development program and provides an assessment of the code`s strengths and limitations.

  12. Northwest Energy Efficient Manufactured Housing Program Specification Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  13. The current development status of the Orbiting Carbon Observatory (OCO) instrument optical design

    NASA Technical Reports Server (NTRS)

    Haring, Robert; Sutin, Brian; Crisp, David; Pollock, Randy; Sundstrand, Hamilton

    2005-01-01

    The status of the OCO instrument optical design is presented in this paper. The optical bench assembly comprises three cooled grating spectrometers coupled to an all-reflective telescope/relay system. Dichroic beam splitters are used to separate the light from a common telescope into the three spectral bands. The three bore sighted spectrometers allow the total column CO2 absorption path to be corrected for optical path and surface pressure uncertainties, aerosols, and water vapor. The design of the instrument is based on classic flight proven technologies.

  14. Lambert-Beer law in ocean waters: optical properties of water and of dissolved/suspended material, optical energy budgets.

    PubMed

    Stavn, R H

    1988-01-15

    The role of the Lambert-Beer law in ocean optics is critically examined. The Lambert-Beer law and the three-parameter model of the submarine light field are used to construct an optical energy budget for any hydrosol. It is further applied to the analytical exponential decay coefficient of the light field and used to estimate the optical properties and effects of the dissolved/suspended component in upper ocean layers. The concepts of the empirical exponential decay coefficient (diffuse attenuation coefficient) of the light field and a constant exponential decay coefficient for molecular water are analyzed quantitatively. A constant exponential decay coefficient for water is rejected. The analytical exponential decay coefficient is used to analyze optical gradients in ocean waters.

  15. Low-noise and high-speed photodetection system using optical feedback with a current amplification function

    NASA Astrophysics Data System (ADS)

    Akiba, M.

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  16. Low-noise and high-speed photodetection system using optical feedback with a current amplification function.

    PubMed

    Akiba, M

    2015-09-01

    A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz(1/2) at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.

  17. Recent advances in ruthenium complex-based light-driven water oxidation catalysts.

    PubMed

    Xue, Long-Xin; Meng, Ting-Ting; Yang, Wei; Wang, Ke-Zhi

    2015-11-01

    The light driven splitting of water is one of the most attractive approaches for direct conversion of solar energy into chemical energy in the future. Ruthenium complexes as the water oxidation catalysts (WOCs) and light sensitizers have attracted increasing attention, and have made a great progress. This mini-review highlights recent progress on ruthenium complex-based photochemical and photoelectrochemical water oxidation catalysts. The recent representative examples of these ruthenium complexes that are in homogeneous solution or immobilized on solid electrodes, are surveyed. In particular, special attention has been paid on the supramolecular dyads with photosensitizer and WOC being covalently hold together, and grafted onto the solid electrode. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A transition to white LED increases ecological impacts of nocturnal illumination on aquatic primary producers in a lowland agricultural drainage ditch.

    PubMed

    Grubisic, Maja; van Grunsven, Roy H A; Manfrin, Alessandro; Monaghan, Michael T; Hölker, Franz

    2018-05-14

    The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. SU-E-T-146: Reference Dosimetry for Protons and Light-Ion Beams Based on Graphite Calorimetry.

    PubMed

    Rossomme, S; Palmans, H; Thomas, R; Lee, N; Bailey, M; Shipley, D; Al-Sulaiti, L; Cirrone, P; Romano, F; Kacperek, A; Bertrand, D; Vynckier, S

    2012-06-01

    The IAEA TRS-398 code of practice can be applied for the measurement of absorbed dose to water under reference conditions with an ionization chamber. For protons, the combined relative standard uncertainty on those measurements is less than 2% while for light-ion beams, it is considerably larger, i.e. 3.2%, mainly due to the higher uncertainty contributions for the water to air stopping power ration and the W air-value on the beam quality correction factors kQ,Q 0 . To decrease this uncertainty, a quantification of kQ,Q 0 is proposed using a primary standard level graphite calorimeter. This work includes numerical and experimental determinations of dose conversion factors to derive dose to water from graphite calorimetry. It also reports on the first experimental data obtained with the graphite calorimeter in proton, alpha and carbon ion beams. Firstly, the dose conversion has been calculated with by Geant4 Monte-Carlo simulations through the determination of the water to graphite stopping power ratio and the fluence correction factor. The latter factor was also derived by comparison of measured ionization curves in graphite and water. Secondly, kQ,Q 0 was obtained by comparison of the dose response of ionization chambers with that of the calorimeter. Stopping power ratios are found to vary by no more than 0.35% up to the Bragg peak, while fluence correction factors are shown to increase slightly above unity close to the Bragg peak. The comparison of the calorimeter with ionization chambers is currently under analysis. For the modulated proton beam, preliminary results on W air confirm the value recommended in TRS-398. Data in both the non-modulated proton and light-ion beams indicate higher values but further investigation of heat loss corrections is needed. The application of graphite calorimetry to proton, alpha and carbon ion beams has been demonstrated successfully. Other experimental campaigns will be held in 2012. This work is supported by the BioWin program of the Wallon Government. © 2012 American Association of Physicists in Medicine.

  20. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System.

    PubMed

    Gomez-Saez, Gonzalo V; Pop Ristova, Petra; Sievert, Stefan M; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I

    2017-01-01

    The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe 2+ . Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter ), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13 C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13 C-incorporation in the dark allowed the classification of ai C 15:0 , C 15:0 , and i C 16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13 C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism.

  1. The Florida Seagrass Integrated Mapping and Monitoring (SIMM) Program: Indications of the effects of regional climate variability on these vital ecosystems

    NASA Astrophysics Data System (ADS)

    Yarbro, L.; Carlson, P. R., Jr.

    2016-12-01

    The SIMM program was developed to protect and manage seagrass resources in Florida by providing a collaborative vehicle for seagrass mapping, monitoring, data sharing, and reporting. We summarize and interpret mapping data and field assessments of seagrass abundance and diversity and water quality gathered by regional scientists and managers who work in estuaries from the Panhandle to the northeast Florida coast. Since 2013, regional reports summarizing the status and trends of seagrass ecosystems have been available on the web. The format provides current information for a wide stakeholder community. Ongoing collaborative efforts of more than 30 seagrass researchers and managers provide timely information on environmental and ecosystem changes in these important systems. Since the first published seagrass assessments in 2009, we have observed large changes in seagrass abundance and diversity in several regions; most but not all changes were likely due to variations in water quality that determine the light available to benthic vegetation. In the Panhandle and the Big Bend, in 2012-2104, increases in the frequency and severity of storms and resulting runoff reduced water quality which in turn decreased the abundance and distribution of seagrasses. The storm pattern resulted from changes in the subtropical jet stream and persisted for 3 years. In south Florida, heat and drought elevated salinities to extreme levels in Florida Bay in 2015; the resulting stratification along with high temperatures caused die-off of thousands of hectares of seagrass in the north central Bay. Extremely wet conditions in southeast Florida in 2015-2016 strained the water management system, resulting in large releases of polluted freshwater to estuaries on the southwest and southeast coasts, reducing light availability and causing large blooms of noxious algae. While other regions have also experienced algal blooms that reduced available light (Indian River Lagoon), seagrasses have remained stable or improved in regions where climatic conditions have been stable and where concerted efforts continue to maintain excellent water quality (Springs Coast, Tampa Bay, Sarasota Bay). With continuing updates, the SIMM program and reports provide timely information and assessment of seagrasses at a statewide level.

  2. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System

    PubMed Central

    Gomez-Saez, Gonzalo V.; Pop Ristova, Petra; Sievert, Stefan M.; Elvert, Marcus; Hinrichs, Kai-Uwe; Bühring, Solveig I.

    2017-01-01

    The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles), characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter), supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion, this study highlights the relative importance of chemoautotrophy compared to photoautotrophy in a shallow-water hydrothermal system, emphasizing chemosynthesis as a prominent process for biomass production in marine coastal environments influenced by hydrothermalism. PMID:28484442

  3. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion.

    PubMed

    Ding, Yuchen; Nagpal, Prashant

    2016-10-14

    Several strategies are currently being investigated for conversion of incident sunlight into renewable sources of energy, and photocatalytic or photoelectrochemical production of solar fuels can provide an important alternative. Titanium dioxide (TiO 2 ) has been heavily investigated as a material of choice due to its excellent optoelectronic properties and stability, and anion-doping proposed as a pathway to improve light absorption as well as improving the efficiency of oxygen production. While several studies have used morphological tuning, elemental doping, and surface engineering in TiO 2 to extend its absorption, there is a need to optimize simultaneously charge transport and improve interfacial chemical reaction kinetics. Here we show anion-doped (nitrogen, carbon) standalone TiO 2 nanotube membranes that absorb visible light for the water-splitting reaction, using both wireless (photocatalysis) and wired (photoelectrochemical) solar-to-fuel conversion (STFC) cells. Using simulated solar radiation, we show generation of hydrogen as a solar fuel using visible light photocatalysis. Furthermore, using a model we elucidate detailed photophysics and photoelectrochemical properties of these nanotubes, and explain the kinetics of photogenerated charge carriers following light absorption. We show that while visible light induces a superlinear photoresponse for catalytic reduction and may benefit from higher incident light intensity, ultraviolet light shows a linear photoresponse and saturation with higher light flux due to trapping of photogenerated charges (mainly electrons). These results can have important implications for design of other metal-oxide membranes for solar fuel generation, and appropriate design of dopants and induced energy levels in these photocatalysts.

  4. Toward a hydro-political water cycle: virtual water,hydrology and international political economy

    NASA Astrophysics Data System (ADS)

    Greco, Francesca

    2014-05-01

    At the light of global food trade, no water cycle can be considered "closed" under a political point of view. While the hydrological cycle is a circular closed environment, if we open up our perspectives to social sciences, we will demonstrate how, thanks to virtual water, it is today possible to elaborate how much water 'enters or leave' any water body under the form crop-export, in terms of " water used for the production of agri-food products'. This new 'hydro-political cycle' will be discussed at the light of different theoretical perspectives: food trade theories, hydrology, international water law, socio-economic metabolism, material flow analysis.

  5. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based catalysts, methanol oxidation suffers from high overpotential and catalyst poisoning by high concentration of substrates, so current nickel-based catalysts are more suitable to be used as oxygen evolution catalysts. A photoanode design that applies nickel oxides to a semiconductor that is incorporated with surface-plasmonic metal electrodes to do solar water oxidation with visible light is proposed.

  6. Polar oceans in a changing climate.

    PubMed

    Barnes, David K A; Tarling, Geraint A

    2017-06-05

    Most of Earth's surface is blue or white, but how much of each would depend on the time of observation. Our planet has been through phases of snowball (all frozen), greenhouse (all liquid seas) and icehouse (frozen and liquid). Even during current icehouse conditions, the extent of ice versus water has changed considerably between ice ages and interglacial periods. Water has been vital for life on Earth and has driven and been influenced by transitions between greenhouse and icehouse. However, neither the possession of water nor having liquid and frozen seas are unique to Earth (Figure 1). Frozen water oceans on the moons Enceladus and Europa (and possibly others) and the liquid and frozen hydrocarbon oceans on Titan probably represent the most likely areas to find extraterrestrial life. We know very little about life in Earth's polar oceans, yet they are the engine of the thermohaline 'conveyor-belt', driving global circulation of heat, oxygen, carbon and nutrients as well as setting sea level through change in ice-mass balance. In regions of polar seas, where surface water is particularly cold and dense, it sinks to generate a tropic-ward flow on the ocean floor of the Pacific, Atlantic and Indian Oceans. Cold water holds more gas, so this sinking water exports O 2 and nutrients, thereby supporting life in the deep sea, as well as soaking up CO 2 from the atmosphere. Water from mid-depths at lower latitudes flows in to replace the sinking polar surface water. This brings heat. The poles are cold because they receive the least energy from the sun, and this extreme light climate varies on many different time scales. To us, the current warm, interglacial conditions seem normal, yet such phases have represented only ∼10% of Homo sapiens' existence. Variations in Earth's orbit (so called 'Milankovitch cycles') have driven cyclical alternation of glaciations (ice ages) and warmer interglacials. Despite this, Earth's polar regions have been our planet's most environmentally constant surface regions for several millions of years, with most land ice-covered and much of the ocean seasonally freezing. The two poles have much in common, such as light climate, temperature and water viscosity, winter calm and summer (iceberg and storm) disturbance and resources. However, they are also regions of striking contrasts: the Arctic Ocean is near surrounded by land compared with the Antarctic continent, which is surrounded by the Southern Ocean. Polar oceans contrast in size, age, isolation, depth, oceanography, biology and human factors, such as governance and human habitation. The simplest foodwebs with the smallest residents live on the 1% of Antarctica that is ice free, whilst the largest animals that have ever lived on Earth (Blue and Fin whales) feed in the Arctic and Southern Oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effects of prolonged light exposure times on water sorption, solubility and cross-linking density of simplified etch-and-rinse adhesives.

    PubMed

    Wambier, Letícia; Malaquias, Tamirez; Wambier, Denise Stadler; Patzlaff, Rafael T; Bauer, José; Loguercio, Alessandro D; Reis, Alessandra

    2014-06-01

    This study evaluated the effects of light exposure times on water sorption, solubility, and polymer cross-linking density of simplified etch-and-rinse adhesives. Four commercial adhesives (XP Bond, Adper Single Bond 2, Tetric N-Bond, and Ambar) were selected, and resin disks 5 mm in diameter and 1.0 mm thick were prepared and light cured for 20, 40, or 80 s using an LED light-curing unit at 1200 mW/cm2. Water sorption and solubility were evaluated over a 28-day period. For polymer cross-linking density, additional specimens were prepared and their Knoop hardness measured before and after immersion in 100% ethanol. The data from each test were evaluated using a two-way ANOVA and Tukey's test (α = 0.05). The XP Bond adhesive showed higher water sorption (similar to Adper Single Bond 2) and solubility (p < 0.05) than did the other materials. Prolonged exposure times did not reduce the water sorption but did reduce the solubility of all tested materials (p < 0.05). For Ambar, the increase in the exposure time resulted in a significantly lower percent reduction in hardness. Water sorption, solubility, and cross-linking density of the materials selected in this study seem to be mainly influenced by the adhesive composition. Prolonged light exposure times reduced the solubility of the materials.

  8. Water Purification Systems

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A water purification/recycling system developed by Photo-Catalytics, Inc. (PCI) for NASA is commercially available. The system cleanses and recycles water, using a "photo-catalysis" process in which light or radiant energy sparks a chemical reaction. Chemically stable semiconductor powders are added to organically polluted water. The powder absorbs ultraviolet light, and pollutants are oxidized and converted to carbon dioxide. Potential markets for the system include research and pharmaceutical manufacturing applications, as well as microchip manufacture and wastewater cleansing.

  9. The role of ITO resistivity on current spreading and leakage in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sheremet, V.; Genç, M.; Elçi, M.; Sheremet, N.; Aydınlı, A.; Altuntaş, I.; Ding, K.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2017-11-01

    The effect of a transparent ITO current spreading layer on electrical and light output properties of blue InGaN/GaN light emitting diodes (LEDs) is discussed. When finite conductivity of ITO is taken into account, unlike in previous models, the topology of LED die and contacts are shown to significantly affect current spreading and light output characteristics in top emitting devices. We propose an approach for calculating the current transfer length describing current spreading. We show that an inter-digitated electrode configuration with distance between the contact pad and the edge of p-n junction equal to transfer length in the current spreading ITO layer allows one to increase the optical area of LED chip, as compared to the physical area of the die, light output power, and therefore, the LED efficiency for a given current density. A detailed study of unpassivated LEDs also shows that current transfer lengths longer than the distance between the contact pad and the edge of p-n junction leads to increasing surface leakage that can only be remedied with proper passivation.

  10. Rapid water disinfection over a Ag/AgBr/covalent triazine-based framework composite under visible light.

    PubMed

    Li, Liuyi; Li, Xiaofen; Cheng, Zhi; Bi, Jinhong; Liang, Shijing; Zhang, Zizhong; Yu, Yan; Wu, Ling

    2018-05-22

    Development of visible-light-induced and rapid water disinfection is of significant importance. Covalent triazine-based frameworks (CTFs) with pre-designable structures and favorable semiconductive behaviors hold great promise for photocatalytic water disinfection. Here, we report an Ag/AgBr/CTF composite with a layered structure, which serves as an efficient photocatalyst for rapid water disinfection. Water disinfection with >99.99% inactivation of Escherichia coli within 12 min was achieved by using a small amount of Ag/AgBr/CTF under visible light irradiation. The inactivation efficiency of Ag/AgBr/CTF was ∼10 times better than that of bare Ag/AgBr. Rapid water disinfection by the Ag/AgBr/CTF composite mainly results from the greatly improved generation of reactive oxygen species through the synergistic effects among the three components and the affinity of CTF to the cell wall of bacteria.

  11. Sound intensity probe for ultrasonic field in water using light-emitting diodes and piezoelectric elements

    NASA Astrophysics Data System (ADS)

    Zeng, Xi; Mizuno, Yosuke; Nakamura, Kentaro

    2017-12-01

    The sound intensity vector provides useful information on the state of an ultrasonic field in water, since sound intensity is a vector quantity expressing the direction and magnitude of the sound field. In the previous studies on sound intensity measurement in water, conventional piezoelectric sensors and metal cables were used, and the transmission distance was limited. A new configuration of a sound intensity probe suitable for ultrasonic measurement in water is proposed and constructed for trial in this study. The probe consists of light-emitting diodes and piezoelectric elements, and the output signals are transmitted through fiber optic cables as intensity-modulated light. Sound intensity measurements of a 26 kHz ultrasonic field in water are demonstrated. The difference in the intensity vector state between the water tank with and without sound-absorbing material on its walls was successfully observed.

  12. Changing climate in the Lake Superior region: a case study of the June 2012 flood and its effects on the western-lake water column

    NASA Astrophysics Data System (ADS)

    Minor, E. C.; Forsman, B.; Guildford, S. J.

    2013-12-01

    In Lake Superior, the world's largest freshwater lake by area, we are seeing annual surface-water temperature increases outpacing those of the overlying atmosphere. We are also seeing ever earlier onsets of water-column stratification (in data sets from the mid-1980s to the present). In Minnesota, including the Lake Superior watershed, precipitation patterns are also shifting toward fewer and more extreme storm events, such as the June 2012 solstice flood, which impacted the western Lake Superior basin. We are interested in how such climatological changes will affect nutrient and carbon biogeochemistry in Lake Superior. The lake is currently an oligotrophic system exhibiting light limitation of primary production in winter and spring, with summer primary production generally limited by phosphorus and sometimes co-limited by iron. Analyses in the western arm of Lake Superior showed that the June 2012 flood brought large amounts of sediment and colored dissolved organic matter (CDOM) from the watershed into the lake. There was initially a ~50-fold spike in the total phosphorus concentrations (and a 5 fold spike in soluble reactive phosphorus) in flood-impacted waters. This disappeared rapidly, in large part due to sediment settling and did not lead to an increase in chlorophyll concentrations at monitored sampling sites. Instead, lake phytoplankton appeared light limited by a surface lens of warm water enriched in CDOM that persisted for over a month after the flood event itself. Our observations highlight the need for continuing research on these complex in-lake processes in order to make accurate predictions about longer term impacts of these large episodic inputs in CDOM, sediment, and nutrient loading.

  13. Photocatalytic water oxidation by a pyrochlore oxide upon irradiation with visible light: rhodium substitution into yttrium titanate.

    PubMed

    Kiss, Borbala; Didier, Christophe; Johnson, Timothy; Manning, Troy D; Dyer, Matthew S; Cowan, Alexander J; Claridge, John B; Darwent, James R; Rosseinsky, Matthew J

    2014-12-22

    A stable visible-light-driven photocatalyst (λ≥450 nm) for water oxidation is reported. Rhodium substitution into the pyrochlore Y2 Ti2 O7 is demonstrated by monitoring Vegard's law evolution of the unit-cell parameters with changing rhodium content, to a maximum content of 3 % dopant. Substitution renders the solid solutions visible-light active. The overall rate of oxygen evolution is comparable to WO3 but with superior light-harvesting and surface-area-normalized turnover rates, making Y2 Ti1.94 Rh0.06 O7 an excellent candidate for use in a Z-scheme water-splitting system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures?

    PubMed

    Leibar, Urtzi; Aizpurua, Ana; Unamunzaga, Olatz; Pascual, Inmaculada; Morales, Fermín

    2015-05-01

    While photosynthetic responses to elevated CO2, elevated temperature, or water availability have previously been reported for grapevine as responses to single stress factors, reports on the combined effect of multiple stress factors are scarce. In the present work, we evaluated effects of simulated climate change [CC; 700 ppm CO2, 28/18 °C, and 33/53% relative humidity (RH), day/night] versus current conditions (375 ppm CO2, 24/14 °C, and 45/65% RH), water availability (well-irrigated vs. water deficit), and different types of soil textures (41, 19, and 8% of soil clay contents) on grapevine (Vitis vinifera L. cv. Tempranillo) photosynthesis. Plants were grown using the fruit-bearing cutting model. CC increased the photosynthetic activity of grapevine plants grown under well-watered conditions, but such beneficial effects of elevated CO2, elevated temperature, and low RH were abolished by water deficit. Under water-deficit conditions, plants subjected to CC conditions had similar photosynthetic rates as those grown under current conditions, despite their higher sub-stomatal CO2 concentrations. As expected, water deficit reduced photosynthetic activity in association with inducing stomatal closure that prevents water loss. Evidence for photosynthetic downregulation under elevated CO2 was observed, with decreases in photosynthetic capacity and leaf N content and increases in the C/N ratio in plants subjected to CC conditions. Soil texture had no marked effects on photosynthesis and did not modify the photosynthetic response to CC and water-deficit conditions. However, in mature well-irrigated plants grown in the soils with the highest sand content, an important decrease in stomatal conductance was observed as well as a slight decrease in the utilization of absorbed light in photosynthetic electron transport (measured as photochemical quenching), possibly related to a low water-retention capacity of these soils even under well-watered conditions.

  15. Final Cannon AFB Housing Privatization Environmental Assessment

    DTIC Science & Technology

    2009-07-01

    parking areas, sidewalks, street lighting , utilities, and storm water drainage systems within the MFH areas would be the responsibility of the PO. The...accordance with the quality standards established. Infrastructure such as roads, parking areas, sidewalks, street lighting , utilities, and storm water...to new residents presents instructions for proper disposal of used oil, batteries, tires, and fluorescent light bulbs. 3.7 AIR QUALITY 3.7.1

  16. [Response processes of Aralia elata photosynthesis and transpiration to light and soil moisture].

    PubMed

    Chen, Jian; Zhang, Guang-Can; Zhang, Shu-Yong; Wang, Meng-Jun

    2008-06-01

    By using CIRAS-2 portable photosynthesis system, the light response processes of Aralia elata photosynthesis and transpiration under different soil moisture conditions were studied, aimed to understand the adaptability of A. elata to different light and soil moisture conditions. The results showed that the response processes of A. elata net photosynthetic rate (Pn), transpiration rate (Tr), and water use efficiency (WUE) to photon flux density (PFD) were different. With the increasing PFD in the range of 800-1800 micromol x m2(-2) x s(-1), Pn changed less, Tr decreased gradually, while WUE increased obviously. The light saturation point (LSP) and light compensation point (LCP) were about 800 and 30 micromol m(-2) x s(-1), respectively, and less affected by soil water content; while the apparent photosynthetic quantum yield (Phi) and dark respiratory rate (Rd) were more affected by the moisture content. The Pn and WUE had evident threshold responses to the variations of soil water content. When the soil relative water content (RWC) was in the range of 44%-79%, A. elata could have higher levels of Pn and WUE.

  17. A unique form of light reflector and the evolution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae)

    PubMed Central

    Parker, A. R.; Mckenzie, D. R.; Ahyong, S. T.

    1998-01-01

    The first demonstration, to our knowledge, of an evolutionary shift in communication mode in animals is presented. Some species of Ovalipes display spectacular iridescence resulting from multilayer reflectors in the cuticle. This reflector is unique in animals because each layer is corrugated and slightly out of phase with adjacent layers. Solid layers are separated from fluid layers in the reflector by side branches acting as support struts. An effect of this reflector is that blue light is reflected over a 'broad' angle around a plane parallel to the sea floor when the host crab is resting. Species of Ovalipes all possess stridulatory structures. The shallow-water species with the best developed stridulatory structures are non-iridescent and use sound as a signal. Deep-water species possess poorly developed stridulatory structures and display iridescence from most regions of the body. In deep water, where incident light is blue, light display is highly directional in contrast to sound produced via stridulation. Sound and light display probably perform the same function of sexual signalling in Ovalipes, although the directional signal is less likely to attract predators. Deep-water species of Ovalipes appear to have evolved towards using light in conspecific signalling. This change from using sound to using light reflects the change in habitat light properties, perhaps the hunting mechanisms of cohabitees, and its progression is an indicator of phylogeny. The changes in sexual signalling mechanisms, following spatial–geographical isolation, may have promoted speciation in Ovalipes.

  18. Software Quality Assurance and Verification for the MPACT Library Generation Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuxuan; Williams, Mark L.; Wiarda, Dorothea

    This report fulfills the requirements for the Consortium for the Advanced Simulation of Light-Water Reactors (CASL) milestone L2:RTM.P14.02, “SQA and Verification for MPACT Library Generation,” by documenting the current status of the software quality, verification, and acceptance testing of nuclear data libraries for MPACT. It provides a brief overview of the library generation process, from general-purpose evaluated nuclear data files (ENDF/B) to a problem-dependent cross section library for modeling of light-water reactors (LWRs). The software quality assurance (SQA) programs associated with each of the software used to generate the nuclear data libraries are discussed; specific tests within the SCALE/AMPX andmore » VERA/XSTools repositories are described. The methods and associated tests to verify the quality of the library during the generation process are described in detail. The library generation process has been automated to a degree to (1) ensure that it can be run without user intervention and (2) to ensure that the library can be reproduced. Finally, the acceptance testing process that will be performed by representatives from the Radiation Transport Methods (RTM) Focus Area prior to the production library’s release is described in detail.« less

  19. Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrantz, Krisztina; Wyss, Pradeep P.; Ihssen, Julian

    2017-04-01

    tNature provides functional units which can be integrated in inorganic solar cell materials, such as lightharvesting antenna proteins and photosynthetic molecular machineries, and thus help in advancing artifi-cial photosynthesis. Their integration needs to address mechanical adhesion, light capture, charge transferand corrosion resistance. We showed recently how enzymatic polymerization of melanin can immobi-lize the cyanobacterial light harvesting protein C-phycocyanin on the surface of hematite, a prospectivemetal oxide photoanode for solar hydrogen production by water splitting in photoelectrochemical cells.After the optimization of the functionalization procedure, in this work we show reproducible hydrogenproduction, measured parallel to the photocurrent on this bio-hybrid electrode inmore » benign neutral pHphosphate. Over 90% increase compared to the photocurrent of the pristine hematite could be achieved.The hydrogen evolution was monitored during the photoelectrochemical measurement in an improvedphotoelectrochemical cell. The C-phycocyanin-melanin coating on the hematite was shown to exhibit acomb-like fractal pattern. Raman spectroscopy supported the presence of the protein on the hematiteanode surface. The stability of the protein coating is demonstrated during the 2 h GC measurement andthe 24 h operando current density measurement« less

  20. Shape oscillations of acoustically levitated drops in water: Early research with Bob Apfel on modulated radiation pressure

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2004-05-01

    In 1976, research in collaboration with Bob Apfel demonstrated that low-frequency shape oscillations of hydrocarbon drops levitated in water could be driven using modulated radiation pressure. While that response to modulated ultrasound was subsequently extended to a range of systems, the emphasis here is to recall the initial stages of development in Bob Apfel's laboratory leading to some publications [P. L. Marston and R. E. Apfel, J. Colloid Interface Sci. 68, 280-286 (1979); J. Acoust. Soc. Am. 67, 27-37 (1980)]. The levitation technology used at that time was such that it was helpful to develop a sensitive method for detecting weak oscillations using the interference pattern in laser light scattered by levitated drops. The initial experiments to verify this scattering method used shape oscillations induced by modulated electric fields within the acoustic levitator. Light scattering was subsequently used to detect shape oscillations induced by amplitude modulating a carrier having a high frequency (around 680 kHz) at a resonance of the transducer. Methods were also developed for quantitative measurements of the drop's response and with improved acoustic coupling drop fission was observed. The connection with research currently supported by NASA will also be noted.

  1. Deglacial Neodymium Isotopic Ratios in the Florida Straits and the Response of Intermediate Waters to Reduced Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Marcantonio, F.; Schmidt, M. W.; Franklin, A.; Lynch-Stieglitz, J. M.

    2009-12-01

    Neodymium behaves quasi-conservatively in seawater, and its isotopic signature can be used as a tracer for oceanic water masses. By analyzing Nd in the authigenic ferromanganese oxide component of marine sediments, past changes in water mass movements have been hypothesized. In the Atlantic Ocean, Nd isotope analysis has been used to trace the variable strength of the meridional overturning circulation (MOC) during the last deglaciation (e.g., Pahnke et al., 2008). Here, we use Nd isotopes to investigate whether a decrease in the strength of the past MOC manifests itself as a reduction (Came et al., 2008) or an increase (Pahnke et al., 2008) in the northward incursion of Antarctic Intermediate Water (AAIW) into the North Atlantic. Sediments from two core sites currently bathed by AAIW within the Florida Straits (546 m and 751 m water depth) are well suited for profiling authigenic Nd isotope ratios. Because the Florida Current represents a major pathway of the Atlantic MOC surface return flow, the Florida Strait sites can shed light on how variations in AAIW are related to changes in Atlantic MOC strength. The sediments range in age from 0 to 25 kyr, and the high sedimentation rates (8 - 200 cm/kyr) ensure that millennial climate events during the deglaciation are captured. The range in ɛNd measured in the shallower core thus far is low (~ 1.5 epsilon units), but significant. There is a trend in the data which suggests more unradiogenic values during the Younger Dryas event when Atlantic MOC slowed down. Such a trend supports the idea based on benthic foraminiferal Cd/Ca data (Came et al., 2008) that, during the Younger Dryas, there was a reduction within the Florida Current of the flow of intermediate, southern-sourced waters. Came et al., 2008, Paleoceanography 23, PA1217. Pahnke et al., 2008, Nature Geoscience 1, 870-874.

  2. Flood-inundation maps for the White River at Spencer, Indiana

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2013-01-01

    Digital flood-inundation maps for a 5.3-mile reach of the White River at Spencer, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage White River at Spencer, Indiana (sta. no. 03357000). Current conditions for estimating near-real-time areas of inundation using USGS streamgage information may be obtained on the Internet at http://waterdata.usgs.gov/. National Weather Service (NWS)-forecasted peak-stage inforamation may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated by using the most current stage-discharge relation at the White River at Spencer, Indiana, streamgage and documented high-water marks from the flood of June 8, 2008. The hydraulic model was then used to compute 20 water-surface profiles for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from the NWS action stage (9 feet) to the highest rated stage (28 feet) at the streamgage. The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The availability of these maps along with Internet information regarding the current stage from the Spencer USGS streamgage and forecasted stream stages from the NWS will provide emergency management personnel and residents with information that is critical for flood response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  3. Ocean Color Data at the Goddard DAAC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The apparent color of the ocean is determined by the interactions of incident light with substances or particles present in the water. The most significant constituents are free-floating photosynthetic organisms (phytoplankton) and inorganic particulates. Phytoplankton contain chlorophyll, which absorbs light at blue and red wavelengths and transmits in the green. Particulate matter can reflect and absorb light, which reduces the clarity (light transmission) of the water. Substances dissolved in water can also affect its color. Observations of ocean color from space, utilizing sensors specially designed to detect the small amount of light radiating from the sea surface, provide a global picture of the patterns of biological productivity in the world's oceans. For that reason, ocean color remote sensing data is a vital resource for biological oceanography. Unlike the limited area of the ocean that can be investigated from a research ship, data from a satellite sensor covers a large region and provides a comprehensive view of the marine environment.

  4. Removal of Organic Pollutants from Water Using Superwetting Materials.

    PubMed

    Li, Lingxiao; Zhang, Junping; Wang, Aiqin

    2018-02-01

    The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms

    PubMed Central

    Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms. PMID:29304182

  6. High colored dissolved organic matter (CDOM) absorption in surface waters of the central-eastern Arctic Ocean: Implications for biogeochemistry and ocean color algorithms.

    PubMed

    Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid

    2018-01-01

    As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.

  7. Cosmological Simulations with Molecular Astrochemistry: Water in the Early Universe

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon K.; Smidt, Joseph

    2018-01-01

    Water is required for the rise of life as we know it throughout the universe, but its origin and the circumstances of its first appearance remain a mystery. The abundance of deuterated water in solar system bodies cannot be explained if all the water in the solar system were created in the protoplanetary disk (Cleeves et al. 2014), suggesting that as much of half of Earth’s water predates the Sun. Water has been observed as early as one sixth the current universe’s age in MG J0414+0534 (Imprellizzeri et al. 2008). It was recently shown that water could, in principle, appear in hot halos barely enriched with heavy elements such as oxygen and carbon (Bialy et al. 2015). So far, no self-consistent calculation of cosmology physics carried out in line with a large chemical reaction network has been carried out to study the first sites of water formation in the universe. We present initial results the first such series of cosmological calculations with a 26 species low metallicity molecular chemical reaction network with Enzo (Bryan et al. 2014) to understand the role of hydrodynamics and radiative feedback on molecule formation in the early universe and to shed light on the cosmological history of this life-giving substance.

  8. Water lilies as emerging models for Darwin’s abominable mystery

    PubMed Central

    Chen, Fei; Liu, Xing; Yu, Cuiwei; Chen, Yuchu; Tang, Haibao; Zhang, Liangsheng

    2017-01-01

    Water lilies are not only highly favored aquatic ornamental plants with cultural and economic importance but they also occupy a critical evolutionary space that is crucial for understanding the origin and early evolutionary trajectory of flowering plants. The birth and rapid radiation of flowering plants has interested many scientists and was considered ‘an abominable mystery’ by Charles Darwin. In searching for the angiosperm evolutionary origin and its underlying mechanisms, the genome of Amborella has shed some light on the molecular features of one of the basal angiosperm lineages; however, little is known regarding the genetics and genomics of another basal angiosperm lineage, namely, the water lily. In this study, we reviewed current molecular research and note that water lily research has entered the genomic era. We propose that the genome of the water lily is critical for studying the contentious relationship of basal angiosperms and Darwin’s ‘abominable mystery’. Four pantropical water lilies, especially the recently sequenced Nymphaea colorata, have characteristics such as small size, rapid growth rate and numerous seeds and can act as the best model for understanding the origin of angiosperms. The water lily genome is also valuable for revealing the genetics of ornamental traits and will largely accelerate the molecular breeding of water lilies. PMID:28979789

  9. Inaugurating Rationalization: Three Field Studies Find Increased Rationalization When Anticipated Realities Become Current.

    PubMed

    Laurin, Kristin

    2018-04-01

    People will often rationalize the status quo, reconstruing it in an exaggeratedly positive light. They will even rationalize the status quo they anticipate, emphasizing the upsides and minimizing the downsides of sociopolitical realities they expect to take effect. Drawing on recent findings on the psychological triggers of rationalization, I present results from three field studies, one of which was preregistered, testing the hypothesis that an anticipated reality becoming current triggers an observable boost in people's rationalizations. San Franciscans rationalized a ban on plastic water bottles, Ontarians rationalized a targeted smoking ban, and Americans rationalized the presidency of Donald Trump, more in the days immediately after these realities became current compared with the days immediately before. Additional findings show evidence for a mechanism underlying these behaviors and rule out alternative accounts. These findings carry implications for scholarship on rationalization, for understanding protest behavior, and for policymakers.

  10. PREDICTIVE MODELING OF LIGHT-INDUCED MORTALITY OF ENTEROCOCCI FAECALIS IN RECREATIONAL WATERS

    EPA Science Inventory

    One approach to predictive modeling of biological contamination of recreational waters involves the application of process-based approaches that consider microbial sources, hydrodynamic transport, and microbial fate. This presentation focuses on one important fate process, light-...

  11. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  12. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  13. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  14. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  15. 33 CFR 127.109 - Lighting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lighting systems. 127.109 Section... Waterfront Facilities Handling Liquefied Natural Gas § 127.109 Lighting systems. (a) The marine transfer area for LNG must have a lighting system and separate emergency lighting. (b) All outdoor lighting must be...

  16. 33 CFR 67.05-10 - Characteristics of obstruction lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... lights. 67.05-10 Section 67.05-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Lights § 67.05-10 Characteristics of obstruction lights. All obstruction lights required by... marking Class “C” structures. In determining whether white or red lights shall be authorized, the District...

  17. 33 CFR 67.05-5 - Multiple obstruction lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Multiple obstruction lights. 67... for Lights § 67.05-5 Multiple obstruction lights. When more than one obstruction light is required by this part to mark a structure, all such lights shall be operated to flash in unison. ...

  18. 33 CFR 67.05-5 - Multiple obstruction lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Multiple obstruction lights. 67... for Lights § 67.05-5 Multiple obstruction lights. When more than one obstruction light is required by this part to mark a structure, all such lights shall be operated to flash in unison. ...

  19. 33 CFR 67.05-10 - Characteristics of obstruction lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... lights. 67.05-10 Section 67.05-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Lights § 67.05-10 Characteristics of obstruction lights. All obstruction lights required by... marking Class “C” structures. In determining whether white or red lights shall be authorized, the District...

  20. 33 CFR 67.05-10 - Characteristics of obstruction lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... lights. 67.05-10 Section 67.05-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Lights § 67.05-10 Characteristics of obstruction lights. All obstruction lights required by... marking Class “C” structures. In determining whether white or red lights shall be authorized, the District...

Top