Sample records for current limiting characteristics

  1. Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault

    NASA Astrophysics Data System (ADS)

    Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.

    2011-11-01

    The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.

  2. Nondestructive test determines overload destruction characteristics of current limiter fuses

    NASA Technical Reports Server (NTRS)

    Swartz, G. A.

    1968-01-01

    Nondestructive test predicts the time required for current limiters to blow /open the circuit/ when subjected to a given overload. The test method is based on an empirical relationship between the voltage rise across a current limiter for a fixed time interval and the time to blow.

  3. Characteristic parameters of superconductor-coolant interaction including high Tc current density limits

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.

    1989-01-01

    In the area of basic mechanisms of helium heat transfer and related influence on super-conducting magnet stability, thermal boundary conditions are important constraints. Characteristic lengths are considered along with other parameters of the superconducting composite-coolant system. Based on helium temperature range developments, limiting critical current densities are assessed at low fields for high transition temperature superconductors.

  4. FAST TRACK COMMUNICATION Generation of stable multi-jets by flow-limited field-injection electrostatic spraying and their control via I-V characteristics

    NASA Astrophysics Data System (ADS)

    Gu, W.; Heil, P. E.; Choi, H.; Kim, K.

    2010-12-01

    The I-V characteristics of flow-limited field-injection electrostatic spraying (FFESS) were investigated, exposing a new way to predict and control the specific spraying modes from single-jet to multi-jet. Monitoring the I-V characteristics revealed characteristic drops in the current upon formation of an additional jet in the multi-jet spraying mode. For fixed jet numbers, space-charge-limited current behaviour was measured which was attributed to space charge in the dielectric liquids between the needle electrode and the nozzle opening. The present work establishes that FFESS can, in particular, generate stable multiple jets and that their control is possible through monitoring the I-V characteristics. This can allow for automatic control of the FFESS process and expedite its future scientific and industrial applications.

  5. Improvement in operational characteristics of KEPCO’s line-commutation-type superconducting hybrid fault current limiter

    NASA Astrophysics Data System (ADS)

    Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.

    2013-01-01

    A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.

  6. Current limiting behavior in three-phase transformer-type SFCLs using an iron core according to variety of fault

    NASA Astrophysics Data System (ADS)

    Cho, Yong-Sun; Jung, Byung-Ik; Ha, Kyoung-Hun; Choi, Soo-Geun; Park, Hyoung-Min; Choi, Hyo-Sang

    To apply the superconducting fault current limiter (SFCL) to the power system, the reliability of the fault-current-limiting operation must be ensured in diverse fault conditions. The SFCL must also be linked to the operation of the high-speed recloser in the power system. In this study, a three-phase transformer-type SFCL, which has a neutral line to improve the simultaneous quench characteristics of superconducting elements, was manufactured to analyze the fault-current-limiting characteristic according to the single, double, and triple line-to-ground faults. The transformer-type SFCL, wherein three-phase windings are connected to one iron core, reduced the burden on the superconducting element as the superconducting element on the sound phase was also quenched in the case of the single line-to-ground fault. In the case of double or triple line-to-ground faults, the flux from the faulted phase winding was interlinked with other faulted or sound phase windings, and the fault-current-limiting rate decreased because the windings of three phases were inductively connected by one iron core.

  7. Electron beam transport with current above the Alfven--Lawson limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al'terkop, B.A.; Sokulin, A.Y.; Tarakanov, V.P.

    1989-08-01

    The quasisteady state of a magnetized electron beam with a current above the Alfven-Lawson limit in a cylindrical waveguide of finite length is analyzed. The distribution of the electrostatic field, the limiting current, and the critical length of the waveguide are found in a two-dimensional system. The basic characteristics of the beam for the injection of a current above the limit---the position of the virtual cathode, the beam thickness, and the current which can be transported---are determined. The current which can be transported may exceed the theoretical limit. The accuracy of the analytic results is confirmed by comparison with themore » results of experiments and numerical simulations.« less

  8. Electrical Conductivity and Barrier Properties of Lithium Niobate Thin Films

    NASA Astrophysics Data System (ADS)

    Gudkov, S. I.; Baklanova, K. D.; Kamenshchikov, M. V.; Solnyshkin, A. V.; Belov, A. N.

    2018-04-01

    The thin-film structures made of LiNbO3 and obtained via laser ablation and magnetron sputtering are studied with volt-farad and volt-ampere characteristics. A potential barrier on the Si-LiNbO3 interface was found for both types of the films with the capacitance-voltage characteristics. The current-voltage characteristics showed that there are several conduction mechanisms in the structures studied. The Poole-Frenkel effect and the currents limited by a space charge mainly contribute to the electrical conductivity in the LiNbO3 film produced with the laser ablation method. The currents limited by a space charge contribute to the main mechanism in the film heterostructure obtained with the magnetron sputtering method.

  9. Transport properties of triarylamine based dendrimers studied by space charge limited current transients

    NASA Astrophysics Data System (ADS)

    Szymanski, Marek Z.; Kulszewicz-Bajer, Irena; Faure-Vincent, Jérôme; Djurado, David

    2012-08-01

    We have studied hole transport in triarylamine based dendrimer using space-charge-limited current transient technique. A mobility of 8 × 10-6 cm2/(V s) and a characteristic detrapping time of about 100 ms have been obtained. We found that quasi-ohmic contact is formed with gold. The obtained mobility differs from the apparent one given by the analysis of stationary current-voltage characteristics because of a limited contact efficiency. The comparison between transients obtained from fresh and aged samples reveals no change in mobility with aging. The deterioration of electrical properties is exclusively caused by trap formation and accumulation of ionic conducting impurities. Finally, repeated transient measurements have been applied to analyze the dynamics of charge trapping process.

  10. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    NASA Astrophysics Data System (ADS)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  11. Postpolio Syndrome: Using a Single Case Study

    ERIC Educational Resources Information Center

    Obringer, S. John; Elrod, G. Franklin

    2004-01-01

    The purpose of this study was to identify the major characteristics of postpolio syndrome (PPS), investigate physical and psychological limitations, and comprehensively review current medical interventions through a single subject design. The study addresses the symptoms and characteristics, the effect on life style, and the current recommended…

  12. Criteria for setting speed limits in urban and suburban areas in Florida

    DOT National Transportation Integrated Search

    2003-03-01

    Current methods of setting speed limits include maximum statutory limits by road class and geometric characteristics and speed zoning practice for the roads where the legislated limit does not reflect local differences. Speed limits in speed zones ar...

  13. Removing the current-limit of vertical organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Sheleg, Gil; Greenman, Michael; Lussem, Bjorn; Tessler, Nir

    2017-11-01

    The reported Vertical Organic Field Effect Transistors (VOFETs) show either superior current and switching speeds or well-behaved transistor performance, especially saturation in the output characteristics. Through the study of the relationship between the device architecture or dimensions and the device performance, we find that achieving a saturation regime in the output characteristics requires that the device operates in the injection limited regime. In current structures, the existence of the injection limited regime depends on the source's injection barrier as well as on the buried semiconductor layer thickness. To overcome the injection limit imposed by the necessity of injection barrier, we suggest a new architecture to realize VOFETs. This architecture shows better gate control and is independent of the injection barrier at the source, thus allowing for several A cm-2 for a semiconductor having a mobility value of 0.1 cm2 V-1 s-1.

  14. Refinement of current WisDOT HMA mixture application guidelines related to NMAS and aggregate characteristics.

    DOT National Transportation Integrated Search

    2014-01-01

    Current Wisconsin Department of Transportation (WisDOT) Specifications limit nominal maximum aggregate : size (NMAS) of hot-mix asphalt (HMA) to 12.5 mm in the surface layer and 19.0 mm in lower layers. This : potentially places unnecessary limits on...

  15. Design and optimization of LCL-VSC grid-tied converter having short circuit fault current limiting ability

    NASA Astrophysics Data System (ADS)

    Liu, Mengqi; Liu, Haijun; Wang, Zhikai

    2017-01-01

    Traditional LCL grid-tied converters haven't the ability to limit the short-circuit fault current and only remove grid-connected converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system is set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.

  16. Comparative study of superconducting fault current limiter both for LCC-HVDC and VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Geon; Khan, Umer Amir; Lim, Sung-Woo; Shin, Woo-ju; Seo, In-Jin; Lee, Bang-Wook

    2015-11-01

    High Voltage Direct Current (HVDC) system has been evaluated as the optimum solution for the renewable energy transmission and long-distance power grid connections. In spite of the various advantages of HVDC system, it still has been regarded as an unreliable system compared to AC system due to its vulnerable characteristics on the power system fault. Furthermore, unlike AC system, optimum protection and switching device has not been fully developed yet. Therefore, in order to enhance the reliability of the HVDC systems mitigation of power system fault and reliable fault current limiting and switching devices should be developed. In this paper, in order to mitigate HVDC fault, both for Line Commutated Converter HVDC (LCC-HVDC) and Voltage Source Converter HVDC (VSC-HVDC) system, an application of resistive superconducting fault current limiter which has been known as optimum solution to cope with the power system fault was considered. Firstly, simulation models for two types of LCC-HVDC and VSC-HVDC system which has point to point connection model were developed. From the designed model, fault current characteristics of faulty condition were analyzed. Second, application of SFCL on each types of HVDC system and comparative study of modified fault current characteristics were analyzed. Consequently, it was deduced that an application of AC-SFCL on LCC-HVDC system with point to point connection was desirable solution to mitigate the fault current stresses and to prevent commutation failure in HVDC electric power system interconnected with AC grid.

  17. Gender career divide and women's disadvantage in depressive symptoms and physical limitations in France.

    PubMed

    Cambois, Emmanuelle; Garrouste, Clémentine; Pailhé, Ariane

    2017-12-01

    This study investigated the relationship between women's disadvantage in mental health and physical functioning and gender differences in career backgrounds. Sexual division of labor persists and key career characteristics are overrepresented in women: low-skilled first job, downward occupational trajectory, interruptions. These interrelated characteristics are usually linked to poor health. Their overrepresentation in women may be related to the female-male health gap; however, it may not if overrepresentation transposed into substantially weaker associations with poor health outcomes. To address this question, we used the French population survey "Health and Occupational Trajectories" (2006) and focused on 45-74 year-old individuals who ever worked (n=7537). Past career characteristics were qualified by retrospective information. Logistic regressions identified past characteristics related to current depressive symptoms and physical limitations. Non-linear decomposition showed whether these characteristics contributed to the gender health gap, through their different distribution and/or association with health. The overrepresentation of unskilled first jobs, current and past inactivity and unemployment in women contributed to their excess depressive symptoms. These contributions were only slightly reduced by the weaker mental health-relatedness of current inactivity in women and increased by the stronger relatedness of low-skilled and self-employed first jobs. Overrepresentation of current inactivity, past interruptions and downward trajectories also contributed positively to women's excess physical limitations. Gender-specific career backgrounds were significantly linked to women's disadvantage in mental health and physical functioning. We need to further explore whether equalization of opportunities, especially at the early stages and in terms of career continuity, could help to reduce women's mental and physical health disadvantage.

  18. Effects of nuclear radiation on a high-reliability silicon power diode. 4: Analysis of reverse bias characteristics

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1973-01-01

    The effects of nuclear radiation on the reverse bias electrical characteristics of one hundred silicon power diodes were investigated. On a percentage basis, the changes in reverse currents were large but, due to very low initial values, this electrical characteristic was not the limiting factor in use of these diodes. These changes were interpreted in terms of decreasing minority carrier lifetimes as related to generation-recombination currents. The magnitudes of reverse voltage breakdown were unaffected by irradiation.

  19. Comparison of the quench and fault current limiting characteristics of the flux-coupling type SFCL with single and three-phase transformer

    NASA Astrophysics Data System (ADS)

    Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang

    2013-01-01

    The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.

  20. Current-limiting challenges for all-spin logic devices

    PubMed Central

    Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng

    2015-01-01

    All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410

  1. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  2. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  3. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  4. 40 CFR 426.112 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology currently available (BPT). (The fluoride and lead limitations are applicable to the abrasive polishing and acid polishing waste water streams while the TSS, oil, and pH limitations are applicable to the entire process waste water stream): Effluent characteristic Effluent limitations Maximum for any 1...

  5. Risk analysis of ODOT's HMA percent within limits (PWL) specification.

    DOT National Transportation Integrated Search

    2007-08-01

    The Oklahoma Department of Transportation (ODOT) is considering switching its method of payment : for hot mix asphalt (HMA) construction from their current procedure to a Percent Within Limits (PWL) : specification. Quality characteristics are percen...

  6. User handbook for block IV silicon solar cell modules

    NASA Technical Reports Server (NTRS)

    Smokler, M. I.

    1982-01-01

    The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.

  7. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  8. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  9. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE PAGES

    Ji, Shiqi; Zheng, Sheng; Wang, Fei; ...

    2017-07-06

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  10. Temperature-Dependent Characterization, Modeling, and Switching Speed-Limitation Analysis of Third-Generation 10-kV SiC MOSFET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Shiqi; Zheng, Sheng; Wang, Fei

    The temperature-dependent characteristics of the third-generation 10-kV/20-A SiC MOSFET including the static characteristics and switching performance are carried out in this paper. The steady-state characteristics, including saturation current, output characteristics, antiparallel diode, and parasitic capacitance, are tested. Here, a double pulse test platform is constructed including a circuit breaker and gate drive with >10-kV insulation and also a hotplate under the device under test for temperature-dependent characterization during switching transients. The switching performance is tested under various load currents and gate resistances at a 7-kV dc-link voltage from 25 to 125 C and compared with previous 10-kV MOSFETs. A simplemore » behavioral model with its parameter extraction method is proposed to predict the temperature-dependent characteristics of the 10-kV SiC MOSFET. The switching speed limitations, including the reverse recovery of SiC MOSFET's body diode, overvoltage caused by stray inductance, crosstalk, heat sink, and electromagnetic interference to the control are discussed based on simulations and experimental results.« less

  11. Solid-state circuit breaker with current-limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, H.J.

    1982-08-16

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two eyeles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  12. Solid-state circuit breaker with current limiting characteristic using a superconducting coil

    DOEpatents

    Boenig, Heinrich J.

    1984-01-01

    A thyristor bridge interposes an ac source and a load. A series connected DC source and superconducting coil within the bridge biases the thyristors thereof so as to permit bidirectional ac current flow therethrough under normal operating conditions. Upon a fault condition a control circuit triggers the thyristors so as to reduce ac current flow therethrough to zero in less than two cycles and to open the bridge thereafter. Upon a temporary overload condition the control circuit triggers the thyristors so as to limit ac current flow therethrough to an acceptable level.

  13. Flux-lock type of superconducting fault current limiters: A comprehensive review

    NASA Astrophysics Data System (ADS)

    Badakhshan, M.; Mousavi G., S. M.

    2018-04-01

    Power systems must be developed and extended to supply the continuous enhancement of demands for electrical energy. This development of systems in addition to the integration of distributed generation (DG) units to the power systems results higher capacity of system. Hence, short circuit current of network is confronted with persistent increasing. Since exploration of high temperature superconducting (HTS) materials, superconducting fault current limiters (SFCLs) have attracted a lot of attention all over the world. There are different types of SFCLs. Flux-lock type of SFCL because of its characteristics in fault current limitation is an important category of SFCLs. This paper aims to present a comprehensive review of research activities and applications of Flux-lock type of SFCLs in power systems.

  14. Computer controlled performance mapping of thermionic converters: effect of collector, guard-ring potential imbalances on the observed collector current-density, voltage characteristics and limited range performance map of an etched-rhenium, niobium planar converter

    NASA Technical Reports Server (NTRS)

    Manista, E. J.

    1972-01-01

    The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.

  15. Current–voltage characteristics of organic heterostructure devices with insulating spacer layers

    DOE PAGES

    Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...

    2015-05-14

    The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less

  16. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  17. The Voices of School Counselors: Essential Characteristics of School Counselor Leaders

    ERIC Educational Resources Information Center

    Young, Anita; Dollarhide, Colette T.; Baughman, Amber

    2015-01-01

    The majority of school counselor leadership studies focus on quantitative data. The current study contributes to the limited qualitative research surrounding school counselor leadership. The analysis of an open-ended statement from a national study gives voice to school counselor perceptions about leadership characteristics pertinent to the…

  18. Hole-transport limited S-shaped I-V curves in planar heterojunction organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Minlu; Wang, Hui; Tang, C. W.

    2011-11-01

    Current-voltage (I-V) characteristics of planar heterojunction organic photovoltaic cells based on N',N'-Di-[(1-naphthyl)-N',N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPB) and C60 are investigated. Through variation of the layer thickness and composition, specifically chemical doping NPB with MoOx, we show that the hole-transport limitation in the NPB layer is the determining factor in shaping the I-V characteristics of NPB/C60 cells.

  19. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    NASA Astrophysics Data System (ADS)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  20. Current Voltage Characteristics and Excess Noise at the Trap Filling Transition in Polyacenes

    NASA Astrophysics Data System (ADS)

    Pousset, Jeremy; Alfinito, Eleonora; Carbone, Anna; Pennetta, Cecilia; Reggiani, Lino

    Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap-free space-charge-limited current) behaviors. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong superquadratic I-V characteristics. Here, we discuss the physical interpretation of these experiments in terms of an essential contribution from field-assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap-filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range 0.65÷35μm.

  1. Human and biophysical legacies shape contemporary urban forests: A literature synthesis

    Treesearch

    Lara A. Roman; Hamil Pearsall; Theodore S. Eisenman; Tenley M. Conway; Robert T. Fahey; Shawn Landry; Jess Vogt; Natalie S. van Doorn; J. Morgan Grove; Dexter H. Locke; Adrina C. Bardekjian; John J. Battles; Mary L. Cadenasso; Cecil C. Konijnendijk van den Bosch; Meghan Avolio; Adam Berland; G. Darrel Jenerette; Sarah K. Mincey; Diane E. Pataki; Christina Staudhammer

    2018-01-01

    Understanding how urban forests developed their current patterns of tree canopy cover, species composition, and diversity requires an appreciation of historical legacy effects. However, analyses of current urban forest characteristics are often limited to contemporary socioeconomic factors, overlooking the role of history. The institutions, human communities, and...

  2. Over-current carrying characteristics of rectangular-shaped YBCO thin films prepared by MOD method

    NASA Astrophysics Data System (ADS)

    Hotta, N.; Yokomizu, Y.; Iioka, D.; Matsumura, T.; Kumagai, T.; Yamasaki, H.; Shibuya, M.; Nitta, T.

    2008-02-01

    A fault current limiter (FCL) may be manufactured at competitive qualities and prices by using rectangular-shaped YBCO films which are prepared by metal-organic deposition (MOD) method, because the MOD method can produce large size elements with a low-cost and non-vacuum technique. Prior to constructing a superconducting FCL (SFCL), AC over-current carrying experiments were conducted for 120 mm long elements where YBCO thin film of about 200 nm in thickness was coated on sapphire substrate with cerium oxide (CeO2) interlayer. In the experiments, only single cycle of the ac damping current of 50 Hz was applied to the pure YBCO element without protective metal coating or parallel resistor and the magnitude of the current was increased step by step until the breakdown phenomena occurred in the element. In each experiment, current waveforms flowing through the YBCO element and voltage waveform across the element were measured to get the voltage-current characteristics. The allowable over-current and generated voltage were successfully estimated for the pure YBCO films. It can be pointed out that the lower n-value trends to bring about the higher allowable over-current and the higher withstand voltage more than tens of volts. The YBCO film having higher n-value is sensitive to the over-current. Thus, some protective methods such as a metal coating should be employed for applying to the fault current limiter.

  3. Surface leakage current in 12.5  μm long-wavelength HgCdTe infrared photodiode arrays.

    PubMed

    Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei

    2016-02-15

    Long-wavelength (especially >12  μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014  cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12  μm) HgCdTe infrared photodiode arrays.

  4. Investigation of disorder and its effect on electrical transport in electrochemically doped polymer devices by current-voltage and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Rahman Khan, Motiur; Anjaneyulu, P.; Koteswara Rao, K. S. R.; Menon, R.

    2017-03-01

    We report on the analysis of temperature-dependent current-voltage characteristics and impedance measurements of electrochemically doped poly(3-methylthiophene) devices at different doping levels. The extent of doping is carefully tailored such that only the bulk-limited transport mechanism prevails. A transition from exponentially distributed trap-limited transport to trap-free space-charge-limited current is observed in current-voltage conduction upon increasing the doping. The obtained trap densities (3.2  ×  1016 cm-3 and 8.6  ×  1015 cm-3) and trap energies (31.7 meV and 16.6 meV) for different devices signify the variation in disorder with doping, which is later supported by impedance measurements. Impedance-frequency data for various devices can not be explained using the parallel resistance-capacitance (RC) model in the equivalent circuit. However, this was established by incorporating a constant phase element Q (CPE) instead of the capacitance parameter. It should be emphasized that low doping devices in particular are best simulated with two CPE elements, while the data related to other devices are fitted well with a single CPE element. It is also observed from evaluated circuit parameters that the spatial inhomogeneity and disorder are the cause of variability in different samples, which has an excellent correlation with the temperature-dependent current-voltage characteristics.

  5. Reverse Current Characteristics of InP Gunn Diodes for W-Band Waveguide Applications.

    PubMed

    Kim, Hyun-Seok; Heo, Jun-Woo; Chol, Seok-Gyu; Ko, Dong-Sik; Rhee, Jin-Koo

    2015-07-01

    InP is considered as the most promising material for millimeter-wave laser-diode applications owing to its superior noise performance and wide operating frequency range of 75-110 GHz. In this study, we demonstrate the fabrication of InP Gunn diodes with a current-limiting structure using rapid thermal annealing to modulate the potential height formed between an n-type InP active layer and a cathode contact. We also explore the reverse current characteristics of the InP Gunn diodes. Experimental results indicate a maximum anode current and an oscillation frequency of 200 mA and 93.53 GHz, respectively. The current-voltage characteristics are modeled by considering the Schottky and ohmic contacts, work function variations, negative differential resistance (NDR), and tunneling effect. Although no direct indication of the NDR is observed, the simulation results match the measured data well. The modeling results show that the NDR effect is always present but is masked because of electron emission across the shallow Schottky barrier.

  6. Effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broilers grown to heavy weights

    USDA-ARS?s Scientific Manuscript database

    Limited data are available for comparing light-emitting diode (LED) bulbs that are currently available in commercial broiler production facilities. We evaluated the effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broil...

  7. Electrical properties of III-Nitride LEDs: Recombination-based injection model and theoretical limits to electrical efficiency and electroluminescent cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Young, Nathan G.

    The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.

  8. Characterization of advanced electric propulsion systems

    NASA Technical Reports Server (NTRS)

    Ray, P. K.

    1982-01-01

    Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.

  9. Power flow analysis and optimal locations of resistive type superconducting fault current limiters.

    PubMed

    Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A

    2016-01-01

    Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.

  10. Effect of trap states and microstructure on charge carrier conduction mechanism through semicrystalline poly(vinyl alcohol) granular film

    NASA Astrophysics Data System (ADS)

    Das, A. K.; Bhowmik, R. N.; Meikap, A. K.

    2018-05-01

    We report a comprehensive study on hysteresis behaviour of current-voltage characteristic and impedance spectroscopy of granular semicrystalline poly(vinyl alcohol) (PVA) film. The charge carrier conduction mechanism and charge traps of granular PVA film by measuring and analyzing the temperature dependent current-voltage characteristic indicate a bi-stable electronic state in the film. A sharp transformation of charge carrier conduction mechanism from Poole-Frenkel emission to space charge limited current mechanism has been observed. An anomalous oscillatory behaviour of current has been observed due to electric pulse effect on the molecular chain of the polymer. Effect of microstructure on charge transport mechanism has been investigated from impedance spectroscopy analysis. An equivalent circuit model has been proposed to explain the result.

  11. Operating characteristics of superconducting fault current limiter using 24kV vacuum interrupter driven by electromagnetic repulsion switch

    NASA Astrophysics Data System (ADS)

    Endo, M.; Hori, T.; Koyama, K.; Yamaguchi, I.; Arai, K.; Kaiho, K.; Yanabu, S.

    2008-02-01

    Using a high temperature superconductor, we constructed and tested a model Superconducting Fault Current Limiter (SFCL). SFCL which has a vacuum interrupter with electromagnetic repulsion mechanism. We set out to construct high voltage class SFCL. We produced the electromagnetic repulsion switch equipped with a 24kV vacuum interrupter(VI). There are problems that opening speed becomes late. Because the larger vacuum interrupter the heavier weight of its contact. For this reason, the current which flows in a superconductor may be unable to be interrupted within a half cycles of current. In order to solve this problem, it is necessary to change the design of the coil connected in parallel and to strengthen the electromagnetic repulsion force at the time of opening the vacuum interrupter. Then, the design of the coil was changed, and in order to examine whether the problem is solvable, the current limiting test was conducted. We examined current limiting test using 4 series and 2 parallel-connected YBCO thin films. We used 12-centimeter-long YBCO thin film. The parallel resistance (0.1Ω) is connected with each YBCO thin film. As a result, we succeed in interrupting the current of superconductor within a half cycle of it. Furthermore, series and parallel-connected YBCO thin film could limit without failure.

  12. Current concepts of severe asthma

    PubMed Central

    Raundhal, Mahesh; Oriss, Timothy B.; Ray, Prabir; Wenzel, Sally E.

    2016-01-01

    The term asthma encompasses a disease spectrum with mild to very severe disease phenotypes whose traditional common characteristic is reversible airflow limitation. Unlike milder disease, severe asthma is poorly controlled by the current standard of care. Ongoing studies using advanced molecular and immunological tools along with improved clinical classification show that severe asthma does not identify a specific patient phenotype, but rather includes patients with constant medical needs, whose pathobiologic and clinical characteristics vary widely. Accordingly, in recent clinical trials, therapies guided by specific patient characteristics have had better outcomes than previous therapies directed to any subject with a diagnosis of severe asthma. However, there are still significant gaps in our understanding of the full scope of this disease that hinder the development of effective treatments for all severe asthmatics. In this Review, we discuss our current state of knowledge regarding severe asthma, highlighting different molecular and immunological pathways that can be targeted for future therapeutic development. PMID:27367183

  13. Identification of a limiting mechanism in GaSb-rich superlattice midwave infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delmas, Marie; Rodriguez, Jean-Baptiste; Rossignol, Rémi

    2016-05-07

    GaSb-rich superlattice (SL) p-i-n photodiodes grown by molecular beam epitaxy were studied theoretically and experimentally in order to understand the poor dark current characteristics typically obtained. This behavior, independent of the SL-grown material quality, is usually attributed to the presence of defects due to Ga-related bonds, limiting the SL carrier lifetime. By analyzing the photoresponse spectra of reverse-biased photodiodes at 80 K, we have highlighted the presence of an electric field, breaking the minibands into localized Wannier-Stark states. Besides the influence of defects in such GaSb-rich SL structures, this electric field induces a strong tunneling current at low bias which canmore » be the main limiting mechanism explaining the high dark current density of the GaSb-rich SL diode.« less

  14. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  15. Characterization of plasma current quench during disruptions at HL-2A

    NASA Astrophysics Data System (ADS)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  16. Simulations with current constraints of ELM-induced tungsten melt motion in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Thorén, E.; Bazylev, B.; Ratynskaia, S.; Tolias, P.; Krieger, K.; Pitts, R. A.; Pestchanyi, S.; Komm, M.; Sieglin, B.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2017-12-01

    Melt motion simulations of recent ASDEX Upgrade experiments on transient-induced melting of a tungsten leading edge during ELMing H-mode are performed with the incompressible fluid dynamics code MEMOS 3D. The total current flowing through the sample was measured in these experiments providing an important constraint for the simulations since thermionic emission is considered to be responsible for the replacement current driving melt motion. To allow for a reliable comparison, the description of the space-charge limited regime of thermionic emission has been updated in the code. The effect of non-periodic aspects of the spatio-temporal heat flux in the temperature distribution and melt characteristics as well as the importance of current limitation are investigated. The results are compared with measurements of the total current and melt profile.

  17. Current collection from an unmagnetized plasma: A tutorial

    NASA Technical Reports Server (NTRS)

    Whipple, Elden C.

    1990-01-01

    The current collected by a body in an unmagnetized plasma depends in general on: (1) the properties of the plasma; (2) the properties of the body; and (3) the properties of any neutral species that are present. The important plasma properties are the velocity distributions of the plasma particles at a location remote from the body (at infinity), and the Debye length which determines the importance of plasma space charge effects. The important body properties are its surface characteristics, namely the conductivity and secondary yield coefficients. The neutral species affect the current through collisions which impede the flow of current and possibly through ionization of the neutrals which can enhance the current. The technique for calculating the current collected by a body in a plasma is reviewed with special attention given to the distinction between orbit limited and space charge limited regimes, the asymptotic variation of the potential with distance from a body, and the concept of a sheath.

  18. Health Information System Role-Based Access Control Current Security Trends and Challenges.

    PubMed

    de Carvalho Junior, Marcelo Antonio; Bandiera-Paiva, Paulo

    2018-01-01

    This article objective is to highlight implementation characteristics, concerns, or limitations over role-based access control (RBAC) use on health information system (HIS) using industry-focused literature review of current publishing for that purpose. Based on the findings, assessment for indication of RBAC is obsolete considering HIS authorization control needs. We have selected articles related to our investigation theme "RBAC trends and limitations" in 4 different sources related to health informatics or to the engineering technical field. To do so, we have applied the following search query string: "Role-Based Access Control" OR "RBAC" AND "Health information System" OR "EHR" AND "Trends" OR "Challenges" OR "Security" OR "Authorization" OR "Attacks" OR "Permission Assignment" OR "Permission Relation" OR "Permission Mapping" OR "Constraint". We followed PRISMA applicable flow and general methodology used on software engineering for systematic review. 20 articles were selected after applying inclusion and exclusion criteria resulting contributions from 10 different countries. 17 articles advocate RBAC adaptations. The main security trends and limitations mapped were related to emergency access, grant delegation, and interdomain access control. Several publishing proposed RBAC adaptations and enhancements in order to cope current HIS use characteristics. Most of the existent RBAC studies are not related to health informatics industry though. There is no clear indication of RBAC obsolescence for HIS use.

  19. Tunable dielectric properties of TiO2 thin film based MOS systems for application in microelectronics

    NASA Astrophysics Data System (ADS)

    Gyanan; Mondal, Sandip; Kumar, Arvind

    2016-12-01

    Post-deposition annealing (PDA) is an inherent part of a sol-gel fabrication process to achieve the optimum device performance, especially in CMOS applications. Annealing removes the oxygen vacancies and improves the structural order of the dielectric films. The process also reduces the interface related defects and improves the interfacial properties. Here, we applied a sol-gel spin-coating technique to prepare high-k TiO2 films on the p-Si substrate. These films were fired at 400 °C for the duration of 20, 40, 60 and 80 min to know the effects of annealing time on the device characteristics. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of annealed TiO2 films were examined in Al/TiO2/p-Si device configuration at room temperature. The 60 min annealed film gives the optimum performance and contained 69.5% anatase and 39.5% rutile phase with refractive index 2.40 at 550 nm. The C-V and I-V characteristic showed a significant dependence on annealing time such as variation in dielectric constant and leakage current. This allows us to tune the various electrical properties of MOS systems. The accumulation capacitance (Cox), dielectric constant (κ) and the equivalent oxide thickness (EOT) of the film fired for 60 min were found to be 458 pF, 33, and 4.25 nm, respectively with a low leakage current density (3.13 × 10-7 A/cm2) fired for 80 min at -1 V. The current conduction mechanisms at high bias voltage were dominated by trap-charge limited current (TCLC), while at small voltages, space charge limited current (SCLC) was more prominent.

  20. The limiting velocity effect in a magnetically held discharge with a moving wall

    NASA Astrophysics Data System (ADS)

    Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.

    1991-08-01

    Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.

  1. Compositional grading of InxGa1-xAs/GaAs tunnel junctions enhanced by ErAs nanoparticles

    NASA Astrophysics Data System (ADS)

    Salas, R.; Krivoy, E. M.; Crook, A. M.; Nair, H. P.; Bank, S. R.

    2011-10-01

    We investigate the electrical conductivity of GaAs-based tunnel junctions enhanced with semimetallic ErAs nanoparticles. In particular, we examine the effects of digitally-graded InGaAs alloys on the n-type side of the tunnel junction, along with different p-type doping levels. Device characteristics of the graded structures indicate that the n-type Schottky barrier may not be the limiting factor in the tunneling current as initially hypothesized. Moreover, significantly improved forward and reverse bias tunneling currents were observed with increased p-type doping, suggesting p-side limitation.

  2. Optical feedback technique extends frequency response of photoconductors

    NASA Technical Reports Server (NTRS)

    Katzberg, S. J.

    1975-01-01

    Feedback circuit consists of high-gain light-to-voltage converter with frequency-limited nonlinear photoconductor inside feedback loop. Feedback element is visible light-emitting diode with light-out versus current-in characteristic that is linear over several decades.

  3. Modulation bandwidth of spin torque oscillators under current modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble

    2014-10-13

    For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less

  4. Unexpected Nonlinear Effects in Superconducting Transition-Edge Sensors

    NASA Technical Reports Server (NTRS)

    Sadleir, John

    2016-01-01

    When a normal metal transitions into the superconducting state the DC resistance drops from a finite value to zero over some finite transition width in temperature, current, and magnetic field. Superconducting transition-edge sensors (TESs) operate within this transition region and uses resistive changes to measure deposited thermal energy. This resistive transition is not perfectly smooth and a wide range of TES designs and materials show sub-structure in the resistive transition (as seen in smooth nonmonotonic behavior, jump discontinuities, and hysteresis in the devices current-voltage relation and derivatives of the resistance with respect to temperature, bias current, and magnetic field). TES technology has advanced to the point where for many applications this structure is the limiting factor in performance and optimization consists of finding operating points away from these structures. For example, operating at or near this structure can lead to nonlinearity in the detectors response and gain scale, limit the spectral range of the detector by limiting the usable resistive range, and degrade energy resolution. The origin of much of this substructure is unknown. This presentation investigates a number of possible sources in turn. First we model the TES as a superconducting weak-link and solve for the characteristic differential equations current and voltage time dependence. We find:(1) measured DC biased current-voltage relationship is the time-average of a much higher frequency limit cycle solution.(2) We calculate the fundamental frequency and estimate the power radiated from the TES treating the bias leads as an antennae.(3) The solution for a set of circuit parameters becomes multivalued leading to current transitions between levels.(4)The circuit parameters can change the measure resistance and mask the true critical current. As a consequence the TES resistance surface is not just a function of temperature, current, and magnetic field but is also a function of the circuit elements (such as shunt resistor, SQUID inductance, and capacitor values). In other words, same device measured in different electrical circuits will have a different resistive surface in temperature, current, and magnetic field. Next we consider that at the transition temperature of a superconductor both the magnetic penetration depth and coherence length are divergent. As a consequence these important characteristic length scales are changing with operating point. We present measurements on devices showing commensurate behavior between these characteristic lengths and the length scale of added normal metal structures. Reordering of proximity vortices leads to discontinuities and irreversibility of the current-voltage curves. Last we consider a weak-link TES including both thermal activated resistance effects and the effect of the magnetic penetration depth being a function of temperature and magnetic field. We derive its impact on the resistive transition surface and the important device parameters a and b.

  5. Probing of barrier induced deviations in current-voltage characteristics of polymer devices by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Khan, Motiur Rahman; Rao, K. S. R. Koteswara; Menon, R.

    2017-05-01

    Temperature dependent current-voltage measurements have been performed on poly(3-methylthiophene) based devices in metal/polymer/metal geometry in temperature range 90-300 K. Space charge limited current (SCLC) controlled by exponentially distributed traps is observed at all the measured temperatures at intermediate voltage range. At higher voltages, trap-free SCLC is observed at 90 K only while slope less than 2 is observed at higher temperatures which is quiet unusual in polymer devices. Impedance measurements were performed at different bias voltages. The unusual behavior observed in current-voltage characteristics is explained by Cole-Cole plot which gives the signature of interface dipole on electrode/polymer interface. Two relaxation mechanisms are obtained from the real part of impedance vs frequency spectra which confirms the interface related phenomena in the device

  6. Dynamics of edge currents in a linearly quenched Haldane model

    NASA Astrophysics Data System (ADS)

    Mardanya, Sougata; Bhattacharya, Utso; Agarwal, Amit; Dutta, Amit

    2018-03-01

    In a finite-time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesting dynamics. For the case of sudden and adiabatic quenches the postquench edge current is solely determined by the initial and the final Hamiltonians, respectively. However for a finite-time (τ ) linear quench in a Haldane nanoribbon, we show that the evolution of the edge current from the sudden to the adiabatic limit is not monotonic in τ and has a turning point at a characteristic time scale τ =τ0 . For small τ , the excited states lead to a huge unidirectional surge in the edge current of both edges. On the other hand, in the limit of large τ , the edge current saturates to its expected equilibrium ground-state value. This competition between the two limits lead to the observed nonmonotonic behavior. Interestingly, τ0 seems to depend only on the Semenoff mass and the Haldane flux. A similar dynamics for the edge current is also expected in other systems with topological phases.

  7. Measurement and analysis of time-domain characteristics of corona-generated radio interference from a single positive corona source

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Li, Dayong; Chen, Bo; Cui, Xiang; Lu, Tiebing; Li, Yinfei

    2018-04-01

    The corona-generated electromagnetic interference commonly known as radio interference (RI) has become a limiting factor for the design of high voltage direct current transmission lines. In this paper, a time-domain measurement system is developed to measure the time-domain characteristics of corona-generated RI from a single corona source under a positive corona source. In the experiments, the corona current pulses are synchronously measured through coupling capacitors. The one-to-one relationship between the corona current pulse and measured RI voltage pulse is observed. The statistical characteristics of pulse parameters are analyzed, and the correlations between the corona current pulse and RI voltage pulse in the time-domain and frequency-domain are analyzed. Depending on the measured corona current pulses, the time-domain waveform of corona-generated RI is calculated on the basis of the propagation model of corona current on the conductor, the dipolar model for electric field calculation, and the antenna model for inducing voltage calculation. The well matched results between measured and simulated waveforms of RI voltage can show the validity of the measurement and calculation method presented in this paper, which also further show the close correlation between corona current and corona-generated RI.

  8. An interpretation of induced electric currents in long pipelines caused by natural geomagnetic sources of the upper atmosphere

    USGS Publications Warehouse

    Campbell, W.H.

    1986-01-01

    Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. ?? 1986 D. Reidel Publishing Company.

  9. Current interruption in inductive storage systems with inertial current source

    NASA Astrophysics Data System (ADS)

    Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.

    1980-03-01

    Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.

  10. Mechanism of Carrier Transport in Hybrid GaN/AlN/Si Solar Cells

    NASA Astrophysics Data System (ADS)

    Ekinci, Huseyin; Kuryatkov, Vladimir V.; Gherasoiu, Iulian; Karpov, Sergey Y.; Nikishin, Sergey A.

    2017-10-01

    The particularities of the carrier transport in p- n-GaN/ n-AlN/ p- n-Si and n-GaN/ n-AlN /p- n-Si structures were investigated through temperature-dependent current density and forward voltage ( J- V) measurements, carrier distribution, and transport modeling. Despite the insulating properties of AlN, reasonably high current densities were achieved under forward bias. The experimental relationship between the current density and forward voltage was accurately approximated by an expression accounting for space-charge-limited current in the AlN layer and non-linear characteristics of the p- n junction formed in silicon. We suggest that extended defects throughout the AlN volume are responsible for the conduction, although the limited data available do not allow the accurate identification of the type of these defects.

  11. Double-trap model for hysteretic current-voltage characteristics of a polystyrene/ZnO nanorods stacked layer

    NASA Astrophysics Data System (ADS)

    Wu, You-Lin; Lin, Jing-Jenn; Lin, Shih-Hung; Sung, Yi-Hsing

    2017-11-01

    Hysteretic current-voltage (I-V) characteristics are quite common in metal-insulator-metal (MIM) devices used for resistive switching random access memory (RRAM). Two types of hysteretic I-V curves are usually observed, figure eight and counter figure eight (counter-clockwise and clockwise in the positive voltage sweep direction, respectively). In this work, a clockwise hysteretic I-V curve was found for an MIM device with polystyrene (PS)/ZnO nanorods stack as an insulator layer. Three distinct regions I ∼ V, I ∼ V2, and I ∼ V0.6 are observed in the double logarithmic plot of the I-V curves, which cannot be explained completely with the conventional trap-controlled space-charge-limited-current (SCLC) model. A model based on the energy band with two separate traps plus local energy variation and trap-controlled SCLC has been developed, which can successfully describe the behavior of the clockwise hysteretic I-V characteristics obtained in this work.

  12. Plasma Radiation Source on the Basis of the Gas Puff with Outer Plasma Shell in the Circuit of a Mega-Ampere Load Current Doubler

    NASA Astrophysics Data System (ADS)

    Kokshenev, V. A.; Labetsky, A. Yu.; Shishlov, A. V.; Kurmaev, N. E.; Fursov, F. I.; Cherdizov, R. K.

    2017-12-01

    Characteristics of Z-pinch plasma radiation in the form of a double shell neon gas puff with outer plasma shell are investigated in the microsecond implosion mode. Experiments are performed using a GIT-12 mega-joule generator with load current doubler having a ferromagnetic core at implosion currents up to 5 MA. Conditions for matching of the nonlinear load with the mega-ampere current multiplier circuit are determined. The load parameters (plasma shell characteristics and mass and geometry of gas puff shells) are optimized on the energy supplied to the gas puff and n energy characteristics of radiation. It is established that the best modes of K-shell radiation in neon are realized for such radial distribution of the gas-puff material at which the compression velocity of the shell is close to a constant and amounts to 27-30 cm/μs. In these modes, up to 40% of energy supplied to the gas puff is converted into K-shell radiation. The reasons limiting the efficiency of the radiation source with increasing implosion current are analyzed. A modernized version of the energy supply from the current doubler to the Z-pinch is proposed.

  13. Study on rejection characteristic of current loop to the base disturbance of optical communication system

    NASA Astrophysics Data System (ADS)

    Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng

    2016-10-01

    As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.

  14. Relationships between neighbourhood characteristics and current STI status among HIV-infected and HIV-uninfected women living in the Southern USA: a cross-sectional multilevel analysis.

    PubMed

    Haley, Danielle F; Kramer, Michael R; Adimora, Adaora A; Haardörfer, Regine; Wingood, Gina M; Ludema, Christina; Rubtsova, Anna; Hickson, DeMarc A; Ross, Zev; Golub, Elizabeth; Bolivar, Hector; Cooper, Hannah Lf

    2017-12-01

    Neighbourhood characteristics (eg, high poverty rates) are associated with STIs among HIV-uninfected women in the USA. However, no multilevel analyses investigating the associations between neighbourhood exposures and STIs have explored these relationships among women living with HIV infection. The objectives of this study were to: (1) examine relationships between neighbourhood characteristics and current STI status and (2) investigate whether the magnitudes and directions of these relationships varied by HIV status in a predominantly HIV-infected cohort of women living in the Southern USA. This cross-sectional multilevel analysis tests relationships between census tract characteristics and current STI status using data from 737 women enrolled at the Women's Interagency HIV Study's southern sites (530 HIV-infected and 207 HIV-uninfected women). Administrative data (eg, US Census) described the census tract-level social disorder (eg, violent crime rate) and social disadvantage (eg, alcohol outlet density) where women lived. Participant-level data were gathered via survey. Testing positive for a current STI was defined as a laboratory-confirmed diagnosis of chlamydia, gonorrhoea, trichomoniasis or syphilis. Hierarchical generalised linear models were used to determine relationships between tract-level characteristics and current STI status, and to test whether these relationships varied by HIV status. Eleven per cent of participants tested positive for at least one current STI. Greater tract-level social disorder (OR=1.34, 95% CI 0.99 to 1.87) and social disadvantage (OR=1.34, 95% CI 0.96 to 1.86) were associated with having a current STI. There was no evidence of additive or multiplicative interaction between tract-level characteristics and HIV status. Findings suggest that neighbourhood characteristics may be associated with current STIs among women living in the South, and that relationships do not vary by HIV status. Future research should establish the temporality of these relationships and explore pathways through which neighbourhoods create vulnerability to STIs. NCT00000797; results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. Wemore » explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.« less

  16. Toxicity Bioassays for Ecological Risk Assessment in Arid and Semiarid Ecosystems. Reviews Environmental Contamination and Toxicology 168:43-98.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markwiese, J.T.; Ryti, R.T.; Hooten, M.M.

    2001-02-01

    This paper discusses current limitations for performing ecological risk assessments in dry environments (i.e., ecosystems that are characteristic of many DOE Facilities) and presents novel approaches to addressing ecological risk in such systems.

  17. Investigation of the optical and electrical characteristics of solution-processed poly (3 hexylthiophene) (P3HT): multiwall carbon nanotube (MWCNT) composite-based devices

    NASA Astrophysics Data System (ADS)

    Rathore, Priyanka; Mohan Singh Negi, Chandra; Singh Verma, Ajay; Singh, Amarjeet; Chauhan, Gayatri; Regis Inigo, Anto; Gupta, Saral K.

    2017-08-01

    Devices comprised of solution-processed poly (3-hexylthiophene) (P3HT)/multiwall carbon nanotubes (MWCNTs), with various concentrations of MWCNTs, were fabricated and characterized. The morphology of the P3HT: MWCNT nanocomposite was characterized by using field emission scanning electron microscopy (FESEM). The optical characteristics of the nanocomposite were studied by UV/VIS/NIR spectroscopy and Raman spectroscopy. The electrical properties of the fabricated devices were characterized by measuring the current density-voltage (J-V) characteristics. While the J-V characteristics of a pristine P3HT device reveal thermal injection limited charge transport, the P3HT: MWCNT nanocomposite-based devices exhibit three distinct voltage-dependent conduction regimes. The fitting curve with measured data reveals Ohmic conduction for a low voltage range, a trap-charge limited conduction (TCLC) process at an intermediate voltage range followed by a trap free space-charge limited conduction (SCLC) process at much higher voltages. A fundamental understanding of this work can assist in creating new charge transport pathways which will provide new avenues for the development of highly efficient polymer-based optoelectronic devices.

  18. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  19. Electrical Investigation of Nanostructured Fe2O3/p-Si Heterojunction Diode Fabricated Using the Sol-Gel Technique

    NASA Astrophysics Data System (ADS)

    Mansour, Shehab A.; Ibrahim, Mervat M.

    2017-11-01

    Iron oxide (α-Fe2O3) nanocrystals have been synthesized via the sol-gel technique. The structural and morphological features of these nanocrystals were studied using x-ray diffraction, Fourier transform-infrared spectroscopy and transmission electron microscopy. Colloidal solution of synthesized α-Fe2O3 (hematite) was spin-coated onto a single-crystal p-type silicon (p-Si) wafer to fabricate a heterojunction diode with Mansourconfiguration Ag/Fe2O3/p-Si/Al. This diode was electrically characterized at room temperature using current-voltage (I-V) characteristics in the voltage range from -9 V to +9 V. The fabricated diode showed a good rectification behavior with a rectification factor 1.115 × 102 at 6 V. The junction parameters such as ideality factor, barrier height, series resistance and shunt resistance are determined using conventional I-V characteristics. For low forward voltage, the conduction mechanism is dominated by the defect-assisted tunneling process with conventional electron-hole recombination. However, at higher voltage, I-V ohmic and space charge-limited current conduction was became less effective with the contribution of the trapped-charge-limited current at the highest voltage range.

  20. Electronic system for high power load control. [solar arrays

    NASA Technical Reports Server (NTRS)

    Miller, E. L. (Inventor)

    1980-01-01

    Parallel current paths are divided into two groups, with control devices in the current paths of one group each having a current limiting resistor, and the control devices in the other group each having no limiting resistor, so that when the control devices of the second group are turned fully on, a short circuit is achieved by the arrangement of parallel current paths. Separate but coordinated control signals are provided to turn on the control devices of the first group and increase their conduction toward saturation as a function of control input, and when fully on, or shortly before, to turn on the control devices of the second group and increase their conduction toward saturation as a function of the control input as that input continues to increase. Electronic means may be used to generate signals. The system may be used for 1-V characteristic measurements of solar arrays as well as for other load control purposes.

  1. PMR polyimide prepreg with improved tack characteristics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1976-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics were described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) were discussed.

  2. An Examination of New Counselor Mentor Programs

    ERIC Educational Resources Information Center

    Bass, Erin; Gardner, Lauren; Onwukaeme, Chika; Revere, Dawn; Shepherd, Denise; Parrish, Mark S.

    2013-01-01

    An analysis of current new counselor mentor programs reveals the need for such programs, but information regarding established programs is limited. A review of the literature addresses program characteristics and data obtained from existing mentor program participants. An overview of four programs explaining the framework outlined for mentoring…

  3. Characterization and development of truck load spectra and growth factors for current and future pavement design practices in Louisiana.

    DOT National Transportation Integrated Search

    2011-07-01

    For pavement design practices, several factors must be considered to ensure good pavement performance over the anticipated life cycle. : Such factors include, but are not limited to, the type of paving materials, traffic loading characteristics, prev...

  4. Take a Planet Walk

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2008-01-01

    Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

  5. Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.

    PubMed

    de Santiago-Martín, Ana; Cheviron, Natalie; Quintana, Jose R; González, Concepción; Lafuente, Antonio L; Mougin, Christian

    2013-04-01

    Mediterranean climate characteristics and carbonate are key factors governing soil heavy-metal accumulation, and low organic matter (OM) content could limit the ability of microbial populations to cope with resulting stress. We studied the effects of metal contamination on a combination of biological parameters in soils having these characteristics. With this aim, soils were spiked with a mixture of cadmium, copper, lead, and zinc, at the two limit values proposed by current European legislation, and incubated for ≤12 months. Then we measured biochemical (phosphatase, urease, β-galactosidase, arylsulfatase, and dehydrogenase activities) and microbial (fungal and bacterial DNA concentration by quantitative polymerase chain reaction) parameters. All of the enzyme activities were strongly affected by metal contamination and showed the following inhibition sequence: phosphatase (30-64 %) < arylsulfatase (38-97 %) ≤ urease (1-100 %) ≤ β-galactosidase (30-100 %) < dehydrogenase (69-100 %). The high variability among soils was attributed to the different proportion of fine mineral fraction, OM, crystalline iron oxides, and divalent cations in soil solution. The decrease of fungal DNA concentration in metal-spiked soils was negligible, whereas the decrease of bacterial DNA was ~1-54 % at the lowest level and 2-69 % at the highest level of contamination. The lowest bacterial DNA decrease occurred in soils with the highest OM, clay, and carbonate contents. Finally, regarding the strong inhibition of the biological parameters measured and the alteration of the fungal/bacterial DNA ratio, we provide strong evidence that disturbance on the system, even within the limiting values of contamination proposed by the current European Directive, could alter key soil processes. These limiting values should be established according to soil characteristics and/or revised when contamination is produced by a mixture of heavy metals.

  6. Study of current-voltage characteristics of ferromagnetic α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} oxide under magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayasri, G., E-mail: vsvijiguna.physics@gmail.com; Bhowmik, R. N.

    We report the influence of magnetic field on I-V characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} sample. Synchrotron X-ray diffraction pattern and Raman Spectroscopy have confirmed rhombohedral structure with space group R3C in the sample. The sample exhibits ferromagnetic feature at room temperature and non saturation of magnetization up to 7Tesla suggests the effect of non-collinear structure (canting) of the spins on the ferromagnetic properties. We have recorded I-V characteristics of the sample under magnetic field to study the effect of non-collinear spin structure on the electrical properties. Space charge limited current mechanism controlled the nature of non-linear I-V curves andmore » the curves are significantly affected by magnetic field.« less

  7. Virtual Road Safety Audits: Recommended Procedures for Using Driving Simulation and Technology to Expand Existing Practices

    DOT National Transportation Integrated Search

    2018-02-02

    One approach that has been proposed to address the limitations of the current reactive safetymonitoring approaches is the use of road safety audits (RSAs). As part of an RSA, the existing or expected characteristics and traffic conditions of a locati...

  8. Patterns of Entrepreneurial Career Development: An Optimal Matching Analysis Approach

    ERIC Educational Resources Information Center

    Zacher, Hannes; Biemann, Torsten; Gielnik, Michael M.; Frese, Michael

    2012-01-01

    Longitudinal studies of entrepreneurial career development are rare, and current knowledge of self-employment patterns and their relationships with individual difference characteristics is limited. In this study, the authors analyzed employment data from a subsample of 514 participants from the German Socio-Economic Panel study (1984-2008).…

  9. African American Girls' Ideal Dating Relationship Now and in the Future

    ERIC Educational Resources Information Center

    Debnam, Katrina J.; Howard, Donna E.; Garza, Mary A.; Green, Kerry M.

    2017-01-01

    Adolescence is a particularly important and challenging time for developing long-lasting romantic relationship patterns. However, limited empirical research has explored teen perceptions of ideal partner characteristics during adolescence or their significance to the quality of current and future relationships. Semi-structured in-depth interviews…

  10. Essential Elements for Recruitment and Retention: Generation Y

    ERIC Educational Resources Information Center

    Luscombe, Jenna; Lewis, Ioni; Biggs, Herbert C.

    2013-01-01

    Purpose: Generation Y (Gen Y) is the newest and largest generation entering the workforce. Gen Y may differ from previous generations in work-related characteristics which may have recruitment and retention repercussions. Currently, limited theoretically-based research exists regarding Gen Y's work expectations and goals in relation to…

  11. Statewide Education Databases: Policy Issues. Discussion Draft.

    ERIC Educational Resources Information Center

    Hansen, Kenneth H.

    This essay reviews current policy issues regarding statewide educational databases. It begins by defining the major characteristics of a database and raising two questions: (1) Is it really necessary to have a statewide educational database? (2) What is the primary rationale for creating one? The limitations of databases in formulating educational…

  12. Synaptic Correlates of Working Memory Capacity.

    PubMed

    Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha

    2017-01-18

    Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Skin appendage-derived stem cells: cell biology and potential for wound repair.

    PubMed

    Xie, Jiangfan; Yao, Bin; Han, Yutong; Huang, Sha; Fu, Xiaobing

    2016-01-01

    Stem cells residing in the epidermis and skin appendages are imperative for skin homeostasis and regeneration. These stem cells also participate in the repair of the epidermis after injuries, inducing restoration of tissue integrity and function of damaged tissue. Unlike epidermis-derived stem cells, comprehensive knowledge about skin appendage-derived stem cells remains limited. In this review, we summarize the current knowledge of skin appendage-derived stem cells, including their fundamental characteristics, their preferentially expressed biomarkers, and their potential contribution involved in wound repair. Finally, we will also discuss current strategies, future applications, and limitations of these stem cells, attempting to provide some perspectives on optimizing the available therapy in cutaneous repair and regeneration.

  14. The association between smoking and breast cancer characteristics and outcome.

    PubMed

    Goldvaser, Hadar; Gal, Omer; Rizel, Shulamith; Hendler, Daniel; Neiman, Victoria; Shochat, Tzippy; Sulkes, Aaron; Brenner, Baruch; Yerushalmi, Rinat

    2017-09-06

    Smoking is associated with an increased incidence of hormone receptor positive breast cancer. Data regarding worse breast cancer outcome in smokers are accumulating. Current literature regarding the impact of smoking on breast cancer characteristics is limited. We evaluated the impact of smoking on breast cancer characteristics and outcome. This was a retrospective single center study. All women diagnosed from 4/2005 through 3/2012 and treated in our institute for early, estrogen receptor positive, human epidermal growth factor receptor 2 (HER2) negative breast cancer, whose tumors were sent for Oncotype DX analysis were included. Medical records were reviewed for demographics, clinico-pathological parameters, treatment and outcome. Data regarding smoking were retrieved according to patients' history at the first visit in the oncology clinic. Patients were grouped and compared according to smoking history (ever smokers vs. never smokers), smoking status (current vs. former and never smokers) and smoking intensity (pack years ≥30 vs. the rest of the cohort). Outcomes were adjusted in multivariate analyses and included age, menopausal status, ethnicity, tumor size, nodal status and grade. A total of 662 women were included. 28.2% had a history of smoking, 16.6% were current smokers and 11.3% were heavy smokers. Smoking had no impact on tumor size, nodal involvement and Oncotype DX recurrence score. Angiolymphatic and perineural invasion rates were higher in current smokers than in the rest of the cohort (10.4% vs. 5.1%, p = 0.045, 8.3% vs. 3.5%, p = 0.031, respectively). Smoking had no other impact on histological characteristics. Five-year disease free survival and overall survival rates were 95.7% and 98.5%, respectively. Smoking had no impact on outcomes. Adjusted disease free survival and overall survival did not influence the results. Smoking had no clinically significant influence on tumor characteristics and outcome among women with estrogen receptor positive, HER2 negative, early breast cancer. As the study was limited to a specific subgroup of the breast cancer population in this heterogeneous disease and since smoking is a modifiable risk factor for the disease, further research is required to clarify the possible impact of smoking on breast cancer.

  15. Advanced analytical modeling of double-gate Tunnel-FETs - A performance evaluation

    NASA Astrophysics Data System (ADS)

    Graef, Michael; Hosenfeld, Fabian; Horst, Fabian; Farokhnejad, Atieh; Hain, Franziska; Iñíguez, Benjamín; Kloes, Alexander

    2018-03-01

    The Tunnel-FET is one of the most promising devices to be the successor of the standard MOSFET due to its alternative current transport mechanism, which allows a smaller subthreshold slope than the physically limited 60 mV/dec of the MOSFET. Recently fabricated devices show smaller slopes already but mostly not over multiple decades of the current transfer characteristics. In this paper the performance limiting effects, occurring during the fabrication process of the device, such as doping profiles and midgap traps are analyzed by physics-based analytical models and their performance limiting abilities are determined. Additionally, performance enhancing possibilities, such as hetero-structures and ambipolarity improvements are introduced and discussed. An extensive double-gate n-Tunnel-FET model is presented, which meets the versatile device requirements and shows a good fit with TCAD simulations and measurement data.

  16. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    NASA Astrophysics Data System (ADS)

    Herrera, J. I.; Reddoch, T. W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbines is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3 percent (within the 5 percent limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz less than component.

  17. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  18. Characterization of the tunneling conductance across DNA bases.

    PubMed

    Zikic, Radomir; Krstić, Predrag S; Zhang, X-G; Fuentes-Cabrera, Miguel; Wells, Jack; Zhao, Xiongce

    2006-07-01

    Characterization of the electrical properties of the DNA bases (adenine, cytosine, guanine, and thymine), in addition to building the basic knowledge on these fundamental constituents of a DNA, is a crucial step in developing a DNA sequencing technology. We present a first-principles study of the current-voltage characteristics of nucleotidelike molecules of the DNA bases, placed in a 1.5 nm gap formed between gold nanoelectrodes. The quantum transport calculations in the tunneling regime are shown to vary strongly with the electrode-molecule geometry and the choice of the density-functional theory exchange-correlation functionals. Analysis of the results in the zero-bias limit indicates that distinguishable current-voltage characteristics of different DNA bases are dominated by the geometrical conformations of the bases and nanoelectrodes.

  19. Effects of Hot Limiter Biasing on Tokamak Runaway Discharges

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Ghoranneviss, M.; Ghanbari, M. R.

    2013-10-01

    In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.

  20. Robotics in neurosurgery: state of the art and future technological challenges.

    PubMed

    Zamorano, L; Li, Q; Jain, S; Kaur, G

    2004-06-01

    The use of robotic technologies to assist surgeons was conceptually described almost thirty years ago but has only recently become feasible. In Neurosurgery, medical robots have been applied to neurosurgery for over 19 years. Nevertheless this field remains unknown to most neurosurgeons. The intrinsic characteristics of robots, such as high precision, repeatability and endurance make them ideal surgeon's assistants. Unfortunately, limitations in the current available systems make its use limited to very few centers in the world. During the last decade, important efforts have been made between academic and industry partnerships to develop robots suitable for use in the operating room environment. Although some applications have been successful in areas of laparoscopic surgery and orthopaedics, Neurosurgery has presented a major challenge due to the eloquence of the surrounding anatomy. This review focuses on the application of medical robotics in neurosurgery. The paper begins with an overview of the development of the medical robotics, followed by the current clinical applications in neurosurgery and an analysis of current limitations. We discuss robotic applications based in our own experience in the field. Next, we discuss the technological challenges and research areas to overcome those limitations, including some of our current research approaches for future progress in the field. Copyright 2004 Robotic Publications Ltd.

  1. Modeling of phonon scattering in n-type nanowire transistors using one-shot analytic continuation technique

    NASA Astrophysics Data System (ADS)

    Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel

    2013-10-01

    We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.

  2. Impact of source height on the characteristic of U-shaped channel tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Yang, Zhaonian; Zhang, Yue; Yang, Yuan; Yu, Ningmei

    2017-11-01

    Tunnel field-effect transistor (TFET) is very attractive in replacing a MOSFET, particularly for low-power nanoelectronic circuits. The U-shaped channel TFET (U-TFET) was proposed to improve the drain-source current with a reduced footprint. In this work, the impact of the source height (HS) on the characteristic of the U-shaped channel tunnel field-effect transistor (U-TFET) is investigated by using TCAD simulation. It is found that with a fixed gate height (HG) the drain-source current has a negative correlation with HS. This is because when the gate region is deeper than the source region, the electric field near the corner of the tunneling junction can be enhanced and the tunneling rate is increased. When HS becomes very thin, the drain-source current is limited by the source region volume. The U-TFET with an n+ pocket is also studied and the same trend is observed.

  3. High voltage and high current density vertical GaN power diodes

    DOE PAGES

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; ...

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm 2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm 2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  4. Conduction mechanism of leakage current due to the traps in ZrO2 thin film

    NASA Astrophysics Data System (ADS)

    Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun

    2009-11-01

    In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.

  5. PMR Polyimide prepreg with improved tack characteristics. [Polymerization of Monomer Reactants applications to fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1978-01-01

    Current PMR Polyimide prepreg technology utilizes methanol or ethanol solvents for preparation of the PMR prepreg solutions. The volatility of these solvents limits the tack and drape retention characteristics of unprotected prepreg exposed to ambient conditions. Studies conducted to achieve PMR 15 Polyimide prepreg with improved tack and drape characteristics are described. Improved tack and drape retention were obtained by incorporation of an additional monomer. The effects of various levels of the added monomer on the thermo-oxidative stability and mechanical properties of graphite fiber reinforced PMR 15 composites exposed and tested at 316 C (600 F) are discussed.

  6. Effect of traps on the charge transport in semiconducting polymer PCDTBT

    NASA Astrophysics Data System (ADS)

    Khan, Mohd Taukeer; Agrawal, Vikash; Almohammedi, Abdullah; Gupta, Vinay

    2018-07-01

    Organic semiconductors (OSCs) are nowadays called upon as promising candidates for next generation electronics devices. Due to disorder structure of these materials, a high density of traps are present in their energy band gap which affect the performance of these devices. In the present manuscript, we have investigated the role of traps on charge transport in PCDTBT thin film by measuring the temperature dependent J(V) characteristics in hole only device configuration. The obtained results were analyzed by space charge limited (SCL) conduction model. It has been found that the room temperature J(V) characteristics follow Mott-Gurney square law for trap-free SCL conduction. But below 278 K, the current increases according to trap-filling SCL law with traps distributed exponentially in the band gap of semiconductor. Furthermore, after reaching a crossover voltage of VC ∽ 12 V, all the traps filled by injected carriers and the trap-filling SCL current switch to trap-free SCL current. The hole mobility of trap-free SCL current is about one order higher as compared trap-filling SCL current and remains constant with temperature.

  7. A Review of Parent Education Programs for Parents of Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Schultz, Tia R.; Schmidt, Carla T.; Stichter, Janine P.

    2011-01-01

    Benefits of parent education have been demonstrated for decades. However, there exists a lack of formative evaluation of parent education for parents of children with autism spectrum disorders (ASD), limiting the interpretation of ongoing and future research. To understand the current status, key characteristics, and evaluation methods of parent…

  8. Demographic Trends and Advocacy Experiences of Gay-Straight Alliance Advisors

    ERIC Educational Resources Information Center

    Graybill, Emily C.; Varjas, Kris; Meyers, Joel; Dever, Bridget V.; Greenberg, Daphne; Roach, Andrew T.; Morillas, Catalina

    2015-01-01

    Using an ecological model, the individual-, school-, and sociocultural-level characteristics that affect gay-straight alliance (GSA) advisors were examined in the current study. The formation of GSAs has been one way that schools have sought to improve the school climate for lesbian, gay, bisexual, and transgender (LGBT) youth. Limited information…

  9. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications.

    PubMed

    Choi, Andrew; Seo, Kyoung Duck; Kim, Do Wan; Kim, Bum Chang; Kim, Dong Sung

    2017-02-14

    Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.

  10. Stressed Ge:Ga photoconductors for space-based astronomy. (Is there life beyond 120 micron)

    NASA Technical Reports Server (NTRS)

    Beeman, J. W.; Haller, E. E.; Hansen, W. L.; Luke, P. N.; Richards, P. L.

    1989-01-01

    Information is given in viewgraph form. Information is given on the characteristics of stressed Ge:Ga, a spring type stress cavity, mounting hardware, materials parameters affecting dark current, and the behavior of low dark current stressed Ge:Ga. It is concluded that detectors exist today for background-limited detection at 200 microns, that researchers are narrowing in on the significant parameters that effect dark current in stressed photoconductors, that these findings may be applied to other photoconductor materials, and that some creative problem solving for an ionizing effect reset mechanism is needed.

  11. Practical cryptographic strategies in the post-quantum era

    NASA Astrophysics Data System (ADS)

    Kabanov, I. S.; Yunusov, R. R.; Kurochkin, Y. V.; Fedorov, A. K.

    2018-02-01

    Quantum key distribution technologies promise information-theoretic security and are currently being deployed in com-mercial applications. We review new frontiers in information security technologies in communications and distributed storage applications with the use of classical, quantum, hybrid classical-quantum, and post-quantum cryptography. We analyze the cur-rent state-of-the-art, critical characteristics, development trends, and limitations of these techniques for application in enterprise information protection systems. An approach concerning the selection of practical encryption technologies for enterprises with branched communication networks is discussed.

  12. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites

    PubMed Central

    Sarritzu, Valerio; Sestu, Nicola; Marongiu, Daniela; Chang, Xueqing; Masi, Sofia; Rizzo, Aurora; Colella, Silvia; Quochi, Francesco; Saba, Michele; Mura, Andrea; Bongiovanni, Giovanni

    2017-01-01

    Metal-halide perovskite solar cells rival the best inorganic solar cells in power conversion efficiency, providing the outlook for efficient, cheap devices. In order for the technology to mature and approach the ideal Shockley-Queissier efficiency, experimental tools are needed to diagnose what processes limit performances, beyond simply measuring electrical characteristics often affected by parasitic effects and difficult to interpret. Here we study the microscopic origin of recombination currents causing photoconversion losses with an all-optical technique, measuring the electron-hole free energy as a function of the exciting light intensity. Our method allows assessing the ideality factor and breaks down the electron-hole recombination current into bulk defect and interface contributions, providing an estimate of the limit photoconversion efficiency, without any real charge current flowing through the device. We identify Shockley-Read-Hall recombination as the main decay process in insulated perovskite layers and quantify the additional performance degradation due to interface recombination in heterojunctions. PMID:28317883

  13. Predicting wood pellet stove ownership and acquisition in Albuquerque, NM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lansford, R.; Skaggs, R.; Owensby, F.

    1994-12-31

    Wood pellet stove (WPS) ownership and acquisition in Albuquerque, New Mexico was predicted using a model of qualitative choice. Using data obtained from a telephone survey, households were divided into four groups: current WPS owners, non-owners considering ownership, non-owners not considering ownership, and those who had not heard of WPS technology. Variables used to predict what category a household will be in include homeowners` socioeconomic and home-heating characteristics. Results indicate few WPS stoves are currently in use in Albuquerque. However, current WPS owners and those considering WPS acquisition tend to have higher incomes, more years of education, larger homes, andmore » use their fireplaces more frequently than average. Clean air regulations in Albuquerque will require changes in home woodburning. The WPS is an efficient and clean device; however, lack of knowledge of WPS technology, satisfaction with current heating systems, and limited awareness of the potential impact of clean air regulations indicate WPS usage in Albuquerque will remain limited.« less

  14. Cascaded Emission Regions in 2.4 μm GaInAsSb Light Emitting Diode's for Improved Current Efficiency

    NASA Astrophysics Data System (ADS)

    Prineas, John; Yager, Jeff; Olesberg, Jonathon; Cao, Chuanshun; Reddy, Madhu; Coretsopoulos, Chris

    2008-03-01

    Infrared optoelectronics play an important role in sensing of molecules through characteristic vibrational resonances that occur at those wavelengths. For molecules in aqueous and at room temperature, where optical transistions tend to be broad, the broadband emission of light emitting diodes (LEDs) are well suited for obtaining molecular absorption spectra. The 2-2.6 μm range is an advantageous range for sensing of glucose. Voltages available in batteries and control electronics are limited to much higher voltages than those required to turn on an infrared LED, and moreover have limited current supply. Here, we demonstrate room temperature operature of 5-stage cascaded emission regions in 2-2.6 μm GaInAsSb LEDs. We report three times higher turn on voltage, and nine times improved current efficiency compared to a single stage device.

  15. Ab-Initio analysis of TlBr: limiting the ionic current without degrading the electronic one

    NASA Astrophysics Data System (ADS)

    Rocha Leao, Cedric; Lordi, Vincenzo

    2011-03-01

    Although TlBr in principle presents all the theoretical requirements for making high resolution room temperature radiation detectors, practical applications of TlBr have proven to be nonviable due to the polarization that is observed in the crystal after relatively short periods of operation. This polarization, that is believed to be caused by accumulation of oppositely charged ionic species at the ends of the crystal, results in an electric field that opposes that of the applied bias, counter-acting its effect. In this work, we use state of the art quantum modeling to benchmark the theoretical limits for the performance of TlBr as a radiation detector, showing that the best experimental reports demonstrate near-ideal electronic characteristics. We then propose a model to inhibit the detrimental ionic current in the material without impacting the excellent properties of the electronic current. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. The temperature dependence of the characteristics of crystalline-silicon-based heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Kryuchenko, Yu. V.; Kostylyov, V. P.; Korkishko, R. M.; Sokolovskyi, I. O.; Abramov, A. S.; Abolmasov, S. N.; Andronikov, D. A.; Bobyl', A. V.; Panaiotti, I. E.; Terukov, E. I.; Titov, A. S.; Shvarts, M. Z.

    2016-03-01

    Temperature dependences of the photovoltaic characteristics of ( p)a-Si/( i)a-Si:H/( n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80-420 K. The open-circuit voltage ( V OC), fill factor ( FF) of the current-voltage ( I-U) characteristic, and maximum output power ( P max) reach limiting values in the interval of 200-250 K on the background of monotonic growth in the short-circuit current ( I SC) in a temperature range of 80-400 K. At temperatures below this interval, the V OC, FF, and P max values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I-U curve shape exhibits a change that is accompanied by a drop in V OC. Possible factors that account for the decrease in V OC, FF, and P max are considered.

  17. Degradation of the electrical characteristics of MOS structures with erbium, gadolinium, and dysprosium oxides under the effect of an electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalimova, M. B., E-mail: shamb@samsu.ru; Sachuk, N. V.

    2015-08-15

    The degradation of the characteristics of silicon metal-oxide-semiconductor (MOS) structures with oxides of rare-earth elements under the effect of electric fields with intensities of 0.1–4 MV/cm during the course of electroforming is studied. A specific feature of electroforming consists in the possibility of multiple switching of the structures from the insulating state to the low-resistivity one and back. The temporal characteristics of the degradation of MOS structures during the course of electroforming are exponential. The current-voltage characteristics follow the power law in the range of 0.2–3 V; the effect of an electric field brings about a variation in the distributionmore » of the energy density of traps responsible for currents limited by space charge. It is established that multiple cycles of electroforming lead to an increase in the density of surface states at the Si-oxide interface and to a variation in the energy position of the trap levels, which affects the charge state of the traps.« less

  18. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  19. Power generation in random diode arrays

    NASA Astrophysics Data System (ADS)

    Shvydka, Diana; Karpov, V. G.

    2005-03-01

    We discuss nonlinear disordered systems, random diode arrays (RDAs), which can represent such objects as large-area photovoltaics and ion channels of biological membranes. Our numerical modeling has revealed several interesting properties of RDAs. In particular, the geometrical distribution of nonuniformities across a RDA has only a minor effect on its integral characteristics determined by RDA parameter statistics. In the meantime, the dispersion of integral characteristics vs system size exhibits a nontrivial scaling dependence. Our theoretical interpretation here remains limited and is based on the picture of eddy currents flowing through weak diodes in the RDA.

  20. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  1. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Shyshkin, O.; Yamaguchi, S.

    2017-07-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of superconductivity at the edges due to penetration of magnetic field in superconducting core during the pulse.

  2. Additional Electrochemical Treatment Effects on the Switching Characteristics of Anodic Porous Alumina Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Otsuka, Shintaro; Takeda, Ryouta; Furuya, Saeko; Shimizu, Tomohiro; Shingubara, Shouso; Iwata, Nobuyuki; Watanabe, Tadataka; Takano, Yoshiki; Takase, Kouichi

    2012-06-01

    We have investigated the current-voltage characteristics of a resistive switching memory (ReRAM), especially the reproducibility of the switching voltage between an insulating state and a metallic state. The poor reproducibility hinders the practical use of this memory. According to a filament model, the variation of the switching voltage may be understood in terms of the random choice of filaments with different conductivities and lengths at each switching. A limitation of the number of conductive paths is expected to lead to the suppression of the variation of switching voltage. In this study, two strategies for the limitation have been proposed using an anodic porous alumina (APA). The first is the reduction of the number of conductive paths by restriction of the contact area between the top electrodes and the insulator. The second is the lowering of the resistivity of the insulator, which makes it possible to grow filaments with the same characteristics by electrochemical treatments using a pulse-electroplating technique.

  3. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; ...

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm -2 and a peak power density of 1.4 W cm -2. Maximummore » energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br - reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br - coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  4. Analysis of the electrical harmonic characteristics of a slip recovery variable speed generating system for wind turbine applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, J.I.; Reddoch, T.W.

    1988-02-01

    Variable speed electric generating technology can enhance the general use of wind energy in electric utility applications. This enhancement results from two characteristic properties of variable speed wind turbine generators: an improvement in drive train damping characteristics, which results in reduced structural loading on the entire wind turbine system, and an improvement in the overall efficiency by using a more sophisticated electrical generator. Electronic converter systems are the focus of this investigation -- in particular, the properties of a wound-rotor induction generator with the slip recovery system and direct-current link converter. Experience with solid-state converter systems in large wind turbinesmore » is extremely limited. This report presents measurements of electrical performances of the slip recovery system and is limited to the terminal characteristics of the system. Variable speed generating systems working effectively in utility applications will require a satisfactory interface between the turbine/generator pair and the utility network. The electrical testing described herein focuses largely on the interface characteristics of the generating system. A MOD-O wind turbine was connected to a very strong system; thus, the voltage distortion was low and the total harmonic distortion in the utility voltage was less than 3% (within the 5% limit required by most utilities). The largest voltage component of a frequency below 60 Hz was 40 dB down from the 60-Hz< component. 8 refs., 14 figs., 8 tabs.« less

  5. Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2

    NASA Astrophysics Data System (ADS)

    Encomendero, Jimy; Yan, Rusen; Verma, Amit; Islam, S. M.; Protasenko, Vladimir; Rouvimov, Sergei; Fay, Patrick; Jena, Debdeep; Xing, Huili Grace

    2018-03-01

    We report the generation of room temperature microwave oscillations from GaN/AlN resonant tunneling diodes, which exhibit record-high peak current densities. The tunneling heterostructure grown by molecular beam epitaxy on freestanding GaN substrates comprises a thin GaN quantum well embedded between two AlN tunneling barriers. The room temperature current-voltage characteristics exhibit a record-high maximum peak current density of ˜220 kA/cm2. When biased within the negative differential conductance region, microwave oscillations are measured with a fundamental frequency of ˜0.94 GHz, generating an output power of ˜3.0 μW. Both the fundamental frequency and the output power of the oscillator are limited by the external biasing circuit. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is predicted to be ˜200 GHz. This work represents a significant step towards microwave power generation enabled by resonant tunneling transport, an ultra-fast process that goes beyond the limitations of current III-Nitride high electron mobility transistors.

  6. Limitations of the method of characteristics when applied to axisymmetric hypersonic nozzle design

    NASA Technical Reports Server (NTRS)

    Edwards, Anne C.; Perkins, John N.; Benton, James R.

    1990-01-01

    A design study of axisymmetric hypersonic wind tunnel nozzles was initiated by NASA Langley Research Center with the objective of improving the flow quality of their ground test facilities. Nozzles for Mach 6 air, Mach 13.5 nitrogen, and Mach 17 nitrogen were designed using the Method of Characteristics/Boundary Layer (MOC/BL) approach and were analyzed with a Navier-Stokes solver. Results of the analysis agreed well with design for the Mach 6 case, but revealed oblique shock waves of increasing strength originating from near the inflection point of the Mach 13.5 and Mach 17 nozzles. The findings indicate that the MOC/BL design method has a fundamental limitation that occurs at some Mach number between 6 an 13.5. In order to define the limitation more exactly and attempt to discover the cause, a parametric study of hypersonic ideal air nozzles designed with the current MOC/BL method was done. Results of this study indicate that, while stagnations conditions have a moderate affect on the upper limit of the method, the method fails at Mach numbers above 8.0.

  7. Voltage-Clamp Studies on Uterine Smooth Muscle

    PubMed Central

    Anderson, Nels C.

    1969-01-01

    These studies have developed and tested an experimental approach to the study of membrane ionic conductance mechanisms in strips of uterine smooth muscle. The experimental and theoretical basis for applying the double sucrose-gap technique is described along with the limitations of this system. Nonpropagating membrane action potentials were produced in response to depolarizing current pulses under current-clamp conditions. The stepwise change of membrane potential under voltage-clamp conditions resulted in a family of ionic currents with voltage- and time-dependent characteristics. In sodium-free solution the peak transient current decreased and its equilibrium potential shifted along the voltage axis toward a more negative internal potential. These studies indicate a sodium-dependent, regenerative excitation mechanism. PMID:5796366

  8. The Reality of Welfare-to-Work: Employment Opportunities for Women Affected by Welfare Time Limits in Texas.

    ERIC Educational Resources Information Center

    Lawson, Leslie O.; King, Christopher T.

    Researchers assembled a database of current and projected information on the following: welfare recipients; other female participants in the labor market; employment, occupational availability, and job openings; and occupational characteristics. The database was used in a multistep process to project the number of women forced to leave welfare…

  9. A Limited Antiballistic Missile System

    DTIC Science & Technology

    1990-12-01

    2.2 ABM Philosophy. .. .. .. .. ... ... ... ...... 2-1 2.3 Ballistic Missile Flight Phases .. .. .. .... ....... 2-3 2.4 Past US Systems...2-7 iii Page 2.4.4 SAFEGUARD .. .. .. .. .. ... ... ..... 2-8 2.4.5 Other Programs. .. .. .. .. ... ... ..... 2-9 2.5 Current ABM ...2.5.6 Summary of ABM Characteristics. .. .. ..... 2-11 2.6 The Threat .. .. .. .. ... ... ... ... ... ... 2-12 2.6.1 The Middle East

  10. Identifying Discriminating Variables between Teachers Who Fully Integrate Computers and Teachers with Limited Integration

    ERIC Educational Resources Information Center

    Mueller, Julie; Wood, Eileen; Willoughby, Teena; Ross, Craig; Specht, Jacqueline

    2008-01-01

    Given the prevalence of computers in education today, it is critical to understand teachers' perspectives regarding computer integration in their classrooms. The current study surveyed a random sample of a heterogeneous group of 185 elementary and 204 secondary teachers in order to provide a comprehensive summary of teacher characteristics and…

  11. Design and fabrication of a four-man capacity urine wick evaporator system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The integrated system was tested to determine the performance characteristics and limitations of the dual catalyst concept. The primary objective of the dual catalyst concept is to remove ammonia and other noxious substances in the gas phase and thereby eliminate the need for and current practice of chemically or electrochemically pretreating urine prior to distillation.

  12. The effect of incomplete fuel-air mixing on the lean blowout limit, lean stability limit and NO(x) emissions in lean premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Shih, W.-P.; Lee, J. G.; Santavicca, D. A.

    1994-01-01

    Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.

  13. Study on characteristics of the aperture-averaging factor of atmospheric scintillation in terrestrial optical wireless communication

    NASA Astrophysics Data System (ADS)

    Shen, Hong; Liu, Wen-xing; Zhou, Xue-yun; Zhou, Li-ling; Yu, Long-Kun

    2018-02-01

    In order to thoroughly understand the characteristics of the aperture-averaging effect of atmospheric scintillation in terrestrial optical wireless communication and provide references for engineering design and performance evaluation of the optics system employed in the atmosphere, we have theoretically deduced the generally analytic expression of the aperture-averaging factor of atmospheric scintillation, and numerically investigated characteristics of the apertureaveraging factor under different propagation conditions. The limitations of the current commonly used approximate calculation formula of aperture-averaging factor have been discussed, and the results showed that the current calculation formula is not applicable for the small receiving aperture under non-uniform turbulence link. Numerical calculation has showed that aperture-averaging factor of atmospheric scintillation presented an exponential decline model for the small receiving aperture under non-uniform turbulent link, and the general expression of the model was given. This model has certain guiding significance for evaluating the aperture-averaging effect in the terrestrial optical wireless communication.

  14. ISO 15859 Propellant and Fluid Specifications: A Review and Comparison with Military and NASA Specifications

    NASA Technical Reports Server (NTRS)

    Greene, Ben; McClure, Mark B.; Baker, David L.

    2006-01-01

    This work presents an overview of the International Organization for Standardization (ISO) 15859 International Standard for Space Systems Fluid Characteristics, Sampling and Test Methods Parts 1 through 13 issued in June 2004. These standards establish requirements for fluid characteristics, sampling, and test methods for 13 fluids of concern to the propellant community and propellant characterization laboratories: oxygen, hydrogen, nitrogen, helium, nitrogen tetroxide, monomethylhydrazine, hydrazine, kerosene, argon, water, ammonia, carbon dioxide, and breathing air. A comparison of the fluid characteristics, sampling, and test methods required by the ISO standards to the current military and NASA specifications, which are in use at NASA facilities and elsewhere, is presented. Many ISO standards composition limits and other content agree with those found in the applicable parts of NASA SE-S-0073, NASA SSP 30573, military performance standards and details, and Compressed Gas Association (CGA) commodity specifications. The status of a current project managed at NASA Johnson Space Center White Sands Test Facility (WSTF) to rewrite these documents is discussed.

  15. Adaptation of superconducting fault current limiter to high-speed reclosing

    NASA Astrophysics Data System (ADS)

    Koyama, T.; Yanabu, S.

    2009-10-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  16. Electrical research on solar cells and photovoltaic materials

    NASA Technical Reports Server (NTRS)

    Orehotsky, J.

    1984-01-01

    The flat-plate solar cell array program which increases the service lifetime of the photovoltaic modules used for terrestrial energy applications is discussed. The current-voltage response characteristics of the solar cells encapsulated in the modules degrade with service time and this degradation places a limitation on the useful lifetime of the modules. The most desirable flat-plate array system involves solar cells consisting of highly polarizable materials with similar electrochemical potentials where the cells are encapsulated in polymers in which ionic concentrations and mobilities are negligibly small. Another possible mechanism limiting the service lifetime of the photovoltaic modules is the gradual loss of the electrical insulation characteristics of the polymer pottant due to water absorption or due to polymer degradation from light or heat effects. The mechanical properties of various polymer pottant materials and of electrochemical corrosion mechanisms in solar cell material are as follows: (1) electrical and ionic resistivity; (2) water absorption kinetics and water solubility limits; and (3) corrosion characterization of various metallization systems used in solar cell construction.

  17. Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging

    DOE PAGES

    Wu, Xiang; Lee, Hyungseok; Bilsel, Osman; ...

    2015-01-01

    One of the key roadblocks in UCNP development is its extremely limited choices of excitation wavelengths. We report a generic design to program UCNPs to possess highly tunable dye characteristic excitation bands. Using such distinctive properties, we were able to develop a new excitation wavelength selective security imaging. Finally, this work unleashed the greater freedom of the excitation wavelengths of the upconversion nanoparticles and we believe it is a game-changer in the field and this method will enable numerous applications that are currently limited by existing UCNPs.

  18. The promise and limits of PET texture analysis.

    PubMed

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Yen, Tzu-Chen

    2013-11-01

    Metabolic heterogeneity is a recognized characteristic of malignant tumors. Positron emission tomography (PET) texture analysis evaluated intratumoral heterogeneity in the uptake of (18)F-fluorodeoxyglucose. There were recent evidences that PET textural features were of prognostic significance in patients with different solid tumors. Unfortunately, there are still crucial standardization challenges to transform PET texture parameters from their current use as research tools into the arena of validated technologies for use in oncology practice. Testing its generalizability, robustness, consistency, and limitations is necessary before implementing it in daily patient care.

  19. Super Generalized Central Limit Theorem —Limit Distributions for Sums of Non-identical Random Variables with Power Laws—

    NASA Astrophysics Data System (ADS)

    Shintani, Masaru; Umeno, Ken

    2018-04-01

    The power law is present ubiquitously in nature and in our societies. Therefore, it is important to investigate the characteristics of power laws in the current era of big data. In this paper we prove that the superposition of non-identical stochastic processes with power laws converges in density to a unique stable distribution. This property can be used to explain the universality of stable laws that the sums of the logarithmic returns of non-identical stock price fluctuations follow stable distributions.

  20. Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device

    NASA Astrophysics Data System (ADS)

    Chen, C.; Yang, Y. C.; Zeng, F.; Pan, F.

    2010-08-01

    Highly stable and reproducible bipolar resistive switching effects are reported on Cu/AlN/Pt devices. Memory characteristics including large memory window of 103, long retention time of >106 s and good endurance of >103 were demonstrated. It is concluded that the reset current decreases as compliance current decreases, which provides an approach to suppress power consumption. The dominant conduction mechanisms of low resistance state and high resistance state were verified by Ohmic behavior and trap-controlled space charge limited current, respectively. The memory effect is explained by the model concerning redox reaction mediated formation and rupture of the conducting filament in AlN films.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, F.

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  2. Study of Electromagnetic Repulsion Switch to High Speed Reclosing and Recover Time Characteristics of Superconductor

    NASA Astrophysics Data System (ADS)

    Koyama, Tomonori; Kaiho, Katsuyuki; Yamaguchi, Iwao; Yanabu, Satoru

    Using a high-temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor and vacuum interrupter as the commutation switch were connected in parallel using a bypass coil. When the fault current flows in this equipment, the superconductor is quenched and the current is then transferred to the parallel coil due to the voltage drop in the superconductor. This large current in the parallel coil actuates the magnetic repulsion mechanism of the vacuum interrupter and the current in the superconductor is broken. Using this equipment, the current flow time in the superconductor can be easily minimized. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. This system has many merits. So, we introduced to electromagnetic repulsion switch. There is duty of high speed re-closing after interrupting fault current in the electrical power system. So the SFCL should be recovered to superconducting state before high speed re-closing. But, superconductor generated heat at the time of quench. It takes time to recover superconducting state. Therefore it is a matter of recovery time. In this paper, we studied recovery time of superconductor. Also, we proposed electromagnetic repulsion switch with reclosing system.

  3. Performance Evaluation of Bluetooth Low Energy: A Systematic Review.

    PubMed

    Tosi, Jacopo; Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto; Formica, Domenico

    2017-12-13

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits.

  4. Performance Evaluation of Bluetooth Low Energy: A Systematic Review

    PubMed Central

    Taffoni, Fabrizio; Santacatterina, Marco; Sannino, Roberto

    2017-01-01

    Small, compact and embedded sensors are a pervasive technology in everyday life for a wide number of applications (e.g., wearable devices, domotics, e-health systems, etc.). In this context, wireless transmission plays a key role, and among available solutions, Bluetooth Low Energy (BLE) is gaining more and more popularity. BLE merges together good performance, low-energy consumption and widespread diffusion. The aim of this work is to review the main methodologies adopted to investigate BLE performance. The first part of this review is an in-depth description of the protocol, highlighting the main characteristics and implementation details. The second part reviews the state of the art on BLE characteristics and performance. In particular, we analyze throughput, maximum number of connectable sensors, power consumption, latency and maximum reachable range, with the aim to identify what are the current limits of BLE technology. The main results can be resumed as follows: throughput may theoretically reach the limit of ~230 kbps, but actual applications analyzed in this review show throughputs limited to ~100 kbps; the maximum reachable range is strictly dependent on the radio power, and it goes up to a few tens of meters; the maximum number of nodes in the network depends on connection parameters, on the network architecture and specific device characteristics, but it is usually lower than 10; power consumption and latency are largely modeled and analyzed and are strictly dependent on a huge number of parameters. Most of these characteristics are based on analytical models, but there is a need for rigorous experimental evaluations to understand the actual limits. PMID:29236085

  5. An empirical/theoretical model with dimensionless numbers to predict the performance of electrodialysis systems on the basis of operating conditions.

    PubMed

    Karimi, Leila; Ghassemi, Abbas

    2016-07-01

    Among the different technologies developed for desalination, the electrodialysis/electrodialysis reversal (ED/EDR) process is one of the most promising for treating brackish water with low salinity when there is high risk of scaling. Multiple researchers have investigated ED/EDR to optimize the process, determine the effects of operating parameters, and develop theoretical/empirical models. Previously published empirical/theoretical models have evaluated the effect of the hydraulic conditions of the ED/EDR on the limiting current density using dimensionless numbers. The reason for previous studies' emphasis on limiting current density is twofold: 1) to maximize ion removal, most ED/EDR systems are operated close to limiting current conditions if there is not a scaling potential in the concentrate chamber due to a high concentration of less-soluble salts; and 2) for modeling the ED/EDR system with dimensionless numbers, it is more accurate and convenient to use limiting current density, where the boundary layer's characteristics are known at constant electrical conditions. To improve knowledge of ED/EDR systems, ED/EDR models should be also developed for the Ohmic region, where operation reduces energy consumption, facilitates targeted ion removal, and prolongs membrane life compared to limiting current conditions. In this paper, theoretical/empirical models were developed for ED/EDR performance in a wide range of operating conditions. The presented ion removal and selectivity models were developed for the removal of monovalent ions and divalent ions utilizing the dominant dimensionless numbers obtained from laboratory scale electrodialysis experiments. At any system scale, these models can predict ED/EDR performance in terms of monovalent and divalent ion removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Duality and nonduality in meditation research.

    PubMed

    Josipovic, Zoran

    2010-12-01

    The great variety of meditation techniques found in different contemplative traditions presents a challenge when attempting to create taxonomies based on the constructs of contemporary cognitive sciences. In the current issue of Consciousness and Cognition, Travis and Shear add 'automatic self-transcending' to the previously proposed categories of 'focused attention' and 'open monitoring', and suggest characteristic EEG bands as the defining criteria for each of the three categories. Accuracy of current taxonomies and potential limitations of EEG measurements as classifying criteria are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. On the local injection of emitted electrons into micrograins on the surface of A{sup III}–B{sup V} semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Glukhovskoi, E. G.; Khazanov, A. A.

    2016-06-15

    The characteristics of the injection of electrons into a semiconductor from a microprobe–micrograin nanogap are investigated with a tunneling microscope in the mode of field emission into locally selected surface microcrystals of indium antimonide, indium arsenide, and gallium arsenide. The current mechanisms are established and their parameters are determined by comparing the experimental I–V characteristics and those calculated from formulas of current transport. The effect of limitation of the current into the micrograins of indium antimonide and indium arsenide which manifests itself at injection levels exceeding a certain critical value, e.g., 6 × 10{sup 16} cm{sup –3} for indium antimonidemore » and 4 × 10{sup 17} cm{sup –3} for indium arsenide, is discovered. A physical model, i.e., the localization of electrons in the surface area of a micrograin due to their Coulomb interaction, is proposed.« less

  8. Re-Bordering Comparative Education in Latin America: Between Global Limits and Local Characteristics

    ERIC Educational Resources Information Center

    Acosta, Felicitas; Perez Centeno, Cristian G.

    2011-01-01

    Conceived for presentation at the XIV WCCES conference in Istanbul in 2010, the topic of which was "Bordering Comparative Education", this paper, within that framework, aims to present the current state of the discipline in Latin America in relation to a quick overview of its present-day situation at a global level. After providing an…

  9. Identification of lake trout Salvelinus namaycush spawning habitat in northern Lake Huron using high-resolution satellite imagery

    USGS Publications Warehouse

    Grimm, Amanda G.; Brooks, Colin N.; Binder, Thomas R.; Riley, Stephen C.; Farha, Steve A.; Shuchman, Robert A.; Krueger, Charles C.

    2016-01-01

    The availability and quality of spawning habitat may limit lake trout recovery in the Great Lakes, but little is known about the location and characteristics of current spawning habitats. Current methods used to identify lake trout spawning locations are time- and labor-intensive and spatially limited. Due to the observation that some lake trout spawning sites are relatively clean of overlaying algae compared to areas not used for spawning, we suspected that spawning sites could be identified using satellite imagery. Satellite imagery collected just before and after the spawning season in 2013 was used to assess whether lake trout spawning habitat could be identified based on its spectral characteristics. Results indicated that Pléiades high-resolution multispectral satellite imagery can be successfully used to estimate algal coverage of substrates and temporal changes in algal coverage, and that models developed from processed imagery can be used to identify potential lake trout spawning sites based on comparison of sites where lake trout eggs were and were not observed after spawning. Satellite imagery is a potential new tool for identifying lake trout spawning habitat at large scales in shallow nearshore areas of the Great Lakes.

  10. Teaching practices of the undergraduate introductory biomechanics faculty: a North American survey.

    PubMed

    Garceau, Luke R; Ebben, William P; Knudson, Duane V

    2012-11-01

    Instruction and assessment strategies of undergraduate introductory biomechanics instructors have yet to be comprehensively examined. The purpose of this study was to identify the current instruction and assessment practices of North American undergraduate introductory biomechanics instructors and equipment needed for effective instruction in lecture and laboratory sessions. One hundred and sixty-five respondents (age: 42.5 +/- 10.3 years) who currently teach or have taught an introductory biomechanics course in North America were recruited by electronic mail. Subjects completed a web-based survey, consisting of 60 open- and closed-ended questions. Pearson's correlation coefficients were used to assess relationships between instructor's familiarity with either the Biomechanics Concept Inventory or the NASPE Guidelines for Undergraduate Biomechanics, and instructor and course characteristics (number of years teaching, age, faculty rank, number of quizzes given, etc.) A number of variables were significantly (p < 0.05) correlated. Answers to open-ended questions were processed using content analysis, with results categorized in content areas including: instructor and course characteristics; lecture instruction; assessment and equipment; laboratory instruction; assessment and equipment; and instructor's perspectives. Many active learning strategies for lecture and laboratory instruction were identified by faculty. Limited student preparation and limited resources were noted as the instructor's most common challenges.

  11. Noise performance limits of advanced x-ray imagers employing poly-Si-based active pixel architectures

    NASA Astrophysics Data System (ADS)

    Koniczek, Martin; El-Mohri, Youcef; Antonuk, Larry E.; Liang, Albert; Zhao, Qihua; Jiang, Hao

    2011-03-01

    A decade after the clinical introduction of active matrix, flat-panel imagers (AMFPIs), the performance of this technology continues to be limited by the relatively large additive electronic noise of these systems - resulting in significant loss of detective quantum efficiency (DQE) under conditions of low exposure or high spatial frequencies. An increasingly promising approach for overcoming such limitations involves the incorporation of in-pixel amplification circuits, referred to as active pixel architectures (AP) - based on low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this study, a methodology for theoretically examining the limiting noise and DQE performance of circuits employing 1-stage in-pixel amplification is presented. This methodology involves sophisticated SPICE circuit simulations along with cascaded systems modeling. In these simulations, a device model based on the RPI poly-Si TFT model is used with additional controlled current sources corresponding to thermal and flicker (1/f) noise. From measurements of transfer and output characteristics (as well as current noise densities) performed upon individual, representative, poly-Si TFTs test devices, model parameters suitable for these simulations are extracted. The input stimuli and operating-point-dependent scaling of the current sources are derived from the measured current noise densities (for flicker noise), or from fundamental equations (for thermal noise). Noise parameters obtained from the simulations, along with other parametric information, is input to a cascaded systems model of an AP imager design to provide estimates of DQE performance. In this paper, this method of combining circuit simulations and cascaded systems analysis to predict the lower limits on additive noise (and upper limits on DQE) for large area AP imagers with signal levels representative of those generated at fluoroscopic exposures is described, and initial results are reported.

  12. Profile of female sex workers in a Chinese county: does it differ by where they came from and where they work?

    PubMed

    Fang, Xiaoyi; Li, Xiaoming; Yang, Hongmei; Hong, Yan; Zhao, Ran; Dong, Baiqing; Liu, Wei; Zhou, Yuejiao; Liang, Shaoling; Stanton, Bonita

    2007-01-01

    Since the 1980s, informal or clandestine sex work in the service or entertainment industry has spread from municipalities to small towns in most areas of China. Despite recognition of the important role of female sex workers in HIV and STD epidemics in China, limited data are available regarding their individual characteristics and the social and environmental context of their work. Furthermore, most existing studies on commercial sex in China have been conducted in large cities or tourist attractions. Using data from 454 female sex workers in a rural Chinese county, the current study was designed to explore the individual profiles of commercial sex workers and to examine whether the profile and sexual risk behaviour differ by where the female sex workers came from and where they work. The sample in the current study was different from previous studies in a number of key individual characteristics. However, similarly to previous studies, the subjects in the current study were driven into commercial sex by poverty or limited employment opportunities, lived a stressful life, were subject to sexual harassment and related violence, and engaged in a number of health-compromising behaviours including behaviours that put them at risk of HIV/STD infection and depression. The findings of the current study underscore the urgent need for effective HIV/STD prevention, intervention and mental health promotion programs among female sex workers in China. The data in the current study suggest a strong association of individual profile with the economic conditions of work sites and residence status (in-province residency vs. out-of-province residency), which suggests that such efforts must take the social and cultural contextual factors of working environment (and sexual risks) into consideration.

  13. Profile of female sex workers in a Chinese county: Does it differ by where they came from and where they work?

    PubMed Central

    Fang, Xiaoyi; Li, Xiaoming; Yang, Hongmei; Hong, Yan; Zhao, Ran; Dong, Baiqing; Liu, Wei; Zhou, Yuejiao; Liang, Shaoling; Stanton, Bonita

    2007-01-01

    Since the 1980s, informal or clandestine sex work in the service or entertainment industry has spread from municipalities to small towns in most areas of China. Despite recognition of the important role of female sex workers in HIV and STD epidemics in China, limited data are available regarding their individual characteristics and social and environmental context of their work. Furthermore, most existing studies on commercial sex in China have been conducted in large cities or tourist attractions. Using data from 454 female sex workers in a rural Chinese county, the current study was designed to explore the individual profile of commercial sex workers and to examine whether the profile and sexual risk behavior differ by where the female sex workers came from and where they work. The sample in the current study was different from previous studies in a number of key individual characteristics. However, similar to previous studies, the sample in the current study were driven into commercial sex by poverty or limited employment opportunities, lived in a stressful life, were subject to sexual harassment and related violence, and engaged in a number of health-compromising behaviors including behaviors that put them at risk of HIV/STD infection and depression. The findings of the current study underscore the urgent needs for effective HIV/STD prevention intervention and mental health promotion program among female sex workers in China. The data in the current study suggest a strong association of individual profile with the economic conditions of work sites and residence status (in-province residency versus out-province residence) which suggests that such efforts must take the social and cultural contextual factors of their working environment (and sexual risks) into consideration. PMID:18270499

  14. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    PubMed

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  15. Biopsychosocial Characteristics of Community-dwelling Older Adults with Limited Ability to Walk ¼ Mile

    PubMed Central

    Hardy, Susan E.; McGurl, David J.; Studenski, Stephanie A.; Degenholtz, Howard B.

    2010-01-01

    Objectives To establish nationally representative estimates of the prevalence of self-reported difficulty and inability to walk ¼ mile among older adults and to identify the characteristics independently associated with difficulty or inability to walk ¼ mile. Design Cross-sectional analysis of data from the 2003 Cost and Use Medicare Current Beneficiary Survey. Setting Community. Participants 9563 community-dwelling Medicare beneficiaries aged 65 years or older, representing an estimated total population of 34.2 million older adults. Measurements Self-reported ability to walk ¼ mile, sociodemographics, chronic conditions, body mass index, smoking, and functional status. Results In 2003, an estimated 9.5 million aged Medicare beneficiaries had difficulty walking ¼ mile and 5.9 million were unable. Among the 20.2 million older adults with no difficulty in basic or instrumental activities of daily living (ADL), an estimated 4.3 million (21%) had limited ability to walk ¼ mile. Having difficulty or being unable to walk ¼ mile was independently associated with older age, female sex, non-Hispanic ethnicity, lower educational level, Medicaid entitlement, most chronic medical conditions, current smoking, and being overweight or obese. Conclusion Almost half of older adults, and 20% of those reporting no ADL limitations, report limited ability to walk ¼ mile. Among functionally independent older adults, reported ability to walk ¼ mile can identify vulnerable older adults with greater medical problems and fewer resources, and may be a valuable clinical marker in planning their care. Future work is needed to determine the association between ¼ mile walk ability and subsequent functional decline and healthcare utilization. PMID:20210817

  16. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.

    PubMed

    Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan

    2015-06-17

    In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.

  17. Holographic Floquet states I: a strongly coupled Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kinoshita, Shunichiro; Murata, Keiju; Oka, Takashi

    2017-05-01

    Floquet states can be realized in quantum systems driven by continuous time-periodic perturbations. It is known that a state known as the Floquet Weyl semimetal can be realized when free Dirac fermions are placed in a rotating electric field. What will happen if strong interaction is introduced to this system? Will the interaction wash out the characteristic features of Weyl semimetals such as the Hall response? Is there a steady state and what is its thermodynamic behavior? We answer these questions using AdS/CFT correspondence in the N = 2 supersymmetric massless QCD in a rotating electric field in the large N c limit realizing the first example of a "holographic Floquet state". In this limit, gluons not only mediate interaction, but also act as an energy reservoir and stabilize the nonequilibrium steady state (NESS). We obtain the electric current induced by a rotating electric field: in the high frequency region, the Ohm's law is satisfied, while we recover the DC nonlinear conductivity at low frequency, which was obtained holographically in a previous work. The thermodynamic properties of the NESS, e.g., fluctuation-dissipation relation, is characterized by the effective Hawking temperature that is defined from the effective horizon giving a holographic meaning to the "periodic thermodynamic" concept. In addition to the strong (pump) rotating electric field, we apply an additional weak (probe) electric field in the spirit of the pump-probe experiments done in condensed matter experiments. Weak DC and AC probe analysis in the background rotating electric field shows Hall currents as a linear response, therefore the Hall response of Floquet Weyl semimetals survives at the strong coupling limit. We also find frequency mixed response currents, i.e., a heterodyning effect, characteristic to periodically driven Floquet systems.

  18. Fill factor in organic solar cells can exceed the Shockley-Queisser limit

    NASA Astrophysics Data System (ADS)

    Trukhanov, Vasily A.; Bruevich, Vladimir V.; Paraschuk, Dmitry Yu.

    2015-06-01

    The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.

  19. Exercise Blood Pressure Guidelines: Time to Re-evaluate What is Normal and Exaggerated?

    PubMed

    Currie, Katharine D; Floras, John S; La Gerche, Andre; Goodman, Jack M

    2018-03-24

    Blood pressure responses to graded exercise testing can provide important diagnostic and prognostic information. While published guidelines outline what constitutes a "normal" and "abnormal" (i.e., exaggerated) blood pressure response to exercise testing, the widespread use of exaggerated blood pressure responses as a clinical tool is limited due to sparse and inconsistent data. A review of the original sources from these guidelines reveals an overall lack of empirical evidence to support both the normal blood pressure responses and their upper limits. In this current opinion, we critically evaluate the current exercise blood pressure guidelines including (1) the normal blood pressure responses to graded exercise testing; (2) the upper limits of this normal response; (3) the blood pressure criteria for test termination; and (4) the thresholds for exaggerated blood pressure responses. We provide evidence that exercise blood pressure responses vary according to subject characteristics, and subsequently a re-evaluation of what constitutes normal and abnormal responses is necessary to strengthen the clinical utility of this assessment.

  20. Azimuthal swirl in liquid metal electrodes and batteries

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan; Kelley, Douglas

    2016-11-01

    Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.

  1. COREBA (cognition-oriented emergent behavior architecture)

    NASA Astrophysics Data System (ADS)

    Kwak, S. David

    2000-06-01

    Currently, many behavior implementation technologies are available for modeling human behaviors in Department of Defense (DOD) computerized systems. However, it is commonly known that any single currently adopted behavior implementation technology is not so capable of fully representing complex and dynamic human decision-making and cognition behaviors. The author views that the current situation can be greatly improved if multiple technologies are integrated within a well designed overarching architecture that amplifies the merits of each of the participating technologies while suppressing the limitations that are inherent with each of the technologies. COREBA uses an overarching behavior integration architecture that makes the multiple implementation technologies cooperate in a homogeneous environment while collectively transcending the limitations associated with the individual implementation technologies. Specifically, COREBA synergistically integrates Artificial Intelligence and Complex Adaptive System under Rational Behavior Model multi-level multi- paradigm behavior architecture. This paper will describe applicability of COREBA in DOD domain, behavioral capabilities and characteristics of COREBA and how the COREBA architectural integrates various behavior implementation technologies.

  2. Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance

    NASA Astrophysics Data System (ADS)

    Babauta, Jerome T.; Beyenal, Haluk

    2017-07-01

    The electrochemical impedance of Geobacter sulfurreducens biofilms reflects the extracellular electron transfer mechanisms determining the rate of current output. Binned into two characteristic parameters, conductance and capacitance, biofilm impedance has received significant attention. The goal of this study was to evaluate a small overpotential approximation for extracellular electron transfer in G. sulfurreducens biofilms. Our motivation was to determine whether conductance over biofilm growth behaved linearly with respect to limiting current. Biofilm impedance was tracked during growth using electrochemical impedance spectroscopy (EIS) and electrochemical quartz crystal microbalance (eQCM). We showed that normalization of the biofilm impedance is useful for characterizing the changes during growth. When the conductance and capacitance were compared to the biofilm current, we found that: 1) conductance had a linear response and 2) constant phase elements (CPE) had a saturating response that coincided with the limiting current. We provided a framework using a simple iV relationship that predicted the conductance-current slope to be 9.57 V-1. CPEs showed more variability across biofilm replicates than conductance values. Although G. sulfurreducens biofilms were used here, other electrochemically active biofilms exhibiting catalytic waves could be studied using the same methods.

  3. Factors limiting vocal-tract length discrimination in cochlear implant simulations.

    PubMed

    Gaudrain, Etienne; Başkent, Deniz

    2015-03-01

    Perception of voice characteristics allows normal hearing listeners to identify the gender of a speaker, and to better segregate speakers from each other in cocktail party situations. This benefit is largely driven by the perception of two vocal characteristics of the speaker: The fundamental frequency (F0) and the vocal-tract length (VTL). Previous studies have suggested that cochlear implant (CI) users have difficulties in perceiving these cues. The aim of the present study was to investigate possible causes for limited sensitivity to VTL differences in CI users. Different acoustic simulations of CI stimulation were implemented to characterize the role of spectral resolution on VTL, both in terms of number of channels and amount of channel interaction. The results indicate that with 12 channels, channel interaction caused by current spread is likely to prevent CI users from perceiving VTL differences typically found between male and female speakers.

  4. Diverging conductance at the contact between random and pure quantum XX spin chains

    NASA Astrophysics Data System (ADS)

    Chatelain, Christophe

    2017-11-01

    A model consisting of two quantum XX spin chains, one homogeneous and the second with random couplings drawn from a binary distribution, is considered. The two chains are coupled to two different non-local thermal baths and their dynamics is governed by a Lindblad equation. In the steady state, a current J is induced between the two chains by coupling them together by their edges and imposing different chemical potentials μ to the two baths. While a regime of linear characteristics J versus Δμ is observed in the absence of randomness, a gap opens as the disorder strength is increased. In the infinite-randomness limit, this behavior is related to the density of states of the localized states contributing to the current. The conductance is shown to diverge in this limit.

  5. Medicare Disease Management in Policy Context

    PubMed Central

    Linden, Ariel; Adler-Milstein, Julia

    2008-01-01

    Interim results of the Medicare health support (MHS) demonstration projects suggest that commercial disease management (DM) is unable to deliver short-term medical cost savings. This is not surprising given the current DM program focus on compliance with process measures that may only lead to cost savings in the long term. A program focused on reducing near-term hospitalizations is more likely to deliver savings during the initial 3-year phase of MHS. If the early trends in MHS are indicative of the final results, CMS will face the decision of whether to abandon commercial DM in favor of other chronic care management strategies. This article supports the upcoming assessment by describing the characteristics of the current commercial DM model that limit its ability to deliver short-term medical cost savings and the changes required to overcome these limitations. PMID:18567239

  6. MO-FG-207-03: Maximizing the Utility of Integrated PET/MRI in Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behr, S.

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  7. MO-FG-207-00: Technological Advances in PET/MR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  8. A current-carrying coil design with improved liquid cooling arrangement

    NASA Astrophysics Data System (ADS)

    Ricci, Leonardo; Martini, Luca Matteo; Franchi, Matteo; Bertoldi, Andrea

    2013-06-01

    The design of an electromagnet requires the compliance with a number of constraints such as power supply characteristics, coil inductance and resistance, and, above all, heat dissipation, which poses the limit to the maximum achievable magnetic field. A common solution consists in using copper tubes in which a coolant flows. This approach, however, introduces further hydrodynamic concerns. To overcome these difficulties, we developed a new kind of electromagnet in which the pipe concept is replaced by a duct formed by the windings. Here we report on the realization and characterization of a compact model system in which the conductors carry a current that is one order of magnitude higher than the current allowable with conventional designs.

  9. Nonequilibrium optical conductivity: General theory and application to transient phases

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.

    2017-08-01

    A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.

  10. Eta Carinae and Other Luminous Blue Variables

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2006-01-01

    Luminous Blue Variables (LBVs) are believed to be evolved, extremely massive stars close to the Eddington Limit and hence prone to bouts of large-scale, unstable mass loss. I discuss current understanding of the evolutionary state of these objects, the role duplicity may play and known physical characteristics of these stars using the X-ray luminous LBVs Eta Carinae and HD 5980 as test cases.

  11. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  12. Can we predict the outcome for people with patellofemoral pain? A systematic review on prognostic factors and treatment effect modifiers.

    PubMed

    Matthews, M; Rathleff, M S; Claus, A; McPoil, T; Nee, R; Crossley, K; Vicenzino, B

    2017-12-01

    Patellofemoral pain (PFP) is a multifactorial and often persistent knee condition. One strategy to enhance patient outcomes is using clinically assessable patient characteristics to predict the outcome and match a specific treatment to an individual. A systematic review was conducted to determine which baseline patient characteristics were (1) associated with patient outcome (prognosis); or (2) modified patient outcome from a specific treatment (treatment effect modifiers). 6 electronic databases were searched (July 2016) for studies evaluating the association between those with PFP, their characteristics and outcome. All studies were appraised using the Epidemiological Appraisal Instrument. Studies that aimed to identify treatment effect modifiers underwent a checklist for methodological quality. The 24 included studies evaluated 180 participant characteristics. 12 studies investigated prognosis, and 12 studies investigated potential treatment effect modifiers. Important methodological limitations were identified. Some prognostic studies used a retrospective design. Studies aiming to identify treatment effect modifiers often analysed too many variables for the limiting sample size and typically failed to use a control or comparator treatment group. 16 factors were reported to be associated with a poor outcome, with longer duration of symptoms the most reported (>4 months). Preliminary evidence suggests increased midfoot mobility may predict those who have a successful outcome to foot orthoses. Current evidence can identify those with increased risk of a poor outcome, but methodological limitations make it difficult to predict the outcome after one specific treatment compared with another. Adequately designed randomised trials are needed to identify treatment effect modifiers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  14. African American Girls’ Ideal Dating Relationship Now and In the Future

    PubMed Central

    Debnam, Katrina J.; Howard, Donna E.; Garza, Mary A.; Green, Kerry M.

    2014-01-01

    Adolescence is a particularly important and challenging time for developing long lasting romantic relationship patterns. However, limited empirical research has explored teen perceptions of ideal partner characteristics during adolescence or their significance to the quality of current and future relationships. Semi-structured in-depth interviews were conducted with 33 African American high school girls to shed light on the qualities desired in their dating relationships and relational factors that influence teen dating behaviors. Guided by the Social Ecological Framework, interviews were transcribed verbatim and entered into ATLAS.ti, for coding and analysis. Girls discussed the important influence of parents in choosing a partner and provided positive depictions of friendship and marriage with a suitable partner. More research is needed to understand how and why adolescents desire particular characteristics, how socialization shapes teen perceptions and how these preferences may be related to current and future adolescent dating choices, including violence perpetration and victimization. PMID:28943670

  15. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    PubMed

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  16. Field ionization characteristics of an ion source array for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Resnick, P. J.; Holland, C. E.; Hertz, K. L.; Chichester, D. L.

    2013-11-01

    A new deuterium ion source is being developed to improve the performance of existing compact neutron generators. The ion source is a microfabricated array of metal tips with an integrated gate (i.e., grid) and produces deuterium ions by field ionizing (or field desorbing) a supply of deuterium gas. Deuterium field ion currents from arrays at source temperatures of 77 K and 293 K are studied. Ion currents from single etched-wire tips operating under the same conditions are used to help understand array results. I-F characteristics of the arrays were found to follow trends similar to those of the better understood single etched-wire tip results; however, the fields achieved by the arrays are limited by electrical breakdown of the structure. Neutron production by field ionization at 293 K was demonstrated for the first time from microfabricated array structures with integrated gates.

  17. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes

    NASA Astrophysics Data System (ADS)

    Chianese, F.; Candini, A.; Affronte, M.; Mishra, N.; Coletti, C.; Cassinese, A.

    2018-05-01

    In this work, we test graphene electrodes in nanometric channel n-type Organic Field Effect Transistors (OFETs) based on thermally evaporated thin films of the perylene-3,4,9,10-tetracarboxylic acid diimide derivative. By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied bias, in contrast with the supralinear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrode devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ˜140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current in short channel OFETs.

  18. Thermal stability of gallium arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Papež, Nikola; Škvarenina, Ľubomír.; Tofel, Pavel; Sobola, Dinara

    2017-12-01

    This article summarizes a measurement of gallium arsenide (GaAs) solar cells during their thermal processing. These solar cells compared to standard silicon cells have better efficiency and high thermal stability. However, their use is partly limited due to high acquisition costs. For these reasons, GaAs cells are deployed only in the most demanding applications where their features are needed, such as space applications. In this work, GaAs solar cells were studied in a high temperature range within 30-650 °C where their functionality and changes in surface topology were monitored. These changes were recorded using an electron microscope which determined the position of the defects; using an atomic force microscope we determined the roughness of the surface and an infrared camera that showed us the thermal radiated places of the defected parts of the cell. The electrical characteristics of the cells during processing were determined by its current-voltage characteristics. Despite the occurrence of subtle changes on the solar cell with newly created surface features after 300 °C thermal processing, its current-voltage characteristic remained without a significant change.

  19. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    NASA Astrophysics Data System (ADS)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.; Shunailov, S. A.; Kolomiets, M. D.; Mesyats, G. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R.; Yalandin, M. I.

    2016-01-01

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  20. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V.

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, themore » theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.« less

  1. Age Life Evaluation of Space Shuttle Crew Escape System Pyrotechnic Components Loaded with Hexanitrostilbene (HNS)

    NASA Technical Reports Server (NTRS)

    Hoffman, William C., III

    1996-01-01

    Determining deterioration characteristics of the Space Shuttle crew escape system pyrotechnic components loaded with hexanitrostilbene would enable us to establish a hardware life-limit for these items, so we could better plan our equipment use and, possibly, extend the useful life of the hardware. We subjected components to accelerated-age environments to determine degradation characteristics and established a hardware life-limit based upon observed and calculated trends. We extracted samples using manufacturing lots currently installed in the Space Shuttle crew escape system and from other NASA programs. Hardware included in the study consisted of various forms and ages of mild detonating fuse, linear shaped charge, and flexible confined detonating cord. The hardware types were segregated into 5 groups. One was subjected to detonation velocity testing for a baseline. Two were first subjected to prolonged 155 F heat exposure, and the other two were first subjected to 255 F, before undergoing detonation velocity testing and/or chromatography analysis. Test results showed no measurable changes in performance to allow a prediction of an end of life given the storage and elevated temperature environments the hardware experiences. Given the lack of a definitive performance trend, coupled with previous tests on post-flight Space Shuttle hardware showing no significant changes in chemical purity or detonation velocity, we recommend a safe increase in the useful life of the hardware to 20 years, from the current maximum limits of 10 and 15 years, depending on the hardware.

  2. Electrical memory characteristics of a nondoped pi-conjugated polymer bearing carbazole moieties.

    PubMed

    Park, Samdae; Lee, Taek Joon; Kim, Dong Min; Kim, Jin Chul; Kim, Kyungtae; Kwon, Wonsang; Ko, Yong-Gi; Choi, Heungyeal; Chang, Taihyun; Ree, Moonhor

    2010-08-19

    Poly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness. PCzDPM films with a thickness of 15-30 nm were found to exhibit very stable dynamic random access memory (DRAM) characteristics without polarity. Furthermore, the polymer films retain DRAM characteristics up to 180 degrees C. The ON-state current is dominated by Ohmic conduction, and the OFF-state current appears to undergo a transition from Ohmic to space-charge-limited conduction with a shallow-trap distribution. The ON/OFF switching of the devices is mainly governed by filament formation. The filament formation mechanism for the switching process is supported by the metallic properties of the PCzDPM film, which result in the temperature dependence of the ON-state current. In addition, the structure of this pi-conjugated polymer was found to vary with its thermal history; this change in structure can affect filament formation in the polymer film.

  3. A dynamic analysis of the radiation excitation from the activation of a current collecting system in space

    NASA Technical Reports Server (NTRS)

    Wang, J.; Hastings, D. E.

    1991-01-01

    Current collecting systems moving in the ionosphere will induce electromagnetic wave radiation. The commonly used static analysis is incapable of studying the situation when such systems undergo transient processes. A dynamic analysis has been developed, and the radiation excitation processes are studied. This dynamic analysis is applied to study the temporal wave radiation from the activation of current collecting systems in space. The global scale electrodynamic interactions between a space-station-like structure and the ionospheric plasma are studied. The temporal evolution and spatial propagation of the electric wave field after the activation are described. The wave excitations by tethered systems are also studied. The dependencies of the temporal Alfven wave and lower hybrid wave radiation on the activation time and the space system structure are discussed. It is shown that the characteristics of wave radiation are determined by the matching of two sets of characteristic frequencies, and a rapid change in the current collection can give rise to substantial transient radiation interference. The limitations of the static and linear analysis are examined, and the condition under which the static assumption is valid is obtained.

  4. The influence of surface waves on water circulation in a mid-Atlantic continental shelf region

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Talay, T. A.

    1974-01-01

    The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation.

  5. Analysis of electric current flow through the HTc multilayered superconductors

    NASA Astrophysics Data System (ADS)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  6. Static and Turn-on Switching Characteristics of 4H-Silicon Carbide SITs to 200 deg C

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    2005-01-01

    Test results are presented for normally-off 4H-SiC Static Induction Transistors (SITs) intended for power switching and are among the first normally-off such devices realized in SiC. At zero gate bias, the gate p-n junction depletion layers extend far enough into the conduction channel to cut off the channel. Application of forward gate bias narrows the depletion regions, opening up the channel to conduction by majority carriers. In the present devices, narrow vertical channels get pinched by depletion regions from opposite sides. Since the material is SiC, the devices are usable at temperatures above 150 C. Static curve and pulse mode switching observations were done at selected temperatures up to 200 C on a device with average static characteristics from a batch of similar devices. Gate and drain currents were limited to about 400 mA and 3.5 A, respectively. The drain voltage was limited to roughly 300 V, which is conservative for this 600 V rated device. At 23 C, 1 kW, or even more, could be pulse mode switched in 65 ns (10 to 90 percent) into a 100 load. But at 200 C, the switching capability is greatly reduced in large part by the excessive gate current required. Severe collapse of the saturated drain-to-source current was observed at 200 C. The relation of this property to channel mobility is reviewed.

  7. Can learning organizations survive in the newer NHS?

    PubMed Central

    Sheaff, Rod; Pilgrim, David

    2006-01-01

    Background This paper outlines the principal characteristics of a learning organisation and the organisational features that define it. It then compares these features with the organisational conditions that currently obtain, or are being created, within the British NHS. The contradictory development of recent British health policy, resulting in the NHS becoming both more marketised and more bureaucratised has correspondingly ambiguous implications for attempts to implement a 'learning organisation' model. Methods Texts that define and debate the characteristics of a learning organisation were found by snowballing references from the founding learning organisation books and published papers, and then by searching a database specifically devised for a literature review on organisational structures and processes in health care. COPAC and ABI-Info databases for subsequent peer-reviewed publications that also appeared relevant to the present study were searched. Results The outcomes of the above search are summarised and mapped onto the current constituent organisations of the NHS to identify the extent to which they achieve or approximate to a learning organisation status. Conclusion Because of the complexity of the NHS and the contradictory processes of marketisation and bureaucratisation characterising it, it cannot, as a whole system, become a learning organisation. However, it is possible that its constituent organisations may achieve this status to varying degrees. Constraints upon NHS managers to speak their minds freely place an ultimate limit on learning organisation development. This limitation suggests that current British health service policy encourages organisational learning-but not too openly and not too much. PMID:17074083

  8. Simulations of Atmospheric Plasma Arcs

    NASA Astrophysics Data System (ADS)

    Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael

    2017-10-01

    We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.

  9. Analysis of electrical properties of heterojunction based on ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.; Al-Harbi, F. F.

    2017-04-01

    Heterojunction of n-ZnIn2Se4/p-Si was fabricated using thermal evaporation of ZnIn2Se4 thin films of thickness 473 nm onto p-Si substrate at room temperature. The characteristics of current-voltage (I-V) for n-ZnIn2Se4/p-Si heterojunction were investigated at different temperatures ranged from 308 K to 363 K. The junction parameters namely are; rectification ratio (RR), series resistance (Rs), shunt resistance (Rsh) and diode ideality factor (n) were calculated from the analysis of I-V curves. The forward current showed two conduction mechanisms operating, which were the thermionic emission and the single trap space charge limited current in low (0 ≤ V ≤ 0.5 V) and high (V ≥ 0.7 V) ranges of voltage, respectively. The reverse current was due to the generation through Si rather than the ZnIn2Se4 film. The built-in voltage and the width of the depletion region were determined from the capacitance-voltage (C-V) measurements. The photovoltaic characteristics of the junction were also studied through the (I-V) measurements under illumination of 40 mW/cm2. The cell parameters; the short-circuit current, the open-circuit voltage and the fill factor were estimated at room temperature.

  10. A Predictive Model for Submarine Canyon Type Based on the Relative Influence of Rivers, Waves and Tides.

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2017-12-01

    In recent years progress has been achieved in directly measuring turbidity currents in submarine canyons and channels. It is useful to consider how representative these observations are of the diversity that potentially exists in the dynamics of turbidity currents among different canyons and channels. Firstly, we integrate sediment core, bathymetric and (in a limited number of cases) direct observations of turbidity current dynamics from 20 submarine canyons on the northern California Margin. We use this dataset to construct a diagram that explains canyon type, and thus turbidity current characteristics (grain-size carried, flow power, relative frequency of flows), based on the relative influence of rivers, waves and tides at the canyon head. This diagram enables prediction of canyon type and thus processes using three easily measurable characteristics: (i) distance of the canyon head from the shoreline; (ii) distance of the canyon head from the nearest river mouth; and (iii) local shelf width. Secondly, we test and refine the diagram using published data on submarine canyons from around the world. We also discuss the influence of outsized events such as earthquakes on submarine canyons. Finally, we demonstrate the location within the diagram of current monitoring studies and thus suggest where it might be fruitful to focus future monitoring efforts.

  11. Participatory research with an online drug forum: a survey of user characteristics, information sharing, and harm reduction views.

    PubMed

    Chiauzzi, Emil; Dasmahapatra, Pronabesh; Lobo, Kimberly; Barratt, Monica J

    2013-06-01

    Visitors to a popular online drug forum completed an online survey between November 2011 and January 2012, which covered (1) demographic characteristics, (2) substance use (including nonmedical prescription opioid use), (3) forum activity, and (4) harm reduction beliefs. The study sample (N = 897) primarily included Caucasian males in their twenties from the United States, the United Kingdom, Australia, and Canada. The practice of harm reduction was overwhelmingly endorsed by participants. Current nonmedical prescription opioid users reported more activity in forums and past substance abuse treatment. The study's implications and limitations are noted and future research is suggested.

  12. Synthesis, Characterization and TFT Characteristics of Diketopyrrolopyrrole Based Copolymer.

    PubMed

    Bathula, Chinna; Jeong, Seunghoon; Chung, Jeyon; Kang, Youngjong

    2016-03-01

    A novel diketopyrrolopyrrole (DPP) based low band gap polymer, poly[4,8-bis(triisopropylsilylethynyl) benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-[2,5-di-hexyl-3,6-dithiophen-2-ylpyrrolo[3,4-c]pyrrole-1,4-dione] (PTIPSBDT-DPP) is synthesized by Stille polymerization for use in thin film transistor (TFTs). The new polymer contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation. In this study we describe the synthesis, thermal stability, optical, electrochemical properties and TFT characteristics.

  13. Nonlinear analysis of a family of LC tuned inverters. [dc to square wave circuits for power conditioning

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Wilson, T. G.

    1974-01-01

    A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.

  14. Integrated cockpit design for the Army helicopter improvement program

    NASA Technical Reports Server (NTRS)

    Drennen, T.; Bowen, B.

    1984-01-01

    The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.

  15. Biopsychosocial characteristics of community-dwelling older adults with limited ability to walk one-quarter of a mile.

    PubMed

    Hardy, Susan E; McGurl, David J; Studenski, Stephanie A; Degenholtz, Howard B

    2010-03-01

    To establish nationally representative estimates of the prevalence of self-reported difficulty and inability of older adults to walk one-quarter of a mile and to identify the characteristics independently associated with difficulty or inability to walk one-quarter of a mile. Cross-sectional analysis of data from the 2003 Cost and Use Medicare Current Beneficiary Survey. Community. Nine thousand five hundred sixty-three community-dwelling Medicare beneficiaries aged 65 and older, representing an estimated total population of 34.2 million older adults. Self-reported ability to walk one-quarter of a mile, sociodemographics, chronic conditions, body mass index, smoking, functional status. In 2003, an estimated 9.5 million older Medicare beneficiaries had difficulty walking one-quarter of a mile, and 5.9 million were unable to do so. Of the 20.2 million older adults with no difficulty in activities of daily living (ADLs) or instrumental activities of daily living (IADLs), an estimated 4.3 million (21%) had limited ability to walk one-quarter of a mile. Having difficulty or being unable to walk one-quarter of a mile was independently associated with older age, female sex, non-Hispanic ethnicity, lower educational level, Medicaid entitlement, most chronic medical conditions, current smoking, and being overweight or obese. Almost half of older adults and 20% of those reporting no ADL or IADL limitations report limited ability to walk one-quarter of a mile. For functionally independent older adults, reported ability to walk one-quarter of a mile can identify vulnerable older adults with greater medical problems and fewer resources and may be a valuable clinical marker in planning their care. Future work is needed to determine the association between ability to walk one-quarter of a mile walk and subsequent functional decline and healthcare use.

  16. Simulation study on transient electric shock characteristics of human body under high voltage ac transmission lines

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Zou, Yanhui; Lv, Jianhong; Yang, Jinchun; Tao, Li; Zhou, Jianfei

    2017-09-01

    Human body under high-voltage AC transmission lines will produce a certain induced voltage due to the electrostatic induction. When the human body contacts with some grounded objects, the charges transfer from the body to the ground and produce contact current which may cause transient electric shock. Using CDEGS and ATP/EMTP, the paper proposes a method for quantitatively calculating the transient electric shock characteristics. It calculates the human body voltage, discharge current and discharge energy under certain 500kV compact-type transmission lines and predicts the corresponding human feelings. The results show that the average root value of discharge current is less than 10mA when the human body is under the 500kV compact-type transmission lines and the human body is overall safe if the transmission lines satisfy the relevant design specifications. It concludes that the electric field strength above the ground should be limited to 4kV/m through the residential area for the purpose of reducing the electromagnetic impact.

  17. Symptom characteristics and psychiatric comorbidity among males with muscle dysmorphia.

    PubMed

    Cafri, Guy; Olivardia, Roberto; Thompson, J Kevin

    2008-01-01

    Muscle dysmorphia has been described as a disorder in which individuals are pathologically preoccupied with their muscularity. This study was designed to further investigate the symptom characteristics and psychiatric conditions associated with the disorder. Weight lifting males meeting current criteria for muscle dysmorphia (n = 15), past muscle dysmorphia (n = 8), and no history of muscle dysmorphia (n = 28) responded to advertisements placed in gymnasium and nutrition stores. Structured and semistructured interviews were administered, as well as survey measures. Relative to controls, males with current muscle dysmorphia experienced more aversive symptoms related to the appearance of their bodies, including more often thinking about their muscularity, dissatisfaction with appearance, appearance checking, bodybuilding dependence, and functional impairment. Higher rates of mood and anxiety disorders were found among individuals with a history of muscle dysmorphia relative to individuals with no history of muscle dysmorphia. The findings suggest that muscle dysmorphia can be distinguished from normal weight lifting on a number of clinical dimensions. Muscle dysmorphia appears to be comorbid with other psychiatric conditions. Limitations of the current study and directions for future research are considered.

  18. Development of Spatially-Based Emission Factors from Real-Time Measurements of Gaseous Pollutants Using Cermet Sensors

    DTIC Science & Technology

    2005-03-01

    produce a current-limited steady state output potential that follows the Nernst equation (Fraden 1993): E = Eo + ((RT)/nF)ln(CO/CR) (2) CO...temperature, EO: electrode potential at standard state. Nernst equation governs many half-cell reactions in electrochemical cells. The cell...voltammetric cell, the analytes react (oxidize or reduce) at very characteristic potentials according to the following simplified equation (Smyth

  19. Generation of Particles and Seeding

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1991-01-01

    One of the most important elements in laser velocimetry, yet the most neglected, is the small particle embedded in the flow field that scatters the light necessary to make velocity measurements. An attempt to remove the confusion in choosing a seeding method by assessing many of the techniques currently used is presented. Their characteristics and typical limitations imposed by various applications are outlined. The ramifications of these methods on measurement accuracy are addressed.

  20. AC Current Driven Dynamic Vortex State in YBa2Cu3O7-x (Postprint)

    DTIC Science & Technology

    2012-02-01

    coexisting steady states of driven vortex motion with different characteristics: a quasi-static disordered glassy state in the sample interior and a...coexisting, vortex, plastic, dynamic, calculations, disordered , hysteretic, model, films, edges 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...characteris- tics: a quasi-static disordered glassy state in the sample interior and a dynamic state of plastic motion near the edges. Finite- element

  1. The Strategic Bomber and Low-Intensity Conflict

    DTIC Science & Technology

    1990-05-01

    of combat forces can be limited by current capabilities and other constraints. Aplication for Strategic Bombers Although the total United States...labeled the long-range combat aircraft. (31:1) The bomber’s characteristic of long-range provides mobility and mission flexibility which is not available...Summer 1989, pp. 46-55. 47. Ropelewski, Robert R. "Target Mobility , Arms Control Challenge SAC Modernization," Armed Forces Journo-1 £Dt~raflii~1

  2. Analysis of different forward current-voltage behaviours of Al implanted 4H-SiC vertical p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Megherbi, M. L.; Pezzimenti, F.; Dehimi, L.; Rao, S.; Della Corte, F. G.

    2015-07-01

    In this work different experimental current-voltage behaviours of several Al implanted 4H-SiC p-i-n diodes are investigated by means of numerical simulations in a wide range of currents and temperatures. Some devices for which recombination and tunneling are the dominant current processes at all biases are classified as "leaky" diodes. The well behaved diodes, instead, show good rectifying characteristics with a current conduction due to tunneling below 1.7 V, recombination between 1.7 V and 2.5 V, and diffusion processes above 2.5 V. At higher current regimes, a series resistance in excess of 1 mΩ cm2 becomes the main current limiting factor. Depending on the relative weight between the contact resistances and the internal diode resistance, different temperature dependencies of the current are obtained. A good agreement between numerical and measured data is achieved employing temperature-dependent carrier lifetime and mobility as fitting parameters.

  3. Stem Cells for Cardiac Regeneration by Cell Therapy and Myocardial Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Zeng, Faquan; Weisel, Richard D.; Li, Ren-Ke

    Congestive heart failure, which often occurs progressively following a myocardial infarction, is characterized by impaired myocardial perfusion, ventricular dilatation, and cardiac dysfunction. Novel treatments are required to reverse these effects - especially in older patients whose endogenous regenerative responses to currently available therapies are limited by age. This review explores the current state of research for two related approaches to cardiac regeneration: cell therapy and tissue engineering. First, to evaluate cell therapy, we review the effectiveness of various cell types for their ability to limit ventricular dilatation and promote functional recovery following implantation into a damaged heart. Next, to assess tissue engineering, we discuss the characteristics of several biomaterials for their potential to physically support the infarcted myocardium and promote implanted cell survival following cardiac injury. Finally, looking ahead, we present recent findings suggesting that hybrid constructs combining a biomaterial with stem and supporting cells may be the most effective approaches to cardiac regeneration.

  4. Analysis of a flux-coupling type superconductor fault current limiter with pancake coils

    NASA Astrophysics Data System (ADS)

    Liu, Shizhuo; Xia, Dong; Zhang, Zhifeng; Qiu, Qingquan; Zhang, Guomin

    2017-10-01

    The characteristics of a flux-coupling type superconductor fault current limiter (SFCL) with pancake coils are investigated in this paper. The conventional double-wound non-inductive pancake coil used in AC power systems has an inevitable defect in Voltage Sourced Converter Based High Voltage DC (VSC-HVDC) power systems. Due to its special structure, flashover would occur easily during the fault in high voltage environment. Considering the shortcomings of conventional resistive SFCLs with non-inductive coils, a novel flux-coupling type SFCL with pancake coils is carried out. The module connections of pancake coils are performed. The electromagnetic field and force analysis of the module are contrasted under different parameters. To ensure proper operation of the module, the impedance of the module under representative operating conditions is calculated. Finally, the feasibility of the flux-coupling type SFCL in VSC-HVDC power systems is discussed.

  5. Aspects of the linguistic competence of deaf children.

    PubMed

    Wood, D

    1984-02-01

    In this paper the following three issues are considered in the light of recent research: Do severely/profoundly deaf children develop a grammar for English? Evidence is presented which suggests that they do and that this grammar displays a number of general characteristics some of which parallel the language of younger hearing children, others that do not. The limitations of this grammar will be discussed and hypotheses about the nature, origins and inevitability of such limitations explored. In what ways do the linguistic experiences of deaf children differ from that of hearing children? Some aspects of the deaf child's experience of language will be explored and their linguistic and psychological implications discussed. The relationships between current research findings on the linguistic development of the deaf and the possibility of improved educational methods will also be explored to consider the various different philosophies currently being debated in this field.

  6. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGES

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; ...

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  7. Probing neutrino coupling to a light scalar with coherent neutrino scattering

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Lindner, Manfred; Rodejohann, Werner; Xu, Xun-Jie

    2018-05-01

    Large neutrino event numbers in future experiments measuring coherent elastic neutrino nucleus scattering allow precision measurements of standard and new physics. We analyze the current and prospective limits of a light scalar particle coupling to neutrinos and quarks, using COHERENT and CONUS as examples. Both lepton number conserving and violating interactions are considered. It is shown that current (future) experiments can probe for scalar masses of a few MeV couplings down to the level of 10-4 (10-6). Scalars with masses around the neutrino energy allow to determine their mass via a characteristic spectrum shape distortion. Our present and future limits are compared with constraints from supernova evolution, Big Bang nucleosynthesis and neutrinoless double beta decay. We also outline UV-complete underlying models that include a light scalar with coupling to quarks for both lepton number violating and conserving coupling to neutrinos.

  8. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  9. MO-FG-207-01: Technological Advances and Challenges: Experience with the First Integrated Whole-Body PET/MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laforest, R.

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  10. Glenohumeral osteoarthritis: overview, therapy, and rehabilitation.

    PubMed

    Macías-Hernández, Salvador Israel; Morones-Alba, Juan Daniel; Miranda-Duarte, Antonio; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania; Cruz-Medina, Eva; Olascoaga-Gómez, Andrea; Tallabs-Almazan, Laura Verónica; Palencia, Chanell

    2017-08-01

    Glenohumeral osteoarthritis (GHOA) is a common cause of pain and functional disability of the shoulder. Despite the limited evidence, there are several options for the treatment of this pathology. The aim of this article is to provide current information on the characteristics of the disease and the pathophysiology, evidence based on medical and surgical treatments with emphasis on the rehabilitation process. It was performed with an extensive literature review, mainly clinical practice guidelines, randomized controlled trials, reviews, focusing on the rehabilitation management. There are few clinical practice guidelines that address GHOA as a pathology with unique characteristics. Evidence based treatment recommendations are mostly supported by low-quality evidence and experts' opinions, with few high levels of evidence studies guiding treatment decisions. Despite the lack of good quality evidence, rehabilitation programs have proven to be efficient and reliable, and this revision provides information and recommendations in this field. Implication of Rehabilitation Glenohumeral osteoarthritis is a common cause of pain and functional disability of the shoulder There are few clinical practice guidelines that address Glenohumeral Osteoarthritis as a pathology with unique characteristics, and recommendations for rehabilitation and therapeutic exercise are poor The paper provides current information on the characteristics of the disease, its rehabilitation process, and could be of interest for rehabilitation professionals to direct their practices in this field.

  11. Fabrication and electrical properties of p-CuAlO2/(n-, p-)Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Suzhen, Wu; Zanhong, Deng; Weiwei, Dong; Jingzhen, Shao; Xiaodong, Fang

    2014-04-01

    CuAlO2 thin films have been prepared by the chemical solution deposition method on both n-Si and p-Si substrates. X-ray diffraction analysis indicates that the obtained CuAlO2 films have a single delafossite structure. The current transport properties of the resultant p-CuAlO2/n-Si and p-CuAlO2/p-Si heterojunctions are investigated by current-voltage measurements. The p-CuAlO2/n-Si has a rectifying ratio of ~35 within the applied voltages of -3.0 to +3.0 V, while the p-CuAlO2/p-Si shows Schottky diode-like characteristics, dominated in forward bias by the flow of space-charge-limited current.

  12. Electrical Bistabilities and Conduction Mechanisms of Nonvolatile Memories Based on a Polymethylsilsesquioxane Insulating Layer Containing CdSe/ZnS Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ma, Zehao; Ooi, Poh Choon; Li, Fushan; Yun, Dong Yeol; Kim, Tae Whan

    2015-10-01

    Nonvolatile memory (NVM) devices based on a metal-insulator-metal structure consisting of CdSe/ZnS quantum dots embedded in polymethylsilsesquioxane dielectric layers were fabricated. The current-voltage ( I- V) curves showed a bistable current behavior and the presence of hysteresis. The current-time ( I- t) curves showed that the fabricated NVM memory devices were stable up to 1 × 104 s with a distinct ON/OFF ratio of 104 and were reprogrammable when the endurance test was performed. The extrapolation of the I- t curve to 105 s with corresponding current ON/OFF ratio 1 × 105 indicated a long performance stability of the NVM devices. Schottky emission, Poole-Frenkel emission, trapped-charge limited-current and Child-Langmuir law were proposed as the dominant conduction mechanisms for the fabricated NVM devices based on the obtained I- V characteristics.

  13. Effect of eddy current damping on phononic band gaps generated by locally resonant periodic structures

    NASA Astrophysics Data System (ADS)

    Ozkaya, Efe; Yilmaz, Cetin

    2017-02-01

    The effect of eddy current damping on a novel locally resonant periodic structure is investigated. The frequency response characteristics are obtained by using a lumped parameter and a finite element model. In order to obtain wide band gaps at low frequencies, the periodic structure is optimized according to certain constraints, such as mass distribution in the unit cell, lower limit of the band gap, stiffness between the components in the unit cell, the size of magnets used for eddy current damping, and the number of unit cells in the periodic structure. Then, the locally resonant periodic structure with eddy current damping is manufactured and its experimental frequency response is obtained. The frequency response results obtained analytically, numerically and experimentally match quite well. The inclusion of eddy current damping to the periodic structure decreases amplitudes of resonance peaks without disturbing stop band width.

  14. Thermally evaporated Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S. J.; Bojarczuk, N. A.; Mitzi, D.; Guha, S.

    2010-10-01

    High efficiency Cu2ZnSnS4 solar cells have been fabricated on glass substrates by thermal evaporation of Cu, Zn, Sn, and S. Solar cells with up to 6.8% efficiency were obtained with absorber layer thicknesses less than 1 μm and annealing times in the minutes. Detailed electrical analysis of the devices indicate that the performance of the devices is limited by high series resistance, a "double diode" behavior of the current voltage characteristics, and an open circuit voltage that is limited by a carrier recombination process with an activation energy below the band gap of the material.

  15. Physics of Gate Modulated Resonant Tunneling (RT)-FETs: Multi-barrier MOSFET for steep slope and high on-current

    NASA Astrophysics Data System (ADS)

    Afzalian, Aryan; Colinge, Jean-Pierre; Flandre, Denis

    2011-05-01

    A new concept of nanoscale MOSFET, the Gate Modulated Resonant Tunneling Transistor (RT-FET), is presented and modeled using 3D Non-Equilibrium Green's Function simulations enlightening the main physical mechanisms. Owing to the additional tunnel barriers and the related longitudinal confinement present in the device, the density of state is reduced in its off-state, while remaining comparable in its on-state, to that of a MOS transistor without barriers. The RT-FET thus features both a lower RT-limited off-current and a faster increase of the current with V G, i.e. an improved slope characteristic, and hence an improved Ion/ Ioff ratio. Such improvement of the slope can happen in subthreshold regime, and therefore lead to subthreshold slope below the kT/q limit. In addition, faster increase of current and improved slope occur above threshold and lead to high thermionic on-current and significant Ion/ Ioff ratio improvement, even with threshold voltage below 0.2 V and supply voltage V dd of a few hundreds of mV as critically needed for future technology nodes. Finally RT-FETs are intrinsically immune to source-drain tunneling and are therefore promising candidate for extending the roadmap below 10 nm.

  16. Influence of interface inhomogeneities in thin-film Schottky diodes

    NASA Astrophysics Data System (ADS)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  17. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  18. SPEAR-1: An experiment to measure current collection in the ionosphere by high voltage biased conductors

    NASA Astrophysics Data System (ADS)

    Raitt, W. John; Myers, Neil B.; Roberts, Jon A.; Thompson, D. C.

    1990-12-01

    An experiment is described in which a high electrical potential difference, up to 45 kV, was applied between deployed conducting spheres and a sounding rocket in the ionosphere. Measurements were made of the applied voltage and the resulting currents for each of 24 applications of different high potentials. In addition, diagnostic measurements of optical emissions in the vicinity of the spheres, energetic particle flow to the sounding rocket, dc electric field and wave data were made. The ambient plasma and neutral environments were measured by a Langmuir probe and a cold cathode neutral ionization gauge, respectively. The payload is described and examples of the measured current and voltage characteristics are presented. The characteristics of the measured currents are discussed in terms of the diagnostic measurements and the in-situ measurements of the vehicle environment. In general, it was found that the currents observed were at a level typical of magnetically limited currents from the ionospheric plasma for potentials less than 12 kV, and slightly higher for larger potentials. However, due to the failure to expose the plasma contactor, the vehicle sheath modified the sphere sheaths and made comparisons with the analytic models of Langmuir-Blodgett and Parker-Murphy less meaningful. Examples of localized enhancements of ambient gas density resulting from the operation of the attitude control system thrusters (cold nitrogen) were obtained. Current measurements and optical data indicated localized discharges due to enhanced gas density that reduced the vehicle-ionosphere impedance.

  19. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  20. Best practices for assessing ocean health in multiple contexts using tailorable frameworks

    PubMed Central

    Pacheco, Erich J.; Best, Benjamin D.; Scarborough, Courtney; Longo, Catherine; Katona, Steven K.; Halpern, Benjamin S.

    2015-01-01

    Marine policy is increasingly calling for maintaining or restoring healthy oceans while human activities continue to intensify. Thus, successful prioritization and management of competing objectives requires a comprehensive assessment of the current state of the ocean. Unfortunately, assessment frameworks to define and quantify current ocean state are often site-specific, limited to a few ocean components, and difficult to reproduce in different geographies or even through time, limiting spatial or temporal comparisons as well as the potential for shared learning. Ideally, frameworks should be tailorable to accommodate use in disparate locations and contexts, removing the need to develop frameworks de novo and allowing efforts to focus on the assessments themselves to advise action. Here, we present some of our experiences using the Ocean Health Index (OHI) framework, a tailorable and repeatable approach that measures health of coupled human-ocean ecosystems in different contexts by accommodating differences in local environmental characteristics, cultural priorities, and information availability and quality. Since its development in 2012, eleven assessments using the OHI framework have been completed at global, national, and regional scales, four of which have been led by independent academic or government groups. We have found the following to be best practices for conducting assessments: Incorporate key characteristics and priorities into the assessment framework design before gathering information; Strategically define spatial boundaries to balance information availability and decision-making scales; Maintain the key characteristics and priorities of the assessment framework regardless of information limitations; and Document and share the assessment process, methods, and tools. These best practices are relevant to most ecosystem assessment processes, but also provide tangible guidance for assessments using the OHI framework. These recommendations also promote transparency around which decisions were made and why, reproducibility through access to detailed methods and computational code, repeatability via the ability to modify methods and computational code, and ease of communication to wide audiences, all of which are critical for any robust assessment process. PMID:26713251

  1. Best practices for assessing ocean health in multiple contexts using tailorable frameworks.

    PubMed

    Lowndes, Julia S Stewart; Pacheco, Erich J; Best, Benjamin D; Scarborough, Courtney; Longo, Catherine; Katona, Steven K; Halpern, Benjamin S

    2015-01-01

    Marine policy is increasingly calling for maintaining or restoring healthy oceans while human activities continue to intensify. Thus, successful prioritization and management of competing objectives requires a comprehensive assessment of the current state of the ocean. Unfortunately, assessment frameworks to define and quantify current ocean state are often site-specific, limited to a few ocean components, and difficult to reproduce in different geographies or even through time, limiting spatial or temporal comparisons as well as the potential for shared learning. Ideally, frameworks should be tailorable to accommodate use in disparate locations and contexts, removing the need to develop frameworks de novo and allowing efforts to focus on the assessments themselves to advise action. Here, we present some of our experiences using the Ocean Health Index (OHI) framework, a tailorable and repeatable approach that measures health of coupled human-ocean ecosystems in different contexts by accommodating differences in local environmental characteristics, cultural priorities, and information availability and quality. Since its development in 2012, eleven assessments using the OHI framework have been completed at global, national, and regional scales, four of which have been led by independent academic or government groups. We have found the following to be best practices for conducting assessments: Incorporate key characteristics and priorities into the assessment framework design before gathering information; Strategically define spatial boundaries to balance information availability and decision-making scales; Maintain the key characteristics and priorities of the assessment framework regardless of information limitations; and Document and share the assessment process, methods, and tools. These best practices are relevant to most ecosystem assessment processes, but also provide tangible guidance for assessments using the OHI framework. These recommendations also promote transparency around which decisions were made and why, reproducibility through access to detailed methods and computational code, repeatability via the ability to modify methods and computational code, and ease of communication to wide audiences, all of which are critical for any robust assessment process.

  2. Population characteristics and assessment of overfishing for an exploited paddlefish population in the lower Tennessee River

    USGS Publications Warehouse

    Scholten, G.D.; Bettoli, P.W.

    2005-01-01

    Paddlefish Polyodon spathula (n = 576) were collected from Kentucky Lake, Kentucky-Tennessee, with experimental gill nets in 2003-2004 to assess population characteristics and the potential for commercial overfishing. Additional data were collected from 1,039 paddlefish caught by commercial gillnetters in this impoundment. Since the most recent study in 1991, size and age structure have been reduced and annual mortality has tripled. In the 1991 study, 37% of the fish collected were older than the maximum age we observed (age 11), and in 2003 annual mortality for paddlefish age 7 and older was high (A = 68%). Natural mortality is presumably low (<10%) for paddlefish; therefore, exploitation in recent years is high. Estimates of total annual mortality were negatively related to river discharge in the years preceding each estimate. The number of paddlefish harvested since 1999 was also negatively related to river discharge because gill nets cannot be easily deployed when discharge exceeds approximately 850 m3/s. Large females spawn annually because all females longer than 1,034 mm eye-fork length (EFL) were gravid. No mature females were protected by the current 864-mm minimum EFL limit. At a low natural mortality rate, higher size limits when exploitation was high (40-70%) increased simulated flesh yields by 10-20%. Even at low levels of exploitation (21%), spawning potential ratios (SPRs) under the current 864-mm minimum EFL size limit fell below 20%. If the size limit was raised to 1,016 mm EFL, the population could withstand up to 62% exploitation before the SPR falls below 20%. An analysis of annual mortality caps indicated that the best way to increase the average size of harvested fish is to increase the minimum size limit. Recruitment overfishing probably occurs during drought years; however, variation in river discharge has prevented the population from being exploited at unsustainable rates in the past. ?? Copyright by the American Fisheries Society 2005.

  3. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  4. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  5. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  6. Computer games: a double-edged sword?

    PubMed

    Sun, De-Lin; Ma, Ning; Bao, Min; Chen, Xang-Chuan; Zhang, Da-Ren

    2008-10-01

    Excessive computer game playing (ECGP) has already become a serious social problem. However, limited data from experimental lab studies are available about the negative consequences of ECGP on players' cognitive characteristics. In the present study, we compared three groups of participants (current ECGP participants, previous ECGP participants, and control participants) on a Multiple Object Tracking (MOT) task. The previous ECGP participants performed significantly better than the control participants, which suggested a facilitation effect of computer games on visuospatial abilities. Moreover, the current ECGP participants performed significantly worse than the previous ECGP participants. This more important finding indicates that ECGP may be related to cognitive deficits. Implications of this study are discussed.

  7. Metallic Hydrogen - Potentially a High Energy Rocket Propellant

    NASA Technical Reports Server (NTRS)

    Cole, John; Silvera, Ike

    2007-01-01

    Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.

  8. Group-based social skills interventions for adolescents with higher-functioning autism spectrum disorder: a review and looking to the future

    PubMed Central

    McMahon, Camilla M; Lerner, Matthew D; Britton, Noah

    2013-01-01

    In this paper, we synthesize the current literature on group-based social skills interventions (GSSIs) for adolescents (ages 10–20 years) with higher-functioning autism spectrum disorder and identify key concepts that should be addressed in future research on GSSIs. We consider the research participants, the intervention, the assessment of the intervention, and the research methodology and results to be integral and interconnected components of the GSSI literature, and we review each of these components respectively. Participant characteristics (eg, age, IQ, sex) and intervention characteristics (eg, targeted social skills, teaching strategies, duration and intensity) vary considerably across GSSIs; future research should evaluate whether participant and intervention characteristics mediate/moderate intervention efficacy. Multiple assessments (eg, parent-report, child-report, social cognitive assessments) are used to evaluate the efficacy of GSSIs; future research should be aware of the limitations of current measurement approaches and employ more accurate, sensitive, and comprehensive measurement approaches. Results of GSSIs are largely inconclusive, with few consistent findings across studies (eg, high parent and child satisfaction with the intervention); future research should employ more rigorous methodological standards for evaluating efficacy. A better understanding of these components in the current GSSI literature and a more sophisticated and rigorous analysis of these components in future research will lend clarity to key questions regarding the efficacy of GSSIs for individuals with autism spectrum disorder. PMID:23956616

  9. Modeling Translation in Protein Synthesis with TASEP: A Tutorial and Recent Developments

    NASA Astrophysics Data System (ADS)

    Zia, R. K. P.; Dong, J. J.; Schmittmann, B.

    2011-07-01

    The phenomenon of protein synthesis has been modeled in terms of totally asymmetric simple exclusion processes (TASEP) since 1968. In this article, we provide a tutorial of the biological and mathematical aspects of this approach. We also summarize several new results, concerned with limited resources in the cell and simple estimates for the current (protein production rate) of a TASEP with inhomogeneous hopping rates, reflecting the characteristics of real genes.

  10. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    NASA Astrophysics Data System (ADS)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  11. A new approach to equipment testing

    NASA Technical Reports Server (NTRS)

    Hardwick, C. J.; Dunkley, V. P.; Burrows, B. J. C.; Darney, I.

    1991-01-01

    Considerable controversy has arisen during the recent discussions over a new version of the RTCA DO160C/ED 14C Section 22 document at the European Committee for Aviation Electronics. Section 22 is concerned with lightning waveform tests to equipment. Investigations of some of these controversies with circuit analysis and measurements indicate the impedance characteristics required of the transient generators and the possibility of testing to a voltage limit even for current waveforms.

  12. A Galerkin Approach to Define Measured Terrain Surfaces with Analytic Basis Vectors to Produce a Compact Representation

    DTIC Science & Technology

    2010-11-01

    defined herein as terrain whose surface deformation due to a single vehicle traversing the surface is negligible, such as paved roads (both asphalt ...ground vehicle reliability predictions. Current application of this work is limited to the analysis of U.S. Highways, comprised of both asphalt and...Highways that are consistent between asphalt and concrete roads b. The principle terrain characteristics are defined with analytic basis vectors

  13. A new approach to equipment testing

    NASA Astrophysics Data System (ADS)

    Hardwick, C. J.; Dunkley, V. P.; Burrows, B. J. C.; Darney, I.

    1991-08-01

    Considerable controversy has arisen during the recent discussions over a new version of the RTCA DO160C/ED 14C Section 22 document at the European Committee for Aviation Electronics. Section 22 is concerned with lightning waveform tests to equipment. Investigations of some of these controversies with circuit analysis and measurements indicate the impedance characteristics required of the transient generators and the possibility of testing to a voltage limit even for current waveforms.

  14. Antidepressant use and functional limitations in U.S. older adults.

    PubMed

    An, Ruopeng; Lu, Lingyun

    2016-01-01

    The upsurge in prevalence and long-term use of antidepressants among older adults might have profound health implications beyond depressive symptom management. This study examined the relationship between antidepressant use and functional limitation onset in U.S. older adults. Study sample came from 2006 and 2008 waves of the Health and Retirement Study, in combination with data from 2005 and 2007 Prescription Drug Study. Self-reported antidepressant use was identified based on the therapeutic classification of Cerner Multum's Lexicon. Functional limitations were classified into those pertaining to physical mobility, large muscle function, activities of daily living, gross motor function, fine motor function, and instrumental activities of daily living. Cox proportional hazard models were performed to assess the effects of antidepressant use on future functional limitation onset by limitation category, antidepressant type, and length of use, adjusted by depression status and other individual characteristics. Antidepressant use for one year and longer was associated with an increase in the risk of functional limitation by 8% (95% confidence interval=4%-12%), whereas the relationship between antidepressant use less than a year and function limitation was statistically nonsignificant. Antidepressant use was associated with an increase in the risk of functional limitation by 8% (3%-13%) among currently nondepressed participants but not currently depressed participants. Long-term antidepressant use in older adults should be prudently evaluated and regularly monitored to reduce the risk of functional limitation. Future research is warranted to examine the health consequences of extended and/or off-label antidepressant use in absence of depressive symptoms. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Polycrystalline diamond RF MOSFET with MoO3 gate dielectric

    NASA Astrophysics Data System (ADS)

    Ren, Zeyang; Zhang, Jinfeng; Zhang, Jincheng; Zhang, Chunfu; Chen, Dazheng; Quan, Rudai; Yang, Jiayin; Lin, Zhiyu; Hao, Yue

    2017-12-01

    We report the radio frequency characteristics of the diamond metal-oxide-semiconductor field effect transistor with MoO3 gate dielectric for the first time. The device with 2-μm gate length was fabricated on high quality polycrystalline diamond. The maximum drain current of 150 mA/mm at VGS = -5 V and the maximum transconductance of 27 mS/mm were achieved. The extrinsic cutoff frequency of 1.2 GHz and the maximum oscillation frequency of 1.9 GHz have been measured. The moderate frequency characteristics are attributed to the moderate transconductance limited by the series resistance along the channel. We expect that the frequency characteristics of the device can be improved by increasing the magnitude of gm, or fundamentally decreasing the gate-controlled channel resistance and series resistance along the channel, and down-scaling the gate length.

  16. Assessing metaldehyde concentrations in surface water catchments and implications for drinking water abstraction

    NASA Astrophysics Data System (ADS)

    Asfaw, Alemayehu; Shucksmith, James; Smith, Andrea; Cherry, Katherine

    2015-04-01

    Metaldehyde is an active ingredient in agricultural pesticides such as slug pellets, which are heavily applied to UK farmland during the autumn application season. There is current concern that existing drinking water treatment processes may be inadequate in reducing potentially high levels of metaldehyde in surface waters to below the UK drinking water quality regulation limit of 0.1 µg/l. In addition, current water quality monitoring methods can miss short term fluctuations in metaldehyde concentration caused by rainfall driven runoff, hampering prediction of the potential risk of exposure. Datasets describing levels, fate and transport of metaldehyde in river catchments are currently very scarce. This work presents results from an ongoing study to quantify the presence of metaldehyde in surface waters within a UK catchment used for drinking water abstraction. High resolution water quality data from auto-samplers installed in rivers are coupled with radar rainfall, catchment characteristics and land use data to i) understand which hydro-meteorological characteristics of the catchment trigger the peak migration of metaldehyde to surface waters; ii) assess the relationship between measured metaldehyde levels and catchment characteristics such as land use, topographic index, proximity to water bodies and runoff generation area; iii) describe the current risks to drinking water supply and discuss mitigation options based on modelling and real-time control of water abstraction. Identifying the correlation between catchment attributes and metaldehyde generation will help in the development of effective catchment management strategies, which can help to significantly reduce the amount of metaldehyde finding its way into river water. Furthermore, the effectiveness of current water quality monitoring strategy in accurately quantifying the generation of metaldehyde from the catchment and its ability to benefit the development of effective catchment management practices has also been investigated.

  17. Noise-margin limitations on gallium-arsenide VLSI

    NASA Technical Reports Server (NTRS)

    Long, Stephen I.; Sundaram, Mani

    1988-01-01

    Two factors which limit the complexity of GaAs MESFET VLSI circuits are considered. Power dissipation sets an upper complexity limit for a given logic circuit implementation and thermal design. Uniformity of device characteristics and the circuit configuration determines the electrical functional yield. Projection of VLSI complexity based on these factors indicates that logic chips of 15,000 gates are feasible with the most promising static circuits if a maximum power dissipation of 5 W per chip is assumed. While lower power per gate and therefore more gates per chip can be obtained by using a popular E/D FET circuit, yields are shown to be small when practical device parameter tolerances are applied. Further improvements in materials, devices, and circuits wil be needed to extend circuit complexity to the range currently dominated by silicon.

  18. Fluidized combustion of coal. [to limit SO2 and NOx emissions

    NASA Technical Reports Server (NTRS)

    Pope, M.

    1978-01-01

    A combustion technology that permits the burning of low quality coal, and other fuels, while maintaining stack emissions within State and Federal EPA limits is discussed. Low quality fuels can be burned directly in fluidized beds while taking advantage of low furnace temperatures and chemical activity within the bed to limit SO2 and NOx emissions. The excellent heat transfer characteristics of the fluidized beds also result in a reduction of total heat transfer surface requirements. Tests on beds operating at pressures of one to ten atmospheres, at temperatures as high as 1600 F, and with gas velocities in the vicinity of four to twelve feet per second, have proven the concept. The progress that has been made in the development of fluidized bed combustion technology and work currently underway are discussed.

  19. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the environmental gradients of the country. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mass production of holographic transparent components for augmented and virtual reality applications

    NASA Astrophysics Data System (ADS)

    Russo, Juan Manuel; Dimov, Fedor; Padiyar, Joy; Coe-Sullivan, Seth

    2017-06-01

    Diffractive optics such as holographic optical elements (HOEs) can provide transparent and narrow band components with arbitrary incident and diffracted angles for near-to-eye commercial electronic products for augmented reality (AR), virtual reality (VR), and smart glass applications. In this paper, we will summarize the operational parameters and general optical geometries relevant for near-to-eye displays, the holographic substrates available for these applications, and their performance characteristics and ease of manufacture. We will compare the holographic substrates available in terms of fabrication, manufacturability, and end-user performance characteristics. Luminit is currently emplacing the manufacturing capacity to serve this market, and this paper will discuss the capabilities and limitations of this unique facility.

  1. Systematic monitoring and evaluation of M7 scanner performance and data quality

    NASA Technical Reports Server (NTRS)

    Stewart, S.; Christenson, D.; Larsen, L.

    1974-01-01

    An investigation was conducted to provide the information required to maintain data quality of the Michigan M7 Multispectral scanner by systematic checks on specific system performance characteristics. Data processing techniques which use calibration data gathered routinely every mission have been developed to assess current data quality. Significant changes from past data quality are thus identified and attempts made to discover their causes. Procedures for systematic monitoring of scanner data quality are discussed. In the solar reflective region, calculations of Noise Equivalent Change in Radiance on a permission basis are compared to theoretical tape-recorder limits to provide an estimate of overall scanner performance. M7 signal/noise characteristics are examined.

  2. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  3. Improving the home health acute-care hospitalization quality measure.

    PubMed

    Schade, Charles P; Brehm, John G

    2010-06-01

    (1) To demonstrate average length of service (ALOS) bias in the currently used acute-care hospitalization (ACH) home health quality measure, limiting comparability across agencies, and (2) to propose alternative ACH measures. Secondary analysis of Medicare home health service data 2004-2007; convenience sample of Medicare fee-for-service hospital discharges. Cross-sectional analysis and patient-level simulation. We aggregated outcome and ALOS data from 2,347 larger Medicare-certified home health agencies (HHAs) in the United States between 2004 and 2007, and calculated risk-adjusted monthly ACH rates. We used multiple regression to identify agency characteristics associated with ACH. We simulated ACH during and immediately after home health care using patient and agency characteristics similar to those in the actual data, comparing the existing measure with alternative fixed-interval measures. Of agency characteristics studied, ALOS had by far the highest partial correlation with the current ACH measure (r(2)=0.218, p<.0001). We replicated the correlation between ACH and ALOS in the patient-level simulation. We found no correlation between ALOS and the alternative measures. Alternative measures do not exhibit ALOS bias and would be appropriate for comparing HHA ACH rates with one another or over time.

  4. Delaying first birth: an analysis of household survey data from rural Southern Tanzania.

    PubMed

    Sedekia, Yovitha; Nathan, Rose; Church, Kathryn; Temu, Silas; Hanson, Claudia; Schellenberg, Joanna; Marchant, Tanya

    2017-01-31

    Currently, family planning metrics derived from nationally-representative household surveys such as the Demographic and Health Surveys (DHS) categorise women into those desiring to space or limit (permanently stop) births, or according to their age in the case of young women. This conceptualisation potentially ignores a large and growing group of young women who desire to delay a first birth. This study uses household survey data to investigate the characteristics and needs for family planning of women who want to delay their first birth. The research was conducted in two rural districts in southern Tanzania (Tandahimba and Newala), and nested within the Expanded Quality Management Using Information Power (EQUIP) study. Data were collected as part of a repeated cross sectional household survey conducted between September 2013 and April 2014. The socio-demographic characteristics, including parity, contraceptive practices and fertility intentions of 2128 women aged 13-49 were analysed. The association between women's life stages of reproduction (delayers of first birth, spacers of subsequent pregnancies and limiters of future birth) and selected contraceptive outcomes (current use, unmet need and demand for modern contraceptives) was assessed using the point estimates and 95% confidence intervals for each indicator, adjusted for the survey design. Overall, four percent of women surveyed were categorised as 'delayers of first birth', i.e. sexually active but not started childbearing. Among this group, the majority were younger than 20 years old (82%) and unmarried (88%). Fifty-nine percent were currently using a modern method of contraception and injectables dominated their contraceptive use. Unmet need for contraception was higher among delayers (41%; 95% CI 32-51) and limiters (41%; 95% CI 35-47) compared to spacers (19%; 95% CI 17-22). Delayers of first birth have very high unmet needs for modern contraceptives and they should be routinely and separately categorised and measured within nationally-representative surveys such as Demographic and Health Survey and Multiple Indicator Cluster surveys. Acknowledging their unique needs could help catalyse a programmatic response.

  5. Radiation pressure driving of a dusty atmosphere

    NASA Astrophysics Data System (ADS)

    Tsang, Benny T.-H.; Milosavljević, Miloš

    2015-10-01

    Radiation pressure can be dynamically important in star-forming environments such as ultra-luminous infrared and submillimetre galaxies. Whether and how radiation drives turbulence and bulk outflows in star formation sites is still unclear. The uncertainty in part reflects the limitations of direct numerical schemes that are currently used to simulate radiation transfer and radiation-gas coupling. An idealized setup in which radiation is introduced at the base of a dusty atmosphere in a gravitational field has recently become the standard test for radiation-hydrodynamics methods in the context of star formation. To a series of treatments featuring the flux-limited diffusion approximation as well as a short-characteristics tracing and M1 closure for the variable Eddington tensor approximation, we here add another treatment that is based on the implicit Monte Carlo radiation transfer scheme. Consistent with all previous treatments, the atmosphere undergoes Rayleigh-Taylor instability and readjusts to a near-Eddington-limited state. We detect late-time net acceleration in which the turbulent velocity dispersion matches that reported previously with the short-characteristics-based radiation transport closure, the most accurate of the three preceding treatments. Our technical result demonstrates the importance of accurate radiation transfer in simulations of radiative feedback.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  7. Australian shellfish ecosystems: Past distribution, current status and future direction.

    PubMed

    Gillies, Chris L; McLeod, Ian M; Alleway, Heidi K; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn

    2018-01-01

    We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.

  8. Development and fabrication of a high current, fast recovery power diode

    NASA Technical Reports Server (NTRS)

    Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.

    1983-01-01

    A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.

  9. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    NASA Astrophysics Data System (ADS)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From the measurement result in this time, it is considered that the dominant process of deposit formation is suspended state. At the run-up limit where the flow velocity decreases, the sediment moves in bedload state. As a result, the amount of sediment transport near the run-up limit changes under the influence of particle size.

  10. Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells

    PubMed Central

    Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel

    2009-01-01

    We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.

  11. Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    2005-01-01

    The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full current flow to the remaining cells in the pack. The goal of this evaluation is to identify conditions and cell designs for Li-ion technology that can achieve more than 30,000 low-Earth-orbit cycles. Testing is being performed at the Naval Surface Warfare Center, Crane Division, in Crane, Indiana.

  12. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics.

    PubMed

    Martinovich, Kelly M; Iosifidis, Thomas; Buckley, Alysia G; Looi, Kevin; Ling, Kak-Ming; Sutanto, Erika N; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Montgomery, Samuel; Lannigan, Francis J; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2017-12-21

    Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.

  13. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 × 10-13-1.0 × 10-14 S cm-1. The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 1010. Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 1011. The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  14. Programmable digital memory devices based on nanoscale thin films of a thermally dimensionally stable polyimide.

    PubMed

    Lee, Taek Joon; Chang, Cha-Wen; Hahm, Suk Gyu; Kim, Kyungtae; Park, Samdae; Kim, Dong Min; Kim, Jinchul; Kwon, Won-Sang; Liou, Guey-Sheng; Ree, Moonhor

    2009-04-01

    We have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.0 x 10(-14) S cm(-1). The 6F-2TPA PI films exhibit versatile memory characteristics that depend on the film thickness. All the PI films are initially present in the OFF state. The PI films with a thickness of >15 to <100 nm exhibit excellent write-once-read-many-times (WORM) (i.e. fuse-type) memory characteristics with and without polarity depending on the thickness. The WORM memory devices are electrically stable, even in air ambient, for a very long time. The devices' ON/OFF current ratio is high, up to 10(10). Therefore, these WORM memory devices can provide an efficient, low-cost means of permanent data storage. On the other hand, the 100 nm thick PI films exhibit excellent dynamic random access memory (DRAM) characteristics with polarity. The ON/OFF current ratio of the DRAM devices is as high as 10(11). The observed electrical switching behaviors were found to be governed by trap-limited space-charge-limited conduction and local filament formation and further dependent on the differences between the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy levels of the PI film and the work functions of the top and bottom electrodes as well as the PI film thickness. In summary, the excellent memory properties of 6F-2TPA PI make it a promising candidate material for the low-cost mass production of high density and very stable digital nonvolatile WORM and volatile DRAM memory devices.

  15. Modernization of the Defense Sector. Principles and Characteristics of the Argentine Model

    DTIC Science & Technology

    2007-01-01

    penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2001 2...Armed Forces according to democratic rules –especially in compliance with the principle of sub- ordination to civilian control and the limited assign...domestic sphere. os armados en el plano interno . Derived from such complex scenario, we find an array of demands the Ministry of Defense must

  16. Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.

    2014-09-01

    We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.

  17. Study on model current predictive control method of PV grid- connected inverters systems with voltage sag

    NASA Astrophysics Data System (ADS)

    Jin, N.; Yang, F.; Shang, S. Y.; Tao, T.; Liu, J. S.

    2016-08-01

    According to the limitations of the LVRT technology of traditional photovoltaic inverter existed, this paper proposes a low voltage ride through (LVRT) control method based on model current predictive control (MCPC). This method can effectively improve the photovoltaic inverter output characteristics and response speed. The MCPC method of photovoltaic grid-connected inverter designed, the sum of the absolute value of the predictive current and the given current error is adopted as the cost function with the model predictive control method. According to the MCPC, the optimal space voltage vector is selected. Photovoltaic inverter has achieved automatically switches of priority active or reactive power control of two control modes according to the different operating states, which effectively improve the inverter capability of LVRT. The simulation and experimental results proves that the proposed method is correct and effective.

  18. A Review of Three-Dimensional Printing in Tissue Engineering.

    PubMed

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  19. Baseline experimental investigation of an electrohydrodynamically assisted heat pipe

    NASA Technical Reports Server (NTRS)

    Duncan, A. B.

    1995-01-01

    The increases in power demand and associated thermal management requirements of future space programs such as potential Lunar/Mars missions will require enhancing the operating efficiencies of thermal management devices. Currently, the use of electrohydrodynamically (EHD) assisted thermal control devices is under consideration as a potential method of increasing thermal management system capacity. The objectives of the currently described investigation included completing build-up of the EHD-Assisted Heat Pipe Test bed, developing test procedures for an experimental evaluation of the unassisted heat pipe, developing an analytical model capable of predicting the performance limits of the unassisted heat pipe, and obtaining experimental data which would define the performance characteristics of the unassisted heat pipe. The information obtained in the currently proposed study will be used in order to provide extensive comparisons with the EHD-assisted performance observations to be obtained during the continuing investigation of EHD-Assisted heat transfer devices. Through comparisons of the baseline test bed data and the EHD assisted test bed data, accurate insight into the performance enhancing characteristics of EHD augmentation may be obtained. This may lead to optimization, development, and implementation of EHD technology for future space programs.

  20. Neighborhood Disparities in Access to Healthy Foods and Their Effects on Environmental Justice

    PubMed Central

    Dave, Jayna

    2012-01-01

    Environmental justice is concerned with an equitable distribution of environmental burdens. These burdens comprise immediate health hazards as well as subtle inequities, such as limited access to healthy foods. We reviewed the literature on neighborhood disparities in access to fast-food outlets and convenience stores. Low-income neighborhoods offered greater access to food sources that promote unhealthy eating. The distribution of fast-food outlets and convenience stores differed by the racial/ethnic characteristics of the neighborhood. Further research is needed to address the limitations of current studies, identify effective policy actions to achieve environmental justice, and evaluate intervention strategies to promote lifelong healthy eating habits, optimum health, and vibrant communities. PMID:22813465

  1. Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering

    DOE PAGES

    Li, Jinyang; Gittleson, Forrest S.; Liu, Yanhui; ...

    2017-06-30

    In order to bypass the limitation of bulk metallic glasses fabrication, we synthesized thin film metallic glasses to study the corrosion characteristics of a wide atomic% composition range, Mg(35.9-63%)Ca(4.1-21%)Zn(17.9-58.3%), in simulated body fluid. We highlight a clear relationship between Zn content and corrosion current such that Zn-medium metallic glasses exhibit minimum corrosion. In addition, we found higher Zn content leads to a poor in vitro cell viability. Finally, these results showcase the benefit of evaluating a larger alloy compositional space to probe the limits of corrosion resistance and prescreen for biocompatible applications.

  2. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Technical Reports Server (NTRS)

    Askew, J. W.

    1986-01-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  3. Centaur engine gimbal friction characteristics under simulated thrust load

    NASA Astrophysics Data System (ADS)

    Askew, J. W.

    1986-09-01

    An investigation was performed to determine the friction characteristics of the engine gimbal system of the Centaur upper stage rocket. Because the Centaur requires low-gain autopilots in order to meet all stability requirements for some configurations, control performance (response to transients and limit-cycle amplitudes) depends highly on these friction characteristics. Forces required to rotate the Centaur engine gimbal system were measured under a simulated thrust load of 66,723 N (15,000 lb) and in an altitude/thermal environment. A series of tests was performed at three test conditions; ambient temperature and pressure, ambient temperature and vacuum, and cryogenic temperature and vacuum. Gimbal rotation was controlled, and tests were performed in which rotation amplitude and frequency were varied by using triangular and sinusoidal waveforms. Test data revealed an elastic characteristic of the gimbal, independent of the input signal, which was evident prior to true gimbal sliding. The torque required to initiate gimbal sliding was found to decrease when both pressure and temperature decreased. Results from the low amplitude and low frequency data are currently being used in mathematically modeling the gimbal friction characteristics for Centaur autopilot performance studies.

  4. In-Situ Transfer Standard and Coincident-View Intercomparisons for Sensor Cross-Calibration

    NASA Technical Reports Server (NTRS)

    Thome, Kurt; McCorkel, Joel; Czapla-Myers, Jeff

    2013-01-01

    There exist numerous methods for accomplishing on-orbit calibration. Methods include the reflectance-based approach relying on measurements of surface and atmospheric properties at the time of a sensor overpass as well as invariant scene approaches relying on knowledge of the temporal characteristics of the site. The current work examines typical cross-calibration methods and discusses the expected uncertainties of the methods. Data from the Advanced Land Imager (ALI), Advanced Spaceborne Thermal Emission and Reflection and Radiometer (ASTER), Enhanced Thematic Mapper Plus (ETM+), Moderate Resolution Imaging Spectroradiometer (MODIS), and Thematic Mapper (TM) are used to demonstrate the limits of relative sensor-to-sensor calibration as applied to current sensors while Landsat-5 TM and Landsat-7 ETM+ are used to evaluate the limits of in situ site characterizations for SI-traceable cross calibration. The current work examines the difficulties in trending of results from cross-calibration approaches taking into account sampling issues, site-to-site variability, and accuracy of the method. Special attention is given to the differences caused in the cross-comparison of sensors in radiance space as opposed to reflectance space. The results show that cross calibrations with absolute uncertainties lesser than 1.5 percent (1 sigma) are currently achievable even for sensors without coincident views.

  5. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility quantification at high-concentrated iron accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Molecular malaria diagnostics: A systematic review and meta-analysis.

    PubMed

    Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.

  7. The NASA Altitude Wind Tunnel (AWT): Its role in advanced icing research and development

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Shaw, R. J.

    1985-01-01

    Currently experimental aircraft icing research is severely hampered by limitations of ground icing simulation facilities. Existing icing facilities do not have the size, speed, altitude, and icing environment simulation capabilities to allow accurate studies to be made of icing problems occurring for high speed fixed wing aircraft and rotorcraft. Use of the currently dormant NASA Lewis Altitude Wind Tunnel (AWT), as a proposed high speed propulsion and adverse weather facility, would allow many such problems to be studied. The characteristics of the AWT related to adverse weather simulation and in particular to icing simulation are discussed, and potential icing research programs using the AWT are also included.

  8. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage ( I- V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  9. Suns-VOC characteristics of high performance kesterite solar cells

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.

    2014-08-01

    Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.

  10. Fines classification based on sensitivity to pore-fluid chemistry

    USGS Publications Warehouse

    Jang, Junbong; Santamarina, J. Carlos

    2016-01-01

    The 75-μm particle size is used to discriminate between fine and coarse grains. Further analysis of fine grains is typically based on the plasticity chart. Whereas pore-fluid-chemistry-dependent soil response is a salient and distinguishing characteristic of fine grains, pore-fluid chemistry is not addressed in current classification systems. Liquid limits obtained with electrically contrasting pore fluids (deionized water, 2-M NaCl brine, and kerosene) are combined to define the soil “electrical sensitivity.” Liquid limit and electrical sensitivity can be effectively used to classify fine grains according to their fluid-soil response into no-, low-, intermediate-, or high-plasticity fine grains of low, intermediate, or high electrical sensitivity. The proposed methodology benefits from the accumulated experience with liquid limit in the field and addresses the needs of a broader range of geotechnical engineering problems.

  11. Confinement in Wendelstein 7-X Limiter Plasmas

    DOE PAGES

    Hirsch, M.; Dinklage, A.; Alonso, A.; ...

    2017-06-14

    Observations on confinement in the first experimental campaign on the optimized Stellarator Wendelstein 7-X are summarized. In this phase W7-X was equipped with five inboard limiters only and thus the discharge length restricted to avoid local overheating. Stationary plasmas are limited to low densities <2–3 centerdot 10 19 m -3. With the available 4.3 MW ECR Heating core T e ~ 8 keV, T i ~ 1–2 keV are achieved routinely resulting in energy confinement time τ E between 80 ms to 150 ms. For these conditions the plasmas show characteristics of core electron root confinement with peaked T e-profilesmore » and positive E r up to about half of the minor radius. Lastly, profiles and plasma currents respond to on- and off-axis heating and co- and counter ECCD respectively.« less

  12. Breadboard stellar tracker system test report

    NASA Technical Reports Server (NTRS)

    Kollodge, J. C.; Parrish, K. A.

    1984-01-01

    BASD has, in the past, developed several unique position tracking algorithms for charge transfer device (CTD) sensors. These algorithms provide an interpixel transfer function with the following characteristics: (1) high linearity; (2) simplified track logic; (3) high gain; and (4) high noise rejection. A previous test program using the GE charge injection device (CID) showed that accuracy for BASD's breadboard was limited to approximately 2% of a pixel (1 sigma) whereas analysis and simulation indicated the limit should be less than 0.5% of a pixel, assuming the limit to be detector response and dark current noise. The test program was conducted under NASA contract No. NAS8-34263. The test approach for that program did not provide sufficient data to identify the sources of error and left open the amount of contribution from parameters such as image distribution, geometric distortion and system alignment errors.

  13. Characteristics of electricity generation and biodegradation in tidal river sludge-used microbial fuel cells.

    PubMed

    Touch, Narong; Hibino, Tadashi; Nagatsu, Yoshiyuki; Tachiuchi, Kouhei

    2014-04-01

    The electricity generation behavior of microbial fuel cell (MFC) using the sludge collected from the riverbank of a tidal river, and the biodegradation of the sludge by the electricity generation are evaluated. Although the maximum current density (150-300 mA/m(2)) was higher than that of MFC using freshwater sediment (30 mA/m(2)), the output current was greatly restricted by the mass transfer limitation. However, our results also indicate that placing the anode in different locations in the sludge could reduce the mass transfer limitation. After approximately 3 months, the removal efficiency of organic carbon was approximately 10%, demonstrated that MFC could also enhance the biodegradation of the sludge by nearly 10-fold comparing with the natural biodegradation. We also found that the biodegradation could be identified by the behavior of oxygen consumption of the sludge. Importantly, the oxygen consumption of the sludge became higher along with the electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Computer-Aided Design of Low-Noise Microwave Circuits

    NASA Astrophysics Data System (ADS)

    Wedge, Scott William

    1991-02-01

    Devoid of most natural and manmade noise, microwave frequencies have detection sensitivities limited by internally generated receiver noise. Low-noise amplifiers are therefore critical components in radio astronomical antennas, communications links, radar systems, and even home satellite dishes. A general technique to accurately predict the noise performance of microwave circuits has been lacking. Current noise analysis methods have been limited to specific circuit topologies or neglect correlation, a strong effect in microwave devices. Presented here are generalized methods, developed for computer-aided design implementation, for the analysis of linear noisy microwave circuits comprised of arbitrarily interconnected components. Included are descriptions of efficient algorithms for the simultaneous analysis of noisy and deterministic circuit parameters based on a wave variable approach. The methods are therefore particularly suited to microwave and millimeter-wave circuits. Noise contributions from lossy passive components and active components with electronic noise are considered. Also presented is a new technique for the measurement of device noise characteristics that offers several advantages over current measurement methods.

  15. High Efficiency Quantum Well Waveguide Solar Cells and Methods for Constructing the Same

    NASA Technical Reports Server (NTRS)

    Sood, Ashok K. (Inventor); Welser, Roger E. (Inventor)

    2014-01-01

    Photon absorption, and thus current generation, is hindered in conventional thin-film solar cell designs, including quantum well structures, by the limited path length of incident light passing vertically through the device. Optical scattering into lateral waveguide structures provides a physical mechanism to increase photocurrent generation through in-plane light trapping. However, the insertion of wells of high refractive index material with lower energy gap into the device structure often results in lower voltage operation, and hence lower photovoltaic power conversion efficiency. The voltage output of an InGaAs quantum well waveguide photovoltaic device can be increased by employing a III-V material structure with an extended wide band gap emitter heterojunction. Analysis of the light IV characteristics reveals that non-radiative recombination components of the underlying dark diode current have been reduced, exposing the limiting radiative recombination component and providing a pathway for realizing solar-electric conversion efficiency of 30% or more in single junction cells.

  16. Measurement and structural invariance of the US version of the Birth Satisfaction Scale-Revised (BSS-R) in a large sample.

    PubMed

    Martin, Colin R; Hollins Martin, Caroline J; Burduli, Ekaterina; Barbosa-Leiker, Celestina; Donovan-Batson, Colleen; Fleming, Susan E

    2017-08-01

    The 10-item Birth Satisfaction Scale-Revised (BSS-R) is being increasingly used internationally. The use of the measure and the concept has gathered traction in the United States following the development of a US version of the tool. A limitation of previous studies of the measurement characteristics of the BSS-R is modest sample size. Unplanned pregnancy is recognised as being associated with a range of negative birth outcomes, but the relationship to birth satisfaction has received little attention, despite the importance of birth satisfaction to a range of postnatal outcomes. The current investigation sought to evaluate the measurement characteristics of the BSS-R in a large postpartum sample. Multiple Groups Confirmatory Factor Analysis (MGCFA) was used to evaluate a series of measurement and structural models of the BSS-R to evaluate fundamental invariance characteristics using planned/unplanned pregnancy status to differentiate groups. Complete data from N=2116 women revealed that the US version of the BSS-R offers an excellent fit to data and demonstrates full measurement and structural invariance. Little difference was observed between women on the basis of planned/unplanned pregnancy stratification on measures of birth satisfaction. The established relationship between unplanned pregnancy and negative perinatal outcomes was not found to extend to birth satisfaction in the current study. The BSS-R demonstrated exemplary measurement and structural invariance characteristics. The current study strongly supports the use of the US version of the BSS-R to compare birth satisfaction across different groups of women with theoretical and measurement confidence. Copyright © 2016 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  17. Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface.

    PubMed

    Zafar, Sufi; D'Emic, Christopher; Afzali, Ali; Fletcher, Benjamin; Zhu, Y; Ning, Tak

    2011-10-07

    Silicon nanowire field effect transistor sensors with SiO(2)/HfO(2) as the gate dielectric sensing surface are fabricated using a top down approach. These sensors are optimized for pH sensing with two key characteristics. First, the pH sensitivity is shown to be independent of buffer concentration. Second, the observed pH sensitivity is enhanced and is equal to the Nernst maximum sensitivity limit of 59 mV/pH with a corresponding subthreshold drain current change of ∼ 650%/pH. These two enhanced pH sensing characteristics are attributed to the use of HfO(2) as the sensing surface and an optimized fabrication process compatible with silicon processing technology.

  18. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    PubMed

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  19. Separation of heat and charge currents for boosted thermoelectric conversion

    NASA Astrophysics Data System (ADS)

    Mazza, Francesco; Valentini, Stefano; Bosisio, Riccardo; Benenti, Giuliano; Giovannetti, Vittorio; Fazio, Rosario; Taddei, Fabio

    2015-06-01

    In a multiterminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyze a class of multiterminal devices where this property is pushed to its extreme limits, with charge and heat currents flowing in different reservoirs. After introducing the main characteristics of this heat-charge current separation regime, we show how to realize it in a multiterminal device with normal and superconducting leads. We demonstrate that this regime allows us to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyze in detail a three-terminal setup involving a superconducting lead, a normal lead, and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit Z T are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.

  20. Current-induced vortex motion and the vortex-glass transition in YBa{sub 2}Cu{sub 3}O{sub y} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1997-12-01

    Measurements of current-voltage characteristics have been performed on YBa{sub 2}Cu{sub 3}O{sub y} films for two components of electric fields in the ab plane, E{sub x} and E{sub y}, in magnetic fields of the form (H{sub 0},H{sub 0},{delta}H{sub 0}), where x {parallel} the current density J, z {parallel} the c axis, and {delta}{lt}1. The simultaneous measurements of E{sub x} and E{sub y} under these conditions make it possible to analyze the situation of the vortex motion due to the Lorentz force. Our results indicate that vortices move as long-range correlated lines only below the glass transition temperature in a low-current limit.more » We also show that applying high-current density destroys line motion and induces a structural change of vortex lines in the glass state. {copyright} {ital 1997} {ital The American Physical Society}« less

  1. Unique Results and Lessons Learned from the TSS Missions

    NASA Technical Reports Server (NTRS)

    Stone, Nobie H.

    2016-01-01

    In 1924, Irvin Langmuir and H. M. Mott-Smith published a theoretical model for the complex plasma sheath phenomenon in which they identified some very special cases which greatly simplified the sheath and allowed a closed solution to the problem. The most widely used application is for an electrostatic, or "Langmuir," probe in laboratory plasma. Although the Langmuir probe is physically simple (a biased wire) the theory describing its functional behavior and its current-voltage characteristic is extremely complex and, accordingly, a number of assumptions and approximations are used in the LMS model. These simplifications, correspondingly, place limits on the model's range of application. Adapting the LMS model to real-life conditions is the subject of numerous papers and dissertations. The Orbit-Motion Limited (OML) model that is widely used today is one of these adaptions that is a convenient means of calculating sheath effects. The OML equation for electron current collection by a positively biased body is simply: I is approximately equal to A x j(sub eo) x 2/v??(phi)(exp ½) where A is the area of the body and phi is the electric potential on the body with respect to the plasma. Since the Langmuir probe is a simple biased wire immersed in plasma, it is particularly tempting to use the OML equation in calculating the characteristics of the long, highly biased wires of an Electric Sail in the solar wind plasma. However, in order to arrive at the OML equation, a number of additional simplifying assumptions and approximations (beyond those made by Langmuir-Mott-Smith) are necessary. The OML equation is a good approximation when all conditions are met, but it would appear that the Electric Sail problem lies outside of the limits of applicability.

  2. The impact of childhood symptoms of conduct disorder on driver aggression in adulthood.

    PubMed

    Wickens, Christine M; Vingilis, Evelyn; Mann, Robert E; Erickson, Patricia; Toplak, Maggie E; Kolla, Nathan J; Seeley, Jane; Ialomiteanu, Anca R; Stoduto, Gina; Ilie, Gabriela

    2015-05-01

    Despite limited empirical investigation, existing scientific literature suggests that individuals with a history or current diagnosis of conduct disorder (CD) may be more likely to demonstrate reckless and aggressive driving. Much of the limited research in this field examines the impact of childhood CD on driver behaviour and collision risk in young adults. Few if any, studies assess the impact of this disorder on driver behaviour beyond age 21 years. The current research is a population-based study of the impact of CD symptoms during childhood on the risk of engaging in driver aggression during adulthood. Data are based on telephone interviews with 5230 respondents who reported having driven in the past year. Data are derived from the 2011-2013 cycles of the CAMH Monitor, an ongoing cross-sectional survey of adults in Ontario, Canada aged 18 years and older. A binary logistic regression analysis of self-reported driver aggression in the previous 12 months was conducted, consisting of measures of demographic characteristics, driving exposure, problem substance use, alcohol- and drug-impaired driving, symptoms of attention deficit hyperactivity disorder, and childhood (before age 15) symptoms of CD. When entered with demographic characteristics, driving exposure, and other potential confounders, childhood symptoms of CD increased the odds of reporting driver aggression more than two-fold (adjusted OR=2.12). Exploratory analyses of the interaction between childhood symptoms of CD and age was not a significant predictor of driver aggression. Results suggest that symptoms of CD during childhood are associated with significantly increased odds of self-reported driver aggression during adulthood. Limitations and future directions of the research are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Joyce, H. J.; Tan, H. H.; Jagadish, C.; Micolich, A. P.

    2017-11-01

    We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N2 and O2, and N2 bubbled through liquid H2O and alcohols to identify whether phase-related structural/surface differences affect their response. Both WZ and ZB give poor gate characteristics in dry state. Adsorption of polar species reduces off-current by 2-3 orders of magnitude, increases on-off ratio and significantly reduces sub-threshold slope. The key difference is the greater sensitivity of WZ to low adsorbate level. We attribute this to facet structure and its influence on the separation between conduction electrons and surface adsorption sites. We highlight the important role adsorbed species play in nanowire device characterisation. WZ is commonly thought superior to ZB in InAs nanowire transistors. We show this is an artefact of the moderate humidity found in ambient laboratory conditions: WZ and ZB perform equally poorly in the dry gas limit yet equally well in the wet gas limit. We also highlight the vital role density-lowering disorder has in improving gate characteristics, be it stacking faults in mixed-phase WZ or surface adsorbates in pure-phase nanowires.

  4. Separation Method for Oxygen Mass Transport Coefficient in Two Phase Porous Air Electrodes - Transport in Gas and Solid Polymer or Liquid Electrolyte Phases

    DTIC Science & Technology

    2013-08-06

    of the problem studied Proton exchange membrane fuel cells ( PEMFCs ) are the most promising candidate systems for alternative electricity...characteristic. The limiting current can be used as a tool to study mass transport phenomena in PEMFC because it can provide experimental data for the...coefficient for PEMFCs under in situ conditions based on the galvanostatic discharge of a cell with an interrupted reactant supply. The results indicated

  5. Theory of a cylindrical probe in a collisionless magnetoplasma

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Rubinstein, J.

    1976-01-01

    A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.

  6. Budesonide for the Treatment of Ulcerative Colitis

    PubMed Central

    Abdalla, Maisa I.; Herfarth, Hans

    2016-01-01

    Introduction Budesonide is a synthetic corticosteroid characterized by enhanced topical potency and limited systemic bioavailability. Its use in ulcerative colitis (UC) was limited to rectal preparations until recently when the new oral budesonide formulation incorporating the multi-matrix system technology was introduced. The purpose of this review is to evaluate the current role of oral and rectal budesonide in managing UC patients Areas Covered In this paper, we described the chemical structure and pharmacologic characteristics of the different oral and rectal budesonide preparations, provided a summary of the published trials that evaluated the efficacy and safety of budesonide in UC, and discussed the current status of its use in this population Expert Opinion Budesonide is effective in inducing remission in a subset of patients with mild-moderate UC. Nevertheless, the current evidence suggests inferiority of oral budesonide to 5-aminosalisylates (5-ASA) and systemic steroids, whereas rectal applications are comparable to other rectal steroid preparations but still inferior to rectal 5-ASA. In clinical practice, several issues need clarification including, its exact position in the line of induction agents; the role of combining budesonide and 5-ASAs; the role of combining oral and rectal budesonide; and the role of budesonide in maintenance therapy. PMID:27157244

  7. Budesonide for the treatment of ulcerative colitis.

    PubMed

    Abdalla, Maisa I; Herfarth, Hans

    2016-08-01

    Budesonide is a synthetic corticosteroid characterized by enhanced topical potency and limited systemic bioavailability. Its use in ulcerative colitis (UC) was limited to rectal preparations until recently when the new oral budesonide formulation incorporating the multi-matrix system technology was introduced. The purpose of this review is to evaluate the current role of oral and rectal budesonide in managing UC patients Areas covered: In this paper, we described the chemical structure and pharmacologic characteristics of the different oral and rectal budesonide preparations, provided a summary of the published trials that evaluated the efficacy and safety of budesonide in UC, and discussed the current status of its use in this population Expert opinion: Budesonide is effective in inducing remission in a subset of patients with mild-moderate UC. Nevertheless, the current evidence suggests inferiority of oral budesonide to 5-aminosalisylates (5-ASA) and systemic steroids, whereas rectal applications are comparable to other rectal steroid preparations, but still inferior to rectal 5-ASA. In clinical practice, several issues need clarification including, its exact position in the line of induction agents; the role of combining budesonide and 5-ASAs; the role of combining oral and rectal budesonide; and the role of budesonide in maintenance therapy.

  8. Threshold-voltage modulated phase change heterojunction for application of high density memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang

    2015-09-28

    Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less

  9. Trends in Mediation Analysis in Nursing Research: Improving Current Practice.

    PubMed

    Hertzog, Melody

    2018-06-01

    The purpose of this study was to describe common approaches used by nursing researchers to test mediation models and evaluate them within the context of current methodological advances. MEDLINE was used to locate studies testing a mediation model and published from 2004 to 2015 in nursing journals. Design (experimental/correlation, cross-sectional/longitudinal, model complexity) and analysis (method, inclusion of test of mediated effect, violations/discussion of assumptions, sample size/power) characteristics were coded for 456 studies. General trends were identified using descriptive statistics. Consistent with findings of reviews in other disciplines, evidence was found that nursing researchers may not be aware of the strong assumptions and serious limitations of their analyses. Suggestions for strengthening the rigor of such studies and an overview of current methods for testing more complex models, including longitudinal mediation processes, are presented.

  10. Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode

    NASA Astrophysics Data System (ADS)

    Nam, Bu-il; Park, Jong Seo; Lim, Keon-Hee; Ahn, Yong-keon; Lee, Jinwon; Park, Jun-woo; Cho, Nam-Kwang; Lee, Donggun; Lee, Han-Bo-Ram; Kim, Youn Sang

    2017-07-01

    An effective and facile strategy is proposed to demonstrate an engineered oxide hetero-interface of a thin film diode with a high current density and low operating voltage. The electrical characteristics of an oxide hetero-interface thin film diode are governed by two theoretical models: the space charge-limited current model and the Fowler-Nordheim (F-N) tunneling model. Interestingly, the dominant mechanism strongly depends on the insulator thickness, and the mechanism change occurs at a critical thickness. This paper shows that conduction mechanisms of oxide hetero-interface thin film diodes depend on thicknesses of transport oxide layers and that current densities of these can be exponentially increased through quantum tunneling in the diodes with the thicknesses less than 10 nm. These oxide hetero-interface diodes have great potential for low-powered transparent nanoscale applications.

  11. Australian shellfish ecosystems: Past distribution, current status and future direction

    PubMed Central

    Gillies, Chris L.; McLeod, Ian M.; Alleway, Heidi K.; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn

    2018-01-01

    We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia’s two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia’s shellfish ecosystems. PMID:29444143

  12. A process for the quantification of aircraft noise and emissions interdependencies

    NASA Astrophysics Data System (ADS)

    de Luis, Jorge

    The main purpose of this dissertation is to develop a process to improve actual policy-making procedures in terms of aviation environmental effects. This research work expands current practices with physics based publicly available models. The current method uses solely information provided by industry members, and this information is usually proprietary, and not physically intuitive. The process herein proposed provides information regarding the interdependencies between the environmental effects of aircraft. These interdependencies are also tied to the actual physical parameters of the aircraft and the engine, making it more intuitive for decision-makers to understand the impacts to the vehicle due to different policy scenarios. These scenarios involve the use of fleet analysis tools in which the existing aircraft are used to predict the environmental effects of imposing new stringency levels. The aircraft used are reduced to a series of coefficients that represent their performance, in terms of flight characteristics, fuel burn, noise, and emissions. These coefficients are then utilized to model flight operations and calculate what the environmental impacts of those aircraft are. If a particular aircraft does not meet the stringency to be analyzed, a technology response is applied to it, in order to meet that stringency. Depending on the level of reduction needed, this technology response can have an effect on the fuel burn characteristic of the aircraft. Another important point of the current stringency analysis process is that it does not take into account both noise and emissions concurrently, but instead, it considers them separately, one at a time. This assumes that the interdependencies between the two do not exists, which is not realistic. The latest stringency process delineated in 2004 imposed a 2% fuel burn penalty for any required improvements on NOx, no matter the type of aircraft or engine, assuming that no company had the ability to produce a vehicle with similar characteristics. This left all the performance characteristics of the aircraft untouched, except for the fuel burn, including the noise performance. The proposed alternative is to create a fleet of replacement aircraft to the current fleet that does not meet stringency. These replacement aircraft represent the achievable physical limits for state of the art systems. In this research work, the interdependencies between NOx, noise, and fuel burn are not neglected, and it is in fact necessary to take all three into account, simultaneously, to capture the physical limits that can be attained during a stringency analysis. In addition, the replacement aircraft show the linkage between environmental effects and fundamental aircraft and engine characteristics, something that has been neglected in previous policy making procedures. Another aspect that has been ignored is the creation of the coefficients used for the fleet analyses. In current literature, a defined process for the creation of those coefficients does not exist, but this research work develops a process to do so and demonstrates that the characteristics of the aircraft can be propagated to the coefficients and to the fleet analysis tools. The implementation of the process proposed shows that, first, the environmental metrics can be linked to the physical attributes of the aircraft using non-proprietary, physics based tools, second, those interdependencies can be propagated to fleet level tools, and third, this propagation provides an improvement in the policy making process, by showing what needs to change in an aircraft to meet different stringency levels.

  13. The Contribution of Individual, Social and Work Characteristics to Employee Mental Health in a Coal Mining Industry Population.

    PubMed

    Considine, Robyn; Tynan, Ross; James, Carole; Wiggers, John; Lewin, Terry; Inder, Kerry; Perkins, David; Handley, Tonelle; Kelly, Brian

    2017-01-01

    Evidence regarding the extent of mental health problems and the associated characteristics within an employee population is necessary to inform appropriate and tailored workplace mental health programs. Mental health within male dominated industries (such as mining) has received recent public attention, chiefly through observations regarding suicide in such populations in Australia and internationally. Currently there is limited empirical evidence regarding the mental health needs in the mining industry as an exemplar of a male dominated workforce, and the relative contribution to such problems of individual, socio-economic and workplace factors. This study aimed to investigate the mental health and associated characteristics among employees in the Australian coal mining industry with a specific focus on identifying modifiable work characteristics. A cross-sectional study was conducted among employees (n = 1457) across eight coal mines stratified by key mine characteristics (state, mine type and employee commute arrangements). Participants completed measures of psychological distress (K10+) and key variables across four categories (socio-demographic characteristics, health history, current health behaviours, work attitudes and characteristics). Psychological distress levels within this sample were significantly higher in comparison with a community sample of employed Australians. The following factors contributed significantly to levels of psychological distress using hierarchical linear regression analysis: lower social networks; a past history of depression, anxiety or drug/alcohol problems; high recent alcohol use; work role (managers) and a set of work characteristics (level of satisfaction with work, financial factors and job insecurity; perception of lower workplace support for people with mental health problems. This is the first study to examine the characteristics associated with mental health problems in the Australian coal mining industry. The findings indicate the salience of mental health needs in this population, and the associated interplay of personal, social and work characteristics. The work characteristics associated with psychological distress are modifiable and can guide an industry response, as well as help inform the understanding of the role of workplace factors in mental health problems in a male dominated workforce more generally.

  14. The Contribution of Individual, Social and Work Characteristics to Employee Mental Health in a Coal Mining Industry Population

    PubMed Central

    James, Carole; Wiggers, John; Lewin, Terry; Inder, Kerry; Perkins, David; Handley, Tonelle

    2017-01-01

    Background Evidence regarding the extent of mental health problems and the associated characteristics within an employee population is necessary to inform appropriate and tailored workplace mental health programs. Mental health within male dominated industries (such as mining) has received recent public attention, chiefly through observations regarding suicide in such populations in Australia and internationally. Currently there is limited empirical evidence regarding the mental health needs in the mining industry as an exemplar of a male dominated workforce, and the relative contribution to such problems of individual, socio-economic and workplace factors. This study aimed to investigate the mental health and associated characteristics among employees in the Australian coal mining industry with a specific focus on identifying modifiable work characteristics. Methods A cross-sectional study was conducted among employees (n = 1457) across eight coal mines stratified by key mine characteristics (state, mine type and employee commute arrangements). Participants completed measures of psychological distress (K10+) and key variables across four categories (socio-demographic characteristics, health history, current health behaviours, work attitudes and characteristics). Results Psychological distress levels within this sample were significantly higher in comparison with a community sample of employed Australians. The following factors contributed significantly to levels of psychological distress using hierarchical linear regression analysis: lower social networks; a past history of depression, anxiety or drug/alcohol problems; high recent alcohol use; work role (managers) and a set of work characteristics (level of satisfaction with work, financial factors and job insecurity; perception of lower workplace support for people with mental health problems. Conclusion This is the first study to examine the characteristics associated with mental health problems in the Australian coal mining industry. The findings indicate the salience of mental health needs in this population, and the associated interplay of personal, social and work characteristics. The work characteristics associated with psychological distress are modifiable and can guide an industry response, as well as help inform the understanding of the role of workplace factors in mental health problems in a male dominated workforce more generally. PMID:28045935

  15. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 1. Fresh electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  16. Introduction to a series of LiNi 0.8 Co 0.2 O 2 -based high-power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    2016-12-01

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  17. Simulator study of the effectiveness of an automatic control system designed to improve the high-angle-of-attack characteristics of a fighter airplane

    NASA Technical Reports Server (NTRS)

    Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.

    1976-01-01

    A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.

  18. Universal MOSFET parameter analyzer

    NASA Astrophysics Data System (ADS)

    Klekachev, A. V.; Kuznetsov, S. N.; Pikulev, V. B.; Gurtov, V. A.

    2006-05-01

    MOSFET analyzer is developed to extract most important parameters of transistors. Instead of routine DC transfer and output characteristics, analyzer provides an evaluation of interface states density by applying charge pumping technique. There are two features that outperform the analyzer among similar products of other vendors. It is compact (100 × 80 × 50 mm 3 in dimensions) and lightweight (< 200 gram) instrument with ultra low power supply (< 2.5 W). The analyzer operates under control of IBM PC by means of USB interface that simultaneously provides power supply. Owing to the USB-compatible microcontroller as the basic element, designed analyzer offers cost-effective solution for diverse applications. The enclosed software runs under Windows 98/2000/XP operating systems, it has convenient graphical interface simplifying measurements for untrained user. Operational characteristics of analyzer are as follows: gate and drain output voltage within limits of +/-10V measuring current range of 1pA ÷ 10 mA; lowest limit of interface states density characterization of ~10 9 cm -2 • eV -1. The instrument was designed on the base of component parts from CYPRESS and ANALOG DEVICES (USA).

  19. Long-Term Soft Denture Lining Materials

    PubMed Central

    Chladek, Grzegorz; Żmudzki, Jarosław; Kasperski, Jacek

    2014-01-01

    Long-term soft denture lining (LTSDL) materials are used to alleviate the trauma associated with wearing complete dentures. Despite their established clinical efficacy, the use of LTSDLs has been limited due to the unfavorable effects of the oral environment on some of their mechanical and performance characteristics. The unresolved issue of LTSDL colonization by Candida albicans is particularly problematic. Silicone-based LTSDL (SLTSDL) materials, which are characterized by more stable hardness, sorption and solubility than acrylic-based LTSDLs (ALTSDLs), are currently the most commonly used LTSDLs. However, SLTSDLs are more prone to debonding from the denture base. Moreover, due to their limitations, the available methods for determining bond strength do not fully reflect the actual stability of these materials under clinical conditions. SLTSDL materials exhibit favorable viscoelastic properties compared with ALTSDLs. Furthermore, all of the lining materials exhibit an aging solution-specific tendency toward discoloration, and the available cleansers are not fully effective and can alter the mechanical properties of LTSDLs. Future studies are needed to improve the microbiological resistance of LTSDLs, as well as some of their performance characteristics. PMID:28788163

  20. Mixing zones studies of the waste water discharge from the Consolidated Paper Company into the Wisconsin River at Wisconsin Rapids, Wisconsin

    NASA Technical Reports Server (NTRS)

    Hoopes, J. A.; Wu, D. S.; Ganatra, R.

    1973-01-01

    Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.

  1. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  2. Index of faults of Cretaceous and Cenozoic age in the eastern United States

    USGS Publications Warehouse

    Prowell, David C.

    1983-01-01

    The data in this report represent the presently available knowledge of fault characteristics and distribution. Clearly, as current investigations progress and as geologists become more aware of the evidence for Cenozoic faulting, the number of known Cenozoic faults will increase substantially. Until such time, the data that are shown here must be viewed conservatively because I believe they are not a totally representative collection of information at this scale. the data are useful in characterizing basic fault patterns in the region, but certain factors limit the usefulness of the map. Limitations of this information are discussed in the following text, and the reader should give them major consideration when using the map and fault table.

  3. Fourier analysis of polar cap electric field and current distributions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1984-01-01

    A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.

  4. The relationship between anatomically correct electric and magnetic field dosimetry and publishe delectric and magnetic field exposure limits.

    PubMed

    Kavet, Robert; Dovan, Thanh; Reilly, J Patrick

    2012-12-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Institute of Electrical and Electronics Engineers are aimed at protection against adverse electrostimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits.

  5. Determination of torque speed current characteristics of a brushless DC motor by utilizing back-EMF of non-energized phase

    NASA Astrophysics Data System (ADS)

    Jang, G. H.; Yeom, J. H.; Kim, M. G.

    2007-03-01

    This paper presents a method to determine the torque constant and the torque-speed-current characteristics of a brushless DC (BLDC) motor by utilizing back-EMF variation of nonenergized phase. It also develops a BLDC motor controller with a digital signal processor (DSP) to monitor its current, voltage and speed in real time. Torque-speed-current characteristics of a BLDC motor are determined by using the proposed method and the developed controller. They are compared with the torque-speed-current characteristics measured by dynamometer experimentally. This research shows that the proposed method is an effective method to determine the torque constant and the torque-speed-current characteristics of the BLDC motor without using dynamometer.

  6. Control model design to limit DC-link voltage during grid fault in a dfig variable speed wind turbine

    NASA Astrophysics Data System (ADS)

    Nwosu, Cajethan M.; Ogbuka, Cosmas U.; Oti, Stephen E.

    2017-08-01

    This paper presents a control model design capable of inhibiting the phenomenal rise in the DC-link voltage during grid- fault condition in a variable speed wind turbine. Against the use of power circuit protection strategies with inherent limitations in fault ride-through capability, a control circuit algorithm capable of limiting the DC-link voltage rise which in turn bears dynamics that has direct influence on the characteristics of the rotor voltage especially during grid faults is here proposed. The model results so obtained compare favorably with the simulation results as obtained in a MATLAB/SIMULINK environment. The generated model may therefore be used to predict near accurately the nature of DC-link voltage variations during fault given some factors which include speed and speed mode of operation, the value of damping resistor relative to half the product of inner loop current control bandwidth and the filter inductance.

  7. Megawatt level electric propulsion perspectives

    NASA Technical Reports Server (NTRS)

    Jahn, Robert G.; Kelly, Arnold J.

    1987-01-01

    For long range space missions, deliverable payload fraction is an inverse exponential function of the propellant exhaust velocity or specific impulse of the propulsion system. The exhaust velocity of chemical systems are limited by their combustion chemistry and heat transfer to a few km/s. Nuclear rockets may achieve double this range, but are still heat transfer limited and ponderous to develop. Various electric propulsion systems can achieve exhaust velocities in the 10 km/s range, at considerably lower thrust densities, but require an external electrical power source. A general overview is provided of the currently available electric propulsion systems from the perspective of their characteristics as a terminal load for space nuclear systems. A summary of the available electric propulsion options is shown and generally characterized in the power vs. exhaust velocity plot. There are 3 general classes of electric thruster devices: neutral gas heaters, plasma devices, and space charge limited electrostatic or ion thrusters.

  8. Prevalence and characteristics of anergia (lack of energy) in patients with acute coronary syndrome.

    PubMed

    Shaffer, Jonathan A; Davidson, Karina W; Schwartz, Joseph E; Shimbo, Daichi; Newman, Jonathan D; Gurland, Barry J; Maurer, Mathew S

    2012-11-01

    Anergia, a commonly occurring syndrome in older adults and patients with cardiovascular diseases, is associated with functional and clinical limitations. To date, the prevalence and clinical-demographic characteristics of anergia in patients with acute coronary syndrome (ACS) have not been elucidated. We examined the prevalence and clinical-demographic characteristics of anergia in a multiethnic sample of patients with ACS. Hospitalized patients with ACS (n = 472), enrolled in the Prescription Usage, Lifestyle, and Stress Evaluation (PULSE) prospective cohort study, completed assessments of demographic, behavioral, and clinical characteristics within 7 days of hospitalization for an ACS event. Current depressive disorder was ascertained using a structured psychiatric interview 3 to 7 days after discharge. Anergia was assessed at baseline and defined using patients' binary responses (yes/no) to 7 items related to energy level. At least 1 complaint of anergia was reported by 79.9% of patients (n = 377) and 32% of patients (n = 153) met criteria for anergia. In a multivariable logistic regression model, anergia was independently associated with being a woman, being white (compared to black), having bodily pain, participating in exercise, having current depressive disorder, and having higher values on the Charlson Co-morbidity Index. In conclusion, anergia is a highly prevalent syndrome in patients with ACS. It is distinct from depression and is associated with modifiable clinical factors such as participation in exercise and bodily pain that may be appropriate targets for intervention. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Geomagnetic storms, the Dst ring-current myth and lognormal distributions

    USGS Publications Warehouse

    Campbell, W.H.

    1996-01-01

    The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with remarkable accuracy from measurements made during the Dst growth phase. In the lognormal formulation, the mean, standard deviation and field count within standard deviation limits become definitive Dst storm parameters.

  10. Thermal Modeling for the Next Generation of Radiofrequency Exposure Limits: Commentary.

    PubMed

    Foster, Kenneth R; Ziskin, Marvin C; Balzano, Quirino

    2017-07-01

    This commentary evaluates two sets of guidelines for human exposure to radiofrequency (RF) energy, focusing on the frequency range above the "transition" frequency at 3-10 GHz where the guidelines change their basic restrictions from specific absorption rate to incident power density, through the end of the RF band at 300 GHz. The analysis is based on a simple thermal model based on Pennes' bioheat equation (BHTE) (Pennes 1948) assuming purely surface heating; an Appendix provides more details about the model and its range of applicability. This analysis suggests that present limits are highly conservative relative to their stated goals of limiting temperature increase in tissue. As applied to transmitting devices used against the body, they are much more conservative than product safety standards for touch temperature for personal electronics equipment that are used in contact with the body. Provisions in the current guidelines for "averaging time" and "averaging area" are not consistent with scaling characteristics of the bioheat equation and should be refined. The authors suggest the need for additional limits on fluence for protection against brief, high intensity pulses at millimeter wave frequencies. This commentary considers only thermal hazards, which form the basis of the current guidelines, and excludes considerations of reported "non-thermal" effects of exposure that would have to be evaluated in the process of updating the guidelines.

  11. Dynamic memory of a single voltage-gated potassium ion channel: A stochastic nonequilibrium thermodynamic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Kinshuk, E-mail: kbpchem@gmail.com

    2015-05-14

    In this work, we have studied the stochastic response of a single voltage-gated potassium ion channel to a periodic external voltage that keeps the system out-of-equilibrium. The system exhibits memory, resulting from time-dependent driving, that is reflected in terms of dynamic hysteresis in the current-voltage characteristics. The hysteresis loop area has a maximum at some intermediate voltage frequency and disappears in the limits of low and high frequencies. However, the (average) dissipation at long-time limit increases and finally goes to saturation with rising frequency. This raises the question: how diminishing hysteresis can be associated with growing dissipation? To answer this,more » we have studied the nonequilibrium thermodynamics of the system and analyzed different thermodynamic functions which also exhibit hysteresis. Interestingly, by applying a temporal symmetry analysis in the high-frequency limit, we have analytically shown that hysteresis in some of the periodic responses of the system does not vanish. On the contrary, the rates of free energy and internal energy change of the system as well as the rate of dissipative work done on the system show growing hysteresis with frequency. Hence, although the current-voltage hysteresis disappears in the high-frequency limit, the memory of the ion channel is manifested through its specific nonequilibrium thermodynamic responses.« less

  12. Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1953-01-01

    Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.

  13. Occurrence Characteristics of Microplastic in Secondary Sewage Treatment Plant in Shanghai,China.

    NASA Astrophysics Data System (ADS)

    Bai, M.; Zhao, S.; Li, D.

    2017-12-01

    As emerging pollutants, microplastics (MPs) are of concern worldwide. Due to plenty of microbeads and synthetic fibers presenting in the effluent of waste water treatment plants (WWTPs), WWTPs have been regarded as important point sources of MP into the sea. Currently, information of microplastics from WWTPs in China is limited. Herein, we studied the MP contamination of a sewage plant in Shanghai by analyzing water and sludge samples with fourier transform infrared spectroscopy. The abundances of MP in the influent, mixed water, effluent and sludge four stages are respectively 117 n/L, 90 n/L, 52 n/L and 181 n/50g(wet weight). The removal efficiency of MP in the current WWTP is 55.6%. Fiber is the most common shape type. Rayon is the most type in effluent and mixed water while synthetic leather account for the largest percentage in influent and sludge. This study firstly discussed the occurrence characteristics of microplastics in the WWTP of China and confirmed that WWTP is a source of MPs inputting into aquatic environments.

  14. Operational Characteristics of a Low-Energy FARAD Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Rose, M. Frank; Miller, Robert

    2008-01-01

    Data from a 100 J per pulse electrodeless accelerator employing pulsed RF-preionization are presented to gain insight into the accelerator's operating characteristics. The data suggest that the propellant distribution is highly unoptimized, with most of the gas inaccessible to the discharge and the remainder mostly concentrated at the inner radius of the coil. The pulsed RF-preionization discharge produces a visible plasma, but like the gas distribution it mostly appears concentrated at the inner radius of the thruster. Magnetic field probes in the discharge point to a current sheet that is not magnetically impermeable. These data also exhibit signs of nonrepeatability, and time-integrated discharge photography shows signs of spatial nonuniformity in both the radial and azimuthal directions. Terminal voltage measurements on the two capacitor banks of the thruster do not exhibit the asymmetric nature (in time) typically associated with an efficient pulsed plasma accelerator. Based on the experimental evidence, the poor performance of the thruster is thought to be due to insufficient preionization, which at these low discharge energy levels severely limits the ability of the main current pulse to couple with and effectively accelerate the propellant.

  15. Organic-inorganic Au/PVP/ZnO/Si/Al semiconductor heterojunction characteristics

    NASA Astrophysics Data System (ADS)

    Mokhtari, H.; Benhaliliba, M.

    2017-11-01

    The paper reports the fabrication and characterization of a novel Au/PVP/ZnO/Si/Al semiconductor heterojunction (HJ) diode. Both inorganic n type ZnO and organic polyvinyl pyrrolidone (PVP) layers have grown by sol-gel spin-coating route at 2000 rpm. The front and back metallic contacts are thermally evaporated in a vacuum at pressure of 10-6 Torr having a diameter of 1.5 mm and a thickness of 250 nm. The detailed analysis of the forward and reverse bias current-voltage characteristics has been provided. Consequently, many electronic parameters, such as ideality factor, rectification coefficient, carrier concentration, series resistance, are then extracted. Based upon our results a non-ideal diode behavior is revealed and ideality factor exceeds the unity (n > 4). A high rectifying (~4.6 × 10 4) device is demonstrated. According to Cheung-Cheung and Norde calculation models, the barrier height and series resitance are respectively of 0.57 eV and 30 kΩ. Ohmic and space charge limited current (SCLC) conduction mechanisms are demonstrated. Such devices will find applications as solar cell, photodiode and photoconductor.

  16. Nursing home reimbursement and the allocation of rehabilitation therapy resources.

    PubMed

    Murtaugh, C M; Cooney, L M; DerSimonian, R R; Smits, H L; Fetter, R B

    1988-10-01

    Most public funding methods for long-term care do not adequately match payment rates with patient need for services. Case-mix payment systems are designed to encourage a more efficient and equitable allocation of limited health care resources. Even nursing home case-mix payment systems, however, do not currently provide the proper incentives to match rehabilitation therapy resources to a patient's needs. We were able to determine by a review of over 8,500 patients in 65 nursing homes that certain diagnoses, partial dependence in activities of daily living (ADLs), clear mental status, and improving medical status are associated with the provision of rehabilitation services to nursing home residents. These patient characteristics are clinically reasonable predictors of the need for therapy and should be considered for use in nursing home case-mix reimbursement systems. Primary payment source also was associated with the provision of rehabilitation services even after taking into account significant patient characteristics. It is unclear how much of the variation in service use across payers is due to differences in patient need as opposed to differences in the financial incentives associated with current payment methods.

  17. AC loss modelling and experiment of two types of low-inductance solenoidal coils

    NASA Astrophysics Data System (ADS)

    Liang, Fei; Yuan, Weijia; Zhang, Min; Zhang, Zhenyu; Li, Jianwei; Venuturumilli, Sriharsha; Patel, Jay

    2016-11-01

    Low-inductance solenoidal coils, which usually refer to the nonintersecting type and the braid type, have already been employed to build superconducting fault current limiters because of their fast recovery and low inductance characteristics. However, despite their usage there is still no systematical simulation work concerning the AC loss characteristics of the coils built with 2G high temperature superconducting tapes perhaps because of their complicated structure. In this paper, a new method is proposed to simulate both types of coils with 2D axisymmetric models solved by H formulation. Following the simulation work, AC losses of both types of low inductance solenoidal coils are compared numerically and experimentally, which verify that the model works well in simulating non-inductive coils. Finally, simulation works show that pitch has significant impact to AC loss of both types of coils and the inter-layer separation has different impact to the AC loss of braid type of coil in case of different applied currents. The model provides an effective tool for the design optimisation of SFCLs built with non-inductive solenoidal coils.

  18. Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wong, Man Hoi; Takeyama, Akinori; Makino, Takahiro; Ohshima, Takeshi; Sasaki, Kohei; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2018-01-01

    The effects of ionizing radiation on β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were investigated. A gamma-ray tolerance as high as 1.6 MGy(SiO2) was demonstrated for the bulk Ga2O3 channel by virtue of weak radiation effects on the MOSFETs' output current and threshold voltage. The MOSFETs remained functional with insignificant hysteresis in their transfer characteristics after exposure to the maximum cumulative dose. Despite the intrinsic radiation hardness of Ga2O3, radiation-induced gate leakage and drain current dispersion ascribed respectively to dielectric damage and interface charge trapping were found to limit the overall radiation hardness of these devices.

  19. Characterization of the tunneling conductance across DNA bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zikic, Radomir; Krstic, Predrag S; Zhang, Xiaoguang

    2006-01-01

    Characterization of the electrical properties of the DNA bases, Adenine, Cytosine, Guanine and Thymine, besides building the basic knowledge on these fundamental constituents of a DNA, is a crucial step in developing a DNA sequencing technology. We present a first-principles study of the current-voltage characteristics of nucleotide-like molecules of the DNA bases, placed in a 1.5 nm gap formed between gold nanoelectrodes. The quantum transport calculations in the tunneling regime are shown to vary strongly with the electrode-molecule geometry and the choice of the DFT exchangecorrelation functionals. Analysis of the results in the zero-bias limit indicates that distinguishable current-voltage characteristicsmore » of different DNA bases are dominated by the geometrical conformations of the bases and nanoelectrodes.« less

  20. Electrical transport properties of an isolated CdS microrope composed of twisted nanowires.

    PubMed

    Yu, Gui-Feng; Yu, Miao; Pan, Wei; Han, Wen-Peng; Yan, Xu; Zhang, Jun-Cheng; Zhang, Hong-Di; Long, Yun-Ze

    2015-01-01

    CdS is one of the important II-VI group semiconductors. In this paper, the electrical transport behavior of an individual CdS microrope composed of twisted nanowires is studied. It is found that the current-voltage (I-V) characteristics show two distinct power law regions from 360 down to 60 K. Space-charge-limited current (SCLC) theory is used to explain these temperature- and electric-field-dependent I-V curves. The I-V data can be well fitted by this theory above 100 K, and the corresponding carrier mobility, trap energy, and trap concentration are also obtained. However, the I-V data exhibit some features of the Coulomb blockade effect below 80 K.

  1. Animal models of middle ear cholesteatoma.

    PubMed

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma.

  2. Animal Models of Middle Ear Cholesteatoma

    PubMed Central

    Yamamoto-Fukuda, Tomomi; Takahashi, Haruo; Koji, Takehiko

    2011-01-01

    Middle ear acquired cholesteatoma is a pathological condition associated with otitis media, which may be associated with temporal bone resorption, otorrhea and hearing loss, and occasionally various other complications. Cholesteatoma is characterized by the enhanced proliferation of epithelial cells with aberrant morphologic characteristics. Unfortunately, our understanding of the mechanism underlying its pathogenesis is limited. To investigate its pathogenesis, different animal models have been used. This paper provides a brief overview of the current status of research in the field of pathogenesis of middle ear acquired cholesteatoma, four types of animal models previously reported on, up-to-date cholesteatoma research using these animal models, our current studies of the local hybrid ear model, and the future prospect of new animal models of middle ear cholesteatoma. PMID:21541229

  3. Electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine]beryllium investigated by impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yanping; Chen, Jiangshan; Huang, Jinying

    2014-06-14

    The electron transport properties of bis[2-(2-hydroxyphenyl)-pyridine] beryllium (Bepp{sub 2}) are investigated by impedance spectroscopy over a frequency range of 10 Hz to 13 MHz. The Cole-Cole plots demonstrate that the Bepp{sub 2}-based device can be represented by a single parallel resistance R{sub p} and capacitance C{sub p} network with a series resistance R{sub s}. The current-voltage characteristics and the variation of R{sub p} with applied bias voltage indicate the electron conduction of space-charge-limited current with exponential trap distributions in Bepp{sub 2}. It can be seen that the electron mobility exhibits strong field-dependence in low electric field region and almost saturate in highmore » electric field region. It is experimentally found that Bepp{sub 2} shows dispersion transport and becomes weak as the electric field increases. The activation energy is determined to be 0.043 eV by temperature-dependent conductivity, which is consistent with the result obtained from the temperature-dependent current density characteristics. The electron mobility reaches the orders of 10{sup −6}–10{sup −5} cm{sup 2} V{sup −1} s{sup −1}, depending on the electric field.« less

  4. The Effect of Benefits, Premiums, and Health Risk on Health Plan Choice in the Medicare Program

    PubMed Central

    Atherly, Adam; Dowd, Bryan E; Feldman, Roger

    2004-01-01

    Objective To estimate the effect of Medicare+Choice (M+C) plan premiums and benefits and individual beneficiary characteristics on the probability of enrollment in a Medicare+Choice plan. Data Source Individual data from the Medicare Current Beneficiary Survey were combined with plan-level data from Medicare Compare. Study Design Health plan choices, including the Medicare+Choice/Fee-for-Service decision and the choice of plan within the M+C sector, were modeled using limited information maximum likelihood nested logit. Principal Findings Premiums have a significant effect on plan selection, with an estimated out-of-pocket premium elasticity of −0.134 and an insurer-perspective elasticity of −4.57. Beneficiaries are responsive to plan characteristics, with prescription drug benefits having the largest marginal effect. Sicker beneficiaries were more likely to choose plans with drug benefits and diabetics were more likely to pick plans with vision coverage. Conclusions Plan characteristics significantly impact beneficiaries' decisions to enroll in Medicare M+C plans and individuals sort themselves systematically into plans based on individual characteristics. PMID:15230931

  5. Insertion of a pentacene layer into the gold/poly(methyl methacrylate)/heavily doped p-type Si/indium device leading to the modulation of resistive switching characteristics

    NASA Astrophysics Data System (ADS)

    Hung, Cheng-Chun; Lin, Yow-Jon

    2018-01-01

    In order to get a physical insight into the pentacene interlayer-modulated resistive switching (RS) characteristics, the Au/pentacene/poly(methyl methacrylate) (PMMA)/heavily doped p-type Si (p+-Si)/In and Au/PMMA/p+-Si/In devices are fabricated and the device performance is provided. The Au/pentacene/PMMA/p+-Si/In device shows RS behavior, whereas the Au/PMMA/p+-Si/In device exhibits the set/reset-free hysteresis current-voltage characteristics. The insertion of a pentacene layer is a noticeable contribution to the RS characteristic. This is because of the occurrence of carrier accumulation/depletion in the pentacene interlayer. The transition from carrier depletion to carrier accumulation (carrier accumulation to carrier depletion) in pentacene occurring under negative (positive) voltage induces the process of set (reset). The switching conduction mechanism is primarily described as space charge limited conduction according to the electrical transport properties measurement. The concept of a pentacene/PMMA heterostructure opens a promising direction for organic memory devices.

  6. [Mental health characteristics of men who abuse their intimate partners].

    PubMed

    Calvete, E

    2008-10-01

    The prevalence of psychopathological disorders amongst men who abuse their intimate partners has yet to be established. This article reviews studies carried out to ascertain the mental health characteristics of male domestic abusers. Most of these studies are based on samples of abusers under treatment or in prison. They generally assess the presence of psychopathological disorders through self-reports and diagnostic interviews are infrequently used. The results of this research show that domestic abusers tend to obtain high points for some types of personality disorders, especially narcissistic, antisocial and borderline disorders. They also present symptoms of depressive disorders and consumption of drugs and alcohol. Some studies also show that neurological problems are relatively frequent. Finally I discuss the limitations of current research and the implications for treatment of domestic abusers.

  7. Infectious Disease Transmission during Organ and Tissue Transplantation

    PubMed Central

    Kuehnert, Matthew J.; Fishman, Jay A.

    2012-01-01

    Infectious disease transmission through organ and tissue transplantation has been associated with severe complications in recipients. Determination of donor-derived infectious risk associated with organ and tissue transplantation is challenging and limited by availability and performance characteristics of current donor epidemiologic screening (e.g., questionnaire) and laboratory testing tools. Common methods and standards for evaluating potential donors of organs and tissues are needed to facilitate effective data collection for assessing the risk for infectious disease transmission. Research programs can use advanced microbiological technologies to define infectious risks posed by pathogens that are known to be transplant transmissible and provide insights into transmission potential of emerging infectious diseases for which transmission characteristics are unknown. Key research needs are explored. Stakeholder collaboration for surveillance and research infrastructure is required to enhance transplant safety. PMID:22840823

  8. On the capabilities and limitations of high altitude pseudo-satellites

    NASA Astrophysics Data System (ADS)

    Gonzalo, Jesús; López, Deibi; Domínguez, Diego; García, Adrián; Escapa, Alberto

    2018-04-01

    The idea of self-sustaining air vehicles that excited engineers in the seventies has nowadays become a reality as proved by several initiatives worldwide. High altitude platforms, or Pseudo-satellites (HAPS), are unmanned vehicles that take advantage of weak stratospheric winds and solar energy to operate without interfering with current commercial aviation and with enough endurance to provide long-term services as satellites do. Target applications are communications, Earth observation, positioning and science among others. This paper reviews the major characteristics of stratospheric flight, where airplanes and airships will compete for best performance. The careful analysis of involved technologies and their trends allow budget models to shed light on the capabilities and limitations of each solution. Aerodynamics and aerostatics, structures and materials, propulsion, energy management, thermal control, flight management and ground infrastructures are the critical elements revisited to assess current status and expected short-term evolutions. Stratospheric airplanes require very light wing loading, which has been demonstrated to be feasible but currently limits their payload mass to few tenths of kilograms. On the other hand, airships need to be large and operationally complex but their potential to hover carrying hundreds of kilograms with reasonable power supply make them true pseudo-satellites with enormous commercial interest. This paper provides useful information on the relative importance of the technology evolutions, as well as on the selection of the proper platform for each application or set of payload requirements. The authors envisage prompt availability of both types of HAPS, aerodynamic and aerostatic, providing unprecedented services.

  9. Progress in American Superconductor's HTS wire and optimization for fault current limiting systems

    NASA Astrophysics Data System (ADS)

    Malozemoff, Alexis P.

    2016-11-01

    American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.

  10. Performance investigation on DCSFCL considering different magnetic materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jiaxin; Zhou, Hang; Zhong, Yongheng; Gan, Pengcheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao

    2018-05-01

    In order to protect high voltage direct current (HVDC) system from destructive consequences caused by fault current, a novel concept of HVDC system fault current limiter (DCSFCL) was proposed previously. Since DCSFCL is based on saturable core reactor theory, iron core becomes the key to the final performance of it. Therefore, three typical kinds of soft magnetic materials were chosen to find out their impact on performances of DCSFCL. Different characteristics of materials were compared and their theoretical deductions were carried out, too. In the meanwhile, 3D models applying those three materials were built separately and finite element analysis simulations were performed to compare these results and further verify the assumptions. It turns out that materials with large saturation flux density value Bs like silicon steel and short demagnetization time like ferrite might be the best choice for DCSFCL, which can be a future research direction of magnetic materials.

  11. Modeling of LWIR HgCdTe Auger-Suppressed Infrared Photodiodes under Nonequilibrium Operation

    NASA Astrophysics Data System (ADS)

    Emelie, P. Y.; Velicu, S.; Grein, C. H.; Phillips, J. D.; Wijewarnasuriya, P. S.; Dhar, N. K.

    2008-09-01

    The general approach and effects of nonequilibrium operation of Auger-suppressed HgCdTe infrared photodiodes are well understood. However, the complex relationships of carrier generation and dependencies on nonuniform carrier profiles in the device prevent the development of simplistic analytical device models with acceptable accuracy. In this work, finite element methods are used to obtain self-consistent steady-state solutions of Poisson’s equation and the carrier continuity equations. Experimental current-voltage characteristics between 120 K and 300 K of HgCdTe Auger-suppressed photodiodes with cutoff wavelength of λ c = 10 μm at 120 K are fitted using our numerical model. Based on this fitting, we study the lifetime in the absorber region, extract the current mechanisms limiting the dark current in these photodiodes, and discuss design and fabrication considerations in order to optimize future HgCdTe Auger-suppressed photodiodes.

  12. An investigation of the SNS Josephson junction as a three-terminal device. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meissner, H.; Prans, G. P.

    1973-01-01

    A particular phenomenon of the SNS Josephson junction was investigated; i.e., control by a current entering the normal region and leaving through one of the superconducting regions. The effect of the control current on the junction was found to be dependent upon the ration of the resistances of the two halves of the N layer. A low frequency, lumped, nonlinear model was proposed to describe the electrical characteristics of the device, and a method was developed to plot the dynamic junction resistance as a function of junction current. The effective thermal noise temperature of the sample was determined. Small signal linearized analysis of the device suggests its use as an impedance transformer, although geometric limitations must be overcome. Linear approximation indicates that it is reciprocal and no power gain is possible. It is felt that, with suitable metallurgical and geometrical improvements, the device has promise to become a superconducting transistor.

  13. A system for the automated data-acquisition of fast transient signals in excitable membranes.

    PubMed

    Bustamante, J O

    1988-01-01

    This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.

  14. Scaffold-based Anti-infection Strategies in Bone Repair

    PubMed Central

    Johnson, Christopher T.; García, Andrés J.

    2014-01-01

    Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field. PMID:25476163

  15. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  16. Langmuir probe measurements in the intense RF field of a helicon discharge

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2012-10-01

    Helicon discharges have extensively been studied for over 25 years both because of their intriguing physics and because of their utility in producing high plasma densities for industrial applications. Almost all measurements so far have been made away from the antenna region in the plasma ejected into a chamber where there may be a strong magnetic field (B-field) but where the radiofrequency (RF) field is much weaker than under the antenna. Inside the source region, the RF field distorts the current-voltage (I-V) characteristic of the probe unless it is specially designed with strong RF compensation. For this purpose, a thin probe was designed and used to show the effect of inadequate compensation on electron temperature (Te) measurements. The subtraction of ion current from the I-V curve is essential; and, surprisingly, Langmuir's orbital motion limited theory for ion current can be used well beyond its intended regime.

  17. Prevalence of Sexual Dysfunctions

    PubMed Central

    Simons, Jeffrey; Carey, Michael P.

    2008-01-01

    Ten years of research that has provided data regarding the prevalence of sexual dysfunctions is reviewed. A thorough review of the literature identified 52 studies that have been published in the 10 years since an earlier review by Spector and Carey (1990). Community samples indicate a current prevalence of 0 - 3% for male orgasmic disorder, 0 - 5% for erectile disorder, and 0 - 3% for male hypoactive sexual desire disorder. Pooling current and 1-year figures provides community prevalence estimates of 7 - 10% for female orgasmic disorder and 4 - 5% for premature ejaculation. Stable community estimates of the current prevalence for the other sexual dysfunctions remain unavailable. Prevalence estimates obtained from primary care and sexuality clinic samples are characteristically higher. Although a relatively large number of studies have been conducted since Spector and Carey’s (1990) review, the lack of methodological rigor of many studies limits the confidence that can be placed in these findings. PMID:11329727

  18. Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport

    DOE PAGES

    Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael

    2016-04-20

    Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less

  19. Current Status of New Anticoagulants in the Management of Venous Thromboembolism

    PubMed Central

    Montoya, Roberto C.; Gajra, Ajeet

    2012-01-01

    Venous Thromboembolism, manifested as deep venous thrombosis and pulmonary embolism, is a common problem associated with significant morbidity, mortality, and resource expenditure. Unfractionated heparin, low-molecular-weight heparin, and vitamin K antagonists are the most common treatment and prophylaxis, and have demonstrated their efficacy in a vast number of previous studies. Despite their broad use, these agents have important limitations that have led to the development of new drugs in a bid to overcome the disadvantages of the old ones without decreasing their therapeutic effect. These novel medications, some approved and others in different stages of development, include direct thrombin inhibitors like dabigatran etexilate, and direct activated factor X inhibitors like rivaroxaban. The current paper will review the characteristics, clinical trial results, and current and potential therapeutic uses of these new agents with a focus on the categories of direct thrombin inhibitors and activated factor X inhibitors. PMID:22496694

  20. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  1. Cognitive and Family Correlates of Current Suicidal Ideation in Children with Bipolar Disorder

    PubMed Central

    Weinstein, Sally M.; Van Meter, Anna; Katz, Andrea C.; Peters, Amy T.; West, Amy E.

    2014-01-01

    Background Suicidality among youth with bipolar disorder is an extreme, but largely unaddressed, public health problem. The current study examined the psychosocial characteristics differentiating youth with varying severities of suicidal ideation that may dictate targets for suicide prevention interventions. Methods Participants included 72 youth aged 7–13 (M = 9.19, SD = 1.61) with DSM-IV-TR bipolar I, II, or NOS and a parent/caregiver. Current suicidal ideation and correlates were assessed at intake, including: demographics and clinical factors (diagnosis, symptom severity, psychiatric comorbidity); child factors (cognitive risk and quality of life); and family factors (parenting stress, family cohesion, and family rigidity). Results Current ideation was prevalent in this young sample: 41% endorsed any ideation, and 31% endorsed active forms. Depression symptoms, quality of life, hopelessness, self-esteem, and family rigidity differentiated youth with increasing ideation severity. Separate logistic regressions examined all significant child- and family-level factors, controlling for demographic and clinical variables. Greater family rigidity and lower self-esteem remained significant predictors of current planful ideation. Diagnosis, index episode, comorbidity, and mania severity did not differentiate non-ideators from those with current ideation. Limitations Limitations include the small sample to examine low base-rate severe ideation, cross-sectional analyses and generalizability of findings beyond the outpatient clinical sample. Conclusions Findings underscore the importance of assessing and addressing suicidality in preadolescent youth with bipolar disorder, before youth progress to more severe suicidal behaviors. Results also highlight child self-esteem and family rigidity as key treatment targets to reduce suicide risk in pediatric bipolar disorder. PMID:25462390

  2. Effect of Surge Current Testing on Reliability of Solid Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    Tantalum capacitors manufactured per military specifications are established reliability components and have less than 0.001% of failures per 1000 hours for grades D or S, thus positioning these parts among electronic components with the highest reliability characteristics. Still, failures of tantalum capacitors do happen and when it occurs it might have catastrophic consequences for the system. To reduce this risk, further development of a screening and qualification system with special attention to the possible deficiencies in the existing procedures is necessary. The purpose of this work is evaluation of the effect of surge current stress testing on reliability of the parts at both steady-state and multiple surge current stress conditions. In order to reveal possible degradation and precipitate more failures, various part types were tested and stressed in the range of voltage and temperature conditions exceeding the specified limits. A model to estimate the probability of post-surge current testing-screening failures and measures to improve the effectiveness of the screening process has been suggested.

  3. I-V curve hysteresis induced by gate-free charging of GaAs nanowires' surface oxide

    NASA Astrophysics Data System (ADS)

    Alekseev, P. A.; Geydt, P.; Dunaevskiy, M. S.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2017-09-01

    The control of nanowire-based device performance requires knowledge about the transport of charge carriers and its limiting factors. We present the experimental and modeled results of a study of electrical properties of GaAs nanowires (NWs), considering their native oxide cover. Measurements of individual vertical NWs were performed by conductive atomic force microscopy (C-AFM). Experimental C-AFM observations with numerical simulations revealed the complex resistive behavior of NWs. A hysteresis of current-voltage characteristics of the p-doped NWs as-grown on substrates with different types of doping was registered. The emergence of hysteresis was explained by the trapping of majority carriers in the surface oxide layer near the reverse-biased barriers under the source-drain current. It was found that the accumulation of charge increases the current for highly doped p+-NWs on n+-substrates, while for moderately doped p-NWs on p+-substrates, charge accumulation decreases the current due to blocking of the conductive channel of NWs.

  4. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    NASA Astrophysics Data System (ADS)

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  5. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors.

    PubMed

    Giusi, G; Giordano, O; Scandurra, G; Rapisarda, M; Calvi, S; Ciofi, C

    2016-04-01

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz(1/2), while DC performances are limited only by the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.

  6. Non-inductively driven tokamak plasmas at near-unity βt in the Pegasus toroidal experiment

    NASA Astrophysics Data System (ADS)

    Reusch, J. A.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Rhodes, A. T.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Weberski, J. D.

    2018-05-01

    A major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓi, high elongation κ, and high toroidal and normalized beta ( βt and βN) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓi. The low aspect ratio ( R0/a ˜1.2 ) of Pegasus allows access to high κ and high normalized plasma currents ( IN=Ip/a BT>14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high βt plasmas. Equilibrium analyses indicate that βt up to ˜100% is achieved. These high βt discharges disrupt at the ideal no-wall β limit at βN˜7.

  7. The Obesity, Metabolic Syndrome, and Type 2 Diabetes Mellitus Pandemic: II. Therapeutic Management of Atherogenic Dyslipidemia

    PubMed Central

    Ginsberg, Henry N.; MacCallum, Paul R.

    2010-01-01

    Strategies for the effective management of cardiovascular risk factors in patients with the metabolic syndrome (MS) or type 2 diabetes mellitus (T2DM) are essential to help reduce cardiovascular morbidity and mortality. Treatment strategies should be multi-factorial and include the promotion of therapeutic lifestyle changes, as well as pharmacologic therapies to treat individual risk factors according to current guidelines. In an accompanying article, the importance of atherogenic dyslipidemia as a risk factor for the development of cardiovascular disease in patients with the MS or T2DM was highlighted. Current treatment options for managing this characteristic form of atherogenic dyslipidemia are limited and tend to be only moderately effective. The focus of this review is the current pharmacotherapies available for the management of atherogenic dyslipidemia in patients with the MS or T2DM, highlighting the rationale for combining available treatments. Novel strategies currently in clinical development are also discussed. PMID:19751468

  8. High sensitivity measurement system for the direct-current, capacitance-voltage, and gate-drain low frequency noise characterization of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giusi, G.; Giordano, O.; Scandurra, G.

    Measurements of current fluctuations originating in electron devices have been largely used to understand the electrical properties of materials and ultimate device performances. In this work, we propose a high-sensitivity measurement setup topology suitable for the automatic and programmable Direct-Current (DC), Capacitance-Voltage (CV), and gate-drain low frequency noise characterization of field effect transistors at wafer level. Automatic and programmable operation is particularly useful when the device characteristics relax or degrade with time due to optical, bias, or temperature stress. The noise sensitivity of the proposed topology is in the order of fA/Hz{sup 1/2}, while DC performances are limited only bymore » the source and measurement units used to bias the device under test. DC, CV, and NOISE measurements, down to 1 pA of DC gate and drain bias currents, in organic thin film transistors are reported to demonstrate system operation and performances.« less

  9. National physical activity surveillance: Users of wearable activity monitors as a potential data source.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E

    2017-03-01

    The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  10. Current-voltage characteristics of dc corona discharges in air between coaxial cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yuesheng, E-mail: yueshengzheng@fzu.edu.cn; Zhang, Bo, E-mail: shizbcn@tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    This paper presents the experimental measurement and numerical analysis of the current-voltage characteristics of dc corona discharges in air between coaxial cylinders. The current-voltage characteristics for both positive and negative corona discharges were measured within a specially designed corona cage. Then the measured results were fitted by different empirical formulae and analyzed by the fluid model. The current-voltage characteristics between coaxial cylinders can be expressed as I = C(U − U{sub 0}){sup m}, where m is within the range 1.5–2.0, which is similar to the point-plane electrode system. The ionization region has no significant effect on the current-voltage characteristic under a low corona current,more » while it will affect the distribution for the negative corona under a high corona current. The surface onset fields and ion mobilities were emphatically discussed.« less

  11. Influence of rainfall and catchment characteristics on urban stormwater quality.

    PubMed

    Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha

    2013-02-01

    The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Consumer perceptions of specific design characteristics for front-of-package nutrition labels.

    PubMed

    Acton, R B; Vanderlee, L; Roberto, C A; Hammond, D

    2018-04-01

    An increasing number of countries are developing front-of-package (FOP) labels; however, there is limited evidence examining the impact of specific design characteristics for these labels. The current study investigated consumer perceptions of several FOP label design characteristics, including potential differences among sociodemographic sub-groups. Two hundred and thirty-four participants aged 16 years or older completed nine label rating tasks on a laptop at a local shopping mall in Canada. The rating tasks asked participants to rate five primary design characteristics (border, background presence, background colour, 'caution' symbol and government attribution) on their noticeability, readability, believability and likelihood of changing their beverage choice. FOP labels with a border, solid background and contrasting colours increased noticeability. A solid background increased readability, while a contrasting background colour reduced it. Both a 'caution' symbol and a government attribution increased the believability of the labels and the perceived likelihood of influencing beverage choice. The effect of the design characteristics was generally similar across sociodemographic groups, with modest differences in five of the nine outcomes. Label design characteristics, such as the use of a border, colour and symbols can enhance the salience of FOP nutrition labels and may increase the likelihood that FOP labels are used by consumers.

  13. Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira

    2012-04-01

    The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34″S; 48°51'40″W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.

  14. Effect of localized states on the current-voltage characteristics of metal-semiconductor contacts with thin interfacial layer

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.

    1994-10-01

    The role of discrete localized states on the current-voltage characteristics of metal-semiconductor contact is examined. It is seen that, because of these localized states, the logarithmic current vs voltage characteristics become nonlinear. Such nonlinearity is found sensitive to the temperature, and the energy and density of the localized states. The predicted temperature dependence of barrier height and the current-voltage characteristics are in agreement with the experimental results of Aboelfotoh [ Phys. Rev. B39, 5070 (1989)].

  15. DC Interruption Characteristic on Vacuum Circuit Breaker

    NASA Astrophysics Data System (ADS)

    Odaka, Hiromi; Yamada, Masataka; Sakuma, Ryohei; Ding, Cuie; Kaneko, Eiji; Yanabu, Satoru

    A high speed vacuum circuit breaker (HSVCB) has been investigated. HSVCB makes high frequency current superimposed on a fault current so that the current is forced to be zero and is interrupted. Its interruption performance is considered to be dependent on a rate of change of the current (di/dt). As a fundamental research, we investigated the di/dt-dv/dt characteristics and the insulation recovery characteristic after interrupting the counter-pulse current for various contact materials of AgWC, CuW, and CuCr. The results revealed that the case where gap length is larger is better in a current interruption performance. Moreover, it was found that di/dt is not dependent on the insulation recovery characteristics, but the magnitude of interruption current influences greatly.

  16. Further steps toward direct magnetic resonance (MR) imaging detection of neural action currents: optimization of MR sensitivity to transient and weak currents in a conductor.

    PubMed

    Pell, Gaby S; Abbott, David F; Fleming, Steven W; Prichard, James W; Jackson, Graeme D

    2006-05-01

    The characteristics of an MRI technique that could be used for direct detection of neuronal activity are investigated. It was shown that magnitude imaging using echo planar imaging can detect transient local currents. The sensitivity of this method was thoroughly investigated. A partial k-space EPI acquisition with homodyne reconstruction was found to increase the signal change. A unique sensitivity to the position of the current pulse within the imaging sequence was demonstrated with the greatest signal change occurring when the current pulse coincides with the acquisition of the center lines of k-space. The signal change was shown to be highly sensitive to the spatial position of the current conductor relative to the voxel. Furthermore, with the use of optimization of spatial and temporal placement of the current pulse, the level of signal change obtained at this lower limit of current detectability was considerably magnified. It was possible to detect a current of 1.7 microA applied for 20 ms with an imaging time of 1.8 min. The level of sensitivity observed in our study brings us closer to that theoretically required for the detection of action currents in nerves. Copyright (c) 2006 Wiley-Liss, Inc.

  17. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  18. Pencil Graphite Electrodes: A Versatile Tool in Electroanalysis

    PubMed Central

    2017-01-01

    Due to their electrochemical and economical characteristics, pencil graphite electrodes (PGEs) gained in recent years a large applicability to the analysis of various types of inorganic and organic compounds from very different matrices. The electrode material of this type of working electrodes is constituted by the well-known and easy commercially available graphite pencil leads. Thus, PGEs are cheap and user-friendly and can be employed as disposable electrodes avoiding the time-consuming step of solid electrodes surface cleaning between measurements. When compared to other working electrodes PGEs present lower background currents, higher sensitivity, good reproducibility, and an adjustable electroactive surface area, permitting the analysis of low concentrations and small sample volumes without any deposition/preconcentration step. Therefore, this paper presents a detailed overview of the PGEs characteristics, designs and applications of bare, and electrochemically pretreated and chemically modified PGEs along with the corresponding performance characteristics like linear range and detection limit. Techniques used for bare or modified PGEs surface characterization are also reviewed. PMID:28255500

  19. Implementation of a Smart Phone for Motion Analysis.

    PubMed

    Yodpijit, Nantakrit; Songwongamarit, Chalida; Tavichaiyuth, Nicha

    2015-01-01

    In today’s information-rich environment, one of the most popular devices is a smartphone. Research has shown significant growth in the use of smartphones and apps all over the world. Accelerometer within smartphone is a motion sensor that can be used to detect human movements. Compared to other major vital signs, gait characteristics represent general health status, and can be determined using smartphones. The objective of the current study is to design and develop the alternative technology that can potentially predict health status and reduce healthcare cost. This study uses a smartphone as a wireless accelerometer for quantifying human motion characteristics from four steps of the system design and development (data acquisition operation, feature extraction algorithm, classifier design, and decision making strategy). Findings indicate that it is possible to extract features from a smartphone’s accelerometer using a peak detection algorithm. Gait characteristics obtain from the peak detection algorithm include stride time, stance time, swing time and cadence. Applications and limitations of this study are also discussed.

  20. Leakage current phenomena in Mn-doped Bi(Na,K)TiO{sub 3}-based ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walenza-Slabe, J.; Gibbons, B. J., E-mail: brady.gibbons@oregonstate.edu

    2016-08-28

    Mn-doped 80(Bi{sub 0.5}Na{sub 0.5})TiO{sub 3}-20(Bi{sub 0.5}K{sub 0.5})TiO{sub 3} thin films were fabricated by chemical solution deposition on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates. Steady state and time-dependent leakage current were investigated from room temperature to 180 °C. Undoped and low-doped films showed space-charge-limited current (SCLC) at high temperatures. The electric field marking the transition from Ohmic to trap-filling-limited current increased monotonically with Mn-doping. With 2 mol. % Mn, the current was Ohmic up to 430 kV/cm, even at 180 °C. Modeling of the SCLC showed that all films exhibited shallow trap levels and high trap concentrations. In the regime of steady state leakage, theremore » were also observations of negative differential resistivity and positive temperature coefficient of resistivity near room temperature. Both of these phenomena were confined to relatively low temperatures (below ∼60 °C). Transient currents were observed in the time-dependent leakage data, which was measured out to several hundred seconds. In the undoped films, these were found to be a consequence of oxygen vacancy migration modulating the electronic conductivity. The mobility and thermal activation energy for oxygen vacancies was extracted as μ{sub ion} ≈ 1.7 × 10{sup −12} cm{sup 2} V{sup −1} s{sup −1} and E{sub A,ion} ≈ 0.92 eV, respectively. The transient current displayed different characteristics in the 1 mol. % Mn-doped films which were not readily explained by oxygen vacancy migration.« less

  1. Modeling of the Coupled Magnetospheric and Neutral Wind Dynamos

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1997-01-01

    Over the past four years of funding, SRI, in collaboration with the University of Texas at Dallas, has been involved in assessing the influence of thermospheric neutral winds on the electric field and current systems at high latitudes. The initial direction of the project was to perform a set of numerical experiments concerning the contribution of the magnetospheric and neutral wind dynamo processes, under specific boundary conditions, to the polarization electric field and/or the field-aligned current distribution at high latitudes. To facilitate these numerical experiments we developed a numerical scheme that relied on using output from the NCAR Thermosphere-Ionosphere General Circulation Model (NCAR-TIGCM), expanding them in the form of spherical harmonics and solving the dynamo equations spectrally. Once initial calculations were completed, it was recognized that the neutral wind contribution could be significant but its actual contribution to the electric field or currents depended strongly on the generator properties of the magnetosphere. Solutions to this problem are not unique because of the unknown characteristics of the magnetospheric generator, therefore the focus was on two limiting cases. One limiting case was to consider the magnetosphere as a voltage generator delivering a fixed voltage to the high-latitude ionosphere and allowing for the neutral wind dynamo to contribute only to the current system. The second limiting case was to consider the magnetosphere as a current generator and allowing for the neutral wind dynamo to contribute only to the generation of polarization electric fields. This work was completed and presented at the l994 Fall AGU meeting. The direction of the project then shifted to applying the Poynting flux concept to the high-latitude ionosphere. This concept was more attractive as it evaluated the influence of neutral winds on the high-latitude electrodynamics without actually having to determine the generator characteristics of the magnetosphere. The influence of the neutral wind was then determined not by estimating how much electric potential or current density it provides, but by determining the contribution of the neutral wind to the net electromagnetic energy transferred between the ionosphere and magnetosphere. The estimate of the net electromagnetic energy transfer and the role of the neutral winds proves to be a more fundamental quantity in studies of magnetosphere- ionosphere coupling also showed that by using electric and magnetic field measurements from the HILAT satellite, the Poynting flux could be a measurable quantity from polar-orbiting, low- altitude spacecraft. Through collaboration with Dr. Heelis and others at UTD and their expertise of the electric field measurements on the DE-B satellite, an extensive analysis was planned to determine the Poynting flux from the DE-B measurements in combination with a modeling effort to help interpret the observations taking into account the coupled magnetosphere-ionosphere.

  2. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films.

    PubMed

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xi-Xiang; Wu, Tom

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  3. Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    NASA Technical Reports Server (NTRS)

    Elgin, Stephen D.; Sutliff, Thomas J.

    1993-01-01

    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.

  4. Electrochemical oxidation for landfill leachate treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Yang; Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  5. Improving Platinum Efficiency:. Nanoformulations

    NASA Astrophysics Data System (ADS)

    Carmona, Rolando; Liang, Xing-Jie

    2013-09-01

    Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.

  6. Mist characterization in drilling 1018 steel

    NASA Astrophysics Data System (ADS)

    Cole, Ian

    Minimum quantity lubrication replaces the traditional method of flood cooling with small amounts of high-efficient lubrication. Limited studies have been performed to determine the characteristics of mist produced during MQL. This study investigated the mist concentration levels produced while drilling 1018 steel using a vegetable based lubricant. ANOVA was performed to determine whether speed and feed rates or their interactions have a significant effect on mist concentration levels and particle diameter. It was observed that the concentration levels obtained under all four speed and feed rate combinations studied exceeded the current OSHA and NIOSH standards.

  7. Functional heartburn: the stimulus, the pain, and the brain

    PubMed Central

    Fass, R; Tougas, G

    2002-01-01

    Functional heartburn is a common disorder and appears to be composed of several distinct subgroups. Identifying the different subgroups based on clinical history only is not achievable at present. The mechanisms responsible for pain, clinical characteristics, and the optimal therapeutic approach remain poorly understood. Response to potent antireflux treatment is relatively limited. Current and future treatment strategies for functional heartburn patients who have failed standard dose proton pump inhibitors (PPIs) include increased PPI dose in some, as well as addition of pain modulators in others. PMID:12427796

  8. The influence of atmosphere on performance of pure-phase WZ and ZB InAs nanowire transistors.

    PubMed

    Ullah, Abu Rifat; Joyce, Hannah J; Tan, Hoe; Jagadish, Chennupati; Micolich, Adam P

    2017-09-21

    We compare the characteristics of phase-pure MOCVD grown ZB and WZ InAs nanowire transistors in several atmospheres: air, dry pure N<sub>2</sub> and O<sub>2</sub>, and N<sub>2</sub> bubbled through liquid H<sub>2</sub>O and alcohols to identify whether phase-related structural/surface differences affect their response. Both WZ and ZB give poor gate characteristics in dry state. Adsorption of polar species reduces off-current by 2-3 orders of magnitude, increases on-off ratio and significantly reduces sub-threshold slope. The key difference is the greater sensitivity of WZ to low adsorbate level. We attribute this to facet structure and its influence on the separation between conduction electrons and surface adsorption sites. We highlight the important role adsorbed species play in nanowire device characterisation. WZ is commonly thought superior to ZB in InAs nanowire transistors. We show this is an artefact of the moderate humidity found in ambient laboratory conditions: WZ and ZB perform equally poorly in the dry gas limit yet equally well in the wet gas limit. We also highlight the vital role density-lowering disorder has in improving gate characteristics, be it stacking faults in mixed-phase WZ or surface adsorbates in pure-phase nanowires. © 2017 IOP Publishing Ltd.

  9. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    NASA Astrophysics Data System (ADS)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  10. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  11. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  12. Ultrastrong Graphene-Copper Core-Shell Wires for High-Performance Electrical Cables.

    PubMed

    Kim, Sang Jin; Shin, Dong Heon; Choi, Yong Seok; Rho, Hokyun; Park, Min; Moon, Byung Joon; Kim, Youngsoo; Lee, Seuoung-Ki; Lee, Dong Su; Kim, Tae-Wook; Lee, Sang Hyun; Kim, Keun Soo; Hong, Byung Hee; Bae, Sukang

    2018-03-27

    Recent development in mobile electronic devices and electric vehicles requires electrical wires with reduced weight as well as enhanced stability. In addition, since electric energy is mostly generated from power plants located far from its consuming places, mechanically stronger and higher electric power transmission cables are strongly demanded. However, there has been no alternative materials that can practically replace copper materials. Here, we report a method to prepare ultrastrong graphene fibers (GFs)-Cu core-shell wires with significantly enhanced electrical and mechanical properties. The core GFs are synthesized by chemical vapor deposition, followed by electroplating of Cu shells, where the large surface area of GFs in contact with Cu maximizes the mechanical toughness of the core-shell wires. At the same time, the unique electrical and thermal characteristics of graphene allow a ∼10 times higher current density limit, providing more efficient and reliable delivery of electrical energies through the GFs-Cu wires. We believe that our results would be useful to overcome the current limit in electrical wires and cables for lightweight, energy-saving, and high-power applications.

  13. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.

  14. Stochastic many-particle model for LFP electrodes

    NASA Astrophysics Data System (ADS)

    Guhlke, Clemens; Gajewski, Paul; Maurelli, Mario; Friz, Peter K.; Dreyer, Wolfgang

    2018-02-01

    In the framework of non-equilibrium thermodynamics, we derive a new model for many-particle electrodes. The model is applied to LiFePO4 (LFP) electrodes consisting of many LFP particles of nanometer size. The phase transition from a lithium-poor to a lithium-rich phase within LFP electrodes is controlled by both different particle sizes and surface fluctuations leading to a system of stochastic differential equations. An explicit relation between battery voltage and current controlled by the thermodynamic state variables is derived. This voltage-current relation reveals that in thin LFP electrodes lithium intercalation from the particle surfaces into the LFP particles is the principal rate-limiting process. There are only two constant kinetic parameters in the model describing the intercalation rate and the fluctuation strength, respectively. The model correctly predicts several features of LFP electrodes, viz. the phase transition, the observed voltage plateaus, hysteresis and the rate-limiting capacity. Moreover we study the impact of both the particle size distribution and the active surface area on the voltage-charge characteristics of the electrode. Finally we carefully discuss the phase transition for varying charging/discharging rates.

  15. [Current treatment situation and progress on bone defect of collapsed tibial plateau fractures].

    PubMed

    Luo, Chang-qi; Fang, Yue; Tu, Chong-qi; Yang, Tian-fu

    2016-02-01

    Characteristics of collapsed tibial plateau fracture determines that the joint surface must remain anatomical reduction,line of force in tibial must exist and internal fixation must be strong. However, while renewing articular surface smoothness, surgeons have a lot of problems in dealing with bone defect under the joint surface. Current materials used for bone defect treatment include three categories: autologous bone, allograft bone and bone substitutes. Some scholars think that autologous bone grafts have a number of drawbacks, such as increasing trauma, prolonged operation time, the limited source, bone area bleeding,continuous pain, local infection and anesthesia,but most scholars believe that the autologous cancellous bone graft is still the golden standard. Allograft bone has the ability of bone conduction, but the existence of immune responses, the possibility of a virus infection, and the limited source of the allograft cannot meet the clinical demands. Likewise, bone substitutes have the problem that osteogenesis does not match with degradation in rates. Clinical doctors can meet the demand of the patient's bone graft according to patient's own situation and economic conditions.

  16. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  17. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  18. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  19. Current investigations into the genotoxicity of zinc oxide and silica nanoparticles in mammalian models in vitro and in vivo: carcinogenic/genotoxic potential, relevant mechanisms and biomarkers, artifacts, and limitations

    PubMed Central

    Kwon, Jee Young; Koedrith, Preeyaporn; Seo, Young Rok

    2014-01-01

    Engineered nanoparticles (NPs) are widely used in many sectors, such as food, medicine, military, and sport, but their unique characteristics may cause deleterious health effects. Close attention is being paid to metal NP genotoxicity; however, NP genotoxic/carcinogenic effects and the underlying mechanisms remain to be elucidated. In this review, we address some metal and metal oxide NPs of interest and current genotoxicity tests in vitro and in vivo. Metal NPs can cause DNA damage such as chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations. We also discuss several parameters that may affect genotoxic response, including physicochemical properties, widely used assays/end point tests, and experimental conditions. Although potential biomarkers of nanogenotoxicity or carcinogenicity are suggested, inconsistent findings in the literature render results inconclusive due to a variety of factors. Advantages and limitations related to different methods for investigating genotoxicity are described, and future directions and recommendations for better understanding genotoxic potential are addressed. PMID:25565845

  20. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  1. Exploring the Role of the Built and Social Neighborhood Environment in Moderating Stress and Health

    PubMed Central

    Yang, Tse-Chuan

    2014-01-01

    Background Health researchers have explored how different aspects of neighborhood characteristics contribute to health and well-being, but current understanding of built environment factors is limited. Purpose This study explores whether the association between stress and health varies by residential neighborhood, and if yes, whether built and social neighborhood environment characteristics act as moderators. Methods This study uses multilevel modeling and variables derived from geospatial data to explore the role of neighborhood environment in moderating the association of stress with health. Individual-level data (N=4,093) were drawn from residents of 45 neighborhoods within Philadelphia County, PA, collected as part of the 2006 Philadelphia Health Management Corporation's Household Health Survey. Results We find that the negative influence of high stress varied by neighborhood, that residential stability and affluence (social characteristics) attenuated the association of high stress with health, and that the presence of hazardous waste facilities (built environment characteristics) moderated health by enhancing the association with stress. Conclusions Our findings suggest that neighborhood environment has both direct and moderating associations with health, after adjusting for individual characteristics. The use of geospatial data could broaden the scope of stress–health research and advance knowledge by untangling the intertwined relationship between built and social environments, stress, and health. In particular, future studies should integrate built environment characteristics in health-related research; these characteristics are modifiable and can facilitate health promotion policies. PMID:20300905

  2. A new structure design and the basic radiation characteristics test of the intense current tube

    NASA Astrophysics Data System (ADS)

    Li, Zhiyuan; Ai, Xianyun; Fu, Li; Cui, Hui

    2018-02-01

    As a kind of special G-M counter, the intense current tube (ICT) is characterized by small ratio of cathode to anode radius, high working current or count rate, and can be used as the detection units of ultra-high range radiation instruments. In this paper, a new design of ICT structure is introduced, not only does it have a minimum ratio of cathode to anode but it also has a cathode which directly sticks out from the sensitive gas. Using COMSOL Multiphysics, we simulated the electric field between the anode and cathode and finalized the optimal structure. The results of processes and experiments show that the structure has better properties, with plateau slope reaching up to 7.4% within 100V, and it also has a wider range of dose rate. The linear data between the bottom limit of 0.2mGy/h and the upper limit of 1Gy/h is quite accurate but it becomes less reliable beyond 1Gy/h. By using Paralyzable model, we deduce that the dead time of the said ICT is less than 13.4 µs, and we will further optimize the readout circuit in order to reduce the resolution time of the circuit in the near future.

  3. Impact of membrane characteristics on the performance and cycling of the Br₂–H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Spingler, Franz B.; ...

    2015-03-04

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br₂/H₂ redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 μm) pretreated by soaking in 70 °C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm⁻², with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane.« less

  4. How Can We Treat Cancer Disease Not Cancer Cells?

    PubMed

    Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young

    2017-01-01

    Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.

  5. Power blue and green laser diodes and their applications

    NASA Astrophysics Data System (ADS)

    Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver

    2013-03-01

    InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.

  6. Computational Validation of a Two-Dimensional Semi-Empirical Model for Inductive Coupling in a Conical Pulsed Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2011-01-01

    A two-dimensional semi-empirical model of pulsed inductive thrust efficiency is developed to predict the effect of such a geometry on thrust efficiency. The model includes electromagnetic and gas-dynamic forces but excludes energy conversion from radial motion to axial motion, with the intention of characterizing thrust efficiency loss mechanisms that result from a conical versus a at inductive coil geometry. The range of conical pulsed inductive thruster geometries to which this model can be applied is explored with the use of finite element analysis. A semi-empirical relation for inductance as a function of current sheet radial and axial position is the limiting feature of the model, restricting the applicability as a function of half cone angle to a range from ten degrees to about 60 degrees. The model is nondimensionalized, yielding a set of dimensionless performance scaling parameters. Results of the model indicate that radial current sheet motion changes the axial dynamic impedance parameter at which thrust efficiency is maximized. This shift indicates that when radial current sheet motion is permitted in the model longer characteristic circuit timescales are more efficient, which can be attributed to a lower current sheet axial velocity as the plasma more rapidly decouples from the coil through radial motion. Thrust efficiency is shown to increase monotonically for decreasing values of the radial dynamic impedance parameter. This trend indicates that to maximize the radial decoupling timescale should be long compared to the characteristic circuit timescale.

  7. Precision Medicine in Myelodysplastic Syndromes and Leukemias: Lessons from Sequential Mutations.

    PubMed

    Nazha, Aziz; Sekeres, Mikkael A

    2017-01-14

    Precision medicine can be simply defined as the identification of personalized treatment that matches patient-specific clinical and genomic characteristics. Since the completion of the Human Genome Project in 2003, significant advances have been made in our understanding of the genetic makeup of diseases, especially cancers. The identification of somatic mutations that can drive cancer has led to the development of therapies that specifically target the abnormal proteins derived from these mutations. This has led to a paradigm shift in our treatment methodology. Although some success has been achieved in targeting some genetic abnormalities, several challenges and limitations exist when applying precision-medicine concepts in leukemia and myelodysplastic syndromes. We review the current understanding of genomics in myelodysplastic syndromes (MDS) and leukemias and the limitations of precision-medicine concepts in MDS.

  8. Overcoming Language and Literacy Barriers in Safety and Health Training of Agricultural Workers

    PubMed Central

    Arcury, Thomas A.; Estrada, Jorge M.; Quandt, Sara A.

    2010-01-01

    The workforce in all areas of United States agriculture and forestry is becoming increasingly diverse in language, culture, and education. Many agricultural workers are immigrants who have limited English language skills and limited educational attainment. Providing safety and health training to this large, diverse, dispersed, and often transient population of workers is challenging. This review, prepared for the 2010 Agricultural Safety and Health Council of America/National Institute for Occupational Safety and Health conference, “Be Safe, Be Profitable: Protecting Workers in Agriculture,” is divided into five sections. First, we describe the occupational and demographic characteristics of agricultural workers in the US to highlight their safety and health training needs. Second, we summarize current research on the social and cultural attributes of agricultural workers and agricultural employers that affect the provision of safety and health training. Worker and employer attributes include language, literacy, financial limitations, work beliefs, and health beliefs. Third, we review current initiatives addressing safety and health training for agricultural workers that consider worker language and literacy. These initiatives are limited to a few specific topics (e.g., pesticides, heat stress); they do not provide general programs of safety training that would help establish a culture of workplace safety. However, several innovative approaches to health and safety training are being implemented, including the use of community-based participatory approaches and lay health promoter programs. Fourth, the limited industry response for safety training with this linguistically diverse and educationally limited workforce is summarized. Finally, gaps in knowledge and practice are summarized and recommendations to develop educationally, culturally, and linguistically appropriate safety and health training are presented. PMID:20665309

  9. Transmembrane transport of peptide type compounds: prospects for oral delivery

    NASA Technical Reports Server (NTRS)

    Lipka, E.; Crison, J.; Amidon, G. L.

    1996-01-01

    Synthesis and delivery of potential therapeutic peptides and peptidomimetic compounds has been the focus of intense research over the last 10 years. While it is widely recognized that numerous limitations apply to oral delivery of peptides, some of the limiting factors have been addressed and their mechanisms elucidated, which has lead to promising strategies. This article will briefly summarize the challenges, results and current approaches of oral peptide delivery and give some insight on future strategies. The barriers determining peptide bioavailability after oral administration are intestinal membrane permability, size limitations, intestinal and hepatic metabolism and in some cases solubility limitations. Poor membrane permeabilities of hydrophilic peptides might be overcome by structurally modifying the compounds, thus increasing their membrane partition characteristics and/or their affinity to carrier proteins. Another approach is the site-specific delivery of the peptide to the most permeable parts of the intestine. The current view on size limitation for oral drug delivery has neglected partition considerations. Recent studies suggest that compounds with a molecular weight up to 4000 might be significantly absorbed, assuming appropriate partition behavior and stability. Metabolism, probably the most significant factor in the absorption fate of peptides, might be controlled by coadministration of competitive enzyme inhibitors, structural modifications and administration of the compound as a well absorbed prodrug that is converted into the therapeutically active agent after its absorption. For some peptides poor solubility might present a limitation to oral absorption, an issue that has been addressed by mechanistically defining and therefore improving formulation parameters. Effective oral peptide delivery requires further development in understanding these complex mechanisms in order to maximize the therapeutic potential of this class of compounds.

  10. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 6. Following calendar-life test for 2 weeks at 70 °C, 60% state-of-charge (3.747 V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  11. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 4. Following calendar-life test for 8 weeks at 50 °C, 60% state-of-charge (3.747 V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  12. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 5. Following calendar-life test for 8 weeks at 60 °C, 60% state-of-charge (3.747 V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard; Abraham, Daniel A.

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  13. LiNi 0.8 Co 0.2 O 2 -based high power lithium-ion battery positive electrodes analyzed by x-ray photoelectron spectroscopy: 3. Following calendar-life test for 12 weeks at 40 °C, 60% state-of-charge (3.747 V)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haasch, Richard T.; Abraham, Daniel A.

    High-power lithium-ion batteries are rapidly replacing the nickel metal hydride batteries currently used for energy storage in hybrid electric vehicles. Widespread commercialization of these batteries for vehicular applications is, however, limited by calendar-life performance, thermal abuse characteristics, and cost. The Advanced Technology Development Program was established by the U.S. Department of Energy to address these limitations. An important objective of this program was the development and application of diagnostic tools that provide unique ways to investigate the phenomena that limit lithium-ion cell life, performance, and safety characteristics. This report introduces a set of six Surface Science Spectra xray photoelectron spectroscopymore » (XPS) comparison records of data collected from positive electrodes (cathode) harvested from cylindrically wound, 18650-type, 1 A h capacity cells. The cathodes included in this study are (1) fresh, (2) following three formation cycles, (3) following calendar-life test for 12 weeks at 40 C, 60% state-of-charge (SOC), (4) following calendar-life test for 8 weeks at 50 C, 60% SOC, (5) following calendar-life test for 8 weeks at 60 C, 60% SOC, and (6) following calendar-life test for 2 weeks at 70 C, 60% SOC.« less

  14. Review of marine animals and bioinspired robotic vehicles: Classifications and characteristics

    NASA Astrophysics Data System (ADS)

    Zimmerman, S.; Abdelkefi, A.

    2017-08-01

    Marine robots are a developing topic for military, scientific, and environmental missions. However, most existing marine robots are either limited to flight or limited to swimming. Therefore, the combination of both provides endless possibilities for tasks, such as espionage, pollution and marine wildlife surveillance, and border protection. Applying bioinspiration and biomimetics not only camouflages the robot, but also increases the efficiency of already perfected designs. Because bioinspiration and aerial-aquatic locomotion are the main attraction for this article, this review gathers the characteristics of aerial-aquatic animals useful for such designs. These animals are diving birds and flying fish, specifically plunge-diving birds, surface-diving birds, both plunge- and surface-diving birds, two-winger flying fish, and four-winger flying fish. The overview of the current marine bioinspired and non-bioinspired robots that are both aerial and aquatic are also presented, followed by the limitations and recommendations of the bioinspired robots. It is shown by a comparison between the bioinspired robot and its corresponding animal that the existing robotic systems are not truly bioinspired. The main traits these systems are missing are replicating the exact weight, size, muscle movement, and skin texture of the biological animal. In order to have efficient robots, bioinspiration needs to be perfected. Doing so requires not only the basic design to be replicated, but every detail of the system to be imitated.

  15. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity.

    PubMed

    Pandyan, A D; Johnson, G R; Price, C I; Curless, R H; Barnes, M P; Rodgers, H

    1999-10-01

    The Ashworth Scale and the modified Ashworth Scale are the primary clinical measures of spast city. A prerequisite for using any scale is a knowledge of its characteristics and limitations, as these will play a part in analysing and interpreting the data. Despite the current emphasis on treating spasticity, clinicians rarely measure it. To determine the validity and the reliability of the Ashworth and modified Ashworth Scales. A theoretical analysis following a structured literature review (key words: Ashworth; Spasticity; Measurement) of 40 papers selected from the BIDS-EMBASE, First Search and Medline databases. The application of both scales would suggest that confusion exists on their characteristics and limitations as measures of spasticity. Resistance to passive movement is a complex measure that will be influenced by many factors, only one of which could be spasticity. The Ashworth Scale (AS) can be used as an ordinal level measure of resistance to passive movement, but not spasticity. The modified Ashworth Scale (MAS) will need to be treated as a nominal level measure of resistance to passive movement until the ambiguity between the '1' and '1+' grades is resolved. The reliability of the scales is better in the upper limb. The AS may be more reliable than the MAS. There is a need to standardize methods to apply these scales in clinical practice and research.

  16. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  17. Learning from failure - rationale and design for a study about discontinuation of randomized trials (DISCO study)

    PubMed Central

    2012-01-01

    Background Randomized controlled trials (RCTs) may be discontinued because of apparent harm, benefit, or futility. Other RCTs are discontinued early because of insufficient recruitment. Trial discontinuation has ethical implications, because participants consent on the premise of contributing to new medical knowledge, Research Ethics Committees (RECs) spend considerable effort reviewing study protocols, and limited resources for conducting research are wasted. Currently, little is known regarding the frequency and characteristics of discontinued RCTs. Methods/Design Our aims are, first, to determine the prevalence of RCT discontinuation for specific reasons; second, to determine whether the risk of RCT discontinuation for specific reasons differs between investigator- and industry-initiated RCTs; third, to identify risk factors for RCT discontinuation due to insufficient recruitment; fourth, to determine at what stage RCTs are discontinued; and fifth, to examine the publication history of discontinued RCTs. We are currently assembling a multicenter cohort of RCTs based on protocols approved between 2000 and 2002/3 by 6 RECs in Switzerland, Germany, and Canada. We are extracting data on RCT characteristics and planned recruitment for all included protocols. Completion and publication status is determined using information from correspondence between investigators and RECs, publications identified through literature searches, or by contacting the investigators. We will use multivariable regression models to identify risk factors for trial discontinuation due to insufficient recruitment. We aim to include over 1000 RCTs of which an anticipated 150 will have been discontinued due to insufficient recruitment. Discussion Our study will provide insights into the prevalence and characteristics of RCTs that were discontinued. Effective recruitment strategies and the anticipation of problems are key issues in the planning and evaluation of trials by investigators, Clinical Trial Units, RECs and funding agencies. Identification and modification of barriers to successful study completion at an early stage could help to reduce the risk of trial discontinuation, save limited resources, and enable RCTs to better meet their ethical requirements. PMID:22928744

  18. Analysis and elimination method of the effects of cables on LVRT testing for offshore wind turbines

    NASA Astrophysics Data System (ADS)

    Jiang, Zimin; Liu, Xiaohao; Li, Changgang; Liu, Yutian

    2018-02-01

    The current state, characteristics and necessity of the low voltage ride through (LVRT) on-site testing for grid-connected offshore wind turbines are introduced firstly. Then the effects of submarine cables on the LVRT testing are analysed based on the equivalent circuit of the testing system. A scheme for eliminating the effects of cables on the proposed LVRT testing method is presented. The specified voltage dips are guaranteed to be in compliance with the testing standards by adjusting the ratio between the current limiting impedance and short circuit impedance according to the steady voltage relationship derived from the equivalent circuit. Finally, simulation results demonstrate that the voltage dips at the high voltage side of wind turbine transformer satisfy the requirements of testing standards.

  19. Enhanced bipolar resistive switching behavior in polar Cr-doped barium titanate thin films without electro-forming process

    NASA Astrophysics Data System (ADS)

    Thakre, Atul; Kumar, Ashok

    2017-12-01

    An enhanced, repeatable and robust resistive switching phenomenon was observed in Cr substituted BaTiO3 polar ferroelectric thin films; fabricated and deposited by the sol-gel approach and spin coating technique, respectively. An enhanced bistable bipolar resistive switching (BRS) phenomenon without electro-forming process, low switching voltage (˜ 2 V) and moderate retention characteristics of 104 s along with a high Roff/Ron resistance ratio ˜103 was achieved. The current conduction analysis showed that the space charge limited conduction (SCLC) and Schottky emission conduction dominate in the high voltage range, while thermally active charge carriers (ohmic) in the lower voltage range. The impedance spectroscopy study indicates the formation of current conducting path and rupturing of oxygen vacancies during SET and RESET process.

  20. Prospects of In/CdTe X- and γ-ray detectors with MoO Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Maslyanchuk, Olena L.; Solovan, Mykhailo M.; Maistruk, Eduard V.; Brus, Viktor V.; Maryanchuk, Pavlo D.; Gnatyuk, Volodymyr A.; Aoki, Toru

    2018-01-01

    The present paper analyzes the charge transport mechanisms and spectrometric properties of In/CdTe/MoOx heterojunctions prepared by magnetron sputtering of indium and molybdenum oxide thin films onto semi-insulating p-type single-crystal CdTe semiconductor, produced by Acrorad Co. Ltd. Current-voltage characteristics of the detectors at different temperatures were investigated. The charge transport mechanisms in the heterostructures under investigation were determined: the generation-recombination in the space charge region (SCR) at relatively low voltages and the space charge limited currents at high voltages. The spectra of 137Cs and 241Am isotopes taken at different applied bias voltages are presented. It is shown that the In/CdTe/MoOx structures can be used as X/γ-ray detectors in the spectrometric mode.

  1. Comparative investigation of diagnosis media for induction machine mechanical unbalance fault.

    PubMed

    Salah, Mohamed; Bacha, Khmais; Chaari, Abdelkader

    2013-11-01

    For an induction machine, we suggest a theoretical development of the mechanical unbalance effect on the analytical expressions of radial vibration and stator current. Related spectra are described and characteristic defect frequencies are determined. Moreover, the stray flux expressions are developed for both axial and radial sensor coil positions and a substitute diagnosis technique is proposed. In addition, the load torque effect on the detection efficiency of these diagnosis media is discussed and a comparative investigation is performed. The decisive factor of comparison is the fault sensitivity. Experimental results show that spectral analysis of the axial stray flux can be an alternative solution to cover effectiveness limitation of the traditional stator current technique and to substitute the classical vibration practice. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. The Promise of Neuroprotective Agents in Parkinson’s Disease

    PubMed Central

    Seidl, Stacey E.; Potashkin, Judith A.

    2011-01-01

    Parkinson’s disease (PD) is characterized by loss of dopamine neurons in the substantia nigra of the brain. Since there are limited treatment options for PD, neuroprotective agents are currently being tested as a means to slow disease progression. Agents targeting oxidative stress, mitochondrial dysfunction, and inflammation are prime candidates for neuroprotection. This review identifies Rasagiline, Minocycline, and creatine, as the most promising neuroprotective agents for PD, and they are all currently in phase III trials. Other agents possessing protective characteristics in delaying PD include stimulants, vitamins, supplements, and other drugs. Additionally, combination therapies also show benefits in slowing PD progression. The identification of neuroprotective agents for PD provides us with therapeutic opportunities for modifying the course of disease progression and, perhaps, reducing the risk of onset when preclinical biomarkers become available. PMID:22125548

  3. Occlusion for implant-supported fixed dental prostheses in partially edentulous patients: a literature review and current concepts

    PubMed Central

    Sukotjo, Cortino

    2013-01-01

    Implant treatment has become the treatment of choice to replace missing teeth in partially edentulous areas. Dental implants present different biological and biomechanical characteristics than natural teeth. Occlusion is considered to be one of the most important factors contributing to implant success. Most literature on implant occlusal concepts is based on expert opinion, anecdotal experiences, in vitro and animal studies, and only limited clinical research. Furthermore, scientific literature regarding implant occlusion, particularly in implant-supported fixed dental prostheses remains controversial. In this study, the current status of implant occlusion was reviewed and discussed. Further randomized clinical research to investigate the correlation between implant occlusion, the implant success rate, and its risk factors is warranted to determine best clinical practices. PMID:23678387

  4. Pain distribution and predictors of widespread pain in the immediate aftermath of motor vehicle collision.

    PubMed

    Bortsov, A V; Platts-Mills, T F; Peak, D A; Jones, J S; Swor, R A; Domeier, R M; Lee, D C; Rathlev, N K; Hendry, P L; Fillingim, R B; McLean, S A

    2013-09-01

    Musculoskeletal pain is common after motor vehicle collision (MVC). The study objective was to evaluate distribution of pain and predictors of widespread musculoskeletal pain in the early aftermath (within 48 h) of collision. European American adults aged 18-65 years presenting to the emergency department (ED) after collision who were discharged to home after evaluation were eligible. Evaluation included an assessment of reported pre-collision psychological characteristics, crash characteristics, current pain severity and location, and current psychological symptoms. Adjusted risk ratios were estimated using generalized linear models. Among 890 participants included in the study, 589/890 (66%) had pain in three or more regions, and 192/890 (22%) had widespread musculoskeletal pain (pain in seven or more regions). In adjusted analyses, the presence of widespread pain was strongly associated with depressive and somatic symptoms prior to collision, pain catastrophizing, and acute psychological symptoms, and was not associated with most collision characteristics (road speed limit, extent of vehicle damage, collision type, driver vs. passenger, airbag deployment). The reported number of body regions that struck an object during the collision was associated with both reported pre-collision depressive symptoms and with widespread pain. More than one in five individuals presenting to the ED in the hours after MVC have widespread pain. Widespread pain is strongly associated with patient characteristics known to be modulated by supraspinal mechanisms, suggesting that stress-induced hyperalgesia may influence acute widespread pain after collision. © 2013 European Federation of International Association for the Study of Pain Chapters.

  5. Growth and electrical transport properties of InGaN/GaN heterostructures grown by PAMBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Neeraj; Department of Materials Science, Gulbarga University, Gulbarga 585106; Roul, Basanta, E-mail: basantaroul@gmail.com

    2015-01-15

    Highlights: • InGaN thin films were grown on GaN template by PAMBE. • InGaN films were characterized by HRXRD, SEM and PL and Raman spectroscopy. • The indium incorporation in single phase InGaN films was found to be 23%. • The I–V characteristic of the InGaN/GaN heterojunction shows rectifying behavior. • Log–log plot of the I–V characteristics indicates the presence of SCLC mechanism. - Abstract: InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phasemore » InGaN was found to be ∼2.48 eV. The current–voltage (I–V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log–log plot of the I–V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film.« less

  6. 'Choosing shoes': a preliminary study into the challenges facing clinicians in assessing footwear for rheumatoid patients

    PubMed Central

    2010-01-01

    Background Footwear has been accepted as a therapeutic intervention for the foot affected by rheumatoid arthritis (RA). Evidence relating to the objective assessment of footwear in patients with RA is limited. The aims of this study were to identify current footwear styles, footwear characteristics, and factors that influence footwear choice experienced by patients with RA. Methods Eighty patients with RA were recruited from rheumatology clinics during the summer months. Clinical characteristics, global function, and foot impairment and disability measures were recorded. Current footwear, footwear characteristics and the factors associated with choice of footwear were identified. Suitability of footwear was recorded using pre-determined criteria for assessing footwear type, based on a previous study of foot pain. Results The patients had longstanding RA with moderate-to severe disability and impairment. The foot and ankle assessment demonstrated a low-arch profile with both forefoot and rearfoot structural deformities. Over 50% of shoes worn by patients were open-type footwear. More than 70% of patients' footwear was defined as being poor. Poor footwear characteristics such as heel rigidity and sole hardness were observed. Patients reported comfort (17%) and fit (14%) as important factors in choosing their own footwear. Only five percent (5%) of patients wore therapeutic footwear. Conclusions The majority of patients with RA wear footwear that has been previously described as poor. Future work needs to aim to define and justify the specific features of footwear that may be of benefit to foot health for people with RA. PMID:20959016

  7. A predictive model for diagnosing bipolar disorder based on the clinical characteristics of major depressive episodes in Chinese population.

    PubMed

    Gan, Zhaoyu; Diao, Feici; Wei, Qinling; Wu, Xiaoli; Cheng, Minfeng; Guan, Nianhong; Zhang, Ming; Zhang, Jinbei

    2011-11-01

    A correct timely diagnosis of bipolar depression remains a big challenge for clinicians. This study aimed to develop a clinical characteristic based model to predict the diagnosis of bipolar disorder among patients with current major depressive episodes. A prospective study was carried out on 344 patients with current major depressive episodes, with 268 completing 1-year follow-up. Data were collected through structured interviews. Univariate binary logistic regression was conducted to select potential predictive variables among 19 initial variables, and then multivariate binary logistic regression was performed to analyze the combination of risk factors and build a predictive model. Receiver operating characteristic (ROC) curve was plotted. Of 19 initial variables, 13 variables were preliminarily selected, and then forward stepwise exercise produced a final model consisting of 6 variables: age at first onset, maximum duration of depressive episodes, somatalgia, hypersomnia, diurnal variation of mood, irritability. The correct prediction rate of this model was 78% (95%CI: 75%-86%) and the area under the ROC curve was 0.85 (95%CI: 0.80-0.90). The cut-off point for age at first onset was 28.5 years old, while the cut-off point for maximum duration of depressive episode was 7.5 months. The limitations of this study include small sample size, relatively short follow-up period and lack of treatment information. Our predictive models based on six clinical characteristics of major depressive episodes prove to be robust and can help differentiate bipolar depression from unipolar depression. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Modelling cochlear mechanics.

    PubMed

    Ni, Guangjian; Elliott, Stephen J; Ayat, Mohammad; Teal, Paul D

    2014-01-01

    The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.

  9. Modelling Cochlear Mechanics

    PubMed Central

    Elliott, Stephen J.; Teal, Paul D.

    2014-01-01

    The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling. PMID:25136555

  10. PbSnTe:In compound: Electron capture levels, galvanomagnetic properties, and THz sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishchenko, D. V., E-mail: miracle4348@gmail.com; Klimov, A. E.; Shumsky, V. N.

    A model of the Pb{sub 1–x}Sn{sub x}Te:In compound, based on concepts of the theory of disordered systems is considered. The temperature dependences of the Fermi-level position and carrier concentration are calculated depending on the indium doping level and are compared with experimental data. The transient current–voltage characteristics are calculated in the mode of injection from the contact and current limitation by space charge at various voltage-variation rates. The data obtained are compared with the experiments. It is demonstrated that the shape of the characteristics is controlled by the parameters of electron capture at localized states. Photocurrent relaxation in a magneticmore » field is studied, and the mechanism of such relaxation is discussed under the assumption of the magnetic freezing of carriers.« less

  11. Rotorcraft Downwash Flow Field Study to Understand the Aerodynamics of Helicopter Brownout

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.; Ewing, Lindsay A.; Solis, Eduardo; Potsdam, Mark; Rajagopalan, Ganesh

    2008-01-01

    Rotorcraft brownout is caused by the entrainment of dust and sand particles in helicopter downwash, resulting in reduced pilot visibility during low, slow flight and landing. Recently, brownout has become a high-priority problem for military operations because of the risk to both pilot and equipment. Mitigation of this problem has focused on flight controls and landing maneuvers, but current knowledge and experimental data describing the aerodynamic contribution to brownout are limited. This paper focuses on downwash characteristics of a UH-60 Blackhawk as they pertain to particle entrainment and brownout. Results of a full-scale tuft test are presented and used to validate a high-fidelity Navier-Stokes computational fluid dynamics (CFD) calculation. CFD analysis for an EH-101 Merlin helicopter is also presented, and its flow field characteristics are compared with those of the UH-60.

  12. Maxwell's theory of eddy currents in thin conducting sheets, and applications to electromagnetic shielding and MAGLEV

    NASA Astrophysics Data System (ADS)

    Saslow, W. M.

    1992-08-01

    Using the example of a monopole that is spontaneously generated above a thin conducting sheet, the simplicity and power of Maxwell's 1872 theory of eddy currents in thin conducting sheets is illustrated. This theory employs a receding image construction, with a characteristic recession velocity v0=2/(μ0σd), where the sheet has conductivity σ and thickness d. A modern derivation of the theory, employing the magnetic scalar potential, is also presented, with explicit use of the uniqueness theorem. Also discussed are limitations on the theory of which Maxwell, living in a time before the discovery of the electron, could not have been aware. Previous derivations either have not appealed explicitly to the uniqueness theorem, or have employed the now unfamiliar current function, and are therefore either incomplete or inaccessible to the modern reader. After the derivation, two important examples considered by Maxwell are presented-a monopole moving above a thin conducting sheet, and a monopole above a rotating thin conducting sheet (Arago's disk)-and it is argued that the lift force thus obtained makes Maxwell the grandfather, if not the father, of eddy current MAGLEV transportation systems. An energy conservation argument is given to derive Davis's result that, for a magnet of arbitrary size and shape moving parallel to a thin conducting sheet at a characteristic height h, with velocity v, the ratio of drag force to lift force is equal to v0/v, provided that d≪δc, where δc =√2h/(μ0σv). If d≫δc, the eddy currents are confined to a thickness δc, leading to an increase in the dissipation and the drag by a factor of d/δc, so that the ratio of drag to lift force becomes proportional to √v'0/v, where v'0 = 2/(μ0σh). The case of a monopole fixed in position, but oscillating in strength (such as can be simulated by one end of a long, narrow, ac solenoid), is also treated. This is employed to obtain the results for an oscillating magnetic dipole whose moment is normal to the sheet. A general discussion of electromagnetic induction and electrical conductors, both thick and thin, is given, emphasizing the difference between the high-frequency limit, where flux expulsion occurs and the self-inductance dominates, and the low-frequency limit, where the flux penetrates and the electrical resistance dominates. A discussion of Lenz's law, as a statement about motion, is given. It is argued that the most general form of such a statement of Lenz's law is that induced currents tend to accelerate a conductor in the direction that most effectively decreases the rate of Joule heating. A calculation, in the low-frequency limit, of the drag force on a magnetic dipole falling down a long conducting tube, is also given. This last case can be given a striking demonstration with the newly available neodymium-iron-boron magnets.

  13. Risk factors associated with persistent airflow limitation in severe or difficult-to-treat asthma: insights from the TENOR study.

    PubMed

    Lee, June H; Haselkorn, Tmirah; Borish, Larry; Rasouliyan, Lawrence; Chipps, Bradley E; Wenzel, Sally E

    2007-12-01

    The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens study is among the largest to assess persistent airflow limitation and the first to evaluate a wide range of potential risk factors in high-risk patients with severe or difficult-to-treat asthma. A better understanding is needed regarding factors associated with persistent airway obstruction; this study was performed to determine demographic and clinical characteristics associated with persistent airflow limitation. Data from adult patients (>or= 18 years old) with severe or difficult-to-treat asthma were evaluated. Patients with COPD, obesity with a restrictive respiratory pattern, or a >or= 30 pack-year history of smoking were excluded. Patients with persistent airflow limitation (postbronchodilator FEV1/FVC ratio

  14. Universality of Non-Ohmic Shunt Leakage in Thin-Film Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongaonkar, S.; Servaites, J.D.; Ford, G.M.

    2010-01-01

    We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<~0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I sh) , across all three solar cell types considered, is characterized by the following commonmore » phenomenological features: (a) voltage symmetry about V=0 , (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.« less

  15. Rooting Characteristics of Vegetation Near Areas 3 and 5 Radioactive Waste Management Sites at the Nevada Test Site--Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. J. Hansen

    2003-09-30

    The U.S. Department of Energy emplaced high-specific-activity low-level radioactive wastes and limited quantities of classified transuranic wastes in Greater Confinement Disposal (GCD) boreholes from 1984 to 1989. The boreholes are located at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada Test Site (NTS) in southern Nevada. The boreholes were backfilled with native alluvium soil. The surface of these boreholes and trenches is expected to be colonized by native vegetation in the future. Considering the long-term performance of the disposal facilities, bioturbation (the disruption of buried wastes by biota) is considered a primary release mechanism for radionuclides disposedmore » in GCD boreholes as well as trenches at both Areas 3 and 5 RWMSs. This report provides information about rooting characteristics of vegetation near Areas 3 and 5 RWMSs. Data from this report are being used to resolve uncertainties involving parameterization of performance assessment models used to characterize the biotic mixing of soils and radionuclide transport processes by biota. The objectives of this study were to: (1) survey the prior ecological literature on the NTS and identify pertinent information about the vegetation, (2) conduct limited field studies to describe the current vegetation in the vicinity of Areas 3 and 5 RWMSs so as to correlate findings with more extensive vegetation data collected at Yucca Mountain and the NTS, ( 3 ) review prior performance assessment documents and evaluate model assumptions based on current ecological information, and (4) identify data deficiencies and make recommendations for correcting such deficiencies.« less

  16. Timing of gamma irradiation and blood donor sex influences in vitro characteristics of red blood cells.

    PubMed

    de Korte, Dirk; Thibault, Louis; Handke, Wiebke; Harm, Sarah K; Morrison, Alex; Fitzpatrick, Aine; Marks, Denese C; Yi, Qi-Long; Acker, Jason P

    2018-04-01

    There are few studies investigating the effect of irradiation on red blood cells (RBCs) during storage. This study analyzed changes in in vitro quality of RBCs irradiated at several points during storage with the aim of providing evidence to support current maximum pre- and postirradiation storage limits. Each of seven participating centers produced four pools of 7 standard RBC units (SAGM, AS-3, or PAGGSM), which were then split back into 7 units. All units in a pool were from sex-matched blood donors. Every week during 6 weeks of refrigerated storage, 1 unit was irradiated, while 1 unit was not irradiated (control). Units were tested weekly for biochemical variables, morphology, and mechanical fragility. The earlier during storage that units were irradiated, the higher the hemolysis and K + at end of storage. Irrespective of the timing of irradiation, there was a rapid increase in extracellular K + , followed by a more gradual increase in hemolysis. ATP levels decreased faster in irradiated units and were reduced below accepted values if irradiated early. Irradiated female RBCs had an absolute lower hemolysis and K + level compared to male RBCs at all time points. The method of blood component manufacturing determined the absolute levels of hemolysis and potassium in irradiated and nonirradiated units, but did not influence the effect that timing of irradiation had on the in vitro quality characteristics. This study provides support for the current Council of Europe guidelines on the time limitations for the irradiation of RBCs. © 2017 AABB.

  17. A survey of synthetic cannabinoid consumption by current cannabis users.

    PubMed

    Gunderson, Erik W; Haughey, Heather M; Ait-Daoud, Nassima; Joshi, Amruta S; Hart, Carl L

    2014-01-01

    Despite growing concern about the increased rates of synthetic cannabinoid (SC) use and their effects, only limited data are available that addresses these issues. This study assessed the extent of SC product use and reported effects among a cohort of adult marijuana and tobacco users. A brief telephone interview was conducted with individuals who had given permission to be contacted for future research while screening for a cannabis/nicotine dependence medication development study (NCT01204723). Respondents (N = 42; 88% participation rate) were primarily young adults, male, racially diverse, and high school graduates. Nearly all currently smoked tobacco and cannabis, with 86% smoking cannabis on 5 or more days per week. Nearly all (91%) were familiar with SC products, half (50%) reported smoking SC products previously, and a substantial minority (24%) reported current use (i.e., past month). Despite a federal ban on 5 common SCs, which went into effect on March 1, 2011, a number of respondents reported continued SC product use. Common reasons reported for use included, but were not limited to, seeking a new "high" similar to that produced by marijuana and avoiding drug use detection via a positive urine screen. The primary side effects were trouble thinking clearly, headache, dry mouth, and anxiety. No significant differences were found between synthetic cannabinoid product users (ever or current) and nonusers by demographics or other characteristics. Among current marijuana and tobacco users, SC product consumption was common and persisted despite a federal ban. The primary reasons for the use of SC-containing products seem to be to evade drug detection and to experience a marijuana-like high.

  18. Lifetime eating disorder comorbidity associated with delayed depressive recovery in bipolar disorder.

    PubMed

    Balzafiore, Danielle R; Rasgon, Natalie L; Yuen, Laura D; Shah, Saloni; Kim, Hyun; Goffin, Kathryn C; Miller, Shefali; Wang, Po W; Ketter, Terence A

    2017-12-01

    Although eating disorders (EDs) are common in bipolar disorder (BD), little is known regarding their longitudinal consequences. We assessed prevalence, clinical correlates, and longitudinal depressive severity in BD patients with vs. without EDs. Outpatients referred to Stanford University BD Clinic during 2000-2011 were assessed with the Systematic Treatment Enhancement Program for BD (STEP-BD) affective disorders evaluation, and while receiving naturalistic treatment for up to 2 years, were monitored with the STEP-BD clinical monitoring form. Patients with vs. without lifetime EDs were compared with respect to prevalence, demographic and unfavorable illness characteristics/current mood symptoms and psychotropic use, and longitudinal depressive severity. Among 503 BD outpatients, 76 (15.1%) had lifetime EDs, which were associated with female gender, and higher rates of lifetime comorbid anxiety, alcohol/substance use, and personality disorders, childhood BD onset, episode accumulation (≥10 prior mood episodes), prior suicide attempt, current syndromal/subsyndromal depression, sadness, anxiety, and antidepressant use, and earlier BD onset age, and greater current overall BD severity. Among currently depressed patients, 29 with compared to 124 without lifetime EDs had significantly delayed depressive recovery. In contrast, among currently recovered (euthymic ≥8 weeks) patients, 10 with compared to 95 without lifetime EDs had only non-significantly hastened depressive recurrence. Primarily Caucasian, insured, suburban, American specialty clinic-referred sample limits generalizability. Small number of recovered patients with EDs limited statistical power to detect relationships between EDs and depressive recurrence. Further studies are warranted to explore the degree to which EDs impact longitudinal depressive illness burden in BD.

  19. Programmable permanent data storage characteristics of nanoscale thin films of a thermally stable aromatic polyimide.

    PubMed

    Kim, Dong Min; Park, Samdae; Lee, Taek Joon; Hahm, Suk Gyu; Kim, Kyungtae; Kim, Jin Chul; Kwon, Wonsang; Ree, Moonhor

    2009-10-06

    We have synthesized a new thermally and dimensionally stable polyimide, poly(4,4'-amino(4-hydroxyphenyl)diphenylene hexafluoroisopropylidenediphthalimide) (6F-HTPA PI). 6F-HTPA PI is soluble in organic solvents and is thus easily processed with conventional solution coating techniques to produce good quality nanoscale thin films. Devices fabricated with nanoscale thin PI films with thicknesses less than 77 nm exhibit excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 10(6), a long retention time and low power consumption, less than +/-3.0 V. Furthermore, these WORM characteristics were found to persist even at high temperatures up to 150 degrees C. The WORM memory behavior was found to be governed by trap-limited space-charge limited conduction and local filament formation. The conduction processes are dominated by hole injection. Thus the hydroxytriphenylamine moieties of the PI polymer might play a key role as hole trapping sites in the observed WORM memory behavior. The properties of 6F-HTPA PI make it a promising material for high-density and very stable programmable permanent data storage devices with low power consumption.

  20. An overview of acupuncture for psoriasis vulgaris, 2009-2014.

    PubMed

    Xiang, Yu; Wu, Xing; Lu, Chuanjian; Wang, Kaiyi

    2017-05-01

    Psoriasis is a chronic, proliferative, and inflammatory skin disease which affects around 2-3% of the global population. Current pharmacotherapy is effective, however medication with safe and long-lasting therapeutic effects is needed. Acupuncture for psoriasis is widely used in China as well as other Asian countries, and is gradually becoming accepted globally. To determine the characteristics and advantages of acupuncture treatment for psoriasis, and to improve the clinical outcomes of this disease in the future, this review summarizes literature on acupuncture treatment for psoriasis published between 2009 and 2014. Databases search was conducted with the China National Knowledge Infrastructure (CNKI), MEDLINE, and PubMed databases over a time period ranging from January 2009 to December 2014. The condition term was "psoriasis" and the key intervention terms were "needling", "moxibustion", "auriculotherapy", "cupping and bloodletting therapy", "catgut embedding therapy", "point-injection therapy", "traditional Chinese medicine fumigation therapy", "fire needling therapy", and "vesiculation moxibustion". Languages were limited to English and Chinese. Therapeutic mechanisms, therapy, therapeutic characteristics, advantages and limits of acupuncture for psoriasis are discussed. The conclusion is that acupuncture therapies for psoriasis are simple, convenient, and effective, with long-lasting therapeutic effects as well as minimal side effects and toxicity.

  1. Applying Flammability Limit Probabilities and the Normoxic Upward Limiting Pressure Concept to NASA STD-6001 Test 1

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Beeson, Harold; Fernandez-Pello, A. Carlos

    2014-01-01

    Repeated Test 1 extinction tests near the upward flammability limit are expected to follow a Poisson process trend. This Poisson process trend suggests that rather than define a ULOI and MOC (which requires two limits to be determined), it might be better to define a single upward limit as being where 1/e (where e (approx. equal to 2.7183) is the characteristic time of the normalized Poisson process) of the materials burn, or, rounding, where approximately 1/3 of the samples fail the test (and burn). Recognizing that spacecraft atmospheres will not bound the entire oxygen-pressure parameter space, but actually lie along the normoxic atmosphere control band, we can focus the materials flammability testing along this normoxic band. A Normoxic Upward Limiting Pressure (NULP) is defined that determines the minimum safe total pressure for a material within the constant partial pressure control band. Then, increasing this pressure limit by a factor of safety, we can define the material as being safe to use at the NULP + SF (where SF is on the order of 10 kilopascal, based on existing flammability data). It is recommended that the thickest material to be tested with the current Test 1 igniter should be 3 mm thick (1/8 inches) to avoid the problem of differentiating between an ignition limit and a true flammability limit.

  2. High voltage design structure for high temperature superconducting device

    DOEpatents

    Tekletsadik, Kasegn D [Rexford, NY

    2008-05-20

    In accordance with the present invention, modular corona shields are employed in a HTS device to reduce the electric field surrounding the HTS device. In a exemplary embodiment a fault current limiter module in the insulation region of a cryogenic cooling system has at least one fault current limiter set which employs a first corona shield disposed along the top portion of the fault current limiter set and is electrically coupled to the fault current limiter set. A second corona shield is disposed along the bottom portion of the fault current limiter set and is electrically coupled to the fault current limiter set. An insulation barrier is disposed within the insulation region along at least one side of the fault current limiter set. The first corona shield and the second corona shield act together to reduce the electric field surrounding the fault limiter set when voltage is applied to the fault limiter set.

  3. Prevention of hospital-acquired thrombosis from a primary care perspective: a qualitative study

    PubMed Central

    Litchfield, Ian; Fitzmaurice, David; Apenteng, Patricia; Harrison, Sian; Heneghan, Carl; Ward, Alison; Greenfield, Sheila

    2016-01-01

    Background Although there is considerable risk for patients from hospital-acquired thrombosis (HAT), current systems for reducing this risk appear inefficient and have focused predominantly on secondary care, leaving the role of primary care underexplored, despite the onset of HAT often occurring post-discharge. Aim To gain an understanding of the perspectives of primary care clinicians on their contribution to the prevention of HAT. Their current role, perceptions of patient awareness, the barriers to better care, and suggestions for how these may be overcome were discussed. Design and setting Qualitative study using semi-structured interviews in Oxfordshire and South Birmingham, England. Method Semi-structured telephone interviews with clinicians working at practices of a variety of size, socioeconomic status, and geographical location. Results A number of factors that influenced the management of HAT emerged, including patient characteristics, a lack of clarity of responsibility, limited communication and poor coordination, and the constraints of limited practice resources. Suggestions for improving the current system include a broader role for primary care supported by appropriate training and the requisite funding. Conclusion The role of primary care remains limited, despite being ideally positioned to either raise patient awareness before admission or support patient adherence to the thromboprophylaxis regimen prescribed in hospital. This situation may begin to be addressed by more robust lines of communication between secondary and primary care and by providing more consistent training for primary care staff. In turn, this relies on the allocation of appropriate funds to allow practices to meet the increased demand on their time and resources. PMID:27266864

  4. Investigations of 2.9-GHz Resonant Microwave-Sensitive Ag/MgO/Ge/Ag Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Qasrawi, A. F.; Khanfar, H. K.

    2013-12-01

    In this work, a resonant microwave-sensitive tunneling diode has been designed and investigated. The device, which is composed of a magnesium oxide (MgO) layer on an amorphous germanium (Ge) thin film, was characterized by means of temperature-dependent current ( I)-voltage ( V), room-temperature differential resistance ( R)-voltage, and capacitance ( C)-voltage characteristics. The device resonating signal was also tested and evaluated at 2.9 GHz. The I- V curves reflected weak temperature dependence and a wide tunneling region with peak-to-valley current ratio of ˜1.1. The negative differential resistance region shifts toward lower biasing voltages as temperature increases. The true operational limit of the device was determined as 350 K. A novel response of the measured R- V and C- V to the incident alternating-current (ac) signal was observed at 300 K. Particularly, the response to a 100-MHz signal power ranging from the standard Bluetooth limit to the maximum output power of third-generation mobile phones reflects a wide range of tunability with discrete switching property at particular power limits. In addition, when the tunnel device was implanted as an amplifier for a 2.90-GHz resonating signal of the power of wireless local-area network (LAN) levels, signal gain of 80% with signal quality factor of 4.6 × 104 was registered. These remarkable properties make devices based on MgO-Ge interfaces suitable as electronic circuit elements for microwave applications, bias- and time-dependent electronic switches, and central processing unit (CPU) clocks.

  5. Polarimetric LIDAR with FRI sampling for target characterization

    NASA Astrophysics Data System (ADS)

    Wijerathna, Erandi; Creusere, Charles D.; Voelz, David; Castorena, Juan

    2017-09-01

    Polarimetric LIDAR is a significant tool for current remote sensing applications. In addition, measurement of the full waveform of the LIDAR echo provides improved ranging and target discrimination, although, data storage volume in this approach can be problematic. In the work presented here, we investigated the practical issues related to the implementation of a full waveform LIDAR system to identify polarization characteristics of multiple targets within the footprint of the illumination beam. This work was carried out on a laboratory LIDAR testbed that features a flexible arrangement of targets and the ability to change the target polarization characteristics. Targets with different retardance characteristics were illuminated with a linearly polarized laser beam and the return pulse intensities were analyzed by rotating a linear analyzer polarizer in front of a high-speed detector. Additionally, we explored the applicability and the limitations of applying a sparse sampling approach based on Finite Rate of Innovations (FRI) to compress and recover the characteristic parameters of the pulses reflected from the targets. The pulse parameter values extracted by the FRI analysis were accurate and we successfully distinguished the polarimetric characteristics and the range of multiple targets at different depths within the same beam footprint. We also demonstrated the recovery of an unknown target retardance value from the echoes by applying a Mueller matrix system model.

  6. Memory characteristics of ring-shaped ceramic superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, A.; Hasunuma, M.; Sakaiya, S.

    1989-03-01

    For the practical application of ceramic superconductors, the authors investigated the residual magnetic field characteristics of ring-shaped ceramic superconductors in a Y-Ba-Cu-O system with high Tc. The residual magnetic field of a ring with asymmetric current paths, supplied by external currents, appeared when one of the branch currents was above the critical current. The residual magnetic field saturated when both brach currents exceeded the critical current of the ring and showed hysteresis-like characteristics. The saturated magnetic field is subject to the critical current of the ring. A superconducting ring with asymmetric current paths suggests a simple and quite new persistent-currentmore » type memory device.« less

  7. The Breakdown Characteristics of the Silicone Oil for Electric Power Apparatus

    NASA Astrophysics Data System (ADS)

    Yoshida, Hisashi; Yanabu, Satoru

    The basic breakdown characteristics of the silicone oil as an insulating medium was studied with aim of realization of electric power apparatus which may be considered to be SF6 free and flame-retarding. As the first step, the impulse breakdown characteristics was measured with three kinds of electrodes whose electric field distributions differed. The breakdown characteristics in silicone oil was explained in relation to stressed oil volume (SOV) and the breakdown stress. At the second step the surface breakdown characteristic for impulse voltage was measured with two kinds of insulators which was set to between plane electrodes. The surface breakdown characteristic for impulse voltage was explained in relation to the ratio of the relative permittivity of oil and insulator. And on the third step, the breakdown characteristics of oil gap after interrupting small capacitive current was studied. In this experiment, the disconnecting switch to interrupt capacitive current was simulated by oil gap after interrupting impulse current, and to measure breakdown characteristics the high impulse voltage was subsequently applied. The breakdown stress in silicone oil after application of impulse current was discussed for insulation recovery characteristics.

  8. Receptor-mediated gene transfer vectors: progress towards genetic pharmaceuticals.

    PubMed

    Molas, M; Gómez-Valadés, A G; Vidal-Alabró, A; Miguel-Turu, M; Bermudez, J; Bartrons, R; Perales, J C

    2003-10-01

    Although specific delivery to tissues and unique cell types in vivo has been demonstrated for many non-viral vectors, current methods are still inadequate for human applications, mainly because of limitations on their efficiencies. All the steps required for an efficient receptor-mediated gene transfer process may in principle be exploited to enhance targeted gene delivery. These steps are: DNA/vector binding, internalization, subcellular trafficking, vesicular escape, nuclear import, and unpacking either for transcription or other functions (i.e., antisense, RNA interference, etc.). The large variety of vector designs that are currently available, usually aimed at improving the efficiency of these steps, has complicated the evaluation of data obtained from specific derivatives of such vectors. The importance of the structure of the final vector and the consequences of design decisions at specific steps on the overall efficiency of the vector will be discussed in detail. We emphasize in this review that stability in serum and thus, proper bioavailability of vectors to their specific receptors may be the single greatest limiting factor on the overall gene transfer efficiency in vivo. We discuss current approaches to overcome the intrinsic instability of synthetic vectors in the blood. In this regard, a summary of the structural features of the vectors obtained from current protocols will be presented and their functional characteristics evaluated. Dissecting information on molecular conjugates obtained by such methodologies, when carefully evaluated, should provide important guidelines for the creation of effective, targeted and safe DNA therapeutics.

  9. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    NASA Astrophysics Data System (ADS)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  10. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  11. Vortex dynamics in type-II superconductors under strong pinning conditions

    NASA Astrophysics Data System (ADS)

    Thomann, A. U.; Geshkenbein, V. B.; Blatter, G.

    2017-10-01

    We study effects of pinning on the dynamics of a vortex lattice in a type-II superconductor in the strong-pinning situation and determine the force-velocity (or current-voltage) characteristic combining analytical and numerical methods. Our analysis deals with a small density np of defects that act with a large force fp on the vortices, thereby inducing bistable configurations that are a characteristic feature of strong pinning theory. We determine the velocity-dependent average pinning-force density 〈Fp(v ) 〉 and find that it changes on the velocity scale vp˜fp/η a03 , where η is the viscosity of vortex motion and a0 the distance between vortices. In the small pin-density limit, this velocity is much larger than the typical flow velocity vc˜Fc/η of the free vortex system at drives near the critical force density Fc=〈Fp(v =0 ) 〉 ∝npfp . As a result, we find a generic excess-force characteristic, a nearly linear force-velocity characteristic shifted by the critical force density Fc; the linear flux-flow regime is approached only at large drives. Our analysis provides a derivation of Coulomb's law of dry friction for the case of strong vortex pinning.

  12. Longitudinal assessment of short-term memory deterioration in a logopenic variant primary progressive aphasia with post-mortem confirmed Alzheimer's Disease pathology.

    PubMed

    Tree, Jeremy; Kay, Janice

    2015-09-01

    In the field of dementia research, there are reports of neurodegenerative cases with a focal loss of language, termed primary progressive aphasia (PPA). Currently, this condition has been further sub-classified, with the most recent sub-type dubbed logopenic variant (PPA-LV). As yet, there remains somewhat limited evaluation of the characteristics of this condition, with no studies providing longitudinal assessment accompanied by post-mortem examination. Moreover, a key characteristic of the PPA-LV case is a deterioration of phonological short-term memory, but again little work has scrutinized the nature of this impairment over time. The current study seeks to redress these oversights and presents detailed longitudinal examination of language and memory function in a case of PPA-LV, with special focus on tests linked to components of phonological short-term memory function. Our findings are then considered with reference to a contemporary model of the neuropsychology of phonological short-term memory. Additionally, post-mortem examinations indicated Alzheimer's disease type pathology, providing further evidence that the PPA-LV presentation may reflect an atypical presentation of this condition. © 2014 The British Psychological Society.

  13. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    PubMed Central

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  14. Imaging characteristics of photogrammetric camera systems

    USGS Publications Warehouse

    Welch, R.; Halliday, J.

    1973-01-01

    In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.

  15. Surface-emitting mid-infrared quantum cascade lasers with high-contrast photonic crystal resonators.

    PubMed

    Xu, Gangyi; Colombelli, Raffaele; Braive, Remy; Beaudoin, Gregoire; Le Gratiet, Luc; Talneau, Anne; Ferlazzo, Laurence; Sagnes, Isabelle

    2010-05-24

    We have developed surface-emitting single-mode quantum cascade lasers which employ high-contrast photonic-crystal resonators. The devices operate on band-edge states of the photonic band-structure. The mode profile and polarization characteristics of the band-edge modes are calculated by three-dimensional finite-difference time-domain simulation. Experimentally, the spectral properties, the far-field patterns, and the polarization characteristics of the lasers are determined and compared with simulations. The good agreement between the simulations and the experiments confirms that the hexapolar mode at the Gamma-point band-edge gives rise to lasing. By using a novel and advanced fabrication method, deep and vertical PhC holes are fabricated with no metal redeposition on the sidewalls, which improves the laser performance with respect to the current status. The angular of the output beam is approximately 15 masculine, and the side mode suppression ratio of the single mode emission is about 25 dB. The threshold current density at 78 K and the maximum operation temperature are 7.6 kA/cm2 and 220 K, respectively. The performance is mainly limited by the loss induced by surface plasmon waveguide, which can be overcome by using an optimized dielectric waveguide structure.

  16. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease.

    PubMed

    Pasterkamp, Gerard; den Ruijter, Hester M; Libby, Peter

    2017-01-01

    The concept of the 'vulnerable plaque' originated from pathological observations in patients who died from acute coronary syndrome. This recognition spawned a generation of research that led to greater understanding of how complicated atherosclerotic plaques form and precipitate thrombotic events. In current practice, an increasing number of patients who survive their first event present with non-ST-segment elevation myocardial infarction (NSTEMI) rather than myocardial infarction (MI) with ST-segment elevation (STEMI). The culprit lesions that provide the pathological substrate for NSTEMI can vary considerably from the so-called 'vulnerable plaque'. The shift in clinical presentation of MI and stroke corresponds temporally to a progressive change in the characteristics of human plaques away from the supposed characteristics of vulnerability. These alterations in the structure and function of human atherosclerotic lesions might mirror the modifications that are produced in experimental plaques by lipid lowering, inspired by the vulnerable plaque construct. The shift in the clinical presentations of the acute coronary syndromes mandates a critical reassessment of the underlying mechanisms, proposed risk scores, the results and interpretation of preclinical experiments, as well as recognition of the limitations of the use of population data and samples collected before the application of current preventive interventions.

  17. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-11-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.

  18. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  19. Gene Discovery of Characteristic Metabolic Pathways in the Tea Plant (Camellia sinensis) Using ‘Omics’-Based Network Approaches: A Future Perspective

    PubMed Central

    Zhang, Shihua; Zhang, Liang; Tai, Yuling; Wang, Xuewen; Ho, Chi-Tang; Wan, Xiaochun

    2018-01-01

    Characteristic secondary metabolites, including flavonoids, theanine and caffeine, in the tea plant (Camellia sinensis) are the primary sources of the rich flavors, fresh taste, and health benefits of tea. The decoding of genes involved in these characteristic components is still significantly lagging, which lays an obstacle for applied genetic improvement and metabolic engineering. With the popularity of high-throughout transcriptomics and metabolomics, ‘omics’-based network approaches, such as gene co-expression network and gene-to-metabolite network, have emerged as powerful tools for gene discovery of plant-specialized (secondary) metabolism. Thus, it is pivotal to summarize and introduce such system-based strategies in facilitating gene identification of characteristic metabolic pathways in the tea plant (or other plants). In this review, we describe recent advances in transcriptomics and metabolomics for transcript and metabolite profiling, and highlight ‘omics’-based network strategies using successful examples in model and non-model plants. Further, we summarize recent progress in ‘omics’ analysis for gene identification of characteristic metabolites in the tea plant. Limitations of the current strategies are discussed by comparison with ‘omics’-based network approaches. Finally, we demonstrate the potential of introducing such network strategies in the tea plant, with a prospects ending for a promising network discovery of characteristic metabolite genes in the tea plant. PMID:29915604

  20. Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Gross, Jason

    2014-01-01

    The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several desirable characteristics to facilitate integration of perception for autonomous activities. The capabilities of this device and its limitations will be assessed.

  1. The limits to tree height.

    PubMed

    Koch, George W; Sillett, Stephen C; Jennings, Gregory M; Davis, Stephen D

    2004-04-22

    Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.

  2. In-Space Manufacturing Baseline Property Development

    NASA Technical Reports Server (NTRS)

    Stockman, Tom; Schneider, Judith; Prater, Tracie; Bean, Quincy; Werkheiser, Nicki

    2016-01-01

    The In-Space Manufacturing (ISM) project at NASA Marshall Space Flight Center currently operates a 3D FDM (fused deposition modeling) printer onboard the International Space Station. In order to enable utilization of this capability by designer, the project needs to establish characteristic material properties for materials produced using the process. This is difficult for additive manufacturing since standards and specifications do not yet exist for these technologies. Due to availability of crew time, there are limitations to the sample size which in turn limits the application of the traditional design allowables approaches to develop a materials property database for designers. In this study, various approaches to development of material databases were evaluated for use by designers of space systems who wish to leverage in-space manufacturing capabilities. This study focuses on alternative statistical techniques for baseline property development to support in-space manufacturing.

  3. Need for "conflict version" of primary surgery: war surgery in the era of low-intensity conflicts.

    PubMed

    Morikawa, Masahiro J

    2006-01-01

    The conventional wars between nations have widely been replaced by low-intensity conflicts within nations today, resulting in different patterns of injuries and practice of surgical care. A blurred front line, protracted durations of violence, indiscriminant fighting, and the emergence of specific surgical problems characterize low-intensity conflicts. In protracted conflicts with limited resources, surgical outcomes depend on many factors other than surgical skills, such as social/cultural values and economical feasibility. This paper examines how the characteristics of current conflicts affect surgical practice and will address key issues to evolve care to adapt to these changes. Key issues are (1) need for comprehensive surgical skills, (2) importance of improving local capacities, (3) long-term impact of trauma, and (4) limited access to information required to improve surgical skills.

  4. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  5. Characteristics of Whipple Shield Performance in the Shatter Regime

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon; Bjorkman, Michael; Christiansen, Eric L.

    2009-01-01

    Between the onset of projectile fragmentation and the assumption of rear wall failure due to an impulsive load, multi-wall ballistic limit equations are linearly interpolated to provide reasonable yet conservative predictions of perforation thresholds with conveniently simple mathematics. Although low velocity and hypervelocity regime predictions are based on analytical expressions, there is no such scientific foundation for predictions in the intermediate (or shatter) regime. As the debris flux in low earth orbit (LEO) becomes increasingly dominated by manmade pollution, the profile of micrometeoroid and orbital debris (MMOD) risk shifts continually towards lower velocities. For the International Space Station (ISS), encounter velocities below 7 km/s now constitute approximately 50% of the penetration risk. Considering that the transition velocity from shatter to hypervelocity impact regimes described by common ballistic limit equations (e.g. new non-optimum Whipple shield equation [1]) occurs at 7 km/s, 50% of station risk is now calculated based on failure limit equations with little analytical foundation. To investigate projectile and shield behavior for impact conditions leading to projectile fragmentation and melt, a series of hypervelocity impact tests have been performed on aluminum Whipple shields. In the experiments projectile diameter, bumper thickness, and shield spacing were kept constant, while rear wall thickness was adjusted to determine spallation and perforation limits at various impact velocities and angles. The results, shown in Figure 1 for normal and 45 impacts, demonstrated behavior that was not sufficiently described by the simplified linear interpolation of the NNO equation (also shown in Figure 1). Hopkins et al. [2] investigated the performance of a nominally-identical aluminum Whipple shield, identifying the effects of phase change in the shatter regime. The results (conceptually represented in Figure 2) were found to agree well with those obtained in this study at normal incidence, suggesting that shielding performance in the shatter regime could be well described by considering more complex phase conditions than currently implemented in most BLEs. Furthermore, evidence of these phase effects were found in the oblique test results, providing the basis for an empirical description of these effects that can be applied in MMOD risk assessment software. In this paper, results of the impact experiments are presented, and characteristics of target damage are evaluated. A comparison of intermediate velocity impact failure mechanisms in current BLEs are discussed and compared to the findings of the experimental study. Risk assessment calculations have been made on a simplified structure using currently implemented penetration equations and predicted limits from the experimental program, and the variation in perceived mission risk is discussed. It was found that ballistic limit curves that explicitly incorporated phase change effects within the intermediate regime lead to a decrease in predicted MMOD risk for ISS-representative orbits. When considered for all Whipple-based shielding configurations onboard the ISS, intermediate phase change effects could lead to significant variations in predicted mission risk.

  6. Melt Electrospinning – Characteristics, Application Areas and Perspectives

    NASA Astrophysics Data System (ADS)

    Manea, L. R.; Bertea, A.; Popa, A.; Bertea, A. P.

    2018-06-01

    Electrospinning is one of the most used processes for the production of nanofibers, due to its simplicity and versatility. This paper presents the current state of the melt electrospinning, which is less used than the solution electrospinning but which is the only way of electrospinning polymers with very limited solubility and high electrical resistivity such as polyolefins. The advantages of melt electrospinning, as well as the constraints of this method, are reviewed, and the factors that influence the process are described. The paper are presented the main applicability domains of nanofibers obtained in this way and the prospects of future development.

  7. A theoretical study of microwave beam absorption by a rectenna

    NASA Technical Reports Server (NTRS)

    Ott, J. H.; Rice, J. S.; Thorn, D. C.

    1980-01-01

    The rectenna's microwave power beam absorption limit was theoretically confirmed by two mathematical models descriptive of the microwave absorption process; first one model was based on the current sheet equivalency of a large planar array above a reflector and the second model, which was based on the properties of a waveguide with special imaging characteristics, quantified the electromagnetic modes (field configurations) in the immediate vicinity of a Rectenna element spacing which permit total power beam absorption by preventing unwanted modes from propagating (scattering) were derived using these models. Several factors causing unwanted scattering are discussed.

  8. Stochastic chemical kinetics : A review of the modelling and simulation approaches.

    PubMed

    Lecca, Paola

    2013-12-01

    A review of the physical principles that are the ground of the stochastic formulation of chemical kinetics is presented along with a survey of the algorithms currently used to simulate it. This review covers the main literature of the last decade and focuses on the mathematical models describing the characteristics and the behavior of systems of chemical reactions at the nano- and micro-scale. Advantages and limitations of the models are also discussed in the light of the more and more frequent use of these models and algorithms in modeling and simulating biochemical and even biological processes.

  9. Home Rx: The Health Benefits of Home Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Jonathan; Jacobs, David; Reddy, Amanda

    Evidence in a new, groundbreaking U.S. Department of Energy report, Home Rx: The Health Benefits of Home Performance, shows that home performance upgrades can improve the quality of a home’s indoor environment by reducing the prevalence of harmful indoor air pollutants and contaminants. Until recently, no systematic review of this evidence had been conducted, limiting full understanding of the link between home performance and health. This new report summarizes current knowledge and identifies research gaps. The design characteristics and results of each of the 40 studies considered in the report are summarized in a searchable matrix.

  10. Multidimensional materials and device architectures for future hybrid energy storage

    DOE PAGES

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-07

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  11. Issues In Space Radiation Protection: Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Kim, M.; Schimmerling, W.; Badavi, F. F.; Thibeault, S. A.; Cucinotta, F. A.; Shinn, J. L.; Kiefer, R.

    1995-01-01

    When shielding from cosmic heavy ions, one is faced with limited knowledge about the physical properties and biological responses of these radiations. Herein, the current health is discussed in terms of conventional protection practice and a test biological response model. The impact of biological response on optimum materials selection for cosmic ray shielding is presented in terms of the transmission characteristics of the shield material. Although liquid hydrogen is an optimum shield material, evaluation of the effectiveness of polymeric structural materials must await improvement in our knowledge of both the biological response and the nuclear processes.

  12. Multidimensional materials and device architectures for future hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  13. Multidimensional materials and device architectures for future hybrid energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated ‘Internet of Things’, there are intensive efforts to develop miniature yet powerful electrical energy storage devices. Here, this review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  14. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE PAGES

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.; ...

    2018-03-14

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  15. Low leakage current Ni/CdZnTe/In diodes for X/ γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V. M.; Gnatyuk, V. A.; Pecharapa, W.

    2018-01-01

    The electrical characteristics of the Ni/Cd1-xZnxTe/In structures with a metal-semiconductor rectifying contact are investigated. The diodes, fabricated on the base of In-doped n-type Cd1-xZnxTe (CZT) crystals with resistivity of ∼1010 Ω ṡ cm, have low leakage current and can be used as X/ γ-ray detectors. The rectifying contact was obtained by vacuum deposition of Ni on the semiconductor surface pretreated with argon plasma. The high barrier rectifying contact allowed us to increase applied reverse bias voltage up to 2500 V at the CZT crystal thickness of 1 mm. Dark (leakage) currents of the diodes with the rectifying contact area of 4 mm2 did not exceed 3-5 nA at bias voltage of 2000 V and room temperature. The charge transport mechanisms in the Ni/CZT/In structures have been interpreted as generation-recombination in the space charge region within the range of reverse bias of 5-100 V and as currents limited by space charge at both forward and reverse bias at V >100 V.

  16. Non-inductively driven tokamak plasmas at near-unity β t in the Pegasus toroidal experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reusch, Joshua A.; Bodner, Grant M.; Bongard, Michael W.

    Amore » major goal of the spherical tokamak (ST) research program is accessing a state of low internal inductance ℓ i , high elongation κ , and high toroidal and normalized beta ( β t and β N ) without solenoidal current drive. Local helicity injection (LHI) in the Pegasus ST [Garstka et al., Nucl. Fusion 46, S603 (2006)] provides non-solenoidally driven plasmas that exhibit these characteristics. LHI utilizes compact, edge-localized current sources for plasma startup and sustainment. It results in hollow current density profiles with low ℓ i . The low aspect ratio ( R 0 / a ~ 1.2 ) of Pegasus allows access to high κ and high normalized plasma currents I N = I p / a B T > 14 ). Magnetic reconnection during LHI provides auxiliary ion heating. Together, these features provide access to very high β t plasmas. Equilibrium analyses indicate that β t up to ~100% is achieved. Finally, these high β t discharges disrupt at the ideal no-wall β limit at β N ~ 7. « less

  17. Using Computational Approaches to Improve Risk-Stratified Patient Management: Rationale and Methods

    PubMed Central

    Stone, Bryan L; Sakaguchi, Farrant; Sheng, Xiaoming; Murtaugh, Maureen A

    2015-01-01

    Background Chronic diseases affect 52% of Americans and consume 86% of health care costs. A small portion of patients consume most health care resources and costs. More intensive patient management strategies, such as case management, are usually more effective at improving health outcomes, but are also more expensive. To use limited resources efficiently, risk stratification is commonly used in managing patients with chronic diseases, such as asthma, chronic obstructive pulmonary disease, diabetes, and heart disease. Patients are stratified based on predicted risk with patients at higher risk given more intensive care. The current risk-stratified patient management approach has 3 limitations resulting in many patients not receiving the most appropriate care, unnecessarily increased costs, and suboptimal health outcomes. First, using predictive models for health outcomes and costs is currently the best method for forecasting individual patient’s risk. Yet, accuracy of predictive models remains poor causing many patients to be misstratified. If an existing model were used to identify candidate patients for case management, enrollment would miss more than half of those who would benefit most, but include others unlikely to benefit, wasting limited resources. Existing models have been developed under the assumption that patient characteristics primarily influence outcomes and costs, leaving physician characteristics out of the models. In reality, both characteristics have an impact. Second, existing models usually give neither an explanation why a particular patient is predicted to be at high risk nor suggestions on interventions tailored to the patient’s specific case. As a result, many high-risk patients miss some suitable interventions. Third, thresholds for risk strata are suboptimal and determined heuristically with no quality guarantee. Objective The purpose of this study is to improve risk-stratified patient management so that more patients will receive the most appropriate care. Methods This study will (1) combine patient, physician profile, and environmental variable features to improve prediction accuracy of individual patient health outcomes and costs; (2) develop the first algorithm to explain prediction results and suggest tailored interventions; (3) develop the first algorithm to compute optimal thresholds for risk strata; and (4) conduct simulations to estimate outcomes of risk-stratified patient management for various configurations. The proposed techniques will be demonstrated on a test case of asthma patients. Results We are currently in the process of extracting clinical and administrative data from an integrated health care system’s enterprise data warehouse. We plan to complete this study in approximately 5 years. Conclusions Methods developed in this study will help transform risk-stratified patient management for better clinical outcomes, higher patient satisfaction and quality of life, reduced health care use, and lower costs. PMID:26503357

  18. Development of Independent-type Optical CT

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei

    Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.

  19. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  20. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  1. Recovery Characteristics of Anomalous Stress-Induced Leakage Current of 5.6 nm Oxide Films

    NASA Astrophysics Data System (ADS)

    Inatsuka, Takuya; Kumagai, Yuki; Kuroda, Rihito; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2012-04-01

    Anomalous stress-induced leakage current (SILC), which has a much larger current density than average SILC, causes severe bit error in flash memories. To suppress anomalous SILC, detailed evaluations are strongly required. We evaluate the characteristics of anomalous SILC of 5.6 nm oxide films using a fabricated array test pattern, and recovery characteristics are observed. Some characteristics of typical anomalous cells in the time domain are measured, and the recovery characteristics of average and anomalous SILCs are examined. Some of the anomalous cells have random telegraph signals (RTSs) of gate leakage current, which are characterized as discrete and random switching phenomena. The dependence of RTSs on the applied electric field is investigated, and the recovery tendency of anomalous SILC with and without RTSs are also discussed.

  2. New approach to the design of Schottky barrier diodes for THz mixers

    NASA Technical Reports Server (NTRS)

    Jelenski, A.; Grueb, A.; Krozer, V.; Hartnagel, H. L.

    1992-01-01

    Near-ideal GaAs Schottky barrier diodes especially designed for mixing applications in the THz frequency range are presented. A diode fabrication process for submicron diodes with near-ideal electrical and noise characteristics is described. This process is based on the electrolytic pulse etching of GaAs in combination with an in-situ platinum plating for the formation of the Schottky contacts. Schottky barrier diodes with a diameter of 1 micron fabricated by the process have already shown excellent results in a 650 GHz waveguide mixer at room temperature. A conversion loss of 7.5 dB and a mixer noise temperature of less than 2000 K have been obtained at an intermediate frequency of 4 GHz. The optimization of the diode structure and the technology was possible due to the development of a generalized Schottky barrier diode model which is valid also at high current densities. The common diode design and optimization is discussed on the basis of the classical theory. However, the conventional fomulas are valid only in a limited forward bias range corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. The generalized new model takes into account not only the phenomena occurring at the junction such as current dependent recombination and drift/diffusion velocities, but also mobility and electron temperature variations in the undepleted epi-layer. Calculated diode I/V and noise characteristics are in excellent agreement with the measured values. Thus, the model offers the possibility of optimizing the diode structure and predicting the diode performance under mixing conditions at THz frequencies.

  3. Hybrid intravascular imaging: recent advances, technical considerations, and current applications in the study of plaque pathophysiology.

    PubMed

    Bourantas, Christos V; Jaffer, Farouc A; Gijsen, Frank J; van Soest, Gijs; Madden, Sean P; Courtney, Brian K; Fard, Ali M; Tenekecioglu, Erhan; Zeng, Yaping; van der Steen, Antonius F W; Emelianov, Stanislav; Muller, James; Stone, Peter H; Marcu, Laura; Tearney, Guillermo J; Serruys, Patrick W

    2017-02-07

    Cumulative evidence from histology-based studies demonstrate that the currently available intravascular imaging techniques have fundamental limitations that do not allow complete and detailed evaluation of plaque morphology and pathobiology, limiting the ability to accurately identify high-risk plaques. To overcome these drawbacks, new efforts are developing for data fusion methodologies and the design of hybrid, dual-probe catheters to enable accurate assessment of plaque characteristics, and reliable identification of high-risk lesions. Today several dual-probe catheters have been introduced including combined near infrared spectroscopy-intravascular ultrasound (NIRS-IVUS), that is already commercially available, IVUS-optical coherence tomography (OCT), the OCT-NIRS, the OCT-near infrared fluorescence (NIRF) molecular imaging, IVUS-NIRF, IVUS intravascular photoacoustic imaging and combined fluorescence lifetime-IVUS imaging. These multimodal approaches appear able to overcome limitations of standalone imaging and provide comprehensive visualization of plaque composition and plaque biology. The aim of this review article is to summarize the advances in hybrid intravascular imaging, discuss the technical challenges that should be addressed in order to have a use in the clinical arena, and present the evidence from their first applications aiming to highlight their potential value in the study of atherosclerosis. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  4. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications.

    PubMed

    Han, Ya-Hui; Kankala, Ranjith Kumar; Wang, Shi-Bin; Chen, Ai-Zheng

    2018-05-24

    In recent times, photo-induced therapeutics have attracted enormous interest from researchers due to such attractive properties as preferential localization, excellent tissue penetration, high therapeutic efficacy, and minimal invasiveness, among others. Numerous photosensitizers have been considered in combination with light to realize significant progress in therapeutics. Along this line, indocyanine green (ICG), a Food and Drug Administration (FDA)-approved near-infrared (NIR, >750 nm) fluorescent dye, has been utilized in various biomedical applications such as drug delivery, imaging, and diagnosis, due to its attractive physicochemical properties, high sensitivity, and better imaging view field. However, ICG still suffers from certain limitations for its utilization as a molecular imaging probe in vivo, such as concentration-dependent aggregation, poor in vitro aqueous stability and photodegradation due to various physicochemical attributes. To overcome these limitations, much research has been dedicated to engineering numerous multifunctional polymeric composites for potential biomedical applications. In this review, we aim to discuss ICG-encapsulated polymeric nanoconstructs, which are of particular interest in various biomedical applications. First, we emphasize some attractive properties of ICG (including physicochemical characteristics, optical properties, metabolic features, and other aspects) and some of its current limitations. Next, we aim to provide a comprehensive overview highlighting recent reports on various polymeric nanoparticles that carry ICG for light-induced therapeutics with a set of examples. Finally, we summarize with perspectives highlighting the significant outcome, and current challenges of these nanocomposites.

  5. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  6. Review of current sonic boom studies.

    NASA Technical Reports Server (NTRS)

    Kane, E. J.

    1973-01-01

    Several aspects of the sonic boom phenomena are currently under investigation at The Boeing Co. This work, supported by the NASA and the FAA, includes an in-depth analysis of sonic boom measurements recorded at the BREN tower, a summary and evaluation of sonic boom investigations done in the last decade and a half, and configuration studies to determine practical lower bound sonic boom limits. The BREN tower test program yielded unique and valuable data because it was the first time that vertical profile measurements were made through caustics produced by maneuvers and atmospheric refraction. The objective of the second effort is to compile in a single reference an annotated abstract, including significant results, for each published sonic boom study and to provide a comprehensive review of the current state of the art to aid future researchers. The configuration work is devoted toward determining the feasibility of supersonic transport type airplanes with a primary design goal of acceptable sonic boom characteristics. Each of these investigations is briefly reviewed and significant results are discussed.

  7. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    PubMed Central

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  8. Constraint-based integration of planning and scheduling for space-based observatory management

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven F.

    1994-01-01

    Progress toward the development of effective, practical solutions to space-based observatory scheduling problems within the HSTS scheduling framework is reported. HSTS was developed and originally applied in the context of the Hubble Space Telescope (HST) short-term observation scheduling problem. The work was motivated by the limitations of the current solution and, more generally, by the insufficiency of classical planning and scheduling approaches in this problem context. HSTS has subsequently been used to develop improved heuristic solution techniques in related scheduling domains and is currently being applied to develop a scheduling tool for the upcoming Submillimeter Wave Astronomy Satellite (SWAS) mission. The salient architectural characteristics of HSTS and their relationship to previous scheduling and AI planning research are summarized. Then, some key problem decomposition techniques underlying the integrated planning and scheduling approach to the HST problem are described; research results indicate that these techniques provide leverage in solving space-based observatory scheduling problems. Finally, more recently developed constraint-posting scheduling procedures and the current SWAS application focus are summarized.

  9. A miniature microcontroller curve tracing circuit for space flight testing transistors.

    PubMed

    Prokop, N; Greer, L; Krasowski, M; Flatico, J; Spina, D

    2015-02-01

    This paper describes a novel miniature microcontroller based curve tracing circuit, which was designed to monitor the environmental effects on Silicon Carbide Junction Field Effect Transistor (SiC JFET) device performance, while exposed to the low earth orbit environment onboard the International Space Station (ISS) as a resident experiment on the 7th Materials on the International Space Station Experiment (MISSE7). Specifically, the microcontroller circuit was designed to operate autonomously and was flown on the external structure of the ISS for over a year. This curve tracing circuit is capable of measuring current vs. voltage (I-V) characteristics of transistors and diodes. The circuit is current limited for low current devices and is specifically designed to test high temperature, high drain-to-source resistance SiC JFETs. The results of each I-V data set are transmitted serially to an external telemetered communication interface. This paper discusses the circuit architecture, its design, and presents example results.

  10. Reduction of conductance mismatch in Fe/Al2O3/MoS2 system by tunneling-barrier thickness control

    NASA Astrophysics Data System (ADS)

    Hayakawa, Naoki; Muneta, Iriya; Ohashi, Takumi; Matsuura, Kentaro; Shimizu, Jun’ichi; Kakushima, Kuniyuki; Tsutsui, Kazuo; Wakabayashi, Hitoshi

    2018-04-01

    Molybdenum disulfide (MoS2) among two-dimensional semiconductor films is promising for spintronic devices because it has a longer spin-relaxation time with contrasting spin splitting than silicon. However, it is difficult to fabricate integrated circuits by the widely used exfoliation method. Here, we investigate the contact characteristics in the Fe/Al2O3/sputtered-MoS2 system with various thicknesses of the Al2O3 film. Current density increases with increasing thickness up to 2.5 nm because of both thermally-assisted and direct tunneling currents. On the other hand, it decreases with increasing thickness over 2.5 nm limited by direct tunneling currents. These results suggest that the Schottky barrier width can be controlled by changing thicknesses of the Al2O3 film, as supported by calculations. The reduction of conductance mismatch with this technique can lead to highly efficient spin injection from iron into the MoS2 film.

  11. Two dimensional molecular electronics spectroscopy for molecular fingerprinting, DNA sequencing, and cancerous DNA recognition.

    PubMed

    Rajan, Arunkumar Chitteth; Rezapour, Mohammad Reza; Yun, Jeonghun; Cho, Yeonchoo; Cho, Woo Jong; Min, Seung Kyu; Lee, Geunsik; Kim, Kwang S

    2014-02-25

    Laser-driven molecular spectroscopy of low spatial resolution is widely used, while electronic current-driven molecular spectroscopy of atomic scale resolution has been limited because currents provide only minimal information. However, electron transmission of a graphene nanoribbon on which a molecule is adsorbed shows molecular fingerprints of Fano resonances, i.e., characteristic features of frontier orbitals and conformations of physisorbed molecules. Utilizing these resonance profiles, here we demonstrate two-dimensional molecular electronics spectroscopy (2D MES). The differential conductance with respect to bias and gate voltages not only distinguishes different types of nucleobases for DNA sequencing but also recognizes methylated nucleobases which could be related to cancerous cell growth. This 2D MES could open an exciting field to recognize single molecule signatures at atomic resolution. The advantages of the 2D MES over the one-dimensional (1D) current analysis can be comparable to those of 2D NMR over 1D NMR analysis.

  12. Current Methods in Health Behavior Research Among U.S. Community College Students: A Review of the Literature

    PubMed Central

    Pokhrel, Pallav; Little, Melissa A.; Herzog, Thaddeus A.

    2016-01-01

    The majority of health behavior research involving college students in the United States has focused on 4-year college students. Two-year or community college students have been less studied, although a significant proportion of U.S. undergraduates, primarily those from disadvantaged socioeconomic and/or racial/ethnic background, are enrolled in community colleges. Thus, there is a need to enhance health behavior and health promotion research among community college students. This study systematically reviewed 42 published, peer-reviewed health behavior studies conducted among U.S. community college students in order to determine the current state of research in the area with regard to behaviors studied, research designs used, recruitment and data collection strategies practiced, rates of student participation, and characteristics of the participants represented. Findings identified the methodological limitations of current research and suggested optimal recruitment and data collection methods suitable for various research needs. Findings are discussed in the context of enhancing health behavior research among U.S. community college students. PMID:24227658

  13. Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection

    NASA Astrophysics Data System (ADS)

    Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana

    2017-08-01

    We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.

  14. High performance dendrimer functionalized single-walled carbon nanotubes field effect transistor biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Rajesh, Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Kotnala, Ravinder K.

    2016-12-01

    We report a single-walled carbon nanotube (SWNT) field-effect transistor (FET) functionalized with Polyamidoamine (PAMAM) dendrimer with 128 carboxyl groups as anchors for site specific biomolecular immobilization of protein antibody for C-reactive protein (CRP) detection. The FET device was characterized by scanning electron microscopy and current-gate voltage (I-Vg) characteristic studies. A concentration-dependent decrease in the source-drain current was observed in the regime of clinical significance, with a detection limit of ˜85 pM and a high sensitivity of 20% change in current (ΔI/I) per decade CRP concentration, showing SWNT being locally gated by the binding of CRP to antibody (anti-CRP) on the FET device. The low value of the dissociation constant (Kd = 0.31 ± 0.13 μg ml-1) indicated a high affinity of the device towards CRP analyte arising due to high anti-CRP loading with a better probe orientation on the 3-dimensional PAMAM structure.

  15. Determination of the V- I characteristic of NbTi wires in a wide resistivity range

    NASA Astrophysics Data System (ADS)

    Musenich, R.; Fabbricatore, P.; Farinon, S.; Greco, M.

    2004-01-01

    The voltage-current curve of superconducting wires and cables is generally directly measured within the resistivity range 10 -15-10 -12 Ω m being limited by the sensitivity and the Joule dissipation. Indirect measurements, based on the current decay in a superconducting loop, allow the determination of the curve in lower resistivity regions. Using a loop made with a Cu-NbTi wire we performed indirect V- I measurements in the range 10 -19-10 -16 Ω m. The comparison of the curves obtained by the direct and indirect method allows the experimental verification of the power law describing the transition of the superconducting wire to the normal state in a wide resistivity range. The law is discussed and justified on the basis of the superconductor behaviour in the flux creep dynamic regime.

  16. Long Non-coding RNAs and Their Biological Roles in Plants

    PubMed Central

    Liu, Xue; Hao, Lili; Li, Dayong; Zhu, Lihuang; Hu, Songnian

    2015-01-01

    With the development of genomics and bioinformatics, especially the extensive applications of high-throughput sequencing technology, more transcriptional units with little or no protein-coding potential have been discovered. Such RNA molecules are called non-protein-coding RNAs (npcRNAs or ncRNAs). Among them, long npcRNAs or ncRNAs (lnpcRNAs or lncRNAs) represent diverse classes of transcripts longer than 200 nucleotides. In recent years, the lncRNAs have been considered as important regulators in many essential biological processes. In plants, although a large number of lncRNA transcripts have been predicted and identified in few species, our current knowledge of their biological functions is still limited. Here, we have summarized recent studies on their identification, characteristics, classification, bioinformatics, resources, and current exploration of their biological functions in plants. PMID:25936895

  17. LLB simulation of the temperature dependent switching critical curve of a Stoner-Wohlfarth macrospin in the presence of a polarized current

    NASA Astrophysics Data System (ADS)

    Oniciuc, E.; Stoleriu, L.; Stancu, A.

    2014-02-01

    An extension of Landau-Lifshitz-Bloch (LLB) equation is used to describe the behavior of single-domain particles under the influence of magnetic fields and polarized currents at elevated temperatures. We prove that using such a model, which takes into account the longitudinal magnetization relaxation, together with the consideration of the quartic crystalline anisotropy term, a number of recent experimental results can be explained concerning the free layer characteristic critical curves of spin valves commonly used in spin electronics. These results are of paramount importance for heat assisted magnetic recording (HAMR) processes in hard-drives or in new memory systems like the spin-transfer-torque magnetic random access memory (HA-STTMRAM) with the aim of increasing data density writing while avoiding superparamagnetic limit.

  18. Cognitive Rehabilitation for Executive Dysfunction in Parkinson's Disease: Application and Current Directions

    PubMed Central

    Calleo, Jessica; Burrows, Cristina; Levin, Harvey; Marsh, Laura; Lai, Eugene; York, Michele K.

    2012-01-01

    Cognitive dysfunction in Parkinson's disease contributes to disability, caregiver strain, and diminished quality of life. Cognitive rehabilitation, a behavioral approach to improve cognitive skills, has potential as a treatment option to improve and maintain cognitive skills and increase quality of life for those with Parkinson's disease-related cognitive dysfunction. Four cognitive rehabilitation programs in individuals with PD are identified from the literature. Characteristics of the programs and outcomes are reviewed and critiqued. Current studies on cognitive rehabilitation in PD demonstrate feasibility and acceptability of a cognitive rehabilitation program for patients with PD, but are limited by their small sample size and data regarding generalization of effects over the long term. Because PD involves progressive heterogeneous physical, neurological, and affective difficulties, future cognitive rehabilitation programs should aim for flexibility and individualization, according to each patient's strengths and deficits. PMID:22135762

  19. Work Package 5: Contingency Management. Mission Planning Requirements Document: Preliminary Version. Revision A

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.

  20. Comparison of Virtual Oscillator and Droop Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Dhople, Sairaj

    Virtual oscillator control and droop control are two techniques that can be used to ensure synchronization and power sharing of parallel inverters in islanded operation. VOC relies on the implementation of non-linear Van der Pol oscillator equations in the control system of the inverter, acting upon the time-domain instantaneous inverter current and terminal voltage. On the other hand, DC explicitly computes active and reactive power produced by the inverter and relies on limited bandwidth low-pass filters. Even though both methods can be engineered to produce the same steady-state characteristics, their dynamic performances are significantly different. This paper presents analytical andmore » experimental results that aim to compare both methods. It is shown that VOC is inherently faster and enables minimizing the circulating currents. The results are verified using three 120V, 1kW inverters.« less

  1. Planar micro- and nano-patterning of GaN light-emitting diodes: Guidelines and limitations

    NASA Astrophysics Data System (ADS)

    Herrnsdorf, Johannes; Xie, Enyuan; Watson, Ian M.; Laurand, Nicolas; Dawson, Martin D.

    2014-02-01

    The emission area of GaN light-emitting diodes can be patterned by etch-free current aperturing methods which exploit the thin and highly resistive nature of the p-doped layer in these devices. Here, the fundamental underlying electrical and optical aspects of high-resolution current aperturing are investigated theoretically. The most critical parameter for the possible resolution is the thickness d of the p-GaN layer, but the interplay of p-GaN resistivity and electrical junction characteristics is also important. A spatial resolution of 1.59d can in principle be achieved, corresponding to about 300 nm in typical epitaxial structures. Furthermore, the emission from such a small emitter will spread by about 600 nm while propagating through the p-GaN. Both values can be reduced by reducing d.

  2. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure.

    PubMed

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-14

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  3. Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules

    PubMed Central

    Panzeri, Francesco

    2017-01-01

    We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142

  4. The role of structural characteristics in video-game play motivation: a Q-methodology study.

    PubMed

    Westwood, Dave; Griffiths, Mark D

    2010-10-01

    Until recently, there has been very little naturalistic study of what gaming experiences are like, and how gaming fits into people's lives. Using a recently developed structural characteristic taxonomy of video games, this study examined the psycho-structural elements of computer games that motivate gamers to play them. Using Q-Sort methodology, 40 gamers participated in an online Q-sort task. Results identified six distinct types of gamers based on the factors generated: (a) story-driven solo gamers; (b) social gamers; (c) solo limited gamers; (d) hardcore online gamers; (e) solo control/identity gamers; and (f ) casual gamers. These gaming types are discussed, and a brief evaluation of similar and unique elements of the different types of gamer is also offered. The current study shows Q-methodology to be a relevant and applicable method in the psychological research of gaming.

  5. A programmable power processor for high power space applications

    NASA Technical Reports Server (NTRS)

    Lanier, J. R., Jr.; Graves, J. R.; Kapustka, R. E.; Bush, J. R., Jr.

    1982-01-01

    A Programmable Power Processor (P3) has been developed for application in future large space power systems. The P3 is capable of operation over a wide range of input voltage (26 to 375 Vdc) and output voltage (24 to 180 Vdc). The peak output power capability is 18 kW (180 V at 100 A). The output characteristics of the P3 can be programmed to any voltage and/or current level within the limits of the processor and may be controlled as a function of internal or external parameters. Seven breadboard P3s and one 'flight-type' engineering model P3 have been built and tested both individually and in electrical power systems. The programmable feature allows the P3 to be used in a variety of applications by changing the output characteristics. Test results, including efficiency at various input/output combinations, transient response, and output impedance, are presented.

  6. Wound ballistics of firearm-related injuries--part 2: mechanisms of skeletal injury and characteristics of maxillofacial ballistic trauma.

    PubMed

    Stefanopoulos, P K; Soupiou, O T; Pazarakiotis, V C; Filippakis, K

    2015-01-01

    Maxillofacial firearm-related injuries vary in extent and severity because of the characteristics and behaviour of the projectile(s), and the complexity of the anatomical structures involved, whereas the degree of tissue disruption is also affected by the distance of the shot. In low-energy injuries there is limited damage to the underlying skeleton, which usually dominates the clinical picture, dictating a more straightforward therapeutic approach. High-energy injuries are associated with extensive hard and soft tissue disruption, and are characterized by a surrounding zone of damaged tissue that is prone to progressive necrosis as a result of compromised blood supply and wound sepsis. Current treatment protocols for these injuries emphasize the importance of serial debridement for effective wound control while favouring early definitive reconstruction. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project.

    PubMed

    Hoffmann-Sommergruber, Karin; Mills, E N Clare

    2009-09-01

    A large number of food allergens able to induce allergic symptoms in predisposed individuals, including severe, even life-threatening reactions, have been identified and characterized. However, proteins able to cause such IgE-mediated reactions can be assigned to only a limited number of protein families. Detailed knowledge about the characteristics of food allergens, their 3D structures, biological activity and stability, will help to improve diagnosis of food allergy, avoid unnecessary exclusion diets and assess the risk of cross-reactive allergies to other food sources. This review is dedicated to summarizing current knowledge about the most important food allergen protein families and to presenting data from the EuroPrevall allergen library, a proof-of-concept collection of highly purified, characterized and authenticated food allergens from animal and plant food sources to facilitate improved diagnosis of food allergies.

  8. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  9. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  10. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE PAGES

    Shiraki, D.; Commaux, N.; Baylor, L. R.; ...

    2016-06-27

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  11. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Patrick R.

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less

  12. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrate control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. In conclusion, this mixed species SPI technique provides apossible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  13. Thermal quench mitigation and current quench control by injection of mixed species shattered pellets in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraki, D.; Commaux, N.; Baylor, L. R.

    Injection of large shattered pellets composed of variable quantities of the main ion species (deuterium) and high-Z impurities (neon) in the DIII-D tokamak demonstrates control of thermal quench (TQ) and current quench (CQ) properties in mitigated disruptions. As the pellet composition is varied, TQ radiation fractions increase continuously with the quantity of radiating impurity in the pellet, with a corresponding decrease in divertor heating. Post-TQ plasma resistivities increase as a result of the higher radiation fraction, allowing control of current decay timescales based on the pellet composition. Magnetic reconstructions during the CQ show that control of the current decay ratemore » allows continuous variation of the minimum safety factor during the vertically unstable disruption, reducing the halo current fraction and resulting vessel displacement. Both TQ and CQ characteristics are observed to saturate at relatively low quantities of neon, indicating that effective mitigation of disruption loads by shattered pellet injection (SPI) can be achieved with modest impurity quantities, within injection quantities anticipated for ITER. This mixed species SPI technique provides a possible approach for tuning disruption properties to remain within the limited ranges allowed in the ITER design.« less

  14. Assessment of Current Process Modeling Approaches to Determine Their Limitations, Applicability and Developments Needed for Long-Fiber Thermoplastic Injection Molded Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Holbery, Jim; Smith, Mark T.

    2006-11-30

    This report describes the status of the current process modeling approaches to predict the behavior and flow of fiber-filled thermoplastics under injection molding conditions. Previously, models have been developed to simulate the injection molding of short-fiber thermoplastics, and an as-formed composite part or component can then be predicted that contains a microstructure resulting from the constituents’ material properties and characteristics as well as the processing parameters. Our objective is to assess these models in order to determine their capabilities and limitations, and the developments needed for long-fiber injection-molded thermoplastics (LFTs). First, the concentration regimes are summarized to facilitate the understandingmore » of different types of fiber-fiber interaction that can occur for a given fiber volume fraction. After the formulation of the fiber suspension flow problem and the simplification leading to the Hele-Shaw approach, the interaction mechanisms are discussed. Next, the establishment of the rheological constitutive equation is presented that reflects the coupled flow/orientation nature. The decoupled flow/orientation approach is also discussed which constitutes a good simplification for many applications involving flows in thin cavities. Finally, before outlining the necessary developments for LFTs, some applications of the current orientation model and the so-called modified Folgar-Tucker model are illustrated through the fiber orientation predictions for selected LFT samples.« less

  15. Clinical decision guidelines for NHS cosmetic surgery: analysis of current limitations and recommendations for future development.

    PubMed

    Cook, S A; Rosser, R; Meah, S; James, M I; Salmon, P

    2003-07-01

    Because of increasing demand for publicly funded elective cosmetic surgery, clinical decision guidelines have been developed to select those patients who should receive it. The aims of this study were to identify: the main characteristics of such guidelines; whether and how they influence clinical decision making; and ways in which they should be improved. UK health authorities were asked for their current guidelines for elective cosmetic surgery and, in a single plastic surgery unit, we examined the impact of its guidelines by observing consultations and interviewing surgeons and managers. Of 115 authorities approached, 32 reported using guidelines and provided sufficient information for analysis. Guidelines mostly concerned arbitrary sets of cosmetic procedures and lacked reference to an evidence base. They allowed surgery for specified anatomical, functional or symptomatic reasons, but these indications varied between guidelines. Most guidelines also permitted surgery 'exceptionally' for psychological reasons. The guidelines that were studied in detail did not appreciably influence surgeons' decisions, which reflected criteria that were not cited in the guidelines, including cost of the procedure and whether patients sought restoration or improvement of their appearance. Decision guidelines in this area have several limitations. Future guidelines should: include all cosmetic procedures; be informed by a broad range of evidence; and, arguably, include several nonclinical criteria that currently inform surgeons' decision-making.

  16. Impact of membrane characteristics on the performance and cycling of the Br-2-H-2 redox flow cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tucker, MC; Cho, KT; Spingler, FB

    2015-06-15

    The Br-2/H-2 redox flow cell shows promise as a high-power, low-cost energy storage device. In this paper, the effect of various aspects of material selection and processing of proton exchange membranes on the operation of the Br-2/H-2 redox flow cell is determined. Membrane properties have a significant impact on the performance and efficiency of the system. In particular, there is a tradeoff between conductivity and crossover, where conductivity limits system efficiency at high current density and crossover limits efficiency at low current density. The impact of thickness, pretreatment procedure, swelling state during cell assembly, equivalent weight, membrane reinforcement, and additionmore » of a microporous separator layer on this tradeoff is assessed. NR212 (50 mu m) pretreated by soaking in 70 degrees C water is found to be optimal for the studied operating conditions. For this case, an energy efficiency of greater than 75% is achieved for current density up to 400 mA cm(-2), with a maximum obtainable energy efficiency of 88%. A cell with this membrane was cycled continuously for 3164 h. Membrane transport properties, including conductivity and bromine and water crossover, were found to decrease moderately upon cycling but remained higher than those for the as-received membrane. (C) 2015 Elsevier B.V. All rights reserved.« less

  17. Sternal Precautions: Is It Time for Change? Precautions versus Restrictions – A Review of Literature and Recommendations for Revision

    PubMed Central

    LaPier, Tanya Kinney; Shaw, Donald K.

    2011-01-01

    The processes that occur with normal sternal healing and potential complications related to median sternotomy are of particular interest to physical therapists. The premise of patients following sternal precautions (SP) or specific activity restrictions is the belief that avoiding certain movements will reduce risk of sternal complications. However, current research has identified that many patients remain functionally impaired long after cardiothoracic surgery. It is possible that some SP may contribute to such functional impairments. Currently, SP have several limitations including that they: (1) have no universally accepted definition, (2) are often based on anecdotal/expert opinion or at best supported by indirect evidence, (3) are mostly applied uniformly for all patients without regard to individual differences, and (4) may be overly restrictive and therefore impede ideal recovery. The purpose of this article is to present an overview of current research and commentary on median sternotomy procedures and activity restrictions. We propose that the optimal degree and duration of SP should be based on an individual patient's characteristics (eg, risk factors, comorbidities, previous activity level) that would enable physical activity to be targeted to particular limitations rather than restricting specific functional tasks and physical activity. Such patient-specific SP focusing on function may be more likely to facilitate recovery after median sternotomy and less likely to impede it. PMID:21448343

  18. Abnormal behavior with hump characteristics in current stressed a-InGaZnO thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Sic; Cho, Yong-Jung; Lee, Yeol-Hyeong; Park, JeongKi; Kim, GeonTae; Kim, Ohyun

    2017-11-01

    We investigated the degradation mechanism of a-InGaZnO TFTs under simultaneous gate and drain bias stress. Gate and drain bias of 20 V were applied simultaneously to induce current stress, and abnormal turn-around behavior in transfer characteristics with a hump phenomenon were identified. Hump characteristics were interpreted in terms of parasitic current path, and the degradation itself was found to be caused dominantly by the electrical field and to be accelerated with current by Joule heating. The mechanism of asymmetrical degradation after current stress was also investigated. By decomposing the curves into two curves and measuring the relaxation behavior of the stressed TFTs, we also found that abnormal turn-around behavior in the transfer characteristics was related to acceptor-like states.

  19. Systems, methods and computer-readable media for modeling cell performance fade of rechargeable electrochemical devices

    DOEpatents

    Gering, Kevin L

    2013-08-27

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.

  20. The value of health information technology: filling the knowledge gap.

    PubMed

    Rudin, Robert S; Jones, Spencer S; Shekelle, Paul; Hillestad, Richard J; Keeler, Emmett B

    2014-11-01

    Despite rapid growth in the rate of adoption of health information technology (HIT), and in the volume of evaluation studies, the existing knowledge base for the value of HIT is not advancing at a similar rate. Most evaluation articles are limited in that they use incomplete measures of value and fail to report the important contextual and implementation characteristics that would allow for an adequate understanding of how the study results were achieved. To address these deficiencies, we present a conceptual framework for measuring HIT value and we propose a checklist of characteristics that should be considered in HIT evaluation studies. The framework consists of 3 key principles: 1) value includes both costs and benefits; 2) value accrues over time; and 3) value depends on which stakeholder's perspective is used. Through examples, we show how these principles can be used to guide and improve HIT evaluation studies. The checklist includes a list of contextual and implementation characteristics that are important for interpretation of results. These improvements will make future studies more useful for policy makers and more relevant to the current needs of the healthcare system.

Top