Sample records for current mathematical methods

  1. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    ERIC Educational Resources Information Center

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  2. Asset surveillance system: apparatus and method

    NASA Technical Reports Server (NTRS)

    Bickford, Randall L. (Inventor)

    2007-01-01

    System and method for providing surveillance of an asset comprised of numerically fitting at least one mathematical model to obtained residual data correlative to asset operation; storing at least one mathematical model in a memory; obtaining a current set of signal data from the asset; retrieving at least one mathematical model from the memory, using the retrieved mathematical model in a sequential hypothesis test for determining if the current set of signal data is indicative of a fault condition; determining an asset fault cause correlative to a determined indication of a fault condition; providing an indication correlative to a determined fault cause, and an action when warranted. The residual data can be mode partitioned, a current mode of operation can be determined from the asset, and at least one mathematical model can be retrieved from the memory as a function of the determined mode of operation.

  3. Listening to Early Career Teachers: How Can Elementary Mathematics Methods Courses Better Prepare Them to Utilize Standards-Based Practices in Their Classrooms?

    ERIC Educational Resources Information Center

    Coester, Lee Anne

    2010-01-01

    This study was designed to gather input from early career elementary teachers with the goal of finding ways to improve elementary mathematics methods courses. Multiple areas were explored including the degree to which respondents' elementary mathematics methods course focused on the NCTM Process Standards, the teachers' current standards-based…

  4. Mathematics Achievement: Traditional Instruction and Technology-Assisted Course Delivery Methods

    ERIC Educational Resources Information Center

    Vilardi, Robert

    2013-01-01

    The purpose of this study was to analyze technology-assisted course delivery methods to determine their overall effectiveness as it pertains to mathematics courses. This study analyzed both current and historical data in mathematics classes in the areas of achievement, retention, and grade distribution. The goal of this study was to determine if…

  5. Mathematics Achievement: Traditional Instruction and Technology-Assisted Course Delivery Methods

    ERIC Educational Resources Information Center

    Vilardi, Robert; Rice, Margaret L.

    2014-01-01

    The purpose of this study was to analyze technology-assisted course delivery methods to determine their overall effectiveness as it pertains to mathematics courses. This study analyzed both current and historical data in the areas of achievement, retention, and grade distribution for mathematics classes. The study included 14,562 students enrolled…

  6. The Preparedness of Preservice Secondary Mathematics Teachers to Teach Statistics: A Cross-Institutional Mixed Methods Study

    ERIC Educational Resources Information Center

    Lovett, Jennifer Nickell

    2016-01-01

    The purpose of this study is to provide researchers, mathematics educators, and statistics educators information about the current state of preservice secondary mathematics teachers' preparedness to teach statistics. To do so, this study employed an explanatory mixed methods design to quantitatively examine the statistical knowledge and statistics…

  7. Mathematical methods for protein science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, W.; Istrail, S.; Atkins, J.

    1997-12-31

    Understanding the structure and function of proteins is a fundamental endeavor in molecular biology. Currently, over 100,000 protein sequences have been determined by experimental methods. The three dimensional structure of the protein determines its function, but there are currently less than 4,000 structures known to atomic resolution. Accordingly, techniques to predict protein structure from sequence have an important role in aiding the understanding of the Genome and the effects of mutations in genetic disease. The authors describe current efforts at Sandia to better understand the structure of proteins through rigorous mathematical analyses of simple lattice models. The efforts have focusedmore » on two aspects of protein science: mathematical structure prediction, and inverse protein folding.« less

  8. Current problems in applied mathematics and mathematical physics

    NASA Astrophysics Data System (ADS)

    Samarskii, A. A.

    Papers are presented on such topics as mathematical models in immunology, mathematical problems of medical computer tomography, classical orthogonal polynomials depending on a discrete variable, and boundary layer methods for singular perturbation problems in partial derivatives. Consideration is also given to the computer simulation of supernova explosion, nonstationary internal waves in a stratified fluid, the description of turbulent flows by unsteady solutions of the Navier-Stokes equations, and the reduced Galerkin method for external diffraction problems using the spline approximation of fields.

  9. Incentive Pay for Remotely Piloted Aircraft Career Fields

    DTIC Science & Technology

    2012-01-01

    Fields C.1. Mathematical Symbols for Non-Stochastic Values and Shock Terms...78 C.2. Mathematical Symbols for Taste and Compensation . . . . . . . . . . . 79 xiii Summary Background and...manning requirement, even with the current incentive pays and reenlistment bonuses. 2 The mathematical foundations, data, and estimation methods for the

  10. What can formal methods offer to digital flight control systems design

    NASA Technical Reports Server (NTRS)

    Good, Donald I.

    1990-01-01

    Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.

  11. Female Preservice Teachers and Mathematics: Anxiety, Beliefs, and Stereotypes

    ERIC Educational Resources Information Center

    Lake, Vickie E.; Kelly, Loreen

    2014-01-01

    The purpose of the current study was to examine if preservice teachers' (PSTs) mathematics anxiety decreased and if their beliefs and stereotypes changed after they completed their early childhood mathematics methods course. It was hypothesized that by using and modeling concrete materials or manipulatives (Thompson, 1992; Vinson, 2001) and…

  12. Student Attrition in Mathematics E-Learning

    ERIC Educational Resources Information Center

    Smith, Glenn Gordon; Ferguson, David

    2005-01-01

    Qualitative studies indicate that mathematics does not work well in e-learning. The current study used quantitative methods to investigate more objectively the extent of problems with mathematics in e-learning. The authors used student attrition as a simple measure of student satisfaction and course viability in two studies, one investigating…

  13. The Relationship between Reading Level and Sixth Grade Students' Acquisition of Mathematics Standards

    ERIC Educational Resources Information Center

    Caruthers, Tarchell Peeples

    2013-01-01

    Current research shows that, despite standards-based mathematics reform, American students lag behind in mathematics achievement when compared to their counterparts in other countries. The purpose of this mixed methods study was to examine if reading level, as measured by the Scholastic Reading Inventory, is related to standards-based mathematics…

  14. GENERAL REPORT OF MATHEMATICS CONFERENCE AND TWO SPECIFIC REPORTS. (TITLE SUPPLIED).

    ERIC Educational Resources Information Center

    Educational Services, Inc., Watertown, MA.

    THE FIRST PAPER, "REPORT OF MATHEMATICS CONFERENCE," IS A SUMMARY OF DISCUSSIONS BY 29 PARTICIPANTS IN A CONFERENCE ON CURRENT PROBLEMS IN MATHEMATICS EDUCATION RESEARCH. REPORTED ARE (1) RECENT PROGRESS, PROBLEMS, AND PLANS OF CURRICULUM DEVELOPMENT GROUPS, (2) GENERAL FORMULATION OF CURRICULUM AND METHODS, (3) TEACHER TRAINING, (4)…

  15. MATHEMATICAL MODELING OF PESTICIDES IN THE ENVIRONMENT: CURRENT AND FUTURE DEVELOPMENTS

    EPA Science Inventory

    Transport models, total ecosystem models with aggregated linear approximations, evaluative models, hierarchical models, and influence analysis methods are mathematical techniques that are particularly applicable to the problems encountered when characterizing pesticide chemicals ...

  16. An Appropriate Prompts System Based on the Polya Method for Mathematical Problem-Solving

    ERIC Educational Resources Information Center

    Lee, Chien I.

    2017-01-01

    Current mathematics education emphasizes techniques, formulas, and procedures, neglecting the importance of understanding, presentation, and reasoning. This turns students into passive listeners that are well-practiced only in using formulas that they do not understand. We therefore adopted the Polya problem-solving method to provide students with…

  17. Investigating the Mathematical Equivalence of Written and Enacted Middle School "Standards"-Based Curricula: Focus on Rational Numbers

    ERIC Educational Resources Information Center

    Newton, Jill A.

    2012-01-01

    Although the question of whether written curricula are implemented according to the intentions of curriculum developers has already spurred much research, current methods for documenting curricular implementation seem to be missing a critical piece: the mathematics. To add a mathematical perspective to the discussion of the admittedly…

  18. Designing Opportunities for Prospective Teachers to Facilitate Mathematics Discussions in Classrooms

    ERIC Educational Resources Information Center

    Hunter, Roberta; Anthony, Glenda

    2012-01-01

    How prospective teachers can best be prepared to teach effectively in mathematics classrooms is a topic of current concern. In this paper, we describe our exploration of ways in which prospective teachers were supported to translate what they learnt in mathematics methods classes into pedagogical practice. We illustrate how the use of discourse…

  19. Do Teachers Make Decisions Like Firefighters? Applying Naturalistic Decision-Making Methods to Teachers' In-Class Decision Making in Mathematics

    ERIC Educational Resources Information Center

    Jazby, Dan

    2014-01-01

    Research into human decision making (DM) processes from outside of education paint a different picture of DM than current DM models in education. This pilot study assesses the use of critical decision method (CDM)--developed from observations of firefighters' DM -- in the context of primary mathematics teachers' in-class DM. Preliminary results…

  20. Mathematics Curriculum Based Measurement to Predict State Test Performance: A Comparison of Measures and Methods

    ERIC Educational Resources Information Center

    Stevens, Olinger; Leigh, Erika

    2012-01-01

    Scope and Method of Study: The purpose of the study is to use an empirical approach to identify a simple, economical, efficient, and technically adequate performance measure that teachers can use to assess student growth in mathematics. The current study has been designed to expand the body of research for math CBM to further examine technical…

  1. Method of Calculating the Correction Factors for Cable Dimensioning in Smart Grids

    NASA Astrophysics Data System (ADS)

    Simutkin, M.; Tuzikova, V.; Tlusty, J.; Tulsky, V.; Muller, Z.

    2017-04-01

    One of the main causes of overloading electrical equipment by currents of higher harmonics is the great increasing of a number of non-linear electricity power consumers. Non-sinusoidal voltages and currents affect the operation of electrical equipment, reducing its lifetime, increases the voltage and power losses in the network, reducing its capacity. There are standards that respects emissions amount of higher harmonics current that cannot provide interference limit for a safe level in power grid. The article presents a method for determining a correction factor to the long-term allowable current of the cable, which allows for this influence. Using mathematical models in the software Elcut, it was described thermal processes in the cable in case the flow of non-sinusoidal current. Developed in the article theoretical principles, methods, mathematical models allow us to calculate the correction factor to account for the effect of higher harmonics in the current spectrum for network equipment in any type of non-linear load.

  2. Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, Aly R.; Ali, Asghar

    2018-06-01

    The Equal-Width and Modified Equal-Width equations are used as a model in partial differential equations for the simulation of one-dimensional wave transmission in nonlinear media with dispersion processes. In this article we have employed extend simple equation method and the exp(-varphi(ξ)) expansion method to construct the exact traveling wave solutions of equal width and modified equal width equations. The obtained results are novel and have numerous applications in current areas of research in mathematical physics. It is exposed that our method, with the help of symbolic computation, provides a effective and powerful mathematical tool for solving different kind nonlinear wave problems.

  3. Electric current locator

    DOEpatents

    King, Paul E [Corvallis, OR; Woodside, Charles Rigel [Corvallis, OR

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  4. Mathematical methods in medicine: neuroscience, cardiology and pathology

    PubMed Central

    Amigó, José M.

    2017-01-01

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507240

  5. Mathematical methods in medicine: neuroscience, cardiology and pathology.

    PubMed

    Amigó, José M; Small, Michael

    2017-06-28

    The application of mathematics, natural sciences and engineering to medicine is gaining momentum as the mutual benefits of this collaboration become increasingly obvious. This theme issue is intended to highlight the trend in the case of mathematics. Specifically, the scope of this theme issue is to give a general view of the current research in the application of mathematical methods to medicine, as well as to show how mathematics can help in such important aspects as understanding, prediction, treatment and data processing. To this end, three representative specialties have been selected: neuroscience, cardiology and pathology. Concerning the topics, the 12 research papers and one review included in this issue cover biofluids, cardiac and virus dynamics, computational neuroscience, functional magnetic resonance imaging data processing, neural networks, optimization of treatment strategies, time-series analysis and tumour growth. In conclusion, this theme issue contains a collection of fine contributions at the intersection of mathematics and medicine, not as an exercise in applied mathematics but as a multidisciplinary research effort that interests both communities and our society in general.This article is part of the themed issue 'Mathematical methods in medicine: neuroscience, cardiology and pathology'. © 2017 The Author(s).

  6. Water-waves on linear shear currents. A comparison of experimental and numerical results.

    NASA Astrophysics Data System (ADS)

    Simon, Bruno; Seez, William; Touboul, Julien; Rey, Vincent; Abid, Malek; Kharif, Christian

    2016-04-01

    Propagation of water waves can be described for uniformly sheared current conditions. Indeed, some mathematical simplifications remain applicable in the study of waves whether there is no current or a linearly sheared current. However, the widespread use of mathematical wave theories including shear has rarely been backed by experimental studies of such flows. New experimental and numerical methods were both recently developed to study wave current interactions for constant vorticity. On one hand, the numerical code can simulate, in two dimensions, arbitrary non-linear waves. On the other hand, the experimental methods can be used to generate waves with various shear conditions. Taking advantage of the simplicity of the experimental protocol and versatility of the numerical code, comparisons between experimental and numerical data are discussed and compared with linear theory for validation of the methods. ACKNOWLEDGEMENTS The DGA (Direction Générale de l'Armement, France) is acknowledged for its financial support through the ANR grant N° ANR-13-ASTR-0007.

  7. A Graphical Approach to Teaching Amplifier Design at the Undergraduate Level

    ERIC Educational Resources Information Center

    Assaad, R. S.; Silva-Martinez, J.

    2009-01-01

    Current methods of teaching basic amplifier design at the undergraduate level need further development to match today's technological advances. The general class approach to amplifier design is analytical and heavily based on mathematical manipulations. However, the students mathematical abilities are generally modest, creating a void in which…

  8. Using Differentiated Instruction to Increase Mathematics Achievement in Elementary Students

    ERIC Educational Resources Information Center

    Faulkner, Jennifer H.

    2013-01-01

    As evidenced by the poor mathematics performance in American schools, specifically in the school district in the current study, providing identical educational opportunities for diverse students does not necessarily increase academic achievement for everyone. Differentiation is an instructional method that has been found to be successful in…

  9. The analysis of mathematics literacy on PMRI learning with media schoology of junior high school students

    NASA Astrophysics Data System (ADS)

    Wardono; Mariani, S.

    2018-03-01

    Indonesia as a developing country in the future will have high competitiveness if its students have high mathematics literacy ability. The current reality from year to year rankings of PISA mathematics literacy Indonesian students are still not good. This research is motivated by the importance and low ability of the mathematics literacy. The purpose of this study is to: (1) analyze the effectiveness of PMRI learning with media Schoology, (2) describe the ability of students' mathematics literacy on PMRI learning with media Schoology which is reviewed based on seven components of mathematics literacy, namely communication, mathematizing, representation, reasoning, devising strategies, using symbols, and using mathematics tool. The method used in this research is the method of sequential design method mix. Techniques of data collection using observation, interviews, tests, and documentation. Data analysis techniques use proportion test, appellate test, and use descriptive analysis. Based on the data analysis, it can be concluded; (1) PMRI learning with media Schoology effectively improve the ability of mathematics literacy because of the achievement of classical completeness, students' mathematics literacy ability in PMRI learning with media Schoology is higher than expository learning, and there is increasing ability of mathematics literacy in PMRI learning with media Schoology of 30%. (2) Highly capable students attain excellent mathematics literacy skills, can work using broad thinking with appropriate resolution strategies. Students who are capable of achieving good mathematics literacy skills can summarize information, present problem-solving processes, and interpret solutions. low-ability students have reached the level of ability of mathematics literacy good enough that can solve the problem in a simple way.

  10. pp ii Brain, behaviour and mathematics: Are we using the right approaches? [review article

    NASA Astrophysics Data System (ADS)

    Perez Velazquez, Jose Luis

    2005-12-01

    Mathematics are used in biological sciences mostly as a quantifying tool, for it is the science of numbers after all. There is a long-standing interest in the application of mathematical methods and concepts to neuroscience in attempts to decipher brain activity. While there has been a very wide use of mathematical/physical methodologies, less effort has been made to formulate a comprehensive and integrative theory of brain function. This review concentrates on recent developments, uses and abuses of mathematical formalisms and techniques that are being applied in brain research, particularly the current trend of using dynamical system theory to unravel the global, collective dynamics of brain activity. It is worth emphasising that the theoretician-neuroscientist, eager to apply mathematical analysis to neuronal recordings, has to consider carefully some crucial anatomo-physiological assumptions, that may not be as accurate as the specific methods require. On the other hand, the experimentalist neuro-physicist, with an inclination to implement mathematical thoughts in brain science, has to make an effort to comprehend the bases of the theoretical concepts that can be used as frameworks or as analysis methods of brain electrophysiological recordings, and to critically inspect the accuracy of the interpretations of the results based on the neurophysiological ground. It is hoped that this brief overview of anatomical and physiological presumptions and their relation to theoretical paradigms will help clarify some particular points of interest in current trends in brain science, and may provoke further reflections on how certain or uncertain it is to conceptualise brain function based on these theoretical frameworks, if the physiological and experimental constraints are not as accurate as the models prescribe.

  11. Impact of Teachers' Beliefs on Mathematics Education

    ERIC Educational Resources Information Center

    Bayaga, Anass; Wadesango, Newman; Wadesango, Ongayi Vongai

    2015-01-01

    The objective of the current study was to analyse the impact of teachers' personal theory and beliefs (PTB) towards Mathematics teaching. A total of 183 respondents were involved in this study, using the stratified random sampling method with Cronbach's alpha of 0.87. Due to the objective of the research and the hypothesis, it was positioned…

  12. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System.

    PubMed

    Liu, Ying-Pei; Liang, Hai-Ping; Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane.

  13. The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage Direct Current System

    PubMed Central

    Gao, Zhong-Ke

    2015-01-01

    In order to improve the performance of voltage source converter-high voltage direct current (VSC-HVDC) system, we propose an improved auto-disturbance rejection control (ADRC) method based on least squares support vector machines (LSSVM) in the rectifier side. Firstly, we deduce the high frequency transient mathematical model of VSC-HVDC system. Then we investigate the ADRC and LSSVM principles. We ignore the tracking differentiator in the ADRC controller aiming to improve the system dynamic response speed. On this basis, we derive the mathematical model of ADRC controller optimized by LSSVM for direct current voltage loop. Finally we carry out simulations to verify the feasibility and effectiveness of our proposed control method. In addition, we employ the time-frequency representation methods, i.e., Wigner-Ville distribution (WVD) and adaptive optimal kernel (AOK) time-frequency representation, to demonstrate our proposed method performs better than the traditional method from the perspective of energy distribution in time and frequency plane. PMID:26098556

  14. Digital Game-Based Learning for K-12 Mathematics Education: A Meta-Analysis

    ERIC Educational Resources Information Center

    Byun, JaeHwan; Joung, Eunmi

    2018-01-01

    Digital games (e.g., video games or computer games) have been reported as an effective educational method that can improve students' motivation and performance in mathematics education. This meta-analysis study (a) investigates the current trend of digital game-based learning (DGBL) by reviewing the research studies on the use of DGBL for…

  15. Student Attitudes towards Group Work among Undergraduates in Business Administration, Education and Mathematics

    ERIC Educational Resources Information Center

    Gottschall, Holli; Garcia-Bayonas, Mariche

    2008-01-01

    Group work is a widely used teaching technique in higher education. Faculty find themselves utilizing this method in their classes more and more, yet few studies examine what students actually think about group work. The current study surveyed Mathematics, Education, and Business Administration majors at a mid-sized southeastern university in…

  16. Mathematical Modeling of Electrodynamics Near the Surface of Earth and Planetary Water Worlds

    NASA Technical Reports Server (NTRS)

    Tyler, Robert H.

    2017-01-01

    An interesting feature of planetary bodies with hydrospheres is the presence of an electrically conducting shell near the global surface. This conducting shell may typically lie between relatively insulating rock, ice, or atmosphere, creating a strong constraint on the flow of large-scale electric currents. All or parts of the shell may be in fluid motion relative to main components of the rotating planetary magnetic field (as well as the magnetic fields due to external bodies), creating motionally-induced electric currents that would not otherwise be present. As such, one may expect distinguishing features in the types of electrodynamic processes that occur, as well as an opportunity for imposing specialized mathematical methods that efficiently address this class of application. The purpose of this paper is to present and discuss such specialized methods. Specifically, thin-shell approximations for both the electrodynamics and fluid dynamics are combined to derive simplified mathematical formulations describing the behavior of these electric currents as well as their associated electric and magnetic fields. These simplified formulae allow analytical solutions featuring distinct aspects of the thin-shell electrodynamics in idealized cases. A highly efficient numerical method is also presented that is useful for calculations under inhomogeneous parameter distributions. Finally, the advantages as well as limitations in using this mathematical approach are evaluated. This evaluation is presented primarily for the generic case of bodies with water worlds or other thin spherical conducting shells. More specific discussion is given for the case of Earth, but also Europa and other satellites with suspected oceans.

  17. African-American Women's Experiences in Graduate Science, Technology, Engineering, and Mathematics Education at a Predominantly White University: A Qualitative Investigation

    ERIC Educational Resources Information Center

    Alexander, Quentin R.; Hermann, Mary A.

    2016-01-01

    In this phenomenological investigation we used qualitative research methodology to examine the experiences of 8 African American women in science, technology, engineering, and mathematics (STEM) graduate programs at 1 predominantly White university (PWU) in the South. Much of the current research in this area uses quantitative methods and only…

  18. Mathematical modeling of the aerodynamics of high-angle-of-attack maneuvers

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Tobak, M.; Malcolm, G. N.

    1980-01-01

    This paper is a review of the current state of aerodynamic mathematical modeling for aircraft motions at high angles of attack. The mathematical model serves to define a set of characteristic motions from whose known aerodynamic responses the aerodynamic response to an arbitrary high angle-of-attack flight maneuver can be predicted. Means are explored of obtaining stability parameter information in terms of the characteristic motions, whether by wind-tunnel experiments, computational methods, or by parameter-identification methods applied to flight-test data. A rationale is presented for selecting and verifying the aerodynamic mathematical model at the lowest necessary level of complexity. Experimental results describing the wing-rock phenomenon are shown to be accommodated within the most recent mathematical model by admitting the existence of aerodynamic hysteresis in the steady-state variation of the rolling moment with roll angle. Interpretation of the experimental results in terms of bifurcation theory reveals the general conditions under which aerodynamic hysteresis must exist.

  19. Predicting disease progression from short biomarker series using expert advice algorithm

    NASA Astrophysics Data System (ADS)

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-01

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of ``prediction with expert advice'' to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  20. Predicting disease progression from short biomarker series using expert advice algorithm.

    PubMed

    Morino, Kai; Hirata, Yoshito; Tomioka, Ryota; Kashima, Hisashi; Yamanishi, Kenji; Hayashi, Norihiro; Egawa, Shin; Aihara, Kazuyuki

    2015-05-20

    Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series using information and experience gained from previous patients. Although mathematical methods can potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by employing the information of previous patients. Here, we propose a mathematical framework for integrating other patients' datasets to infer and predict the state of the disease in the current patient based on their short history. We extend a machine-learning framework of "prediction with expert advice" to deal with unstable dynamics. We construct this mathematical framework by combining expert advice with a mathematical model of prostate cancer. Our model predicted well the individual biomarker series of patients with prostate cancer that are used as clinical samples.

  1. A method of estimating conceptus doses resulting from multidetector CT examinations during all stages of gestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damilakis, John; Tzedakis, Antonis; Perisinakis, Kostas

    Purpose: Current methods for the estimation of conceptus dose from multidetector CT (MDCT) examinations performed on the mother provide dose data for typical protocols with a fixed scan length. However, modified low-dose imaging protocols are frequently used during pregnancy. The purpose of the current study was to develop a method for the estimation of conceptus dose from any MDCT examination of the trunk performed during all stages of gestation. Methods: The Monte Carlo N-Particle (MCNP) radiation transport code was employed in this study to model the Siemens Sensation 16 and Sensation 64 MDCT scanners. Four mathematical phantoms were used, simulatingmore » women at 0, 3, 6, and 9 months of gestation. The contribution to the conceptus dose from single simulated scans was obtained at various positions across the phantoms. To investigate the effect of maternal body size and conceptus depth on conceptus dose, phantoms of different sizes were produced by adding layers of adipose tissue around the trunk of the mathematical phantoms. To verify MCNP results, conceptus dose measurements were carried out by means of three physical anthropomorphic phantoms, simulating pregnancy at 0, 3, and 6 months of gestation and thermoluminescence dosimetry (TLD) crystals. Results: The results consist of Monte Carlo-generated normalized conceptus dose coefficients for single scans across the four mathematical phantoms. These coefficients were defined as the conceptus dose contribution from a single scan divided by the CTDI free-in-air measured with identical scanning parameters. Data have been produced to take into account the effect of maternal body size and conceptus position variations on conceptus dose. Conceptus doses measured with TLD crystals showed a difference of up to 19% compared to those estimated by mathematical simulations. Conclusions: Estimation of conceptus doses from MDCT examinations of the trunk performed on pregnant patients during all stages of gestation can be made using the method developed in the current study.« less

  2. Teaching Math Online: Current Practices in Turkey

    ERIC Educational Resources Information Center

    Akdemir, Omur

    2011-01-01

    Changing nature of student population, developments in technology, and insufficient number of traditional universities have made online courses popular around the globe. This study was designed to investigate the current practices of teaching mathematics online in Turkish Universities through a qualitative inquiry. The snowball sampling method was…

  3. Monitoring apparatus and method for battery power supply

    DOEpatents

    Martin, Harry L.; Goodson, Raymond E.

    1983-01-01

    A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

  4. Ocular hemodynamics and glaucoma: the role of mathematical modeling.

    PubMed

    Harris, Alon; Guidoboni, Giovanna; Arciero, Julia C; Amireskandari, Annahita; Tobe, Leslie A; Siesky, Brent A

    2013-01-01

    To discuss the role of mathematical modeling in studying ocular hemodynamics, with a focus on glaucoma. We reviewed recent literature on glaucoma, ocular blood flow, autoregulation, the optic nerve head, and the use of mathematical modeling in ocular circulation. Many studies suggest that alterations in ocular hemodynamics play a significant role in the development, progression, and incidence of glaucoma. Although there is currently a limited number of studies involving mathematical modeling of ocular blood flow, regulation, and diseases (such as glaucoma), preliminary modeling work shows the potential of mathematical models to elucidate the mechanisms that contribute most significantly to glaucoma progression. Mathematical modeling is a useful tool when used synergistically with clinical and laboratory data in the study of ocular blood flow and glaucoma. The development of models to investigate the relationship between ocular hemodynamic alterations and glaucoma progression will provide a unique and useful method for studying the pathophysiology of glaucoma.

  5. The Spatial-Temporal Reasoning States of Children Who Play a Musical Instrument, Regarding the Mathematics Lesson: Teachers' Views

    ERIC Educational Resources Information Center

    Tezer, Murat; Cumhur, Meryem; Hürsen, Emine

    2016-01-01

    The aim of this study is to try to investigate the spatial-temporal reasoning states of primary school children between the ages 8 and 11 who play an instrument, regarding mathematics lessons from the teachers' views. This current study is both qualitative and quantitative in nature. In other words, the mixed research method was used in the study.…

  6. Influence of Hall Current and Viscous Dissipation on Pressure Driven Flow of Pseudoplastic Fluid with Heat Generation: A Mathematical Study.

    PubMed

    Noreen, Saima; Qasim, Muhammad

    2015-01-01

    In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.

  7. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  8. Mathematical modeling of processes of heat and mass transfer in channels of water evaporating coolers

    NASA Astrophysics Data System (ADS)

    Gulevsky, V. A.; Ryazantsev, A. A.; Nikulichev, A. A.; Menzhulova, A. S.

    2018-05-01

    The variety of cooling systems is dictated by a wide range of demands placed on them. This is the price, operating costs, quality of work, ecological safety, etc. These requirements in a positive sense are put into correspondence by water evaporating plate coolers. Currently, their widespread use is limited by a lack of theoretical base. To solve this problem, the best method is mathematical modeling.

  9. Mathematical modelling and quantitative methods.

    PubMed

    Edler, L; Poirier, K; Dourson, M; Kleiner, J; Mileson, B; Nordmann, H; Renwick, A; Slob, W; Walton, K; Würtzen, G

    2002-01-01

    The present review reports on the mathematical methods and statistical techniques presently available for hazard characterisation. The state of the art of mathematical modelling and quantitative methods used currently for regulatory decision-making in Europe and additional potential methods for risk assessment of chemicals in food and diet are described. Existing practices of JECFA, FDA, EPA, etc., are examined for their similarities and differences. A framework is established for the development of new and improved quantitative methodologies. Areas for refinement, improvement and increase of efficiency of each method are identified in a gap analysis. Based on this critical evaluation, needs for future research are defined. It is concluded from our work that mathematical modelling of the dose-response relationship would improve the risk assessment process. An adequate characterisation of the dose-response relationship by mathematical modelling clearly requires the use of a sufficient number of dose groups to achieve a range of different response levels. This need not necessarily lead to an increase in the total number of animals in the study if an appropriate design is used. Chemical-specific data relating to the mode or mechanism of action and/or the toxicokinetics of the chemical should be used for dose-response characterisation whenever possible. It is concluded that a single method of hazard characterisation would not be suitable for all kinds of risk assessments, and that a range of different approaches is necessary so that the method used is the most appropriate for the data available and for the risk characterisation issue. Future refinements to dose-response characterisation should incorporate more clearly the extent of uncertainty and variability in the resulting output.

  10. A log-linear model approach to estimation of population size using the line-transect sampling method

    USGS Publications Warehouse

    Anderson, D.R.; Burnham, K.P.; Crain, B.R.

    1978-01-01

    The technique of estimating wildlife population size and density using the belt or line-transect sampling method has been used in many past projects, such as the estimation of density of waterfowl nestling sites in marshes, and is being used currently in such areas as the assessment of Pacific porpoise stocks in regions of tuna fishing activity. A mathematical framework for line-transect methodology has only emerged in the last 5 yr. In the present article, we extend this mathematical framework to a line-transect estimator based upon a log-linear model approach.

  11. Discussing Perception, Determining Provision: Teachers' Perspectives on the Applied Options of A-Level Mathematics

    ERIC Educational Resources Information Center

    Ward-Penny, Robert; Johnston-Wilder, Sue; Johnston-Wilder, Peter

    2013-01-01

    One-third of the current A-level mathematics curriculum is determined by choice, constructed out of "applied mathematics" modules in mechanics, statistics and decision mathematics. Although this choice arguably involves the most sizeable instance of choice in the current English school mathematics curriculum, and it has a significant…

  12. Mathematical modelling and numerical simulation of forces in milling process

    NASA Astrophysics Data System (ADS)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  13. Delivering Advanced Methods in Mathematical Programming to Students of All Disciplines Using Abstraction, Modularity and Open-Ended Assignments

    ERIC Educational Resources Information Center

    Ezra, Elishai; Nahmias, Yaakov

    2015-01-01

    The advent of integrated multidisciplinary research has given rise to some of the most important breakthroughs of our time, but has also set significant challenges to the current educational paradigm. Current academic education often limits cross-discipline discussion, depends on close-ended problems, and restricts utilization of interdisciplinary…

  14. Forecasting in foodservice: model development, testing, and evaluation.

    PubMed

    Miller, J L; Thompson, P A; Orabella, M M

    1991-05-01

    This study was designed to develop, test, and evaluate mathematical models appropriate for forecasting menu-item production demand in foodservice. Data were collected from residence and dining hall foodservices at Ohio State University. Objectives of the study were to collect, code, and analyze the data; develop and test models using actual operation data; and compare forecasting results with current methods in use. Customer count was forecast using deseasonalized simple exponential smoothing. Menu-item demand was forecast by multiplying the count forecast by a predicted preference statistic. Forecasting models were evaluated using mean squared error, mean absolute deviation, and mean absolute percentage error techniques. All models were more accurate than current methods. A broad spectrum of forecasting techniques could be used by foodservice managers with access to a personal computer and spread-sheet and database-management software. The findings indicate that mathematical forecasting techniques may be effective in foodservice operations to control costs, increase productivity, and maximize profits.

  15. Equivalent model of a dually-fed machine for electric drive control systems

    NASA Astrophysics Data System (ADS)

    Ostrovlyanchik, I. Yu; Popolzin, I. Yu

    2018-05-01

    The article shows that the mathematical model of a dually-fed machine is complicated because of the presence of a controlled voltage source in the rotor circuit. As a method of obtaining a mathematical model, the method of a generalized two-phase electric machine is applied and a rotating orthogonal coordinate system is chosen that is associated with the representing vector of a stator current. In the chosen coordinate system in the operator form the differential equations of electric equilibrium for the windings of the generalized machine (the Kirchhoff equation) are written together with the expression for the moment, which determines the electromechanical energy transformation in the machine. Equations are transformed so that they connect the currents of the windings, that determine the moment of the machine, and the voltages on these windings. The structural diagram of the machine is assigned to the written equations. Based on the written equations and accepted assumptions, expressions were obtained for the balancing the EMF of windings, and on the basis of these expressions an equivalent mathematical model of a dually-fed machine is proposed, convenient for use in electric drive control systems.

  16. Current capabilities and limitations of the stable isotope technologies and applied mathematical equations in determining whole body vitamin A status

    USDA-ARS?s Scientific Manuscript database

    Vitamin A (VA) stable isotope dilution methodology provides a quantitative estimate of total body VA stores and is the best method currently available for assessing VA status in adults and children. The methodology has also been used to test the efficacy of VA interventions in a number of low-incom...

  17. The SEM description of interaction of a transient electromagnetic wave with an object

    NASA Technical Reports Server (NTRS)

    Pearson, L. W.; Wilton, D. R.

    1980-01-01

    The singularity expansion method (SEM), proposed as a means for determining and representing the transient surface current density induced on a scatterer by a transient electromagnetic wave is described. The resulting mathematical description of the transient surface current on the object is discussed. The data required to represent the electromagnetic scattering properties of a given object are examined. Experimental methods which were developed for the determination of the SEM description are discussed. The feasibility of characterizing the surface current induced on aircraft flying in proximity to a lightning stroke by way of SEM is examined.

  18. Current sensing using bismuth rare-earth iron garnet films

    NASA Astrophysics Data System (ADS)

    Ko, Michael; Garmire, Elsa

    1995-04-01

    Ferrimagnetic iron garnet films are investigated as current-sensing elements. The Faraday effect within the films permits measurement of the magnetic field or current by a simple polarimetric technique. Polarized diffraction patterns from the films have been observed that arise from the presence of magnetic domains in the films. A physical model for the diffraction is discussed, and results from a mathematical analysis are in good agreement with the experimental observations. A method of current sensing that uses this polarized diffraction is demonstrated.

  19. Mathematics Education in Rural Communities in Light of Current Trends in Mathematics Education. Working Paper.

    ERIC Educational Resources Information Center

    Schultz, James E.

    Despite the considerable efforts now under way to improve our nation's mathematics education for all students, students in rural settings do not receive their share of attention. This paper considers school mathematics in rural communities in the larger context of current reform from a number of perspectives, including curricular materials,…

  20. Survey of meshless and generalized finite element methods: A unified approach

    NASA Astrophysics Data System (ADS)

    Babuška, Ivo; Banerjee, Uday; Osborn, John E.

    In the past few years meshless methods for numerically solving partial differential equations have come into the focus of interest, especially in the engineering community. This class of methods was essentially stimulated by difficulties related to mesh generation. Mesh generation is delicate in many situations, for instance, when the domain has complicated geometry; when the mesh changes with time, as in crack propagation, and remeshing is required at each time step; when a Lagrangian formulation is employed, especially with nonlinear PDEs. In addition, the need for flexibility in the selection of approximating functions (e.g., the flexibility to use non-polynomial approximating functions), has played a significant role in the development of meshless methods. There are many recent papers, and two books, on meshless methods; most of them are of an engineering character, without any mathematical analysis.In this paper we address meshless methods and the closely related generalized finite element methods for solving linear elliptic equations, using variational principles. We give a unified mathematical theory with proofs, briefly address implementational aspects, present illustrative numerical examples, and provide a list of references to the current literature.The aim of the paper is to provide a survey of a part of this new field, with emphasis on mathematics. We present proofs of essential theorems because we feel these proofs are essential for the understanding of the mathematical aspects of meshless methods, which has approximation theory as a major ingredient. As always, any new field is stimulated by and related to older ideas. This will be visible in our paper.

  1. Consortium for Mathematics in the Geosciences (CMG++): Promoting the application of mathematics, statistics, and computational sciences to the geosciences

    NASA Astrophysics Data System (ADS)

    Mead, J.; Wright, G. B.

    2013-12-01

    The collection of massive amounts of high quality data from new and greatly improved observing technologies and from large-scale numerical simulations are drastically improving our understanding and modeling of the earth system. However, these datasets are also revealing important knowledge gaps and limitations of our current conceptual models for explaining key aspects of these new observations. These limitations are impeding progress on questions that have both fundamental scientific and societal significance, including climate and weather, natural disaster mitigation, earthquake and volcano dynamics, earth structure and geodynamics, resource exploration, and planetary evolution. New conceptual approaches and numerical methods for characterizing and simulating these systems are needed - methods that can handle processes which vary through a myriad of scales in heterogeneous, complex environments. Additionally, as certain aspects of these systems may be observable only indirectly or not at all, new statistical methods are also needed. This type of research will demand integrating the expertise of geoscientist together with that of mathematicians, statisticians, and computer scientists. If the past is any indicator, this interdisciplinary research will no doubt lead to advances in all these fields in addition to vital improvements in our ability to predict the behavior of the planetary environment. The Consortium for Mathematics in the Geosciences (CMG++) arose from two scientific workshops held at Northwestern and Princeton in 2011 and 2012 with participants from mathematics, statistics, geoscience and computational science. The mission of CMG++ is to accelerate the traditional interaction between people in these disciplines through the promotion of both collaborative research and interdisciplinary education. We will discuss current activities, describe how people can get involved, and solicit input from the broader AGU community.

  2. Assessment of heart rate variability based on mobile device for planning physical activity

    NASA Astrophysics Data System (ADS)

    Svirin, I. S.; Epishina, E. V.; Voronin, V. V.; Semenishchev, E. A.; Solodova, E. N.; Nabilskaya, N. V.

    2015-05-01

    In this paper we present a method for the functional analysis of human heart based on electrocardiography (ECG) signals. The approach using the apparatus of analytical and differential geometry and correlation and regression analysis. ECG contains information on the current condition of the cardiovascular system as well as on the pathological changes in the heart. Mathematical processing of the heart rate variability allows to obtain a great set of mathematical and statistical characteristics. These characteristics of the heart rate are used when solving research problems to study physiological changes that determine functional changes of an individual. The proposed method implemented for up-to-date mobile Android and iOS based devices.

  3. A study of competence in mathematics and mechanics in an engineering curriculum

    NASA Astrophysics Data System (ADS)

    Munns, Andrew

    2017-11-01

    Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as 'The Mathematics Problem', with students not demonstrating understanding of the subject. This paper will suggest that students are constructing different concept images in engineering and mathematics, based on their perception of either the use or exchange-value for the topics. Using a mixed methods approach, the paper compares 10 different types of concept image constructed by students, which suggests that familiar procedural images are preferred in mathematics. In contrast strategic and conceptual images develop for mechanics throughout the years of the programme, implying that different forms of competence are being constructed by students between the two subjects. The paper argues that this difference is attributed to the perceived use-value of mechanics in the career of the engineer, compared to the exchange-value associated with mathematics. Questions are raised about the relevance of current definitions of competence given that some routine mathematical operations previously performed by engineers are now being replaced by technology, in the new world of work.

  4. A Double Layer Model of the Electromagnetic and Thermal Processes in Induction Heating of Ferromagnetic Material

    NASA Astrophysics Data System (ADS)

    Gilev, B.; Kraev, G.; Venkov, G. I.

    2007-10-01

    This paper presents the modeling of electromagnetic and heating processes in an inductor, where cylindrical ferromagnetic material has been placed. In the first part the electromagnetic mathematical problem is solved, as a result the power density is obtained. The power density takes part in the heat conduction equation. In the second part the thermal mathematical problem is solved, as a result the alteration of the temperature of the ferromagnetic material during the heating process is obtained. The parameters in both mathematical problems depend on the temperature. Because of that the stitching method is used for their finding. In [3, 4] the same mathematical problems are solved by the finite elements method. Comparing our results to those from [3] shows that they are similar. In contrast to [3, 4] our method allows the continuation of the analysis with the finding of the load power during the heating process. Thus result permits the determination of the load power alteration in the supplying inverter [1]. It is well-known that during the induction hardening it is necessary to maintain constant current amplitude in the load circuit of the inverter. So the next aim of this research is to build up a controller, based on the developed model, which will procure the necessary mode.

  5. Mathematical modeling and computational prediction of cancer drug resistance.

    PubMed

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  7. Spacecraft attitude determination using the earth's magnetic field

    NASA Technical Reports Server (NTRS)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  8. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    PubMed

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  9. Studies in Teaching: 2008 Research Digest

    ERIC Educational Resources Information Center

    McCoy, Leah P., Ed.

    2008-01-01

    Proceedings of Annual Research Forum. 34 studies. Cultural Awareness in Secondary Spanish (Amy Allen), Writing in Mathematics (Lindsey L. Bakewell), Homework: Assignment Methods and Student Engagement (Lia Beresford), Current Events and Social Studies (Jennie Marie Biser), Authentic Assessments in Social Studies (Carl Boland), Assessment in High…

  10. Main Road Extraction from ZY-3 Grayscale Imagery Based on Directional Mathematical Morphology and VGI Prior Knowledge in Urban Areas

    PubMed Central

    Liu, Bo; Wu, Huayi; Wang, Yandong; Liu, Wenming

    2015-01-01

    Main road features extracted from remotely sensed imagery play an important role in many civilian and military applications, such as updating Geographic Information System (GIS) databases, urban structure analysis, spatial data matching and road navigation. Current methods for road feature extraction from high-resolution imagery are typically based on threshold value segmentation. It is difficult however, to completely separate road features from the background. We present a new method for extracting main roads from high-resolution grayscale imagery based on directional mathematical morphology and prior knowledge obtained from the Volunteered Geographic Information found in the OpenStreetMap. The two salient steps in this strategy are: (1) using directional mathematical morphology to enhance the contrast between roads and non-roads; (2) using OpenStreetMap roads as prior knowledge to segment the remotely sensed imagery. Experiments were conducted on two ZiYuan-3 images and one QuickBird high-resolution grayscale image to compare our proposed method to other commonly used techniques for road feature extraction. The results demonstrated the validity and better performance of the proposed method for urban main road feature extraction. PMID:26397832

  11. Nonlinear scalar forcing based on a reaction analogy

    NASA Astrophysics Data System (ADS)

    Daniel, Don; Livescu, Daniel

    2017-11-01

    We present a novel reaction analogy (RA) based forcing method for generating stationary passive scalar fields in incompressible turbulence. The new method can produce more general scalar PDFs (e.g. double-delta) than current methods, while ensuring that scalar fields remain bounded, unlike existent forcing methodologies that can potentially violate naturally existing bounds. Such features are useful for generating initial fields in non-premixed combustion or for studying non-Gaussian scalar turbulence. The RA method mathematically models hypothetical chemical reactions that convert reactants in a mixed state back into its pure unmixed components. Various types of chemical reactions are formulated and the corresponding mathematical expressions derived. For large values of the scalar dissipation rate, the method produces statistically steady double-delta scalar PDFs. Gaussian scalar statistics are recovered for small values of the scalar dissipation rate. In contrast, classical forcing methods consistently produce unimodal Gaussian scalar fields. The ability of the new method to produce fully developed scalar fields is discussed using 2563, 5123, and 10243 periodic box simulations.

  12. Current Challenges in Integrating Educational Technology into Elementary and Middle School Mathematics Education

    ERIC Educational Resources Information Center

    Okita, Sandra Y.; Jamalian, Azadeh

    2011-01-01

    Developing curriculum and instruction for mathematics education and designing technologically enhanced learning environments are often pursued separately, but may need to be addressed together to effectively link the strengths of technology to performance in mathematics and conceptual understanding. This paper addresses current challenges with…

  13. Data in the Digital Age: Charting the Way for Multimedia Learning

    ERIC Educational Resources Information Center

    Maretich, Kaylene

    2017-01-01

    Information and communication technology (ICT) is an integral aspect of the current Australian Curriculum: Mathematics. The language, strategies and resources required in mathematics education today can be very different to the mathematics lessons experienced by current teachers when they themselves were at school (Sousa, 2015). Learning…

  14. On some methods of discrete systems behaviour simulation

    NASA Astrophysics Data System (ADS)

    Sytnik, Alexander A.; Posohina, Natalia I.

    1998-07-01

    The project is solving one of the fundamental problems of mathematical cybernetics and discrete mathematics, the one connected with synthesis and analysis of managing systems, depending on the research of their functional opportunities and reliable behaviour. This work deals with the case of finite-state machine behaviour restoration when the structural redundancy is not available and the direct updating of current behaviour is impossible. The described below method, uses number theory to build a special model of finite-state machine, it is simulating the transition between the states of the finite-state machine using specially defined functions of exponential type with the help of several methods of number theory and algebra it is easy to determine, whether there is an opportunity to restore the behaviour (with the help of this method) in the given case or not and also derive the class of finite-state machines, admitting such restoration.

  15. Solving the multi-frequency electromagnetic inverse source problem by the Fourier method

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Ma, Fuming; Guo, Yukun; Li, Jingzhi

    2018-07-01

    This work is concerned with an inverse problem of identifying the current source distribution of the time-harmonic Maxwell's equations from multi-frequency measurements. Motivated by the Fourier method for the scalar Helmholtz equation and the polarization vector decomposition, we propose a novel method for determining the source function in the full vector Maxwell's system. Rigorous mathematical justifications of the method are given and numerical examples are provided to demonstrate the feasibility and effectiveness of the method.

  16. Effect of Micro-Teaching Practices with Concrete Models on Pre-Service Mathematics Teachers' Self-Efficacy Beliefs about Using Concrete Models

    ERIC Educational Resources Information Center

    Ünlü, Melihan

    2018-01-01

    The purpose of the current study was to investigate the effect of micro-teaching practices with concrete models on the pre-service teachers' self-efficacy beliefs about using concrete models and to determine the opinions of the pre-service teachers about this issue. In the current study, one of the mixed methods, the convergent design (embedded)…

  17. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can bemore » potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.« less

  18. Product-oriented Software Certification Process for Software Synthesis

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy; Fischer, Bernd; Denney, Ewen; Schumann, Johann; Richardson, Julian; Oh, Phil

    2004-01-01

    The purpose of this document is to propose a product-oriented software certification process to facilitate use of software synthesis and formal methods. Why is such a process needed? Currently, software is tested until deemed bug-free rather than proving that certain software properties exist. This approach has worked well in most cases, but unfortunately, deaths still occur due to software failure. Using formal methods (techniques from logic and discrete mathematics like set theory, automata theory and formal logic as opposed to continuous mathematics like calculus) and software synthesis, it is possible to reduce this risk by proving certain software properties. Additionally, software synthesis makes it possible to automate some phases of the traditional software development life cycle resulting in a more streamlined and accurate development process.

  19. Elementary Mathematics Teachers' Perceptions and Lived Experiences on Mathematical Communication

    ERIC Educational Resources Information Center

    Kaya, Defne; Aydin, Hasan

    2016-01-01

    Mathematical thinking skills and meaningful mathematical understanding are among the goals of current mathematics education. There is a wide consensus among scholars about the purpose of developing mathematical understanding and higher order thinking skills in students. However, how to develop those skills in classroom settings is an area that…

  20. A brief historical development of classical mathematics before the Renaissance

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2011-07-01

    'If you wish to foresee the future of mathematics our proper course is to study the history and present condition of the science.' Henri Poincaré 'It is India that gave us the ingenious method of expressing all numbers by ten symbols, each symbol receiving a value of position, as well as an absolute value. We shall appreciate the grandeur of the achievement when we remember that it escaped the genius of Archimedes and Apollonius.' P.S. Laplace 'The Greeks were the first mathematicians who are still 'real' to us today. Oriental mathematics may be an interesting curiosity, but Greek mathematics is the real thing. The Greek first spoke of a language which modern mathematicians can understand.' G.H. Hardy This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems, generalizations, and new discoveries of arithmetic, algebra, number theory, geometry and astronomy during the above periods. A number of exciting applications of the above areas is discussed in some detail. It also contains a wide variety of important material accessible to college and even high school students and teachers at all levels. Included also is mathematical information that puts the professionals and prospective mathematical scientists at the forefront of current research.

  1. Methods and strategies of object localization

    NASA Technical Reports Server (NTRS)

    Shao, Lejun; Volz, Richard A.

    1989-01-01

    An important property of an intelligent robot is to be able to determine the location of an object in 3-D space. A general object localization system structure is proposed, some important issues on localization discussed, and an overview given for current available object localization algorithms and systems. The algorithms reviewed are characterized by their feature extracting and matching strategies; the range finding methods; the types of locatable objects; and the mathematical formulating methods.

  2. Symbolic Drawings Reveal Changes in Preservice Teacher Mathematics Attitudes after a Mathematics Methods Course

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Harrell, Mary H.

    2006-01-01

    A new method of analyzing mathematics attitudes through symbolic drawings, situated within the field of Jungian-oriented analytical psychology, was applied to 52 preservice elementary teachers before and after a mathematics methods course. In this triangulation mixed methods design study, pretest images related to past mathematics experiences…

  3. Strategy for integration of coastal culture in learning process of mathematics in junior high school

    NASA Astrophysics Data System (ADS)

    Suyitno, H.; Zaenuri; Florentinus, T. S.; Zakaria, E.

    2018-03-01

    Traditional life in the fishing family is part of the local culture. Many School-age children in the fishing family drop-outs due to lack of parents motivation and the environment was less supportive. The problems were: (1) How the strategy of integration of local culture in learning process of mathematics in Junior High School (JHS)? (2) How to prepare the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, has international level, applicable, and in accordance with the current curriculum? The purposes of this research were: (1) to obtain the strategy of integration of local culture in learning process of mathematics in JHS, through FGD between UNNES and UKM; (2) to obtain the experts validation, through Focus Group Discussion (FGD) between UNNES and UKM toward the draft of the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture; (3) produces Mathematics Student’s Book for grade 7 SMP which based on coastal culture and has an ISBN, international, applicable, and in accordance with the curriculum. The research activity was a qualitative research, so that the research methods include: (1) data reduction, (2) display data, (3) data interpretation, and (4) conclusion/verification. The main activities of this research: drafting the Mathematics Student’s Book of Grade 7 which based on coastal culture; get the validation from international partners;conducting FGD at Education Faculty of Universiti Kebangsaan Malaysia through the program of visiting lecturers for getting the Mathematics Student’s Book of grade 7 which based on coastal culture, registering for ISBN, and publishing the reasearch results in International seminar and International Journals. The results of this research were as follows. (1) Getting a good strategy for integration of local culture in learning process of mathematics in JHS. (2) Getting the Mathematics Student’s Book for grade 7 of JHS that based on coastal culture, that has an ISBN, international level, applicable, and in accordance with the current curriculum.

  4. Current problems in applied mathematics and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Alekseev, A. S.

    Papers are presented on mathematical modeling noting applications to such fields as geophysics, chemistry, atmospheric optics, and immunology. Attention is also given to models of ocean current fluxes, atmospheric and marine interactions, and atmospheric pollution. The articles include studies of catalytic reactors, models of global climate phenomena, and computer-assisted atmospheric models.

  5. Computer Programming in the UK Undergraduate Mathematics Curriculum

    ERIC Educational Resources Information Center

    Sangwin, Christopher J.; O'Toole, Claire

    2017-01-01

    This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received…

  6. The Devalued Student: Misalignment of Current Mathematics Knowledge and Level of Instruction

    ERIC Educational Resources Information Center

    LeMire, Steven D.; Melby, Marcella L.; Haskins, Anne M.; Williams, Tony

    2012-01-01

    Within this study, we investigated the association between 10th-grade students' mathematics performance and their feelings of instructional misalignment between their current mathematics knowledge and educator support. Data from the 2002 Education Longitudinal Study, which included a national sample of 750 public and private high schools in the…

  7. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers.

    ERIC Educational Resources Information Center

    Battista, Michael T.

    1986-01-01

    Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…

  8. Mathematics Education and the Objectivist Programme in HPS

    NASA Astrophysics Data System (ADS)

    Glas, Eduard

    2013-06-01

    Using history of mathematics for studying concepts, methods, problems and other internal features of the discipline may give rise to a certain tension between descriptive adequacy and educational demands. Other than historians, educators are concerned with mathematics as a normatively defined discipline. Teaching cannot but be based on a pre-understanding of what mathematics `is' or, in other words, on a normative (methodological, philosophical) view of the identity or nature of the discipline. Educators are primarily concerned with developments at the level of objective mathematical knowledge, that is: with the relations between successive theories, problems and proposed solutions—relations which are independent of whatever has been the role of personal or collective beliefs, convictions, traditions and other historical circumstances. Though not exactly `historical' in the usual sense, I contend that this `objectivist' approach does represent one among other entirely legitimate and valuable approaches to the historical development of mathematics. Its retrospective importance to current practitioners and students is illustrated by a reconstruction of the development of Eudoxus's theory of proportionality in response to the problem of irrationality, and the way in which Dedekind some two millennia later almost literally used this ancient theory for the rigorous introduction of irrational numbers and hence of the real number continuum.

  9. Visual-spatial abilities relate to mathematics achievement in children with heavy prenatal alcohol exposure

    PubMed Central

    Crocker, N.; Riley, E.P.; Mattson, S.N.

    2014-01-01

    Objective The current study examined the relationship between mathematics and attention, working memory, and visual memory in children with heavy prenatal alcohol exposure and controls. Method Fifty-six children (29 AE, 27 CON) were administered measures of global mathematics achievement (WRAT-3 Arithmetic & WISC-III Written Arithmetic), attention, (WISC-III Digit Span forward and Spatial Span forward), working memory (WISC-III Digit Span backward and Spatial Span backward), and visual memory (CANTAB Spatial Recognition Memory and Pattern Recognition Memory). The contribution of cognitive domains to mathematics achievement was analyzed using linear regression techniques. Attention, working memory and visual memory data were entered together on step 1 followed by group on step 2, and the interaction terms on step 3. Results Model 1 accounted for a significant amount of variance in both mathematics achievement measures, however, model fit improved with the addition of group on step 2. Significant predictors of mathematics achievement were Spatial Span forward and backward and Spatial Recognition Memory. Conclusions These findings suggest that deficits in spatial processing may be related to math impairments seen in FASD. In addition, prenatal alcohol exposure was associated with deficits in mathematics achievement, above and beyond the contribution of general cognitive abilities. PMID:25000323

  10. A mathematical model for simulating noise suppression of lined ejectors

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.

    1994-01-01

    A mathematical model containing the essential features embodied in the noise suppression of lined ejectors is presented. Although some simplification of the physics is necessary to render the model mathematically tractable, the current model is the most versatile and technologically advanced at the current time. A system of linearized equations and the boundary conditions governing the sound field are derived starting from the equations of fluid dynamics. A nonreflecting boundary condition is developed. In view of the complex nature of the equations, a parametric study requires the use of numerical techniques and modern computers. A finite element algorithm that solves the differential equations coupled with the boundary condition is then introduced. The numerical method results in a matrix equation with several hundred thousand degrees of freedom that is solved efficiently on a supercomputer. The model is validated by comparing results either with exact solutions or with approximate solutions from other works. In each case, excellent correlations are obtained. The usefulness of the model as an optimization tool and the importance of variable impedance liners as a mechanism for achieving broadband suppression within a lined ejector are demonstrated.

  11. Molecular modeling: An open invitation for applied mathematics

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  12. Anxiety (Low Ago Strength) And Intelligence Among Students Of High School Mathematics

    NASA Astrophysics Data System (ADS)

    Naderi, Habibollah

    2008-01-01

    The aim of this study was to investigate the relationship between anxiety (low ago strength) and intelligence among student's mathematics. All the effects of anxiety were studied within the sample of 112 subjects (boys). 56 of them were regular of students (RS) and 56 were intelligent of students (IS) of high schools. Mean age was (17.1 years), SD (.454) and range age was 16-18 years in 3 classes of regular of high school mathematics was for regular students. For the IS, mean age was (16.75 years), SD (.436) and range age was l6-17 years in 4 classes of students exceptional talent for high school mathematics. The sampling method in this study was the simple randomization method. In this studied, for analysis of method used both descriptive and inference of research, which for description of analysis used Average and analysis of covariance and Variance, also for inference of analysis, used with t-test between two the groups of students. The Cattell of Anxiety Test (1958) (CTAT) has been used in a number of studies for measurement trait anxiety in Iran. In general, the findings were found not statistical significant between the RS and the IS of students in that factorial of low of ago strength (C-). Further research is needed to investigate whether the current findings hold for student populations by others anxiety tests.

  13. Formal Methods for Life-Critical Software

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Johnson, Sally C.

    1993-01-01

    The use of computer software in life-critical applications, such as for civil air transports, demands the use of rigorous formal mathematical verification procedures. This paper demonstrates how to apply formal methods to the development and verification of software by leading the reader step-by-step through requirements analysis, design, implementation, and verification of an electronic phone book application. The current maturity and limitations of formal methods tools and techniques are then discussed, and a number of examples of the successful use of formal methods by industry are cited.

  14. Understanding RTI in Mathematics: Proven Methods and Applications

    ERIC Educational Resources Information Center

    Gersten, Russell, Ed.; Newman-Gonchar, Rebecca, Ed.

    2011-01-01

    Edited by National Math Panel veteran Russell Gersten with contributions by all of the country's leading researchers on RTI and math, this cutting-edge text blends the existing evidence base with practical guidelines for RTI implementation. Current and future RTI coordinators, curriculum developers, math specialists, and department heads will get…

  15. Discrete Mathematics and Curriculum Reform.

    ERIC Educational Resources Information Center

    Kenney, Margaret J.

    1996-01-01

    Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)

  16. Force analysis of magnetic bearings with power-saving controls

    NASA Technical Reports Server (NTRS)

    Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.

    1992-01-01

    Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.

  17. Current Reform Efforts in Mathematics Education. ERIC/CSMEE Digest.

    ERIC Educational Resources Information Center

    Edwards, Thomas G.

    The current reform effort in mathematics education has its roots in the decade of the 1980's and the national reports that focused attention on an impending crisis in education, particularly in mathematics and science. Within this context, dozens of individual reform efforts have been initiated in recent years. Many have focused on the development…

  18. Reconstruction of the action potential of ventricular myocardial fibres

    PubMed Central

    Beeler, G. W.; Reuter, H.

    1977-01-01

    1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889

  19. Study on residual discharge time of lead-acid battery based on fitting method

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Yu, Wangwang; Jin, Yueqiang; Wang, Shuying

    2017-05-01

    This paper use the method of fitting to discuss the data of C problem of mathematical modeling in 2016, the residual discharge time model of lead-acid battery with 20A,30A,…,100A constant current discharge is obtained, and the discharge time model of discharge under arbitrary constant current is presented. The mean relative error of the model is calculated to be about 3%, which shows that the model has high accuracy. This model can provide a basis for optimizing the adaptation of power system to the electrical motor vehicle.

  20. What Is the Long-Run Impact of Learning Mathematics during Preschool?

    ERIC Educational Resources Information Center

    Watts, Tyler W.; Duncan, Greg J.; Clements, Douglas H.; Sarama, Julie

    2018-01-01

    The current study estimated the causal links between preschool mathematics learning and late elementary school mathematics achievement using variation in treatment assignment to an early mathematics intervention as an instrument for preschool mathematics change. Estimates indicate (n = 410) that a standard deviation of intervention-produced change…

  1. An Investigation of the Mathematics-Vocabulary Knowledge of First-Grade Students

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Nelson, Gena

    2017-01-01

    Competency with mathematics requires use of numerals and symbols as well as an understanding and use of mathematics vocabulary (e.g., "add," "more," "triangle"). Currently, no measures exist in which the primary function is to gauge mathematics-vocabulary understanding. We created a 64-item mathematics-vocabulary…

  2. Reciprocal Relationships between Mathematics Anxiety and Attitude towards Mathematics in Elementary Students

    ERIC Educational Resources Information Center

    Haciomeroglu, Guney

    2017-01-01

    This current study examined the reciprocal relationship between anxiety and attitude towards mathematics in elementary students. Two instruments (attitudes towards mathematics inventory short form [ATMI-Short Form] and the Revised Fennema-Sherman Mathematics Anxiety Scale [Revised-FSMAS]) were administered to 310 fourth grade elementary students.…

  3. A Mixed Methods Study of Teach for America Teachers' Mathematical Beliefs, Knowledge, and Classroom Teaching Practices during a Reform-Based University Mathematics Methods Course

    ERIC Educational Resources Information Center

    Swars, Susan Lee

    2015-01-01

    This mixed methods study examined the mathematical preparation of elementary teachers in a Teach for America (TFA) program, focal participants for whom there is scant extant research. Data collection occurred before and after a university mathematics methods course, with a particular focus on the participants' (n = 22) mathematical beliefs,…

  4. Development of the pump protection system against cavitation on the basis of the stator current signature analysis of drive electric motor

    NASA Astrophysics Data System (ADS)

    Kipervasser, M. V.; Gerasimuk, A. V.; Simakov, V. P.

    2018-05-01

    In the present paper a new registration method of such inadmissible phenomenon as cavitation in the operating mode of centrifugal pump is offered. Influence of cavitation and extent of its development on the value of mechanical power consumed by the pump from the electric motor is studied. On the basis of design formulas the joint mathematical model of centrifugal pumping unit with the synchronous motor is created. In the model the phenomena accompanying the work of a pumping installation in the cavitation mode are considered. Mathematical modeling of the pump operation in the considered emergency operation is carried out. The chart of stator current of the electric motor, depending on the degree of cavitation development of is received. On the basis of the analysis of the obtained data the conclusion on the possibility of registration of cavitation by the current of drive electric motor is made and the functional diagram of the developed protection system is offered, its operation principle is described.

  5. Moving toward Positive Mathematics Beliefs and Developing Socio-Mathematical Authority: Urban Preservice Teachers in Mathematics Methods Courses

    ERIC Educational Resources Information Center

    Saran, Rupam; Gujarati, Joan

    2013-01-01

    This article explores how preservice elementary teachers change their negative beliefs toward mathematics into positive ones after taking a mathematics methods course that follows the Concrete-Pictorial-Abstract (CPA) instructional method. Also explored is the relationship between those beliefs and sociomathematical authority. By administering…

  6. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications

    NASA Astrophysics Data System (ADS)

    Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun

    In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.

  7. Method and Effectiveness of an Individualized Exercise of Fundamental Mathematics.

    ERIC Educational Resources Information Center

    Yoshioka, Takayoshi; Nishizawa, Hitoshi; Tsukamoto Takehiko

    2001-01-01

    Describes a method used to provide mathematics students in Japanese colleges of engineering with supplementary exercises to aid their learning. Outlines the online operation of individualized exercises that help the students to understand mathematical methods used to solve problems and also mathematical ideas or concepts upon which methods are…

  8. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    ERIC Educational Resources Information Center

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  9. A mathematical model for ethanol fermentation from oil palm trunk sap using Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Sultana, S.; Jamil, Norazaliza Mohd; Saleh, E. A. M.; Yousuf, A.; Faizal, Che Ku M.

    2017-09-01

    This paper presents a mathematical model and solution strategy of ethanol fermentation for oil palm trunk (OPT) sap by considering the effect of substrate limitation, substrate inhibition product inhibition and cell death. To investigate the effect of cell death rate on the fermentation process we extended and improved the current mathematical model. The kinetic parameters of the model were determined by nonlinear regression using maximum likelihood function. The temporal profiles of sugar, cell and ethanol concentrations were modelled by a set of ordinary differential equations, which were solved numerically by the 4th order Runge-Kutta method. The model was validated by the experimental data and the agreement between the model and experimental results demonstrates that the model is reasonable for prediction of the dynamic behaviour of the fermentation process.

  10. Evolutionary game theory for physical and biological scientists. II. Population dynamics equations can be associated with interpretations

    PubMed Central

    Liao, David; Tlsty, Thea D.

    2014-01-01

    The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752

  11. What Counts As Mathematics?: Technologies of Power in Adult and Vocational Education. Mathematics Education Library.

    ERIC Educational Resources Information Center

    Fitzsimons, Gail E.

    This book, aimed at mathematics and vocational educators and researchers, analyzes the historical, sociological, and practical elements of mathematics within vocational education against the emerging impact of technology. Focus is on the current situation of mathematics within Australian vocational and technical education and how that might be…

  12. Primary School Pre-Service Mathematics Teachers' Views on Mathematical Modeling

    ERIC Educational Resources Information Center

    Karali, Diren; Durmus, Soner

    2015-01-01

    The current study aimed to identify the views of pre-service teachers, who attended a primary school mathematics teaching department but did not take mathematical modeling courses. The mathematical modeling activity used by the pre-service teachers was developed with regards to the modeling activities utilized by Lesh and Doerr (2003) in their…

  13. Teaching Mathematics Effectively and Equitably to Females. Trends and Issues No. 17.

    ERIC Educational Resources Information Center

    Hanson, Katherine

    This monograph looks at mathematics education today in the United States, particularly at how girls are treated in mathematics education in order to identify ways to increase female interest and achievement in mathematics. The first section of the review describes the current status of females in mathematics education including achievement history…

  14. Women in Mathematics: A Nested Approach

    ERIC Educational Resources Information Center

    Köse, Emek; Johnson, Angela C.

    2016-01-01

    In this article, we present a case study of a course called Women in Mathematics. Students in the course studied the lives and the mathematical contributions of women mathematicians throughout history, as well as current gender equity issues in the study of mathematics and in mathematical careers. They also mentored 20 middle school girls…

  15. Studies in Mathematics Education. Volume 6. Out-of-School Mathematics Education.

    ERIC Educational Resources Information Center

    Morris, Robert, Ed.

    This is the sixth volume in a series designed to improve mathematics instruction by providing resource materials for those responsible for mathematics teaching. Focusing on out-of-school mathematics education, this volume presents a panorama of current practices around the world and suggests future trends. Subjects considered include: (1)…

  16. A Qualitative Investigation of Student Engagement in a Flipped Classroom

    ERIC Educational Resources Information Center

    Steen-Utheim, Anna Therese; Foldnes, Njål

    2018-01-01

    The flipped classroom is gaining acceptance in higher education as an alternative to more traditional methods of teaching. In the current study, twelve students in a Norwegian higher education institution were in-depth interviewed about their learning experiences in a two-semester long mathematics course. The first semester was taught using…

  17. Data Nuggets: Bringing Real Data into the Classroom to Unearth Students' Quantitative & Inquiry Skills

    ERIC Educational Resources Information Center

    Schultheis, Elizabeth H.; Kjelvik, Melissa K.

    2015-01-01

    Current educational reform calls for increased integration between science and mathematics to overcome the shortcomings in students' quantitative skills. Data Nuggets (free online resource, http://datanuggets.org) are worksheets that bring data into the classroom, repeatedly guiding students through the scientific method and making claims…

  18. Astronomy Week: An Investigation of the Implementation and Identity Formation of Participants

    ERIC Educational Resources Information Center

    Dewitt, Carl

    2013-01-01

    Our society has a great need for Science, Technology, Engineering, and Mathematics (STEM) professionals and educational institutions are currently having difficulty keeping up with society's demand (Carnevale, 2011). Outreach efforts are a key strategy to encouraging young people to pursue STEM careers and evaluation methods need to be used to…

  19. Evaluating and Improving the Mathematics Teaching-Learning Process through Metacognition

    ERIC Educational Resources Information Center

    Desoete, Annemie

    2007-01-01

    Introduction: Despite all the emphasis on metacognition, researchers currently use different techniques to assess metacognition. The purpose of this contribution is to help to clarify some of the paradigms on the evaluation of metacognition. In addition the paper reviews studies aiming to improve the learning process through metacognition. Method:…

  20. RT-18: Value of Flexibility. Phase 1

    DTIC Science & Technology

    2010-09-25

    an analytical framework based on sound mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory...framework that is mathematically consistent, domain independent and applicable under varying information levels. This report presents our advances in...During this period, we also explored the development of an analytical framework based on sound mathematical constructs. A review of the current state

  1. Study ethnomathematics of aboge (alif, rebo, wage) calendar as determinant of the great days of Islam and traditional ceremony in Cirebon Kasepuhan Palace

    NASA Astrophysics Data System (ADS)

    Syahrin, Muhammad Alfi; Turmudi, Puspita, Entit

    2016-02-01

    This research attempts to show about the relationship between mathematics and culture. Paradigm that emerged currently, that mathematics is an abstract concept and difficult, therefore mathematics is not favored by most students. In the reality, indirectly mathematics is present in a culture of a society. Ethnomathematics study is a study to examine how does a group of people in a particular culture understand, express, and use the concepts and practices of culture that depicted mathematically. This research was conducted in Cirebon precisely in Kasepuhan Palace, which was in RW 04, Kasepuhan village, Lemah Wungkuk district, Cirebon city, West Java. The focus of the study and research purposes was the application of aboge (alif rebo wage) calendar as the calculation of days and the calendar rules determine the time of days, great days of Islam and traditional ceremony in Kasepuhan Palace. Qualitative methods with the principles of ethnography such as studies in ethnomathematics i.e observation, interviews, documentation and fieldnotes were used in this research. The findings of this ethnomathematics study show that the determining great days of Islam and the days of palace traditional ceremony have a close relationship with the counts and principles in mathematics. This study provides recommendations that mathematics is closely related to culture due to ethnomathematics.

  2. [New trends in the evaluation of mathematics learning disabilities. The role of metacognition].

    PubMed

    Miranda-Casas, A; Acosta-Escareño, G; Tarraga-Minguez, R; Fernández, M I; Rosel-Remírez, J

    2005-01-15

    The current trends in the evaluation of mathematics learning disabilities (MLD), based on cognitive and empirical models, are oriented towards combining procedures involving the criteria and the evaluation of cognitive and metacognitive processes, associated to performance in mathematical tasks. The objective of this study is to analyse the metacognitive skills of prediction and evaluation in performing maths tasks and to compare metacognitive performance among pupils with MLD and younger pupils without MLD, who have the same level of mathematical performance. Likewise, we analyse these pupils' desire to learn. Subjects and methods. We compare a total of 44 pupils from the second cycle of primary education (8-10 years old) with and without mathematics learning disabilities. Significant differences are observed between pupils with and without mathematics learning disabilities in their capacity to predict and assess all of the tasks evaluated. As regards their 'desire to learn', no significant differences were found between pupils with and without MLD, which indicated that those with MLD assess their chances of successfully performing maths tasks in the same way as those without MLD. Finally, the findings reveal a similar metacognitive profile in pupils with MLD and the younger pupils with no mathematics learning disabilities. In future studies we consider it important to analyse the influence of the socio-affective belief system in the use of metacognitive skills.

  3. College Preparatory Mathematics: Change from Within.

    ERIC Educational Resources Information Center

    Kysh, Judith M.

    1995-01-01

    The College Preparatory Mathematics: Change from Within Project (CPM) was created to develop a rich, integrated mathematics curriculum, based on the best current wisdom of how people learn and the mathematics needed in an era of computers, and involving teachers in materials development. (MKR)

  4. 77 FR 16076 - Advisory Committee for Mathematical and Physical Sciences; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    ... education activities within the Directorate for Mathematical and Physical Sciences. Agenda Update on current... National Science Foundation Advisory Committee for Mathematical and Physical Sciences; Notice of... Science Foundation announces the following meeting: Name: Directorate for Mathematical and Physical...

  5. Pre-service science teachers' perceptions of mathematics courses in a science teacher education programme

    NASA Astrophysics Data System (ADS)

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-08-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers' opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were 'difficult' because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers' lack of knowledge in terms of teaching mathematics.

  6. TIMSS 2011 Student and Teacher Predictors for Mathematics Achievement Explored and Identified via Elastic Net.

    PubMed

    Yoo, Jin Eun

    2018-01-01

    A substantial body of research has been conducted on variables relating to students' mathematics achievement with TIMSS. However, most studies have employed conventional statistical methods, and have focused on selected few indicators instead of utilizing hundreds of variables TIMSS provides. This study aimed to find a prediction model for students' mathematics achievement using as many TIMSS student and teacher variables as possible. Elastic net, the selected machine learning technique in this study, takes advantage of both LASSO and ridge in terms of variable selection and multicollinearity, respectively. A logistic regression model was also employed to predict TIMSS 2011 Korean 4th graders' mathematics achievement. Ten-fold cross-validation with mean squared error was employed to determine the elastic net regularization parameter. Among 162 TIMSS variables explored, 12 student and 5 teacher variables were selected in the elastic net model, and the prediction accuracy, sensitivity, and specificity were 76.06, 70.23, and 80.34%, respectively. This study showed that the elastic net method can be successfully applied to educational large-scale data by selecting a subset of variables with reasonable prediction accuracy and finding new variables to predict students' mathematics achievement. Newly found variables via machine learning can shed light on the existing theories from a totally different perspective, which in turn propagates creation of a new theory or complement of existing ones. This study also examined the current scale development convention from a machine learning perspective.

  7. TIMSS 2011 Student and Teacher Predictors for Mathematics Achievement Explored and Identified via Elastic Net

    PubMed Central

    Yoo, Jin Eun

    2018-01-01

    A substantial body of research has been conducted on variables relating to students' mathematics achievement with TIMSS. However, most studies have employed conventional statistical methods, and have focused on selected few indicators instead of utilizing hundreds of variables TIMSS provides. This study aimed to find a prediction model for students' mathematics achievement using as many TIMSS student and teacher variables as possible. Elastic net, the selected machine learning technique in this study, takes advantage of both LASSO and ridge in terms of variable selection and multicollinearity, respectively. A logistic regression model was also employed to predict TIMSS 2011 Korean 4th graders' mathematics achievement. Ten-fold cross-validation with mean squared error was employed to determine the elastic net regularization parameter. Among 162 TIMSS variables explored, 12 student and 5 teacher variables were selected in the elastic net model, and the prediction accuracy, sensitivity, and specificity were 76.06, 70.23, and 80.34%, respectively. This study showed that the elastic net method can be successfully applied to educational large-scale data by selecting a subset of variables with reasonable prediction accuracy and finding new variables to predict students' mathematics achievement. Newly found variables via machine learning can shed light on the existing theories from a totally different perspective, which in turn propagates creation of a new theory or complement of existing ones. This study also examined the current scale development convention from a machine learning perspective. PMID:29599736

  8. Nuclear Data Uncertainty Quantification: Past, Present and Future

    NASA Astrophysics Data System (ADS)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for future investigation of this subject are also suggested.

  9. Review Of Applied Mathematical Models For Describing The Behaviour Of Aqueous Humor In Eye Structures

    NASA Astrophysics Data System (ADS)

    Dzierka, M.; Jurczak, P.

    2015-12-01

    In the paper, currently used methods for modeling the flow of the aqueous humor through eye structures are presented. Then a computational model based on rheological models of Newtonian and non-Newtonian fluids is proposed. The proposed model may be used for modeling the flow of the aqueous humor through the trabecular meshwork. The trabecular meshwork is modeled as an array of rectilinear parallel capillary tubes. The flow of Newtonian and non-Newtonian fluids is considered. As a results of discussion mathematical equations of permeability of porous media and velocity of fluid flow through porous media have been received.

  10. Finite-element approach to Brownian dynamics of polymers.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2009-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Such simulation tools have been applied to a large variety of problems and accelerated the scientific progress significantly. However, the currently most frequently used explicit bead models exhibit severe limitations, especially with respect to time step size, the necessity of artificial constraints and the lack of a sound mathematical foundation. Here we present a framework for simulations of Brownian polymer dynamics based on the finite-element method. This approach allows simulating a wide range of physical phenomena at a highly attractive computational cost on the basis of a far-developed mathematical background.

  11. Practical results from a mathematical analysis of guard patrols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indusi, Joseph P.

    1978-12-01

    Using guard patrols as a primary detection mechanism is not generally viewed as a highly efficient detection method when compared to electronic means. Many factors such as visibility, alertness, and the space-time coincidence of guard and adversary presence all have an effect on the probability of detection. Mathematical analysis of the guard patrol detection problem is related to that of classical search theory originally developed for naval search operations. The results of this analysis tend to support the current practice of using guard forces to assess and respond to previously detected intrusions and not as the primary detection mechanism. 6more » refs.« less

  12. Perception of mathematics teachers on cooperative learning method in the 21st century

    NASA Astrophysics Data System (ADS)

    Taufik, Nurshahira Alwani Mohd; Maat, Siti Mistima

    2017-05-01

    Mathematics education is one of the branches to be mastered by students to help them compete with the upcoming challenges that are very challenging. As such, all parties should work together to help increase student achievement in Mathematics education in line with the Malaysian Education Blueprint (MEB) 2010-2025. Teaching methods play a very important role in attracting and fostering student understanding and interested in learning Mathematics. Therefore, this study was conducted to identify the perceptions of teachers in carrying out cooperative methods in the teaching and learning of mathematics. Participants of this study involving 4 teachers who teach Mathematics in primary schools around the state of Negeri Sembilan. Interviews are used as a method for gathering data. The findings indicate that cooperative methods help increasing interest and understanding in the teaching and learning of mathematics. In conclusion, the teaching methods affect the interest and understanding of students in the learning of Mathematics in the classroom.

  13. Conformal Electromagnetic Particle in Cell: A Review

    DOE PAGES

    Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; ...

    2015-10-26

    We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.

  14. What Is Mathematics? An Exploration of Teachers' Philosophies of Mathematics during a Time of Curriculum Reform

    ERIC Educational Resources Information Center

    White-Fredette, Kimberly

    2009-01-01

    Current reform in mathematics teaching and learning is rooted in a changing vision of school mathematics, one that includes constructivist learning, student-centered pedagogy, and the use of worthwhile tasks (National Council of Teachers of Mathematics, 1989, 1991, 2000). This changing vision not only challenges teachers' beliefs about mathematics…

  15. Relationships of Mathematics Anxiety, Mathematics Self-Efficacy and Mathematics Performance of Adult Basic Education Students

    ERIC Educational Resources Information Center

    Watts, Beverly Kinsey

    2011-01-01

    Competent mathematical skills are needed in the workplace as well as in the college setting. Adults in Adult Basic Education classes and programs generally perform below high school level competency, but very few studies have been performed investigating the predictors of mathematical success for adults. The current study contributes to the…

  16. Unlocking Mathematics Teaching. Second Edition

    ERIC Educational Resources Information Center

    Koshy, Valsa, Ed.; Murray, Jean, Ed.

    2011-01-01

    Now in a fully updated second edition, "Unlocking Mathematics Teaching" is a comprehensive guide to teaching mathematics in the primary school. Combining theory and practice, selected experts outline the current context of mathematics education. They suggest strategies, activities and examples to help develop readers understanding and confidence…

  17. A new mathematical model and control of a three-phase AC-DC voltage source converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blasko, V.; Kaura, V.

    1997-01-01

    A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed themore » reduction of the current control loop to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital-signal processor. All results of the analysis were experimentally verified.« less

  18. Rotor Position Sensorless Control and Its Parameter Sensitivity of Permanent Magnet Motor Based on Model Reference Adaptive System

    NASA Astrophysics Data System (ADS)

    Ohara, Masaki; Noguchi, Toshihiko

    This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.

  19. Computer programming in the UK undergraduate mathematics curriculum

    NASA Astrophysics Data System (ADS)

    Sangwin, Christopher J.; O'Toole, Claire

    2017-11-01

    This paper reports a study which investigated the extent to which undergraduate mathematics students in the United Kingdom are currently taught to programme a computer as a core part of their mathematics degree programme. We undertook an online survey, with significant follow-up correspondence, to gather data on current curricula and received replies from 46 (63%) of the departments who teach a BSc mathematics degree. We found that 78% of BSc degree courses in mathematics included computer programming in a compulsory module but 11% of mathematics degree programmes do not teach programming to all their undergraduate mathematics students. In 2016, programming is most commonly taught to undergraduate mathematics students through imperative languages, notably MATLAB, using numerical analysis as the underlying (or parallel) mathematical subject matter. Statistics is a very popular choice in optional courses, using the package R. Computer algebra systems appear to be significantly less popular for compulsory first-year courses than a decade ago, and there was no mention of logic programming, functional programming or automatic theorem proving software. The modal form of assessment of computing modules is entirely by coursework (i.e. no examination).

  20. Infusing Mathematics Content into a Methods Course: Impacting Content Knowledge for Teaching

    ERIC Educational Resources Information Center

    Burton, Megan; Daane, C. J.; Giesen, Judy

    2008-01-01

    This study compared content knowledge for teaching mathematics differences between elementary pre-service teachers in a traditional versus an experimental mathematics methods course. The experimental course replaced 20 minutes of traditional methods, each class, with an intervention of elementary mathematics content. The difference between groups…

  1. Three-axis orthogonal transceiver coil for eddy current sounding

    NASA Astrophysics Data System (ADS)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  2. Is It the Intervention or the Students? Using Linear Regression to Control for Student Characteristics in Undergraduate STEM Education Research

    ERIC Educational Resources Information Center

    Theobald, Roddy; Freeman, Scott

    2014-01-01

    Although researchers in undergraduate science, technology, engineering, and mathematics education are currently using several methods to analyze learning gains from pre- and posttest data, the most commonly used approaches have significant shortcomings. Chief among these is the inability to distinguish whether differences in learning gains are due…

  3. Findings from a Pre-Kindergarten Classroom: Making the Case for STEM in Early Childhood Education

    ERIC Educational Resources Information Center

    Tippett, Christine D.; Milford, Todd M.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) in early childhood education is an area currently given little attention in the literature, which is unfortunate since young children are natural scientists and engineers. Here, we outline our mixed-methods design-based research investigation of a pre-kindergarten (Pre-K) classroom where two…

  4. Financial Literacy: Mathematics and Money Improving Student Engagement

    ERIC Educational Resources Information Center

    Attard, Catherine

    2018-01-01

    The low levels of student engagement with mathematics has been of significant concern in Australia for some time (Attard, 2013). This is a particularly important issue in mathematics education given the current attention to science, technology, engineering and mathematics (STEM) education to ensure "the continued prosperity of Australia on…

  5. Mathematics and Global Survival.

    ERIC Educational Resources Information Center

    Schwartz, Richard H.

    This resource was written to provide students with an awareness of critical issues facing the world today. In courses for college students, it can motivate their study of mathematics, teach them how to solve mathematical problems related to current global issues, provide coherence to mathematical studies through a focus on issues of human…

  6. Novice Middle-School Mathematics Teachers Learning to Promote Student Sense Making through Productive Discussion

    ERIC Educational Resources Information Center

    Yanisko, Emily Joy

    2013-01-01

    While mathematics education researchers have long characterized student performance marked by mathematical explanations, arguments, and justifications as evidence of mathematical reasoning and understanding (e.g. Schoenfeld, 1992), current education policy has begun to move in a similar direction, emphasizing sense making and mathematical…

  7. Mathematics Programs in High Schools and Two-Year Colleges.

    ERIC Educational Resources Information Center

    Taylor, Ross

    Reviewing current conditions and projecting future directions, this paper explores trends in high school mathematics and discusses their implications for two-year college education. The first section examines the secondary school mathematics program, indicating that until now this two-track curriculum has focused on precalculus mathematics for…

  8. Implementing Standards-Based Mathematics Instruction: A Casebook for Professional Development.

    ERIC Educational Resources Information Center

    Stein, Mary Kay; Smith, Margaret Schwan; Henningsen, Marjorie A.; Silver, Edward A.

    Teachers and teacher educators interested in synthesizing their current practice with new mathematics standards will welcome this highly useful volume. The QUASAR Project at the University of Pittsburgh presents prevalent cases of mathematics instruction drawn from their research of nearly 500 classroom lessons. The Mathematical Tasks…

  9. Investigations in Mathematics Education, Vol. 10, No. 1.

    ERIC Educational Resources Information Center

    Osborne, Alan R., Ed.

    Eighteen research reports related to mathematics education are abstracted and analyzed. Studies include elementary, secondary, and college mathematics education areas. A majority of the studies relate to instruction and learning. Research related to mathematics education which was reported in RESOURCES IN EDUCATION and CURRENT INDEX TO JOURNALS IN…

  10. The Design of Lessons Using Mathematics Analysis Software to Support Multiple Representations in Secondary School Mathematics

    ERIC Educational Resources Information Center

    Pierce, Robyn; Stacey, Kaye; Wander, Roger; Ball, Lynda

    2011-01-01

    Current technologies incorporating sophisticated mathematical analysis software (calculation, graphing, dynamic geometry, tables, and more) provide easy access to multiple representations of mathematical problems. Realising the affordances of such technology for students' learning requires carefully designed lessons. This paper reports on design…

  11. Social Justice Lessons and Mathematics

    ERIC Educational Resources Information Center

    Johnson, Jason D.

    2011-01-01

    Assigning activities based on current or past events allows students to explore mathematics in a social context. Using social justice events in the mathematics classroom is a way for teachers to provide contextual problems that will reach all students and promote equity. Learning mathematics in an environment in which social issues are explored…

  12. SECONDARY SCHOOL MATHEMATICS CURRICULUM IMPROVEMENT STUDY. FINAL REPORT.

    ERIC Educational Resources Information Center

    FEHR, HOWARD F.

    THIS SECONDARY SCHOOL MATHEMATICS CURRICULUM IMPROVEMENT STUDY GROUP (SSMCIS), COMPOSED OF BOTH AMERICAN AND EUROPEAN EDUCATORS, WAS GUIDED BY TWO MAIN OBJECTIVES--(1) TO CONSTRUCT AND EVALUATE A UNIFIED SECONDARY SCHOOL MATHEMATICS PROGRAM FOR GRADES 7-12 THAT WOULD TAKE THE CAPABLE STUDENT WELL INTO CURRENT COLLEGE MATHEMATICS, AND (2) DETERMINE…

  13. Information Literacy in Mathematics Undergraduate Education: Where Does It Stand Today?

    ERIC Educational Resources Information Center

    Bussmann, Jeffra Diane; Bond, Jeffrey D.

    2015-01-01

    The published literature on information literacy in mathematics is relatively sparse. This article explores the current state of information literacy initiatives in undergraduate mathematics. The authors survey academic librarians (n = 118) who liaise with mathematics departments in order to gain an understanding of their practices and attitudes…

  14. Prospective Elementary Teachers' Aesthetic Experience and Relationships to Mathematics

    ERIC Educational Resources Information Center

    Chen, Rong-Ji

    2017-01-01

    Previous research has adopted various approaches to examining teachers' and students' relationships to mathematics. The current study extended this line of research and investigated six prospective elementary school teachers' experiences in mathematics and how they saw themselves as learners of mathematics. One-on-one interviews with the…

  15. Novel Strategy for Discrimination of Transcription Factor Binding Motifs Employing Mathematical Neural Network

    NASA Astrophysics Data System (ADS)

    Sugimoto, Asuka; Sumi, Takuya; Kang, Jiyoung; Tateno, Masaru

    2017-07-01

    Recognition in biological macromolecular systems, such as DNA-protein recognition, is one of the most crucial problems to solve toward understanding the fundamental mechanisms of various biological processes. Since specific base sequences of genome DNA are discriminated by proteins, such as transcription factors (TFs), finding TF binding motifs (TFBMs) in whole genome DNA sequences is currently a central issue in interdisciplinary biophysical and information sciences. In the present study, a novel strategy to create a discriminant function for discrimination of TFBMs by constituting mathematical neural networks (NNs) is proposed, together with a method to determine the boundary of signals (TFBMs) and noise in the NN-score (output) space. This analysis also leads to the mathematical limitation of discrimination in the recognition of features representing TFBMs, in an information geometrical manifold. Thus, the present strategy enables the identification of the whole space of TFBMs, right up to the noise boundary.

  16. How to begin a new topic in mathematics: does it matter to students' performance in mathematics?

    PubMed

    Ma, Xin; Papanastasiou, Constantinos

    2006-08-01

    The authors use Canadian data from the Third International Mathematics and Science Study to examine six instructional methods that mathematics teachers use to introduce new topics in mathematics on performance of eighth-grade students in six mathematical areas (mathematics as a whole, algebra, data analysis, fraction, geometry, and measurement). Results of multilevel analysis with students nested within schools show that the instructional methods of having the teacher explain the rules and definitions and looking at the textbook while the teacher talks about it had little instructional effects on student performance in any mathematical area. In contrast, the instructional method in which teachers try to solve an example related to the new topic was effective in promoting student performance across all mathematical areas.

  17. Promoting Students' Self-Directed Learning Ability through Teaching Mathematics for Social Justice

    ERIC Educational Resources Information Center

    Voss, Richard; Rickards, Tony

    2016-01-01

    Mathematics is a subject which is often taught using abstract methods and processes. These methods by their very nature may for students alienate the relationship between Mathematics and real life situations. Further, these abstract methods and processes may disenfranchise students from becoming self-directed learners of Mathematics. A solution to…

  18. Improvement of automatic control system for high-speed current collectors

    NASA Astrophysics Data System (ADS)

    Sidorov, O. A.; Goryunov, V. N.; Golubkov, A. S.

    2018-01-01

    The article considers the ways of regulation of pantographs to provide quality and reliability of current collection at high speeds. To assess impact of regulation was proposed integral criterion of the quality of current collection, taking into account efficiency and reliability of operation of the pantograph. The study was carried out using mathematical model of interaction of pantograph and catenary system, allowing to assess contact force and intensity of arcing at the contact zone at different movement speeds. The simulation results allowed us to estimate the efficiency of different methods of regulation of pantographs and determine the best option.

  19. A mathematical programming approach for sequential clustering of dynamic networks

    NASA Astrophysics Data System (ADS)

    Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia

    2016-02-01

    A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.

  20. The Implementation of APIQ Creative Mathematics Game Method in the Subject Matter of Greatest Common Factor and Least Common Multiple in Elementary School

    NASA Astrophysics Data System (ADS)

    Rahman, Abdul; Saleh Ahmar, Ansari; Arifin, A. Nurani M.; Upu, Hamzah; Mulbar, Usman; Alimuddin; Arsyad, Nurdin; Ruslan; Rusli; Djadir; Sutamrin; Hamda; Minggi, Ilham; Awi; Zaki, Ahmad; Ahmad, Asdar; Ihsan, Hisyam

    2018-01-01

    One of causal factors for uninterested feeling of the students in learning mathematics is a monotonous learning method, like in traditional learning method. One of the ways for motivating students to learn mathematics is by implementing APIQ (Aritmetika Plus Intelegensi Quantum) creative mathematics game method. The purposes of this research are (1) to describe students’ responses toward the implementation of APIQ creative mathematics game method on the subject matter of Greatest Common Factor (GCF) and Least Common Multiple (LCM) and (2) to find out whether by implementing this method, the student’s learning completeness will improve or not. Based on the results of this research, it is shown that the responses of the students toward the implementation of APIQ creative mathematics game method in the subject matters of GCF and LCM were good. It is seen in the percentage of the responses were between 76-100%. (2) The implementation of APIQ creative mathematics game method on the subject matters of GCF and LCM improved the students’ learning.

  1. Symbolic-Graphical Calculators: Teaching Tools for Mathematics.

    ERIC Educational Resources Information Center

    Dick, Thomas P.

    1992-01-01

    Explores the role that symbolic-graphical calculators can play in the current calls for reform in the mathematics curriculum. Discusses symbolic calculators and graphing calculators in relation to problem solving, computational skills, and mathematics instruction. (MDH)

  2. Integration science and distributed networks

    NASA Astrophysics Data System (ADS)

    Landauer, Christopher; Bellman, Kirstie L.

    2002-07-01

    Our work on integration of data and knowledge sources is based in a common theoretical treatment of 'Integration Science', which leads to systematic processes for combining formal logical and mathematical systems, computational and physical systems, and human systems and organizations. The theory is based on the processing of explicit meta-knowledge about the roles played by the different knowledge sources and the methods of analysis and semantic implications of the different data values, together with information about the context in which and the purpose for which they are being combined. The research treatment is primarily mathematical, and though this kind of integration mathematics is still under development, there are some applicable common threads that have emerged already. Instead of describing the current state of the mathematical investigations, since they are not yet crystallized enough for formalisms, we describe our applications of the approach in several different areas, including our focus area of 'Constructed Complex Systems', which are complex heterogeneous systems managed or mediated by computing systems. In this context, it is important to remember that all systems are embedded, all systems are autonomous, and that all systems are distributed networks.

  3. Prospective and current secondary mathematics teachers' criteria for evaluating mathematical cognitive technologies

    NASA Astrophysics Data System (ADS)

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2017-07-01

    As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study examines the criteria prospective and current secondary mathematics teachers use and value most when evaluating mathematical cognitive technologies (MCTs). Results indicate all groups of participants developed criteria focused on how well an MCT represents the mathematics, student interaction and engagement with the MCT, and whether the MCT was user-friendly. However, none of their criteria focused on how well an MCT would reflect students' solution strategies or illuminate their thinking. In addition, there were some differences between the criteria created by participants with and without teaching experience, specifically the types of supports available in an MCT. Implications for mathematics teacher educators are discussed.

  4. What Math Matters? Types of Mathematics Knowledge and Relationships to Methods Course Performance

    ERIC Educational Resources Information Center

    Kajander, Ann; Holm, Jennifer

    2016-01-01

    This study investigated the effect of a departmental focus on enhanced mathematics knowledge for teaching on overall performance in upper elementary mathematics methods courses. The study examined the effect of performance on a new course in mathematics for teaching on performance at the methods course level. In addition, the effect of performance…

  5. Structuring an Undergraduate Mathematics Seminar Dealing with Options and Hedging

    ERIC Educational Resources Information Center

    Prevot, K. J.

    2006-01-01

    Offering mathematics majors the opportunity to engage in current, real-world applications can be an important enhancement to their undergraduate course curriculum. Instead of focusing on the traditional topic areas in pure and/or applied mathematics, one may structure a seminar course for senior mathematics majors by concentrating on a specific…

  6. Influences on Mathematical Preparation of Secondary School Teachers of Mathematics.

    ERIC Educational Resources Information Center

    Johnson, Carl S.; Byars, Jackson A.

    The results of a survey related to the impact of various recommendations on preservice content programs for teachers of mathematics are reported. The content of current programs is compared to the recommendations of the Committee on Undergraduate Programs in Mathematics (CUPM). The acceptance of CUPM and the Cambridge Conference on School…

  7. Relationship between Students' Diagnostic Assessment and Achievement in a Pre-University Mathematics Course

    ERIC Educational Resources Information Center

    Shim, George Tan Geok; Shakawi, Abang Mohammad Hudzaifah Abang; Azizan, Farah Liyana

    2017-01-01

    Educators have always highlighted the importance of mathematics mastery in education for many years. With the current emphasis of Science, Technology, Engineering and Mathematics (STEMs) education, mathematics mastery is even more vital because it supports the learning and mastery of science fields such as engineering and science. Furthermore, in…

  8. The Effects of Teacher Collaboration in Grade 9 Applied Mathematics

    ERIC Educational Resources Information Center

    Egodawatte, Gunawardena; McDougall, Douglas; Stoilescu, Dorian

    2011-01-01

    The current emphasis of many mathematics education reform documents is on the need to change the environment of mathematics classrooms from the transmission of knowledge by the teacher to the transaction of knowledge between the teacher and the students which promotes mathematical investigation and exploration. In this article, we discuss the…

  9. Rethinking Teacher Preparation: Conceptualizing Skills and Knowledge of Novice Teachers of Secondary Mathematics

    ERIC Educational Resources Information Center

    Cummings, Margarita Borelli

    2010-01-01

    This dissertation examines the extent to which novice secondary mathematics teachers (licensed and currently teaching in Utah) perceive they are prepared to do the work of teaching secondary mathematics. It first examined if novice secondary mathematics teachers' perceptions of their knowledge and skills of doing their work fell into four…

  10. Publisher's Announcement

    NASA Astrophysics Data System (ADS)

    Scriven, Neil

    2003-12-01

    We are delighted to announce that the new Editor-in-Chief of Journal of Physics A: Mathematical and General for 2004 will be Professor Carl M Bender of Washington University, St. Louis. Carl will, with the help of his world class editorial board, maintain standards of scientific rigour whilst ensuring that research published is of the highest importance. Carl attained his first degree in physics at Cornell University before studying for his PhD at Harvard. He later worked at The Institute for Advanced Study in Princeton and at MIT before assuming his current position at Washington University, St Louis. He has been a visiting professor at Technion, Haifa, and Imperial College, London and a scientific consultant for Los Alamos National Laboratory. His main expertise is in using classical applied mathematics to solve a broad range of problems in high-energy theoretical physics and mathematical physics. Since the publication of his book Advanced Mathematical Methods for Scientists and Engineers, written with Steven Orszag, he has been regarded as an expert on the subject of asymptotic analysis and perturbative methods. `Carl publishes his own internationally-important research in the journal and has been an invaluable, energetic member of the Editorial Board for some time' said Professor Ed Corrigan, Carl's predecessor as Editor, `he will be an excellent Editor-in-Chief'. Our grateful thanks and best wishes go to Professor Corrigan who has done a magnificent job for the journal during his five-year tenure.

  11. Integrating technology education concepts into China's educational system

    NASA Astrophysics Data System (ADS)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  12. The work of Glenn F. Webb.

    PubMed

    Fitzgibbon, William E

    2015-08-01

    It is my distinct pleasure to introduce this volume honoring the 70th birthday of Professor Glenn F. Webb. The existence of this compiled volume is in itself a testimony of Glenn's dedication to, his pursuit of, and his achievement of scientific excellence. As we honor Glenn, we honor what is excellent in our profession. Aristotle clearly articulated his concept of excellence. ``We are what we repeatedly do. Excellence, then, is not an act, but a habit." As we look over the course of his career we observe ample evidence of Glenn Webb's habitual practice of excellence. Beginning with Glenn's first paper [1], one observes a constant stream of productivity and high impact work. Glenn has authored or co-authored over 160 papers, written one research monograph, and co-edited six volumes. He has delivered plenary lectures, colloquia, and seminars across the globe, and he serves on the editorial boards of 11 archival journals. He is a Fellow of the American Mathematical Society. Glenn's scientific career chronicles an evolution of scientific work that began with his interest in nonlinear semigroup theory and leads up to his current activity in biomedical mathematics. At each stage we see seminal contributions in the areas of nonlinear semigroups, functional differential equations, infinite dimensional dynamical systems, mathematical population dynamics, mathematical biology and biomedical mathematics. Glenn's work is distinguished by a clarity and accessibility of exposition, a precise identification and description of the problem or model under consideration, and thorough referencing. He uses elementary methods whenever possible but couples this with an ability to employ power abstract methods when necessitated by the problem.

  13. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D. L.

    2015-01-01

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  14. Nuclear Data Uncertainty Quantification: Past, Present and Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L., E-mail: Donald.L.Smith@anl.gov

    2015-01-15

    An historical overview is provided of the mathematical foundations of uncertainty quantification and the roles played in the more recent past by nuclear data uncertainties in nuclear data evaluations and nuclear applications. Significant advances that have established the mathematical framework for contemporary nuclear data evaluation methods, as well as the use of uncertainty information in nuclear data evaluation and nuclear applications, are described. This is followed by a brief examination of the current status concerning nuclear data evaluation methodology, covariance data generation, and the application of evaluated nuclear data uncertainties in contemporary nuclear technology. A few possible areas for futuremore » investigation of this subject are also suggested.« less

  15. A Formal Approach to Requirements-Based Programming

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    No significant general-purpose method is currently available to mechanically transform system requirements into a provably equivalent model. The widespread use of such a method represents a necessary step toward high-dependability system engineering for numerous application domains. Current tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The "gap" unfilled by such tools and methods is that the formal models cannot be proven to be equivalent to the requirements. We offer a method for mechanically transforming requirements into a provably equivalent formal model that can be used as the basis for code generation and other transformations. This method is unique in offering full mathematical tractability while using notations and techniques that are well known and well trusted. Finally, we describe further application areas we are investigating for use of the approach.

  16. A Comparison of Pre- and Post- Levels of Mathematics Anxiety among Preservice Teacher Candidates Enrolled in a Mathematics Methods Course.

    ERIC Educational Resources Information Center

    Sloan, Tina Rye; Vinson, Beth; Haynes, Jonita; Gresham, Regina

    This study examined the effectiveness of a methods course in the reduction of mathematics anxiety levels among three groups of preservice teachers majoring in elementary education. The sample included 61 novices enrolled in a course entitled Mathematics for the Young Child. This methods course utilized concrete manipulatives and active learning…

  17. CFD Analysis of the SBXC Glider Airframe

    DTIC Science & Technology

    2016-06-01

    mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the previous research data...greater than 15 m/s. 14. SUBJECT TERMS finite element method, computational fluid dynamics, Y Plus, mesh element quality, aerodynamic data, fluid...based mathematically on finite element methods. To validate and verify the methodology developed, a mathematical comparison was made with the

  18. Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety

    PubMed Central

    2012-01-01

    Background Mathematics anxiety (MA), a state of discomfort associated with performing mathematical tasks, is thought to affect a notable proportion of the school age population. Some research has indicated that MA negatively affects mathematics performance and that girls may report higher levels of MA than boys. On the other hand some research has indicated that boys’ mathematics performance is more negatively affected by MA than girls’ performance is. The aim of the current study was to measure girls’ and boys’ mathematics performance as well as their levels of MA while controlling for test anxiety (TA) a construct related to MA but which is typically not controlled for in MA studies. Methods Four-hundred and thirty three British secondary school children in school years 7, 8 and 10 completed customised mental mathematics tests and MA and TA questionnaires. Results No gender differences emerged for mathematics performance but levels of MA and TA were higher for girls than for boys. Girls and boys showed a positive correlation between MA and TA and a negative correlation between MA and mathematics performance. TA was also negatively correlated with mathematics performance, but this relationship was stronger for girls than for boys. When controlling for TA, the negative correlation between MA and performance remained for girls only. Regression analyses revealed that MA was a significant predictor of performance for girls but not for boys. Conclusions Our study has revealed that secondary school children experience MA. Importantly, we controlled for TA which is typically not controlled for in MA studies. Girls showed higher levels of MA than boys and high levels of MA were related to poorer levels of mathematics performance. As well as potentially having a detrimental effect on ‘online’ mathematics performance, past research has shown that high levels of MA can have negative consequences for later mathematics education. Therefore MA warrants attention in the mathematics classroom, particularly because there is evidence that MA develops during the primary school years. Furthermore, our study showed no gender difference in mathematics performance, despite girls reporting higher levels of MA. These results might suggest that girls may have had the potential to perform better than boys in mathematics however their performance may have been attenuated by their higher levels of MA. Longitudinal research is needed to investigate the development of MA and its effect on mathematics performance. PMID:22769743

  19. Middle/High School Students in the Research Laboratory: A Summer Internship Program Emphasizing the Interdisciplinary Nature of Biology

    ERIC Educational Resources Information Center

    McMiller, Tracee; Lee, Tameshia; Saroop, Ria; Green, Tyra; Johnson, Casonya M.

    2006-01-01

    We describe an eight-week summer Young Scientist in Training (YSIT) internship program involving middle and high school students. This program exposed students to current basic research in molecular genetics, while introducing or reinforcing principles of the scientific method and demonstrating the uses of mathematics and chemistry in biology. For…

  20. A Comparative Analysis of the Minuteman Education Programs as Currently Offered at Six SAC Bases.

    DTIC Science & Technology

    1980-06-01

    Principles of Marketing 3 Business Statistics 3 Business Law 3 Management Total... Principles of Marketing 3 Mathematics Methods I Total prerequisite hours 26 Required Graduate Courses Policy Formulation and Administration 3 Management...Business and Economic Statistics 3 Intermediate Business and Economic Statistics 3 Principles of Management 3 Corporation Finance 3 Principles of Marketing

  1. Predicting Reading Comprehension Academic Achievement in Late Adolescents with Velo-Cardio-Facial (22q11.2 Deletion) Syndrome (VCFS): A Longitudinal Study

    ERIC Educational Resources Information Center

    Antshel, K.; Hier, B.; Fremont, W.; Faraone, S. V.; Kates, W.

    2014-01-01

    Background: The primary objective of the current study was to examine the childhood predictors of adolescent reading comprehension in velo-cardio-facial syndrome (VCFS). Although much research has focused on mathematics skills among individuals with VCFS, no studies have examined predictors of reading comprehension. Methods: 69 late adolescents…

  2. The Goddard Profiling Algorithm (GPROF): Description and Current Applications

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Yang, Song; Stout, John E.; Grecu, Mircea

    2004-01-01

    Atmospheric scientists use different methods for interpreting satellite data. In the early days of satellite meteorology, the analysis of cloud pictures from satellites was primarily subjective. As computer technology improved, satellite pictures could be processed digitally, and mathematical algorithms were developed and applied to the digital images in different wavelength bands to extract information about the atmosphere in an objective way. The kind of mathematical algorithm one applies to satellite data may depend on the complexity of the physical processes that lead to the observed image, and how much information is contained in the satellite images both spatially and at different wavelengths. Imagery from satellite-borne passive microwave radiometers has limited horizontal resolution, and the observed microwave radiances are the result of complex physical processes that are not easily modeled. For this reason, a type of algorithm called a Bayesian estimation method is utilized to interpret passive microwave imagery in an objective, yet computationally efficient manner.

  3. "Walking in a Foreign and Unknown Landscape": Studying the History of Mathematics in Initial Teacher Education

    ERIC Educational Resources Information Center

    Povey, Hilary

    2014-01-01

    This article develops the argument that students in initial teacher education benefit in terms of who they are becoming from developing awareness of and engagement in the history of mathematics. Initially, current school mathematics practices in the UK are considered and challenged. Then the role of teachers' relationship to mathematical subject…

  4. Understanding the Technological, Pedagogical, and Mathematical Issues That Emerge as Secondary Mathematics Teachers Design Lessons That Integrate Technology

    ERIC Educational Resources Information Center

    Gonzalez, Marggie Denise

    2016-01-01

    This multiple case study examines four groups of secondary mathematics teachers engaged in a Lesson Study approach to professional development where they planned and taught lessons that integrate technology. Informed by current literature, a framework was developed to focus on the dimensions of teacher's knowledge to teach mathematics with…

  5. A Longitudinal Assessment of Early Acceleration of Students in Mathematics on Growth in Mathematics Achievement

    ERIC Educational Resources Information Center

    Ma, X.

    2005-01-01

    Early acceleration of students in mathematics (in the form of early access to formal abstract algebra) has been a controversial educational issue. The current study examined the rate of growth in mathematics achievement of accelerated gifted, honors, and regular students across the entire secondary years (Grades 7-12), in comparison to their…

  6. A COMPARISON OF MATHEMATICS PROGRAMS FOR ABLE JUNIOR HIGH SCHOOL STUDENTS, VOLUME 1 - FINAL REPORT.

    ERIC Educational Resources Information Center

    GOLDBERG, MIRIAM L.; AND OTHERS

    THE TALENTED YOUTH PROJECT (TYP) MATHEMATICS STUDY WAS DESIGNED AS A STUDY TO COMPARE THE EFFECTIVENESS OF VARIOUS CURRICULUM PATTERNS AND PRACTICES IN MATHEMATICS EDUCATION CURRENTLY USED WITH ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS. THE SAMPLE CONSISTED OF 51 CLASSES AND 6 MATHEMATICS PROGRAMS. THE LORGE-THORNDIKE VERBAL INTELLIGENCE…

  7. (Re)Envisioning Mathematics Education: Examining Equity and Social Justice in an Elementary Mathematics Methods Course

    ERIC Educational Resources Information Center

    Koestler, Courtney

    2010-01-01

    In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…

  8. The Search for Adult Assessment Procedures.

    ERIC Educational Resources Information Center

    Usnick, Virginia; Babbitt, Beatrice C.

    1993-01-01

    Reviewed 12 currently available mathematics assessment tools to determine whether they would be appropriate for use in a college-level mathematics clinic. Tests were assigned to two domains: cognitive and mathematical content. Major deficiencies of the tests are cited. (Contains 15 references.) (MDH)

  9. Business Mathematics Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This curriculum guide for teaching business mathematics in the Connecticut Vocational-Technical School System is based on the latest thinking of instructors in the field, suggestions from mathematics authorities, and current instructional approaches in education. The curriculum guide consists of six sections: (1) career relationships and…

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Jih-Sheng

    This paper introduces control system design based softwares, SIMNON and MATLAB/SIMULINK, for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor, an inverter, and a motor. The system components, featuring discrete or continuous, linear or nonlinear, are modeled in mathematical equations. Inverter control methods,such as pulse-width-modulation and hysteresis current control, are expressed in either computer algorithms or digital circuits. After describing component models and control methods, computer programs are then developed for complete systems simulation. Simulation results are mainly used for studying system performances, such as input and outputmore » current harmonics, torque ripples, and speed responses. Key computer programs and simulation results are demonstrated for educational purposes.« less

  11. Gender: Its relation to Mathematical Creative Thinking Skill

    NASA Astrophysics Data System (ADS)

    Permatasari, H. R.; Wahyudin, W.

    2017-09-01

    Mathematical creative thinking skill is one of the most important capabilities in the present century, both for men and women. One of the current issues is about gender and how gender mainstreaming can be realized optimally. The purpose of this study is to determine the comparison of the mathematical creative thinking skill increasing between male and female students after the application of Team Games Tournament (TGT) learning. This research was conducted at 28 students in the 4th grade of an elementary school in Bandung City. The research method used is quasi experiment because it is aimed to test wether there are differences in mathematical creative thinking skill improving between male and female students after being treatment in the form of learnig with TGT. The result of this research is that there is no difference in mathematical creative thinking skill improving between male and female students after the application of TGT learning. It is influenced by some factors such as how the teacher treats male and female with the same treatment in learning process. Recommendation of this research that can be done further research about this topic more deeply. Beside that, the teacher especially in elementary school can use the TGT learning application to reduce the gap between male and female students during the learning process.

  12. Synchronous Online Collaborative Professional Development for Elementary Mathematics Teachers

    ERIC Educational Resources Information Center

    Francis, Krista; Jacobsen, Michele

    2013-01-01

    Math is often taught poorly emphasizing rote, procedural methods rather than creativity and problem solving. Alberta Education developed a new mathematics curriculum to transform mathematics teaching to inquiry driven methods. This revised curriculum provides a new vision for mathematics and creates opportunities and requirements for professional…

  13. Leadership Training in Science, Technology, Engineering and Mathematics Education in Bulgaria

    ERIC Educational Resources Information Center

    Bairaktarova, Diana; Cox, Monica F.; Evangelou, Demetra

    2011-01-01

    This synthesis paper explores current leadership training in science, technology, engineering and mathematics (STEM) education in Bulgaria. The analysis begins with discussion of global factors influencing the implementation of leadership training in STEM education in general and then presents information about the current status of leadership…

  14. Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.

    PubMed

    Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian

    2014-01-01

    In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).

  15. The Layering of Mathematical Interpretations through Digital Media

    ERIC Educational Resources Information Center

    Calder, Nigel

    2012-01-01

    How might understanding emerge when learners engage mathematical phenomena through digital technologies? This paper considers the ways children's mathematical thinking was influenced by their interpretations through various pedagogical discourses and how understanding emerged through those various filters. Current research into using digital…

  16. Mathematics and academic diversity in Japan.

    PubMed

    Woodward, John; Ono, Yumiko

    2004-01-01

    Japanese education has been the subject of considerable research and educational commentary in the United States over the last 20 years. Since the early 1990s, there has been increased interest in Japanese methods for teaching mathematics, and the Third International Mathematics and Science Study has accelerated American interest in Japanese methods. Observational studies, teacher and student surveys, and analyses of classroom videotapes have provided a rich picture of how the Japanese teach the whole class. However, little has been written about how academically low-achieving math students fare in Japanese schools. This article briefly summarizes Japanese methods for teaching mathematics and describes how the educational system addresses academic diversity. It concludes with a description of a method for teaching mathematics that some Japanese mathematics educators feel has promise for students with learning disabilities.

  17. A Quantitative and Qualitative Study of Math Anxiety among Preservice Teachers

    ERIC Educational Resources Information Center

    Sloan, Tina Rye

    2010-01-01

    This project investigated the effects of a standards-based mathematics methods course on the mathematics anxiety levels of preservice teachers. The qualitative portion of the study examined aspects of a math methods course that affected mathematics anxiety levels and the antecedents of mathematics anxiety. Findings revealed a significant…

  18. Mathematical Difficulty: Does Early Intervention Enhance Mathematical Performance?

    ERIC Educational Resources Information Center

    Graham, Jennifer

    2008-01-01

    The need to ask educators about their opinions on the subject to what extent early intervention methods enhance mathematical performance is long overdue. The purpose of this quantitative research is to examine the extent to which teachers agree that early intervention methods enhance the mathematical performance of students with mathematical…

  19. Turkish Prospective Middle School Mathematics Teachers' Beliefs and Perceived Self-Efficacy Beliefs Regarding the Use of Origami in Mathematics Education

    ERIC Educational Resources Information Center

    Arslan, Okan; Isiksal-Bostan, Mine

    2016-01-01

    The purpose of this study was to investigate beliefs and perceived self-efficacy beliefs of Turkish prospective elementary mathematics teachers in using origami in mathematics education. Furthermore, gender differences in their beliefs and perceived self-efficacy beliefs were investigated. Data for the current study was collected via Origami in…

  20. Examining the Relationship between Secondary Mathematics Teachers' Self-Efficacy, Attitudes, and Use of Technology to Support Communication and Mathematics Literacy

    ERIC Educational Resources Information Center

    Letwinsky, Karim Medico

    2017-01-01

    The rich language surrounding mathematical concepts often is reduced in many classrooms to a narrow process of memorizing isolated procedures with little context. This approach has proven to be detrimental to students' ability to understand mathematics at deeper levels and remain engaged with this content. The current generation of students values…

  1. "Let's Count": Improving Community Approaches to Early Years Mathematics Learning, Teaching and Dispositions through Noticing, Exploring and Talking about Mathematics

    ERIC Educational Resources Information Center

    Perry, Bob; Hampshire, Ann; Gervaxoni, Ann; O'Neill, Will

    2016-01-01

    "Let's Count" is a preschool mathematics intervention implemented by The Smith Family from 2012 to the present in "disdvantaged" communities across Australia. It is based on current mathematics and early childhood education research and aligns with the Early Years Learning Framework. Let's Count has been shown to be effective…

  2. Simulation of Electrical Characteristics of a Solar Panel

    NASA Astrophysics Data System (ADS)

    Obukhov, S.; Plotnikov, I.; Kryuchkova, M.

    2016-06-01

    The fast-growing photovoltaic system market leads to the necessity of the informed choice of major energy components and optimization of operating conditions in order to improve energy efficiency. Development of mathematical models of the main components of photovoltaic systems to ensure their comprehensive study is an urgent problem of improving and practical using of the technology of electrical energy production. The paper presents a mathematical model of the solar module implemented in the popular software MATLAB/Simulink. Equivalent circuit of the solar cell with a diode parallel without derived resistance is used for modelling. The serie8s resistance of the solar module is calculated by Newton's iterative method using the data of its technical specifications. It ensures high precision of simulation. Model validity was evaluated by the well-known technical characteristics of the module Solarex MSX 60. The calculation results of the experiment showed that the obtained current-voltage and current-watt characteristics of the model are compatible with those of the manufacturer.

  3. The Popularization of China's Higher Education and Its Influence on University Mathematics Education

    ERIC Educational Resources Information Center

    Jing, Tang

    2007-01-01

    This paper introduces the current situation of the popular Chinese university education, points out the impact of popularized Chinese higher education on its university mathematics education, and presents the actualities and existing problems of university mathematics education research in China.

  4. A Cryptological Way of Teaching Mathematics

    ERIC Educational Resources Information Center

    Caballero-Gil, Pino; Bruno-Castaneda, Carlos

    2007-01-01

    This work addresses the subject of mathematics education at secondary schools from a current and stimulating point of view intimately related to computational science. Cryptology is a captivating way of introducing into the classroom different mathematical subjects such as functions, matrices, modular arithmetic, combinatorics, equations,…

  5. A Note on Discrete Mathematics and Calculus.

    ERIC Educational Resources Information Center

    O'Reilly, Thomas J.

    1987-01-01

    Much of the current literature on the topic of discrete mathematics and calculus during the first two years of an undergraduate mathematics curriculum is cited. A relationship between the recursive integration formulas and recursively defined polynomials is described. A Pascal program is included. (Author/RH)

  6. Mathematics Equity. A Resource Book.

    ERIC Educational Resources Information Center

    Tyree, Eddy; And Others

    Provided in this document is a brief summary of current research on equity in mathematics, readings on the topic, and lists of selected programs and resource materials. Readings presented include: "Teaching Mathematics in a Multicultural Setting: Some Considerations when Teachers and Students are of Differing Cultural Backgrounds"…

  7. An Annotated Bibliography of Literature Integrating Organizational and Systems Theory

    DTIC Science & Technology

    1985-09-01

    believed to be representative of current thinking on the problem as it is defined in this particular effort. 4. Abstracting For abstracting purposes...individual concept or isolated case which defies mathematical description or classical empirical validation) or nomothetic (pertaining to the abstract ...and to induce change in organizations - laboratory training. Laboratory training is a method used to promote changes in the learning process itself

  8. Student Reflections on Learning with Challenging Tasks: "I Think the Worksheets Were Just for Practice, and the Challenges Were for Maths"

    ERIC Educational Resources Information Center

    Russo, James; Hopkins, Sarah

    2017-01-01

    The current study considered young students' (7 and 8 years old) experiences and perceptions of mathematics lessons involving challenging (i.e. cognitively demanding) tasks. We used the Constant Comparative Method to analyse the interview responses (n = 73) regarding what work artefacts students were most proud of creating and why. Five themes…

  9. Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty

    Treesearch

    Katharine White; Jennifer Pontius; Paul Schaberg

    2014-01-01

    Current remote sensing studies of phenology have been limited to coarse spatial or temporal resolution and often lack a direct link to field measurements. To address this gap, we compared remote sensing methodologies using Landsat Thematic Mapper (TM) imagery to extensive field measurements in a mixed northern hardwood forest. Five vegetation indices, five mathematical...

  10. Thermal loading in the laser holography nondestructive testing of a composite structure

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Kurtz, R. L.

    1975-01-01

    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.

  11. Mathematics and Comprehensive Ideals

    ERIC Educational Resources Information Center

    Watson, Anne

    2011-01-01

    This article revisits methods and debates about teaching mathematics that were common in the 1980s and early 1990s, and then moves up to date with the findings from three mathematics departments that set out to make a difference for their lowest attaining students. The methods they used were distinctly focused on core mathematical ideas, and how…

  12. Reframing Research on Methods Courses to Inform Mathematics Teacher Educators' Practice

    ERIC Educational Resources Information Center

    Kastberg, Signe E.; Tyminski, Andrew M.; Sanchez, Wendy B.

    2017-01-01

    Calls have been made for the creation of a shared knowledge base in mathematics teacher education with the power to inform the design of scholarly inquiry and mathematics teacher educators' (MTEs) scholarly practices. Focusing on mathematics methods courses, we summarize and contribute to literature documenting activities MTEs use in mathematics…

  13. Examining Validity of Sources of Mathematics Self-Efficacy Scale in Turkey

    ERIC Educational Resources Information Center

    Kandemir, Mehmet Ali; Akbas-Perkmen, Rahile

    2017-01-01

    The main purpose of the current study is to examine the construct, convergent and discriminant validity of the Sources of Mathematics Self-Efficacy Scale (Usher & Pajares, 2009) in a Turkish sample. Bandura's Social Cognitive Theory (1986) served as the theoretical framework for the current study. According to Bandura (1986), people's…

  14. Geometry Students' Hedged Statements and Their Self-Regulation of Mathematics

    ERIC Educational Resources Information Center

    Kosko, Karl W.

    2012-01-01

    Statements conveying a degree of certainty or doubt, in the form of hedging, have been linked with logical inference in students' talk (Rowland, 2000). Considering the current emphasis on increasing student autonomy for effective mathematical discourse, I posit a relationship between hedging and student autonomy. In the current study, high school…

  15. Mathematical models used in segmentation and fractal methods of 2-D ultrasound images

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Moraru, Luminita; Bibicu, Dorin

    2012-11-01

    Mathematical models are widely used in biomedical computing. The extracted data from images using the mathematical techniques are the "pillar" achieving scientific progress in experimental, clinical, biomedical, and behavioural researches. This article deals with the representation of 2-D images and highlights the mathematical support for the segmentation operation and fractal analysis in ultrasound images. A large number of mathematical techniques are suitable to be applied during the image processing stage. The addressed topics cover the edge-based segmentation, more precisely the gradient-based edge detection and active contour model, and the region-based segmentation namely Otsu method. Another interesting mathematical approach consists of analyzing the images using the Box Counting Method (BCM) to compute the fractal dimension. The results of the paper provide explicit samples performed by various combination of methods.

  16. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  17. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    ERIC Educational Resources Information Center

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  18. Examining the Relationships among Mathematics Coaches and Specialists, Student Achievement, and Disability Status: A Multilevel Analysis Using National Assessment of Educational Progress Data

    ERIC Educational Resources Information Center

    Harbour, Kristin E.; Adelson, Jill L.; Pittard, Caroline M.; Karp, Karen S.

    2018-01-01

    Using restricted-use data from the 2011 National Assessment of Educational Progress mathematics assessment, the current study examined the relationship between the presence of elementary mathematics coaches and specialists (MCSs) and the mathematics achievement of more than 190,000 fourth-grade students in more than 7,400 schools nationwide. In…

  19. Elementary Teachers' Mathematical Knowledge for Teaching Prerequisite Algebra Concepts

    ERIC Educational Resources Information Center

    Welder, Rachael M.; Simonsen, Linda M.

    2011-01-01

    The current study investigated the effects of an undergraduate mathematics content course for pre-service elementary teachers. The participants' content knowledge was quantitatively measured using an instrument comprised of items from the Mathematical Knowledge for Teaching Measures (Hill, Schilling, & Ball, 2004). Using a one-group…

  20. Problem Solvers: Problem--Jesse's Train

    ERIC Educational Resources Information Center

    James, Julie; Steimle, Alice

    2014-01-01

    Persevering in problem solving and constructing and critiquing mathematical arguments are some of the mathematical practices included in the Common Core State Standards for Mathematics (CCSSI 2010). To solve unfamiliar problems, students must make sense of the situation and apply current knowledge. Teachers can present such opportunities by…

  1. Developing Latent Mathematics Abilities in Economically Disadvantaged Students

    ERIC Educational Resources Information Center

    McKenna, Michele A.; Hollingsworth, Patricia L.; Barnes, Laura L. B.

    2005-01-01

    The current study was undertaken as an effort to attend to the potential giftedness of economically disadvantaged students, to give opportunities for mathematics acceleration, and to provide a sequential, individualized mathematics program for students of high mobility. The authors evaluated the Project SAIL (Students' Active Interdisciplinary…

  2. A mathematical analysis of the ABCD criteria for diagnosing malignant melanoma

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Kwon, Kiwoon

    2017-03-01

    The medical community currently employs the ABCD (asymmetry, border irregularity, color variegation, and diameter of the lesion) criteria in the early diagnosis of a malignant melanoma. Although many image segmentation and classification methods are used to analyze the ABCD criteria, it is rare to see a study containing mathematical justification of the parameters that are used to quantify the ABCD criteria. In this paper, we suggest new parameters to assess asymmetry, border irregularity, and color variegation, and explain the mathematical meaning of the parameters. The suggested parameters are then tested with 24 skin samples. The parameters suggested for the 24 skin samples are displayed in three-dimensional coordinates and are compared to those presented in other studies (Ercal et al 1994 IEEE Trans. Biomed. Eng. 41 837-45, Cheerla and Frazier 2014 Int. J. Innovative Res. Sci., Eng. Technol. 3 9164-83) in terms of Pearson correlation coefficient and classification accuracy in determining the malignancy of the lesions.

  3. Analysis of mathematical literacy ability based on goal orientation in model eliciting activities learning with murder strategy

    NASA Astrophysics Data System (ADS)

    Wijayanti, R.; Waluya, S. B.; Masrukan

    2018-03-01

    The purpose of this research are (1) to analyze the learning quality of MEAs with MURDER strategy, (2) to analyze students’ mathematical literacy ability based on goal orientation in MEAs learning with MURDER strategy. This research is a mixed method research of concurrent embedded type where qualitative method as the primary method. The data were obtained using the methods of scale, observation, test and interviews. The results showed that (1) MEAs Learning with MURDER strategy on students' mathematical literacy ability is qualified, (2) Students who have mastery goal characteristics are able to master the seven components of mathematical literacy process although there are still two components that the solution is less than the maximum. Students who have performance goal characteristics have not mastered the components of mathematical literacy process with the maximum, they are only able to master the ability of using mathematics tool and the other components of mathematical literacy process is quite good.

  4. Authentic Teaching Experiences in Secondary Mathematics Methods

    ERIC Educational Resources Information Center

    Stickles, Paula R.

    2015-01-01

    Often secondary mathematics methods courses include classroom peer teaching, but many pre-service teachers find it challenging to teach their classmate peers as there are no discipline issues and little mathematical discourse as the "students" know the content. We will share a recent change in our methods course where pre-service…

  5. Mathematical and information maintenance of biometric systems

    NASA Astrophysics Data System (ADS)

    Boriev, Z.; Sokolov, S.; Nyrkov, A.; Nekrasova, A.

    2016-04-01

    This article describes the different mathematical methods for processing biometric data. A brief overview of methods for personality recognition by means of a signature is conducted. Mathematical solutions of a dynamic authentication method are considered. Recommendations on use of certain mathematical methods, depending on specific tasks, are provided. Based on the conducted analysis of software and the choice made in favor of the wavelet analysis, a brief basis for its use in the course of software development for biometric personal identification is given for the purpose of its practical application.

  6. Mathematical difficulties as decoupling of expectation and developmental trajectories

    PubMed Central

    McLean, Janet F.; Rusconi, Elena

    2014-01-01

    Recent years have seen an increase in research articles and reviews exploring mathematical difficulties (MD). Many of these articles have set out to explain the etiology of the problems, the possibility of different subtypes, and potential brain regions that underlie many of the observable behaviors. These articles are very valuable in a research field, which many have noted, falls behind that of reading and language disabilities. Here will provide a perspective on the current understanding of MD from a different angle, by outlining the school curriculum of England and the US and connecting these to the skills needed at different stages of mathematical understanding. We will extend this to explore the cognitive skills which most likely underpin these different stages and whose impairment may thus lead to mathematics difficulties at all stages of mathematics development. To conclude we will briefly explore interventions that are currently available, indicating whether these can be used to aid the different children at different stages of their mathematical development and what their current limitations may be. The principal aim of this review is to establish an explicit connection between the academic discourse, with its research base and concepts, and the developmental trajectory of abstract mathematical skills that is expected (and somewhat dictated) in formal education. This will possibly help to highlight and make sense of the gap between the complexity of the MD range in real life and the state of its academic science. PMID:24567712

  7. Eddy Viscosity for Variable Density Coflowing Streams,

    DTIC Science & Technology

    EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.

  8. Proofs and Refutations in the Undergraduate Mathematics Classroom

    ERIC Educational Resources Information Center

    Larsen, Sean; Zandieh, Michelle

    2008-01-01

    In his 1976 book, "Proofs and Refutations," Lakatos presents a collection of case studies to illustrate methods of mathematical discovery in the history of mathematics. In this paper, we reframe these methods in ways that we have found make them more amenable for use as a framework for research on learning and teaching mathematics. We present an…

  9. Effects of Mathematics Integration in a Teaching Methods Course on Mathematics Ability of Preservice Agricultural Education Teachers

    ERIC Educational Resources Information Center

    Stripling, Christopher T.; Roberts, T. Grady

    2014-01-01

    The purpose of this study was to determine the effects of incorporating mathematics teaching and integration strategies (MTIS) in a teaching methods course on preservice agricultural teachers' mathematics ability. The research design was quasi-experimental and utilized a nonequivalent control group. The MTIS treatment had a positive effect on the…

  10. Does CAS Use Disadvantage Girls in VCE Mathematics?

    ERIC Educational Resources Information Center

    Forgasz, Helen; Tan, Hazel

    2010-01-01

    In 2009, four mathematics subjects were offered at the year 12 level in the Victorian Certificate of Education (VCE). The two subjects at the intermediate level--Mathematical Methods and Mathematical Methods CAS--run in parallel, that is, a student can be enrolled in only one or the other, the choice being made at the school level. The curricular…

  11. "Being Good" at Maths: Fabricating Gender Subjectivity

    ERIC Educational Resources Information Center

    Chronaki, Anna; Pechtelidis, Yannis

    2012-01-01

    Current research in mathematics education places emphasis on the analysis of men and women's accounts about their life trajectories and choices for studying, working and developing a career that involves the learning and teaching of mathematics. Within this realm, the present study aims to highlight how mathematics, gender and subjectivity become…

  12. Building a Case for Blocks as Kindergarten Mathematics Learning Tools

    ERIC Educational Resources Information Center

    Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole

    2016-01-01

    Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…

  13. Teaching and Learning Primary Mathematics in Singapore.

    ERIC Educational Resources Information Center

    Seng, SeokHoon

    Noting that current views of mathematical learning and teaching focus on the child as a responsible student who attends to instruction and who constructs what is taught in a personal and meaningful way, this paper examines scaffolding and mediation strategies and describes the learning and teaching of elementary school level mathematics in…

  14. Gender and Mother-Child Interactions during Mathematics Homework: The Importance of Individual Differences

    ERIC Educational Resources Information Center

    Lindberg, Sara M.; Hyde, Janet Shibley; Hirsch, Liza M.

    2008-01-01

    Do contemporary families promote gender-differentiated or egalitarian attitudes and behavior surrounding mathematics? The current study examined mother-child interactions during mathematics homework as a microcosm of contemporary gender socialization. Results revealed individual differences in mothers' treatment of their fifth-grade sons and…

  15. Comparing the Major Definitions of Mathematics Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Johnson, Jeffrey

    2017-01-01

    The purpose of this research was to compare two definitions and assessments of Mathematics Pedagogical Content Knowledge (PCK). As part of a larger study, nine current and future teachers took an online version of the Measures of Knowledge for Teaching (MKT)--Mathematics assessment and the Cognitively Activating Instruction in Mathematics…

  16. BIBLIOGRAPHIES, HIGH SCHOOL MATHEMATICS.

    ERIC Educational Resources Information Center

    WOODS, PAUL E.

    THIS ANNOTATED BIBLIOGRAPHY IS A COMPILATION OF A NUMBER OF HIGHLY REGARDED BOOK LISTS CONSISTING OF LIBRARY BOOKS AND TEXTBOOKS FOR GRADES 7-12. THE BOOKS IN THIS LIST ARE CURRENTLY IN PRINT AND THE CONTENT IS REPRESENTATIVE OF THE FOLLOWING AREAS OF MATHEMATICS--MATHEMATICAL RECREATION, COMPUTERS, ARITHMETIC, ALGEBRA, EUCLIDEAN GEOMETRY,…

  17. Earth Algebra.

    ERIC Educational Resources Information Center

    Schaufele, Christopher; Zumoff, Nancy

    Earth Algebra is an entry level college algebra course that incorporates the spirit of the National Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation Standards for School Mathematics at the college level. The context of the course places mathematics at the center of one of the major current concerns of the world. Through…

  18. The Effect of Eliciting Repair of Mathematics Explanations of Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Liu, Jia; Xin, Yan Ping

    2017-01-01

    Mathematical reasoning is important in conceptual understanding and problem solving. In current reform-based, discourse-oriented mathematics classrooms, students with learning disabilities (LD) encounter challenges articulating or explaining their reasoning processes. Enlightened by the concept of conversational repair borrowed from the field of…

  19. Teachers' Pedagogical Mathematical Awareness in Swedish Early Childhood Education

    ERIC Educational Resources Information Center

    Björklund, Camilla; Barendregt, Wolmet

    2016-01-01

    Revised guidelines for Swedish early childhood education that emphasize mathematics content and competencies in more detail than before raise the question of the status of pedagogical mathematical awareness among Swedish early childhood teachers. The purpose of this study is to give an overview of teachers' current pedagogical mathematical…

  20. Design Features of Pedagogically-Sound Software in Mathematics.

    ERIC Educational Resources Information Center

    Haase, Howard; And Others

    Weaknesses in educational software currently available in the domain of mathematics are discussed. A technique that was used for the design and production of mathematics software aimed at improving problem-solving skills which combines sound pedagogy and innovative programming is presented. To illustrate the design portion of this technique, a…

  1. Elementary Mathematics Specialists: Ensuring the Intersection of Research and Practice

    ERIC Educational Resources Information Center

    McGatha, Maggie B.

    2017-01-01

    This paper provides a historical overview of the role and impact of elementary mathematics specialists as well as current implications and opportunities for the field. Furthermore, suggestions are offered for the mathematics education field for ensuring the intersection of practice and research. [For complete proceedings, see ED581294.

  2. Mathematics Teachers "Telling It Like It Is"

    ERIC Educational Resources Information Center

    Espedido, Rosei; Du Toit, Wilhelmina

    2017-01-01

    The authors of this article strongly advocate for a change to the current Australian model of primary education in order to, among other things, establish the concrete practicalities of systematic mathematics thinking thereby limiting the "re-teaching" time required of secondary school mathematics teachers; bring a clear focus to the…

  3. Paintbrush of Discovery: Using Java Applets to Enhance Mathematics Education

    ERIC Educational Resources Information Center

    Eason, Ray; Heath, Garrett

    2004-01-01

    This article addresses the enhancement of the learning environment by using Java applets in the mathematics classroom. Currently, the first year mathematics program at the United States Military Academy involves one semester of modeling with discrete dynamical systems (DDS). Several faculty members from the Academy have integrated Java applets…

  4. Teaching and Learning Mathematics: Translating Research for Elementary School Teachers

    ERIC Educational Resources Information Center

    Lester, Frank

    2010-01-01

    How can teachers learn what they need to know? Every community of educators, regardless of field or specialization, can benefit from being well informed about current research findings. A considerable amount of mathematics education research exists to inform teachers and administrators about teaching and learning mathematics. Research can show…

  5. Are Future Teachers Ready to Embrace Mathematical Inquiry?

    ERIC Educational Resources Information Center

    Acosta, Daniel

    2014-01-01

    This article describes a project inspired by Liping Ma's "Exploring New Knowledge" in which future 7-12 grade mathematics teachers enrolled in a fall 2013 capstone course at a typical regional state university were assigned fictitious student conjectures. These future teachers (all current high school mathematics teachers) were…

  6. Review of Mathematics Interventions for Secondary Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Marita, Samantha; Hord, Casey

    2017-01-01

    Recent educational policy has raised the standards that all students, including students with disabilities, must meet in mathematics. To examine the strategies currently used to support students with learning disabilities, the authors reviewed literature from 2006 to 2014 on mathematics interventions for students with learning disabilities. The 12…

  7. Chunky and Smooth Images of Change

    ERIC Educational Resources Information Center

    Castillo-Garsow, Carlos; Johnson, Heather Lynn; Moore, Kevin C.

    2013-01-01

    Characterizing how quantities change (or vary) in tandem has been an important historical focus in mathematics that extends into the current teaching of mathematics. Thus, how students conceptualize quantities that change in tandem becomes critical to their mathematical development. In this paper, we propose two images of change: chunky and…

  8. A Dynamic Theory of Mathematical Understanding: Some Features and Implications.

    ERIC Educational Resources Information Center

    Pirie, Susan; Kieren, Thomas

    Given the current and widespread practical interest in mathematical understanding, particularly with respect to higher order thinking skills, curriculum reform advocates in many countries cite the need for teaching mathematics with understanding. However, the characterization of understanding in ways that highlight its growth, as well as the…

  9. Teaching and Learning Mathematics: Translating Research for Secondary School Teachers

    ERIC Educational Resources Information Center

    Lester, Frank

    2010-01-01

    How can teachers learn what they need to know? Every community of educators, regardless of field or specialization, can benefit from being well informed about current research findings. A considerable amount of mathematics education research exists to inform teachers and administrators about teaching and learning mathematics. Research can show…

  10. a Unified Matrix Polynomial Approach to Modal Identification

    NASA Astrophysics Data System (ADS)

    Allemang, R. J.; Brown, D. L.

    1998-04-01

    One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.

  11. Verification of NASA Emergent Systems

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.

  12. Can fractal methods applied to video tracking detect the effects of deltamethrin pesticide or mercury on the locomotion behavior of shrimps?

    PubMed

    Tenorio, Bruno Mendes; da Silva Filho, Eurípedes Alves; Neiva, Gentileza Santos Martins; da Silva, Valdemiro Amaro; Tenorio, Fernanda das Chagas Angelo Mendes; da Silva, Themis de Jesus; Silva, Emerson Carlos Soares E; Nogueira, Romildo de Albuquerque

    2017-08-01

    Shrimps can accumulate environmental toxicants and suffer behavioral changes. However, methods to quantitatively detect changes in the behavior of these shrimps are still needed. The present study aims to verify whether mathematical and fractal methods applied to video tracking can adequately describe changes in the locomotion behavior of shrimps exposed to low concentrations of toxic chemicals, such as 0.15µgL -1 deltamethrin pesticide or 10µgL -1 mercuric chloride. Results showed no change after 1min, 4, 24, and 48h of treatment. However, after 72 and 96h of treatment, both the linear methods describing the track length, mean speed, mean distance from the current to the previous track point, as well as the non-linear methods of fractal dimension (box counting or information entropy) and multifractal analysis were able to detect changes in the locomotion behavior of shrimps exposed to deltamethrin. Analysis of angular parameters of the track points vectors and lacunarity were not sensitive to those changes. None of the methods showed adverse effects to mercury exposure. These mathematical and fractal methods applicable to software represent low cost useful tools in the toxicological analyses of shrimps for quality of food, water and biomonitoring of ecosystems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Silent method for mathematics instruction: An overview of teaching subsets

    NASA Astrophysics Data System (ADS)

    Sugiman, Apino, Ezi

    2017-05-01

    Generally, teachers use oral communication for teaching mathematics. Taking an opposite perspective, this paper describes how instructional practices for mathematics can be carried out namely a silent method. Silent method uses body language, written, and oral communication for classroom interaction. This research uses a design research approach consisting of four phases: preliminary, prototyping and developing the instruction, and assessment. There are four stages of silent method. The first stage is conditioning stage in which the teacher introduces the method and makes agreement about the `rule of the game'. It is followed by the second one, elaborating stage, where students guess and explore alternative answers. The third stage is developing mathematical thinking by structuring and symbolizing. Finally, the method is ended by reinforcing stage which aims at strengthening and reflecting student's understanding. In this paper, every stage is described on the basis of practical experiences in a real mathematics classroom setting.

  14. An Investigation of Mathematics Anxiety among Sixth through Eighth Grade Students in Turkey

    ERIC Educational Resources Information Center

    Birgin, Osman; Baloglu, Mustafa; Catlioglu, Hakan; Gurbuz, Ramazan

    2010-01-01

    The purpose of the present study is to investigate mathematics anxiety among 220 sixth through eighth grade Turkish students in terms of mathematics achievement levels, perceived enjoyment of the mathematics teaching method, perceived enjoyment of mathematics, and perceived help with mathematics from parents. The Mathematics Anxiety Scale for…

  15. The motivation of lifelong mathematics learning

    NASA Astrophysics Data System (ADS)

    Hashim Ali, Siti Aishah

    2013-04-01

    As adults, we have always learned throughout our life, but this learning is informal. Now, more career-switchers and career-upgraders who are joining universities for further training are becoming the major group of adult learners. This current situation requires formal education in courses with controlled output. Hence, lifelong learning is seen as a necessity and an opportunity for these adult learners. One characteristic of adult education is that the learners tend to bring with them life experience from their past, especially when learning mathematics. Most of them associate mathematics with the school subjects and unable to recognize the mathematics in their daily practice as mathematics. They normally place a high value on learning mathematics because of its prominent role in their prospective careers, but their learning often requires overcoming personal experience and motivating themselves to learn mathematics again. This paper reports on the study conducted on a group of adult learners currently pursuing their study. The aim of this study is to explore (i) the motivation of the adult learners continuing their study; and (ii) the perception and motivation of these learners in learning mathematics. This paper will take this into account when we discuss learners' perception and motivation to learning mathematics, as interrelated phenomena. Finding from this study will provide helpful insights in understanding the learning process and adaption of adult learners to formal education.

  16. Computational and mathematical methods in brain atlasing.

    PubMed

    Nowinski, Wieslaw L

    2017-12-01

    Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.

  17. Examining the Impact of Acculturation and Perceived Social Support on Mathematics Achievement among Latino/a High School Students

    ERIC Educational Resources Information Center

    Neseth, Hans; Savage, Todd A.; Navarro, Rachel

    2009-01-01

    The current migration of Latino/as into the United States has many schools struggling to meet the unique academic needs of this particular group of students. Previous research suggests level of acculturation and perceived social support impact mathematics achievement amongst Latino/a students. The current study employed hierarchical and…

  18. Incorporating Current Research, Wikis, and Discussion Lists in a Mathematics Capstone Course

    ERIC Educational Resources Information Center

    Narasimhan, Revathi

    2009-01-01

    This article shows how current mathematical research and innovative internet technologies such as wikis and email discussion lists can enliven a senior seminar or capstone course. We give example of assignments as well as examples of how new technologies can enhance a course. This paper grew out of the author's experience of teaching a senior…

  19. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    PubMed Central

    Byambasuren, Bat-erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  20. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    PubMed

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  1. Modeling, simulation and control of pulsed DE-GMA welding process for joining of aluminum to steel

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Shi, Yu; Li, Jie; Huang, Jiankang; Fan, Ding

    2014-09-01

    Joining of aluminum to steel has attracted significant attention from the welding research community, automotive and rail transportation industries. Many current welding methods have been developed and applied, however, they can not precisely control the heat input to work-piece, they are high costs, low efficiency and consist lots of complex welding devices, and the generated intermetallic compound layer in weld bead interface is thicker. A novel pulsed double electrode gas metal arc welding(Pulsed DE-GMAW) method is developed. To achieve a stable welding process for joining of aluminum to steel, a mathematical model of coupled arc is established, and a new control scheme that uses the average feedback arc voltage of main loop to adjust the wire feed speed to control coupled arc length is proposed and developed. Then, the impulse control simulation of coupled arc length, wire feed speed and wire extension is conducted to demonstrate the mathematical model and predict the stability of welding process by changing the distance of contact tip to work-piece(CTWD). To prove the proposed PSO based PID control scheme's feasibility, the rapid prototyping experimental system is setup and the bead-on-plate control experiments are conducted to join aluminum to steel. The impulse control simulation shows that the established model can accurately represent the variation of coupled arc length, wire feed speed and the average main arc voltage when the welding process is disturbed, and the developed controller has a faster response and adjustment, only runs about 0.1 s. The captured electric signals show the main arc voltage gradually closes to the supposed arc voltage by adjusting the wire feed speed in 0.8 s. The obtained typical current waveform demonstrates that the main current can be reduced by controlling the bypass current under maintaining a relative large total current. The control experiment proves the accuracy of proposed model and feasibility of new control scheme further. The beautiful and smooth weld beads are also obtained by this method. Pulsed DE-GMAW can thus be considered as an alternative method for low cost, high efficiency joining of aluminum to steel.

  2. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  3. Research on Time Selection of Mass Sports in Tibetan Areas Plateau of Gansu Province Based on Environmental Science

    NASA Astrophysics Data System (ADS)

    Gao, Jike

    2018-01-01

    Through using the method of literature review, instrument measuring, questionnaire and mathematical statistics, this paper analyzed the current situation in Mass Sports of Tibetan Areas Plateau in Gansu Province. Through experimental test access to Tibetan areas in gansu province of air pollutants and meteorological index data as the foundation, control related national standard and exercise science, statistical analysis of data, the Tibetan plateau, gansu province people participate in physical exercise is dedicated to providing you with scientific methods and appropriate time.

  4. The Opinions of Middle School Mathematics Teachers on the Integration of Mathematics Course and Social Issues

    ERIC Educational Resources Information Center

    Turhan Turkkan, Buket; Karakus, Memet

    2018-01-01

    The purpose of this study is to examine the opinions of middle school mathematics teachers on the integration of mathematics course and social issues. For this purpose, qualitative research method was used in this study. As for determining the participants of the research, criterion sampling among purposeful sampling methods was used. Being a…

  5. Investigating Mathematics Self-Efficacy Beliefs of Elementary Pre-Service Teachers in a Reform-Based Mathematics Methods Course

    ERIC Educational Resources Information Center

    Setra, Abdelghani

    2017-01-01

    For the last thirty years research has unfailingly shown that teacher efficacy has a positive impact on student outcomes, making teacher efficacy an critical element in quality mathematics instruction. The purpose of this study is to examine the impact of a math methods course on the mathematics teaching efficacy beliefs of elementary pre-service…

  6. The Effect of Instruction through Mathematical Modelling on Modelling Skills of Prospective Elementary Mathematics Teachers

    ERIC Educational Resources Information Center

    Ciltas, Alper; Isik, Ahmet

    2013-01-01

    The aim of this study was to examine the modelling skills of prospective elementary mathematics teachers who were studying the mathematical modelling method. The research study group was composed of 35 prospective teachers. The exploratory case analysis method was used in the study. The data were obtained via semi-structured interviews and a…

  7. Teaching by Open-Approach Method in Japanese Mathematics Classroom.

    ERIC Educational Resources Information Center

    Nohda, Nobuhiko

    Mathematics educators in Japan have traditionally emphasized mathematical perspectives in research and practice. This paper features an account of changes in mathematics education in Japan that focus on the possibilities of individual students as well as their mathematical ways of thinking. Students' mathematical thinking, mathematical…

  8. Mathematical Modeling of HIV Prevention Measures Including Pre-Exposure Prophylaxis on HIV Incidence in South Korea

    PubMed Central

    Kim, Sun Bean; Yoon, Myoungho; Ku, Nam Su; Kim, Min Hyung; Song, Je Eun; Ahn, Jin Young; Jeong, Su Jin; Kim, Changsoo; Kwon, Hee-Dae; Lee, Jeehyun; Smith, Davey M.; Choi, Jun Yong

    2014-01-01

    Background Multiple prevention measures have the possibility of impacting HIV incidence in South Korea, including early diagnosis, early treatment, and pre-exposure prophylaxis (PrEP). We investigated how each of these interventions could impact the local HIV epidemic, especially among men who have sex with men (MSM), who have become the major risk group in South Korea. A mathematical model was used to estimate the effects of each these interventions on the HIV epidemic in South Korea over the next 40 years, as compared to the current situation. Methods We constructed a mathematical model of HIV infection among MSM in South Korea, dividing the MSM population into seven groups, and simulated the effects of early antiretroviral therapy (ART), early diagnosis, PrEP, and combination interventions on the incidence and prevalence of HIV infection, as compared to the current situation that would be expected without any new prevention measures. Results Overall, the model suggested that the most effective prevention measure would be PrEP. Even though PrEP effectiveness could be lessened by increased unsafe sex behavior, PrEP use was still more beneficial than the current situation. In the model, early diagnosis of HIV infection was also effectively decreased HIV incidence. However, early ART did not show considerable effectiveness. As expected, it would be most effective if all interventions (PrEP, early diagnosis and early treatment) were implemented together. Conclusions This model suggests that PrEP and early diagnosis could be a very effective way to reduce HIV incidence in South Korea among MSM. PMID:24662776

  9. Are Alternative Strategies Required to Accelerate the Global Elimination of Lymphatic Filariasis? Insights From Mathematical Models

    PubMed Central

    Stolk, Wilma A; Prada, Joaquin M; Smith, Morgan E; Kontoroupis, Periklis; de Vos, Anneke S; Touloupou, Panayiota; Irvine, Michael A; Brown, Paul; Subramanian, Swaminathan; Kloek, Marielle; Michael, E; Hollingsworth, T Deirdre; de Vlas, Sake J

    2018-01-01

    Abstract Background With the 2020 target year for elimination of lymphatic filariasis (LF) approaching, there is an urgent need to assess how long mass drug administration (MDA) programs with annual ivermectin + albendazole (IA) or diethylcarbamazine + albendazole (DA) would still have to be continued, and how elimination can be accelerated. We addressed this using mathematical modeling. Methods We used 3 structurally different mathematical models for LF transmission (EPIFIL, LYMFASIM, TRANSFIL) to simulate trends in microfilariae (mf) prevalence for a range of endemic settings, both for the current annual MDA strategy and alternative strategies, assessing the required duration to bring mf prevalence below the critical threshold of 1%. Results Three annual MDA rounds with IA or DA and good coverage (≥65%) are sufficient to reach the threshold in settings that are currently at mf prevalence <4%, but the required duration increases with increasing mf prevalence. Switching to biannual MDA or employing triple-drug therapy (ivermectin, diethylcarbamazine, and albendazole [IDA]) could reduce program duration by about one-third. Optimization of coverage reduces the time to elimination and is particularly important for settings with a history of poorly implemented MDA (low coverage, high systematic noncompliance). Conclusions Modeling suggests that, in several settings, current annual MDA strategies will be insufficient to achieve the 2020 LF elimination targets, and programs could consider policy adjustment to accelerate, guided by recent monitoring and evaluation data. Biannual treatment and IDA hold promise in reducing program duration, provided that coverage is good, but their efficacy remains to be confirmed by more extensive field studies. PMID:29860286

  10. Designing an American Sign Language Avatar for Learning Computer Science Concepts for Deaf or Hard-of-Hearing Students and Deaf Interpreters

    ERIC Educational Resources Information Center

    Andrei, Stefan; Osborne, Lawrence; Smith, Zanthia

    2013-01-01

    The current learning process of Deaf or Hard of Hearing (D/HH) students taking Science, Technology, Engineering, and Mathematics (STEM) courses needs, in general, a sign interpreter for the translation of English text into American Sign Language (ASL) signs. This method is at best impractical due to the lack of availability of a specialized sign…

  11. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    PubMed

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. The Link between Logic, Mathematics and Imagination: Evidence from Children with Developmental Dyscalculia and Mathematically Gifted Children

    ERIC Educational Resources Information Center

    Morsanyi, Kinga; Devine, Amy; Nobes, Alison; Szucs, Denes

    2013-01-01

    This study examined performance on transitive inference problems in children with developmental dyscalculia (DD), typically developing controls matched on IQ, working memory and reading skills, and in children with outstanding mathematical abilities. Whereas mainstream approaches currently consider DD as a domain-specific deficit, we hypothesized…

  13. Interesting Science and Mathematics Graduate Students in Secondary Teaching

    ERIC Educational Resources Information Center

    Latterell, Carmen M.

    2009-01-01

    State and national initiatives attempt to increase the quantity and quality of secondary mathematics and science teachers. Research suggests that if one could appeal to something inside of people or about the process of teaching and learning itself, then one might draw current mathematics and science graduate students into secondary teaching. This…

  14. Mathematics & Science in the Real World.

    ERIC Educational Resources Information Center

    Thorson, Annette, Ed.

    2000-01-01

    This issue of ENC Focus is organized around the theme of mathematics and science in the real world. It intends to provide teachers with practical resources and suggestions for science and mathematics education. Featured articles include: (1) "Real-World Learning: A Necessity for the Success of Current Reform Efforts" (Robert E. Yager); (2)…

  15. A Multidimensional Analysis of Changes in Mathematics Motivation and Engagement during High School

    ERIC Educational Resources Information Center

    Plenty, Stephanie; Heubeck, Bernd G.

    2013-01-01

    Despite concerns about declining interest and enrolments in mathematics, little research has examined change in a broad range of constructs reflecting mathematics motivation and engagement. The current study used an 11-factor model of motivation and engagement to evaluate levels of maths motivation compared to general academic motivation and to…

  16. Amidst Multiple Theories of Learning in Mathematics Education

    ERIC Educational Resources Information Center

    Simon, Martin A.

    2009-01-01

    Currently, there are more theories of learning in use in mathematics education research than ever before (Lerman & Tsatsaroni, 2004). Although this is a positive sign for the field, it also has brought with it a set of challenges. In this article, I identify some of these challenges and consider how mathematics education researchers might think…

  17. Mathematical Adventures with Harry Potter

    ERIC Educational Resources Information Center

    Wagner, Meaghan M.; Lachance, Andrea

    2004-01-01

    The current popularity of the Harry Potter books (Rowling 1998, 1999a, 1999b, 2000, 2003) gives teachers a new and unique opportunity to integrate literature with mathematics. Often, books that are connected to mathematical explorations are picture books, which teachers can read easily in one sitting to a group of children. The books in the Harry…

  18. "Math Makes Me Sweat" The Impact of Pre-Service Courses on Mathematics Anxiety

    ERIC Educational Resources Information Center

    Johnson, Beth; vanderSandt, Suriza

    2011-01-01

    We investigate mathematics anxiety amongst education majors currently enrolled as pre-service teachers in special education, deaf and hard of hearing, early childhood and elementary education. The impact of a compulsory freshmen content course and sophomore methodology course on mathematics anxiety for each education major was studied over a two…

  19. Understanding Mathematics Achievement: An Analysis of the Effects of Student and Family Factors

    ERIC Educational Resources Information Center

    Goforth, Kate; Noltemeyer, Amity; Patton, Jon; Bush, Kevin R.; Bergen, Doris

    2014-01-01

    Educators are increasingly recognising the importance of improving students' mathematics achievement. Much of the current research focuses on the impact of instructional variables on mathematics achievement. The goal of this study was to examine the influence of less researched variables--family and student factors. Participants were 747…

  20. Massachusetts Adult Basic Education Curriculum Framework for Mathematics and Numeracy

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2005

    2005-01-01

    Over the past number of years, several initiatives have set the stage for writing the Massachusetts ABE (Adult Basic Education) Curriculum Frameworks for Mathematics and Numeracy. This current version of the "Massachusetts ABE Mathematics Curriculum Frameworks" is a second revision of that first framework, but it is heavily influenced by…

  1. Investigating Students' Perceptions of Graduate Learning Outcomes in Mathematics

    ERIC Educational Resources Information Center

    King, Deborah; Varsavsky, Cristina; Belward, Shaun; Matthews, Kelly

    2017-01-01

    The purpose of this study is to explore the perceptions mathematics students have of the knowledge and skills they develop throughout their programme of study. It addresses current concerns about the employability of mathematics graduates by contributing much needed insight into how degree programmes are developing broader learning outcomes for…

  2. Using Comparison of Multiple Strategies in the Mathematics Classroom: Lessons Learned and Next Steps

    ERIC Educational Resources Information Center

    Durkin, Kelley; Star, Jon R.; Rittle-Johnson, Bethany

    2017-01-01

    Comparison is a fundamental cognitive process that can support learning in a variety of domains, including mathematics. The current paper aims to summarize empirical findings that support recommendations on using comparison of multiple strategies in mathematics classrooms. We report the results of our classroom-based research on using comparison…

  3. Technology Use and Mathematics Teaching: Teacher Change as Discursive Identity Work

    ERIC Educational Resources Information Center

    Chronaki, Anna; Matos, Anastasios

    2014-01-01

    Teacher change towards developing competences for technology use in mathematics teaching has been the focus of current educational reforms worldwide. However, a considerable amount of research denotes the extent to which teachers resist a full integration of technology in mathematics classrooms. The present paper is based on an ethnographic study…

  4. Applying Mathematical Concepts with Hands-On, Food-Based Science Curriculum

    ERIC Educational Resources Information Center

    Roseno, Ashley T.; Carraway-Stage, Virginia G.; Hoerdeman, Callan; Díaz, Sebastián R.; Geist, Eugene; Duffrin, Melani W.

    2015-01-01

    This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the…

  5. Pre-Service Secondary Mathematics Teachers' Reflections on Good and Bad Mathematics Teaching

    ERIC Educational Resources Information Center

    Dayal, Hem Chand

    2013-01-01

    Researchers suggest that teachers' beliefs about teaching are strongly influenced by their personal experiences with mathematics. This study aimed to explore Pacific Island pre-service secondary mathematics teachers' perceptions about good and bad mathematics teachers. Thirty pre-service teachers, enrolled in a mathematics teaching methods course…

  6. An Exploratory Study of Taiwanese Mathematics Teachers' Conceptions of School Mathematics, School Statistics, and Their Differences

    ERIC Educational Resources Information Center

    Yang, Kai-Lin

    2014-01-01

    This study used phenomenography, a qualitative method, to investigate Taiwanese mathematics teachers' conceptions of school mathematics, school statistics, and their differences. To collect data, we interviewed five mathematics teachers by open questions. They also responded to statements drawn on mathematical/statistical conceptions and…

  7. Efficacy of the Cooperative Learning Method on Mathematics Achievement and Attitude: A Meta-Analysis Research

    ERIC Educational Resources Information Center

    Capar, Gulfer; Tarim, Kamuran

    2015-01-01

    This research compiles experimental studies from 1988 to 2010 that examined the influence of the cooperative learning method, as compared with that of traditional methods, on mathematics achievement and on attitudes towards mathematics. The related field was searched using the following key words in Turkish "matematik ve isbirlikli ögrenme,…

  8. Examinations in the Final Year of Transition to Mathematical Methods Computer Algebra System (CAS)

    ERIC Educational Resources Information Center

    Leigh-Lancaster, David; Les, Magdalena; Evans, Michael

    2010-01-01

    2009 was the final year of parallel implementation for Mathematical Methods Units 3 and 4 and Mathematical Methods (CAS) Units 3 and 4. From 2006-2009 there was a common technology-free short answer examination that covered the same function, algebra, calculus and probability content for both studies with corresponding expectations for key…

  9. Didactic Aspects of the Academic Discipline "History and Methodology of Mathematics"

    ERIC Educational Resources Information Center

    Sun, Hai; Varankina, Vera I.; Sadovaya, Victoriya V.

    2017-01-01

    The purpose of this article is to develop the content and methods, as well as the analysis of the approbation of the program of the academic discipline "History and methodology of mathematics" for graduate students of the Master's program of mathematical program tracks. The leading method in the study of this problem was the method of…

  10. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    ERIC Educational Resources Information Center

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  11. Reflections from the Application of Different Type of Activities: Special Training Methods Course

    ERIC Educational Resources Information Center

    Karadeniz, Mihriban Hacisalihoglu

    2017-01-01

    The aim of this study is to reveal the benefits gained from "Special Training Methods II" course and the problems prospective mathematics teachers encountered with it. The case study method was used in the study. The participants in the study were 34 prospective mathematics teachers studying at a Primary School Mathematics Education…

  12. A life skills approach to mathematics instruction: preparing students with learning disabilities for the real-life math demands of adulthood.

    PubMed

    Patton, J R; Cronin, M E; Bassett, D S; Koppel, A E

    1997-01-01

    Current mathematics instruction does not address the day-to-day needs of many students with learning disabilities. Although the vast majority of students with learning disabilities are not college bound, much of mathematics instruction provides college preparation. Too often, classes in mathematics ignore the skills needed in home and community and on the job. The present article examines the ways in which general mathematics instruction, focused on daily living skills, can easily be integrated into the classrooms of students with learning disabilities.

  13. Which preparatory curriculum for the International Baccalaureate Diploma Programme is best? The challenge for international schools with regard to mathematics and science

    NASA Astrophysics Data System (ADS)

    Corlu, M. Sencer

    2014-12-01

    There are two mainstream curricula for international school students at the junior high level: the International Baccalaureate (IB) Middle Years Programme (MYP) and the Cambridge International General Certificate of Secondary Education (IGCSE). The former was developed in the mid-1990s and is currently being relaunched in a 21st-century approach. The latter programme of study was developed by University of Cambridge International Examinations in 1985 and has become popular in recent years among British domestic and international schools worldwide due to the clarity of its learning content. The prevailing uncertainty about which curriculum is best to prepare students for the IB Diploma Programme represents a challenge for international schools. The purpose of the current study is to develop a methodology through causal models which can explain the relationship between student performance in the IGCSE and the Diploma Programme with regard to mathematics and science. The data evaluated here consisted of external examination scores of students who attended a private international high school between the years 2005 and 2012. Two structural equation models were developed. The first model employed a maximum likelihood estimation, while the second model used a Bayesian estimation with a Markov Chain Monte Carlo method. Both models fit the data well. The evidence suggests that the IGCSE provides a good foundational preparation for the Diploma Programme in mathematics and science.

  14. Access to hands-on mathematics measurement activities using robots controlled via speech generating devices: three case studies.

    PubMed

    Adams, Kim; Cook, Al

    2014-07-01

    To examine how using a robot controlled via a speech generating device (SGD) influences the ways students with physical and communication limitations can demonstrate their knowledge in math measurement activities. Three children with severe physical disabilities and complex communication needs used the robot and SGD system to perform four math measurement lessons in comparing, sorting and ordering objects. The performance of the participants was measured and the process of using the system was described in terms of manipulation and communication events. Stakeholder opinions were solicited regarding robot use. Robot use revealed some gaps in the procedural knowledge of the participants. Access to both the robot and SGD was shown to provide several benefits. Stakeholders thought the intervention was important and feasible for a classroom environment. The participants were able to participate actively in the hands-on and communicative measurement activities and thus meet the demands of current math instruction methods. Current mathematics pedagogy encourages doing hands-on activities while communicating about concepts. Adapted Lego robots enabled children with severe physical disabilities to perform hands-on length measurement activities. Controlling the robots from speech generating devices (SGD) enabled the children, who also had complex communication needs, to reflect and report on results during the activities. By using the robots combined with SGDs, children both exhibited their knowledge of and experienced the concepts of mathematical measurements.

  15. Calculating the Mean Amplitude of Glycemic Excursions from Continuous Glucose Data Using an Open-Code Programmable Algorithm Based on the Integer Nonlinear Method.

    PubMed

    Yu, Xuefei; Lin, Liangzhuo; Shen, Jie; Chen, Zhi; Jian, Jun; Li, Bin; Xin, Sherman Xuegang

    2018-01-01

    The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional "ruler and pencil" manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.

  16. Is Passive or Active House Needed In Face of Global Warming?

    NASA Astrophysics Data System (ADS)

    Tamosaitis, Romualdas

    2017-10-01

    The article aims to determine how effective the stricter current requirements for the building envelope insolation are from the economic energy savings perspective. The article deals with a mathematical method for economic assessment of optimal building thermal insulation. The mathematical methods used in this article are based on evaluating the break-even point between the construction expenditures and the economic profit. Recent research shows that energy savings achieved solely through stricter standards applied to the building envelopes are limited in their ability to achieve maximum results. As the ratio of building volume to building envelope increases, further energy saving measures applied to the building envelope produce lower energy saving effects. Energy savings achieved using renewable energy resources, recuperation systems are much more effective. Research shows that much greater effect can be achieved by combining optimal building envelope energy efficiency measures with new requirements related to renewable energy sources and recuperating systems, such as solar batteries, wind turbines or heat pumps.

  17. Theoretical approaches to creation of robotic coal mines based on the synthesis of simulation technologies

    NASA Astrophysics Data System (ADS)

    Fryanov, V. N.; Pavlova, L. D.; Temlyantsev, M. V.

    2017-09-01

    Methodological approaches to theoretical substantiation of the structure and parameters of robotic coal mines are outlined. The results of mathematical and numerical modeling revealed the features of manifestation of geomechanical and gas dynamic processes in the conditions of robotic mines. Technological solutions for the design and manufacture of technical means for robotic mine are adopted using the method of economic and mathematical modeling and in accordance with the current regulatory documents. For a comparative performance evaluation of technological schemes of traditional and robotic mines, methods of cognitive modeling and matrix search for subsystem elements in the synthesis of a complex geotechnological system are applied. It is substantiated that the process of technical re-equipment of a traditional mine with a phased transition to a robotic mine will reduce unit costs by almost 1.5 times with a significant social effect due to a reduction in the number of personnel engaged in hazardous work.

  18. Cardiac chamber volumes by echocardiography using a new mathematical method: A promising technique for zero-G use

    NASA Technical Reports Server (NTRS)

    Buckey, J. C.; Beattie, J. M.; Gaffney, F. A.; Nixon, J. V.; Blomqvist, C. G.

    1984-01-01

    Accurate, reproducible, and non-invasive means for ventricular volume determination are needed for evaluating cardiovascular function zero-gravity. Current echocardiographic methods, particularly for the right ventricle, suffer from a large standard error. A new mathematical approach, recently described by Watanabe et al., was tested on 1 normal formalin-fixed human hearts suspended in a mineral oil bath. Volumes are estimated from multiple two-dimensional echocardiographic views recorded from a single point at sequential angles. The product of sectional cavity area and center of mass for each view summed over the range of angles (using a trapezoidal rule) gives volume. Multiple (8-14) short axis right ventricle and left ventricle views at 5.0 deg intervals were videotaped. The images were digitized by two independent observers (leading-edge to leading-edge technique) and analyzed using a graphics tablet and microcomputer. Actual volumes were determined by filling the chambers with water. These data were compared to the mean of the two echo measurements.

  19. Does Early Mathematics Intervention Change the Processes Underlying Children’s Learning?

    PubMed Central

    Watts, Tyler W.; Clements, Douglas H.; Sarama, Julie; Wolfe, Christopher B.; Spitler, Mary Elaine; Bailey, Drew H.

    2017-01-01

    Early educational intervention effects typically fade in the years following treatment, and few studies have investigated why achievement impacts diminish over time. The current study tested the effects of a preschool mathematics intervention on two aspects of children’s mathematical development. We tested for separate effects of the intervention on “state” (occasion-specific) and “trait” (relatively stable) variability in mathematics achievement. Results indicated that, although the treatment had a large impact on state mathematics, the treatment had no effect on trait mathematics, or the aspect of mathematics achievement that influences stable individual differences in mathematics achievement over time. Results did suggest, however, that the intervention could affect the underlying processes in children’s mathematical development by inducing more transfer of knowledge immediately following the intervention for students in the treated group. PMID:29399243

  20. Mathematical Problem Solving Ability of Junior High School Students through Ang’s Framework for Mathematical Modelling Instruction

    NASA Astrophysics Data System (ADS)

    Fasni, N.; Turmudi, T.; Kusnandi, K.

    2017-09-01

    This research background of this research is the importance of student problem solving abilities. The purpose of this study is to find out whether there are differences in the ability to solve mathematical problems between students who have learned mathematics using Ang’s Framework for Mathematical Modelling Instruction (AFFMMI) and students who have learned using scientific approach (SA). The method used in this research is a quasi-experimental method with pretest-postest control group design. Data analysis of mathematical problem solving ability using Indepent Sample Test. The results showed that there was a difference in the ability to solve mathematical problems between students who received learning with Ang’s Framework for Mathematical Modelling Instruction and students who received learning with a scientific approach. AFFMMI focuses on mathematical modeling. This modeling allows students to solve problems. The use of AFFMMI is able to improve the solving ability.

  1. Mathematics is always invisible, Professor Dowling

    NASA Astrophysics Data System (ADS)

    Cable, John

    2015-09-01

    This article provides a critical evaluation of a technique of analysis, the Social Activity Method, recently offered by Dowling (2013) as a `gift' to mathematics education. The method is found to be inadequate, firstly, because it employs a dichotomy (between `expression' and `content') instead of a finer analysis (into symbols, concepts and setting or phenomena), and, secondly, because the distinction between `public' and `esoteric' mathematics, although interesting, is allowed to obscure the structure of the mathematics itself. There is also criticism of what Dowling calls the `myth of participation', which denies the intimate links between mathematics and the rest of the universe that lie at the heart of mathematical pedagogy. Behind all this lies Dowling's `essentially linguistic' conception of mathematics, which is criticised on the dual ground that it ignores the chastening experience of formalism in mathematical philosophy and that linguistics itself has taken a wrong turn and ignores lessons that might be learnt from mathematics education.

  2. Mathematics anxiety affects counting but not subitizing during visual enumeration.

    PubMed

    Maloney, Erin A; Risko, Evan F; Ansari, Daniel; Fugelsang, Jonathan

    2010-02-01

    Individuals with mathematics anxiety have been found to differ from their non-anxious peers on measures of higher-level mathematical processes, but not simple arithmetic. The current paper examines differences between mathematics anxious and non-mathematics anxious individuals in more basic numerical processing using a visual enumeration task. This task allows for the assessment of two systems of basic number processing: subitizing and counting. Mathematics anxious individuals, relative to non-mathematics anxious individuals, showed a deficit in the counting but not in the subitizing range. Furthermore, working memory was found to mediate this group difference. These findings demonstrate that the problems associated with mathematics anxiety exist at a level more basic than would be predicted from the extant literature. Copyright 2009 Elsevier B.V. All rights reserved.

  3. A Multiple Intelligence Pedagogical Approach in Fifth Grade Mathematics: A Mixed Method Study

    ERIC Educational Resources Information Center

    Davis, Claudine Davillier

    2012-01-01

    The need for mathematics intervention has increased tremendously over the years, particularly after the No Child Left Behind Act of 2001.Students who lack basic mathematics skills and students who experience mathematics difficulties greatly benefit from mathematics interventions. This study examined mathematics intervention through the use of the…

  4. Peirce's Philosophy of Mathematical Education: Fostering Reasoning Abilities for Mathematical Inquiry

    ERIC Educational Resources Information Center

    Campos, Daniel G.

    2010-01-01

    I articulate Charles S. Peirce's philosophy of mathematical education as related to his conception of mathematics, the nature of its method of inquiry, and especially, the reasoning abilities required for mathematical inquiry. The main thesis is that Peirce's philosophy of mathematical education primarily aims at fostering the development of the…

  5. Assessing metacognition of grade 2 and grade 4 students using an adaptation of multi-method interview approach during mathematics problem-solving

    NASA Astrophysics Data System (ADS)

    Kuzle, A.

    2018-06-01

    The important role that metacognition plays as a predictor for student mathematical learning and for mathematical problem-solving, has been extensively documented. But only recently has attention turned to primary grades, and more research is needed at this level. The goals of this paper are threefold: (1) to present metacognitive framework during mathematics problem-solving, (2) to describe their multi-method interview approach developed to study student mathematical metacognition, and (3) to empirically evaluate the utility of their model and the adaptation of their approach in the context of grade 2 and grade 4 mathematics problem-solving. The results are discussed not only with regard to further development of the adapted multi-method interview approach, but also with regard to their theoretical and practical implications.

  6. EQUALS Investigations: Remote Rulers.

    ERIC Educational Resources Information Center

    Mayfield, Karen; Whitlow, Robert

    EQUALS is a teacher education program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. It supports a problem-solving approach to mathematics which has students working in groups, uses active assessment methods, and incorporates a broad mathematics curriculum…

  7. Two Meanings of Algorithmic Mathematics.

    ERIC Educational Resources Information Center

    Maurer, Stephen B.

    1984-01-01

    Two mathematical topics are interpreted from the viewpoints of traditional (performing algorithms) and contemporary (creating algorithms and thinking in terms of them for solving problems and developing theory) algorithmic mathematics. The two topics are Horner's method for evaluating polynomials and Gauss's method for solving systems of linear…

  8. Research in Mathematics Education: Multiple Methods for Multiple Uses

    ERIC Educational Resources Information Center

    Battista, Michael; Smith, Margaret S.; Boerst, Timothy; Sutton, John; Confrey, Jere; White, Dorothy; Knuth, Eric; Quander, Judith

    2009-01-01

    Recent federal education policies and reports have generated considerable debate about the meaning, methods, and goals of "scientific research" in mathematics education. Concentrating on the critical problem of determining which educational programs and practices reliably improve students' mathematics achievement, these policies and reports focus…

  9. The Mathematical Education of Engineers.

    ERIC Educational Resources Information Center

    Gnedenko, B. V.; Khalil, Z.

    1979-01-01

    Several general aspects are discussed. These include the role of mathematics in scientific and technical progress, some deficiencies in training, the role of mathematics in engineering faculties, and methods of improving mathematical training. (MP)

  10. Mathematical formula recognition using graph grammar

    NASA Astrophysics Data System (ADS)

    Lavirotte, Stephane; Pottier, Loic

    1998-04-01

    This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.

  11. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  12. A High School Mathematics Teacher Tacking through the Middle Way: Toward a Critical Postmodern Autoethnography in Mathematics Education

    ERIC Educational Resources Information Center

    Wamsted, John Oliver

    2013-01-01

    The "urban" mathematics classroom has become an increasingly polarized site, one where many middle-class White teachers attempt to bridge the divide between themselves and their relatively economically disadvantaged, non-White students. With its mania for high-stakes testing, current education policy has intensified the importance of…

  13. Rethinking Teaching and Learning Mathematics for Social Justice from a Critical Race Perspective

    ERIC Educational Resources Information Center

    Larnell, Gregory V.; Bullock, Erika C.; Jett, Christopher C.

    2016-01-01

    What is teaching and learning mathematics for social justice (TLMSJ)? How has TLMSJ been taken up in mathematics education--both historically and contemporarily? Along with unpacking these two central questions, this article assesses the current capacity and stance of TLMSJ toward addressing issues of racial injustice. The authors begin with an…

  14. In-Service Middle and High School Mathematics Teachers: Geometric Reasoning Stages and Gender

    ERIC Educational Resources Information Center

    Halat, Erdogan

    2008-01-01

    The purpose of this current study was to investigate the reasoning stages of in-service middle and high school mathematics teachers in geometry. There was a total of 148 in-service middle and high school mathematics teachers involved in the study. Participants' geometric reasoning stages were determined through a multiple-choice geometry test. The…

  15. Science and Mathematics in the Schools: Report of a Convocation.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Assembly of Engineering.

    In May 1982 the National Academies of Sciences and Engineering held a national convocation to consider the state of precollege education in mathematics and science in the United States. More than 40 speakers presented their views on how to reverse the current decline in science and mathematics education. The President, members of Congress, and…

  16. Prior Achievement, Effort, and Mathematics Attitude as Predictors of Current Achievement

    ERIC Educational Resources Information Center

    Hemmings, Brian; Kay, Russell

    2010-01-01

    A sample of Australian secondary school students was used to explore the relationships among a set of standardised Year 7 numeracy and literacy tests, measures taken at Year 10 of mathematics attitude and schoolwork effort, and Mathematics and English scores in a state-wide Year 10 examination. Additionally, the predictive capacity of the numeracy…

  17. The Effect of Elementary Mathematics Coaching on Student Achievement in Fourth, Fifth, and Sixth Grade

    ERIC Educational Resources Information Center

    Trimuel Stewart, Merita

    2013-01-01

    Due to recent waivers and current expectations of teacher performance, schools have been tasked to close their student achievement gaps in mathematics by 2014. Yet students still have not performed well in mathematics, which may be a direct link to teachers' instructional practices. Identifying a coaching model to improve student achievement…

  18. A Mathematics Intervention for Low-Performing Finnish Second Graders: Findings from a Pilot Study

    ERIC Educational Resources Information Center

    Mononen, Riikka; Aunio, Pirjo

    2014-01-01

    Evidence-based practice is highly appreciated and demanded in the field of education, especially in relation to extra support provided for children struggling with learning. Currently, there is a lack of intervention studies in the area of mathematics. This study aimed to investigate the effects of a short mathematics intervention programme on…

  19. The Development of a Mathematics Self-Report Inventory for Turkish Elementary Students

    ERIC Educational Resources Information Center

    Akin, Ayça; Güzeller, Cem Oktay; Evcan, Sinem Sezer

    2016-01-01

    The purpose of the current study is to develop a mathematics self-report inventory (MSRI) to measure Turkish elementary students' mathematics expectancy beliefs and task values based on the expectancy-value theory of achievement motivation. In Study-1 (n = 1,315), exploratory factor analysis (EFA) and reliability analysis are used to evaluate the…

  20. Finnish Mathematics Teaching from a Reform Perspective: A Video-Based Case-Study Analysis

    ERIC Educational Resources Information Center

    Andrews, Paul

    2013-01-01

    This article offers a qualitative analysis of videotaped mathematics lessons taught by four teachers in a provincial university city in Finland. My study is framed not only by Finnish success on Programme for International Student Assessment (PISA) but also by the objectives of current mathematics education reform, which are consistent with PISA's…

  1. Computer-Assisted Mathematics Instruction for Students with Specific Learning Disability: A Review of the Literature

    ERIC Educational Resources Information Center

    Stultz, Sherry L.

    2017-01-01

    This review was conducted to evaluate the current body of scholarly research regarding the use of computer-assisted instruction (CAI) to teach mathematics to students with specific learning disability (SLD). For many years, computers are utilized for educational purposes. However, the effectiveness of CAI for teaching mathematics to this specific…

  2. Effectiveness of Computer-Assisted Mathematics Education (CAME) over Academic Achievement: A Meta-Analysis Study

    ERIC Educational Resources Information Center

    Demir, Seda; Basol, Gülsah

    2014-01-01

    The aim of the current study is to determine the overall effects of Computer-Assisted Mathematics Education (CAME) on academic achievement. After an extensive review of the literature, studies using Turkish samples and observing the effects of Computer-Assisted Education (CAE) on mathematics achievement were examined. As a result of this…

  3. Looking Back, Looking Forward: The Past 15 Years of Mathematics Education in "CJSTME"

    ERIC Educational Resources Information Center

    Hare, Andrew; Ng, Oi-Lam

    2015-01-01

    In this article, we review the publications served by the "Canadian Journal of Science, Mathematics and Technology Education" in the past 15 years, specific to the field of mathematics education, and make connections with development of the field. In particular, we adopt current Editor-in-Chief John Wallace's (2009) approach of…

  4. Sociocultural Perspectives on the Internationalization of Research in Mathematics Education: A Survey Based on "JRME," "ESM," and "MTL"

    ERIC Educational Resources Information Center

    Liu, Po-Hung

    2017-01-01

    The current main research trend in mathematics education is publishing studies by Western scholars pertaining to educational issues of the world in general. but Asia is mostly overlooked. Since international comparisons show Asian students outperform others in mathematics, the imbalance should receive more attention. To gain insight into this…

  5. Pre-Service Science Teachers' Perceptions of Mathematics Courses in a Science Teacher Education Programme

    ERIC Educational Resources Information Center

    Incikabi, Lutfi; Serin, Mehmet Koray

    2017-01-01

    Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and…

  6. Prospective and Current Secondary Mathematics Teachers' Criteria for Evaluating Mathematical Cognitive Technologies

    ERIC Educational Resources Information Center

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2017-01-01

    As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study…

  7. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy.

    PubMed

    Naganawa, Mika; Gallezot, Jean-Dominique; Rossano, Samantha; Carson, Richard E

    2017-12-11

    Positron emission tomography, an imaging tool using radiolabeled tracers in humans and preclinical species, has been widely used in recent years in drug development, particularly in the central nervous system. One important goal of PET in drug development is assessing the occupancy of various molecular targets (e.g., receptors, transporters, enzymes) by exogenous drugs. The current linear mathematical approaches used to determine occupancy using PET imaging experiments are presented. These algorithms use results from multiple regions with different target content in two scans, a baseline (pre-drug) scan and a post-drug scan. New mathematical estimation approaches to determine target occupancy, using maximum likelihood, are presented. A major challenge in these methods is the proper definition of the covariance matrix of the regional binding measures, accounting for different variance of the individual regional measures and their nonzero covariance, factors that have been ignored by conventional methods. The novel methods are compared to standard methods using simulation and real human occupancy data. The simulation data showed the expected reduction in variance and bias using the proper maximum likelihood methods, when the assumptions of the estimation method matched those in simulation. Between-method differences for data from human occupancy studies were less obvious, in part due to small dataset sizes. These maximum likelihood methods form the basis for development of improved PET covariance models, in order to minimize bias and variance in PET occupancy studies.

  8. EQUALS Investigations: Telling Someone Where To Go.

    ERIC Educational Resources Information Center

    Mayfield, Karen; Whitlow, Robert

    EQUALS is a teacher education program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. It supports a problem-solving approach to mathematics which has students working in groups, uses active assessment methods, and incorporates a broad mathematics curriculum…

  9. Adaptive control method for core power control in TRIGA Mark II reactor

    NASA Astrophysics Data System (ADS)

    Sabri Minhat, Mohd; Selamat, Hazlina; Subha, Nurul Adilla Mohd

    2018-01-01

    The 1MWth Reactor TRIGA PUSPATI (RTP) Mark II type has undergone more than 35 years of operation. The existing core power control uses feedback control algorithm (FCA). It is challenging to keep the core power stable at the desired value within acceptable error bands to meet the safety demand of RTP due to the sensitivity of nuclear research reactor operation. Currently, the system is not satisfied with power tracking performance and can be improved. Therefore, a new design core power control is very important to improve the current performance in tracking and regulate reactor power by control the movement of control rods. In this paper, the adaptive controller and focus on Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC) were applied to the control of the core power. The model for core power control was based on mathematical models of the reactor core, adaptive controller model, and control rods selection programming. The mathematical models of the reactor core were based on point kinetics model, thermal hydraulic models, and reactivity models. The adaptive control model was presented using Lyapunov method to ensure stable close loop system and STC Generalised Minimum Variance (GMV) Controller was not necessary to know the exact plant transfer function in designing the core power control. The performance between proposed adaptive control and FCA will be compared via computer simulation and analysed the simulation results manifest the effectiveness and the good performance of the proposed control method for core power control.

  10. Methods for cost estimation in software project management

    NASA Astrophysics Data System (ADS)

    Briciu, C. V.; Filip, I.; Indries, I. I.

    2016-02-01

    The speed in which the processes used in software development field have changed makes it very difficult the task of forecasting the overall costs for a software project. By many researchers, this task has been considered unachievable, but there is a group of scientist for which this task can be solved using the already known mathematical methods (e.g. multiple linear regressions) and the new techniques as genetic programming and neural networks. The paper presents a solution for building a model for the cost estimation models in the software project management using genetic algorithms starting from the PROMISE datasets related COCOMO 81 model. In the first part of the paper, a summary of the major achievements in the research area of finding a model for estimating the overall project costs is presented together with the description of the existing software development process models. In the last part, a basic proposal of a mathematical model of a genetic programming is proposed including here the description of the chosen fitness function and chromosome representation. The perspective of model described it linked with the current reality of the software development considering as basis the software product life cycle and the current challenges and innovations in the software development area. Based on the author's experiences and the analysis of the existing models and product lifecycle it was concluded that estimation models should be adapted with the new technologies and emerging systems and they depend largely by the chosen software development method.

  11. Current State of Research on Mathematical Beliefs V. Proceedings of the MAVI-5 Workshop (August 22-25, 1997). Research Report 184.

    ERIC Educational Resources Information Center

    Hannula, Markku, Ed.

    This report includes all of the presentations from the fifth annual workshop on the Current State of Research on Mathematical Beliefs held in Helsinki, Finland, on August 22-25, 1997. The papers, all of which were presented in English, are as follows: "Between Formalism and Creativity: Teachers' Conceptions of a Good Computer Science…

  12. Is There a Relationship between Pre-Service Teachers' Mathematical Values and Their Teaching Anxiety in Mathematics?

    ERIC Educational Resources Information Center

    Yazici, Ersen; Peker, Murat; Ertekin, Erhan; Dilmac, Bulent

    2011-01-01

    Introduction: The aim of this study is to investigate the relation between the pre-service teachers' mathematical values and teaching anxieties in mathematics. Method: The research was carried out on 359 teacher candidates attending the elementary school mathematics, secondary school mathematics and primary school teaching programs. To this end,…

  13. Advanced Mathematical Thinking and Students' Mathematical Learning: Reflection from Students' Problem-Solving in Mathematics Classroom

    ERIC Educational Resources Information Center

    Sangpom, Wasukree; Suthisung, Nisara; Kongthip, Yanin; Inprasitha, Maitree

    2016-01-01

    Mathematical teaching in Thai tertiary education still employs traditional methods of explanation and the use of rules, formulae, and theories in order for students to memorize and apply to their mathematical learning. This results in students' inability to concretely learn, fully comprehend and understand mathematical concepts and practice. In…

  14. Advanced Extremely High Frequency Satellite (AEHF)

    DTIC Science & Technology

    2015-12-01

    control their tactical and strategic forces at all levels of conflict up to and including general nuclear war, and it supports the attainment of...10195.1 10622.2 Confidence Level Confidence Level of cost estimate for current APB: 50% The ICE) that supports the AEHF SV 1-4, like all life-cycle cost...mathematically the precise confidence levels associated with life-cycle cost estimates prepared for MDAPs. Based on the rigor in methods used in building

  15. Sinusoidal voltage protocols for rapid characterisation of ion channel kinetics.

    PubMed

    Beattie, Kylie A; Hill, Adam P; Bardenet, Rémi; Cui, Yi; Vandenberg, Jamie I; Gavaghan, David J; de Boer, Teun P; Mirams, Gary R

    2018-03-24

    Ion current kinetics are commonly represented by current-voltage relationships, time constant-voltage relationships and subsequently mathematical models fitted to these. These experiments take substantial time, which means they are rarely performed in the same cell. Rather than traditional square-wave voltage clamps, we fitted a model to the current evoked by a novel sum-of-sinusoids voltage clamp that was only 8 s long. Short protocols that can be performed multiple times within a single cell will offer many new opportunities to measure how ion current kinetics are affected by changing conditions. The new model predicts the current under traditional square-wave protocols well, with better predictions of underlying currents than literature models. The current under a novel physiologically relevant series of action potential clamps is predicted extremely well. The short sinusoidal protocols allow a model to be fully fitted to individual cells, allowing us to examine cell-cell variability in current kinetics for the first time. Understanding the roles of ion currents is crucial to predict the action of pharmaceuticals and mutations in different scenarios, and thereby to guide clinical interventions in the heart, brain and other electrophysiological systems. Our ability to predict how ion currents contribute to cellular electrophysiology is in turn critically dependent on our characterisation of ion channel kinetics - the voltage-dependent rates of transition between open, closed and inactivated channel states. We present a new method for rapidly exploring and characterising ion channel kinetics, applying it to the hERG potassium channel as an example, with the aim of generating a quantitatively predictive representation of the ion current. We fitted a mathematical model to currents evoked by a novel 8 second sinusoidal voltage clamp in CHO cells overexpressing hERG1a. The model was then used to predict over 5 minutes of recordings in the same cell in response to further protocols: a series of traditional square step voltage clamps, and also a novel voltage clamp comprising a collection of physiologically relevant action potentials. We demonstrate that we can make predictive cell-specific models that outperform the use of averaged data from a number of different cells, and thereby examine which changes in gating are responsible for cell-cell variability in current kinetics. Our technique allows rapid collection of consistent and high quality data, from single cells, and produces more predictive mathematical ion channel models than traditional approaches. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. Dynamics of inductors for heating of the metal under deformation

    NASA Astrophysics Data System (ADS)

    Zimin, L. S.; Yeghiazaryan, A. S.; Protsenko, A. N.

    2018-01-01

    Current issues of creating powerful systems for hot sheet rolling with induction heating application in mechanical engineering and metallurgy were discussed. Electrodynamical and vibroacoustic problems occurring due to the induction heating of objects with complex shapes, particularly the slabs heating prior to rolling, were analysed. The numerical mathematical model using the method of related contours and the principle of virtual displacements is recommended for electrodynamical calculations. For the numerical solution of the vibrational problem, it is reasonable to use the finite element method (FEM). In general, for calculating the distribution forces, the law of Biot-Savart-Laplace method providing the determination of the current density of the skin layer in slab was used. The form of the optimal design of the inductor based on maximum hardness was synthesized while researching the vibrodynamic model of the system "inductor-metal" which provided allowable sound level meeting all established sanitary standards.

  17. Are middle school mathematics teachers able to solve word problems without using variable?

    NASA Astrophysics Data System (ADS)

    Gökkurt Özdemir, Burçin; Erdem, Emrullah; Örnek, Tuğba; Soylu, Yasin

    2018-01-01

    Many people consider problem solving as a complex process in which variables such as x, y are used. Problems may not be solved by only using 'variable.' Problem solving can be rationalized and made easier using practical strategies. When especially the development of children at younger ages is considered, it is obvious that mathematics teachers should solve problems through concrete processes. In this context, middle school mathematics teachers' skills to solve word problems without using variables were examined in the current study. Through the case study method, this study was conducted with 60 middle school mathematics teachers who have different professional experiences in five provinces in Turkey. A test consisting of five open-ended word problems was used as the data collection tool. The content analysis technique was used to analyze the data. As a result of the analysis, it was seen that the most of the teachers used trial-and-error strategy or area model as the solution strategy. On the other hand, the teachers who solved the problems using variables such as x, a, n or symbols such as Δ, □, ○, * and who also felt into error by considering these solutions as without variable were also seen in the study.

  18. Selecting and Using Mathematics Methods Texts: Nontrivial Tasks

    ERIC Educational Resources Information Center

    Harkness, Shelly Sheats; Brass, Amy

    2017-01-01

    Mathematics methods textbooks/texts are important components of many courses for preservice teachers. Researchers should explore how these texts are selected and used. Within this paper we report the findings of a survey administered electronically to 132 members of the Association of Mathematics Teacher Educators (AMTE) in order to answer the…

  19. The Effect of Explanations on Mathematical Reasoning Tasks

    ERIC Educational Resources Information Center

    Norqvist, Mathias

    2018-01-01

    Studies in mathematics education often point to the necessity for students to engage in more cognitively demanding activities than just solving tasks by applying given solution methods. Previous studies have shown that students that engage in creative mathematically founded reasoning to construct a solution method, perform significantly better in…

  20. Keystone Method: A Learning Paradigm in Mathematics

    ERIC Educational Resources Information Center

    Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram

    2008-01-01

    This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…

  1. Educational Neuroscience: New Horizons for Research in Mathematics Education

    ERIC Educational Resources Information Center

    Campbell, Stephen R.

    2006-01-01

    This paper outlines an initiative in mathematics education research that aims to augment qualitative methods of research into mathematical cognition and learning with quantitative methods of psychometrics and psychophysiology. Background and motivation are provided for this initiative, which is coming to be referred to as educational neuroscience.…

  2. Effects of Mastery Learning Strategies on Community College Mathematics Students' Achievement and Success Rate.

    ERIC Educational Resources Information Center

    Abadir, Laila; And Others

    The effects of mastery learning strategies, interactive video mathematics (IVM), individualized instruction (IND), and the lecture method on mathematics achievement of community college students was studied. Interactions among instructional methods, gender, and age were examined; and the grade success rate was determined for each instructional…

  3. Using Propensity Scores to Reduce Selection Bias in Mathematics Education Research

    ERIC Educational Resources Information Center

    Graham, Suzanne E.

    2010-01-01

    Selection bias is a problem for mathematics education researchers interested in using observational rather than experimental data to make causal inferences about the effects of different instructional methods in mathematics on student outcomes. Propensity score methods represent 1 approach to dealing with such selection bias. This article…

  4. Structural and Conceptual Interweaving of Mathematics Methods Coursework and Field Practica

    ERIC Educational Resources Information Center

    Bahr, Damon L.; Monroe, Eula Ewing; Eggett, Dennis

    2014-01-01

    This paper describes a study of observed relationships between the design of a preservice elementary mathematics methods course with accompanying field practicum and changes in the extent to which participating prospective teachers identified themselves with the mathematics reform movement after becoming practicing teachers. The curriculum of the…

  5. A Multi-Method Investigation of Mathematics Motivation for Elementary Age Students

    ERIC Educational Resources Information Center

    Linder, Sandra M.; Smart, Julie B.; Cribbs, Jennifer

    2015-01-01

    This paper presents the results of a multi-method study examining elementary students with high self-reported levels of mathematics motivation. Second- through fifth-grade students at a Title One school in the southeastern United States completed the Elementary Mathematics Motivation Instrument (EMMI), which examines levels of mathematics…

  6. A current-excited triple-time-voltage oversampling method for bio-impedance model for cost-efficient circuit system.

    PubMed

    Yan Hong; Yong Wang; Wang Ling Goh; Yuan Gao; Lei Yao

    2015-08-01

    This paper presents a mathematic method and a cost-efficient circuit to measure the value of each component of the bio-impedance model at electrode-electrolyte interface. The proposed current excited triple-time-voltage oversampling (TTVO) method deduces the component values by solving triple simultaneous electric equation (TSEE) at different time nodes during a current excitation, which are the voltage functions of time. The proposed triple simultaneous electric equations (TSEEs) allows random selections of the time nodes, hence numerous solutions can be obtained during a single current excitation. Following that, the oversampling approach is engaged by averaging all solutions of multiple TSEEs acquired after a single current excitation, which increases the practical measurement accuracy through the improvement of the signal-to-noise ratio (SNR). In addition, a print circuit board (PCB) that consists a switched current exciter and an analog-to-digital converter (ADC) is designed for signal acquisition. This presents a great cost reduction when compared against other instrument-based measurement data reported [1]. Through testing, the measured values of this work is proven to be in superb agreements on the true component values of the electrode-electrolyte interface model. This work is most suited and also useful for biological and biomedical applications, to perform tasks such as stimulations, recordings, impedance characterizations, etc.

  7. What is the Role of Mathematics Education in the Computer Age?

    ERIC Educational Resources Information Center

    Popp, Jerome A.

    1986-01-01

    Proposes that the role of mathematics education be re-examined in terms of an increased emphasis on mathematical knowledge rather than attainment of calculational speed. Offers perspectives on the reform movement in mathematics education and advocates the teaching of the history, logic, and method of mathematical thinking. (ML)

  8. Why Singaporean 8th Grade Students Gain Highest Mathematics Ranking in TIMSS (1999-2011)

    ERIC Educational Resources Information Center

    Lessani, Abdolreza; Yunus, Aida Suraya Md; Tarmiz, Rohani Ahmad; Mahmud, Rosnaini

    2014-01-01

    The international comparison of students' mathematics knowledge and competencies is an effective method of evaluating students' mathematics performance and developing policies to improve their achievements in mathematics. Trends in International Mathematics and Science Study (TIMSS) are among the most well-recognized international comparisons that…

  9. The Language of Mathematics: The Importance of Teaching and Learning Mathematical Vocabulary

    ERIC Educational Resources Information Center

    Riccomini, Paul J.; Smith, Gregory W.; Hughes, Elizabeth M.; Fries, Karen M.

    2015-01-01

    Vocabulary understanding is a major contributor to overall comprehension in many content areas, including mathematics. Effective methods for teaching vocabulary in all content areas are diverse and long standing. Teaching and learning the language of mathematics is vital for the development of mathematical proficiency. Students' mathematical…

  10. Influence of Writing Ability and Computation Skill on Mathematics Writing

    ERIC Educational Resources Information Center

    Powell, Sarah R.; Hebert, Michael A.

    2016-01-01

    Mathematics standards expect students to communicate about mathematics using oral and written methods, and some high-stakes assessments ask students to answer mathematics questions by writing. Assumptions about mathematics communication via writing include (a) students possess writing skill, (b) students can transfer this writing skill to…

  11. Developing Teaching Material Software Assisted for Numerical Methods

    NASA Astrophysics Data System (ADS)

    Handayani, A. D.; Herman, T.; Fatimah, S.

    2017-09-01

    The NCTM vision shows the importance of two things in school mathematics, which is knowing the mathematics of the 21st century and the need to continue to improve mathematics education to answer the challenges of a changing world. One of the competencies associated with the great challenges of the 21st century is the use of help and tools (including IT), such as: knowing the existence of various tools for mathematical activity. One of the significant challenges in mathematical learning is how to teach students about abstract concepts. In this case, technology in the form of mathematics learning software can be used more widely to embed the abstract concept in mathematics. In mathematics learning, the use of mathematical software can make high level math activity become easier accepted by student. Technology can strengthen student learning by delivering numerical, graphic, and symbolic content without spending the time to calculate complex computing problems manually. The purpose of this research is to design and develop teaching materials software assisted for numerical method. The process of developing the teaching material starts from the defining step, the process of designing the learning material developed based on information obtained from the step of early analysis, learners, materials, tasks that support then done the design step or design, then the last step is the development step. The development of teaching materials software assisted for numerical methods is valid in content. While validator assessment for teaching material in numerical methods is good and can be used with little revision.

  12. Representation of magnetic fields in space. [special attention to Geomagnetic fields and Magnetospheric models

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1976-01-01

    Several mathematical methods which are available for the description of magnetic fields in space are reviewed. Examples of the application of such methods are given, with particular emphasis on work related to the geomagnetic field, and their individual properties and associated problems are described. The methods are grouped in five main classes: (1) methods based on the current density, (2) methods using the scalar magnetic potential, (3) toroidal and poloidal components of the field and spherical vector harmonics, (4) Euler potentials, and (5) local expansions of the field near a given reference point. Special attention is devoted to models of the magnetosphere, to the uniqueness of the scalar potential as derived from observed data, and to the L parameter.

  13. Using the Partial Credit Model to Evaluate the Student Engagement in Mathematics Scale

    ERIC Educational Resources Information Center

    Leis, Micela; Schmidt, Karen M.; Rimm-Kaufman, Sara E.

    2015-01-01

    The Student Engagement in Mathematics Scale (SEMS) is a self-report measure that was created to assess three dimensions of student engagement (social, emotional, and cognitive) in mathematics based on a single day of class. In the current study, the SEMS was administered to a sample of 360 fifth graders from a large Mid-Atlantic district. The…

  14. Mathematics at A-Level. A Discussion Paper on the Applied Content. No. 93.

    ERIC Educational Resources Information Center

    Mathematical Association, Leicester (England).

    In September 1979, the Mathematical Association in England held a weekend seminar on the scope of Applied Mathematics at A-level, and a subcommittee was established to consider the topic at more length. This paper is the first product of the subcommittee's deliberations. Sections 1 and 2 describe the background to current A-level courses: (1) who…

  15. Mathematics in and through Social Justice: Another Misunderstood Marriage?

    ERIC Educational Resources Information Center

    Nolan, Kathleen

    2009-01-01

    The current push to marry off mathematics with social justice compels one to ask such critical questions as "What is social justice?" and "How does (or can) mathematics look and act when viewed in/through the lenses of social justice?" Taking a critically reflective approach, this article draws the reader into a discussion of what is amiss in the…

  16. What Would Grade 8 to 10 Learners Prefer as Context for Mathematical Literacy? The Case of Masilakele Secondary School

    ERIC Educational Resources Information Center

    Julie, Cyril; Mbekwa, Monde

    2005-01-01

    Contexts are currently enjoying much prominence in school mathematics. Generally, the contextual issues and situations learners are exposed to and deal with in Mathematical Literacy are, with good reason, determined by curriculum, learning resource and test designers. This article reports on a study that investigated contexts that learners would…

  17. Obtaining Laws through Quantifying Experiments: Justifications of Pre-Service Physics Teachers in the Case of Electric Current, Voltage and Resistance

    ERIC Educational Resources Information Center

    Mäntylä, Terhi; Hämäläinen, Ari

    2015-01-01

    The language of physics is mathematics, and physics ideas, laws and models describing phenomena are usually represented in mathematical form. Therefore, an understanding of how to navigate between phenomena and the models representing them in mathematical form is important for a physics teacher so that the teacher can make physics understandable…

  18. No Common Denominator: The Preparation of Elementary Teachers in Mathematics by America's Education Schools

    ERIC Educational Resources Information Center

    Greenberg, Julie; Walsh, Kate

    2008-01-01

    The nation's higher goals for student learning in mathematics cannot be reached without improved teacher capacity. To accomplish these goals an analysis of current teacher preparation in mathematics is necessary, along with the development of an agenda for improvement. Based on groundwork laid during a meeting in Washington, D.C. in March 2007,…

  19. Provision for Mathematically Able Children in Primary Schools: A Review of Practice Five Years after England Dropped the Gifted and Talented Initiative

    ERIC Educational Resources Information Center

    Dimitriadis, Christos; Georgeson, Jan

    2018-01-01

    After the abandonment of the Gifted and Talented initiative and the recent developments in mathematics educational policy (i.e. the new national curriculum and the "mastery" initiative), this research project aimed to explore the current primary school situation regarding educating the "most able" children in mathematics, along…

  20. Age- and Gender-Related Change in Mathematical Reasoning Ability and Some Educational Suggestions

    ERIC Educational Resources Information Center

    Erdem, Emrullah; Soylu, Yasin

    2017-01-01

    Does the mathematical reasoning ability develop with increase in age? How is mathematical reasoning ability differing according to gender? The current study is trying to find answers to these two questions. The study using cross-sectional design, was conducted with 409 (8th, 9th and 10th grade) students attending middle school and high school in…

  1. Key Stage 3 Mathematics Teachers: The Current Situation, Initiatives and Visions. Proceedings of a National Day Conference.

    ERIC Educational Resources Information Center

    Johnston-Wilder, Sue

    This book contains edited versions of papers presented at a conference held at The Open University. The papers provide significant evidence of the depth of the problem of supply and retention of teachers of mathematics, and discusses the need for a structural review of the recruitment, selection, and training of teachers of mathematics. The…

  2. Exploring Connections between Content Knowledge, Pedagogical Content Knowledge, and the Opportunities to Learn Mathematics: Findings from the TEDS-M Dataset

    ERIC Educational Resources Information Center

    Murray, Eileen; Durkin, Kelley; Chao, Theodore; Star, Jon R.; Vig, Rozy

    2018-01-01

    Past work on mathematics teachers' content knowledge (CK) and pedagogical content knowledge (PCK) has resulted in mixed findings about the strength of the relationship between and development of these constructs. The current study uses data from the Teacher Education and Development Study in Mathematics (TEDS-M) to examine the relationship between…

  3. Bridging the Divide--Seeing Mathematics in the World through Dynamic Geometry

    ERIC Educational Resources Information Center

    Aydin, Hatice; Monaghan, John

    2011-01-01

    In TMA, Oldknow (2009, "TEAMAT", 28, 180-195) called for ways to unlock students' skills so that they increase learning about the world of mathematics and the objects in the world around them. This article examines one way in which we may unlock the student skills. We are currently exploring the potential for students to "see" mathematics in the…

  4. An Examination of the Potential of Secondary Mathematics Curriculum Materials to Support Teacher and Student Learning of Probabiility and Statistics

    ERIC Educational Resources Information Center

    Williams, Joshua E.

    2016-01-01

    The Common Core State Standards for Mathematics (CCSSSM) suggest many changes to secondary mathematics education including an increased focus on conceptual understanding and the inclusion of content and processes that are beyond what is currently taught to most high school students. To facilitate these changes, students will need opportunities to…

  5. Mathematics as a Course of Study in Problem Solving: Then and Now.

    ERIC Educational Resources Information Center

    Ellis, Wade, Jr.

    The mathematics curriculum in the first 2 years of college is a tool created to assist in solving problems. The current mathematics curriculum has changed little; the same topics, tied to the engineering and science curriculum, are taught as they were being taught in 1945. The problems that students need to solve have changed however. Both the…

  6. Use of a Mathematics Word Problem Strategy to Improve Achievement for Students with Mild Disabilities

    ERIC Educational Resources Information Center

    Taber, Mary R.

    2013-01-01

    Mathematics can be a difficult topic both to teach and to learn. Word problems specifically can be difficult for students with disabilities because they have to conceptualize what the problem is asking for, and they must perform the correct operation accurately. Current trends in mathematics instruction stem from the National Council of Teachers…

  7. Mathematics. [SITE 2001 Section].

    ERIC Educational Resources Information Center

    Connell, Michael L., Ed.; Lowery, Norene Vail, Ed.; Harnisch, Delwyn L., Ed.

    This document contains the following papers on mathematics from the SITE (Society for Information Technology & Teacher Education) 2001 conference: "Secondary Mathematics Methods Course with Technology Units: Encouraging Pre-Service Teachers To Use Technology" (Rajee Amarasinghe); "Competency Exams in College Mathematics"…

  8. Does one size fit all? A study of beginning science and mathematics teacher induction

    NASA Astrophysics Data System (ADS)

    Kralik, Jeffrey M.

    Over the past few years, many induction programs have been implemented across the country, primarily designed to limit the amount beginning teacher attrition. Few of these programs have focused on improving teacher quality or identifying the specific needs of individual teachers. Research suggests that beginning science and mathematics teachers have specific needs that are not being met by current induction models, possibly resulting in higher rates of attrition. Harry and Janet Knowles created the Knowles Science Teaching Foundation (KSTF) to identify and support young scientists and mathematicians as they dedicate their lives to teaching young people. Through financial, curricular, and emotional support, KSTF encourages new teachers to remain in teaching and become leaders in their schools and districts. This dissertation is a sequential explanatory study, which first establishes national estimates for beginning teacher attrition rates and the reasons for the migration based on subject area taught, with an emphasis on mathematics and science teachers. This study then evaluates the KSTF model through multiple methods---analysis of KSTF survey data and interviews with KSTF participants and stakeholders.

  9. Editorial: Mathematical Methods and Modeling in Machine Fault Diagnosis

    DOE PAGES

    Yan, Ruqiang; Chen, Xuefeng; Li, Weihua; ...

    2014-12-18

    Modern mathematics has commonly been utilized as an effective tool to model mechanical equipment so that their dynamic characteristics can be studied analytically. This will help identify potential failures of mechanical equipment by observing change in the equipment’s dynamic parameters. On the other hand, dynamic signals are also important and provide reliable information about the equipment’s working status. Modern mathematics has also provided us with a systematic way to design and implement various signal processing methods, which are used to analyze these dynamic signals, and to enhance intrinsic signal components that are directly related to machine failures. This special issuemore » is aimed at stimulating not only new insights on mathematical methods for modeling but also recently developed signal processing methods, such as sparse decomposition with potential applications in machine fault diagnosis. Finally, the papers included in this special issue provide a glimpse into some of the research and applications in the field of machine fault diagnosis through applications of the modern mathematical methods.« less

  10. The place of words and numbers in psychiatric research.

    PubMed

    Falissard, Bruno; Révah, Anne; Yang, Suzanne; Fagot-Largeault, Anne

    2013-11-18

    In recent decades, there has been widespread debate in the human and social sciences regarding the compatibility and the relative merits of quantitative and qualitative approaches in research. In psychiatry, depending on disciplines and traditions, objects of study can be represented either in words or using two types of mathematization. In the latter case, the use of mathematics in psychiatry is most often only local, as opposed to global as in the case of classical mechanics. Relationships between these objects of study can in turn be explored in three different ways: 1/ by a hermeneutic process, 2/ using statistics, the most frequent method in psychiatric research today, 3/ using equations, i.e. using mathematical relationships that are formal and deterministic. The 3 ways of representing entities (with language, locally with mathematics or globally with mathematics) and the 3 ways of expressing the relationships between entities (using hermeneutics, statistics or equations) can be combined in a cross-tabulation, and nearly all nine combinations can be described using examples. A typology of this nature may be useful in assessing which epistemological perspectives are currently dominant in a constantly evolving field such as psychiatry, and which other perspectives still need to be developed. It also contributes to undermining the overly simplistic and counterproductive beliefs that accompany the assumption of a Manichean "quantitative/qualitative" dichotomy. Systematic examination of this set of typologies could be useful in indicating new directions for future research beyond the quantitative/qualitative divide.

  11. The place of words and numbers in psychiatric research

    PubMed Central

    2013-01-01

    In recent decades, there has been widespread debate in the human and social sciences regarding the compatibility and the relative merits of quantitative and qualitative approaches in research. In psychiatry, depending on disciplines and traditions, objects of study can be represented either in words or using two types of mathematization. In the latter case, the use of mathematics in psychiatry is most often only local, as opposed to global as in the case of classical mechanics. Relationships between these objects of study can in turn be explored in three different ways: 1/ by a hermeneutic process, 2/ using statistics, the most frequent method in psychiatric research today, 3/ using equations, i.e. using mathematical relationships that are formal and deterministic. The 3 ways of representing entities (with language, locally with mathematics or globally with mathematics) and the 3 ways of expressing the relationships between entities (using hermeneutics, statistics or equations) can be combined in a cross-tabulation, and nearly all nine combinations can be described using examples. A typology of this nature may be useful in assessing which epistemological perspectives are currently dominant in a constantly evolving field such as psychiatry, and which other perspectives still need to be developed. It also contributes to undermining the overly simplistic and counterproductive beliefs that accompany the assumption of a Manichean “quantitative/qualitative” dichotomy. Systematic examination of this set of typologies could be useful in indicating new directions for future research beyond the quantitative/qualitative divide. PMID:24246064

  12. Generating Sudoku puzzles and its applications in teaching mathematics

    NASA Astrophysics Data System (ADS)

    Evans, Ryan; Lindner, Brett; Shi, Yixun

    2011-07-01

    This article presents a few methods for generating Sudoku puzzles. These methods are developed based on the concepts of matrix, permutation, and modular functions, and therefore can be used to form application examples or student projects when teaching various mathematics courses. Mathematical properties of these methods are studied, connections between the methods are investigated, and student projects are suggested. Since most students tend to enjoy games, studies like this may help raising students' interests and enhance their problem-solving skills.

  13. Error measure comparison of currently employed dose-modulation schemes for e-beam proximity effect control

    NASA Astrophysics Data System (ADS)

    Peckerar, Martin C.; Marrian, Christie R.

    1995-05-01

    Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.

  14. Current State of Research on Mathematical Beliefs III. Proceedings of the MAVI-3 Workshop (3rd, Helsinki, Finland, August 23-26, 1996). Research Report 170.

    ERIC Educational Resources Information Center

    Pehkonen, Erkki, Ed.

    This report contains papers given in the third workshop on the Current State of Research on Mathematical Beliefs. No plenary talks were given. The presentations were categorized into the subjects of pupil beliefs and teacher beliefs. The concept of belief in this workshop also refers to conceptions, views, and attitudes. Pupils' beliefs and their…

  15. Student Teachers' Views about Assessment and Evaluation Methods in Mathematics

    ERIC Educational Resources Information Center

    Dogan, Mustafa

    2011-01-01

    This study aimed to find out assessment and evaluation approaches in a Mathematics Teacher Training Department based on the views and experiences of student teachers. The study used a descriptive survey method, with the research sample consisting of 150 third- and fourth-year Primary Mathematics student teachers. Data were collected using a…

  16. Investigating the Effects of a Math-Enhanced Agricultural Teaching Methods Course

    ERIC Educational Resources Information Center

    Stripling, Christopher T.; Roberts, T. Grady

    2013-01-01

    Numerous calls have been made for agricultural education to support core academic subject matter including mathematics. Previous research has shown that the incorporation of mathematics content into a teaching methods course had a positive effect on preservice teachers' mathematics content knowledge. The purpose of this study was to investigate…

  17. Some Factors That Affecting the Performance of Mathematics Teachers in Junior High School in Medan

    ERIC Educational Resources Information Center

    Manullang, Martua; Rajagukguk, Waminton

    2016-01-01

    Some Factor's That Affecting The Mathematic Teacher Performance For Junior High School In Medan. This research will examine the effect of direct and indirect of the Organizational Knowledge towards the achievement motivation, decision making, organizational commitment, the performance of mathematics teacher. The research method is a method of…

  18. The Effectiveness of Robotics as a Manipulative in Mathematics Instruction: A Mixed Method Study

    ERIC Educational Resources Information Center

    Sheehy, Leonard

    2017-01-01

    Addition of fractions is an important foundation for students to experience success in mathematics. This mixed-methods study was conducted to measure the effectiveness of robotics as a mathematics manipulative with seventh grade students. Two groups of students were established: control and treatment. The control group received teacher-centered…

  19. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient?

    PubMed

    Skoraczyński, G; Dittwald, P; Miasojedow, B; Szymkuć, S; Gajewska, E P; Grzybowski, B A; Gambin, A

    2017-06-15

    As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, GO champions, there is interest - and hope - that they will prove equally useful in assisting chemists in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability of machine learning to the problems of chemical reactivity over diverse types of chemistries remains limited - in particular, with the currently available chemical descriptors, fundamental mathematical theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. Improving the performance of machine-learning methods calls for the development of fundamentally new chemical descriptors.

  20. Profile of Metacognition of Mathematics and Mathematics Education Students in Understanding the Concept of Integral Calculus

    NASA Astrophysics Data System (ADS)

    Misu, La; Ketut Budayasa, I.; Lukito, Agung

    2018-03-01

    This study describes the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. The metacognition profile is a natural and intact description of a person’s cognition that involves his own thinking in terms of using his knowledge, planning and monitoring his thinking process, and evaluating his thinking results when understanding a concept. The purpose of this study was to produce the metacognition profile of mathematics and mathematics education students in understanding the concept of integral calculus. This research method is explorative method with the qualitative approach. The subjects of this study are mathematics and mathematics education students who have studied integral calculus. The results of this study are as follows: (1) the summarizing category, the mathematics and mathematics education students can use metacognition knowledge and metacognition skills in understanding the concept of indefinite integrals. While the definite integrals, only mathematics education students use metacognition skills; and (2) the explaining category, mathematics students can use knowledge and metacognition skills in understanding the concept of indefinite integrals, while the definite integrals only use metacognition skills. In addition, mathematics education students can use knowledge and metacognition skills in understanding the concept of both indefinite and definite integrals.

  1. Pre-Service Teachers' Mathematics Language and Reflection in the Context of an Early Childhood Mathematics Methods Course

    ERIC Educational Resources Information Center

    Boyd, Soleil

    2016-01-01

    Preschool teachers are expected to engage young children in challenging and supportive mathematics learning. Rich and responsive language experiences in mathematics support children's language acquisition and engagement related to mathematics, however, such engaging experiences may be minimally available to many young children. Professional…

  2. Integrating Universal Design and Response to Intervention in Methods Courses for General Education Mathematics Teachers

    ERIC Educational Resources Information Center

    Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.

    2014-01-01

    Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…

  3. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    PubMed

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  4. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    PubMed Central

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  5. 78 FR 38957 - Agency Information Collection Activities; Comment Request; Trends in International Mathematics...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... not in 2008. Because of the current strong policy interest in preparedness for college and for careers in science, technology, engineering, and mathematics (STEM) fields, the U.S. plans to participate in...

  6. Adam Smith in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Lipsey, Sally I.

    1975-01-01

    The author describes a series of current economic ideas and situations which can be used in the mathematics classroom to illustrate the use of signed numbers, the coordinate system, univariate and multivariate functions, linear programing, and variation. (SD)

  7. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    NASA Astrophysics Data System (ADS)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  8. A mathematical model of a lithium/thionyl chloride primary cell

    NASA Technical Reports Server (NTRS)

    Evans, T. I.; Nguyen, T. V.; White, R. E.

    1987-01-01

    A 1-D mathematical model for the lithium/thionyl chloride primary cell was developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict 1-D, time dependent profiles of concentration, porosity, current, and potential as well as cell temperature and voltage. When a certain discharge rate is required, the model can be used to determine the design criteria and operating variables which yield high cell capacities. Model predictions can be used to establish operational and design limits within which the thermal runaway problem, inherent in these cells, can be avoided.

  9. Mathematical modeling of the process of determining the standards for process losses in the transfer of thermal energy of the coolant

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2017-11-01

    Currently the actual problem is a precise definition of the normative and actual heat loss. Existing methods - experimental, on metering devices, on the basis of mathematical modeling methods are not without drawbacks. Heat losses establishing during the heat carrier transport has an impact on the tariff structure of heat supply organizations. This quantity determination also promotes proper choice of main and auxiliary equipment power, temperature chart of heat supply networks, as well as the heating system structure choice with the decentralization. Calculation of actual heat loss and their comparison with standard values justifies the performance of works on improvement of the heat networks with the replacement of piping or its insulation. To determine the cause of discrepancies between normative and actual heat losses thermal tests on the magnitude of the actual heat losses in the 124 sections of heat networks in Kazan. As were carried out the result mathematical model of the regulatory definition of heat losses is developed and tested. This model differ from differs the existing according the piping insulation type. The application of this factor will bring the value of calculative normative losses heat energy to their actual value. It is of great importance for enterprises operating distribution networks and because of the conditions of their configuration and extensions do not have the technical ability to produce thermal testing.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Pike, R.W.; Hertwig, T.A.

    An effective approach for source reduction in chemical plants has been demonstrated using on-line optimization with flowsheeting (ASPEN PLUS) for process optimization and parameter estimation and the Tjao-Biegler algorithm implemented in a mathematical programming language (GAMS/MINOS) for data reconciliation and gross error detection. Results for a Monsanto sulfuric acid plant with a Bailey distributed control system showed a 25% reduction in the sulfur dioxide emissions and a 17% improvement in the profit over the current operating conditions. Details of the methods used are described.

  11. Davidenko’s Method for the Solution of Nonlinear Operator Equations.

    DTIC Science & Technology

    NONLINEAR DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATION), OPERATORS(MATHEMATICS), BANACH SPACE , MAPPING (TRANSFORMATIONS), NUMERICAL METHODS AND PROCEDURES, INTEGRALS, SET THEORY, CONVERGENCE, MATRICES(MATHEMATICS)

  12. Showing You're Working: A Project Using Former Pupils' Experiences to Engage Current Mathematics Students

    ERIC Educational Resources Information Center

    Musto, Garrod

    2008-01-01

    To help students view mathematics in a more favourable light, a number of former pupils were contacted and asked to give details of how they use mathematics in their daily lives. This information was gathered through an online questionnaire or visits to the school to talk to pupils--a booklet of responses was also given to students. Attitudinally…

  13. Measure for Measure: What Combining Diverse Measures Reveals about Children's Understanding of the Equal Sign as An Indicator of Mathematical Equality

    ERIC Educational Resources Information Center

    Matthews, Percival; Rittle-Johnson, Bethany; McEldoon, Katherine; Taylor, Roger

    2012-01-01

    Knowledge of the equal sign as an indicator of mathematical equality is foundational to children's mathematical development and serves as a key link between arithmetic and algebra. The current findings reaffirmed a past finding that diverse items can be integrated onto a single scale, revealed the wide variability in children's knowledge of the…

  14. Value of Flexibility - Phase 1

    DTIC Science & Technology

    2010-09-25

    weaknesses of each approach. During this period, we also explored the development of an analytical framework based on sound mathematical constructs... mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory or guidance on best approaches to...research activities is in developing a coherent value based definition of flexibility that is based on an analytical framework that is mathematically

  15. Optimal geometry toward uniform current density electrodes

    NASA Astrophysics Data System (ADS)

    Song, Yizhuang; Lee, Eunjung; Woo, Eung Je; Seo, Jin Keun

    2011-07-01

    Electrodes are commonly used to inject current into the human body in various biomedical applications such as functional electrical stimulation, defibrillation, electrosurgery, RF ablation, impedance imaging, and so on. When a highly conducting electrode makes direct contact with biological tissues, the induced current density has strong singularity along the periphery of the electrode, which may cause painful sensation or burn. Especially in impedance imaging methods such as the magnetic resonance electrical impedance tomography, we should avoid such singularity since more uniform current density underneath a current-injection electrode is desirable. In this paper, we study an optimal geometry of a recessed electrode to produce a well-distributed current density on the contact area under the electrode. We investigate the geometry of the electrode surface to minimize the edge singularity and produce nearly uniform current density on the contact area. We propose a mathematical framework for the uniform current density electrode and its optimal geometry. The theoretical results are supported by numerical simulations.

  16. Mathematical methods in systems biology.

    PubMed

    Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz

    2016-12-01

    The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.

  17. Electroencephalography (EEG) forward modeling via H(div) finite element sources with focal interpolation.

    PubMed

    Pursiainen, S; Vorwerk, J; Wolters, C H

    2016-12-21

    The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.

  18. Enhancing students’ mathematical representation and selfefficacy through situation-based learning assisted by geometer’s sketchpad program

    NASA Astrophysics Data System (ADS)

    Sowanto; Kusumah, Y. S.

    2018-05-01

    This research was conducted based on the problem of a lack of students’ mathematical representation ability as well as self-efficacy in accomplishing mathematical tasks. To overcome this problem, this research used situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP). This research investigated students’ improvement of mathematical representation ability who were taught under situation-based learning (SBL) assisted by geometer’s sketchpad program (GSP) and regular method that viewed from the whole students’ prior knowledge (high, average, and low level). In addition, this research investigated the difference of students’ self-efficacy after learning was given. This research belongs to quasi experiment research using non-equivalent control group design with purposive sampling. The result of this research showed that students’ enhancement in their mathematical representation ability taught under SBL assisted by GSP was better than the regular method. Also, there was no interaction between learning methods and students prior knowledge in student’ enhancement of mathematical representation ability. There was significant difference of students’ enhancement of mathematical representation ability taught under SBL assisted by GSP viewed from students’ prior knowledge. Furthermore, there was no significant difference in terms of self-efficacy between those who were taught by SBL assisted by GSP with the regular method.

  19. A Study of Visualization for Mathematics Education

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.

    2008-01-01

    Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.

  20. Understanding the Impact of Interventions to Prevent Antimicrobial Resistant Infections in the Long-Term Care Facility: A Review and Practical Guide to Mathematical Modeling.

    PubMed

    Rosello, Alicia; Horner, Carolyne; Hopkins, Susan; Hayward, Andrew C; Deeny, Sarah R

    2017-02-01

    OBJECTIVES (1) To systematically search for all dynamic mathematical models of infectious disease transmission in long-term care facilities (LTCFs); (2) to critically evaluate models of interventions against antimicrobial resistance (AMR) in this setting; and (3) to develop a checklist for hospital epidemiologists and policy makers by which to distinguish good quality models of AMR in LTCFs. METHODS The CINAHL, EMBASE, Global Health, MEDLINE, and Scopus databases were systematically searched for studies of dynamic mathematical models set in LTCFs. Models of interventions targeting methicillin-resistant Staphylococcus aureus in LTCFs were critically assessed. Using this analysis, we developed a checklist for good quality mathematical models of AMR in LTCFs. RESULTS AND DISCUSSION Overall, 18 papers described mathematical models that characterized the spread of infectious diseases in LTCFs, but no models of AMR in gram-negative bacteria in this setting were described. Future models of AMR in LTCFs require a more robust methodology (ie, formal model fitting to data and validation), greater transparency regarding model assumptions, setting-specific data, realistic and current setting-specific parameters, and inclusion of movement dynamics between LTCFs and hospitals. CONCLUSIONS Mathematical models of AMR in gram-negative bacteria in the LTCF setting, where these bacteria are increasingly becoming prevalent, are needed to help guide infection prevention and control. Improvements are required to develop outputs of sufficient quality to help guide interventions and policy in the future. We suggest a checklist of criteria to be used as a practical guide to determine whether a model is robust enough to test policy. Infect Control Hosp Epidemiol 2017;38:216-225.

  1. Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamrick, Todd

    2011-01-01

    Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to computemore » the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.« less

  2. Extension to the dynamic modeling of the large angle magnetic suspension test fixture. M.S. Thesis - Old Dominion Univ., May 1995 Progress Report, 1 Nov. 1994 - 30 Apr. 1995

    NASA Technical Reports Server (NTRS)

    Foster, Lucas E.; Britcher, Colin P.

    1995-01-01

    The Large Angle Magnetic Suspension Test Fixture (LAMSTF) is a laboratory scale proof-of-concept system. The configuration is unique in that the electromagnets are mounted in a circular planar array. A mathematical model of the system had previously been developed, but was shown to have inaccuracies. These inaccuracies showed up in the step responses. Eddy currents were found to be the major cause of the modeling errors. In the original system, eddy currents existed in the aluminum baseplate, iron cores, and the sensor support frame. An attempt to include the eddy current dynamics in the system model is presented. The dynamics of a dummy sensor ring were added to the system. Adding the eddy current dynamics to the simulation improves the way it compares to the actual experiment. Also presented is a new method of determining the yaw angle of the suspended element. From the coil currents the yaw angle can be determined and the controller can be updated to suspend at the new current. This method has been used to demonstrate a 360 degree yaw angle rotation.

  3. Sam's Progress with Learning Mathematics

    ERIC Educational Resources Information Center

    Haslam, Lynne

    2007-01-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the…

  4. Mathematical Critical Thinking and Curiosity Attitude in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory Course

    ERIC Educational Resources Information Center

    Zetriuslita; Wahyudin; Jarnawi

    2017-01-01

    This research aims to describe and analyze result of applying Problem-Based Learning and Cognitive Conflict Strategy (PBLCCS) in increasing students' Mathematical Critical Thinking (MCT) ability and Mathematical Curiosity Attitude (MCA). Adopting a quasi-experimental method with pretest-posttest control group design and using mixed method with…

  5. Teachers' Perception of Their Preparedness to Apply Facilitation Teaching in Secondary School Mathematics Instruction by Teacher Characteristics

    ERIC Educational Resources Information Center

    Ng'eno, J. K.; Chesimet, M. C.

    2015-01-01

    This study set out to find out the differences in teachers' perception of their preparedness to apply facilitation methods in teaching secondary school mathematics. Facilitation methods allow learners to be actively involved in the teaching and learning of mathematics hence making them be co-creators of knowledge. Facilitation teaching allow…

  6. Preservice Teachers' Reconciliation of an Epistemological Issue in an Integrated Mathematics/Science Methods Course

    ERIC Educational Resources Information Center

    Cormas, Peter C.

    2017-01-01

    Preservice teachers in six sections (n = 87) of a sequenced, methodological and process-integrated elementary mathematics/science methods course were able to reconcile an issue centered on a similar area of epistemology. Preservice teachers participated in a science inquiry lesson on biological classification and a mathematics problem-solving…

  7. Understanding of Prospective Mathematics Teachers of the Concept of Diagonal

    ERIC Educational Resources Information Center

    Ayvaz, Ülkü; Gündüz, Nazan; Bozkus, Figen

    2017-01-01

    This study aims to investigate the concept images of prospective mathematics teachers about the concept of diagonal. With this aim, case study method was used in the study. The participants of the study were consisted of 7 prospective teachers educating at the Department of Mathematics Education. Criterion sampling method was used to select the…

  8. Transitioning to the Common Core State Standards for Mathematics: A Mixed Methods Study of Elementary Teachers' Experiences and Perspectives

    ERIC Educational Resources Information Center

    Swars, Susan Lee; Chestnutt, Cliff

    2016-01-01

    This mixed methods study explored elementary teachers' (n = 73) experiences with and perspectives on the recently implemented Common Core State Standards for Mathematics (CCSS-Mathematics) at a high-needs, urban school. Analysis of the survey, questionnaire, and interview data reveals the findings cluster around: familiarity with and preparation…

  9. A Model for Minimizing Numeric Function Generator Complexity and Delay

    DTIC Science & Technology

    2007-12-01

    allow computation of difficult mathematical functions in less time and with less hardware than commonly employed methods. They compute piecewise...Programmable Gate Arrays (FPGAs). The algorithms and estimation techniques apply to various NFG architectures and mathematical functions. This...thesis compares hardware utilization and propagation delay for various NFG architectures, mathematical functions, word widths, and segmentation methods

  10. Mathematical Induction and Recursive Definition in Teaching Training

    ERIC Educational Resources Information Center

    Vármonostory, Endre

    2009-01-01

    The method of proof by mathematical induction follows from Peano axiom 5. We give three properties which are often used in the proofs by mathematical induction. We show that these are equivalent. Supposing the well-ordering property we prove the validity of this method without using Peano axiom 5. Finally, we introduce the simplest form of…

  11. The Effect of Cognitive- and Metacognitive-Based Instruction on Problem Solving by Elementary Students with Mathematical Learning Difficulties

    ERIC Educational Resources Information Center

    Grizzle-Martin, Tamieka

    2014-01-01

    Children who struggle in mathematics may also lack cognitive awareness in mathematical problem solving. The cognitively-driven program IMPROVE, a multidimensional method for teaching mathematics, has been shown to be helpful for students with mathematical learning difficulties (MLD). Guided by cognitive theory, the purpose of this…

  12. An Investigation of Teachers' Noticing, Cognitive Demand, and Mathematical Knowledge for Teaching: Video Reflections in an Elementary Mathematics Context

    ERIC Educational Resources Information Center

    Coddington, Lorelei R.

    2014-01-01

    In the past decade, mathematics performance by all students, especially minority students in low socioeconomic schools, has shown limited improvement nationwide (NCES, 2011). Traditionally in the United States, mathematics has consisted of arithmetic and computational fluency; however, mathematics researchers widely believe that this method of…

  13. [Representation and mathematical analysis of human crystalline lens].

    PubMed

    Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai

    2011-01-01

    The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.

  14. Mathematics and Measurement.

    PubMed

    Boisvert, R F; Donahue, M J; Lozier, D W; McMichael, R; Rust, B W

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST's current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years.

  15. Narrative assessment: making mathematics learning visible in early childhood settings

    NASA Astrophysics Data System (ADS)

    Anthony, Glenda; McLachlan, Claire; Lim Fock Poh, Rachel

    2015-09-01

    Narratives that capture children's learning as they go about their day-to-day activities are promoted as a powerful assessment tool within early childhood settings. However, in the New Zealand context, there is increasing concern that learning stories—the preferred form of narrative assessment—currently downplay domain knowledge. In this paper, we draw on data from 13 teacher interviews and samples of 18 children's learning stories to examine how mathematics is made visible within learning stories. Despite appreciating that mathematics is embedded in a range of everyday activities within the centres, we found that the nature of a particular activity appeared to influence `how' and `what' the teachers chose to document as mathematics learning. Many of the teachers expressed a preference to document and analyse mathematics learning that occurred within explicit mathematics activities rather than within play that involves mathematics. Our concern is that this restricted documentation of mathematical activity could potentially limit opportunities for mathematics learning both in the centre and home settings.

  16. Numerical approximation abilities correlate with and predict informal but not formal mathematics abilities.

    PubMed

    Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin

    2013-12-01

    Previous research has found a relationship between individual differences in children's precision when nonverbally approximating quantities and their school mathematics performance. School mathematics performance emerges from both informal (e.g., counting) and formal (e.g., knowledge of mathematics facts) abilities. It remains unknown whether approximation precision relates to both of these types of mathematics abilities. In the current study, we assessed the precision of numerical approximation in 85 3- to 7-year-old children four times over a span of 2years. In addition, at the final time point, we tested children's informal and formal mathematics abilities using the Test of Early Mathematics Ability (TEMA-3). We found that children's numerical approximation precision correlated with and predicted their informal, but not formal, mathematics abilities when controlling for age and IQ. These results add to our growing understanding of the relationship between an unlearned nonsymbolic system of quantity representation and the system of mathematics reasoning that children come to master through instruction. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Methods for Improving Information from ’Undesigned’ Human Factors Experiments.

    DTIC Science & Technology

    Human factors engineering, Information processing, Regression analysis , Experimental design, Least squares method, Analysis of variance, Correlation techniques, Matrices(Mathematics), Multiple disciplines, Mathematical prediction

  18. The T-TEL Method for Assessing Water, Sediment, and Chemical Connectivity

    NASA Astrophysics Data System (ADS)

    Ali, Genevieve; Oswald, Claire; Spence, Christopher; Wellen, Christopher

    2018-02-01

    The concept of connectivity has been the subject of a great deal of recent research and provided new insights and breakthroughs on runoff generation processes and watershed biogeochemistry. However, a consensus definition and cohesive mathematical framework that would permit the consistent quantification of hydrologic connectivity, the examination of the interrelationships between water and material (e.g., sediment and chemicals) connectivity, or rigorous study intercomparison, have not been presented by the water resource community. Building on previous conceptualizations and site-specific or process-specific metrics, this paper aimed to review the current state of science on hydrologic connectivity and its role in water-mediated connectivity of material such as solutes and sediment before introducing a conceptual and a mathematical connectivity assessment framework. These frameworks rely on the quantification of Time scales, Thresholds, Excesses and Losses related to water and water-mediated material transport dynamics and are referred to as the T-TEL method. Through a small case study, we show how the T-TEL method allows a wide range of properties to be quantified, namely the occurrence, frequency, duration, magnitude, and spatial extent of water and water-mediated material connectivity. We also propose a research agenda to refine the T-TEL method and ensure its usefulness for facilitating the research and management of connectivity in pristine and human-impacted landscapes.

  19. Detection of inter-turn faults in transformer winding using the capacitor discharge method

    NASA Astrophysics Data System (ADS)

    Michna, Michał; Wilk, Andrzej; Ziółko, Michał; Wołoszyk, Marek; Swędrowski, Leon; Szwangruber, Piotr

    2017-12-01

    The paper presents results of an analysis of inter-turn fault effects on the voltage and current waveforms of a capacitor discharge through transformer windings. The research was conducted in the frame of the Facility of Antiproton and Ion Research project which goal is to build a new international accelerator facility that utilizes superconducting magnets. For the sake of electrical quality assurance of the superconducting magnet circuits, a measurement and diagnostic system is currently under development at Gdansk University of Technology (GUT). Appropriate measurements and simulations of the special transformer system were performed to verify the proposed diagnostic method. In order to take into account the nonlinearity and hysteresis of the magnetic yoke, a novel mathematical model of the transformer was developed. A special test bench was constructed to emulate the inter-turn faults within transformer windings.

  20. The Mathematics--Children's-Literature Connection.

    ERIC Educational Resources Information Center

    Gailey, Stavroula K.

    1993-01-01

    Describes three types of children's books for use in developing mathematical concepts. Discusses the characteristics of a good mathematical concept book, methods of incorporating reading into the mathematics class, and three examples of children's books. Includes a bibliography of 159 children's trade books selected for integration into…

  1. Exploring Wind Power: Improving Mathematical Thinking through Digital Fabrication

    ERIC Educational Resources Information Center

    Tillman, Daniel A.; An, Song A.; Cohen, Jonathan D.; Kjellstrom, William; Boren, Rachel L.

    2014-01-01

    This mixed methods study examined the impacts of digital fabrication activities that were integrated into contextualized mathematics education. The study investigated the students' mathematics content knowledge and attitudes. Data analysis yielded two key findings regarding our intervention combined with the other mathematics activities resulted…

  2. Assessment and Learning of Mathematics.

    ERIC Educational Resources Information Center

    Leder, Gilah C., Ed.

    This book addresses the link between student learning of mathematics, the teaching method adopted in the mathematics classroom, and the assessment procedures used to determine and measure student knowledge. Fifteen chapters address issues that include a review of different models of mathematics learning and assessment practices, three contrasting…

  3. Group investigation with scientific approach in mathematics learning

    NASA Astrophysics Data System (ADS)

    Indarti, D.; Mardiyana; Pramudya, I.

    2018-03-01

    The aim of this research is to find out the effect of learning model toward mathematics achievement. This research is quasi-experimental research. The population of research is all VII grade students of Karanganyar regency in the academic year of 2016/2017. The sample of this research was taken using stratified cluster random sampling technique. Data collection was done based on mathematics achievement test. The data analysis technique used one-way ANOVA following the normality test with liliefors method and homogeneity test with Bartlett method. The results of this research is the mathematics learning using Group Investigation learning model with scientific approach produces the better mathematics learning achievement than learning with conventional model on material of quadrilateral. Group Investigation learning model with scientific approach can be used by the teachers in mathematics learning, especially in the material of quadrilateral, which is can improve the mathematics achievement.

  4. Mathematics teachers' conceptions about modelling activities and its reflection on their beliefs about mathematics

    NASA Astrophysics Data System (ADS)

    Shahbari, Juhaina Awawdeh

    2018-07-01

    The current study examines whether the engagement of mathematics teachers in modelling activities and subsequent changes in their conceptions about these activities affect their beliefs about mathematics. The sample comprised 52 mathematics teachers working in small groups in four modelling activities. The data were collected from teachers' Reports about features of each activity, interviews and questionnaires on teachers' beliefs about mathematics. The findings indicated changes in teachers' conceptions about the modelling activities. Most teachers referred to the first activity as a mathematical problem but emphasized only the mathematical notions or the mathematical operations in the modelling process; changes in their conceptions were gradual. Most of the teachers referred to the fourth activity as a mathematical problem and emphasized features of the whole modelling process. The results of the interviews indicated that changes in the teachers' conceptions can be attributed to structure of the activities, group discussions, solution paths and elicited models. These changes about modelling activities were reflected in teachers' beliefs about mathematics. The quantitative findings indicated that the teachers developed more constructive beliefs about mathematics after engagement in the modelling activities and that the difference was significant, however there was no significant difference regarding changes in their traditional beliefs.

  5. Music Activities as a Meaningful Context for Teaching Elementary Students Mathematics: A Quasi-Experiment Time Series Design with Random Assigned Control Group

    ERIC Educational Resources Information Center

    An, Song A.; Tillman, Daniel A.

    2015-01-01

    The purpose of the current research was to examine the effects of a sequence of classroom activities that integrated mathematics content with music elements aimed at providing teachers an alternative approach for teaching mathematics. Two classes of third grade students (n = 56) from an elementary school in the west coast of the United States…

  6. The Effects of Learning Strategies on Mathematical Literacy: A Comparison between Lower and Higher Achieving Countries

    ERIC Educational Resources Information Center

    Magen-Nagar, Noga

    2016-01-01

    The purpose of the current study is to explore the effects of learning strategies on Mathematical Literacy (ML) of students in higher and lower achieving countries. To address this issue, the study utilizes PISA2002 data to conduct a multi-level analysis (HLM) of Hong Kong and Israel students. In PISA2002, Israel was rated 31st in Mathematics,…

  7. Evaluation of Limb Load Asymmetry Using Two New Mathematical Models

    PubMed Central

    Kumar, Senthil NS; Omar, Baharudin; Joseph, Leonard H.; Htwe, Ohnmar; Jagannathan, K.; Hamdan, Nor M Y; Rajalakshmi, D.

    2015-01-01

    Quantitative measurement of limb loading is important in orthopedic and neurological rehabilitation. In current practice, mathematical models such as Symmetry index (SI), Symmetry ratio (SR), and Symmetry angle (SA) are used to quantify limb loading asymmetry. Literatures have identified certain limitations with the above mathematical models. Hence this study presents two new mathematical models Modified symmetry index (MSI) and Limb loading error (LLE) that would address these limitations. Furthermore, the current mathematical models were compared against the new model with the goal of achieving a better model. This study uses hypothetical data to simulate an algorithmic preliminary computational measure to perform with all numerical possibilities of even and uneven limb loading that can occur in human legs. Descriptive statistics are used to interpret the limb loading patterns: symmetry, asymmetry and maximum asymmetry. The five mathematical models were similar in analyzing symmetry between limbs. However, for asymmetry and maximum asymmetry data, the SA and SR values do not give any meaningful interpretation, and SI gives an inflated value. The MSI and LLE are direct, easy to interpret and identify the loading patterns with the side of asymmetry. The new models are notable as they quantify the amount and side of asymmetry under different loading patterns. PMID:25716372

  8. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects

    PubMed Central

    Gupta, Raj K.; Przekwas, Andrzej

    2013-01-01

    Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039

  9. Staircase Methods of Sensitivity Testing,

    DTIC Science & Technology

    1946-03-21

    Mathematical Preliminaries ............. 32 b. Outline of the Investigation ..... .......... 35 8. The Possible Adjustments ...... ............... .. 36 9...bh Ar’Lied MathematIcs Pa-nel. ZCC, uU, -. for one decermntation !f tie per centtage point and the average nmber ee exp-li.-n. required far one such...accuracy per explosion. 32. II. TECOI4ICPJJ 7. Introduction. a. Some Mathematical Preliminaries. Expressed mathematically , the problem of sensitivity

  10. The Impact of Institutional Factors on the Relationship Between High School Mathematics Curricula and College Mathematics Course-Taking and Achievement

    ERIC Educational Resources Information Center

    Harwell, Michael

    2013-01-01

    Meta-analytic methods were used to examine the moderating effect of institutional factors on the relationship between high school mathematics curricula and college mathematics course-taking and achievement from a sample of 32 colleges. The findings suggest that the impact of curriculum on college mathematics outcomes is not generally moderated by…

  11. Effects of an Additional Mathematics Content Course on Elementary Teachers' Mathematical Beliefs and Knowledge for Teaching

    ERIC Educational Resources Information Center

    Smith, Marvin E.; Swars, Susan L.; Smith, Stephanie Z.; Hart, Lynn C.; Haardorfer, Regine

    2012-01-01

    This longitudinal study examines the effects of changes in an elementary teacher preparation program on mathematics beliefs and content knowledge for teaching of two groups of prospective teachers (N = 276): (1) those who completed a program with three mathematics content courses and two mathematics methods courses and (2) those who completed a…

  12. Making Connections in Practice: How Prospective Elementary Teachers Connect to Children's Mathematical Thinking and Community Funds of Knowledge in Mathematics Instruction

    ERIC Educational Resources Information Center

    Aguirre, Julia M.; Turner, Erin E.; Bartell, Tonya Gau; Kalinec-Craig, Crystal; Foote, Mary Q.; Roth McDuffie, Amy; Drake, Corey

    2013-01-01

    This study examines the ways prospective elementary teachers (PSTs) made connections to children's mathematical thinking and children's community funds of knowledge in mathematics lesson plans. We analyzed the work of 70 PSTs from across three university sites associated with an instructional module for elementary mathematics methods courses that…

  13. Evaluating the Suitability of Mathematical Thinking Problems for Senior High-School Students by Including Mathematical Sense Making and Global Planning

    ERIC Educational Resources Information Center

    van Velzen, Joke H.

    2016-01-01

    The mathematics curriculum often provides for relatively few mathematical thinking problems or non-routine problems that focus on a deepening of understanding mathematical concepts and the problem-solving process. To develop such problems, methods are required to evaluate their suitability. The purpose of this preliminary study was to find such an…

  14. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    ERIC Educational Resources Information Center

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  15. One-Year Integrated Mathematics and Mathematics Methods Course for Prospective Elementary School Teachers.

    ERIC Educational Resources Information Center

    Springer, George

    This guide describes the content of a proposed mathematics course for prospective elementary school teachers. It is the result of a two-year study at Indiana University in which three existing courses were integrated and coordinated. For each unit of instruction, there are (1) remarks for motivation of study, (2) remarks on methods of teaching,…

  16. Becoming a Teacher Educator: A Self-Study of the Use of Inquiry in a Mathematics Methods Course

    ERIC Educational Resources Information Center

    Marin, Katherine Ariemma

    2014-01-01

    This article details the self-study of a beginning teacher educator in her first experience in teaching a mathematics methods course. The transition from teacher to teacher educator is explored through the experience of a course focused on inquiry. Inquiry is embedded within the course from two perspectives: mathematical inquiry and teaching as…

  17. Preservice Teachers' Video Simulations and Subsequent Noticing: A Practice-Based Method to Prepare Mathematics Teachers

    ERIC Educational Resources Information Center

    Amador, Julie M.

    2017-01-01

    The purpose of this study was to implement a Video Simulation Task in a mathematics methods teacher education course to engage preservice teachers in considering both the teaching and learning aspects of mathematics lesson delivery. Participants anticipated student and teacher thinking and created simulations, in which they acted out scenes on a…

  18. Various Solution Methods, Accompanied by Dynamic Investigation, for the Same Problem as a Means for Enriching the Mathematical Toolbox

    ERIC Educational Resources Information Center

    Oxman, Victor; Stupel, Moshe

    2018-01-01

    A geometrical task is presented with multiple solutions using different methods, in order to show the connection between various branches of mathematics and to highlight the importance of providing the students with an extensive 'mathematical toolbox'. Investigation of the property that appears in the task was carried out using a computerized tool.

  19. Various solution methods, accompanied by dynamic investigation, for the same problem as a means for enriching the mathematical toolbox

    NASA Astrophysics Data System (ADS)

    Oxman, Victor; Stupel, Moshe

    2018-04-01

    A geometrical task is presented with multiple solutions using different methods, in order to show the connection between various branches of mathematics and to highlight the importance of providing the students with an extensive 'mathematical toolbox'. Investigation of the property that appears in the task was carried out using a computerized tool.

  20. Taguchi method for partial differential equations with application in tumor growth.

    PubMed

    Ilea, M; Turnea, M; Rotariu, M; Arotăriţei, D; Popescu, Marilena

    2014-01-01

    The growth of tumors is a highly complex process. To describe this process, mathematical models are needed. A variety of partial differential mathematical models for tumor growth have been developed and studied. Most of those models are based on the reaction-diffusion equations and mass conservation law. A variety of modeling strategies have been developed, each focusing on tumor growth. Systems of time-dependent partial differential equations occur in many branches of applied mathematics. The vast majority of mathematical models in tumor growth are formulated in terms of partial differential equations. We propose a mathematical model for the interactions between these three cancer cell populations. The Taguchi methods are widely used by quality engineering scientists to compare the effects of multiple variables, together with their interactions, with a simple and manageable experimental design. In Taguchi's design of experiments, variation is more interesting to study than the average. First, Taguchi methods are utilized to search for the significant factors and the optimal level combination of parameters. Except the three parameters levels, other factors levels other factors levels would not be considered. Second, cutting parameters namely, cutting speed, depth of cut, and feed rate are designed using the Taguchi method. Finally, the adequacy of the developed mathematical model is proved by ANOVA. According to the results of ANOVA, since the percentage contribution of the combined error is as small. Many mathematical models can be quantitatively characterized by partial differential equations. The use of MATLAB and Taguchi method in this article illustrates the important role of informatics in research in mathematical modeling. The study of tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  1. Cognitive correlates of performance in advanced mathematics.

    PubMed

    Wei, Wei; Yuan, Hongbo; Chen, Chuansheng; Zhou, Xinlin

    2012-03-01

    Much research has been devoted to understanding cognitive correlates of elementary mathematics performance, but little such research has been done for advanced mathematics (e.g., modern algebra, statistics, and mathematical logic). To promote mathematical knowledge among college students, it is necessary to understand what factors (including cognitive factors) are important for acquiring advanced mathematics. We recruited 80 undergraduates from four universities in Beijing. The current study investigated the associations between students' performance on a test of advanced mathematics and a battery of 17 cognitive tasks on basic numerical processing, complex numerical processing, spatial abilities, language abilities, and general cognitive processing. The results showed that spatial abilities were significantly correlated with performance in advanced mathematics after controlling for other factors. In addition, certain language abilities (i.e., comprehension of words and sentences) also made unique contributions. In contrast, basic numerical processing and computation were generally not correlated with performance in advanced mathematics. Results suggest that spatial abilities and language comprehension, but not basic numerical processing, may play an important role in advanced mathematics. These results are discussed in terms of their theoretical significance and practical implications. ©2011 The British Psychological Society.

  2. Preservice Teachers' Perceptions of the Integration of Mathematics, Reading, and Writing.

    ERIC Educational Resources Information Center

    Reinke, Kathryn; Mokhtari, Kouider; Willner, Elizabeth

    1997-01-01

    Examined the perceptions of preservice elementary teachers enrolled in reading, mathematics, and integrating reading and mathematics methods courses about integrating mathematics, reading, and writing instruction at the elementary/middle school level. Surveys indicated that all students were generally positive about instructional integration. They…

  3. Teachers' Perception of Social Justice in Mathematics Classrooms

    ERIC Educational Resources Information Center

    Panthi, Ram Krishna; Luitel, Bal Chandra; Belbase, Shashidhar

    2017-01-01

    The purpose of this study was to explore mathematics teachers' perception of social justice in mathematics classrooms. We applied interpretive qualitative method for data collection, analysis, and interpretation through iterative process. We administered in-depth semi-structured interviews to capture the perceptions of three mathematics teachers…

  4. Teachers' Perception of Social Justice in Mathematics Classrooms

    ERIC Educational Resources Information Center

    Panthi, Ram Krishna; Luitel, Bal Chandra; Belbase, Shashidhar

    2018-01-01

    The purpose of this study was to explore mathematics teachers' perception of social justice in mathematics classrooms. We applied interpretive qualitative method for data collection, analysis, and interpretation through iterative process. We administered in-depth semi-structured interviews to capture the perceptions of three mathematics teachers…

  5. "I Finally Get It!": Developing Mathematical Understanding during Teacher Education

    ERIC Educational Resources Information Center

    Holm, Jennifer; Kajander, Ann

    2012-01-01

    A deep conceptual understanding of elementary mathematics as appropriate for teaching is increasingly thought to be an important aspect of elementary teacher capacity. This study explores preservice teachers' initial mathematical understandings and how these understandings developed during a mathematics methods course for upper elementary…

  6. Giving Reason to Prospective Mathematics Teachers

    ERIC Educational Resources Information Center

    D'Ambrosio, Beatriz; Kastberg, Signe

    2012-01-01

    This article describes the development of the authors' understanding of the contradictions in their mathematics teacher education practice. This understanding emerged from contrasting analyses of the impact of the authors' practices in mathematics content courses versus mathematics methods courses. Examples of the authors' work with two students,…

  7. A robust interpolation procedure for producing tidal current ellipse inputs for regional and coastal ocean numerical models

    NASA Astrophysics Data System (ADS)

    Byun, Do-Seong; Hart, Deirdre E.

    2017-04-01

    Regional and/or coastal ocean models can use tidal current harmonic forcing, together with tidal harmonic forcing along open boundaries in order to successfully simulate tides and tidal currents. These inputs can be freely generated using online open-access data, but the data produced are not always at the resolution required for regional or coastal models. Subsequent interpolation procedures can produce tidal current forcing data errors for parts of the world's coastal ocean where tidal ellipse inclinations and phases move across the invisible mathematical "boundaries" between 359° and 0° degrees (or 179° and 0°). In nature, such "boundaries" are in fact smooth transitions, but if these mathematical "boundaries" are not treated correctly during interpolation, they can produce inaccurate input data and hamper the accurate simulation of tidal currents in regional and coastal ocean models. These avoidable errors arise due to procedural shortcomings involving vector embodiment problems (i.e., how a vector is represented mathematically, for example as velocities or as coordinates). Automated solutions for producing correct tidal ellipse parameter input data are possible if a series of steps are followed correctly, including the use of Cartesian coordinates during interpolation. This note comprises the first published description of scenarios where tidal ellipse parameter interpolation errors can arise, and of a procedure to successfully avoid these errors when generating tidal inputs for regional and/or coastal ocean numerical models. We explain how a straightforward sequence of data production, format conversion, interpolation, and format reconversion steps may be used to check for the potential occurrence and avoidance of tidal ellipse interpolation and phase errors. This sequence is demonstrated via a case study of the M2 tidal constituent in the seas around Korea but is designed to be universally applicable. We also recommend employing tidal ellipse parameter calculation methods that avoid the use of Foreman's (1978) "northern semi-major axis convention" since, as revealed in our analysis, this commonly used conversion can result in inclination interpolation errors even when Cartesian coordinate-based "vector embodiment" solutions are employed.

  8. "My favourite subject is maths. For some reason no-one really agrees with me": student perspectives of mathematics teaching and learning in the upper primary classroom

    NASA Astrophysics Data System (ADS)

    Attard, Catherine

    2011-09-01

    The levels of engagement in mathematics experienced by students during the middle years of schooling (Years 5 to 8 in New South Wales) has been of concern in Australia for some years. Lowered engagement in school has been attributed to factors such as inappropriate teaching strategies, curricula that is unchallenging and irrelevant, and cultural and technological conditions that continue to evolve (Sullivan et al. Australian Journal of Education 53(2):176-191, 2009). There is currently a gap in this field of research in terms of a lack of longitudinal studies conducted in an Australian context that feature students' voices and their perceptions of mathematics teaching and learning during the middle years. As part of a qualitative longitudinal case study spanning 3 school years, 20 students in their final year of primary school (aged between 11 and 12 years) were asked to provide their views on mathematics teaching and learning. The aim of the study was to explore the students' perspectives of mathematics teaching and learning to discover pedagogies that engage the students. During focus group discussions and individual interviews the students discussed qualities of a "good" mathematics teacher and aspects of "good" lessons. These were found to resonate well with current Australian quality teaching frameworks. The findings of this study indicate that students in the middle years are critically aware of pedagogies that lead to engagement in mathematics, and existing standards and frameworks should be used as a starting point for quality teaching of mathematics.

  9. Navigating Currents and Charting Directions. Proceedings of the Annual Conference of the Mathematics Education Research Group of Australasia (31st, Brisbane, Queensland, Australia, June 28-July 1, 2008). Volumes 1 and 2

    ERIC Educational Resources Information Center

    Goos, Merrilyn, Ed.; Brown, Ray, Ed.; Makar, Katie, Ed.

    2008-01-01

    This document presents the proceedings of the 31st Annual Conference of the Mathematics Education Research Group of Australasia (MERGA). The theme of this conference is "Navigating Currents and Charting Directions." The theme reminds us that, although we are constantly pushed to account for the quality and impact of our research, we…

  10. Teaching the Mathematics of Radioactive Dating.

    ERIC Educational Resources Information Center

    Shea, James H.

    2001-01-01

    Describes a method used to teach the concept of radiometric dating using mathematical equations. Explores the lack of information in textbooks on how to solve radiometric dating problems using mathematical concepts. (SAH)

  11. History of mathematics and history of science reunited?

    PubMed

    Gray, Jeremy

    2011-09-01

    For some years now, the history of modern mathematics and the history of modern science have developed independently. A step toward a reunification that would benefit both disciplines could come about through a revived appreciation of mathematical practice. Detailed studies of what mathematicians actually do, whether local or broadly based, have often led in recent work to examinations of the social, cultural, and national contexts, and more can be done. Another recent approach toward a historical understanding of the abstractness of modern mathematics has been to see it as a species of modernism, and this thesis will be tested by the raft of works on the history of modern applied mathematics currently under way.

  12. Three-dimensional Imaging for Large LArTPCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, C.; Qian, X.; Viren, B.

    2017-12-14

    High-performance event reconstruction is critical for current and future massive liquid argon time projection chambers (LArTPCs) to realize their full scientic potential. LArTPCs with readout using wire planes provides a limited number of 2D projections. In general, without a pixel-type readout it is challenging to achieve unambiguous 3D event reconstruction. As a remedy, we present a novel 3D imaging method, Wire-Cell, which incorporates the charge and sparsity information in addition to the time and geometry through simple and robust mathematics.

  13. Proceedings of a Seminar on Computer Applications in Hydrology held on 23-25 February 1971, at Davis, California,

    DTIC Science & Technology

    1971-02-01

    program con— i-lexitv , or is it nossible to avoid this by some means? T xcept for compiling lanr’uaees and sore basic mathematic al orerarions , new...ideas that have no immediate impact on current design. This is often interpreted as a stubborn reluctance to discard old familiar methods and adopt new...generalized mslho4u , users of generalized programs might well, be advised to be cautious. To avoid the problem altogether the G.E. 2$ program

  14. Qualitative Knowledge Construction for Engineering Systems: Extending the Design Structure Matrix Methodology in Scope and Procedure

    DTIC Science & Technology

    2007-06-01

    Social Science Research Methods. M. S. Lewis-Beck, A . Bryman and T. F. Liao. Thousand Oaks CA, SAGE. 2: 440-442. Checkland, P. (1999). Systems...E. (1948). " A Mathematical Theory of Communication." The Bell System Technical Journal 27(3): 379-423. Simon, H. A . (1962). "The Architecture of...provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

  15. Competency Based Teacher Education Component. Curriculum Methods and Materials, Elementary Mathematics and Social Studies.

    ERIC Educational Resources Information Center

    Woodworth, William D.

    Four mathematical/social studies module clusters are presented in an effort to develop proficiency in instruction and in inductive and deductive teaching procedures. Modules within the first cluster concern systems of numeration, set operations, numbers, measurement, geometry, mathematics, and reasoning. The second mathematical cluster presents…

  16. Mathematical Observations: The Genesis of Mathematical Discovery in the Classroom

    ERIC Educational Resources Information Center

    Beaugris, Louis M.

    2013-01-01

    In his "Proofs and Refutations," Lakatos identifies the "Primitive Conjecture" as the first stage in the pattern of mathematical discovery. In this article, I am interested in ways of reaching the "Primitive Conjecture" stage in an undergraduate classroom. I adapted Realistic Mathematics Education methods in an…

  17. Experimental Mathematics and Computational Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David H.; Borwein, Jonathan M.

    2009-04-30

    The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.

  18. A MATLAB-Aided Method for Teaching Calculus-Based Business Mathematics

    ERIC Educational Resources Information Center

    Liang, Jiajuan; Pan, William S. Y.

    2009-01-01

    MATLAB is a powerful package for numerical computation. MATLAB contains a rich pool of mathematical functions and provides flexible plotting functions for illustrating mathematical solutions. The course of calculus-based business mathematics consists of two major topics: 1) derivative and its applications in business; and 2) integration and its…

  19. Mathematics Education in Europe: Common Challenges and National Policies

    ERIC Educational Resources Information Center

    Parveva, Teodora; Noorani, Sogol; Ranguelov, Stanislav; Motiejunaite, Akvile; Kerpanova, Viera

    2011-01-01

    Competence in mathematics is integral to a wide range of disciplines, professions and areas of life. This Eurydice report reveals crucial elements of the policies and practices that shape mathematics instruction in European education systems, focusing on reforms of mathematics curricula, teaching and assessment methods, as well as teacher…

  20. Teaching Gifted Children Mathematics in Grades Four Through Six.

    ERIC Educational Resources Information Center

    Gensley, Juliana T.

    Intended for teachers of gifted students in grades 4-6, the guide emphasizes the need for specialized instruction in mathematics, suggests methods for teaching mathematical facts and concepts, describes approaches and materials to develop students' understanding of mathematical principles, and explores ways to build skills and creativity. Stressed…

  1. Middle School Teachers' Views and Approaches to Implement Mathematical Tasks

    ERIC Educational Resources Information Center

    Yesildere-Imre, Sibel; Basturk-Sahin, Burcu Nur

    2016-01-01

    This research examines middle school mathematics teachers' views regarding implementation of mathematical tasks and their enactments. We compare their views on tasks and their implementation, and determine the causes of difference between the two using qualitative research methods. We interview sixteen middle school mathematics teachers based on…

  2. Investigating Task Design, Classroom Culture and Mathematics Learning: An Enactivist Approach

    ERIC Educational Resources Information Center

    Lozano, Maria-Dolores

    2017-01-01

    In this paper I introduce a methodological approach that can be useful for investigating relationships between mathematics tasks, mathematical classroom cultures and mathematics learning. This proposal responds to a need, identified in the literature, for "further research which uses alternative methods to understand student perspectives more…

  3. ABC Problem in Elementary Mathematics Education: Arithmetic "before" Comprehension

    ERIC Educational Resources Information Center

    Boote, Stacy K.; Boote, David N.

    2018-01-01

    Mathematical habits of prospective teachers affect problem comprehension and success and expose their beliefs about mathematics. Prospective elementary teachers (PSTs) (n = 121) engaged in a problem solving activity each week in class. Data were collected from PSTs enrolled in an undergraduate elementary mathematics methods course at a…

  4. Kindergarten Children's Interactions with Touchscreen Mathematics Virtual Manipulatives: An Innovative Mixed Methods Analysis

    ERIC Educational Resources Information Center

    Tucker, Stephen I.; Lommatsch, Christina W.; Moyer-Packenham, Patricia S.; Anderson-Pence, Katie L.; Symanzik, Jürgen

    2017-01-01

    The purpose of this study was to examine patterns of mathematical practices evident during children's interactions with touchscreen mathematics virtual manipulatives. Researchers analyzed 33 Kindergarten children's interactions during activities involving apps featuring mathematical content of early number sense or quantity in base ten, recorded…

  5. On the Shoulders of Giants: New Approaches to Numeracy.

    ERIC Educational Resources Information Center

    Steen, Lynn Arthur, Ed.

    Forces created by the proliferation of computer hardware and software, by innovative methods of mathematical modelling and applications, by broader demographic considerations, and by schools themselves are profoundly changing the way mathematics is practiced, the way mathematics is taught, and the way mathematics is learned. In this volume, a…

  6. Students Build Mathematical Theory: Semantic Warrants in Argumentation

    ERIC Educational Resources Information Center

    Walter, Janet G.; Barros, Tara

    2011-01-01

    In this paper, we explore the development of two grounded theories. One theory is mathematical and grounded in the work of university calculus students' collaborative development of mathematical methods for finding the volume of a solid of revolution, in response to mathematical necessity in problem solving, without prior instruction on solution…

  7. Effects of Gender-Based Instruction on Fifth Graders' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Oswald, Deborah R.

    2009-01-01

    Differences in male and female brains may impact the way girls and boys process mathematics and underscores the need for research that examines modification of mathematics instruction according to gender differences. Based in constructivist theory, this mixed-methods study investigated the effect of mathematics instruction modified according to…

  8. 76 FR 37158 - Agency Information Collection Activities: Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM) program. In 2003... representative scientific or engineering organization.'' On the basis of these recommendations, the Committee was... individual's work on the current state of physical, biological, mathematical, engineering or social and...

  9. Differential Calculus: Concepts and Notation.

    ERIC Educational Resources Information Center

    Hobbs, David; Relf, Simon

    1997-01-01

    Suggests that many students with A-level mathematics, and even with a degree in mathematics or a related subject, do not have an understanding of the basic principles of calculus. Describes the approach used in three textbooks currently in use. Contains 14 references. (Author/ASK)

  10. How Informed Are Informal Educators?

    ERIC Educational Resources Information Center

    Lederman, Norman G.; Niess, Margaret L.

    1998-01-01

    Explores current reforms in both mathematics and science education that emphasize the importance of learning in informal settings. Suggests that informal education must include planned and purposeful attempts to facilitate students' understanding of mathematics and science in community settings other than the local school. (Author/CCM)

  11. 10 CFR 431.17 - Determination of efficiency.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... method or methods used; the mathematical model, the engineering or statistical analysis, computer... accordance with § 431.16 of this subpart, or by application of an alternative efficiency determination method... must be: (i) Derived from a mathematical model that represents the mechanical and electrical...

  12. Studies on mathematical modeling of the leaching process in order to efficiently recover lead from the sulfate/oxide lead paste.

    PubMed

    Buzatu, Traian; Ghica, Gabriel Valeriu; Petrescu, Ionuţ Mircea; Iacob, Gheorghe; Buzatu, Mihai; Niculescu, Florentina

    2017-02-01

    Increasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries. The results of the mathematical modeling compare well with the experimental data. The experimental method applied consists in the solubilisation of the sulfate/oxide paste with sodium hydroxide solutions followed by electrolytic processing for lead recovery. The parameters taken into considerations were NaOH molarity (4M, 6M and 8M), solid/liquid ratio - S/L (1/10, 1/30 and 1/50) and temperature (40°C, 60°C and 80°C). The optimal conditions resulted by mathematical modeling of the electrolytic process of lead deposition from alkaline solutions have been established by using a second-order orthogonal program, in order to obtain a maximum efficiency of current without exceeding an imposed energy specific consumption. The optimum value for the leaching recovery efficiency, obtained through mathematical modeling, was 89.647%, with an error of δ y =3.623 which leads to a maximum recovery efficiency of 86.024%. The optimum values for each variable that ensure the lead extraction efficiency equal to 89.647% are the following: 3M - NaOH, 1/35 - S/L, 70°C - temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    NASA Astrophysics Data System (ADS)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  14. Behind the Numbers: The Preliminary Findings of a Mixed Methods Study Investigating the Existence of Mathematics Anxiety among Mature Students

    ERIC Educational Resources Information Center

    Ryan, Maria; Fitzmaurice, Olivia

    2017-01-01

    Admitting that one is "no good at mathematics" or "hates mathematics" is a common admission among student cohorts. For mature students who harbour a strong dislike of mathematics, these feelings can be exacerbated when they are faced with having to do an obligatory service mathematics module as part of a programme of study. For…

  15. Sam's progress with learning mathematics.

    PubMed

    Haslam, Lynne

    2007-07-01

    Sam is 18 years old and has Down syndrome. He achieved a grade in the standard assessment of mathematics (GCSE) at 16 years of age. This paper describes the part played in his success in school by the Kumon method of teaching mathematics, identifies the benefits of the small steps and lots of practice built in to the method and illustrates the way Sam applied his Kumon learning in school.

  16. Gesellschaft fuer angewandte Mathematik und Mechanik, Scientific Annual Meeting, Universitaet Stuttgart, Federal Republic of Germany, Apr. 13-17, 1987, Reports

    NASA Astrophysics Data System (ADS)

    Recent advances in the analytical and numerical treatment of physical and engineering problems are discussed in reviews and reports. Topics addressed include fluid mechanics, numerical methods for differential equations, FEM approaches, and boundary-element methods. Consideration is given to optimization, decision theory, stochastics, actuarial mathematics, applied mathematics and mathematical physics, and numerical analysis.

  17. Preliminary Investigation of Profiling Tools and Methods

    DTIC Science & Technology

    2011-06-01

    1 Jaccard coefficient is a unique mathematical way to measure behaviour co-occurancesrd’s coefficient (measure similarity) 4 DRDC Toronto TM...a few heuristics (that are the basis for the mathematical algorithms used in GP systems) these individuals perform just as well as the system...route that GP is a holistic method of data interpretation with unsystematic methodologies, practices and varying mathematical principles, then anecdotes

  18. On Doing Mathematics: Why We Should Not Encourage "Feeling," "Believing," or "Interpreting" Mathematics

    ERIC Educational Resources Information Center

    McLoughlin, M. Padraig M. M.

    2012-01-01

    P. R. Halmos recalled a conversation with R. L. Moore where Moore quoted a Chinese proverb. That proverb provides a summation of the justification of the methods employed in teaching students to do mathematics with a modified Moore method (MMM). It states, "I see, I forget; I hear, I remember; I do, I understand." In this paper we build…

  19. The Acquisition of Mathematics Pedagogical Content Knowledge in University Mathematics Education Courses: Results of a Mixed Methods Study on the Effectiveness of Teacher Education in Germany

    ERIC Educational Resources Information Center

    Buchholtz, Nils Frederik

    2017-01-01

    This paper reports on a longitudinal mixed methods evaluation study on the acquisition and development of mathematical pedagogical content knowledge (MPCK) of future teachers at several German universities. The study is a German supplementary study to the international comparative TEDS-M 2008 study. Besides the pedagogical content knowledge that…

  20. An Exploration into the Potential Career Effects from Middle and High School Mathematics Experiences: A Mixed Methods Investigation into STEM Career Choice

    ERIC Educational Resources Information Center

    DeThomas, Elizabeth M.

    2017-01-01

    This mixed methods research study examined the effects of middle and high school mathematics experiences on students' choice of college major, particularly whether students decided to major in a STEM field. Social cognitive career theory was used to examine potential influences of mathematics self-efficacy and how those influences and mathematics…

  1. Examination of the Mathematical Problem-Solving Beliefs and Success Levels of Primary School Teacher Candidates through the Variables of Mathematical Success and Gender

    ERIC Educational Resources Information Center

    Bal, Ayten Pinar

    2015-01-01

    The aim of this study is to examine the mathematical problem-solving beliefs and problem-solving success levels of primary school teacher candidates through the variables of academic success and gender. The research was designed according to the mixed methods technique in which qualitative and quantitative methods are used together. The working…

  2. The TIMSS Videotape Classroom Study: Methods and Findings from an Exploratory Research Project on Eighth-Grade Mathematics Instruction in Germany, Japan, and the United States.

    ERIC Educational Resources Information Center

    Stigler, James W.; Gonzales, Patrick; Kawanaka, Takako; Knoll, Steffen; Serrano, Ana

    1999-01-01

    Describes the methods and preliminary findings of the Videotape Classroom Study, a video survey of eighth-grade mathematics lessons in Germany, Japan, and the United States. Part of the Third International Mathematics and Science study, this research project is the first study of videotaped records from national probability samples. (SLD)

  3. 3-D Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell

    DTIC Science & Technology

    2014-01-01

    resistant mutants [?]. Inspired by experimental findings, researchers have come up with some mathematical models to study biofilm formation and function...develop a full 3D mathematical model to study how quorum sensing regulates biofilm formation and development as well as the pros and cons of quorum...have given an overview of current advances in mathematical modeling of biofilms. Concerning coupling biofilm growth with quorum sensing features

  4. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design

    PubMed Central

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294

  5. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design.

    PubMed

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert

    2012-08-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.

  6. Numerical bifurcation analysis of immunological models with time delays

    NASA Astrophysics Data System (ADS)

    Luzyanina, Tatyana; Roose, Dirk; Bocharov, Gennady

    2005-12-01

    In recent years, a large number of mathematical models that are described by delay differential equations (DDEs) have appeared in the life sciences. To analyze the models' dynamics, numerical methods are necessary, since analytical studies can only give limited results. In turn, the availability of efficient numerical methods and software packages encourages the use of time delays in mathematical modelling, which may lead to more realistic models. We outline recently developed numerical methods for bifurcation analysis of DDEs and illustrate the use of these methods in the analysis of a mathematical model of human hepatitis B virus infection.

  7. Solution of Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Turner, L. R.

    1960-01-01

    The problem of solving systems of nonlinear equations has been relatively neglected in the mathematical literature, especially in the textbooks, in comparison to the corresponding linear problem. Moreover, treatments that have an appearance of generality fail to discuss the nature of the solutions and the possible pitfalls of the methods suggested. Probably it is unrealistic to expect that a unified and comprehensive treatment of the subject will evolve, owing to the great variety of situations possible, especially in the applied field where some requirement of human or mechanical efficiency is always present. Therefore we attempt here simply to pose the problem and to describe and partially appraise the methods of solution currently in favor.

  8. Optimizing romanian maritime coastline using mathematical model Litpack

    NASA Astrophysics Data System (ADS)

    Anton, I. A.; Panaitescu, M.; Panaitescu, F. V.

    2017-08-01

    There are many methods and tools to study shoreline change in coastal engineering. LITPACK is a numerical model included in MIKE software developed by DHI (Danish Hydraulic Institute). With this matehematical model we can simulate coastline evolution and profile along beach. Research and methodology: the paper contents location of the study area, the current status of Midia-Mangalia shoreline, protection objectives, the changes of shoreline after having protected constructions. In this paper are presented numerical and graphycal results obtained with this model for studying the romanian maritime coastline in area MIDIA-MANGALIA: non-cohesive sediment transport, long-shore current and littoral drift, coastline evolution, crossshore profile evolution, the development of the coastline position in time.

  9. The mathematics of cancer: integrating quantitative models.

    PubMed

    Altrock, Philipp M; Liu, Lin L; Michor, Franziska

    2015-12-01

    Mathematical modelling approaches have become increasingly abundant in cancer research. The complexity of cancer is well suited to quantitative approaches as it provides challenges and opportunities for new developments. In turn, mathematical modelling contributes to cancer research by helping to elucidate mechanisms and by providing quantitative predictions that can be validated. The recent expansion of quantitative models addresses many questions regarding tumour initiation, progression and metastases as well as intra-tumour heterogeneity, treatment responses and resistance. Mathematical models can complement experimental and clinical studies, but also challenge current paradigms, redefine our understanding of mechanisms driving tumorigenesis and shape future research in cancer biology.

  10. Mathematics and Measurement

    PubMed Central

    Boisvert, Ronald F.; Donahue, Michael J.; Lozier, Daniel W.; McMichael, Robert; Rust, Bert W.

    2001-01-01

    In this paper we describe the role that mathematics plays in measurement science at NIST. We first survey the history behind NIST’s current work in this area, starting with the NBS Math Tables project of the 1930s. We then provide examples of more recent efforts in the application of mathematics to measurement science, including the solution of ill-posed inverse problems, characterization of the accuracy of software for micromagnetic modeling, and in the development and dissemination of mathematical reference data. Finally, we comment on emerging issues in measurement science to which mathematicians will devote their energies in coming years. PMID:27500024

  11. Method for measuring target rotation angle by theodolites

    NASA Astrophysics Data System (ADS)

    Sun, Zelin; Wang, Zhao; Zhai, Huanchun; Yang, Xiaoxu

    2013-05-01

    To overcome the disadvantage of the current measurement methods using theodolites in an environment with shock and long working hours and so on, this paper proposes a new method for 3D coordinate measurement that is based on an immovable measuring coordinate system. According to the measuring principle, the mathematics model is established and the measurement uncertainty is analysed. The measurement uncertainty of the new method is a function of the theodolite observation angles and their uncertainty, and can be reduced by optimizing the theodolites’ placement. Compared to other methods, this method allows the theodolite positions to be changed in the measuring process, and mutual collimation between the theodolites is not required. The experimental results show that the measurement model and the optimal placement principle are correct, and the measurement error is less than 0.01° after optimizing the theodolites’ placement.

  12. Supercolor coding methods for large-scale multiplexing of biochemical assays.

    PubMed

    Rajagopal, Aditya; Scherer, Axel; Homyk, Andrew; Kartalov, Emil

    2013-08-20

    We present a novel method for the encoding and decoding of multiplexed biochemical assays. The method enables a theoretically unlimited number of independent targets to be detected and uniquely identified in any combination in the same sample. For example, the method offers easy access to 12-plex and larger PCR assays, as contrasted to the current 4-plex assays. This advancement would allow for large panels of tests to be run simultaneously in the same sample, saving reagents, time, consumables, and manual labor, while also avoiding the traditional loss of sensitivity due to sample aliquoting. Thus, the presented method is a major technological breakthrough with far-reaching impact on biotechnology, biomedical science, and clinical diagnostics. Herein, we present the mathematical theory behind the method as well as its experimental proof of principle using Taqman PCR on sequences specific to infectious diseases.

  13. Conceptual design of a high-speed electromagnetic switch for a modified flux-coupling-type SFCL and its application in renewable energy system.

    PubMed

    Chen, Lei; Chen, Hongkun; Yang, Jun; Shu, Zhengyu; He, Huiwen; Shu, Xin

    2016-01-01

    The modified flux-coupling-type superconducting fault current (SFCL) is a high-efficient electrical auxiliary device, whose basic function is to suppress the short-circuit current by controlling the magnetic path through a high-speed switch. In this paper, the high-speed switch is based on electromagnetic repulsion mechanism, and its conceptual design is carried out to promote the application of the modified SFCL. Regarding that the switch which is consisting of a mobile copper disc, two fixed opening and closing coils, the computational method for the electromagnetic force is discussed, and also the dynamic mathematical model including circuit equation, magnetic field equation as well as mechanical motion equation is theoretically deduced. According to the mathematical modeling and calculation of characteristic parameters, a feasible design scheme is presented, and the high-speed switch's response time can be less than 0.5 ms. For that the modified SFCL is equipped with this high-speed switch, the SFCL's application in a 10 kV micro-grid system with multiple renewable energy sources are assessed in the MATLAB software. The simulations are well able to affirm the SFCL's performance behaviors.

  14. A study of direct moxibustion using mathematical methods.

    PubMed

    Liu, Miao; Kauh, Sang Ken; Lim, Sabina

    2012-01-01

    Direct moxibustion is an important and widely used treatment method in traditional medical science. The use of a mathematical method to analyse direct moxibustion treatment is necessary and helpful in exploring the new direct moxibustion instruments and their standardisation. Thus, this paper aims to use a mathematical method to study direct moxibustion in skin to demonstrate a direct relationship between direct moxibustion and skin stimuli. In this paper, the transient thermal response of skin layers is analysed to study direct moxibustion using the data got from standardised method to measure the temperature of a burning moxa cone. Numerical simulations based on an appropriate finite element model are developed to predict the heat transfer, thermal damage and thermal stress distribution of barley moxa cones and jujube moxa cones in the skin tissue. The results are verified by the ancient literatures of traditional Chinese medicine and clinical application, and showed that mathematical method can be a good interface between moxa cone and skin tissue providing the numerical value basis for moxibustion.

  15. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. What Should Common Core Assessments Measure?

    ERIC Educational Resources Information Center

    Chandler, Kayla; Fortune, Nicholas; Lovett, Jennifer N.; Scherrer, Jimmy

    2016-01-01

    The Common Core State Standards for mathematics promote ideals about learning mathematics by providing specific standards focused on conceptual understanding and incorporating practices in which students must participate to develop conceptual understanding. Thus, how we define learning is pivotal because our current definition isn't aligned with…

  17. A mathematical approach for evaluating nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1986-01-01

    A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.

  18. Is Mathematical Anxiety Always Bad for Math Learning: The Role of Math Motivation

    PubMed Central

    Wang, Zhe; Lukowski, Sarah L.; Hart, Sara Ann; Lyons, Ian M.; Thompson, Lee A.; Kovas, Yulia; Mazzocco, Michèle M.; Plomin, Robert; Petrill, Stephen A.

    2015-01-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. Given the lack of attention to the possibility of such complex interplay between emotion and cognition in the math learning literature, the current study aimed to address this gap via exploring the relations between math anxiety, math motivation, and math cognition. The current study consisted of two samples. One sample included 262 pairs of young adolescent twins and the other included 237 adult college students. Participants self-reported their math anxiety and math motivation. Math cognition was assessed using a comprehensive battery of mathematics tasks. In both samples, results showed inverted-U relations between math anxiety and math performance in students with high intrinsic math motivation, and modest negative associations between math anxiety and math performance in students with low intrinsic math motivation. However, this pattern was not observed in tasks assessing student’s nonsymbolic and symbolic number estimation. These findings may help advance our understanding of mathematics learning processes and may provide important insights for treatment programs that target improving mathematics learning experiences and mathematical skills. PMID:26518438

  19. The Use of Cartoons as a Teaching Tool in Middle School Mathematics

    ERIC Educational Resources Information Center

    Cho, Hoyun

    2012-01-01

    This dissertation focuses on examining the use of mathematical cartoons as a teaching tool in middle school mathematics classroom. A mixed methods research design was used to answer how the use of cartoon activities affects teacher and student perceptions of teaching and learning and student intrinsic motivation, interest, and mathematics anxiety…

  20. Adding Structure to the Transition Process to Advanced Mathematical Activity

    ERIC Educational Resources Information Center

    Engelbrecht, Johann

    2010-01-01

    The transition process to advanced mathematical thinking is experienced as traumatic by many students. Experiences that students had of school mathematics differ greatly to what is expected from them at university. Success in school mathematics meant application of different methods to get an answer. Students are not familiar with logical…

Top