Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study
Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.; ,
2005-01-01
Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.
Jones, Andrew P; Hoffmann, Jeffrey W; Smith, Dennis N; Feeley, Thomas J; Murphy, James T
2007-02-15
Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal "above and beyond" the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166000/lb Hg removed.
MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES
Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...
The current state of the science related to the re-release of mercury from coal combustion products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debra F. Pflughoeft-Hassett; David J. Hassett; Loreal V. Heebink
2006-07-01
The stability of mercury associated with CCPs is an issue that has only recently been under investigation but has become a prominent question as the industry strives to determine if current management options for CCPs will need to be modified. Mercury and other air toxic elements can be present in fly ash, FGD material and bottom ash and boiler slag. Mercury concentrations ranging from {lt} 0.01 to 2.41 ppm in fly ash and from 0.001 to 0.342 ppm in bottom ash have been reported. Stability of mercury must be evaluated by tests that include 1) direct leachability; 2) vapor-phase releasemore » at ambient and elevated temperatures; and 3) microbiologically induced leachability and vapor-phase release. The amount of mercury leached from currently produced CCPs is extremely low and does not appear to represent an environmental or re-release hazard. Concentrations of mercury in leachates from fly ashes and FGD material using either the toxicity characteristic leaching procedure (TCLP) or the synthetic groundwater leaching procedure (SGLP) are generally below detection limits. The release of mercury vapor from CCPs resulting from the use of mercury control technologies has been evaluated on a limited basis. Research indicates that mercury bound to the ash or activated carbon is fairly stable. The EERC found that organomercury species were detected at very low levels both in the vapor and leachate generated from the microbiologically mediated release experiments. The current state of the science indicates that mercury associated with CCPs is stable and highly unlikely to be released under most management conditions, including utilisation and disposal. The exception to this is exposure to high temperatures such as those that may be achieved in cement and wallboard production. Therefore, existing CCPs management options are expected to be environmentally sound options for CCPs from systems with mercury control technologies installed. 2 refs., 2 photos.« less
Hu, Yuanan; Cheng, Hefa
2016-11-01
Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.
The report presents estimates of the performance and cost of both powdered activated carbon (PAC) and multipollutant control technologies that may be useful in controlling mercury emissions. Based on currently available data, cost estimates for PAC injection range are 0.03-3.096 ...
Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D
2011-09-15
The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
The paper discusses current efforts to improve the uptake of mercury species by increasing active sites and adding oxidative species to the sorbent. (NOTE: Previous work showed that mercury chloride vapor is readily absorbed by calcium-based sorbents as an acid gas in environmen...
Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Scott C.; Eller, Virginia A.; Dickson, Johnbull O.
2017-01-01
This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hgmore » and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.« less
NASA Technical Reports Server (NTRS)
Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector
2010-01-01
Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.
NASA Astrophysics Data System (ADS)
Pudasainee, Deepak; Kim, Jeong-Hun; Seo, Yong-Chil
2009-12-01
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3-2.7 μg Sm -3, 2.4-1.1 μg Sm -3, 3.1-0.7 μg Sm -3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) - ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS - ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO 2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr -1 and 3.2 ton yr -1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr -1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.
Phytoremediation of ionic and methylmercury pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
2010-04-28
Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and sequester the toxic elemental pollutants, like the heavy metal mercury. Our current working hypothesis is that transgenic plants controlling the transport, chemical speciation, electrochemical state. volatilization, and aboveground binding of mercury will: a) tolerate mercury and grow rapidly in mercury contaminated environments; b) prevent methylmercury from entering the food chain; c) remove mercury from polluted soil and water; and d) hyperaccumulate mercury in aboveground tissues for later harvest. Progress toward these specific aims is reported: to increase the transport of mercury into roots and tomore » aboveground vegetative organs; to increase biochemical sinks and storage for mercury in leaves; to increase leaf cell vacuolar storage of mercury; and to demonstrate that several stacked transgenes, when functioning in concert, enhance mercury resistance and hyperaccumulation to high levels.« less
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank;
2012-01-01
Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.
2017-01-01
Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560
AOCS operations preparation for the BepiColombo mission to mercury
NASA Astrophysics Data System (ADS)
Steiger, C.; Altay, A.; Montagnon, E.; Companys, V.
2018-06-01
The 2018 ESA/JAXA BepiColombo mission to Mercury features a complex modular design, with two scientific Mercury orbiters and a cruise module. The spacecraft (S/C) and mission design lead to a number of challenges for the attitude and orbit control system (AOCS), including electric propulsion usage during cruise to Mercury, AOCS capability to deal with several S/C configurations, and strict attitude constraints owing to the harsh thermal environment. This paper presents the activities for AOCS operations preparation by ESA/ESOC, covering the current preparation status as well as an outlook on upcoming activities before launch.
NASA Astrophysics Data System (ADS)
Ackerman, J. T.; Eagles-Smith, C. A.; Miles, K. A.; Ricca, M. A.
2007-12-01
We examined the bioaccumulation of mercury in small fish within white rice, wild rice, and permanent wetland habitats at the Yolo Wildlife Area during the 2007 rice growing season. We introduced 30 mosquito fish in each of four cages placed at the inlet, center, and outlet (two cages) of each wetland in June, immediately after the white rice fields were re-flooded after being seeded. All fish were removed from their cages 60-days after their introduction, with the exception that ten fish from each of the second cages at the outlets were removed 30-days after introduction to assess temporal trends in mercury exposure. Mercury concentrations will be compared between fish that were introduced into cages and reference fish that originated from the same fish stock (Sacramento County Vector Control). We also measured fish length and mass both when they were introduced and collected to 1) control for growth effects on mercury bioaccumulation and 2) examine whether wetland habitat influenced growth rates. Fish are currently being analyzed for mercury and results will be available by the conference.
Sakakibara, Masayuki; Sera, Koichiro
2017-02-08
The rapid expansion of the artisanal and small-scale gold mining (ASGM) industry in developing countries has marginalized the local communities in poverty, and resulted in occupational exposure to mercury via the gold extraction process. We investigated the mercury exposure of the mining workers lived inside and outside the mining area. Based on the occupations of the contributors, the hair samples were divided into three subgroups: directly exposed, indirectly exposed, and a control. A total of 81 hair samples were analyzed by particle-induced X-ray emission spectrometry. The median mercury concentration was highest in the hair from the directly exposed group (12.82 μg/g hair) (control group median: 4.8 μg/g hair, p < 0.05), and the concentrations in hair from 45 respondents exceeded the Human Biomonitoring I (HBM I) threshold limit. Mercury concentrations were also elevated in the hair from the indirectly exposed group (median 7.64 μg/g hair, p < 0.05), and concentrations in hair from 24 respondents exceeded the HBM I threshold limits. Exposure to mercury during ASGM presents health risks and is harmful for the miners; mercury is also at hazardous levels for people who live in the mining area but who are not engaged in mercury-based gold extraction.
Phytoremediation of Ionic and Methyl Mercury Pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants by applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants employs a variety of different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, transport, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest and waste disposal.more » Various parts of this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants, as we reviewed previously (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium (Dhankher et al., 2003).« less
NASA Technical Reports Server (NTRS)
Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.
2009-01-01
Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/cu m in the total spacecraft atmosphere for exposures lasting 30 days or less or 0.01 mg/cu m mercury vapor for exposures lasting more than 30 days. We also encourage the use of alternative devices that do not contain mercury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robin Stewart
The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital costmore » technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be significant shortages in supply if response to new demand is not well-timed.« less
Impact of fetal and childhood mercury exposure on immune status in children.
Hui, Lai Ling; Chan, Michael Ho Ming; Lam, Hugh Simon; Chan, Peggy Hiu Ying; Kwok, Ka Ming; Chan, Iris Hiu Shuen; Li, Albert Martin; Fok, Tai Fai
2016-01-01
Mercury exposure have been shown to affect immune status in animals as reflected by cytokine expression. It is unclear whether low levels of exposure during fetal and/or childhood periods could impact on immune status in humans. To test the hypothesis that fetal and childhood mercury exposure is associated with childhood cytokine profiles and to investigate whether childhood selenium levels interact with any of the associations found. Children were recruited from a previously established birth cohort between the ages of 6-9 years for assessment and measurement of blood mercury, selenium and cytokine profile (interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13 and TNF-alpha). Multivariable linear regression models were used to assess the adjusted association of cord blood mercury concentration and current mercury concentrations with levels of the cytokine levels. We tested whether the association with current mercury level varied by current selenium level and cord blood mercury level. IL-10 was negatively associated with current blood mercury concentration. The effect was greatest in cases with low cord blood mercury and low current selenium concentrations. None of the other cytokine levels were associated with either cord blood or current blood mercury concentrations, except that cord blood mercury was negatively associated with IL-6. Childhood mercury exposure was negatively associated with childhood IL-10 levels. It is postulated that while selenium is protective, low levels of fetal mercury exposure may increase the degree of this negative association during childhood. Further studies into the clinical significance of these findings are required. Copyright © 2015 Elsevier Inc. All rights reserved.
Jing, He; Wang, Xiaofei; Wang, Wei-Ning; Biswas, Pratim
2015-04-01
Corona discharge based techniques are promising approaches for oxidizing elemental mercury (Hg0) in flue gas from coal combustion. In this study, in-situ soft X-rays were coupled to a DC (direct current) corona-based electrostatic precipitator (ESP). The soft X-rays significantly enhanced Hg0 oxidation, due to generation of electrons from photoionization of gas molecules and the ESP electrodes. This coupling technique worked better in the positive corona discharge mode because more electrons were in the high energy region near the electrode. Detailed mechanisms of Hg0 oxidation are proposed and discussed based on ozone generation measurements and Hg0 oxidation behavior observations in single gas environments (O2, N2, and CO2). The effect of O2 concentration in flue gas, as well as the effects of particles (SiO2, TiO2, and KI) was also evaluated. In addition, the performance of a soft X-rays coupled ESP in Hg0 oxidations was investigated in a lab-scale coal combustion system. With the ESP voltage at +10 kV, soft X-ray enhancement, and KI addition, mercury oxidation was maximized. Mercury is a significant-impact atmospheric pollutant due to its toxicity. Coal-fired power plants are the primary emission sources of anthropogenic releases of mercury; hence, mercury emission control from coal-fired power plant is important. This study provides an alternative mercury control technology for coal-fired power plants. The proposed electrostatic precipitator with in situ soft X-rays has high efficiency on elemental mercury conversion. Effects of flue gas conditions (gas compositions, particles, etc.) on performance of this technology were also evaluated, which provided guidance on the application of the technology for coal-fired power plant mercury control.
NASA Astrophysics Data System (ADS)
Berry, Mark Simpson
The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule for existing boilers. The use of calcium bromide injection as an alternative to activated carbon approaches could save millions of dollars. The technology application described herein has the potential to reduce compliance cost by $200M for a 700 MW facility burning PRB coal.
Investigation of a mercury speciation technique for flue gas desulfurization materials.
Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R
2009-08-01
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.
Investigation of a mercury speciation technique for flue gas desulfurization materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.Y.; Cho K.; Cheng L.
2009-08-15
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidatesmore » of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.« less
Toxecon Retrofit for Mercury and Mulit-Pollutant Control on Three 90-MW Coal-Fired Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Derenne; Robin Stewart
2009-09-30
This U.S. Department of Energy (DOE) Clean Coal Power Initiative (CCPI) project was based on a cooperative agreement between We Energies and the DOE Office of Fossil Energy's National Energy Technology Laboratory (NETL) to design, install, evaluate, and demonstrate the EPRI-patented TOXECON{trademark} air pollution control process. Project partners included Cummins & Barnard, ADA-ES, and the Electric Power Research Institute (EPRI). The primary goal of this project was to reduce mercury emissions from three 90-MW units that burn Powder River Basin coal at the We Energies Presque Isle Power Plant in Marquette, Michigan. Additional goals were to reduce nitrogen oxide (NO{submore » x}), sulfur dioxide (SO{sub 2}), and particulate matter emissions; allow reuse and sale of fly ash; advance commercialization of the technology; demonstrate a reliable mercury continuous emission monitor (CEM) suitable for use at power plants; and demonstrate recovery of mercury from the sorbent. Mercury was controlled by injection of activated carbon upstream of the TOXECON{trademark} baghouse, which achieved more than 90% removal on average over a 44-month period. During a two-week test involving trona injection, SO{sub 2} emissions were reduced by 70%, although no coincident removal of NOx was achieved. The TOXECON{trademark} baghouse also provided enhanced particulate control, particularly during startup of the boilers. On this project, mercury CEMs were developed and tested in collaboration with Thermo Fisher Scientific, resulting in a reliable CEM that could be used in the power plant environment and that could measure mercury as low as 0.1 {micro}g/m{sup 3}. Sorbents were injected downstream of the primary particulate collection device, allowing for continued sale and beneficial use of captured fly ash. Two methods for recovering mercury using thermal desorption on the TOXECON{trademark} PAC/ash mixture were successfully tested during this program. Two methods for using the TOXECON{trademark} PAC/ash mixture in structural concrete were also successfully developed and tested. This project demonstrated a significant reduction in the rate of emissions from Presque Isle Units 7, 8, and 9, and substantial progress toward establishing the design criteria for one of the most promising mercury control retrofit technologies currently available. The Levelized Cost for 90% mercury removal at this site was calculated at $77,031 per pound of mercury removed with a capital cost of $63,189 per pound of mercury removed. Mercury removal at the Presque Isle Power Plant averages approximately 97 pounds per year.« less
NASA Astrophysics Data System (ADS)
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.
CURRENT METHODS AND RESEARCH STRATEGIES FOR MODELING ATMOSPHERIC MERCURY
The atmospheric pathway of the global mercury cycle is known to be the primary source of mercury contamination to most threatened aquatic ecosystems. Current efforts toward numerical modeling of atmospheric mercury are hindered by an incomplete understanding of emissions, atmosp...
Process for combined control of mercury and nitric oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livengood, C. D.; Mendelsohn, M. H.
Continuing concern about the effects of mercury in the environment may lead to requirements for the control of mercury emissions from coal-fired power plants. If such controls are mandated, the use of existing flue-gas cleanup systems, such as wet scrubbers currently employed for flue-gas desulfurization, would be desirable, Such scrubbers have been shown to be effective for capturing oxidized forms of mercury, but cannot capture the very insoluble elemental mercury (Hg{sup 0}) that can form a significant fraction of the total emissions. At Argonne National Laboratory, we have proposed and tested a concept for enhancing removal of Hg{sup 0}, as well as nitric oxide, through introduction of an oxidizing agent into the flue gas upstream of a scrubber, which readily absorbs the soluble reaction products. Recently, we developed a new method for introducing the oxidizing agent into the flue-gas stream that dramatically improved reactant utilization. The oxidizing agent employed was NOXSORB{trademark}, which is a commercial product containing chloric acid and sodium chlorate. When a dilute solution of this agent was introduced into a gas stream containing Hg{sup 0} and other typical flue-gas species at 300 F, we found that about 100% of the mercury was removed from the gas phase and recovered in process liquids. At the same time, approximately 80% of the nitric oxide was removed. The effect of sulfur dioxide on this process was also investigated and the results showed that it slightly decreased the amount of Hg{sup 0} oxidized while appearing to increase the removal of nitric oxide from the gas phase. We are currently testing the effects of variations in NOXSORB{trademark} concentration, sulfur dioxide concentration, nitric oxide concentration, and reaction time (residence time). Preliminary economic projections based on the results to date indicate that the chemical cost for nitric oxide oxidation could be less thanmore » $$5,000/ton removed, while for Hg{sup 0} oxidation it would be about $$20,000/lb removed.« less
Phytoremediation of ionic and methylmercury pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
2002-06-01
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.« less
Phytoremediation of ionic and methylmercury pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as we recently reviewed (Meagher et al., 2000; Rugh et al., 2000). A positive spin-off from this work on mercury has been a strategy for the phytoremediation of arsenic (Dhankher et al., 2002) and cadmium.« less
Integrating Mercury Science and Policy in the Marine Context: Challenges and Opportunities
Lambert, Kathleen F.; Evers, David C.; Warner, Kimberly A.; King, Susannah L.; Selin, Noelle E.
2014-01-01
Mercury is a global pollutant and presents policy challenges at local, regional, and global scales. Mercury poses risks to the health of people, fish, and wildlife exposed to elevated levels of mercury, most commonly from the consumption of methylmercury in marine and estuarine fish. The patchwork of current mercury abatement efforts limits the effectiveness of national and multi-national policies. This paper provides an overview of the major policy challenges and opportunities related to mercury in coastal and marine environments, and highlights science and policy linkages of the past several decades. The U.S. policy examples explored here point to the need for a full life cycle approach to mercury policy with a focus on source reduction and increased attention to: (1) the transboundary movement of mercury in air, water, and biota; (2) the coordination of policy efforts across multiple environmental media; (3) the cross-cutting issues related to pollutant interactions, mitigation of legacy sources, and adaptation to elevated mercury via improved communication efforts; and (4) the integration of recent research on human and ecological health effects into benefits analyses for regulatory purposes. Stronger science and policy integration will benefit national and international efforts to prevent, control, and minimize exposure to methylmercury. PMID:22901766
Schultz, Stephen T
2010-01-01
This report reviews current literature regarding the association of the pharmaceutical preservative thimerosal and other mercury exposures with the risk for autism. The evidence presented here does not support a causal association between autism and mercury exposure from the preservative thimerosal. The risk for autism from other mercury exposures such as from dental amalgam restorations or environmental mercury release into the atmosphere is ambiguous. Since mercury is a known neurotoxin, more research should be done to ensure that mercury exposure from any source does not contribute to autism.
NASA Astrophysics Data System (ADS)
Arzuman, Anry
Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm coefficients were derived. Mercury air-phase removal efficiency was studied as a function of dominant mercury species vapor pressures, the amount of chlorine, sorbent injection rate and adsorption capacities, and process temperature and modifications. A mercury air phase removal algorithm was derived which defines the future removal efficiencies as a function of activated carbon injection rate. Mercury adsorption on soil was studied as a function of Mercury Mass Law incorporating the dominant aquatic mercury species, pH, chlorine and sulfur concentrations, and the amount of complexed hydroxyl groups. Aquatic mercury longitudinal plume delineation was studied using the Domenico and Robbins function. A Monte Carlo simulation was performed using random number series (5000) for all of the variables in the Domenico and Robbins and mercury retardation functions. The probability that the Maximum Contaminant Level for mercury will be exceeded was found to be equal approximately 1 percent of all soil-related fly ash applications.
Giang, Amanda; Stokes, Leah C; Streets, David G; Corbitt, Elizabeth S; Selin, Noelle E
2015-05-05
We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 μg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.
JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Benson
2007-06-15
This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.
NASA Astrophysics Data System (ADS)
King, J. K.; Saunders, F. M.
2004-05-01
Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed wetland may not prove beneficial with respect to the ultimate objective of mercury sequestration. Current regulations place strict requirements on dredge material placed in confined disposal facilities (CDF) as well as associated effluent waters. Although regulatory guidelines typically address total mercury concentrations, historical data specific to bioaccumulation of mercury suggest that methylmercury concentrations found in sediments and water require attention. Resource agencies are now interested in knowing the likelihood of methylmercury formation in dredge spoil since birds and fish are frequently found feeding in CDFs and the associated mixing zones. Mechanisms that influence methylmercury formation in sediments dictate that dredging of mercury-containing sediments will result in an increased availability of inorganic mercury for methylation. Prior to dredging, the undisturbed sediment contains inorganic mercury complexed to sulfide in an insoluble, unavailable form. However, hydraulic or clamshell dredging can result in an oxidation of sediments and remobilization of mercury-sulfide species thus increasing its availability for methylation. Once sediments are disposed in a CDF, sulfate-reducing bacteria profiles are re-established vertically in dredge spoil and methylmercury synthesis can readily occur.
Phytoremediation of Ionic and Methyl Mercury Pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, L.; Ramial, K.; Wilkinson, P.
Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less
Impacts of the Minamata Convention for Mercury Emissions from Coal-fired Power Generation in Asia
NASA Astrophysics Data System (ADS)
Giang, A.; Stokes, L. C.; Streets, D. G.; Corbitt, E. S.; Selin, N. E.
2014-12-01
We explore the potential implications of the recently signed United Nations Minamata Convention on Mercury for emissions from coal-fired power generation in Asia, and the impacts of these emissions changes on deposition of mercury worldwide by 2050. We use qualitative interviews, document analysis, and engineering analysis to create plausible technology scenarios consistent with the Convention, taking into account both technological and political factors. We translate these scenarios into possible emissions inventories for 2050, based on IPCC development scenarios, and then use the GEOS-Chem global transport model to evaluate the effect of these different technology choices on mercury deposition over geographic regions and oceans. We find that China is most likely to address mercury control through co-benefits from technologies for SO2, NOx, and particulate matter (PM) capture that will be required to attain its existing air quality goals. In contrast, India is likely to focus on improvements to plant efficiency such as upgrading boilers, and coal washing. Compared to current technologies, we project that these changes will result in emissions decreases of approximately 140 and 190 Mg/yr for China and India respectively in 2050, under an A1B development scenario. With these emissions reductions, simulated average gross deposition over India and China are reduced by approximately 10 and 3 μg/m2/yr respectively, and the global average concentration of total gaseous mercury (TGM) is reduced by approximately 10% in the Northern hemisphere. Stricter, but technologically feasible, requirements for mercury control in both countries could lead to an additional 200 Mg/yr of emissions reductions. Modeled differences in concentration and deposition patterns between technology suites are due to differences in both the mercury removal efficiency of technologies and their resulting stack speciation.
The engineered phytoremediation of ionic and methylmercury pollution 70054yr.2001.doc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
2001-06-01
Our long-term objective is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic organic and heavy metal pollutants (Meagher, 2000) applying scientific strategies and technologies from a rapidly developing field called phytoremediation. The phytoremediation of toxic elemental and organic pollutants requires the use relatively different approaches (Meagher, 2000). Our current specific objectives are to use transgenic plants to control the chemical species, electrochemical state, and aboveground binding of mercury to (a) prevent methylmercury from entering the food-chain, (b) remove mercury from polluted sites, and (c) hyperaccumulate mercury in aboveground tissues for later harvest. Various parts ofmore » this strategy are being critically tested by examining different genes in model plants and field species and comparing the results to control plants as recently reviewed (Meagher et al., 2000; Rugh et al., 2000).« less
Mercury Emission Control Technologies for PPL Montana-Colstrip Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
John P. Kay; Michael L. Jones; Steven A. Benson
2007-04-01
The Energy & Environmental Research Center (EERC) was asked by PPL Montana LLC (PPL) to provide assistance and develop an approach to identify cost-effective options for mercury control at its coal-fired power plants. The work conducted focused on baseline mercury level and speciation measurement, short-term parametric testing, and week long testing of mercury control technology at Colstrip Unit 3. Three techniques and various combinations of these techniques were identified as viable options for mercury control. The options included oxidizing agents or sorbent enhancement additives (SEAs) such as chlorine-based SEA1 and an EERC proprietary SEA2 with and without activated carbon injection.more » Baseline mercury emissions from Colstrip Unit 3 are comparatively low relative to other Powder River Basin (PRB) coal-fired systems and were found to range from 5 to 6.5 g/Nm3 (2.9 to 3.8 lb/TBtu), with a rough value of approximately 80% being elemental upstream of the scrubber and higher than 95% being elemental at the outlet. Levels in the stack were also greater than 95% elemental. Baseline mercury removal across the scrubber is fairly variable but generally tends to be about 5% to 10%. Parametric results of carbon injection alone yielded minimal reduction in Hg emissions. SEA1 injection resulted in 20% additional reduction over baseline with the maximum rate of 400 ppm (3 gal/min). Week long testing was conducted with the combination of SEA2 and carbon, with injection rates of 75 ppm (10.3 lb/hr) and 1.5 lb/MMacf (40 lb/hr), respectively. Reduction was found to be an additional 30% and, overall during the testing period, was measured to be 38% across the scrubber. The novel additive injection method, known as novel SEA2, is several orders of magnitude safer and less expensive than current SEA2 injection methods. However, used in conjunction with this plant configuration, the technology did not demonstrate a significant level of mercury reduction. Near-future use of this technique at Colstrip is not seen. All the additives injected resulted in some reduction in mercury emissions. However, the target reduction of 55% was not achieved. The primary reason for the lower removal rates is because of the lower levels of mercury in the flue gas stream and the lower capture level of fine particles by the scrubbers (relative to that for larger particles). The reaction and interaction of the SEA materials is with the finer fraction of the fly ash, because the SEA materials are vaporized during the combustion or reaction process and condense on the surfaces of entrained particles or form very small particles. Mercury will have a tendency to react and interact with the finer fraction of entrained ash and sorbent as a result of the higher surface areas of the finer particles. The ability to capture the finer fraction of fly ash is the key to controlling mercury. Cost estimates for mercury removal based on the performance of each sorbent during this project are projected to be extremely high. When viewed on a dollar-per-pound-of-mercury removed basis activated carbon was projected to cost nearly $1.2 million per pound of mercury removed. This value is roughly six times the cost of other sorbent-enhancing agents, which were projected to be closer to $200,000 per pound of mercury removed.« less
Conflict-Triggered Top-Down Control: Default Mode, Last Resort, or No Such Thing?
ERIC Educational Resources Information Center
Bugg, Julie M.
2014-01-01
The conflict monitoring account posits that globally high levels of conflict trigger engagement of top-down control; however, recent findings point to the mercurial nature of top-down control in high conflict contexts. The current study examined the potential moderating effect of associative learning on conflict-triggered top-down control…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giang, Amanda; Stokes, Leah C.; Streets, David G.
We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project similar to 90 and 150 Mg.y(-1) of avoided power sector emissions for China and India,more » respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India similar to 2 and 13 mu g.m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg.y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.« less
Corbitt, Elizabeth S.; Jacob, Daniel J.; Holmes, Christopher D.; Streets, David G.; Sunderland, Elsie M.
2011-01-01
Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here we examine source-receptor relationships for present-day conditions and for four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer-lived ocean and soil pools. Deposited mercury has a local component (emitted HgII, lifetime of 3.7 days against deposition) and a global component (emitted Hg0, lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of HgII and re-emission of Hg0 from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source-receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the timescales for transfer of mercury from active pools to stable geochemical reservoirs. PMID:22050654
Mercury Exposure in Young Children Living in New York City
Jeffery, Nancy; Kieszak, Stephanie; Fritz, Pat; Spliethoff, Henry; Palmer, Christopher D.; Parsons, Patrick J.; Kass, Daniel E.; Caldwell, Kathy; Eadon, George; Rubin, Carol
2007-01-01
Residential exposure to vapor from current or previous cultural use of mercury could harm children living in rental (apartment) homes. That concern prompted the following agencies to conduct a study to assess pediatric mercury exposure in New York City communities by measuring urine mercury levels: New York City Department of Health and Mental Hygiene’s (NYCDOHMH) Bureau of Environmental Surveillance and Policy, New York State Department of Health/Center for Environmental Health (NYSDOHCEH), Wadsworth Center’s Biomonitoring Program/Trace Elements Laboratory (WC-TEL), and Centers for Disease Control and Prevention (CDC). A previous study indicated that people could obtain mercury for ritualistic use from botanicas located in Brooklyn, Manhattan, and the Bronx. Working closely with local community partners, we concentrated our recruiting efforts through health clinics located in potentially affected neighborhoods. We developed posters to advertise the study, conducted active outreach through local partners, and, as compensation for participation in the study, we offered a food gift certificate redeemable at a local grocer. We collected 460 urine specimens and analyzed them for total mercury. Overall, geometric mean urine total mercury was 0.31 μg mercury/l urine. One sample was 24 μg mercury/l urine, which exceeded the (20 μg mercury/l urine) NYSDOH Heavy Metal Registry reporting threshold for urine mercury exposure. Geometric mean urine mercury levels were uniformly low and did not differ by neighborhood or with any clinical significance by children’s ethnicity. Few parents reported the presence of mercury at home, in a charm, or other item (e.g., skin-lightening creams and soaps), and we found no association between these potential sources of exposure and a child’s urinary mercury levels. All pediatric mercury levels measured in this study were well below a level considered to be of medical concern. This study found neither self-reported nor measured evidence of significant mercury use or exposure among participating children. Because some participants were aware of the possibility that they could acquire and use mercury for cultural or ritualistic purposes, community education about the health hazards of mercury should continue. PMID:17957474
Current and future levels of mercury atmospheric pollution on a global scale
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin
2016-10-01
An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source-receptor techniques for mercury emission apportionment on a global scale.
Carbon bed mercury emissions control for mixed waste treatment.
Soelberg, Nick; Enneking, Joe
2010-11-01
Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.
Effects of low dietary levels of methyl mercury on mallard reproduction
Heinz, G.
1974-01-01
Mallard ducks were fed a control diet or a diet containing 0.5 ppm or 3 ppm mercury (as methylmercury dicyandiamide). Health of adults and reproductive success were studied. The dietary level of 3 ppm mercury had harmful effects on reproduction, although it did not appear to affect the health of the adults during the 12 months of dosage. Ducks that were fed the diet containing 0.5 ppm mercury reproduced as well as controls, and ducklings from parents fed 0.5 ppm mercury grew faster in the first week of life than did controls....The greatest harm to reproduction associated with the diet containing 3 ppm mercury was an increase in duckling mortality, but reduced egg laying and increased embryonic mortality also occurred....During the peak of egg laying, eggs laid by controls tended to be heavier than eggs laid by ducks fed either level of mercury; however, there seemed to be no eggshell thinning associated with mercury treatment. Levels of mercury reached about 1 ppm in eggs from ducks fed a dietary dosage of 0.5 ppm mercury and between 6 and 9 ppm in the eggs from ducks fed 3 ppm mercury.
Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.
Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming
2015-07-01
Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.
Zhong, Huan; Wang, Wen-Xiong
2009-03-01
This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.
Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo
NASA Astrophysics Data System (ADS)
Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team
2018-05-01
The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).
Marvin-DiPasquale, Mark; Cox, Marisa H.
2007-01-01
Mercury (Hg) is a significant contaminant in the waters, sediment and biota of San Francisco Bay, largely resulting from extensive historic regional mining activities. Alviso Slough represents one of the most mercury contaminated waterways entering south San Francisco Bay, as it is associated with the drainage of the New Almaden mercury mining district. Wetland habitat restoration of former salt manufacturing ponds adjacent to Alviso Slough is currently being planned. One management scenario being considered is a levee breach between Alviso Slough and Pond A8, which will allow reconnection of the salt pond with the tidal slough. This action is projected to increase the tidal prism within Alviso Slough and result in some degree of sediment remobilization as the main channel deepens and widens. The focus of the current study is to assess: a) the current mercury species composition and concentration in sediments within the Alviso Slough main channel and its associated fringing marsh plain, b) how much of each mercury species will be mobilized as a result of projected channel deepening and widening, and c) potential changes in inorganic reactive mercury bioavailability (for conversion to toxic methylmercury) associated with the mobilized sediment fraction. The current report details the field sampling approach and all laboratory analyses conducted, as well as provides the complete dataset associated with this project including a) a quantitative assessment of mercury speciation (total mercury, reactive mercury and methylmercury), b) estimates of the quantity of sediment and mercury mobilized based on 20-foot and 40-foot levee wall notch scenarios, and c) results from a sediment scour experiment examining the changes in the reactive mercury pool under four treatment conditions (high / low salinity and oxic / anoxic water). Ancillary sediment data also collected and reported herein include bulk density, organic content, magnetic susceptibility, percent dry weight, grain size, pH, oxidation-reduction potential, core photography, and detailed lithographic descriptions.
Current approaches of the management of mercury poisoning: need of the hour
2014-01-01
Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360
MERCURY-ATLAS (MA)-9 - SHEPARD, ALAN B., JR. ASTRONAUT - MERCURY CONTROL CENTER (MCC) - CAPE
1963-05-16
S63-07857 (15-16 May 1963) --- Astronaut Alan Shepard (left) and Walter C. Williams monitor progress of the Mercury Atlas 9 (MA-9) mission from Mercury Control Center, Cape Canaveral, Florida. Photo credit: NASA
A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS
Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...
Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A
2015-01-01
Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.
MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON
The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...
Mercury emission to the atmosphere from municipal solid waste landfills: A brief review
NASA Astrophysics Data System (ADS)
Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli
2017-12-01
Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.
ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION
The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...
Temporal Assessment of Methylmercury in an Endangered Pacific Seabird (Invited)
NASA Astrophysics Data System (ADS)
Vo, A. E.; Bank, M. S.; Shine, J. P.; Edwards, S. V.
2010-12-01
Methylmercury cycling in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists over the extent to which mercury accumulation in biota may have resulted from increases in anthropogenic output over time. To address this, we assessed historical and recent mercury exposure in an endangered Pacific seabird, the Black-footed Albatross (Phoebastria nigripes), using feather samples from museum specimens spanning the past 130 years. We additionally analyzed stable isotopes of nitrogen (δ15N) and carbon (δ13C) to control for confounding factors of temporal change in trophic structure or diet. As a long-lived, wide-ranging, top marine predator and an endangered, keystone species in the North Pacific, the Black-footed Albatross comprises an ideal sentinel species for determining the effect of both global increases in mercury throughout the previous century and regional increases during the recent past on bioaccumulation and risk among avian wildlife. A significantly higher proportion of post-1940 samples contained above deleterious threshold levels (~40,000 ng/g) of methylmercury relative to pre-1940 samples, and mean concentrations were significantly higher in post-1990 than in pre-1990 samples. We also found increasingly higher amounts of (presumably curator-mediated) inorganic mercury contamination in older museum samples for the Black-footed Albatross as well as two non-pelagic comparison species, which informs future studies on bioaccumulation in museum specimens to analyze methylmercury rather than total mercury in all but recently collected specimens. Although complementary stable isotope data suggested no historic change in albatross trophic level, there was a significant change in δ13C signature over time. However, after controlling for these potential confounders, time significantly and positively associated with methylmercury exposure. Changes in methylmercury levels were consistent with historic global and recent regional increases in anthropogenic mercury production, and mercury toxicity may undermine current and future reproductive efforts in the species.
Subtask 4.8 - Fate and Control of Mercury and Trace Elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlish, John; Lentz, Nicholas; Martin, Christopher
2011-12-31
The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impactmore » trace metal releases to the environment, such as SO x, NO x, CO 2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO 2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas-conditioning methods, to understand mercury interactions, develop better control strategies and, in some cases, prevent mercury from being reemitted. This research also addressed stakeholder concerns and questions related to sampling and analytical methods for mercury, especially for continuous mercury monitors and sorbent trap methods for future compliance. Advancements were made toward the development of a much simpler dry-based method for measurement of halogens and trace metals. Finally, this research resulted in significant outcomes related to mercury and selenium concentrations in freshwater fish and how it is associated with other elements, thereby potentially impacting health; this has greatly enhanced the understanding of the second-order mechanism of mercury toxicity. The outcomes of this research have been shared with stakeholders in various domestic and international forums, working groups, conferences, educational settings, and published documents, with information available and accessible to those most impacted or interested in timely and current results on toxic metals. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291.« less
Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A
2017-11-01
Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.
The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.
He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei
2016-01-01
The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
AN ELECTROCHEMICAL SYSTEM FOR REMOVING AND RECOVERING ELEMENTAL MERCURY FROM FLUE-STACK GASES
the impending EPA regulations on the control of mercury emissions from the flue stacks of coal-burning electric utilities has resulted in heightened interest in the development of advanced mercury control technologies such as sorbent injection and in-situ mercury oxidation. Altho...
Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L
2015-06-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.
2015-01-01
Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335
Phytoremediation of Ionic and Methyl Mercury P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
1999-06-01
Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and/or sequester toxic heavy metal pollutants as an environmentally friendly alternative to physical remediation methods. We have focused this phytoremediation research on soil and water-borne ionic and methylmercury. Mercury pollution is a serious world-wide problem affecting the health of human and wild-life populations. Methylmercury, produced by native bacteria at mercury-contaminated wetland sites, is a particularly serious problem due to its extreme toxicity and efficient biomagnification in the food chain. We engineered several plant species (e.g., Arabidopsis, tobacco, canola, yellow poplar, rice) to express the bacterial genes,more » merB and/or merA, under the control of plant regulatory sequences. These transgenic plants acquired remarkable properties for mercury remediation. (1) Transgenic plants expressing merB (organomercury lyase) extract methylmercury from their growth substrate and degrade it to less toxic ionic mercury. They grow on concentrations of methylmercury that kill normal plants and accumulate low levels of ionic mercury. (2) Transgenic plants expressing merA (mercuric ion reductase) extract and electrochemically reduce toxic, reactive ionic mercury to much less toxic and volatile metallic mercury. This metal transformation is driven by the powerful photosynthetic reducing capacity of higher plants that generates excess NADPH using solar energy. MerA plants grow vigorously on levels of ionic mercury that kill control plants. Plants expressing both merB and merA degrade high levels of methylmercury and volatilize metallic mercury. These properties were shown to be genetically stable for several generations in the two plant species examined. Our work demonstrates that native trees, shrubs, and grasses can be engineered to remediate the most abundant toxic mercury pollutants. Building on these data our working hypothesis for the next grant period is that transgenic plants expressing the bacterial merB and merA genes will (a) remove mercury from polluted soil and water and (b) prevent methylmercury from entering the food chain. Our specific aims center on understanding the mechanisms by which plants process the various forms of mercury and volatilize or transpire mercury vapor. This information will allow us to improve the design of our current phytoremediation strategies. As an alternative to volatilizing mercury, we are using several new genes to construct plants that will hyperaccumulate mercury in above-ground tissues for later harvest. The Department of Energy's Oak Ridge National Laboratory and Brookhaven National Laboratory have sites with significant levels of mercury contamination that could be cleaned by applying the scientific discoveries and new phytoremediation technologies described in this proposal. The knowledge and expertise gained by engineering plants to hyperaccumulate mercury can be applied to the remediation of other heavy metals pollutants (e.g., arsenic, cesium, cadmium, chromium, lead, strontium, technetium, uranium) found at several DOE facilities.« less
Mercury content in marketed cosmetics: analytical survey in Shijiazhuang, China.
Wang, Li; Zhang, Hong
2015-01-01
Mercury is one of the skin-lightening ingredients in cosmetics as mercury ions are thought to inhibit the synthesis of the skin pigment melanin in melanocyte cells. The objective of this study was to evaluate the mercury levels of cosmetics currently marketed in Shijiazhuang, a northern city in China. We collected 146 random cosmetic samples and analyzed for mercury concentrations or levels by cold vapor atomic absorption spectrometry. Among the 146 samples, 134 (91.8%) were positive for mercury, and the concentrations of mercury ranged from not detectable to 592 ng/g. Cosmetic samples for children and babies had the highest detection rate (100%), followed by shampoo and hair conditioner (92.3%) and skin-lightening cream (92.0%). All of them were lower than the acceptable limit (1 μg/g) in China. Cosmetics for skin had the highest mean mercury content (45 ng/g), followed by hair products (42.1 ng/g). The concentrations of mercury detected in samples were lower than the current legal limit in China, indicating it may not pose a risk to consumers.
Perugini, Monia; Zezza, Daniela; Tulini, Serena Maria Rita; Abete, Maria Cesarina; Monaco, Gabriella; Conte, Annamaria; Olivieri, Vincenzo; Amorena, Michele
2016-08-15
The risk of Hg poisoning by eating seafood is considered real from the several international agencies that recommended, by fish consumption advisories, to pregnant women and young children to avoid or severely limit the consumption of the fish and shellfish with a high-range mercury levels. The analyses of two common species, European hake and Norway lobster, collected from an area of Central Adriatic Sea, reported high mercury levels in crustaceans. For Norway lobster total mercury exceeded, in six out of ten analysed pools, the recommended 0.5mg/kg wet weight European limit. Moreover the increased amount of Hg concentrations in Norway lobster cooked samples suggests the necessity to review current procedures of Hg control in food, considering also consumption habits of consumers. The Hg values found in all European hake samples are below the legal limits and, in this species, the boiling did not modify the concentrations in fish tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.
2008-01-01
Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.
NASA Astrophysics Data System (ADS)
Mao, Huiting; Cheng, Irene; Zhang, Leiming
2016-10-01
Atmospheric mercury (Hg) is a global pollutant and thought to be the main source of mercury in oceanic and remote terrestrial systems, where it becomes methylated and bioavailable; hence, atmospheric mercury pollution has global consequences for both human and ecosystem health. Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of total gaseous mercury or gaseous elemental mercury (TGM/GEM), gaseous oxidized mercury (GOM), and particulate-bound mercury (PBM) in various environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. In the marine boundary layer (MBL), the oxidation of GEM was generally thought to drive the diurnal and seasonal variations of TGM/GEM and GOM in most oceanic regions, leading to lower GEM and higher GOM from noon to afternoon and higher GEM during winter and higher GOM during spring-summer. At continental sites, the driving mechanisms of TGM/GEM diurnal patterns included surface and local emissions, boundary layer dynamics, GEM oxidation, and for high-elevation sites mountain-valley winds, while oxidation of GEM and entrainment of free tropospheric air appeared to control the diurnal patterns of GOM. No pronounced diurnal variation was found for Tekran measured PBM at MBL and continental sites. Seasonal variations in TGM/GEM at continental sites were attributed to increased winter combustion and summertime surface emissions, and monsoons in Asia, while those in GOM were controlled by GEM oxidation, free tropospheric transport, anthropogenic emissions, and wet deposition. Increased PBM at continental sites during winter was primarily due to local/regional coal and wood combustion emissions. Long-term TGM measurements from the MBL and continental sites indicated an overall declining trend. Limited measurements suggested TGM/GEM increasing from the Southern Hemisphere (SH) to the Northern Hemisphere (NH) due largely to the vast majority of mercury emissions in the NH, and the latitudinal gradient was insignificant in summer probably as a result of stronger meridional mixing. Aircraft measurements showed no significant vertical variation in GEM over the field campaign regions; however, depletion of GEM was observed in stratospherically influenced air masses. In examining the remaining questions and issues, recommendations for future research needs were provided, and among them is the most imminent need for GOM speciation measurements and fundamental understanding of multiphase redox kinetics.
NOVEL MERCURY OXIDANT AND SORBENT FOR MERCURY EMISSIONS CONTROL FROM COAL-FIRED POWER PLANTS
The authors have successfully developed novel efficient and cost-effective sorbent and oxidant for removing mercury from power plant flue gases. These sorbent and oxidant offer great promise for controlling mercury emissions from coal-fired power plants burning a wide range of c...
CRYOGENIC TRAPPING OF OXIDIZED MERCURY SPECIES FROM COMBUSTION FLUE GAS. (R827649)
To further understand the speciation and partitioning of mercury species in combustion systems, it is necessary to be able to identify and quantitate the various forms of oxidized mercury. Currently accepted methods for speciating mercury (Ontario Hydro Method, EPA Method 29, ...
FUNDAMENTAL SCIENCE AND ENGINEERING OF MERCURY CONTROL IN COAL-FIRED POWER PLANTS
The paper discusses the existing knowledge base applicable to mercury (Hg) control in coal-fired boilers and outlines the gaps in knowledge that can be filled by experimentation and data gathering. Mercury can be controlled by existing air pollution control devices or by retrofit...
Reproduction in mallards exposed to dietary concentrations of methylmercury
Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.
2010-01-01
The purpose of this experiment was to use mallards (Anas platyrhynchos) tested under controlled conditions to determine how much harm to reproduction resulted from various concentrations of mercury in eggs. Breeding pairs of mallards were fed a control diet or diets containing 1, 2, 4, or 8 μg/g mercury, as methylmercury chloride. Mean concentrations of mercury in eggs laid by parents fed 0, 1, 2, 4, or 8 μg/g mercury were 0.0, 1.6, 3.7, 5.9, and 14 μg/g mercury on a wet-weight basis. There were no signs of mercury poisoning in the adults, and fertility and hatching success of eggs were not affected by mercury. Survival of ducklings and the number of ducklings produced per female were reduced by the 4 and 8-μg/g dietary mercury treatments (that resulted in 5.9 and 14 μg/g mercury in their eggs, respectively). Ducklings from parents fed the various mercury diets were just as heavy as controls at hatching, but by 6 days of age ducklings whose parents had been fed 4 or 8 μg/g mercury weighed less than controls. Because we do not know if absorption of mercury from our diets would be the same as absorption from natural foods, the mercury concentrations we report in eggs may be more useful in extrapolating to possible harmful effects in nature than are the dietary levels we fed. We conclude that mallard reproduction does not appear to be particularly sensitive to methylmercury.
Mercury in the National Parks: Current Status and Effects
NASA Astrophysics Data System (ADS)
Flanagan, C.; Blett, T. F.; Morris, K.
2012-12-01
Mercury is a globally distributed contaminant that can harm human and wildlife health, and threaten resources the National Park Service (NPS) is charged with protecting. Due in part to emissions and long-range transport from coal burning power plants, even remote national park environments receive mercury deposition from the atmosphere. Given the concern regarding mercury, there are and have been many mercury monitoring initiatives in national parks to determine the risk from mercury contamination. This includes the study of litter fall at Acadia National Park (Maine), snow at Mount Rainier National Park (Washington), heron eggs at Indiana Dunes National Lakeshore (Indiana), bat hair at Mammoth Cave National Park (Kentucky), and panthers at Everglades National Park (Florida). Wet deposition is also measured at 16 national parks as part of the National Atmospheric Deposition Network / Mercury Deposition Network. Results from these studies indicate that mercury deposition is increasing or is elevated in many national parks, and fish and other biota have been found to contain levels of mercury above toxicity thresholds for impacts to both humans and wildlife. Current research coordinated by the NPS Air Resources Division (ARD) in Denver, Colorado, on the effects of mercury includes broad-scale assessments of mercury in fish, dragonfly larvae, and songbirds across 30+ national parks. Fish provide the trophic link to human and wildlife health, dragonfly larvae can describe fine-scale differences in mercury levels, and songbirds shed light on the risk to terrestrial ecosystems. External project partners include the U.S. Geological Survey, University of Maine, and the Biodiversity Research Institute. In addition, the dragonfly project engages citizen scientists in the collection of dragonfly larvae, supporting the NPS Centennial Initiative by connecting people to parks and advancing the educational mission, and increasing public awareness about mercury impacts. Much of the current, large scale work on mercury in national parks is conducted in western and Alaskan parks and will be incorporated into the Western Mercury Synthesis project, a multi-agency/multi-organizational landscape scale synthesis linking large, spatiotemporal datasets about mercury cycling, bioaccumulation, and risk across western North America. Mercury findings in national parks are also communicated to other outlets, including public comment on EPA's Mercury and Air Toxics Standards and in video podcasts (e.g., http://www.nature.nps.gov/air/Multimedia/podcast/acadia_mercury/acadia_mercury.cfm). The NPS Organic Act states that national park resources are to remain unimpaired, and the toxic effects of mercury challenge that legal mandate. National park ecosystems are already experiencing multiple stressors (e.g., nitrogen deposition) and mercury impacts may push vulnerable species too far. This talk will give an overview of NPS-ARD mercury initiatives, and contribute to the overall understanding of mercury in the science, policy, and outreach arenas.
Adsorbents for capturing mercury in coal-fired boiler flue gas.
Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R
2007-07-19
This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, Sharon; Amrhein, Jerry
2009-04-30
The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Power’s (RMP)more » Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was met—sorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO® Hg-LH, Calgon FLUEPAC®-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.5–2.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of this project also filled a data gap for plants firing PRB coal and configured with an SCR, SDA, and FF, as many new plants are being designed today. Another goal of the project was to evaluate, on a short-term basis, the mercury removal associated with coal additives and coal blending with western bituminous coal. The additive test showed that, at this site, the coal additive known as KNX was affective at increasing mercury removal while decreasing sorbent usage. Coal blending was conducted with two different western bituminous coals, and West Elk coal increased native capture from nominally 10% to 50%. Two additional co-benefits were discovered at this site. First, it was found that native capture increased from nominally 10% at full load to 50% at low load. The effect is believed to be due to an increase in mercury oxidation across the SCR caused by a corresponding decrease in ammonia injection when the plant reduces load. Less ammonia means more active oxidation sites in the SCR for the mercury. The second co-benefit was the finding that high ammonia concentrations can have a negative impact on mercury removal by powdered activated carbon. For a period of time, the plant operated with a high excess of ammonia injection necessitated by the plugging of one-third of the SCR. Under these conditions and at high load, the mercury control system could not maintain 90% removal even at the maximum feed rate of 3.5 lb/MMacf (pounds of mercury per million actual cubic feet). The plant was able to demonstrate that mercury removal was directly related to the ammonia injection rate in a series of tests where the ammonia rate was decreased, causing a corresponding increase in mercury removal. Also, after the SCR was refurbished and ammonia injection levels returned to normal, the mercury removal performance also returned to normal. Another goal of the project was to install a commercial-grade activated carbon injection (ACI) system and integrate it with new-generation continuous emissions monitors for mercury (Hg-CEMs) to allow automatic feedback control on outlet mercury emissions. This was accomplished and the plant can now be operated to control carbon injection based on either the overall mercury removal or an outlet mercury emission rate. By integrating these systems, it was determined that the plant could reduce powdered activated carbon consumption, especially at low load, because, at Hardin, native mercury capture increases from less than 20% to about 50% at low load and the carbon injection rate can be decreased accordingly. Currently, the plant is operating to automatically control emissions to below 0.9 lb/TBtu (pounds of mercury per million British thermal units) at carbon loadings of 0.5 to 1.5 lb/MMacf. During the final phase of the Long-Term test, the ACI system was operated by plant personnel. The estimated O&M cost for a single Hg-CEM system is $15,500/yr. The Hg-CEMs performed well throughout the project. This project began shortly after Thermo Fisher first offered the Mercury Freedom System™ on a commercial basis and progressed though several iterations, improvements, and upgrades to the hardware and software. Indeed, there was a ten-fold increase in the precision and accuracy of the units during the course of the project due to several successful upgrades. In their present condition, the Hg-CEMs measure mercury to a precision of about ± 0.05 μg/wscm (micrograms of mercury per wet standard cubic meter of gas), and only require occasional fine-tuning of the calibration coefficients. The quality assurance/quality control (QA/QC) protocol required to keep the units operating at their optimal performance was also developed and perfected during the course of the project. ADA Environmental Solutions (ADA) developed a daily calibration procedure that surpasses the requirements specified in the Clean Air Mercury Rule (CAMR), and a weekly diagnostic program that ensures that the systems are operating properly and receive the necessary maintenance. For the most part, the systems passed the daily, weekly, and quarterly QA/QC requirements as well as four performance verification tests using the Ontario Hydro (O-H) and Sorbent Trap Methods (STM) for the first test and the EPA Method 30A (M30A) procedure for the remaining three. However, some improvements are still necessary before the system can meet all of the requirements. These involve tests that challenge the system with oxidized mercury (Hg+2). These tests could not be passed at Hardin in spite of trying several improvements suggested by ADA or Thermo Fisher.« less
Chronic atrophic gastritis in association with hair mercury level.
Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu
2014-11-01
The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy controls without eating seafood (p<0.01) and that the hair mercury level in chronic atrophic gastritis cases was significantly higher than that in chronic superficial gastritis cases (p<0.01). Pearson correlation analysis indicated that eating seafood was most correlated with hair mercury level and positively correlated in the healthy controls and that the severity of gastritis was most correlated with hair mercury level and positively correlated in the gastritis cases. Multiple stepwise regression analysis indicated that the regression equation of hair mercury level in controls could be expressed as 0.262 multiplied the value of eating seafood plus 0.434, the model that was statistically significant (p<0.01). Multiple stepwise regression analysis also indicated that the regression equation of hair mercury level in gastritis cases could be expressed as 0.305 multiplied the severity of gastritis, the model that was also statistically significant (p<0.01). The graphs of regression standardized residual for both controls and cases conformed to normal distribution. The main positively correlated factor affecting the hair mercury level is eating seafood in healthy people whereas the predominant positively correlated factor affecting the hair mercury level is the severity of gastritis in chronic gastritis patients. That is to say, the severity of chronic gastritis is positively correlated with the level of hair mercury. The incessantly increased level of hair mercury possibly reflects the development of gastritis from normal stomach to superficial gastritis and to atrophic gastritis. The detection of hair mercury is potentially a means to predict the severity of chronic gastritis and possibly to insinuate the environmental mercury threat to human health in terms of gastritis or even carcinogenesis.
BIOAVAILABILITY OF MERCURY IN SEDIMENTS FROM A FLOOD CONTROL RESERVOIR TO HYALELLA AZTECA
In the last three years, mercury contamination in North Mississippi flood control reservoirs has become a growing concern. Previous data indicate that three flood control reservoirs have similar total mercury sediment concentrations and that fish collected from one reservoir cont...
Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller
2015-01-01
A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.
Reference Atmosphere for Mercury
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.
2002-01-01
We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.
A proposed global metric to aid mercury pollution policy
NASA Astrophysics Data System (ADS)
Selin, Noelle E.
2018-05-01
The Minamata Convention on Mercury entered into force in August 2017, committing its currently 92 parties to take action to protect human health and the environment from anthropogenic emissions and releases of mercury. But how can we tell whether the convention is achieving its objective? Although the convention requires periodic effectiveness evaluation (1), scientific uncertainties challenge our ability to trace how mercury policies translate into reduced human and wildlife exposure and impacts. Mercury emissions to air and releases to land and water follow a complex path through the environment before accumulating as methylmercury in fish, mammals, and birds. As these environmental processes are both uncertain and variable, analyzing existing data alone does not currently provide a clear signal of whether policies are effective. A global-scale metric to assess the impact of mercury emissions policies would help parties assess progress toward the convention's goal. Here, I build on the example of the Montreal Protocol on Substances that Deplete the Ozone Layer to identify criteria for a mercury metric. I then summarize why existing mercury data are insufficient and present and discuss a proposed new metric based on mercury emissions to air. Finally, I identify key scientific uncertainties that challenge future effectiveness evaluation.
Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris
2008-06-01
Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.
Scenarios of global mercury emissions from anthropogenic sources
NASA Astrophysics Data System (ADS)
Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.
2013-11-01
This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
MERCURY IN AN INSECTIVOROUS BIRD SPECIES
Mercury distributions within ecosystems must be examined to determine exposure and risk to wildlife in specific areas. In the current study, we examined exposure and uptake of mercury in nestling prothonotary warblers (protonitaria citrea) inhabiting two National Priority List (...
The effect of occupational exposure to mercury vapour on the fertility of female dental assistants.
Rowland, A S; Baird, D D; Weinberg, C R; Shore, D L; Shy, C M; Wilcox, A J
1994-01-01
Exposure to mercury vapour or inorganic mercury compounds can impair fertility in laboratory animals. To study the effects of mercury vapour on fertility in women, eligibility questionnaires were sent to 7000 registered dental assistants in California. The final eligible sample of 418 women, who had become pregnant during the previous four years, were interviewed by telephone. Detailed information was collected on mercury handling practices and the number of menstrual cycles without contraception it had taken them to become pregnant. Dental assistants not working with amalgam served as unexposed controls. Women with high occupational exposure to mercury were less fertile than unexposed controls. The fecundability (probability of conception each menstrual cycle) of women who prepared 30 or more amalgams per week and who had five or more poor mercury hygiene factors was only 63% of that for unexposed women (95% CI 42%-96%) after controlling for covariates. Women with low exposure were more fertile, however, than unexposed controls. Possible explanations for the U shaped dose response and limitations of the exposure measure are discussed. Further investigation is needed that uses biological measures of mercury exposure. PMID:8124459
Methylmercury dose estimation from umbilical cord concentrations in patients with Minamata disease.
Akagi, H; Grandjean, P; Takizawa, Y; Weihe, P
1998-05-01
The methylmercury exposure of patients with congenital or infantile Minamata disease is known only from a small number of analyses of umbilical cords. Four laboratories in Japan have analyzed a total of 176 samples of umbilical cord tissue obtained from Minamata. The highest concentrations were seen in cord tissue from children born during 1950-1965, i.e., the peak period of acetaldehyde production in Minamata before installation of waste water treatment. Twenty-four samples from patients diagnosed with Minamata disease showed a median mercury concentration of 1.63 microg/g and differed significantly from levels seen in cord tissue from control children. However, children diagnosed with mental retardation had mercury concentrations in cord that were intermediate between the two other groups. Using regression coefficients obtained at a study conducted at the Faroe Islands, the median cord mercury concentration from the children with Minamata disease is estimated to correspond to about 216 microg/L cord blood and 41 microg/g in maternal hair. Based on correlations reported in the literature, the median daily mercury intake of the women whose children developed Minamata disease can then be estimated at about 225 microg. Although these children had fully developed Minamata disease, the estimates of median mercury levels are only four to five times higher than current mercury exposure limits. Copyright 1998 Academic Press.
Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...
Mercury cycling in terrestrial watersheds
Shanley, James B.; Bishop, Kevin; Banks, Michael S.
2012-01-01
This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.
Using Wet-FGD systems for mercury removal.
Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G
2005-09-01
A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.
The three modern faces of mercury.
Clarkson, Thomas W
2002-01-01
The three modern "faces" of mercury are our perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines. In this article I review human exposure to and the toxicology of each of these three species of mercury. Mechanisms of action are discussed where possible. Key gaps in our current knowledge are identified from the points of view both of risk assessment and of mechanisms of action. PMID:11834460
Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast China.
Zhu, Lilu; Yan, Baixing; Wang, Lixia; Pan, Xiaofeng
2012-03-01
Chagan Lake is located downstream of the Second Songhua River basin in Northeast China. It is one of the top ten inland freshwater lakes, and an important aquatic farm in China. The lake has been receiving large amounts (currently at 1.5 × 10(8) m(3)/a) of water from the river since 1984. This would pose a threat to the aquatic system of the lake because the river was seriously polluted with mercury in 1970s-1980s. The current study is the first to report the total mercury concentrations in fish found in the lake. Mercury concentrations in seven fish species collected from the lake in January 2009 were determined. The related human health risk from fish consumption was also assessed. The average concentration of mercury in the fish was 18.8 μg/kg of wet weight, ranging from 4.5 to 37.6 μg/kg of wet weight. A large difference in the mercury concentrations among the fish species was found. The mercury concentration was found to be higher in carnivorous species and lower in omnivorous and herbivorous species. This demonstrates greater mercury bioaccumulation in fish species at higher trophic levels. Mercury concentrations in fish showed significant positive correlations with age, length, and weight. No significant relationship was found between mercury concentrations in fish and the habitat preferences. Mercury concentrations in fish from the lake were within the limits of the international and national standards of China established for mercury. According to the reference doses established by the United States Environmental Protection Agency, the maximum safe consuming quantity considering all the fish was 297.3 g/day/person, which was more than five times as much as the current quantity (50 g/day/person) consumed by the local residents. This investigation indicates that the historical pollution of the Second Songhua River has not caused mercury bioaccumulation in fish muscle tissue of Chagan Lake. The present consumption of fish from the lake in the local area does not pose a threat to human health.
MESSENGER: Exploring Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.;
2005-01-01
The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all driving field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights- into magnetospheric physics offered by study of the solar wind - Mercury system, quantitative specification of the "external" magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury s intrinsic magnetic field. MESSENGER S highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury s magnetic field and the acceleration of charged particles in small magnetospheres. In. this article, we review what is known about Mercury s magnetosphere and describe the MESSENGER science team s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.
Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA.
Brent, Robert N; Berberich, David A
2014-02-01
Mercury is a globally distributed pollutant that biomagnifies in aquatic food webs. In the United States, 4,769 water bodies fail to meet criteria for safe fish consumption due to mercury bioaccumulation. Although the majority of these water bodies are affected primarily by atmospheric deposition of mercury, legacy contamination from mining or industrial activities also contribute to fish consumption advisories for mercury. The largest mercury impairment in Virginia, a 130-mile stretch of the South and South Fork Shenandoah rivers, is posted with a fish-consumption advisory for mercury contamination that originated from mercuric sulfate discharges from a textile facility in Waynesboro, Virginia, between 1929 and 1950. Although discharges of mercury to the river ceased >60 years ago, mercury levels in fish remain greater than levels safe for human consumption. This is due to the continued cycling of historic mercury in the river and its eventual uptake and biomagnification through aquatic food webs. This study investigated the relative importance of waterborne versus sediment-borne mercury in controlling biological uptake of mercury into the aquatic food web. Twelve artificial stream channels were constructed along the contaminated South River in Crimora, Virginia, and the uncontaminated North River in nearby Port Republic, Virginia, to provide four experimental treatments: a control with no Hg exposure, a Hg in sediment exposure, a Hg in water exposure, and a Hg in sediment and water exposure. After 6 weeks of colonization and growth, algae in each treatment was collected and measured for mercury accumulation. Mercury accumulation in water-only exposures was four times greater than in sediment-only exposures and was equivalent to accumulation in treatments with combined water and sediment exposure. This indicates that mercury in the water column is much more important in controlling biological uptake than mercury in near-field sediments. As a result, future remediation efforts need to focus on strategies that either remove mercury from the water column or decrease flux to the water column.
Field-aligned Currents at Mercury and Implications for Crustal Electrical Conductivity
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Johnson, C. L.; Korth, H.; Winslow, R. M.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L., Jr.
2013-12-01
Magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft are used to identify signatures of steady-state field-aligned or Birkeland currents in the northern polar region. These signatures allow us to determine the distribution, area, and total current typically flowing toward and away from the planet and closing at low altitudes. Results reveal that current flows downward on the dawn side and upward on the dusk side, a pattern corresponding to the Region-1 current system at Earth. Typical current densities are 10 to 20 nA/m2. The total current ranges from 10 kA under magnetically calm conditions to nearly 40 kA during disturbed periods. Both the current density and the total current are approximately two orders of magnitude lower than at Earth. The electric potential, consistent with dayside magnetopause magnetic reconnection, is estimated to be ~30 kV under typical conditions, implying that the net resistance to closure of the Birkeland currents is on the order of 1 ohm. At Earth this resistance is typically 0.02 ohms, and if the height-integrated low-altitude conductance were the same, the resistance at Mercury would be even lower than at Earth, ~0.01 ohms. The comparatively low current observed and the estimated high resistance are consistent with expectations that current closure at Mercury is markedly different than at Earth. We solve for the potential implied by the observed currents given closure through the planet. We consider crustal and mantle conductances consistent with experimental results for olivine, and we use a nominal present-day radial temperature profile for Mercury. Net potentials comparable to 30 kV require that the current closes radially through the crust and horizontally through the higher-conductivity mantle at depths of 50 to 400 km. The crust accounts for nearly all of the resistance to current flow, and the results are consistent with a crustal conductivity on the order of 10-8 S/m.
Zhang, Yue; Ye, Xuejie; Yang, Tianjun; Li, Jinling; Chen, Long; Zhang, Wei; Wang, Xuejun
2018-01-01
Coal combustion is the most significant anthropogenic mercury emission source in China. In 2013, China signed the Minamata Convention affirming that mercury emissions should be controlled more strictly. Therefore, an evaluation of the costs associated with atmospheric mercury emission reductions from China's coal combustion is essential. In this study, we estimated mercury abatement costs for coal combustion in China for 2010, based on a provincial technology-based mercury emission inventory. In addition, four scenarios were used to project abatement costs for 2020. Our results indicate that actual mercury emission related to coal combustion in 2010 was 300.8Mg, indicating a reduction amount of 174.7Mg. Under a policy-controlled scenario for 2020, approximately 49% of this mercury could be removed using air pollution control devices, making mercury emissions in 2020 equal to or lower than in 2010. The total abatement cost associated with mercury emissions in 2010 was 50.2×10 9 RMB. In contrast, the total abatement costs for 2020 under baseline versus policy-controlled scenarios, having high-energy and low-energy consumption, would be 32.0×10 9 versus 51.2×10 9 , and 27.4×10 9 versus 43.9×10 9 RMB, respectively. The main expense is associated with flue gas desulfurization. The unit abatement cost of mercury emissions in 2010 was 288×10 3 RMB/(kgHg). The unit abatement costs projected for 2020 under a baseline, a policy-controlled, and an United Nations Environmental Programme scenario would be 143×10 3 , 172×10 3 and 1066×10 3 RMB/(kgHg), respectively. These results are much lower than other international ones. However, the relative costs to China in terms of GPD are higher than in most developed countries. We calculated that abatement costs related to mercury emissions accounted for about 0.14% of the GDP of China in 2010, but would be between 0.03% and 0.06% in 2020. This decrease in abatement costs in terms of GDP suggests that various policy-controlled scenarios would be viable. Copyright © 2017 Elsevier B.V. All rights reserved.
Grossman, Mark W.
1993-01-01
The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.
Grossman, M.W.
1993-02-16
The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.
21 CFR 880.2920 - Clinical mercury thermometer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...
21 CFR 880.2920 - Clinical mercury thermometer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...
21 CFR 880.2920 - Clinical mercury thermometer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...
21 CFR 880.2920 - Clinical mercury thermometer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...
Technical report: mercury in the environment: implications for pediatricians.
Goldman, L R; Shannon, M W
2001-07-01
Mercury is a ubiquitous environmental toxin that causes a wide range of adverse health effects in humans. Three forms of mercury (elemental, inorganic, and organic) exist, and each has its own profile of toxicity. Exposure to mercury typically occurs by inhalation or ingestion. Readily absorbed after its inhalation, mercury can be an indoor air pollutant, for example, after spills of elemental mercury in the home; however, industry emissions with resulting ambient air pollution remain the most important source of inhaled mercury. Because fresh-water and ocean fish may contain large amounts of mercury, children and pregnant women can have significant exposure if they consume excessive amounts of fish. The developing fetus and young children are thought to be disproportionately affected by mercury exposure, because many aspects of development, particularly brain maturation, can be disturbed by the presence of mercury. Minimizing mercury exposure is, therefore, essential to optimal child health. This review provides pediatricians with current information on mercury, including environmental sources, toxicity, and treatment and prevention of mercury exposure.
The materials flow of mercury in the economies of the United States and the world
Sznopek, John L.; Goonan, Thomas G.
2000-01-01
Although natural sources of mercury exist in the environment, measured data and modeling results indicate that the amount of mercury released into the biosphere has increased since the beginning of the industrial age. Mercury is naturally distributed in the air, water, and soil in minute amounts, and can be mobile within and between these media. Because of these properties and the subsequent impacts on human health, mercury was selected for an initial materials flow study, focusing on the United States in 1990. This study was initiated to provide a current domestic and international analysis. As part of an increased emphasis on materials flow, this report researched changes and identified the associated trends in mercury flows; it also updates statistics through 1996. In addition to domestic flows, the report includes an international section, because all primary mercury-producing mines are currently foreign, 86 percent of the mercury cell sector of the worldwide chlor-alkali industry is outside the United States, there is a large international mercury trade (1,395 t 1 in 1996), and environmental regulations are not uniform or similarly enforced from country to country. Environmental concerns have brought about numerous regulations that have dramatically decreased both the use and the production of mercury since the late 1980?s. Our study indicates that this trend is likely to continue into the future, as the world eliminates the large mercury inventories that have been stockpiled to support prior industrial processes and products.
Ozgur, Cihan; Coskun, Sezen; Akcil, Ata; Beyhan, Mehmet; Üncü, Ismail Serkan; Civelekoglu, Gokhan
2016-11-01
In this paper, oxidative leaching and electrowinnig processes were performed to recovery of mercury from spent tubular fluorescent lamps. Hypochlorite was found to be effectively used for the leaching of mercury to the solution. Mercury could be leached with an efficiency of 96% using 0.5M/0.2M NaOCl/NaCl reagents at 50°C and pH 7.5 for 2-h. Electrowinning process was conducted on the filtered leaching solutions and over the 81% of mercury was recovered at the graphite electrode using citric acid as a reducing agent. The optimal process conditions were observed as a 6A current intensity, 30g/L of reducing agent concentration, 120min. electrolysis time and pH of 7 at the room temperature. It was found that current intensity and citric acid amount had positive effect for mercury reduction. Recovery of mercury in its elemental form was confirmed by SEM/EDX. Oxidative leaching with NaOCl/NaCl reagent was followed by electrowinning process can be effectively used for the recovery of mercury from spent fluorescent lamps. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phytoremediation of Ionic and Methyl Mercury Pollution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meagher, Richard B.
Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.« less
Self-healing fuse development.
NASA Technical Reports Server (NTRS)
Jones, N. D.
1972-01-01
The self-healing fuse is a very fast acting current overload protective device which opens and recloses in a few milliseconds. The fuse confines a mercury column in an insulated channel and returns the mercury to the channel after firing. Ratings 5 to 50 A at 600 peak volts are possible with a life of hundreds of cycles. Compared to conventional fuses, much less fault current energy fires the fuse by heating the mercury to boiling temperature. Next an arc discharge develops while explosive forces expel the liquid mercury from the channel. Then the high impedance arc either extinguishes immediately, or operates for a few milliseconds, until a switch opens the circuit.
THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandra Meischen
2004-07-01
Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods.more » A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.« less
Advanced Hybrid Particulate Collector Project Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, S.J.
As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less
Mercury and halogens in coal: Chapter 2
Kolker, Allan; Quick, Jeffrey C.; Granite, Evan J.; Pennline, Henry W.; Senior, Constance L.
2014-01-01
Apart from mercury itself, coal rank and halogen content are among the most important factors inherent in coal that determine the proportion of mercury captured by conventional controls during coal combustion. This chapter reviews how mercury in coal occurs, gives available concentration data for mercury in U.S. and international commercial coals, and provides an overview of the natural variation in halogens that influence mercury capture. Three databases, the U.S. Geological Survey coal quality (USGS COALQUAL) database for in-ground coals, and the 1999 and 2010 U.S. Environmental Protection Agency (EPA) Information Collection Request (ICR) databases for coals delivered to power stations, provide extensive results for mercury and other parameters that are compared in this chapter. In addition to the United States, detailed characterization of mercury is available on a nationwide basis for China, whose mean values in recent compilations are very similar to the United States in-ground mean of 0.17 ppm mercury. Available data for the next five largest producers (India, Australia, South Africa, the Russian Federation, and Indonesia) are more limited and with the possible exceptions of Australia and the Russian Federation, do not allow nationwide means for mercury in coal to be calculated. Chlorine in coal varies as a function of rank and correspondingly, depth of burial. As discussed elsewhere in this volume, on a proportional basis, bromine is more effective than chlorine in promoting mercury oxidation in flue gas and capture by conventional controls. The ratio of bromine to chlorine in coal is indicative of the proportion of halogens present in formation waters within a coal basin. This ratio is relatively constant except in coals that have interacted with deep-basin brines that have reached halite saturation, enriching residual fluids in bromine. Results presented here help optimize mercury capture by conventional controls and provide a starting point for implementation of mercury-specific controls discussed elsewhere in this volume.
Modeling Watershed Mercury Response to Atmospheric Loadings: Response Time and Challenges
The relationship between sources of mercury to watersheds and its fate in surface waters is invariably complex. Large scale monitoring studies, such as the METAALICUS project, have advanced current understanding of the links between atmospheric deposition of mercury and accumulat...
Kinetic-Scale Magnetic Turbulence and Finite Larmor Radius Effects at Mercury
NASA Technical Reports Server (NTRS)
Uritsky, V. M.; Slavin, J. A.; Khazanov, G. V.; Donovan, E. F.; Boardsen, S. A.; Anderson, B. J.; Korth, H.
2011-01-01
We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near-Mercury space environment, with the emphasis on key boundary regions participating in the solar wind - magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable timescale (approx.20 s) imposed by the signal nonstationariry, suggesting that turbulence at this plane I is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.
Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards
Heinz, G.H.; Hoffman, D.J.
1998-01-01
Adult mallards (Anas platyrhynchos) were fed a control diet or diets containing 10 ppm mercury as methylmercury chloride, 10 ppm selenium as seleno-DL-methionine, or 10 ppm mercury plus 10 ppm selenium. One of 12 adult males fed 10 ppm mercury died and 8 others suffered from paralysis of their legs by the time the study was terminated. However, when the diet contained 10 ppm selenium in addition to the 10 ppm mercury, none of 12 males became sick. In contrast to the protective effect of selenium against mercury poisoning in males, selenium plus mercury was worse than selenium or mercury alone for some measurements of reproductive success. Both selenium and mercury lowered duckling production through reductions in hatching success and survival of ducklings, but the combination of mercury plus selenium was worse than either mercury or selenium alone. Controls produced an average of 7.6 young per female, females fed 10 ppm selenium produced an average of 2.8 young, females fed 10 ppm mercury produced 1.1 young, and females fed both mercury and selenium produced 0.2 young. Teratogenic effects also were worse for the combined mercury plus selenium treatment; deformities were recorded in 6.1% of the embryos of controls, 16.4% for methylmercury chloride, 36.2% for selenomethionine, and 73.4% for the combination of methylmercury chloride and selenomethionine. The presence of methylmercury in the diet greatly enhanced the storage of selenium in tissues. The livers of males fed 10 ppm selenium contained a mean of 9.6 ppm selenium, whereas the livers of males fed 10 ppm selenium plus 10 ppm mercury contained a mean of 114 ppm selenium. However, selenium did not enhance the storage of mercury. The results show that mercury and selenium may be antagonistic to each other for adults and synergistic to young, even within the same experiment.
Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.
Vidal, Dora Elva; Horne, Alex John
2003-09-01
Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.
Investigation of mercury thruster isolators. [service life
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1973-01-01
Mercury ion thruster isolator lifetime tests were performed using different isolator materials and geometries. Tests were performed with and without the flow of mercury through the isolators in an oil diffusion pumped vacuum facility and cryogenically pumped bell jar. The onset of leakage current in isolators tested occurred in time intervals ranging from a few hours to many hundreds of hours. In all cases, surface contamination was responsible for the onset of leakage current and subsequent isolator failure. Rate of increase of leakage current and the leakage current level increased approximately exponentially with isolator temperature. Careful attention to shielding techniques and the elimination of sources of metal oxides appear to have eliminated isolator failures as a thruster life limiting mechanism.
Albatross as Sentinels of Heavy Metal Pollution: Local and Global Factors
NASA Astrophysics Data System (ADS)
Sentman, W.; Edwards, S. V.; Vo, A. E.; Bank, M. S.
2012-12-01
Heavy metal pollution in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists over the extent to which mercury in biota may have resulted from increases in anthropogenic emissions over time. Albatrosses, including those inhabiting the North Pacific, are wide-ranging, long-lived, keystone, avian predators. Consequently, they serve as ideal sentinel species for investigating the effects of historical and contemporary pollution as well as local and global factors related to heavy metal bioaccumulation, exposure, and ecotoxicological risk. To date, high levels of mercury and lead have been documented in albatross species throughout the Pacific. To address biotic exposure to these multiple stressors, here we synthesize and conduct meta-analyses of total mercury, methylmercury, and lead exposure data in Black-footed albatross (Phoebastria nigripes) and Laysan albatross (Phoebastria immutabilis). Our approach uses data from the field and literature and for methyl mercury uses museum feathers spanning the past 130 years for Black-Footed albatross. We discuss the use and application of stable isotopes (δ15N and δ13C) as a way to control for temporal changes in trophic structure and diet and the importance of conducting speciation analyses, for mercury, to account for curator mediated inorganic mercury in older specimens. Our data showed higher levels of inorganic mercury in older specimens of Black-Footed albatross as well as two non-pelagic species (control samples) lacking historical sources of bioavailable mercury exposure, which suggests that studies on bioaccumulation should measure methylmercury rather than total mercury when utilizing museum collections. Additionally, at the local scale, previous research has reported that lead paint exposure from buildings was also an important environmental stressor for Laysan albatross, suggesting that albatross species face heavy metal exposure threats at both local (lead) and global scales (mercury). Specific types of plastic pollution entering marine environments have been documented to contain heavy metals at levels, which if bio-available, may present a non-localized source of lead exposure in albatross species known to ingest (and regurgitate to their young) large amounts of marine plastic. Changes in methylmercury levels, in Black-Footed albatross, were consistent with historical global and recent regional increases observed among published estimates and proxies of anthropogenic mercury emissions. Heavy metal toxicity along with other stressors may undermine current and future reproductive outcomes in these seabird species. Collectively, our findings, and review of the literature, suggest that albatrosses in this region can be considered to be an effective marine flagship species and raising the profile of these organisms likely would successfully support broader biodiversity conservation efforts in the North Pacific.
Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrouzi, Aria; Zamecnik, Jack
2012-07-01
The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less
Risch, Martin R.
2005-01-01
Data from this study have implications for a Total Maximum Daily Load (TMDL) for mercury in the Grand Calumet River/Indiana Harbor Canal. Comparisons of data from this study with historical data do not show substantial changes in the distribution of mercury in the study area from 1994 through 2002. Treated municipal effluent had larger mercury concentrations than industrial effluent and presents a potential for larger mercury loads that could be controlled to achieve a TMDL, based on concentration. Mercury in ground-water discharge may be difficult to control to achieve a TMDL because of its diffuse and widespread distribution.
[Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau].
Sun, Xue-jun; Wang, Kang; Guo, Jun-ming; Kang, Shi-chang; Zhang, Guo-shuai; Huang, Jie; Cong, Zhi-yuan; Zhang, Qiang-gong
2016-02-15
To investigate the transport of mercury from glacier to runoff in typical inland glacial area in the Tibetan Plateau, we selected Zhadang glacier and Qugaqie river Basin located in the Nyainqentanglha Range region and collected samples from snow pit, glacier melt-water and Qugaqie river water during 15th August to 9'h September 2011. Mercury speciation and concentrations were determined and their distribution and controlling factors in different environmental compartments were analyzed. The results showed that the average THg concentrations were (3.79 +/- 5.12) ng x L(-1), (1.06 +/- 0.77) ng x L(-1) and (1.02 +/- 0.24) ng x L(-1) for glacier snow, glacier melt-water and Qugaqie river water, respectively, all of which were at the global background levels. Particulate-bound mercury accounted for large proportion of mercury in all environmental matrices, while mercury in glacial melt-water was controlled by total suspended particle, and mercury in Qugaqie river water co-varied with runoff. With the increase of temperature, glacier melted and released water as well as mercury into glacier-fed river. Total mercury concentrations in glacier melt water, upstream and downstream peaked at 14:00, 16:00 and after 20:00, respectively, reflecting the process of mercury release from glacier and its subsequent transport in the glacier fed river. The transport of riverine mercury was controlled by multiple factors. Under the context of climate change, glacier ablation and the increasing runoff will play increasingly important roles in mercury release and transport.
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
Phytoremediation of water contaminated with mercury using Typha domingensis in constructed wetland.
Gomes, Marcos Vinícius Teles; de Souza, Roberto Rodrigues; Teles, Vinícius Silva; Araújo Mendes, Érica
2014-05-01
The presence of mercury in aquatic environments is a matter of concern by part of the scientific community and public health organizations worldwide due to its persistence and toxicity. The phytoremediation consists in a group of technologies based on the use of natural occurrence or genetically modified plants, in order to reduce, remove, break or immobilize pollutants and working as an alternative to replace conventional effluent treatment methods due to its sustainability - low cost of maintenance and energy. The current study provides information about a pilot scale experiment designed to evaluate the potential of the aquatic macrophyte Typha domingensis in a constructed wetland with subsurface flow for phytoremediation of water contaminated with mercury. The efficiency in the reduction of the heavy metal concentration in wetlands, and the relative metal sorption by the T. domingensis, varied according to the exposure time. The continued rate of the system was 7 times higher than the control line, demonstrating a better performance and reducing 99.6±0.4% of the mercury presents in the water contaminated. When compared to other species, the results showed that the T. domingensis demonstrated a higher mercury accumulation (273.3515±0.7234 mg kg(-1)) when the transfer coefficient was 7750.9864±569.5468 L kg(-1). The results in this present study shows the great potential of the aquatic macrophyte T. domingensis in constructed wetlands for phytoremediation of water contaminated with mercury. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Topology and Dynamics of Mercury's Tail Plasma and Current Sheets
NASA Astrophysics Data System (ADS)
Al Asad, M. M.; Johnson, C. J.; Philpott, L. C.
2018-05-01
In Mercury's environment, the tail plasma and current sheets represent an integral part of the dynamic magnetosphere. Our study aims to understand the time-averaged, as well as the dynamic, properties of these "sheets" in 3D space using MAG data.
The paper discusses preliminary performance and cost estimates of mercury emission control options for electric utility boilers. Under the Clean Air Act Amendments of 1990, EPA had to determine whether mercury emissions from coal-fired power plants should be regulated. To a...
Signs and symptoms of mercury-exposed gold miners.
Bose-O'Reilly, Stephan; Bernaudat, Ludovic; Siebert, Uwe; Roider, Gabriele; Nowak, Dennis; Drasch, Gustav
2017-03-30
Gold miners use mercury to extract gold from ore adding liquid mercury to the milled gold-containing ore. This results in a mercury-gold compound, called amalgam. Miners smelt this amalgam to obtain gold, vaporizing it and finally inhaling the toxic mercury fumes. The objective was to merge and analyze data from different projects, to identify typical signs and symptoms of chronic inorganic mercury exposure. Miners and community members from various artisanal small-scale gold mining areas had been examined (Philippines, Mongolia, Tanzania, Zimbabwe, Indonesia). Data of several health assessments were pooled. Urine, blood and hair samples were analyzed for mercury (N = 1252). Questionnaires, standardized medical examinations and neuropsychological tests were used. Participants were grouped into: Controls (N = 209), living in an exposed area (N = 408), working with mercury as panners (N = 181), working with mercury as amalgam burners (N = 454). Chi2 test, linear trend test, Mann-Whitney test, Kruskal-Wallis test, correlation coefficient, Spearman's rho, and analysis of variance tests were used. An algorithm was used to define participants with chronic mercury intoxication. Mean mercury concentrations in all exposed subgroups were elevated and above threshold limits, with amalgam burners showing highest levels. Typical symptoms of chronic metallic mercury intoxication were tremor, ataxia, coordination problems, excessive salivation and metallic taste. Participants from the exposed groups showed poorer results in different neuropsychological tests in comparison to the control group. Fifty-four percent of the high-exposed group (amalgam burners) were diagnosed as being mercury-intoxicated, compared to 0% within the control group (Chi2 p < 0.001). Chronic mercury intoxication, with tremor, ataxia and other neurological symptoms together with a raised body burden of mercury was clinically diagnosed in exposed people in artisanal small-scale mining areas. The mercury exposure needs to be urgently reduced. Health care systems need to be prepared for this emerging problem of chronic mercury intoxication among exposed people. Int J Occup Med Environ Health 2017;30(2):249-269. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Field-Aligned Current Systems at Mercury
NASA Astrophysics Data System (ADS)
Heyner, Daniel; Exner, Willi
2017-04-01
Mercury exhibits a very dynamic magnetosphere, which is partially due to strong dayside reconnection and fast magnetospheric convection. It has been shown that dayside reconnection occurs even on low magnetic shear angles across the magnetopause. This drives quasi-steady region 1 field-aligned currents (FAC) that are observable in in-situ MESSENGER data. Here, the structure of the Hermean FAC-system is discussed and compared to the terrestrial counterpart. Due to the lack of a significant ionosphere at Mercury, it has to be examined how much of the poloidal FAC is reflected back to the magnetosphere, closed via toroidal currents in the planetary interior or via Pedersen currents in the tenuous exosphere. This investigation gives insights into the planetary conductivity structure as well as the exospheric plasma densities. Furthermore, it will be examined how much the only partially developed ring current at Mercury produces possible region 2 FAC signatures. We conclude with requirements to simulations that are needed to forecast the FAC structure on the southern hemisphere that will be closely studied with the upcoming BepiColombo mission.
40 CFR 421.206 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... mercury produced from batteries Lead 0.030 0.014 Mercury 0.016 0.006 (b) Acid wash and rinse water. PSNS... for monthly average mg/kg (pounds per million pounds) of mercury washed and rinsed Lead 0.00056 0.00026 Mercury 0.00030 0.00012 (c) Furnance wet air pollution control. PSNS for the Secondary Mercury...
77 FR 45337 - U.S. Environmental Solutions Toolkit
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... services relevant to (a) groundwater remediation; (b) mercury emissions control from power plants; (c...) Groundwater remediation (b) Mercury emissions control from power plants (c) Emissions control from large...
Mercury Emission Measurement at a CFB Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Pavlish; Jeffrey Thompson; Lucinda Hamre
2009-02-28
In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less
Oxidation of mercury by bromine in the subtropical Pacific free troposphere
NASA Astrophysics Data System (ADS)
Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.
2015-12-01
Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.
Climate Change Impacts on Environmental and Human Exposure to Mercury in the Arctic
Sundseth, Kyrre; Pacyna, Jozef M.; Banel, Anna; Pacyna, Elisabeth G.; Rautio, Arja
2015-01-01
This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure. PMID:25837201
Climate change impacts on environmental and human exposure to mercury in the arctic.
Sundseth, Kyrre; Pacyna, Jozef M; Banel, Anna; Pacyna, Elisabeth G; Rautio, Arja
2015-03-31
This paper reviews information from the literature and the EU ArcRisk project to assess whether climate change results in an increase or decrease in exposure to mercury (Hg) in the Arctic, and if this in turn will impact the risks related to its harmful effects. It presents the state-of-the art of knowledge on atmospheric mercury emissions from anthropogenic sources worldwide, the long-range transport to the Arctic, and it discusses the likely environmental fate and exposure effects on population groups in the Arctic under climate change conditions. The paper also includes information about the likely synergy effects (co-benefits) current and new climate change polices and mitigation options might have on mercury emissions reductions in the future. The review concludes that reductions of mercury emission from anthropogenic sources worldwide would need to be introduced as soon as possible in order to assure lowering the adverse impact of climate change on human health. Scientific information currently available, however, is not in the position to clearly answer whether climate change will increase or decrease the risk of exposure to mercury in the Arctic. New research should therefore be undertaken to model the relationships between climate change and mercury exposure.
Public health and economic consequences of methyl mercury toxicity to the developing brain.
Trasande, Leonardo; Landrigan, Philip J; Schechter, Clyde
2005-05-01
Methyl mercury is a developmental neurotoxicant. Exposure results principally from consumption by pregnant women of seafood contaminated by mercury from anthropogenic (70%) and natural (30%) sources. Throughout the 1990s, the U.S. Environmental Protection Agency (EPA) made steady progress in reducing mercury emissions from anthropogenic sources, especially from power plants, which account for 41% of anthropogenic emissions. However, the U.S. EPA recently proposed to slow this progress, citing high costs of pollution abatement. To put into perspective the costs of controlling emissions from American power plants, we have estimated the economic costs of methyl mercury toxicity attributable to mercury from these plants. We used an environmentally attributable fraction model and limited our analysis to the neurodevelopmental impacts--specifically loss of intelligence. Using national blood mercury prevalence data from the Centers for Disease Control and Prevention, we found that between 316,588 and 637,233 children each year have cord blood mercury levels > 5.8 microg/L, a level associated with loss of IQ. The resulting loss of intelligence causes diminished economic productivity that persists over the entire lifetime of these children. This lost productivity is the major cost of methyl mercury toxicity, and it amounts to $8.7 billion annually (range, $2.2-43.8 billion; all costs are in 2000 US$). Of this total, $1.3 billion (range, $0.1-6.5 billion) each year is attributable to mercury emissions from American power plants. This significant toll threatens the economic health and security of the United States and should be considered in the debate on mercury pollution controls.
Mercury Exposure among Garbage Workers in Southern Thailand
2012-01-01
Objectives 1) To determine mercury levels in urine samples from garbage workers in Southern Thailand, and 2) to describe the association between work characteristics, work positions, behavioral factors, and acute symptoms; and levels of mercury in urine samples. Methods A case-control study was conducted by interviewing 60 workers in 5 hazardous-waste-management factories, and 60 matched non-exposed persons living in the same area of Southern Thailand. Urine samples were collected to determine mercury levels by cold-vapor atomic absorption spectrometer mercury analyzer. Results The hazardous-waste workers' urinary mercury levels (10.07 µg/g creatinine) were significantly higher than the control group (1.33 µg/g creatinine) (p < 0.001). Work position, duration of work, personal protective equipment (PPE), and personal hygiene, were significantly associated with urinary mercury level (p < 0.001). The workers developed acute symptoms - of headaches, nausea, chest tightness, fatigue, and loss of consciousness at least once a week - and those who developed symptoms had significantly higher urinary mercury levels than those who did not, at p < 0.05. A multiple regression model was constructed. Significant predictors of urinary mercury levels included hours worked per day, days worked per week, duration of work (years), work position, use of PPE (mask, trousers, and gloves), and personal hygiene behavior (ate snacks or drank water at work, washed hands before lunch, and washed hands after work). Conclusion Changing garbage workers' hygiene habits can reduce urinary mercury levels. Personal hygiene is important, and should be stressed in education programs. Employers should institute engineering controls to reduce urinary mercury levels among garbage workers. PMID:23251842
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming
2016-05-01
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.
Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed
2015-01-01
The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism.
Mohamed, Farida El Baz; Zaky, Eman Ahmed; El-Sayed, Adel Bassuoni; Elhossieny, Reham Mohammed; Zahra, Sally Soliman; Salah Eldin, Waleed; Youssef, Walaa Yousef; Khaled, Rania Abdelmgeed; Youssef, Azza Mohamed
2015-01-01
Background and Aims. The etiological factors involved in the etiology of autism remain elusive and controversial, but both genetic and environmental factors have been implicated. The aim of this study was to assess the levels and possible environmental risk factors and sources of exposure to mercury, lead, and aluminum in children with autism spectrum disorder (ASD) as compared to their matched controls. Methods. One hundred ASD children were studied in comparison to 100 controls. All participants were subjected to clinical evaluation and measurement of mercury, lead, and aluminum through hair analysis which reflects past exposure. Results. The mean Levels of mercury, lead, and aluminum in hair of the autistic patients were significantly higher than controls. Mercury, lead, and aluminum levels were positively correlated with maternal fish consumptions, living nearby gasoline stations, and the usage of aluminum pans, respectively. Conclusion. Levels of mercury, lead, and aluminum in the hair of autistic children are higher than controls. Environmental exposure to these toxic heavy metals, at key times in development, may play a causal role in autism. PMID:26508811
Identifying occupational and nonoccupational exposure to mercury in dental personnel.
Shirkhanloo, Hamid; Fallah Mehrjerdi, Mohammad Ali; Hassani, Hamid
2017-03-04
The objective of this study was to investigate the occupational and nonoccupational exposure to mercury (Hg) vapor in dental personnel by examining the relationships between blood mercury, urine mercury, and their ratio with air mercury. The method was performed on 50 occupational exposed and 50 unexposed controls (25 men and 25 women). The mercury concentrations in air and human biological samples were determined based on the National Institute for Occupational Safety and Health (NIOSH) method and standard method (SM) by a new mode of liquid-phase microextraction, respectively. The mean mercury concentrations in urine (μg Hg 0 /g creatinine) and blood were significantly higher than control group, respectively (19.41 ± 5.18 vs 2.15 ± 0.07 μg/g and 16.40 ± 4.97 vs 2.50 ± 0.02 μg/L) (p <.001). The relationships between mercury concentration in blood/urine ratio (r = .380) with dental office air are new indicators for assessing occupational exposure in dental personnel.
[Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].
Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L
2014-01-01
To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.
Treaty to Curb Mercury Pollution Adopted
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-10-01
The international Minamata Convention on Mercury to protect human health and the environment from anthropogenic emissions and releases of mercury and mercury compounds was formally adopted at a 10 October meeting in Minamata, Japan. The legally binding treaty, currently signed by 92 countries, comes 57 years after the government of Japan officially acknowledged, in 1956, the existence of Minamata disease, which was caused by eating seafood contaminated with methylmercury compounds discharged into Minamata Bay in southern Japan.
Mercury Wet Scavenging and Deposition Differences by Precipitation Type.
Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M
2017-03-07
We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.
The Magnetic Field Structure of Mercury's Magnetotail
NASA Astrophysics Data System (ADS)
Rong, Z. J.; Ding, Y.; Slavin, J. A.; Zhong, J.; Poh, G.; Sun, W. J.; Wei, Y.; Chai, L. H.; Wan, W. X.; Shen, C.
2018-01-01
In this study, we use the magnetic field data measured by MErcury Surface, Space ENvironment, GEochemistry, and Ranging from 2011 to 2015 to investigate the average magnetic field morphology of Mercury's magnetotail in the down tail 0-3
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
MERCURY CONTROL TECHNOLOGY--A REVIEW
The U.S. Environmental Protection Agency has promulgated the Clean Air Mercury Rule (CAMR) to permanently cap and reduce mercury emissions in the U.S. This rule makes the U.S. the first country in the world to regulate mercury emissions from coal-fired power plants. The first p...
MERCURY CONTROL FOR COAL-FIRED POWER PLANTS
There are many sources of natural and anthropogenic mercury emissions, but combustion of coal is known to be the major anthropogenic source of mercury (Hg) emissions in the U.S. and world wide. To address this, EPA has recently promulgated the Clean Air Mercury Rule to reduce Hg ...
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
NASA Astrophysics Data System (ADS)
Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa
2007-06-01
The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.
Effect of iodine on mercury concentrations in dental-unit wastewater.
Stone, Mark E; Kuehne, John C; Cohen, Mark E; Talbott, Jonathan L; Scott, John W
2006-02-01
This study was undertaken to determine whether iodine used to control bacteria in dental unit waterlines could increase mercury concentrations in dental wastewater. The study was conducted in four parts. Part 1. Solutions containing iodine in concentrations ranging from zero (control) to 20 mg/L were mixed with ground and sieved dental amalgam and then allowed to equilibrate by settling. Cold vapor atomic absorption spectrometry was used to determine mercury levels in the settled supernatants at 24 h and at 7 days. Part 2. Deionized water was pumped through an iodine-releasing water-treatment cartridge, collected, and mixed with ground and sieved dental amalgam. Mercury levels in settled supernatants were measured at 24 h and at 7 days. Part 3. Iodine in water from two commercial iodine-releasing cartridges was measured using Inductively Couple Plasma Mass Spectrometry. Part 4. Baseline mercury levels in settled supernatants from wastewater collected from two dental chairs were compared to samples taken from chairs equipped with iodine-releasing cartridges. Part 1. A linear correlation between iodine and mercury concentration (r2=0.9167 and 0.9459, respectively, both P<0.001) was seen at both 24 h and 7 days. Part 2. Mean mercury levels in 24h samples were 3.0 times higher than the controls (0.2864 mg/L compared with 0.0939mg/L for the 24 h controls). Mean mercury levels in the 7-day samples were 5.9 times higher than the 7-day controls (0.2048 mg/L compared with 0.0348 mg/L for the 7-day controls). Part 3. The effluent from two iodine-releasing cartridges showed iodine concentrations averaging 3.2 mg/L (n=10, SD=0.8, range=2.5-4.6). Part 4. Data from the clinical study showed a statistically significant 2.5-fold increase in mercury levels with iodine-containing samples compared to baseline (0.0853 mg/L, n=18, SD=0.0441 and 0.0345 mg/L, n=18, SD=0.0145, respectively; P<0.001). Data suggest that iodine can increase concentrations of dissolved mercury in dental unit wastewater.
The Topology and Properties of Mercury's Tail Current Sheet
NASA Astrophysics Data System (ADS)
Al Asad, M.; Johnson, C.; Philpott, L. C.
2017-12-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury from March 2011 until April 2015, measuring the vector magnetic field inside and outside the magnetosphere. MESSENGER repeatedly encountered the tail current sheet (TCS) on the nightside of the planet. We examined 1s magnetic field data within 20 minutes of the magnetic equator position on 2435 orbit to characterize the shape and properties of Mercury's TCS and investigate its response to solar wind conditions. Identification of the TCS from vector magnetic field data used the following criteria: (1) a rapid rotation in the field direction from anti-sunward in the southern tail lobe to sunward in the northern lobe, accompanied by (2) a decrease in the field magnitude and (3) an increase in field variability. The current sheet was encountered on 606 orbits allowing the probability of encountering the tail current sheet in the equatorial plane to be mapped. Orbits on which the TCS was identified were binned spatially and superposed epoch analysis used to determine the field magnitude at the edge of the TCS, from which its time-averaged 3D shape was extracted. The TCS has an inner edge at 1.5 RM downtail in the midnight plane with a thickness of 0.34 RM, extends to the observation limit of 2.8 RM, decreasing in thickness to 0.28 RM. The thickness of the TCS increases in the dawn/dusk directions to 0.7 RM at 1.8 RM downtail and ± 1.5 RM from the noon-midnight plane and it warps towards the planet in the dawn/dusk directions. No strong correlations were found between the time-averaged shape and position of the TCS and solar wind conditions such as the solar wind ram pressure and the magnetic disturbance index, nor with parameters that control these conditions such as heliocentric distance. However, it is likely that the TCS does respond to these conditions on time scales too short to be characterized with MESSENGER data. In addition to mapping the shape of the current sheet, we observed that many TCS crossings exhibit the magnetic characteristics of a bifurcated current sheet rather than a typical Harris-type structure. In fact, we found that more TCS encounters can be classified as bifurcated (34%) than Harris-like (15%). This suggests the bifurcated TCS structure may be more stable and common in Mercury's magnetosphere than at Earth.
The Making of the 1:3M Geological Map Series of Mercury: Status and Updates
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Guzzetta, L.; Mancinelli, P.; Giacomini, L.; Lewang, A. M.; Malliband, C.; Mosca, A.; Pegg, D.; Wright, J.; Ferranti, L.; Hiesinger, H.; Massironi, M.; Pauselli, C.; Rothery, D. A.; Palumbo, P.
2018-05-01
A complete global series of 1:3M-scale maps of Mercury is being prepared in support to the ESA/JAXA BepiColombo mission. Currently, 35% of Mercury has been mapped and 55% of the planet will be covered soon by the maps in progress.
Demonstration of Mer-Cure Technology for Enhanced Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Marion; Dave O'Neill; Kevin Taugher
2008-06-01
Alstom Power Inc. has completed a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. De-FC26-07NT42776) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. The Mer-Cure{trademark}system utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. The Mer-Cure{trademark} system is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. The full-scale demonstration program originally included test campaigns at two host sites: LCRA's 480-MW{sub e} Fayette Unit No.3 and Reliant Energy's 190-MW{sub e} Shawville Unit No.3. The only demonstration tests actually done were the short-term tests at LCRA due to budget constraints. This report gives a summary of the demonstration testing at Fayette Unit No.3. The goals for this Mercury Round 3 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 90% at a cost significantly less than 50% of the previous target ofmore » $$60,000/lb mercury removed. The results indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90% based on uncontrolled stack emissions. The estimated costs for 90% mercury control, at a sorbent cost of $$0.75 to $2.00/lb respectively, were $13,400 to $18,700/lb Hg removed. In summary, the results from demonstration testing show that the goals established by DOE/NETL were met during this test program. The goal of 90% mercury reduction was achieved. Estimated mercury removal costs were 69-78% lower than the benchmark of $60,000/lb mercury removed, significantly less than 50% of the baseline removal cost.« less
EFFECTS OF IRON CONTENT IN COAL COMBUSTION FLY ASHES ON SPECIATION OF MERCURY
The paper discusses the effects of iron content in coal combustion fly ashes on speciation of mercury. (NOTE: The chemical form of mercury species in combustion flue gases is an important influence on the control of mercury emissions from coal combustion). The study focused on th...
40 CFR 63.8254 - What reports must I submit and when?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...) If there were no periods during which the mercury continuous emission monitor or CPMS (if applicable... which the mercury continuous emissions monitor or CPMS (if applicable) were out-of-control during the...
40 CFR 63.8254 - What reports must I submit and when?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...) If there were no periods during which the mercury continuous emission monitor or CPMS (if applicable... which the mercury continuous emissions monitor or CPMS (if applicable) were out-of-control during the...
40 CFR 63.8254 - What reports must I submit and when?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...) If there were no periods during which the mercury continuous emission monitor or CPMS (if applicable... which the mercury continuous emissions monitor or CPMS (if applicable) were out-of-control during the...
40 CFR 63.8254 - What reports must I submit and when?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...) If there were no periods during which the mercury continuous emission monitor or CPMS (if applicable... which the mercury continuous emissions monitor or CPMS (if applicable) were out-of-control during the...
Leaching of mercury and other constituents of potential concern during land disposal or beneficial use of coal combustion residues (CCRs) is the environmental impact pathway evaluated in this report. The specific objectives of the research was to: (1) evaluate mercury, arsenic an...
Wildfires threaten mercury stocks in northern soils
Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L.
2006-01-01
With climate change rapidly affecting northern forests and wetlands, mercury reserves once protected in cold, wet soils are being exposed to burning, likely triggering large releases of mercury to the atmosphere. We quantify organic soil mercury stocks and burn areas across western, boreal Canada for use in fire emission models that explore controls of burn area, consumption severity, and fuel loading on atmospheric mercury emissions. Though renowned as hotspots for the accumulation of mercury and its transformation to the toxic methylmercury, boreal wetlands might soon transition to hotspots for atmospheric mercury emissions. Estimates of circumboreal mercury emissions from this study are 15-fold greater than estimates that do not account for mercury stored in peat soils. Ongoing and projected increases in boreal wildfire activity due to climate change will increase atmospheric mercury emissions, contributing to the anthropogenic alteration of the global mercury cycle and exacerbating mercury toxicities for northern food chains. Copyright 2006 by the American Geophysical Union.
Mercury content of Illinois soils
Dreher, G.B.; Follmer, L.R.
2004-01-01
For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
Combination of pseudomonas putida and EK method to reduce the amount of mercury on landfill soil
NASA Astrophysics Data System (ADS)
Nabila, A. T. A.; Azhar, A. T. S.; Nurshuhaila, M. S.; Azim, M. A. M.; Amirah, S. N.
2017-11-01
Landfills usually lack of environment measures especially on soil. There are no guarantee that the landfill soil is free from being contaminated. It may cause harm for humans, animals and plants at surrounding area. In order to solve this problem, advance remediation technique is essential such as the electrokinetic combined with microorganisms known as electrokinetic bioremediation technique. The aim of this study is to investigate the performance of P.putida with 15 volt electric current supply (Ek-bio) and without electric current (Bio) in removal of mercury in landfill soil. Both treatments were running throughout 14 days. The P.putida was placed at anode compartment meanwhile sterile distilled water poured at cathode compartment. According to the both results, Ek-bio was removed mercury up to 48 % but by using standard bioremediation treatment, the removal only 32 %. Besides that, the migration of P.putida react more aggressively during the present of electric current compared with bioremediation. As the results, it was proven that by using Ek-bio technique can increase the activity of bacteria beside and the removal of mercury. Therefore, Ek-bio method can be commercialized to the parties concerned to solve the contaminated soil by mercury.
Chronic effects of low-level mercury and cadmium to goldfish (Carassius Auratus)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerman, A.G.
1984-01-01
During this five and one half year investigation, experiments were performed to determine the effects of nanogram levels of cadmium and mercury on reproductive performance, growth, and tissue residues of goldfish. In addition, embryo-larval bioassays were conducted on these metals to compare the effects of a short-term exposure to a sensitive life-cycle stage (i.e., eggs and larvae) with a sustained exposure to a relatively insensitive life-cycle period (i.e., adult). Reproduction was blocked by the long-term exposure to 0.25 ..mu..g/l mercury and 0.27 ..mu..g/l cadmium. Over the 1972 days, the control fish spawned on eleven occasions, but the experimentals failed tomore » spawn. The metal-induced reproductive impairment continued in the experimentals even after six months in clean water. Growth of the populations exposed to mercury and cadmium was significantly less than that of the control population (P < 0.001). The mercury, cadmium and control populations grew by 229%, 232% and 353%, respectively. Mercury and cadmium continuously accumulated in fish tissues over the entire 1789 days of whole body exposure. Despite exposure to mercury as inorganic metal, organomercury also accumula« less
FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Searcy, K; Bltyhe, G M; Steen, W A
2012-02-28
Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less
Method and apparatus for controlling the flow rate of mercury in a flow system
Grossman, Mark W.; Speer, Richard
1991-01-01
A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.
Five Hundred Years of Mercury Exposure and Adaptation
Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto
2012-01-01
Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P < 0.001). Thus, evidence of mercury's toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. PMID:22910643
Mercury Study Report to Congress
EPA's Report to Congress on Mercury provides an assessment of the magnitude of U.S. mercury emissions by source, the health and environmental implications of those emissions, and the availability and cost of control technologies.
Mercury (Hg) is a Persistent Bioaccumulative Toxin. Currently, low-level mercury (Hg) and low-level multiple-metals analyses require separate methods. Due to the high costs of performing both types of analyses, research planners often have to choose one or the other. For examp...
Long-term simulations of mercury fate in watersheds are needed to support regulations such as TMDLs and to predict the effectiveness of regulatory proposals, such as the Clean Air Mercury Rule (CAMR). Scientific uncertainties in mercury fate process descriptions combined with in...
Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...
Ramlal, Patricia S.; Rudd, John W. M.; Hecky, Robert E.
1986-01-01
A method was developed to estimate specific rates of demethylation of methyl mercury in aquatic samples by measuring the volatile 14C end products of 14CH3HgI demethylation. This method was used in conjunction with a 203Hg2+ radiochemical method which determines specific rates of mercury methylation. Together, these methods enabled us to examine some factors controlling the net rate of mercury methylation. The methodologies were field tested, using lake sediment samples from a recently flooded reservoir in the Southern Indian Lake system which had developed a mercury contamination problem in fish. Ratios of the specific rates of methylation/demethylation were calculated. The highest ratios of methylation/demethylation were calculated. The highest ratios of methylation/demethylation occurred in the flooded shorelines of Southern Indian Lake. These results provide an explanation for the observed increases in the methyl mercury concentrations in fish after flooding. PMID:16346959
Feasibility of Open Tube Slider Growth of HgCdTe from Te-Rich Solution.
1980-02-01
19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY my BLOcC UMUeR) Mercury -Cadmium Telluride Liquid Phase Epitaxy Te-Rich pen Tube...F33615-77-C-5142 were coveied knAEML-TR-79-403 dated February 1979 and titled "Minority Carrier Lifetime and Diffusion Length in p-type Mercury Cadmium...Current IF = Forward Current 39 E DAX CALI BRATION 16 (BO00 To COUNTS) 14 12 4 2 ~- - 10 Cd In 4 2 0 2 4 6 t o x Figure 1. EDAX Calibration. Mercury and
The influence of an external cavity on the emission spectrum of a mercury germicidal lamp
NASA Astrophysics Data System (ADS)
Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.
2016-09-01
The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.
NASA Astrophysics Data System (ADS)
Shetty, Suraj K.
Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network) and CAMNet (Canadian Atmospheric Mercury Measurement Network). The model estimated a total deposition of 474 Mg yr-1 to the CONUS (Contiguous United States) domain, with two-thirds being dry deposited. Reactive gaseous mercury contributed the most to 60% of deposition. Emission speciation distribution is a key factor for local deposition as contribution from large point sources can be as high as 75% near (< 100 km) the emission sources, indicating that emission reduction may result in direct deposition decrease near the source locations. Among the sources, BC contributes to about 68% to 91% of total deposition. Excluding the BC's contribution, EGU contributes to nearly 50% of deposition caused by CONUS emissions in the Northeast, Southeast and East Central regions, while emissions from natural processes are more important in the Pacific and West Central regions (contributing up to 40% of deposition). The modeling results implies that implementation of the new emission standards proposed by USEPA (United States Environmental Protection Agency) would significantly benefit regions that have larger contributions from EGU sources. Control of mercury emissions from coal combustion processes has attracted great attention due to its toxicity and the emission-control regulations and has lead to advancement in state-of-the-art control technologies that alleviate the impact of mercury on ecosystem and human health. This part of the work applies a sorption model to simulate adsorption of mercury in flue gases, onto a confined-bed of activated carbon. The model's performances were studied at various flue gas flow rates, inlet mercury concentrations and adsorption bed temperatures. The process simulated a flue gas, with inlet mercury concentration of 300 ppb, entering at a velocity of 0.3 m s-1 from the bottom into a fixed bed (inside bed diameter of 1 m and 3 m bed height; bed temperature of 25 °C) of activated carbon (particle size of 0.004 m with density of 0.5 g cm-3 and surface area of 90.25 cm2 g -1). The model result demonstrated that a batch of activated carbon bed was capable of controlling mercury emission for approximately 275 days after which further mercury uptake starts to decrease till it reaches about 500 days when additional control ceases. An increase in bed temperature significantly reduces mercury sorption capacity of the activated carbon. Increase in flue gas flow rate may result in faster consumption of sorption capacity initially but at a later stage, the sorption rate decreases due to reduced sorption capacity. Thus, overall sorption rate remains unaffected. The activated carbon's effective life (time to reach saturation) is not affected by inlet mercury concentration, implying that the designing and operation of a mercury sorption process can be done independently. The results provide quantitative indication for designing efficient confined-bed process to remove mercury from flue gases.
Microbial mercury methylation in Antarctic sea ice.
Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W
2016-08-01
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.
Towards Mechanistic Understanding of Mercury Availability and Toxicity to Aquatic Primary Producers.
Dranguet, Perrine; Flück, Rebecca; Regier, Nicole; Cosio, Claudia; Le Faucheur, Séverine; Slaveykova, Vera I
2014-11-01
The present article reviews current knowledge and recent progress on the bioavailability and toxicity of mercury to aquatic primary producers. Mercury is a ubiquitous toxic trace element of global concern. At the base of the food web, primary producers are central for mercury incorporation into the food web. Here, the emphasis is on key, but still poorly understood, processes governing the interactions between mercury species and phytoplankton, and macrophytes, two representatives of primary producers. Mass transfer to biota surface, adsorption to cell wall, internalization and release from cells, as well as underlying toxicity mechanisms of both inorganic mercury and methylmercury are discussed critically. In addition, the intracellular distribution and transformation processes, their importance for mercury toxicity, species-sensitivity differences and trophic transfer are presented. The mini-review is illustrated with examples of our own research.
Robust Control for the Mercury Laser Altimeter
NASA Technical Reports Server (NTRS)
Rosenberg, Jacob S.
2006-01-01
Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.
MERCURY-ATLAS (MA)-9 - "FRIENDSHIP 7" SPACECRAFT - PRELAUNCH ACTIVITIES - CAPE
1963-02-01
S63-03960 (1 Feb. 1963) --- Astronaut L. Gordon Cooper Jr., prime pilot for the Mercury-Atlas 9 (MA-9) mission, checks over the instrument panel from Mercury spacecraft #20 with Robert Graham, McDonnell Aircraft Corp. spacecraft engineer. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and flight control displays. Photo credit: NASA
Yilmaz, Omer Hinc; Karakulak, Ugur Nadir; Tutkun, Engin; Bal, Ceylan; Gunduzoz, Meside; Ercan Onay, Emine; Ayturk, Mehmet; Tek Ozturk, Mujgan; Alaguney, Mehmet Erdem
The aim of this study was to assess exercise heart rate recovery (HRR) indices in mercury-exposed individuals when evaluating their cardiac autonomic function. Twenty-eight mercury-exposed individuals and 28 healthy controls were enrolled. All the subjects underwent exercise testing and transthoracic echocardiography. The HRR indices were calculated by subtracting the first- (HRR1), second- (HRR2) and third-minute (HRR3) heart rates from the maximal heart rate. The two groups were evaluated in terms of exercise test parameters, especially HRR, and a correlation analysis was performed between blood, 24-hour urine and hair mercury levels and the test parameters. The mercury-exposed and control groups were similar in age (37.2 ± 6.6 vs. 36.9 ± 9.0 years), had an identical gender distribution (16 females and 12 males) and similar left ventricular ejection fractions (65.5 ± 3.1 vs. 65.4 ± 3.1%). The mean HRR1 [25.6 ± 6.5 vs. 30.3 ± 8.2 beats per min (bpm); p = 0.009], HRR2 (43.5 ± 5.3 vs. 47.8 ± 5.5 bpm; p = 0.010) and HRR3 (56.8 ± 5.1 vs. 59.4 ± 6.3 bpm; p = 0.016) values were significantly lower in the mercury-exposed group than in the healthy controls. However, there were no significant correlations between blood, urine and hair mercury levels and exercise test parameters. Mercury-exposed individuals had lower HRR indices than normal subjects. In these individuals, mercury exposure measurements did not show correlations with the exercise test parameters, but age did show a negative correlation with these parameters. Therefore, cardiac autonomic functions might be involved in cases of mercury exposure. © 2016 S. Karger AG, Basel.
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
NASA Astrophysics Data System (ADS)
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-05-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-01-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI’s food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks. PMID:28484233
Downer, Mary K; Martínez-González, Miguel A; Gea, Alfredo; Stampfer, Meir; Warnberg, Julia; Ruiz-Canela, Miguel; Salas-Salvadó, Jordi; Corella, Dolores; Ros, Emilio; Fitó, Montse; Estruch, Ramon; Arós, Fernando; Fiol, Miquel; Lapetra, José; Serra-Majem, Lluís; Bullo, Monica; Sorli, Jose V; Muñoz, Miguel A; García-Rodriguez, Antonio; Gutierrez-Bedmar, Mario; Gómez-Gracia, Enrique
2017-01-05
Substantial evidence suggests that consuming 1-2 servings of fish per week, particularly oily fish (e.g., salmon, herring, sardines) is beneficial for cardiovascular health due to its high n-3 polyunsaturated fatty acid content. However, there is some concern that the mercury content in fish may increase cardiovascular disease risk, but this relationship remains unclear. The PREDIMED trial included 7477 participants who were at high risk for cardiovascular disease at baseline. In this study, we evaluated associations between mercury exposure, fish consumption and cardiovascular disease. We randomly selected 147 of the 288 cases diagnosed with cardiovascular disease during follow-up and matched them on age and sex to 267 controls. Instrumental neutron activation analysis was used to assess toenail mercury concentration. In-person interviews, medical record reviews and validated questionnaires were used to assess fish consumption and other covariates. Information was collected at baseline and updated yearly during follow-up. We used conditional logistic regression to evaluate associations in the total nested case-control study, and unconditional logistic regression for population subsets. Mean (±SD) toenail mercury concentrations (μg per gram) did not significantly differ between cases (0.63 (±0.53)) and controls (0.67 (±0.49)). Mercury concentration was not associated with cardiovascular disease in any analysis, and neither was fish consumption or n-3 fatty acids. The fully-adjusted relative risks for the highest versus lowest quartile of mercury concentration were 0.71 (95% Confidence Interval [CI], 0.34, 1.14; p trend = 0.37) for the nested case-control study, 0.74 (95% CI, 0.32, 1.76; p trend = 0.43) within the Mediterranean diet intervention group, and 0.50 (95% CI, 0.13, 1.96; p trend = 0.41) within the control arm of the trial. Associations remained null when mercury was jointly assessed with fish consumption at baseline and during follow-up. Results were similar in different sensitivity analyses. We found no evidence that mercury exposure from regular fish consumption increases cardiovascular disease risk in a population of Spanish adults with high cardiovascular disease risk and high fish consumption. This implies that the mercury content in fish does not detract from the already established cardiovascular benefits of fish consumption. ISRCTN35739639 .
Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.
2016-01-01
Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745
Mercury's plasma belt: hybrid simulations results compared to in-situ measurements
NASA Astrophysics Data System (ADS)
Hercik, D.; Travnicek, P. M.; Schriver, D.; Hellinger, P.
2012-12-01
The presence of plasma belt and trapped particles region in the Mercury's inner magnetosphere has been questionable due to small dimensions of the magnetosphere of Mercury compared to Earth, where these regions are formed. Numerical simulations of the solar wind interaction with Mercury's magnetic field suggested that such a structure could be found also in the vicinity of Mercury. These results has been recently confirmed also by MESSENGER observations. Here we present more detailed analysis of the plasma belt structure and quasi-trapped particle population characteristics and behaviour under different orientations of the interplanetary magnetic field.The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than surrounding area. On the day side the population exhibits loss cone distribution function matching the theoretical loss cone angle. Simulations results are also compared to in-situ measurements acquired by MESSENGER MAG and FIPS instruments.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... business; (II) The Title V permit failed to provide for the control of mercury emissions, an air... Reasonably Available Control Technology for the control of carbon dioxide emissions or for mercury emissions...
Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun
2014-11-01
Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable limit of mercury in food. Spinach appeared to accumulate more mercury than the other four vegetables, in which the median and mean mercury content were both higher than 20 μg x kg(-1). The mercury concentrations in rape, lettuce and allium tuberosum were lower than the standard. Moreover, test results indicated that the Hg content in leafy vegetables was mainly the gaseous mercury through leaf adsorption but not the Hg particulates. This study clearly manifested that there should be a great concern on the pollution risk of both air-and soil borne mercury when cultivating leafy vegetables in long-term wastewater-irrigated area.
Chromosome breakage in humans exposed to methyl mercury through fish consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerfving, S.; Hansson, K.; Lindsten, J.
1980-08-01
Chromosome analysis was performed on cells from lymphocyte cultures from nine subjects with increased levels of mercury in their red blood cells and in four healthy controls. The elevated mercury levels were likely to have originated from dietary fish with high levels of methyl mercury. A statistically significant rank correlation was found between the frequency of cells with chromosome breaks and mercury concentration. The biological significance of these findings is at present unknown.
Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
Clack, Herek L
2009-03-01
Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.
Impact-Basin Formation on Mercury: Current Observations and Outstanding Questions
NASA Astrophysics Data System (ADS)
Baker, D. M. H.; Head, J. W.; Fassett, C. I.
2018-05-01
Mercury provides an important laboratory for understanding impact-basin formation on planetary bodies. MESSENGER observations improved our understanding, but much is still unknown about the formation and evolution of basin features.
Assessing elemental mercury vapor exposure from cultural and religious practices.
Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M
2001-08-01
Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users.
Assessing elemental mercury vapor exposure from cultural and religious practices.
Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M
2001-01-01
Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users. PMID:11564612
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.
2013-12-01
Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.
Mercury in US coal: Observations using the COALQUAL and ICR data
Quick, J.C.; Brill, T.C.; Tabet, D.E.
2003-01-01
The COALQUAL data set lists the mercury content of samples collected from the in-ground US coal resource, whereas the ICR data set lists the mercury content of samples collected from coal shipments delivered to US electric utilities. After selection and adjustment of records, the COALQUAL data average 0.17 ??g Hg/g dry coal or 5.8 kg Hg/PJ, whereas the ICR data average 0.10 ??g Hg/g dry coal or 3.5 kg Hg/PJ. Because sample frequency does not correspond to the inground or produced tonnage, these values are not accurate estimates of the mercury content of either in-ground or delivered US coal. Commercial US coal contains less mercury than previously estimated, and its mercury content has declined during the 1990s. Selective mining and more extensive coal washing may accelerate the current trend towards lower mercury content in coal burned at US electric utilities.
Yoshida, Minoru; Watanabe, Chiho; Honda, Akiko; Satoh, Masahiko; Yasutake, Akira
2013-02-01
This study examined the emergence of delayed behavioral effects in offspring mice exposed to low levels of mercury vapor (Hg(0)) during the lactation period. Female offspring of mice were repeatedly exposed to Hg(0) at 0.057 mg/m(3), similar to the current threshold value (TLV), for 24 hr until the 20(th) day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning activity in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at the ages of 3 and 15 months. Hg(0)-exposed mice did not differ from controls in the three behavioral measurements at 3 months of age, and no neurobehavioral effects were observed. On the other hand, the mice exhibited significantly more central locomotion in the OPF task when tested at 15 months of age, but no abnormality in other behavioral performance. Immediately after postnatal exposure, the brain mercury concentration of offspring was about 150 times that of the control, in which the concentrations were approximately 0.4 µg/g. The results indicate that mice exposed to Hg(0) at concentrations around TLV during the developing period resulted in the emergence of delayed behavioral effects at a later stage in life.
Mercury content of the Springfield coal, Indiana and Kentucky
Hower, J.C.; Mastalerz, Maria; Drobniak, A.; Quick, J.C.; Eble, C.F.; Zimmerer, M.J.
2005-01-01
With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9-53% capture by cold-side electrostatic precipitators (ESP) and 47-81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg. ?? 2005 Elsevier B.V. All rights reserved.
Low-Cost Options for Moderate Levels of Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon Sjostrom
2006-03-31
On March 15, 2005, EPA issued the Clean Air Mercury Rule, requiring phased-in reductions of mercury emissions from electric power generators. ADA-ES, Inc., with support from DOE/NETL and industry partners, is conducting evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. DOE/NETL targets for total mercury removal are {ge}55% (lignite), {ge}65% (subbituminous), and {ge}80% (bituminous). Based on work done to date at various scales, meeting the removal targets appears feasible. However, work needs to progressmore » to more thoroughly document and test these promising technologies at full scale. This is the final site report for tests conducted at MidAmerican's Louisa Station, one of three sites evaluated in this DOE/NETL program. The other two sites in the program are MidAmerican's Council Bluff Station and Entergy's Independence Station. MidAmerican's Louisa Station burns Powder River Basin (PRB) coal and employs hot-side electrostatic precipitators with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal.« less
Diminished mercury emission from waters with duckweed cover
NASA Astrophysics Data System (ADS)
Wollenberg, Jennifer L.; Peters, Stephen C.
2009-06-01
Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.
ERIC Educational Resources Information Center
Hindy, Kamal T.; And Others
1992-01-01
An atmospheric pollution study applies direct current plasma atomic emission spectrometry (DCP-AES) to samples of total suspended particulate matter collected in two industrial areas and one residential area, and cement dust collected near major cement factories. These samples were analyzed for vanadium, tin, and mercury. The results indicate the…
Great Lakes fish consumption advisories: is mercury a concern?
Bhavsar, Satyendra P; Awad, Emily; Mahon, Chris G; Petro, Steve
2011-10-01
The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1-2.5% and 9-16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a "mercury only" scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1-7% for GP; 13-32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have "do not eat" advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.
Deposition and cycling of sulfur controls mercury accumulation in Isle Royale fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul E. Drevnick; Donald E. Canfield; Patrick R. Gorski
2007-11-01
Mercury contamination of fish is a global problem. Consumption of contaminated fish is the primary route of methylmercury exposure in humans and is detrimental to health. Newly mandated reductions in anthropogenic mercury emissions aim to reduce atmospheric mercury deposition and thus mercury concentrations in fish. However, factors other than mercury deposition are important for mercury bioaccumulation in fish. In the lakes of Isle Royale, U.S.A., reduced rates of sulfate deposition since the Clean Air Act of 1970 have caused mercury concentrations in fish to decline to levels that are safe for human consumption, even without a discernible decrease in mercurymore » deposition. Therefore, reductions in anthropogenic sulfur emissions may provide a synergistic solution to the mercury problem in sulfate-limited freshwaters. 71 refs., 3 figs., 1 tab.« less
Mercury in U.S. coal—Priorities for new U.S. Geological Survey studies
Kolker, Allan
2016-05-09
In 2011, the U.S. Environmental Protection Agency (EPA) introduced emissions standards, known as Mercury and Air Toxics Standards (MATS), for a range of toxic constituents from coal-fired utility power stations and other combustion sources. This report presents the findings of an expert panel convened in September 2014 to assess the role of the U.S. Geological Survey (USGS) in new coal investigations that would be useful to stakeholders under MATS. Panel input is provided as summaries of responses to a questionnaire distributed to participants. The panel suggests that the USGS continue its work on trace elements in coal and include more information about delivered coals and boiler feed coals, in comparison to previous USGS compilations that emphasized sampling representative of coals in the ground. To be useful under multipollutant regulatory standards, investigation of a range of constituents in addition to mercury would be necessary. These include other toxic metals proposed for regulation, such as arsenic, nickel, cadmium, and chromium, as well as the halogens chlorine and fluorine, which upon emission form harmful acid gases. Halogen determinations are also important because they influence mercury speciation in flue gas, which allows the effectiveness of mercury controls to be assessed and predicted. The panel suggests that the Illinois Basin and the Powder River Basin should have the highest priority for new coal quality investigations in the near term by the USGS, on the basis of current economic conditions and overall economic importance, respectively. As a starting point for new investigations, brief summaries of the distribution of mercury in each coal basin, and their potential for further investigation, are presented.
[Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting].
Zheng, Dong-Mei; Li, Xin-Xin; Luo, Qing
2012-10-01
Total mercury contents in cricket bodies were studied in different biotopes in the surrounding of Huludao Zinc Plant to discuss the mercury distribution characteristics in cricket and to reveal the effects of environmental mercury accumulation in the short life-cycle insects through comparing cricket with other insect species. The average mercury content in cricket was 0.081 mg x kg(-1) and much higher than those in the control sites (0.012 mg x kg(-1) in average) in different biotopes. Mercury contents were found in the order of cricket head > wing > thorax approximately abdomen > leg. Mercury contents in cricket bodies varied greatly with sample sites. Significant correlation was found between the mercury contents in cricket and the distance from the pollution source as well as the mercury contents in plant stems. No significant correlation was found between the mercury contents in soil and in cricket bodies. Mercury contents in cricket were lower than those in cicadae, similar to those in other insects with shorter life-cycle periods.
Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains
Gustin, M.S.; Coolbaugh, M.F.; Engle, M.A.; Fitzgerald, B.C.; Keislar, R.E.; Lindberg, S.E.; Nacht, D.M.; Quashnick, J.; Rytuba, J.J.; Sladek, C.; Zhang, H.; Zehner, R.E.
2003-01-01
Waste rock and ore associated with Hg, precious and base metal mining, and their surrounding host rocks are typically enriched in mercury relative to natural background concentrations (<0.1 ??g Hg g-1). Mercury fluxes to the atmosphere from mineralized areas can range from background rates (0-15 ng m-2 h-1) to tens of thousands of ng m-2 h-1. Mercury enriched substrate constitutes a long-term source of mercury to the global atmospheric mercury pool. Mercury emissions from substrate are influenced by light, temperature, precipitation, and substrate mercury concentration, and occur during the day and night. Light-enhanced emissions are driven by two processes: desorption of elemental mercury accumulated at the soil:air interface, and photo reduction of mercury containing phases. To determine the need for and effectiveness of regulatory controls on short-lived anthropogenic point sources the contribution of mercury from geologic non-point sources to the atmospheric mercury pool needs to be quantified. The atmospheric mercury contribution from small areas of mining disturbance with relatively high mercury concentrations are, in general, less than that from surrounding large areas of low levels of mercury enrichment. In the arid to semi-arid west-ern United States volatilization is the primary means by which mercury is released from enriched sites.
Bedir Findik, Rahime; Celik, Huseyin Tugrul; Ersoy, Ali Ozgur; Tasci, Yasemin; Moraloglu, Ozlem; Karakaya, Jale
2016-11-01
We aimed to determine the extent to which mercury is transmitted from the mother to fetus via the umbilical cord in patients with amalgam dental fillings, and its effect on fetal biometric measurements. Twenty-eight patients as the study group with amalgam fillings, and 32 of them as the control group were included in this prospective case-control study. The mercury levels were measured in the maternal and cord venous sera, and the placental samples. Two groups were compared in terms of these and the fetal/neonatal biometric measurements. In the study group, the maternal and umbilical cord mercury levels were found to be significantly higher than those from the control group (p = 0.006 and p = 0.010, respectively). These high levels did not affect the fetal biometric measurements. The presence of high serum mercury levels in pregnant women with amalgam fillings is important, and warrants further long-term studies in order to investigate the fetal neurological effects as well.
Anthropogenic Mercury Accumulation in Watersheds of the Northern Appalachian Mountains
NASA Astrophysics Data System (ADS)
Boyer, E. W.; Drohan, P. J.; Lawler, D.; Grimm, J.; Grant, C.; Eklof, K. J.; Bennett, J.; Naber, M. D.
2014-12-01
Atmospheric deposition of mercury (Hg) is a critical environmental stress that affects ecosystems and human health. Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited over large geographic areas to downwind landscapes in precipitation and in dry fallout. The northern Appalachian Mountains are downwind of major atmospheric mercury emissions sources. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the region. Here, we explored mercury accumulation in forested landscapes - in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at 10 forested locations, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. To quantify mercury accumulation in terrestrial environments, we measured soil mercury concentrations within and surrounding 12 vernal pools spanning various physiographic settings in the region. Given that vernal pools have large inputs of water via precipitation yet do not have any stream discharge outflow, they are likely spots within the forested landscape to accumulate pollutants that enter via wet atmospheric deposition. To quantify mercury accumulation in aquatic environments, we sampled mercury concentrations in streams draining 35 forested watersheds, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of the Northern Appalachian Mountains.
Color discrimination impairment in workers exposed to mercury vapor.
Urban, Pavel; Gobba, Fabriziomaria; Nerudová, Jana; Lukás, Edgar; Cábelková, Zdena; Cikrt, Miroslav
2003-08-01
To study color discrimination impairment in workers exposed to elemental mercury (Hg) vapor. Twenty-four male workers from a chloralkali plant exposed to Hg vapor, aged 42+/-9.8 years, duration of exposure 14.7+/-9.7 years, were examined. The 8h TWA air-borne Hg concentration in workplace was 59 microg/m(3); mean Hg urinary excretion (HgU) was 20.5+/-19.3 microg/g creatinine; mean Hg urinary excretion after the administration of a chelating agent, sodium 2,3-dimercapto-1-propane-sulfonate (DMPS), was 751.9+/-648 microg/48h. Twenty-four age- and gender-matched control subjects were compared. Visual acuity, alcohol intake, smoking habits, and history of diseases or drugs potentially influencing color vision were registered. The Lanthony 15-Hue desaturated test (L-D15-d) was used to assess color vision. The results were expressed quantitatively as Bowman's Color Confusion Index (CCI), and qualitatively according to Verriest's classification of acquired dyschromatopsias. The CCI was significantly higher in the exposed group than in the control (mean CCI 1.15 versus 1.04; P=0.04). The proportion of subjects with errorless performance on the Lanthony test was significantly lower in the Hg exposed group compared to referents (52% versus 73%; P=0.035). The exposed group showed higher frequency of type III dyschromatopsias (blue-yellow confusion axis) in comparison with the control group (12.5% versus 8.3%), however, the difference did not reach statistical significance. Multiple regression did not show any significant relationship between the CCI, and age, alcohol consumption, or measures of exposure. In agreement with previous studies by Cavalleri et al. [Toxicol. Lett. 77 (1995) 351; Environ. Res. Sec. A 77 (1998) 173], the results of this study support the hypothesis that exposure to mercury vapor can induce sub-clinical color vision impairment. This effect was observed at an exposure level below the current biological limit for occupational exposure to mercury. This raises doubts on the actual protection afforded by this limit concerning the effect of mercury on color vision.
Mercury, food webs, and marine mammals: implications of diet and climate change for human health.
Booth, Shawn; Zeller, Dirk
2005-05-01
We modeled the flow of methyl mercury, a toxic global pollutant, in the Faroe Islands marine ecosystem and compared average human methyl mercury exposure from consumption of pilot whale meat and fish (cod, Gadus morhua) with current tolerable weekly intake (TWI) levels. Under present conditions and climate change scenarios, methyl mercury increased in the ecosystem, translating into increased human exposure over time. However, we saw greater changes as a result of changing fishing mortalities. A large portion of the general human population exceed the TWI levels set by the World Health Organization [WHO; 1.6 microg/kg body weight (bw)], and they all exceed the reference dose (RfD) of 0.1 microg/kg bw/day set by the U.S. Environmental Protection Agency (EPA; equivalent to a TWI of 0.7 microg/kg bw). As a result of an independent study documenting that Faroese children exposed prenatally to methyl mercury had reduced cognitive abilities, pregnant women have decreased their intake of whale meat and were below the TWI levels set by the WHO and the U.S. EPA. Cod had approximately 95% lower methyl mercury concentrations than did pilot whale. Thus, the high and harmful levels of methyl mercury in the diet of Faroe Islanders are driven by whale meat consumption, and the increasing impact of climate change is likely to exacerbate this situation. Significantly, base inflow rates of mercury into the environment would need to be reduced by approximately 50% to ensure levels of intake below the WHO TWI levels, given current levels of whale consumption.
Prevalence and pattern of cardiac autonomic dysfunction in newly detected type 2 diabetes mellitus.
Jyotsna, Viveka P; Sahoo, Abhay; Sreenivas, V; Deepak, K K
2009-01-01
Cardiac autonomic functions were assessed in 145 consecutive recently detected type 2 diabetics. Ninety-nine healthy persons served as controls. Criteria for normalcy were, heart rate variation during deep breathing >or=15 beats/min, deep breathing expiratory to inspiratory R-R ratio >or=1.21, Valsalva ratio >or=1.21, sustained handgrip test >or=16 mm of mercury, cold pressor test >or=10, BP response to standing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qinghong; Fang, Xiangdong; Goddard, William
2013-10-17
Mercury has been well known as an environmental pollutant to the environment and to cause serious effects on human health for several decades. To effectively control mercury pollution and reduce mercury damages, the sensitive determination of mercury is essential. Currently, many different types of sensor-based assays have been developed, while the whole-cell biosensor has been gaining increasingly attentions due to its easy reproducibility and the possibility to greatly reduce the cost. However, significant improvements on the specificity, sensitivity, stability and simplicity of the whole-cell biosensor are still needed prior to its eventual commercialization. Sponsored by US Department of Energy undermore » the contract agreement DE-FG02-07ER64410, we applied the special synthetic biology and directed evolution strategies to improve the effectiveness and performance of whole-cell biosensors. We have constructed different whole-cell biosensors for the mercuric ion and methylmercury detection with metalloregulator MerR, fluorescent protein mCherry and organomercurial lyase MerB. By introducing the mercuric transporter MerT, we were able to increase the detection sensitivity of whole-cell biosensors by at least one fold. By introducing the bio-amplification genetic circuit based on the gene cascade expression system of PRM-cI from bacteriophage l and Pm-XylS2 from Pseudomonas putida, we have increased the detection sensitivity of whole-cell biosensors by 1~2 folds in our tested conditions. With the directed evolution of MerR and subsequent high-throughput screening via color assay and microplate screening, we have dramatically increased the detection sensitivity by up to 10 folds at low concentration of mercury (II) of 1-10nM. Structural modeling and computational analysis of the mutated MerR showed that many mutations could cause the change of a loop to helix, which could be responsible for the increased mercury sensitivity.« less
NASA Astrophysics Data System (ADS)
Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira
2018-05-01
Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Waterbury, Conn., Incinerator to Control Mercury Emissions
Emission control equipment to limit the discharge of mercury pollution to the atmosphere will be installed at an incinerator owned by the City of Waterbury, Conn., according to a proposed agreement between the city and federal government.
[Mercury impregnation in dentists and dental assistants in Monastir city, Tunisia].
Chaari, N; Kerkeni, A; Saadeddine, S; Neffati, F; Khalfallah, T; Akrout, M
2009-06-01
The property of mercury to amalgamate with other metals is used to create a material for filling teeth. This material remains the cheapest and most efficient in tooth restoration. Mercurial toxicity has been documented since Antiquity but the metal remains widely used in some countries. This study compared mercury impregnation in dentists and dental assistants in Monastir (Tunisia) to another population not exposed professionally. A cross-sectional study was made on 52 dentists and dental assistants working in private offices and in the stomatology unit of the Monastir teaching hospital, with a control group of 52 physicians and nurses working in the Monastir Fattouma Bourguiba hospital. The groups were paired according to age and gender. The study lasted three months. A questionnaire investigated the socioprofessional features of the study population, non professional mercury exposure, work environment, the various amalgam handling and preparation techniques, and preventive hygiene measures. Urinary and salivary sampling was performed so as to prevent any accidental mercurial contamination. Mercury level was assessed by atomic absorption spectroscopy in an automatic sampler, urine creatinine with Jaffé's colorimetric reaction. The results of mercury level assessment were expressed in microg/g of creatinine, salivary mercury in mug/l. The statistical analysis was made with the Epi.info 6 software. Khi(2) and Fisher tests were used to compare qualitative variables. The ANOVA test was used to compare averages with a statistic significance threshold at 0.05. Sixty-one percent of individuals with risk exposure worked in a dental clinic. Bruxism and onychophagia were more important in the control group with a significant statistical difference (respectively, p=0.01 and p<0.0001). The urinary and salivary mercury levels were significantly increased in the exposed group, with respective values of 20.4+/-42.4microg/g of creatinine and 10.6+/-13.02microg/l versus 0.04+/-0.3microg/g of creatinine and 0microg/l in the control group. Disposing of amalgam waste was inadequate in 94% of the cases. The variation of mercury in urine was significantly influenced by the presence of fabric curtains (p=0.04). Eating lunch at meals at the work place was also linked to a significant increase of mercury levels in urine (p=0.04). The storage mode of mercury in open containers was a significant factor for variation of mercury level (p=0.03). Most dentists' private offices in Monastir do not comply or comply weakly with prevention measures linked to risk of mercury poisoning. Awareness campaigns were launched as well as actions for the improvement of work conditions: efficient aspiration of offices containing fixed sources of mercury, adequate storage of mercury and waste, and compliance to occupational hygiene rules.
Mercury enrichment and its effects on atmospheric emissions in cement plants of China
NASA Astrophysics Data System (ADS)
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming
2014-08-01
The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.
Control Algorithms Charge Batteries Faster
NASA Technical Reports Server (NTRS)
2012-01-01
On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.
Are walleye from Lake Roosevelt contaminated with mercury?
Erwin, Martha L.; Munn, Mark D.
1997-01-01
To find out, scientists from the U. S. Geological Survey (USGS) tested walleye and other sport fish from the upper Columbia River and Franklin D. Roosevelt Lake (Lake Roosevelt), the largest reservoir in Washington and a popular fishing spot.Findings:Walleye had higher concentrations of mercury than other sport fish.Larger walleye had higher mercury concentrations than smaller walleye.Mercury concentrations in walleye fillets ranged from 0.11 to 0.44 parts per million (ppm). These concentrations do not exceed the current Federal standard (1.0 ppm of mercury) designed to protect the health of people who eat small amounts of fish.After reviewing these findings, the Washington State Department of Health concluded that people who regularly consume large amounts of Lake Roosevelt walleye may be at risk of adverse health effects from mercury and should limit their consumption of these fish.
Jiang, Shu-Yi; He, Wen-Wen; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian
2018-05-21
With expanding human needs, many heavy metals were mined, smelted, processed, and manufactured for commercialization, which caused serious environmental pollutions. Currently, many adsorption materials are applied in the field of adsorption of heavy metals. Among them, the principle of many mercury adsorbents is based on the interaction between mercury and sulfur. Here, a S-containing metal-organic framework NENU-400 was synthesized for effective mercury extraction. Unfortunately, the skeleton of NENU-400 collapsed easily when exposed to the mercury liquid solution. To improve the stability, a synthetic strategy installing molecular building blocks (MBBs) into the channels was used. Modified by the MBBs, a more stable nanoporous framework was synthesized, which not only exhibits a high capacity of saturation mercury uptake but also shows high selectivity and efficient recyclability.
Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions.
Mozaffarian, Dariush
2009-06-01
Controversy has arisen among the public and in the media regarding the health effects of fish intake in adults. Substantial evidence indicates that fish consumption reduces coronary heart disease mortality, the leading cause of death in developed and most developing nations. Conversely, concerns have grown regarding potential effects of exposure to mercury found in some fish. Seafood species are also rich in selenium, an essential trace element that may protect against both cardiovascular disease and toxic effects of mercury. Such protective effects would have direct implications for recommendations regarding optimal selenium intake and for assessing the potential impact of mercury exposure from fish intake in different populations. Because fish consumption appears to have important health benefits in adults, elucidating the relationships between fish intake, mercury and selenium exposure, and health risk is of considerable scientific and public health relevance. The evidence for health effects of fish consumption in adults is reviewed, focusing on the strength and consistency of evidence and relative magnitudes of effects of omega-3 fatty acids, mercury, and selenium. Given the preponderance of evidence, the focus is on cardiovascular effects, but other potential health effects, as well as potential effects of polychlorinated biphenyls and dioxins in fish, are also briefly reviewed. The relevant current unanswered questions and directions of further research are summarized.
Inferences from the dynamical history of Mercury's rotation
NASA Technical Reports Server (NTRS)
Peale, S. J.
1976-01-01
The history of Mercury's spin angular momentum is reviewed. It is shown that the current nonsynchronous but resonant spin and the nearly zero obliquity place almost no restrictions on the primordial spin state. The only exception comes about from a liquid core-solid mantle interaction which excludes a slow primordial spin concurrent with a large obliquity. The current occupancy of a final evolutionary spin state leads to the description of a scheme by which we can determine the extent of a currently liquid Mercurian core.
The paper presents estimates of performance levels and related costs associated with controlling mercury (Hg) emissions from coal-fired power plants using either powdered activated carbon (PAC) injection or multipollutant control in which Hg capture is enhanced in existing and ne...
Lens of controllable optical field with thin film metallic glasses for UV-LEDs.
Pan, C T; Chen, Y C; Lin, Po-Hung; Hsieh, C C; Hsu, F T; Lin, Po-Hsun; Chang, C M; Hsu, J H; Huang, J C
2014-06-16
In the exposure process of photolithography, a free-form lens is designed and fabricated for UV-LED (Ultraviolet Light-Emitting Diode). Thin film metallic glasses (TFMG) are adopted as UV reflection layers to enhance the irradiance and uniformity. The Polydimethylsiloxane (PDMS) with high transmittance is used as the lens material. The 3-D fast printing is attempted to make the mold of the lens. The results show that the average irradiance can be enhanced by 6.5~6.7%, and high uniformity of 85~86% can be obtained. Exposure on commercial thick photoresist using this UV-LED system shows 3~5% dimensional deviation, lower than the 6~8% deviation for commercial mercury lamp system. This current system shows promising potential to replace the conventional mercury exposure systems.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S; Holmes, Michael J; Pavlish, John Henry
2013-08-20
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN
2008-10-14
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN
2012-05-01
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Sorbents for the oxidation and removal of mercury
Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry
2014-09-02
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.
Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides
Jay, Jenny Ayla; Murray, Karen J.; Gilmour, Cynthia C.; Mason, Robert P.; Morel, François M. M.; Roberts, A. Lynn; Hemond, Harold F.
2002-01-01
The extracellular speciation of mercury may control bacterial uptake and methylation. Mercury-polysulfide complexes have recently been shown to be prevalent in sulfidic waters containing zero-valent sulfur. Despite substantial increases in total dissolved mercury concentration, methylation rates in cultures of Desulfovibrio desulfuricans ND132 equilibrated with cinnabar did not increase in the presence of polysulfides, as expected due to the large size and charged nature of most of the complexes. In natural waters not at saturation with cinnabar, mercury-polysulfide complexes would be expected to shift the speciation of mercury from HgS0(aq) toward charged complexes, thereby decreasing methylation rates. PMID:12406773
MERCURY CEMS: TECHNOLOGY UPDATE
The paper reviews the technologies involved with continuous emission monitors (CEMs) for mercury (Hg) which are receiving incresed attention and focus. Their potential use as a compliance assurance tool is of particular interest. While Hg CEMs are currently used in Europe for com...
Increased Mercury Levels in Patients with Celiac Disease following a Gluten-Free Regimen
Elli, Luca; Rossi, Valentina; Conte, Dario; Ronchi, Anna; Tomba, Carolina; Passoni, Manuela; Bardella, Maria Teresa; Roncoroni, Leda; Guzzi, Gianpaolo
2015-01-01
Background and Aim. Although mercury is involved in several immunological diseases, nothing is known about its implication in celiac disease. Our aim was to evaluate blood and urinary levels of mercury in celiac patients. Methods. We prospectively enrolled 30 celiac patients (20 treated with normal duodenal mucosa and 10 untreated with duodenal atrophy) and 20 healthy controls from the same geographic area. Blood and urinary mercury concentrations were measured by means of flow injection inductively coupled plasma mass spectrometry. Enrolled patients underwent dental chart for amalgam fillings and completed a food-frequency questionnaire to evaluate diet and fish intake. Results. Mercury blood/urinary levels were 2.4 ± 2.3/1.0 ± 1.4, 10.2 ± 6.7/2.2 ± 3.0 and 3.7 ± 2.7/1.3 ± 1.2 in untreated CD, treated CD, and healthy controls, respectively. Resulting mercury levels were significantly higher in celiac patients following a gluten-free diet. No differences were found regarding fish intake and number of amalgam fillings. No demographic or clinical data were significantly associated with mercury levels in biologic samples. Conclusion. Data demonstrate a fourfold increase of mercury blood levels in celiac patients following a gluten-free diet. Further studies are needed to clarify its role in celiac mechanism. PMID:25802516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sjostrom, S.; Durham, M.; Bustard, J.
2009-07-15
Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbonmore » facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.« less
Mercury's complex exosphere: results from MESSENGER's third flyby.
Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R
2010-08-06
During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.
FUNDAMENTALS OF MERCURY SPECIATION AND CONTROL IN COAL-FIRED BOILERS
The report describes the progress of an experimental investigation of the speciation of mercury in simulated coal combustion flue gasses. The effects of flue gas parameters and coal fly ash on the oxidation of elemental mercury (Hgo) in the presence of hydrogen chloride (HCl) in ...
40 CFR 62.6362 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Missouri Mercury...) Identification of plan. Section 111(d) plan and associated State regulation 10 CSR 10-6.368, Control of Mercury..., 2007. (b) Identification of sources. The plan applies to all new and existing mercury budget units...
40 CFR 62.6362 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Missouri Mercury...) Identification of plan. Section 111(d) plan and associated State regulation 10 CSR 10-6.368, Control of Mercury..., 2007. (b) Identification of sources. The plan applies to all new and existing mercury budget units...
40 CFR 62.6362 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Missouri Mercury...) Identification of plan. Section 111(d) plan and associated State regulation 10 CSR 10-6.368, Control of Mercury..., 2007. (b) Identification of sources. The plan applies to all new and existing mercury budget units...
40 CFR 62.6362 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Missouri Mercury...) Identification of plan. Section 111(d) plan and associated State regulation 10 CSR 10-6.368, Control of Mercury..., 2007. (b) Identification of sources. The plan applies to all new and existing mercury budget units...
40 CFR 62.6362 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Missouri Mercury...) Identification of plan. Section 111(d) plan and associated State regulation 10 CSR 10-6.368, Control of Mercury..., 2007. (b) Identification of sources. The plan applies to all new and existing mercury budget units...
40 CFR 60.59b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitor mercury or dioxin/furan instead of conducting performance testing using EPA manual test methods, all integrated 24-hour mercury concentrations or all integrated 2-week dioxin/furan concentrations as... actions taken. (4) For affected facilities that apply activated carbon for mercury or dioxin/furan control...
CATALYTIC EFFECTS OF CARBON SORBENTS FOR MERCURY CAPTURE. (R827649C001)
Activated carbon sorbents have the potential to be an effective means of mercury control in combustion systems. Reactions of activated carbons in flow systems with mercury and gas stream components were investigated to determine the types of chemical interactions that occur on...
Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua
2011-02-01
A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.
Ecotoxicology of mercury in fish and wildlife: Recent advances
Scheuhammer, Anton M.; Basu, Niladri; Evers, David C.; Heinz, Gary H.; Sandheinrich, Mark B.; Bank, Michael S.; edited by Bank, Michael S.; Bank, Michael S.
2012-01-01
A number of recent studies have documented subtle, yet potentially important effects of mercury on behavior, neurochemistry, and endocrine function in fish and wildlife at currently realistic levels of environmental exposure. Current levels of environmental methylmercury exposure are sufficient to cause significant biological impairment, both in individuals and in whole populations, in some ecosystems. Future toxicological studies on fish and wildlife will focus on linking biomarkers of methylmercury exposure and associated oxidative stress to effects on reproduction and population change; determining the genetic basis for mercury-related neurotoxic and other biological changes; determining the genetic basis for species differences in sensitivity to methylmercury; and linking toxic effects of methylmercury in individual animals to population-level changes.
Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene.
He, Y K; Sun, J G; Feng, X Z; Czakó, M; Márton, L
2001-09-01
Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 microM, and some of them (10-20% ) could germinate on media containing as much as 350 microM HgCl2, while the control plants were fully inhibited or died on 50 microM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).
Control of mercury emissions from coal fired electric uitlity boilers: An update
Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...
TISSUE MERCURY CONCENTRATIONS AND POTENTIAL NEUROGPATHOLOGICAL CHANGES IN COMMON LOONS (GAVIA IMMER)
Common loons (Gavia immer) in New England are exposed to high levels of mercury through their diet. Mercury bioaccumulates through the food chain as methylmercury, a neurotoxin which has been shown in controlled feeding studies to have detrimental effects on the health and behavi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.
Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans
NASA Astrophysics Data System (ADS)
McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.
2012-12-01
Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid-profile concentration maxima, however, the depth of the maxima are more varied than the total mercury profiles (150 - 700m). Also, our observed distribution of methylated mercury highly correlated with organic carbon remineralization rates (OCRR) in the North Pacific and Indian Oceans. Interestingly, we find the highest methylated mercury concentrations in the Southern Ocean, suggesting the possibility of unique mechanisms for methylmercury production, preservation, and degradation in polar ecosystems such as cold water temperatures, extended periods of sea ice cover, and annual atmospheric mercury depletion events. We are using these data to better link oceanic production of bioaccumulative mercury to models for atmospheric and oceanic transport and bioaccumulation. This will ultimately lead to a better understanding of mercury levels in consumable fish and shell fish.
Li, Ping; Yang, Yan; Xiong, Wuyan
2015-12-01
Mercury (Hg) and Hg-containing products are used in a wide range of settings in hospitals. Hg pollution control measures were carried out in the pediatric ward of a hospital to decrease the possibility of Hg pollution occurring and to decrease occupational Hg exposure. Total gaseous Hg (TGM) concentrations in the pediatric ward and hair and urine Hg concentrations for the pediatric staff were determined before and after the Hg pollution control measures had been implemented. A questionnaire survey performed indicated that the pediatric staff had little understanding of Hg pollution and that appropriate disposal techniques were not always used after Hg leakage. TGM concentrations in the pediatric ward and urine Hg (UHg) concentrations for the pediatric staff were 25.7 and 22.2% lower, respectively, after the Hg pollution control measures had been implemented than before, which indicated that the control measures were effective. However, TGM concentrations in the pediatric ward remained significantly higher than background concentrations and UHg concentrations for the pediatric staff were remained significantly higher than the concentrations in control group, indicating continued existence of certain Hg pollution.
Samms-Vaughan, Maureen; Loveland, Katherine A.; Ardjomand-Hessabi, Manouchehr; Chen, Zhongxue; Bressler, Jan; Shakespeare-Pellington, Sydonnie; Grove, Megan L.; Bloom, Kari; Pearson, Deborah A.; Lalor, Gerald C.; Boerwinkle, Eric
2014-01-01
Mercury is a toxic metal shown to have harmful effects on human health. Several studies have reported high blood mercury concentrations as a risk factor for autism spectrum disorders (ASDs), while other studies have reported no such association. The goal of this study was to investigate the association between blood mercury concentrations in children and ASDs. Moreover, we investigated the role of seafood consumption in relation to blood mercury concentrations in Jamaican children. Based on data for 65 sex- and age-matched pairs (2–8 years), we used a General Linear Model to test whether there is an association between blood mercury concentrations and ASDs. After controlling for the child’s frequency of seafood consumption, maternal age, and parental education, we did not find a significant difference (P = 0.61) between blood mercury concentrations and ASDs. However, in both cases and control groups, children who ate certain types of seafood (i.e., salt water fish, sardine, or mackerel fish) had significantly higher (all P <0.05) geometric means blood mercury concentration which were about 3.5 times that of children living in the US or Canada. Our findings also indicate that Jamaican children with parents who both had education up to high school are at a higher risk of exposure to mercury compared to children with at least one parent who had education beyond high school. Based on our findings, we recommend additional education to Jamaican parents regarding potential hazards of elevated blood mercury concentrations, and its association with seafood consumption and type of seafood. PMID:22488160
A simple mercury vapor detector for geochemical prospecting
Vaughn, William W.
1967-01-01
The detector utilizes a large-volume atomic-absorption technique for quantitative determinations of mercury vapor thermally released from crushed rock. A quartz-enclosed noble-metal amalgamative stage, which is temperature controlled and is actuated by a radio-frequency induction heater, selectively traps the mercury and eliminates low-level contamination. As little as 1 part per billion of mercury can be detected in a 1-gram sample in a 1-minute analytical period.
Mercury Human Exposure in Populations Living Around Lake Tana (Ethiopia).
Habiba, G; Abebe, G; Bravo, Andrea G; Ermias, D; Staffan, Ǻ; Bishop, K
2017-02-01
A survey carried out in Lake Tana in 2015 found that Hg levels in some fish species exceeded internationally accepted safe levels for fish consumption. The current study assesses human exposure to Hg through fish consumption around the Lake Tana. Of particular interest was that a dietary intake of fishes is currently a health risk for Bihar Dar residents and anglers. Hair samples were collected from three different groups: anglers, college students and teachers, and daily laborers. A questionary includes gender, age, weight, activity. Frequency of fish consumption and origin of the eaten fish were completed by each participant. Mercury concentrations in hair were significantly higher (P value <0.05) for anglers (mean ± standard deviation 0.120 ± 0.199 μg/g) than college students (mean ± standard deviation 0.018 ± 0.039 μg/g) or daily workers (mean ± standard deviation 16 ± 9.5 ng/g). Anglers consumed fish more often than daily workers and college group. Moreover, there was also a strong correlation (P value <0.05) between the logarithms of total mercury and age associated with mercury concentration in scalp hair. Mercury concentrations in the hair of men were on average twice the value of the women. Also, users of skin lightening soap on a daily basis had 2.5 times greater mercury in scalp hair than non-users. Despite the different sources of mercury exposure mentioned above, the mercury concentrations of the scalp hair of participants of this study were below levels deemed to pose a threat to health.
Doering, Stefan; Bose-O'Reilly, Stephan; Berger, Ursula
2016-01-01
The continuous exposure to inorganic mercury vapour in artisanal small-scale gold mining (ASGM) areas leads to chronic health problems. It is therefore essential to have a quick, but reliable risk assessing tool to diagnose chronic inorganic mercury intoxication. This study re-evaluates the state-of-the-art toolkit to diagnose chronic inorganic mercury intoxication by analysing data from multiple pooled cross-sectional studies. The primary research question aims to reduce the currently used set of indicators without affecting essentially the capability to diagnose chronic inorganic mercury intoxication. In addition, a sensitivity analysis is performed on established biomonitoring exposure limits for mercury in blood, hair, urine and urine adjusted by creatinine, where the biomonitoring exposure limits are compared to thresholds most associated with chronic inorganic mercury intoxication in artisanal small-scale gold mining. Health data from miners and community members in Indonesia, Tanzania and Zimbabwe were obtained as part of the Global Mercury Project and pooled into one dataset together with their biomarkers mercury in urine, blood and hair. The individual prognostic impact of the indicators on the diagnosis of mercury intoxication is quantified using logistic regression models. The selection is performed by a stepwise forward/backward selection. Different models are compared based on the Bayesian information criterion (BIC) and Cohen`s kappa is used to evaluate the level of agreement between the diagnosis of mercury intoxication based on the currently used set of indicators and the result based on our reduced set of indicators. The sensitivity analysis of biomarker exposure limits of mercury is based on a sequence of chi square tests. The variable selection in logistic regression reduced the number of medical indicators from thirteen to ten in addition to the biomarkers. The estimated level of agreement using ten of thirteen medical indicators and all four biomarkers to diagnose chronic inorganic mercury intoxication yields a Cohen`s Kappa of 0.87. While in an additional stepwise selection the biomarker blood was not selected, the level of agreement based on ten medical indicators and only the three biomarkers urine, urine/creatinine and hair reduced Cohen`s Kappa to 0.46. The optimal cut-point for the biomarkers blood, hair, urine and urine/creatinine were estimated at 11. 6 μg/l, 3.84 μg/g, 24.4 μg/l and 4.26 μg/g, respectively. The results show that a reduction down to only ten indicators still allows a reliable diagnosis of chronic inorganic mercury intoxication. This reduction of indicators will simplify health assessments in artisanal small-scale gold mining areas.
Crestal graben associated with lobate scarps on Mercury
NASA Astrophysics Data System (ADS)
Vaughan, Rubio; Foing, Bernard; van Westrenen, Wim
2014-05-01
Mercury is host to various tectonic landforms which can be broadly divided into localized, basin-related features on the one hand, and regional or global features on the other. The globally distributed tectonic landforms are dominantly contractional in nature and consist of lobate scarps, wrinkle ridges and high-relief ridges [1]. Until now, extensional features have only been found within the Caloris basin, several smaller impact basins, such as Raditladi, Rachmaninoff & Rembrandt [2], and within volcanic deposits in the northern smooth plains [3,4]. New imagery obtained from the MESSENGER spacecraft, shows localized, along-strike troughs associated with several lobate scarps on Mercury. These troughs occur at or near the crest of the lobate scarps and are interpreted to be graben. While previously discovered graben on Mercury are thought to be related to thermal contraction of localized volcanic fill, these crestal graben are the first extensional tectonic features which have been discovered outside of such settings and have not been reported in literature previously. Of the 49 lobate scarps investigated in this study, 7 exhibit graben along their crest. The graben are usually only present along small sections of the scarp, but in some cases extend up to 180 km along the scarp crest. The persistent along-strike orientation of the graben with respect to the scarps, combined with several observed cross-cutting relations, suggests that the graben developed coeval with the formation of the lobate scarps. Numerical mechanical modeling using the Discrete Element Method (DEM) is currently being employed in order to better understand the mechanisms which control the formation of crestal graben associated with lobate scarps on Mercury. References: [1] Watters, Thomas R., and F. Nimmo. "The tectonics of Mercury." Planetary Tectonics 11 (2010): 15. [2] Blair, David M., et al. "The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury." Journal of Geophysical Research: Planets (2013). [3] Klimczak, Christian, et al. "Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution." Journal of Geophysical Research: Planets (1991-2012) 117.E9 (2012). [4] Watters, Thomas R., et al. "Extension and contraction within volcanically buried impact craters and basins on Mercury." Geology 40.12 (2012): 1123-1126.
Mercury in human hair due to environment and diet: a review.
Airey, D
1983-01-01
Hair mercury levels increase with the amount of fish in the diet and the amount of mercury in the fish species consumed. If hair mercury levels in people throughout the world were monitored by a standard analytical procedure, the results would indicate locations where people's body burden of mercury is high enough to be subclinically unhealthy and where controls on environmental emissions might be beneficial. The relationship of hair mercury concentration to the method of sampling and analysis of hair, the analysis of the results, the amount of fish consumed, the country and location from which samples were taken and the age, sex and occupation of the donor is discussed. PMID:6653535
Mercury Handling for the Target System for a Muon Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Van B; Mcdonald, K; Kirk, H.
2012-01-01
The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less
NASA Astrophysics Data System (ADS)
Bemis, B. E.; Kendall, C.
2007-12-01
The concentration of mercury in fish tissues is widely used as an indicator of the magnitude of mercury contamination in aquatic ecosystems. Eastern mosquitofish (Gambusia holbrookii) is an important sentinel species used for this purpose in the varied environments of the Florida Everglades, because mosquitofish are abundant, have a short lifespan, and migrate little. Like other freshwater fish, the primary route of mercury uptake into mosquitofish tissues is through diet as bioavailable methylmercury. Yet, it is unclear whether variations in mosquitofish mercury observed across the Everglades are due primarily to differences in bioaccumulation (i.e., trophic position) or abundance of methylmercury available to the food web base. We use isotopic methods to investigate the importance of these two controls on mosquitofish mercury at the landscape scale. As part of the USEPA REMAP project, mosquitofish and periphyton were collected during September 1996 from over one hundred sites throughout the Everglades and analyzed for mercury concentration. The USGS analyzed splits of the samples for nitrogen (d15N), carbon (d13C), and sulfur (d34S) isotopic composition, to investigate the causes of mercury variations. The d15N value of tissues is often used to estimate the relative trophic positions of organisms in a food web, and should correlate positively with tissue mercury if bioaccumulation is an important control on mosquitofish mercury concentration. The d13C value can be useful for detecting differences in food web base (e.g., algal versus detrital), and thus the entry point of contaminants. Tissue d34S potentially indicates the extent of dissimilatory sulfate reduction in sediments, a process used by sulfate-reducing bacteria (SRB) during conversion of inorganic Hg(II) to bioavailable methylmercury. Because this process increases the d34S value of remaining sulfate, which enters the food web base, mosquitofish sulfur isotopes should show positive correlations with SRB activity, methylmercury production, and mosquitofish mercury concentrations. The d15N, d13C, and d34S values of mosquitofish and periphyton are significantly correlated, indicating that a component of the bulk periphyton analyzed in this study is part of the mosquitofish food web. Mosquitofish mercury does not correlate significantly with tissue d15N or the d15N difference between mosquitofish and periphyton. Thus, differences in trophic level (and bioaccumulation) among the fish do not contribute a detectable influence on mercury variations in the samples studied. In contrast with the d15N results, mosquitofish mercury levels show significant, positive correlations with mosquitofish d34S and the d34S difference between mosquitofish and periphyton. This suggests that during the period studied, mosquitofish mercury concentrations in the Everglades were primarily influenced by the bioavailability of mercury, rather than by differences in trophic position. This study demonstrates that isotopic measurements, especially d34S, can be useful tools for determining causes of high mercury concentrations in fish populations.
Virtual atmospheric mercury emission network in China.
Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong
2014-01-01
Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.
Thirty-five year review of a mercury monitoring service for Scottish dental practices.
Duncan, A; O'Reilly, D Stj; McDonald, E B; Watkins, T R; Taylor, M
2011-02-12
To review a long-standing mercury monitoring service offered to staff in dental practices in Scotland. During the first 20 years of the service, dentists and their staff were contacted by letter and invited to participate. Respondents were asked to collect samples of head hair, pubic hair, fingernail and toenail for analysis of mercury. After 1995, head hair samples were collected initially and further samples were only measured if head hair mercury was elevated. At the start of this scheme many staff, including administrative staff, had systemic exposure to mercury (defined as increased mercury in all four samples). Incidents of exposure have decreased over the 35 years and are now very rare. Male staff were found to have higher mercury concentrations than female staff and dentists tended to have higher concentrations than other staff. Staff working in dental practices more than five years old had small but discernable increases in head hair mercury concentration. In recent years the use of reusable capsules such as Dentomats has been associated with a slight but statistically significant increase in head hair mercury concentrations when compared to the use of encapsulated amalgam systems. Staff wearing open-toed footwear had significantly higher toenail mercury concentrations compared to those who wore shoes. Exposure of staff to mercury in Scottish dental practices is currently now very low. This is probably as a result of increased awareness to the toxicity of mercury and improved methods of preparing amalgam. It may be possible to reduce exposure further, although probably only slightly, by upgrading practices and using encapsulated mercury amalgam.
NASA Astrophysics Data System (ADS)
Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.
2012-04-01
Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included different efficiencies of laser performance (e.g., frequency doubling) at the two wavelengths and temperature dependence. We will discuss improvements on the control of our system to eliminate drift due to conversion efficiency and temperature dependence. We will detail complications with operating this instrument from a mobile platform for in situ measurements in the field. Finally, we will present data acquisition and processing approaches along with results of calibration curves, and comparisons to conventional mercury analyzers (i.e., a Tekran 2537 mercury vapor analyzer) during ambient air measurements.
Mercury contamination study for flight system safety
NASA Technical Reports Server (NTRS)
Gorzynski, C. S., Jr.; Maycock, J. N.
1972-01-01
The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.
Alkaline sorbent injection for mercury control
Madden, Deborah A.; Holmes, Michael J.
2003-01-01
A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.
Alkaline sorbent injection for mercury control
Madden, Deborah A.; Holmes, Michael J.
2002-01-01
A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.
Details of MESSENGER Impact Location
2015-04-29
These graphics show the current best prediction of the location and time of NASA MESSENGER impact on Mercury surface. These current best estimates are: Date: 30 April 2015 Time: 3:26:02 pm EDT 19:26:02 UTC Latitude: 54.4° N Longitude: 210.1° E. Traveling at 3.91 kilometers per second (over 8,700 miles per hour), the MESSENGER spacecraft will collide with Mercury's surface, creating a crater estimated to be 16 meters (52 feet) in diameter. View this image to learn about the named features and geology of this region on Mercury. Instruments: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Top Image Latitude Range: 49°-59° N Top Image Longitude Range: 204°-217° E Topography in Top Image: Exaggerated by a factor of 5.5. Colors in Top Image: Coded by topography. The tallest regions are colored red and are roughly 3 kilometers (1.9 miles) higher than low-lying areas such as the floors of impact craters, colored blue. Scale in Top Image: The large crater on the left side of the image is Janacek, with a diameter of 48 kilometers (30 miles) http://photojournal.jpl.nasa.gov/catalog/PIA19443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jean Bustard; Charles Lindsey; Paul Brignac
With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particlemore » control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, Alabama). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{reg_sign}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{reg_sign} baghouse. Activated carbon was injected between the ESP and COHPAC{reg_sign} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{reg_sign} unit. The test also showed that activated carbon was effective in removing both forms of mercury-elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{reg_sign}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{reg_sign} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{reg_sign} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.« less
Fields, Cheryl A; Borak, Jonathan; Louis, Elan D
2017-11-01
The neurotoxicity of elemental mercury (Hg 0 ) is well-recognized, but it is uncertain whether and for how long neurotoxicity persists; among studies that evaluated previously exposed workers, only one examined workers during and also years after exposure ceased. The aim of this review is to document the type, frequency, and dose-relatedness of objective neurological effects in currently exposed mercury workers and thereby provide first approximations of the effects one would have expected in previously exposed workers evaluated during exposure. We systematically reviewed studies of neurotoxicity in currently exposed mercury workers identified by searching MEDLINE (1950-2015), government reports, textbook chapters, and references cited therein; dental cohorts were not included. Outcomes on physical examination (PE), neurobehavioral (NB) tests, and electrophysiological studies were extracted and evaluated for consistency and dose-relatedness. Forty-five eligible studies were identified, comprising over 3000 workers chronically exposed to a range of Hg 0 concentrations (0.002-1.7 mg/m 3 ). Effects that demonstrated consistency across studies and increased frequency across urine mercury levels (<50; 50-99; 100-199; ≥200 μg/L) included tremor, impaired coordination, and abnormal reflexes on PE, and reduced performance on NB tests of tremor, manual dexterity and motor speed. The data suggest response thresholds of U Hg ≈275 μg/L for PE findings and ≈20 μg/L for NB outcomes. These results indicate that PE is of particular value for assessing workers with U Hg >200 μg/L, while NB testing is more appropriate for those with lower U Hg levels. They also provide benchmarks to which findings in workers with historical exposure can be compared.
Source identification and mass balance studies of mercury in Lake An-dong, S. Korea
NASA Astrophysics Data System (ADS)
Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.
2009-12-01
In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.
CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT
The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...
Mercury in stream ecosystems -- New studies initiated by the U.S. Geological Survey
Brigham, Mark E.; Krabbenhoft, David P.; Hamilton, Pixie A.
2003-01-01
Mercury can adversely affect humans and wildlife through consumption of contaminated fish, particularly by sensitive individuals, such as children and women of childbearing age. Mercury is currently the leading cause of impairment in the Nation’s estuaries and lakes and was cited in nearly 80 percent of fish-consumption advisories (2,242 of 2,838) reported by states in 2000. The geographic extent of mercury advisories covers more than 10 million acres of lakes and more than 400,000 stream miles—increases of about 7 and 48 percent, respectively, over advisories reported in 1998 (U.S. Environmental Protection Agency, 2002a).
Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.
Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan
2007-10-01
Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasorsa, B.
1992-06-01
Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month's growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which themore » segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasorsa, B.
1992-06-01
Eighty samples of hair from women of child-bearing age from Nome, Alaska, and seven control samples from women living in Sequim, Washington, were analyzed for mercury concentration by segmental analysis in an effort to determine whether seasonal fluctuations in mercury concentration in the hair samples can be correlated to seasonal seafood consumption. Full-length hair strands were analyzed in 1.1-cm segments representing 1 month`s growth using a strong acid digestion and cold vapor atomic fluorescence analysis. It was assumed that the concentration of mercury in each segment is an indicator of the mercury body burden during the month in which themore » segment emerged from the scalp. Eighteen of the samples show seasonal variability, with five of the controls and one Nome resident showing winter highs while all Nome residents show summer highs. Twenty-six of the samples show an increase in mercury concentration toward the distal end of the strand regardless of month of growth. The trend of increasing mercury concentrations toward the distal end of the hair strand regardless of month of emergence, and the documented presence of elevated levels of elemental mercury in the Nome area suggest that these elevated levels may actually be due to external contamination of the hair strands by adsorption and not due to ingestion of contaminated foodstuffs such as seafood.« less
Schmeltz, D.; Evers, D.C.; Driscoll, C.T.; Artz, R.; Cohen, M.; Gay, D.; Haeuber, R.; Krabbenhoft, D.P.; Mason, R.; Morris, K.; Wiener, J.G.
2011-01-01
A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects, and recovery from mercury contamination. This network would quantify mercury in the atmosphere, land, water, and biota in terrestrial, freshwater, and coastal ecosystems to provide a national scientific capability for evaluating the benefits and effectiveness of emission controls. Program development began with two workshops, convened to establish network goals, to select key indicators for monitoring, to propose a geographic network of monitoring sites, and to design a monitoring plan. MercNet relies strongly on multi-institutional partnerships to secure the capabilities and comprehensive data that are needed to develop, calibrate, and refine predictive mercury models and to guide effective management. Ongoing collaborative efforts include the: (1) development of regional multi-media databases on mercury in the Laurentian Great Lakes, northeastern United States, and eastern Canada; (2) syntheses and reporting of these data for the scientific and policy communities; and (3) evaluation of potential monitoring sites. The MercNet approach could be applied to the development of other monitoring programs, such as emerging efforts to monitor and assess global mercury emission controls. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
40 CFR 60.1885 - What must I include in my annual report?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Dioxins/furans. (2) Cadmium. (3) Lead (4) Mercury. (5) Opacity. (6) Particulate matter. (7) Hydrogen... controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates recorded during the most recent dioxins/furans and mercury stack tests. (2) The lowest 8-hour block average...
40 CFR 62.15355 - What must I include in the semiannual out-of-compliance reports?
Code of Federal Regulations, 2010 CFR
2010-07-01
... this subpart as applicable for dioxins/furans, cadmium, lead, mercury, particulate matter, opacity... control dioxins/furans or mercury emissions, include two items: (1) Documentation of all dates when the 8...) is less than the highest carbon feed rate established during the most recent mercury and dioxins...
40 CFR 62.15340 - What must I include in the annual report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 62.15300(a): (1) Dioxins/furans. (2) Cadmium. (3) Lead. (4) Mercury. (5) Opacity. (6) Particulate... combustion units that use activated carbon for controlling dioxins/furans or mercury emissions, include four records: (1) The average carbon feed rates recorded during the most recent dioxins/furans and mercury...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Mercury Cell Chlor- Alkali...: NESHAP for Mercury Cell Chlor-Alkali Plants (Renewal). ICR Numbers: EPA ICR Number 2046.07, OMB Control... disclose the information. Respondents/Affected Entities: Owners or operators of mercury cell chlor-alkali...
Biogeochemical controls on mercury methylation in the Allequash Creek wetland.
Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E
2017-06-01
We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.
Compensated control loops for a 30-cm ion thruster
NASA Technical Reports Server (NTRS)
Robson, R. R.
1976-01-01
The vaporizer dynamic control characteristics of a 30-cm diameter mercury ion thruster were determined by operating the thruster in an open loop steady state mode and then introducing a small sinusoidal signal on the main, cathode, or neutralizer vaporizer current and observing the response of the beam current, discharge voltage, and neutralizer keeper voltage, respectively. This was done over a range of frequencies and operating conditions. From these data, Bode plots for gain and phase were made and mathematical models were obtained. The Bode plots and mathematical models were analyzed for stability and appropriate compensation networks determined. The compensated control loops were incorporated into a power processor and operated with a thruster. The time responses of the compensated loops to changes in set points and recovery from arc conditions are presented.
ASSESSING AND MANAGING MERCURY FROM HISTORIC AND CURRENT MINING ACTIVITIES (PROGRAM FLYER)
The conference is designed to achieve three primary goals:
Convey public, non-profit and priva sector perspectives on the assessment and management of mercury associated with mining processes, residuals and environmental impacters
Identify data gaps and information ...
A 13000-hour test of a mercury hollow cathode
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1973-01-01
A mercury-fed hollow cathode was tested for 12,979 hours in a bell jar at SERT 2 neutralizer operating conditions. The net electron current drawn to a collector was 0.25 ampere at average collector voltages between 21.8 and 36.7 volts. The mercury flow rate was varied from 5.6 to 30.8 equivalent milliamperes to give stable operation at the desired electrode voltages and currents. Variations with time in the neutralizer discharge characteristics were observed and hypothesized to be related to changes in the cathode orifice dimensions and the availability of electron emissive material. A facility failure caused abnormal test conditions for the last 876 hours and led to the cathode heater failure which concluded the test.
[Color vision impairment in workers exposed to mercury vapor].
Jedrejko, Marta; Skoczyńska, Anna
2011-01-01
Acquired reversible dyschromatopsia has been associated with occupational exposure to mercury vapor. Early-detected impairments in color discrimination precede adverse permanent effects of mercury, so they may help to monitor the health of the exposed workers. The aim of this study was to evaluate the color discrimination ability in this group of workers, using Lanthony D-15d test. Employed in a chloralkali plant, 27 male workers exposed to mercury vapor and 27 healthy white-collar workers (control group) were qualified for the study. To assess color discrimination, the Lanthony 15-Hue desaturated test (Lanthony D-15) was used. In order to investigate quantitative and qualitative results, the Lanthony D-15d scoring software was performed. Urinary mercury was determined using flameless atomic absorption spectrometry. In the workers exposed to mercury vapor, urine mercury concentration was 117.4 +/- 62.6 microg/g creatinine on average compared with 0.279 +/- 0.224 mg/g creatinine in the control group (p < 0.0001). In 18 exposed persons (66.7%), the results of the Lanthony D-15d test showed qualitative changes, which are borderline corresponding to the early stage of developing dyschromatopsia type III. The quantitative analysis of the test findings indicated a significantly higher value of the Color Confusion Index (CCI) in the right eye in the exposed group compared to the control group (p = 0.01), with no significant difference in the CCI in the left eye. In the exposed group, the CCI in the right eye was significantly higher than the CCI in the left eye (p = 0.0005). There was neither correlation between CCI and the level of urinary mercury, nor between CCI and duration of exposure. The results showed that the Lanthony D-15d test is useful in the detection of early toxic effects in the eyesight of the workers exposed to mercury vapor. The observed color vision impairments are borderline corresponding to the early stage of developing dyschromatopsia type III.
Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, J.W.; Skelly, E.M.
This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant formmore » of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.« less
Mercury reduction in Munhena, Mozambique: homemade solutions and the social context for change.
Spiegel, Samuel J; Savornin, Olivier; Shoko, Dennis; Veiga, Marcello M
2006-01-01
The health and environmental impacts of artisanal gold mining are of growing concern in Munhena, Mozambique, where more than 12,000 people are involved in such activities. Gold is extracted using mercury amalgamation, posing a considerable threat to human and environmental health. A pilot project ascertained the feasibility of reducing mercury use and emissions by promoting control measures utilizing local resources. Retorts were fabricated with local materials. Training workshops introduced the homemade retorts, and a portable mercury monitor revealed effective mercury reduction. Barriers to widespread technology adoption include poverty, lack of knowledge and trust, and the free supply of mercury from private gold buyers. Homemade retorts are inexpensive and effective, and miners could benefit by building community amalgamation centers. The government could play a greater role in gold purchasing to reduce mercury pollution.
Calls to Florida Poison Control Centers about mercury: Trends over 2003-2013.
Gribble, Matthew O; Deshpande, Aniruddha; Stephan, Wendy B; Hunter, Candis M; Weisman, Richard S
2017-11-01
The aim of this analysis was to contrast trends in exposure-report calls and informational queries (a measure of public interest) about mercury to the Florida Poison Control Centers over 2003-2013. Poison-control specialists coded calls to Florida Poison Control Centers by substance of concern, caller demographics, and whether the call pertained to an exposure event or was an informational query. For the present study, call records regarding mercury were de-identified and provided along with daily total number of calls for statistical analysis. We fit Poisson models using generalized estimating equations to summarize changes across years in counts of daily calls to Florida Poison Control Centers, adjusting for month. In a second stage of analysis, we further adjusted for the total number of calls each day. We also conducted analyses stratified by age of the exposed. There was an overall decrease over 2003-2013 in the number of total calls about mercury [Ratio per year: 0.89, 95% CI: (0.88, 0.90)], and calls about mercury exposure [Ratio per year: 0.84, 95% CI: (0.83, 0.85)], but the number of informational queries about mercury increased over this time [Ratio per year: 1.15 (95% CI: 1.12, 1.18)]. After adjusting for the number of calls of that type each day (e.g., call volume), the associations remained similar: a ratio of 0.88 (95% CI: 0.87, 0.89) per year for total calls, 0.85 (0.83, 0.86) for exposure-related calls, and 1.17 (1.14, 1.21) for informational queries. Although, the number of exposure-related calls decreased, informational queries increased over 2003-2013. This might suggest an increased public interest in mercury health risks despite a decrease in reported exposures over this time period. Copyright © 2017 Elsevier Inc. All rights reserved.
Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdogan, H.; Stevenson, E.
1994-12-31
Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less
Levinton, Jeffrey S; Pochron, Sharon T
2008-08-01
We analyzed a New York (USA) state database of mercury concentrations in muscle tissue for five species of fish (striped bass, yellow perch, largemouth bass, smallmouth bass, and carp) over a range of locations in the Hudson River (USA) between 1970 and 2004. We used regression models to discern temporal and geographic change in the fish while controlling for a positive correlation between mercury concentration and body mass. Mercury concentrations significantly increased in fish from New York Harbor waters to the mid-Hudson River. Striped bass and yellow perch showed a shallower increase in mercury concentration with river mile than did carp, largemouth bass, and smallmouth bass. Mercury concentrations declined over the 34-year period. These results imply that a geographically restricted source of mercury may be spread throughout the watershed by toxin-laden dispersing species. The increase of mercury toward the north may relate to a point source in the mid-Hudson River, or it may indicate mercury released from the Adirondack watershed. The decline of mercury over three decades corresponds to a reduction of various inputs in the region. The temporal and geographic pattern of mercury in sediments corresponds to the geographic trend of mercury in fish.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Migration And Entrapment Of Mercury In The Subsurface
NASA Astrophysics Data System (ADS)
M, D.; Nambi, I. M.
2009-12-01
Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.
Research and Technology Development Activities to Address the DOE-EM Environmental Mercury Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Peterson, Mark J
Human activities have altered trace metal distributions globally. This is especially true for the trace metal mercury (Hg), a pervasive global pollutant that can be methylated to form highly toxic methylmercury (MeHg), which bioaccumulates in aquatic food webs, endangering humans and other biota. Currently there are more than 3,000 mercury-contaminated sites identified worldwide and the United Nations Environment Programme has recently highlighted the risk of this contamination to human health [1, 2]. The Oak Ridge Reservation (ORR) represents an example of one of these mercury-contaminated sites. Unlike other contaminants metals, radionuclides, and organic solvents that impact the Department of Energymore » Office of Environmental Management (DOE-EM) cleanup program at the ORR and other DOE sites, mercury has several unique characteristics that make environmental remediation of the Y-12 National Security Complex one of the most formidable challenges ever encountered. These distinctive physicochemical properties for mercury include the following: it is a liquid at ambient temperature and pressure; it is the only metal that biomagnifies; and it is the only contaminant transported as a cation, as a dissolved or gaseous elemental metal (similar to an organic solvent), or as both a cation and a dissolved or gaseous elemental metal under environmental conditions. Because of these complexities, implementing cost effective and sustainable solutions that reduce mercury flux from various primary and secondary contamination sources will require linking basic science understanding and applied research advancements into Oak Ridge Office of Environmental Management s (OREM) cleanup process. Currently, DOE is investing in mercury-related research through a variety of programs, including the Office of Science sponsored Critical Interfaces Science Focus Area, EM headquarters sponsored Applied Field Research Initiative, OREM-sponsored Lower East Fork Poplar Creek (LEFPC) Mercury Technology Development Program, Small Business Innovative Research (SBIR), and EM s Minority Serving Institutions Partnership Program. Collectively, these multi-institutional and multidisciplinary programs are generating new tools, knowledge, and remediation approaches that will enable efficient cleanup of mercury contaminated systems locally and globally. In this talk we will highlight the progress made to date in addressing key knowledge gaps required to solve this watershed-scale conundrum.« less
Domagalski, Joseph L.; Dileanis, Peter D.
2000-01-01
Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater concentrations of mercury were mostly higher than the criterion. Exceedances of water-quality standards happened most frequently during winter when suspended-sediment concen-trations also were elevated. Most mercury is found in association with suspended sediment. The greatest loading or transport of mercury out of the Sacramento River Basin to the San Francisco Bay occurs in the winter and principally follows storm events.
Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture location.
Nicklisch, Sascha C T; Bonito, Lindsay T; Sandin, Stuart; Hamdoun, Amro
2017-10-01
Mercury is a toxic compound to which humans are exposed by consumption of fish. Current fish consumption advisories focus on minimizing the risk posed by the species that are most likely to have high levels of mercury. Less accounted for is the variation within species, and the potential role of the geographic origin of a fish in determining its mercury level. Here we surveyed the mercury levels in 117 yellowfin tuna caught from 12 different locations worldwide. Our results indicated significant variation in yellowfin tuna methylmercury load, with levels that ranged from 0.03 to 0.82 μg/g wet weight across individual fish. Mean mercury levels were only weakly associated with fish size (R 2 < 0.1461) or lipid content (R 2 < 0.00007) but varied significantly, by a factor of 8, between sites. The results indicate that the geographic origin of fish can govern mercury load, and argue for better traceability of fish to improve the accuracy of exposure risk predictions. Copyright © 2017 Elsevier Ltd. All rights reserved.
De Rosis, F; Anastasio, S P; Selvaggi, L; Beltrame, A; Moriani, G
1985-07-01
To evaluate the possible influence of mercury vapour on female reproduction, 153 women working in a mercury vapour lamp factory have been compared with 193 women employed in another factory of the same company, where mercury was not used. Both groups of subjects were exposed to stress factors (noise, rhythms of production, and shift work). The production process has been analysed by inspection of the plants and by collective discussions with "homogeneous groups" of workers; a retrospective inquiry into work history and reproductive health events has been subsequently performed by an individual interview. Women exposed to mercury vapour currently not exceeding the time weighted average air concentration of 0.01 mg/m3 declared higher prevalence and incidence rates of menstrual disorders, primary subfecundity, and adverse pregnancy outcome; however, the progression of these problems with the level of exposure to mercury inside the same factory was not always clear. The results of this study neither prove nor exclude the possibility that occupational exposure to this concentration of mercury has a negative effect on female reproduction.
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
From Orbit, Looking toward Mercury's Horizon
2017-12-08
NASA image acquired: March 29, 2011 MESSENGER acquired this image of Mercury's horizon as the spacecraft was moving northward along the first orbit during which MDIS was turned on. Bright rays from Hokusai can be seen running north to south in the image. MDIS frequently acquired images that contained Mercury's horizon during the mission's three Mercury flybys. (Visit these links to see examples of horizon images from Mercury flyby 1, Mercury flyby 2, and Mercury flyby 3.) However, now that MESSENGER is in orbit about Mercury, views of Mercury's horizon in the images will be much less common. The field of view for MDIS will generally be filled with Mercury's surface as the instrument maps out the planet's geology in high resolution, stereo, and color. Occasionally, in order to obtain images of a certain portion of Mercury's surface, the horizon will also be visible. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials
Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...
10 CFR 431.282 - Test Procedures [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
..., metal halide, and high-pressure sodium lamps. Mercury vapor lamp means a high intensity discharge lamp..., current, and waveform) for starting and operating. High intensity discharge lamp means an electric... light is produced by radiation from mercury typically operating at a partial vapor pressure in excess of...
NASA Astrophysics Data System (ADS)
ye, Z.
2013-12-01
Mercury (Hg) is a hazardous pollutant due to the bioaccumulation in food chain. It is emitted to the atmosphere primarily as elemental form, and the long lifetime of which allows global transport. Oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystem. The present study aimed to investigate the midlatitudinal atmospheric Hg cycling. To achieve that, a mercury chemistry box model was improved by employing the most up-to-date kinetic data for gaseous and aqueous reactions, and was applied to summertime clear sky conditions at three specific sites: Appledore Island (marine site), Thompson Farm (coastal site), and Pack Monadnock (inland site). The model was evaluated using observational data of RGM and pHg (particulate mercury) concentrations from these sites. The simulation results for all three sites showed that HgO, which is produced from oxidation of GEM by O3 and OH, contributed the most (>82%) to the total RGM production. Even in the marine boundary layer, halogen species (mainly Br) only contributed less than 12% to total RGM. The importance of reactions in most updated halogen chemistry has been evaluated. Gas and particle partitioning played an important role in coastal and inland environments. Some abnormally high RGM peaks were found at Appledore Island which may be explained by transport and air-sea exchange. Specific reactions and other processes controlling the diurnal cycles of RGM and pHg at the three sites are still being investigated.
Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.
1996-12-31
Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less
EMISSION TEST REPORT, OMSS FIELD TEST ON CARBON INJECTION FOR MERCURY CONTROL
The report discusses results of a parametric evaluation of powdered activated carbon for control of mercury (Hg) emission from a municipal waste cornbustor (MWC) equipped with a lime spray dryer absorber/fabric filter (SD/FF). The primary test objectives were to evaluate the effe...
The fate of mercury collected from air pollution control devices
The mercury that enters a coal-fired power plant, originates from the coal that is burned, and leaves through the output streams that include stack emissions and air pollution control (APC) residues (either in solid or liquid form). This article describes recent fmdings on the fa...
PERFORMANCE AND COST OF MERCURY EMISSION CONTROL TECHNOLOGY APPLICATIONS ON ELECTRIC UTILITY BOILERS
The report presents estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies and projections of costs for future applications. (NOTE: Under the Clean Air Act Amendments of 1990, the U.S. EPA has to determine whether mer...
Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...
Kumaravel, Ammasai; Chandrasekaran, Maruthai
2015-07-15
A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.
Personality Traits in Miners with Past Occupational Elemental Mercury Exposure
Grum, Darja Kobal; Kobal, Alfred B.; Arnerič, Niko; Horvat, Milena; Ženko, Bernard; Džeroski, Sašo; Osredkar, Joško
2006-01-01
In this study, we evaluated the impact of long-term occupational exposure to elemental mercury vapor (Hg0) on the personality traits of ex-mercury miners. Study groups included 53 ex-miners previously exposed to Hg0 and 53 age-matched controls. Miners and controls completed the self-reporting Eysenck Personality Questionnaire and the Emotional States Questionnaire. The relationship between the indices of past occupational exposure and the observed personality traits was evaluated using Pearson’s correlation coefficient and on a subgroup level by machine learning methods (regression trees). The ex-mercury miners were intermittently exposed to Hg0 for a period of 7–31 years. The means of exposure-cycle urine mercury (U-Hg) concentrations ranged from 20 to 120 μg/L. The results obtained indicate that ex-miners tend to be more introverted and sincere, more depressive, more rigid in expressing their emotions and are likely to have more negative self-concepts than controls, but no correlations were found with the indices of past occupational exposure. Despite certain limitations, results obtained by the regression tree suggest that higher alcohol consumption per se and long-term intermittent, moderate exposure to Hg0 (exposure cycle mean U-Hg concentrations > 38.7 < 53.5 μg/L) in interaction with alcohol remain a plausible explanation for the depression associated with negative self-concept found in subgroups of ex-mercury miners. This could be one of the reason for the higher risk of suicide among miners of the Idrija Mercury Mine in the last 45 years. PMID:16451870
Global Sources and Pathways of Mercury in the Context of Human Health.
Sundseth, Kyrre; Pacyna, Jozef M; Pacyna, Elisabeth G; Pirrone, Nicola; Thorne, Rebecca J
2017-01-22
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, B.; Bryan, L.; Mathews, T.
2012-03-30
Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water qualitymore » criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concentration in fish is a primary regulatory driver for controlling mercury in streams; and (2) the potential for negative impacts associated with inorganic tin, including, biological transformation and uptake, and/or undesirable accumulation/focusing of tin to in key ecosystem compartments.« less
Emissions of mercury from the power sector in Poland
NASA Astrophysics Data System (ADS)
Zyśk, J.; Wyrwa, A.; Pluta, M.
2011-01-01
Poland belongs to the European Union countries with the highest mercury emissions. This is mainly related to coal combustion. This paper presents estimates of mercury emissions from power sector in Poland. In this work, the bottom-up approach was applied and over 160 emission point sources were analysed. For each, the characteristics of the whole technological chain starting from fuel quality, boiler type as well as emission controls were taken into account. Our results show that emissions of mercury from brown coal power plants in 2005 were nearly four times greater than those of hard coal power plants. These estimates differ significantly from national statistics and some possible reasons are discussed. For the first time total mercury emissions from the Polish power sector were differentiated into its main atmospheric forms: gaseous elemental (GEM), reactive gaseous (RGM) and particulate-bound mercury. Information on emission source location and the likely vertical distribution of mercury emissions, which can be used in modelling of atmospheric dispersion of mercury is also provided.
Doering, Stefan
2016-01-01
Background The continuous exposure to inorganic mercury vapour in artisanal small-scale gold mining (ASGM) areas leads to chronic health problems. It is therefore essential to have a quick, but reliable risk assessing tool to diagnose chronic inorganic mercury intoxication. This study re-evaluates the state-of-the-art toolkit to diagnose chronic inorganic mercury intoxication by analysing data from multiple pooled cross-sectional studies. The primary research question aims to reduce the currently used set of indicators without affecting essentially the capability to diagnose chronic inorganic mercury intoxication. In addition, a sensitivity analysis is performed on established biomonitoring exposure limits for mercury in blood, hair, urine and urine adjusted by creatinine, where the biomonitoring exposure limits are compared to thresholds most associated with chronic inorganic mercury intoxication in artisanal small-scale gold mining. Methods Health data from miners and community members in Indonesia, Tanzania and Zimbabwe were obtained as part of the Global Mercury Project and pooled into one dataset together with their biomarkers mercury in urine, blood and hair. The individual prognostic impact of the indicators on the diagnosis of mercury intoxication is quantified using logistic regression models. The selection is performed by a stepwise forward/backward selection. Different models are compared based on the Bayesian information criterion (BIC) and Cohen`s kappa is used to evaluate the level of agreement between the diagnosis of mercury intoxication based on the currently used set of indicators and the result based on our reduced set of indicators. The sensitivity analysis of biomarker exposure limits of mercury is based on a sequence of chi square tests. Results The variable selection in logistic regression reduced the number of medical indicators from thirteen to ten in addition to the biomarkers. The estimated level of agreement using ten of thirteen medical indicators and all four biomarkers to diagnose chronic inorganic mercury intoxication yields a Cohen`s Kappa of 0.87. While in an additional stepwise selection the biomarker blood was not selected, the level of agreement based on ten medical indicators and only the three biomarkers urine, urine/creatinine and hair reduced Cohen`s Kappa to 0.46. The optimal cut-point for the biomarkers blood, hair, urine and urine/creatinine were estimated at 11. 6 μg/l, 3.84 μg/g, 24.4 μg/l and 4.26 μg/g, respectively. Conclusion The results show that a reduction down to only ten indicators still allows a reliable diagnosis of chronic inorganic mercury intoxication. This reduction of indicators will simplify health assessments in artisanal small-scale gold mining areas. PMID:27575533
Rapid increases in mercury concentrations in the eggs of mallards fed methylmercury
Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.
2009-01-01
To determine how quickly breeding birds would have to feed in a mercury-contaminated area before harmful concentrations of mercury, as methylmercury, built up in their eggs, we fed female mallards (Anas platyrhynchos) a control diet or diets containing 0.5, 1, 2, 4, or 8 μg/g mercury (on what was close to a dry weight basis) as methylmercury chloride for 23 d. After 18 d on their respective mercury diets, the eggs of mallards fed 0.5, 1, 2, 4, or 8 μg/g mercury contained 97.8, 86.0, 89.9, 88.9, and 85.9%, respectively, of the peak concentrations reached after 23 d. Depending on the dietary concentration of mercury, no more than approximately a week may be required for harmful concentrations (0.5–0.8 μg/g, wet weight) to be excreted into eggs.
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, Natalie J.; Martello, Donald; Schroeder, Karl
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7- day experiment averages ranging from -6.8 to 73 ng/m(2) h for the fly ash samples and -5.2 to 335 ng/m(2) h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples,more » the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Environmental chamber measurements of mercury flux from coal utilization by-products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pekney, N.J.; Martello, D.V.; Schroeder, K.T.
2009-05-01
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from -6.8 to 73 ng/m2 h for the fly ash samples and -5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, themore » effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.« less
Navya, C; Gopikrishna, V G; Arunbabu, V; Mohan, Mahesh
2015-12-01
Mercury biogeochemistry is highly complex in the aquatic ecosystems and it is very difficult to predict. The speciation of mercury is the primary factor controlling its behavior, movement, and fate in these systems. The fluctuating water levels in wetlands could play a major role in the mercury transformations and transport. Hence, the agricultural wetlands may have a significant influence on the global mercury cycling. Kuttanad agricultural wetland ecosystem is a unique one as it is lying below the sea level and most of the time it is inundated with water. To understand the mobility and bioavailability of Hg in the soils of this agricultural wetland ecosystem, the present study analyzed the total mercury content as well as the different fractions of mercury. Mercury was detected using cold vapor atomic fluorescence spectrophotometer. The total mercury content varied from 0.002 to 0.683 mg/kg, and most of the samples are having concentrations below the background value. The percentage of mercury found in the initial three fractions F1, F2, and F3 are more available and it may enhance the methylation potential of the Kuttanad agroecosystem.
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-12-01
The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model accuracy with the RMS value of 0.03-0.04. Currently, the telescope spectra are investigated for its calibrations and the results will be presented at AGU. References: [1] Hiesinger, H. and J. Helbert (2010) PSS, 58(1-2): 144-165. [2] Sprague, A.L. et al (2009) PSS, 57, 364-383. [3] Ramsey and Christiansen (1998) JGR, 103, 577-596
NASA Astrophysics Data System (ADS)
Pirrone, N.; Costa, P.; Pacyna, J. M.; Ferrara, R.
This report discusses past, current and projected mercury emissions to the atmosphere from major industrial sources, and presents a first assessment of the contribution to the regional mercury budget from selected natural sources. Emissions (1995 estimates) from fossil fuels combustion (29.8 t yr -1) , cement production (28.8 t yr -1) and incineration of solid wastes (27.6 t yr -1) , all together account for about 82% of the regional anthropogenic total (105.7 t yr -1) . Other industrial sources in the region are smelters (4.8 t yr -1) , iron-steel plants (4.8 t yr -1) and other minor sources (chlor-alkali plants, crematoria, chemicals production) that have been considered together in the miscellaneous category (9.6 t yr -1) . Regional emissions from anthropogenic sources increased at a rate of 3% yr-1 from 1983 to 1995 and are projected to increase at a rate of 1.9% yr-1 in the next 25 years, if no improvement in emission control policy occurs. On a country-by-country basis, France is the leading emitter country with 22.6 t yr -1 followed by Turkey (16.1 t yr -1) , Italy (11.4 t yr -1) , Spain (9.1 t yr -1) , the former Yugoslavia 7.9 ( t yr -1) , Morocco (6.9 t yr -1) , Bulgaria (6.8 t yr -1) , Egypt (6.1 t yr -1) , Syria (3.6 t yr -1) , Libya (2.9 t yr -1) , Tunisia (2.8 t yr -1) and Greece (2.7 t yr -1) , whereas the remaining countries account for less than 7% of the regional total. The annual emission from natural sources is 110 t yr -1, although this figure only includes the volatilisation of elemental mercury from surface waters and emissions from volcanoes, whereas the contribution due to the degassing of mercury from top soil and vegetation has not been included in this first assessment. Therefore, natural and anthropogenic sources in the Mediterranean region release annually about 215 t of mercury, which represents a significant contribution to the total mercury budget released in Europe and to the global atmosphere.
MERCURY CONCENTRATION IN FROZEN WHOLE-FISH HOMOGENATES IS INSENSITIVE TO HOLDING TIME
Current recommended holding times for the analysis of total mercury (Hg) in fish tissue ranges from 28 to 180 days. In 2006, we evaluated the effect of an extended holding time on Hg concentrations by reanalyzing whole-fish wet homogenates that were analyzed originally in 2002 an...
AQUEOUS REDUCTION OF HG2+ TO HG0 BY HO2 IN THE CMAQ-MODEL
Numerical models of atmospheric mercury are formulated based on the current understanding of mercury chemistry in air and in atmospheric water. Recent evidence that significant reduction of Hg2+ by reaction with HO2 may not actually occur in natural atmospheric water has obviou...
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Director Bob Cabana sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- NASA astronaut Stephen Robinson sits at the controls in the flight deck of space shuttle Discovery in Orbiter Processing Facility-1 OPF-1 at NASA's Kennedy Space Center in Florida. Robinson is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Shuttle Discovery currently is being prepared for display at Smithsonian’s National Air and Space Museum, Steven F. Udvar-Hazy Center in Chantilly, Va. Photo credit: Cory Huston
Risch, M.R.; Prestbo, E.M.; Hawkins, L.
2007-01-01
Ground-level concentrations of three atmospheric mercury species were measured using manual sampling and analysis to provide data for estimates of mercury dry deposition. Three monitoring stations were operated simultaneously during winter, spring, and summer 2004, adjacent to three mercury wet-deposition monitoring stations in northern, central, and southern Indiana. The monitoring locations differed in land-use setting and annual mercury-emissions level from nearby sources. A timer-controlled air-sampling system that contained a three-part sampling train was used to isolate reactive gaseous mercury, particulate-bound mercury, and elemental mercury. The sampling trains were exchanged every 6 days, and the mercury species were quantified in a laboratory. A quality-assurance study indicated the sampling trains could be held at least 120 h without a significant change in reactive gaseous or particulate-bound mercury concentrations. The manual sampling method was able to provide valid mercury concentrations in 90 to 95% of samples. Statistical differences in mercury concentrations were observed during the project. Concentrations of reactive gaseous and elemental mercury were higher in the daytime samples than in the nighttime samples. Concentrations of reactive gaseous mercury were higher in winter than in summer and were highest at the urban monitoring location. The results of this case study indicated manual sampling and analysis could be a reliable method for measurement of atmospheric mercury species and has the capability for supplying representative concentrations in an effective manner from a long-term deposition-monitoring network. ?? 2007 Springer Science+Business Media B.V.
Effectiveness of Emission Controls to Reduce the Atmospheric Concentrations of Mercury.
Castro, Mark S; Sherwell, John
2015-12-15
Coal-fired power plants in the United States are required to reduce their emissions of mercury (Hg) into the atmosphere to lower the exposure of Hg to humans. The effectiveness of power-plant emission controls on the atmospheric concentrations of Hg in the United States is largely unknown because there are few long-term high-quality atmospheric Hg data sets. Here, we present the atmospheric concentrations of Hg and sulfur dioxide (SO2) measured from 2006 to 2015 at a relatively pristine location in western Maryland that is several (>50 km) kilometers downwind of power plants in Ohio, Pennsylvania, and West Virginia. Annual average atmospheric concentrations of gaseous oxidized mercury (GOM), SO2, fine particulate mercury (PBM2.5), and gaseous elemental mercury (GEM) declined by 75%, 75%, 43%, and 13%, respectively, and were strongly correlated with power-plant Hg emissions from the upwind states. These results provide compelling evidence that reductions in Hg emissions from power plants in the United States had their intended impact to reduce regional Hg pollution.
Potassium permanganate for mercury vapor environmental control
NASA Technical Reports Server (NTRS)
Kuivinen, D. E.
1972-01-01
Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.
Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury.
Pamphlett, Roger; Kum Jew, Stephen
2016-02-01
Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16-48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64%) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.
NASA Astrophysics Data System (ADS)
Laurier, F. J.
2002-12-01
Global mercury models have identified wet and dry particle deposition and evasion of dissolved gaseous mercury from the ocean and from land as key controls over global mercury cycling (1,2). Recent ocean studies (3,4) however, have indicated that estimated mercury evasion rates from the ocean substantially exceed estimated deposition. Oxidized reactive gaseous mercury species (RGHg) are now known to play a major role in the global mercury cycle (2,5). RGHg species are water-soluble, exhibit a much shorter atmospheric lifetime than elemental mercury, and contribute to a large extent to atmospheric mercury deposition (2,3,6). Although recent global mercury models have accounted for the dry deposition of RGHg derived from point source emissions (6,7), the formation and deposition of RGHg in remote areas have not been incorporated. We suggest that the oxidation of elemental mercury over the ocean, by gas phase or heterogeneous reactions, is an important part the global mercury cycle. In agreement with previous studies (3,8,9) our recent data from atmospheric collections over the North Pacific Ocean support the notion of enhanced oxidation in the marine boundary layer. Our results show an inverse correlation between RGHg production and ozone, and a diurnal cycle with highest concentrations during periods of highest UV irradiation. In addition, the relationship between RGHg and other parameters measured during the cruise will be discussed. Our results clearly show that RGHg deposition to the ocean must be an important Hg source, and a crucial part of the global Hg cycle. (1) Mason R.P., Fitzgerald W.F., and Morel F.M.M. (1994), The biogeochemical cycling of elemental mercury: Anthropogenic influences, Geochim. Cosmochim. Acta, 58: 3191-3198 (2) Shia R.L., Seigneur C., Pai P., Ko M., and Sze N.-D. (1999), Global simulation of atmospheric mercury concentrations and deposition fluxes, J. Geophy. Res., 104(D19), 23, 747-23, 760 (3) Mason, R.P., Lawson N.M., and Sheu G.-R. (2001), Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper water, Deep-Sea Res. II, 2829-2853 (4) Lamborg, C.H., Rolfus K.R., and Fitzgerald W.F. (1999), The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean, Deep-Sea Res. II, 957-977 (5) Lindberg S.E., Brooks S., Lin C.-J., Scott K. J., Landis M. S., Stevens R.K., Goodsite M., and Richter A. (2002), Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise, Environ. Sci. Technol., 1245-1256 (6) Bullock O.R. (2000), Modeling assessment of transport and deposition patterns of anthropogenic mercury air emissions in the United States and Canada, Sci Total Environ., 259(1-3), 145-157 (7) Xu X., Yang X., Miller d.R., Helble J.J., and Carley R.J. (2000), a regional scale modelling study of atmospheric transport and formation of mercury. II. Simulation results for the northeast United states, Atmos. Environ., 34: 4945-4955 (8) Sheu G.-R. (2001), Speciation and distribution of atmospheric mercury: Significance of reactive gaseous mercury in the global mercury cycle. PhD. thesis, University of Maryland, College park, pp. 170 (9) Guentzel J.L., Landing W.M., Gill G.A., and Pollman C.D. (2001), Processes influencing rainfall deposition of mercury in Florida, Environ. Sci. Technol., 35: 863-873
Poulin, Brett; Aiken, George R.; Nagy, Kathryn L.; Manceau, Alain; Krabbenhoft, David P.; Ryan, Joseph N.
2016-01-01
Riparian soils are an important environment in the transport of mercury in rivers and wetlands, but the biogeochemical factors controlling mercury dynamics under transient redox conditions in these soils are not well understood. Mercury release and transformations in the Oa and underlying A horizons of a contaminated riparian soil were characterized in microcosms and an intact soil core under saturation conditions. Pore water dynamics of total mercury (HgT), methylmercury (MeHg), and dissolved gaseous mercury (Hg0(aq)) along with selected anions, major elements, and trace metals were characterized across redox transitions during 36 d of flooding in microcosms. Next, HgT dynamics were characterized over successive flooding (17 d), drying (28 d), and flooding (36 d) periods in the intact core. The observed mercury dynamics exhibit depth and temporal variability. At the onset of flooding in microcosms (1–3 d), mercury in the Oa horizon soil, present as a combination of ionic mercury (Hg(II)) bound to thiol groups in the soil organic matter (SOM) and nanoparticulate metacinnabar (b-HgS), was mobilized with organic matter of high molecular weight. Subsequently, under anoxic conditions, pore water HgT declined coincident with sulfate (3–11 d) and the proportion of nanoparticulate b-HgS in the Oa horizon soil increased slightly. Redox oscillations in the intact Oa horizon soil exhausted the mobile mercury pool associated with organic matter. In contrast, mercury in the A horizon soil, present predominantly as nanoparticulate b-HgS, was mobilized primarily as Hg0(aq) under strongly reducing conditions (5–18 d). The concentration of Hg0(aq) under dark reducing conditions correlated positively with byproducts of dissimilatory metal reduction (P(Fe,Mn)). Mercury dynamics in intact A horizon soil were consistent over two periods of flooding, indicating that nanoparticulate b-HgS was an accessible pool of mobile mercury over recurrent reducing conditions. The concentration of MeHg increased with flooding time in both the Oa and A horizon pore waters. Temporal changes in pore water constituents (iron, manganese, sulfate, inorganic carbon, headspace methane) all implicate microbial control of redox transitions. The mobilization of mercury in multiple forms, including HgT associated with organic matter, MeHg, and Hg0(aq), to pore waters during periodic soil flooding may contribute to mercury releases to adjacent surface waters and the recycling of the legacy mercury to the atmosphere.
Field Demonstration of Enhanced Sorbent Injection for Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin Kang; Robert Schrecengost
2009-01-07
Alstom Power Inc. has conducted a DOE/NETL-sponsored program (under DOE Cooperative Agreement No. DE-FC26-04NT42306) to demonstrate Mer-Cure{trademark}, one of Alstom's mercury control technologies for coal-fired boilers. Mer-Cure{trademark} utilizes a small amount of Mer-Clean{trademark} sorbent that is injected into the flue gas stream for oxidation and adsorption of gaseous mercury. Mer-Clean{trademark} sorbents are carbon-based and prepared with chemical additives that promote oxidation and capture of mercury. Mer-Cure{trademark} is unique in that the sorbent is injected into an environment where the mercury capture kinetics is accelerated. This full-scale demonstration program was comprised of three seven-week long test campaigns at three host sites including PacifiCorp's 240-MW{sub e} Dave Johnston Unit No.3 burning a Powder River Basin (PRB) coal, Basin Electric's 220-MW{sub e} Leland Olds Unit No.1 burning a North Dakota lignite, and Reliant Energy's 170-MW{sub e} Portland Unit No.1 burning an Eastern bituminous coal. All three boilers are equipped with electrostatic precipitators. The goals for this Round 2 program, established by DOE/NETL under the original solicitation, were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the previous target ofmore » $$60,000/lb mercury removed. The results for all three host sites indicated that Mer-Cure{trademark} technology could achieve mercury removal of 90%. The estimated mercury removal costs were 25-92% lower than the benchmark of $$60,000/lb mercury removed. The estimated costs for control, at sorbent cost of $1.25 to $2.00/lb respectively, are as follows: (1) Dave Johnston Unit No.3--$2,650 to $4,328/lb Hg removed (92.8% less than $60k/lb); (2) Leland Olds Unit No.1--$8,680 to $13,860/lb Hg removed (76.7% less than $60k/lb); and (3) Portland Unit No.1--$28,540 to $45,065/lb Hg removed (24.9% less than $60k/lb). In summary, the results from demonstration testing at all three host sites show that the goals established by DOE/NETL were exceeded during this test program. Mercury removal performance4 of greater than 90% reduction was above the 50-70% reduction goal, and mercury removal cost of 25-92% lower than the benchmark was above the 25 to 50% cost reduction goal.« less
Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion
Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.
2012-01-01
Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United States is the only nation to have collected such detailed information for mercury in both its coal and its utility emissions.
Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure
Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.
2014-01-01
Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902
Low-Cost Options for Moderate Levels of Mercury Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon Sjostrom
2008-02-09
This is the final technical report for a three-site project that is part of an overall program funded by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL) and industry partners to obtain the necessary information to assess the feasibility and costs of controlling mercury from coal-fired utility plants. This report summarizes results from tests conducted at MidAmerican's Louisa Generating Station and Entergy's Independence Steam Electric Station (ISES) and sorbent screening at MidAmerican's Council Bluffs Energy Center (CBEC) (subsequently renamed Walter Scott Energy Center (WSEC)). Detailed results for Independence and Louisa are presented in the respective Topical Reports. Asmore » no full-scale testing was conducted at CBEC, screening updates were provided in the quarterly updates to DOE. ADA-ES, Inc., with support from DOE/NETL, EPRI, and other industry partners, has conducted evaluations of EPRI's TOXECON II{trademark} process and of high-temperature reagents and sorbents to determine the capabilities of sorbent/reagent injection, including activated carbon, for mercury control on different coals and air emissions control equipment configurations. An overview of each plant configuration is presented: (1) MidAmerican's Louisa Generating Station burns Powder River Basin (PRB) coal in its 700-MW Unit 1 and employs hot-side electrostatic precipitators (ESPs) with flue gas conditioning for particulate control. This part of the testing program evaluated the effect of reagents used in the existing flue gas conditioning on mercury removal. (2) MidAmerican's Council Bluffs Energy Center typically burns PRB coal in its 88-MW Unit 2. It employs a hot-side ESP for particulate control. Solid sorbents were screened for hot-side injection. (3) Entergy's Independence Steam Electric Station typically burns PRB coal in its 880-MW Unit 2. Various sorbent injection tests were conducted on 1/8 to 1/32 of the flue gas stream either within or in front of one of four ESP boxes (SCA = 542 ft{sup 2}/kacfm), specifically ESP B. Initial mercury control evaluations indicated that although significant mercury control could be achieved by using the TOXECON II{trademark} design, the sorbent concentration required was higher than expected, possibly due to poor sorbent distribution. Subsequently, the original injection grid design was modeled and the results revealed that the sorbent distribution pattern was determined by the grid design, fluctuations in flue gas flow rates, and the structure of the ESP box. To improve sorbent distribution, the injection grid and delivery system were redesigned and the effectiveness of the redesigned system was evaluated. This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase II project with the goal of developing mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. Results from testing at Independence indicate that the DOE goal was successfully achieved. Further improvements in the process are recommended, however. Results from testing at Louisa indicate that the DOE goal was not achievable using the tested high-temperature sorbent. Sorbent screening at Council Bluffs also indicated that traditional solid sorbents may not achieve significant mercury removal in hot-side applications.« less
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2010-02-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2009-11-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
Arendt, John D; Katers, John F
2013-07-01
The majority of states in the USA, including Wisconsin, have been affected by elevated air, soil and waterborne mercury levels. Health risks associated with mercury increase from the consumption of larger fish species, such as Walleye or Pike, which bio-accumulate mercury in muscle tissue. Federal legislation with the 2011 Mercury and Air Toxics Standards and the Wisconsin legislation on mercury, 2009 Wisconsin Act 44, continue to aim at lowering allowable levels of mercury emissions. Meanwhile, mercury-containing compact fluorescent lights (CFL) sales continue to grow as businesses and consumers move away from energy intensive incandescent light bulbs. An exchange in pollution media is occurring as airborne mercury emissions from coal-burning power plants, the largest anthropogenic source of mercury, are being reduced by lower energy demand and standards, while more universal solid waste containing mercury is generated each time a CFL is disposed. The treatment of CFLs as a 'universal waste' by the Environmental Protection Agency (EPA) led to the banning of non-household fluorescent bulbs from most municipal solid waste. Although the EPA encourages recycling of bulbs, industry currently recycles fluorescent lamps and CFLs at a rate of only 29%. Monitoring programs at the federal and state level have had only marginal success with industrial and business CFL recycling. The consumer recycling rate is even lower at only 2%. A projected increase in residential CFL use in Wisconsin owing to the ramifications of the Energy Independence and Security Act of 2007 will lead to elevated atmospheric mercury and landfill deposition in Wisconsin.
Does historical wildfire activity alter metal fluxes to northern lakes?
NASA Astrophysics Data System (ADS)
Pelletier, N.; Chetelat, J.; Vermaire, J. C.; Palmer, M.; Black, J.; Pellisey, J.; Tracz, B.; van der Wielen, S.
2017-12-01
Current drought conditions in northwestern Canada are conducive to more frequent and severe wildfires that may mobilize mercury and other metals accumulated in soil and biomass. There is evidence that wildfires can remobilize and transport mercury within and outside catchments by atmospheric volatilization, particulate emissions and catchment soil erosion. However, the effect of fires on mercury fluxes to nearby lake sediments remains unclear. In this study, we use a combination of 10 dated lake sediment cores and four nearby ombrotrophic peatland cores to investigate the effects of wildfires on mercury fluxes to lake sediments. Lakes varying in catchment size and distance from recent fire events were sampled. Mercury concentrations in the environmental archives were measured, and macroscopic charcoal particles (>100 um) were counted at high resolution in the sediments to observe the co-variation of the local fire history and mercury fluxes. Mercury flux recorded in ombrotrophic peat cores provided an estimate of the historical atmospheric mercury flux from local and regional atmospheric deposition. The mercury flux recorded in lake sediments corresponds to the sum of direct atmospheric deposition and catchment transport. In combination, these archives will allow for the partitioning of mercury loading attributable to catchment transport from direct atmospheric deposition. After correcting the fluxes for particle focusing and terragenic elements input, flux from different lakes will be compared based on their catchment size and their temporal and spatial proximity known fire events. Altogether, our preliminary results using these paleolimnological methods will provide new insights on mercury transport processes that are predicted to become more important under a changing climate.
40 CFR 60.1875 - What must I include in my initial report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... in table 2 or 4 of this subpart): (1) Dioxins/furans. (2) Cadmium. (3) Lead. (4) Mercury. (5) Opacity... particulate matter control device. Use values established during your initial stack test for dioxins/furans... carbon to control dioxins/furans or mercury emissions, the average carbon feed rates that you recorded...
Elevated Mercury Concentrations in Humans of Madre de Dios, Peru
Ashe, Katy
2012-01-01
The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population. PMID:22438911
Elevated mercury concentrations in humans of Madre de Dios, Peru.
Ashe, Katy
2012-01-01
The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population.
Falandysz, Jerzy; Mazur, Aneta; Kojta, Anna K; Jarzyńska, Grażyna; Drewnowska, Małgorzata; Dryżałowska, Anna; Nnorom, Innocent C
2013-03-15
This paper reports data on bioconcentration potential and baseline mercury concentrations of fruiting bodies of dark honey fungus (Armillaria solidipes) Peck and soil substrate layer (0-10 cm) from 12 spatially distant sites across Poland. Mercury content of caps, stipes and soil samples were determined using validated analytical procedure including cold-vapor atomic absorption spectroscopy after thermal decomposition of the sample matrix and further amalgamation and desorption of mercury from gold wool. Mean mercury concentrations ranged from 20 ± 8 to 300 ± 70 ng g(-1) dry weight (dw) in caps, from 20 ± 6 to 160 ± 40 ng g(-1) dw in stipes, and in underlying soil were from 20 ± 2 to 100 ± 130 ng g(-1) dw. The results showed that stipes mercury concentrations were 1.1- to 1.7-fold lower than those of caps. All caps and the majority of stipes were characterized by bioconcentration factor values > 1, indicating that dark honey fungus can be characterized as a moderate mercury accumulator. Occasional or relatively frequent eating of meals including caps of dark honey fungus is considered safe in view of the low total mercury content, and the mercury intake rates are below the current reference dose and provisionally tolerable weekly intake limits for this hazardous metal. © 2012 Society of Chemical Industry.
Yılmaz, F M; Yılmaz, H; Tutkun, E; Uysal, S; Carman, K B; Dılber, C; Ercan, M
2014-01-01
Acute mercury intoxication among children can occur through unintentional exposure, and neurotoxicity is one of the main findings in acute exposures. In this study, we aimed to study the central nerve system markers, namely neuron-specific enolase (NSE), S100B, and glutamate receptor (GRIA 1) levels and discuss the mechanisms of central nerve system damage and whether these parameters could be used as markers of acute elemental mercury intoxication neurotoxicity. This is a case-control study which includes 169 children with acute elemental mercury intoxication, who were exposed to mercury in the school laboratory from a broken jar, and 45 sex- and age-matched controls without mercury exposure. Patient group were divided into three subgroups according to the neurological examination performed during the admission. Neuropathy Group included the children with neurological symptoms including peripheral neuropathy and decreased muscle strength (n = 39) (with or without dilated pupils). Dilated Pupil Group included the children who had mid-dilated/dilated pupils (n = 52). Asymptomatic Exposure Group included the children who did not have any neurological symptoms (n = 78). Serum NSE, S100B, GRIA 1, blood, and urine mercury levels were determined. NSE, S100B, GRIA 1, and blood mercury levels were significantly higher in exposed group than the nonexposed subjects (Median values NSE 22.4 ng/mL, 17.2 ng/mL; S100B 0.09 ng/mL, 0.08 ng/mL; GRIA 1 70.6 pg/mL, 54.1 pg/mL, and blood mercury 15.2 μg/L, 0.23 μg/L for exposed and nonexposed groups, respectively). GRIA 1 levels found to differ between exposed and nonexposed groups and it has also been found to be increased in the subgroups with positive neurological findings compared to that in neurological finding negative groups. S100B levels were found to be increased in exposed and having neurological symptom groups. There was not a significant difference between exposed-not having neurological symptom patients and control group. NSE levels were found to be higher in all subgroups when compared to those in controls, however there was not a significant difference between the subgroups. Serum NSE, GRIA 1, and S100B were increased with mercury exposure. GRIA 1 and S100B levels were observed to have the power to discriminate neurological symptom positive and negative groups. The increase in S100B levels are thought to be protecting the neurons and preventing further NSE elevations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.
The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders ofmore » magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.« less
Current progress on understanding the impact of mercury on human health.
Ha, Eunhee; Basu, Niladri; Bose-O'Reilly, Stephan; Dórea, José G; McSorley, Emeir; Sakamoto, Mineshi; Chan, Hing Man
2017-01-01
Mercury pollution and its impacts on human health is of global concern. The authors of this paper were members of the Plenary Panel on Human Health in the 12th International Conference on Mercury as a Global Pollutant held in Korea in June 2015. The Panel was asked by the conference organizers to address two questions: what is the current understanding of the impacts of mercury exposure on human health and what information is needed to evaluate the effectiveness of the Minamata Convention in lowering exposure and preventing adverse effects. The authors conducted a critical review of the literature published since January 2012 and discussed the current state-of-knowledge in the following areas: environmental exposure and/or risk assessment; kinetics and biomonitoring; effects on children development; effects on adult general populations; effects on artisanal and small-scale gold miners (ASGM); effects on dental workers; risk of ethylmercury in thimerosal-containing vaccines; interactions with nutrients; genetic determinants and; risk communication and management. Knowledge gaps in each area were identified and recommendations for future research were made. The Panel concluded that more knowledge synthesis efforts are needed to translate the research results into management tools for health professionals and policy makers. Copyright © 2016 Elsevier Inc. All rights reserved.
Hageman, Philip L.
2007-01-01
New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.
Everglqades Mercury: Biogeochemistry, Modeling, and Possible Mitigation
NASA Astrophysics Data System (ADS)
Orem, W. H.
2015-12-01
In the 1980s high levels of methylmercury (MeHg) were found in fish and other biota in the Florida Everglades, prompting fish consumption advisories. As part of Everglades restoration efforts Federal and State Agencies initiated a research program to study the underlying causes of the MeHg contamination. As part of this multi-agency effort, the U.S. Geological Survey developed the ACME (Aquatic Cycling of Mercury in the Everglades) project to examine the underlying biogeochemical factors controlling MeHg production and bioaccumulation in the ecosystem. Field studies by ACME and others identified the many factors impacting MeHg production in the Everglades. Thes factors include: high mercury deposition, large wetland area with organic-rich anaerobic soil, high sulfate loading in surface runoff, circumneutral pH, and high dissolved organic matter (DOM) content. Florida Department of Environmental Protection efforts that reduced local mercury emissions by 90%, produced only a small reduction in mercury deposition on the Everglades, suggesting that most Hg deposited on the ecosystem originates from distant sources, and beyond the reach of regulators. ACME studies demonstrated that high sulfate loading to the Everglades comes from discharge of canal water originating in the Everglades Agricultural Area (EAA). The use of sulfur in agriculture and soil oxidation in the EAA have been shown to be the principal sources of the sulfate loading. Sulfate entering the ecosystem drives microbial sulfate reduction and MeHg production, but inhibition of MeHg production by sulfide (a byproduct of microbial sulfate reduction) makes the biogeochemistry complex. Laboratory microcosm and field mesocosm experiments by ACME helped define the complexity of the sulfur/MeHg biogeochemistry, and demonstrated the key role of dissolved organic matter in MeHg production. A conceptual model was developed that relates MeHg production to sulfate loading, DOM, and soil composition. This conceptual model was then used in the development of a mathematical model that relates how changes in sulfate loading affect MeHg production in the ecosystem. This model is currently being used to examine how limits on sulfate loading to the ecosystem could be used as a mitigation strategy to control MeHg production and levels of MeHg in Everglades biota.
Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, Kathryn L.
2015-08-18
Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood.more » The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6) we investigated the biogeochemical controls on the release of mercury in simulated flooding experiments using loose soils and intact soil cores from East Fork Poplar Creek.« less
Bourdineaud, Jean-Paul; Bellance, Nadège; Bénard, Giovani; Brèthes, Daniel; Fujimura, Masatake; Gonzalez, Patrice; Marighetto, Aline; Maury-Brachet, Régine; Mormède, Cécile; Pédron, Vanessa; Philippin, Jean-Nicolas; Rossignol, Rodrigue; Rostène, William; Sawada, Masumi; Laclau, Muriel
2008-01-01
Background In 2005, 84% of Wayana Amerindians living in the upper marshes of the Maroni River in French Guiana presented a hair mercury concentration exceeding the limit set up by the World Health Organization (10 μg/g). To determine whether this mercurial contamination was harmful, mice have been fed diets prepared by incorporation of mercury-polluted fish from French Guiana. Methods Four diets containing 0, 0.1, 1, and 7.5% fish flesh, representing 0, 5, 62, and 520 ng methylmercury per g, respectively, were given to four groups of mice for a month. The lowest fish regimen led to a mercurial contamination pressure of 1 ng mercury per day per g of body weight, which is precisely that affecting the Wayana Amerindians. Results The expression of several genes was modified with mercury intoxication in liver, kidneys, and hippocampus, even at the lowest tested fish regimen. A net genetic response could be observed for mercury concentrations accumulated within tissues as weak as 0.15 ppm in the liver, 1.4 ppm in the kidneys, and 0.4 ppm in the hippocampus. This last value is in the range of the mercury concentrations found in the brains of chronically exposed patients in the Minamata region or in brains from heavy fish consumers. Mitochondrial respiratory rates showed a 35–40% decrease in respiration for the three contaminated mice groups. In the muscles of mice fed the lightest fish-containing diet, cytochrome c oxidase activity was decreased to 45% of that of the control muscles. When mice behavior was assessed in a cross maze, those fed the lowest and mid-level fish-containing diets developed higher anxiety state behaviors compared to mice fed with control diet. Conclusion We conclude that a vegetarian diet containing as little as 0.1% of mercury-contaminated fish is able to trigger in mice, after only one month of exposure, disorders presenting all the hallmarks of mercurial contamination. PMID:18959803
Vo, Anh-Thu E.; Bank, Michael S.; Shine, James P.; Edwards, Scott V.
2011-01-01
Methylmercury cycling in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists concerning whether increases in anthropogenic emissions over time may have caused increased mercury bioaccumulation in the biota. To address this, we measured total mercury and, for a subset of samples, methylmercury (the bioaccumulated form of mercury) in museum feathers from an endangered seabird, the black-footed albatross (Phoebastria nigripes), spanning a 120-y period. We analyzed stable isotopes of nitrogen (δ15N) and carbon (δ13C) to control for temporal changes in trophic structure and diet. In post-1940 and -1990 feathers, we detected significantly higher mean methylmercury concentrations and higher proportions of samples exhibiting above deleterious threshold levels (∼40,000 ng·g−1) of methylmercury relative to prior time points, suggesting that mercury toxicity may undermine reproductive effort in the species. We also found higher levels of (presumably curator-mediated) inorganic mercury in older specimens of albatross as well as two nonpelagic species lacking historical exposure to bioavailable mercury, patterns suggesting that studies on bioaccumulation should measure methylmercury rather than total mercury when using museum collections. δ15N contributed substantially to models explaining the observed methylmercury variation. After simultaneously controlling for significant trends in δ13C over time and δ15N with methylmercury exposure, year remained a significant independent covariate with feather methylmercury levels among the albatrosses. These data show that remote seabird colonies in the Pacific basin exhibit temporal changes in methylmercury levels consistent with historical global and recent regional increases in anthropogenic emissions. PMID:21502496
Burke, Samantha M.; Zimmerman, Christian E.; Branfireun, Brian A.; Koch, Joshua C.; Swanson, Heidi K.
2018-01-01
The biogeochemical cycle of mercury will be influenced by climate change, particularly at higher latitudes. Investigations of historical mercury accumulation in lake sediments inform future predictions as to how climate change might affect mercury biogeochemistry; however, in regions with a paucity of data, such as the thermokarst-rich Arctic Coastal Plain of Alaska (ACP), the trajectory of mercury accumulation in lake sediments is particularly uncertain. Sediment cores from three thermokarst lakes on the ACP were analyzed to understand changes in, and drivers of, Hg accumulation over the past ~ 100 years. Mercury accumulation in two of the three lakes was variable and high over the past century (91.96 and 78.6 µg/m2/year), and largely controlled by sedimentation rate. Mercury accumulation in the third lake was lower (14.2 µg/m2/year), more temporally uniform, and was more strongly related to sediment Hg concentration than sedimentation rate. Sediment mercury concentrations were quantitatively related to measures of sediment composition and VRS-inferred chlorophyll a, and sedimentation rates were related to various catchment characteristics. These results were compared to data from 37 previously studied Arctic and Alaskan lakes. Results from the meta-analysis indicate that thermokarst lakes have significantly higher and more variable Hg accumulation rates than non-thermokarst lakes, suggesting that certain properties (e.g., thermal erosion, thaw slumping, low hydraulic conductivity) likely make lakes prone to high and variable Hg accumulation rates. Differences and high variability in Hg accumulation among high latitude lakes highlight the complexity of predicting future climate-related change impacts on mercury cycling in these environments.
Effect of radiofrequency radiation from Wi-Fi devices on mercury release from amalgam restorations.
Paknahad, Maryam; Mortazavi, S M J; Shahidi, Shoaleh; Mortazavi, Ghazal; Haghani, Masoud
2016-01-01
Dental amalgam is composed of approximately 50% elemental mercury. Despite concerns over the toxicity of mercury, amalgam is still the most widely used restorative material. Wi-Fi is a rapidly using local area wireless computer networking technology. To the best of our knowledge, this is the first study that evaluates the effect of exposure to Wi-Fi signals on mercury release from amalgam restorations. Standard class V cavities were prepared on the buccal surfaces of 20 non-carious extracted human premolars. The teeth were randomly divided into 2 groups (n = 10). The control group was stored in non-environment. The specimens in the experimental groups were exposed to a radiofrequency radiation emitted from standard Wi Fi devices at 2.4 GHz for 20 min. The distance between the Wi-Fi router and samples was 30 cm and the router was exchanging data with a laptop computer that was placed 20 m away from the router. The concentration of mercury in the artificial saliva in the groups was evaluated by using a cold-vapor atomic absorption Mercury Analyzer System. The independent t test was used to evaluate any significant differences in mercury release between the two groups. The mean (±SD) concentration of mercury in the artificial saliva of the Wi-Fi exposed teeth samples was 0.056 ± .025 mg/L, while it was only 0.026 ± .008 mg/L in the non-exposed control samples. This difference was statistically significant (P =0.009). Exposure of patients with amalgam restorations to radiofrequency radiation emitted from conventional Wi-Fi devices can increase mercury release from amalgam restorations.
Harada, M; Nakanishi, J; Konuma, S; Ohno, K; Kimura, T; Yamaguchi, H; Tsuruta, K; Kizaki, T; Ookawara, T; Ohno, H
1998-05-01
A total of 191 fishermen and their family (32-82 years) living in some mercury-polluted areas along the Shiranui Sea volunteered for the present study. They made a living by fishery and had formerly eaten the methyl mercury-contaminated fish and shellfish caught there. The questionnaire on subjective symptoms, fish eating habits, and past living history was conducted on the subjects. In addition, they were clinically examined in detail by several neurologists and scalp hair was collected. With six exceptions, all the 185 subjects showed a normal total mercury level in hair (<10 ppm). The ratio of methyl mercury to total mercury was 79-94% on the average for each group examined, suggesting indirect contamination (perhaps through the food chain). Despite their low mercury level in scalp hair, however, the subjects showed various neurological symptoms, particularly, sensory disturbance (such as the glove and stocking type), at a very high rate. Thus, it seems fair to state that, in addition to officially recognized Minamata disease patients, there still exist many people with atypical, slight Minamata disease on the coast of the Shiranui Sea. The current hair mercury level is not necessarily useful as a criterion for diagnosing chronic Minamata disease because of the long lapse of time. Copyright 1998 Academic Press.
Sorbents for the oxidation and removal of mercur
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry
A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbentmore » into the mercury contaminated gas stream are described.« less
Mercury Exposure and Heart Diseases
Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia
2017-01-01
Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104
Mercury Exposure and Heart Diseases.
Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia
2017-01-12
Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.
The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, andmore » the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.« less
JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas A. Erickson
2007-01-31
This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protectmore » human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.« less
Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System
NASA Technical Reports Server (NTRS)
Francisco, David R.; Low, Charles A., Jr.; Power, John L.
1988-01-01
An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.
Zhao, Lei; Qiu, Guangle; Anderson, Christopher W N; Meng, Bo; Wang, Dingyong; Shang, Lihai; Yan, Haiyu; Feng, Xinbin
2016-08-01
Understanding mercury (Hg) methylation/demethylation processes and the factors controlling methylmercury (MeHg) production within the rice paddy ecosystem of Hg mining areas is critical to assess the risk of MeHg contamination in rice grain. Two typical Hg-contaminated mining sites, a current-day artisanal site (Gouxi) and an abandoned site (Wukeng), were chosen in this study. We qualified the in situ specific methylation/demethylation rate constants in rice paddy soil during a complete rice-growing season. Our results demonstrate that MeHg levels in rice paddy soil were a function of both methylation and demethylation processes and the net methylation potential in the rice paddy soil reflected the measured MeHg production at any time point. Sulfate stimulating the activity of sulfate-reducing bacteria was a potentially important metabolic pathway for Hg methylation in rice paddies. We suggest that bioavailable Hg derived from new atmospheric deposition appears to be the primary factor regulating net MeHg production in rice paddies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ventura, Dora F; Costa, Marcelo T V; Costa, Marcelo F; Berezovsky, Adriana; Salomão, Solange R; Simões, Ana Luíza; Lago, Marcos; Pereira, Luiz H M Canto; Faria, Marcília A M; De Souza, John M; Silveira, Luiz Carlos L
2004-01-01
We evaluated the color vision of mercury-contaminated patients and investigated possible retinal origins of losses using electroretinography. Participants were retired workers from a fluorescent lamp industry diagnosed with mercury contamination (n = 43) and age-matched controls (n = 21). Color discrimination was assessed with the Cambridge Colour Test (CCT). Retinal function was evaluated by using the ISCEV protocol for full-field electroretinography (full-field ERG), as well as by means of multifocal electroretinography (mfERG). Color-vision losses assessed by the CCT consisted of higher color-discrimination thresholds along the protan, deutan, and tritan axes and significantly larger discrimination ellipses in mercury-exposed patients compared to controls. Full-field ERG amplitudes from patients were smaller than those of the controls for the scotopic response b-wave, maximum response, sum of oscillatory potentials (OPs), 30-Hz flicker response, and light-adapted cone response. OP amplitudes measured in patients were smaller than those of controls for O2 and O3. Multifocal ERGs recorded from ten randomly selected patients showed smaller N1-P1 amplitudes and longer latencies throughout the 25-deg central field. Full-field ERGs showed that scotopic, photopic, peripheral, and midperipheral retinal functions were affected, and the mfERGs indicated that central retinal function was also significantly depressed. To our knowledge, this is the first demonstration of retinal involvement in visual losses caused by mercury toxicity.
Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series
NASA Technical Reports Server (NTRS)
Frigeri, A.; Federico, C.; Pauselli, C.; Coradini, A.
2008-01-01
After 30 years, the planet Mercury is going to give us new information. The NASA MESSENGER [1] already made its first successful flyby on December 2007 while the European Space Agency and the Japanese Space Agency ISAS/JAXA are preparing the upcoming mission BepiColombo [2]. In order to contribute to current and future analyses on the geology of Mercury, we have started to work on the production of a single digital geologic map of Mercury derived from the merging process of the geologic maps of the Atlas of Mercury, produced by the United States Geological Survey, based on Mariner 10 data. The aim of this work is to merge the nine maps so that the final product reflects as much as possible the original work. Herein we describe the data we used, the working environment and the steps made for producing the final map.
Global Sources and Pathways of Mercury in the Context of Human Health
Sundseth, Kyrre; Pacyna, Jozef M.; Pacyna, Elisabeth G.; Pirrone, Nicola; Thorne, Rebecca J.
2017-01-01
This paper reviews information from the existing literature and the EU GMOS (Global Mercury Observation System) project to assess the current scientific knowledge on global mercury releases into the atmosphere, on global atmospheric transport and deposition, and on the linkage between environmental contamination and potential impacts on human health. The review concludes that assessment of global sources and pathways of mercury in the context of human health is important for being able to monitor the effects from implementation of the Minamata Convention targets, although new research is needed on the improvement of emission inventory data, the chemical and physical behaviour of mercury in the atmosphere, the improvement of monitoring network data, predictions of future emissions and speciation, and on the subsequent effects on the environment, human health, as well as the economic costs and benefits of reducing these aspects. PMID:28117743
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael D. Durham
PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmentalmore » Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its ability to capture vapor phase Hg, however activated carbon performed relatively well. At the normal operating temperatures of 298-306 F, mercury emissions from the ESP were so low that both particulate and elemental mercury were ''not detected'' at the detection limits of the Ontario Hydro method for both baseline and injection tests. The oxidized mercury however, was 95% lower at a sorbent injection concentration of 10 lbs/MMacf compared with baseline emissions. When the flue gas temperatures were increased to a range of 343-347 F, mercury removal efficiencies were limited to <25%, even at the same sorbent injection concentration. Other tests examined the impacts of fly ash LOI, operation of the SNCR system, and flue gas temperature on the native mercury capture without sorbent injection. Listed below are the main conclusions from this program: (1) SNCR on/off test showed no beneficial effect on mercury removal caused by the SNCR system. (2) At standard operating temperatures ({approx} 300 F), reducing LOI from 30-35% to 15-20% had minimal impact on Hg removal. (3) Increasing flue gas temperatures reduced Hg removal regardless of LOI concentrations at Salem Harbor (minimum LOI was 15%). Native mercury removal started to fall off at temperatures above 320 F. ACI effectiveness for mercury removal fell off at temperatures above 340 F. (4) Test method detection limits play an important role at Salem Harbor due to the low residual emissions. Examining the proposed MA rule, both the removal efficiency and the emission concentrations will be difficult to demonstrate on an ongoing basis. (5) Under tested conditions the baseline emissions met the proposed removal efficiency for 2006, but not the proposed emission concentration. ACI can meet the more-stringent 2012 emission limits, as long as measurement detection limits are lower than the Ontario Hydro method. SCEM testing was able to verify the low emissions. For ACI to perform at this level, process conditions need to match those obtained during testing.« less
NASA Astrophysics Data System (ADS)
Jin, Yan; Gao, Anran; Jin, Qinghui; Li, Tie; Wang, Yuelin; Zhao, Jianlong
2018-04-01
In this paper, ultra-sensitive and highly selective Hg2+ detection in aqueous solutions was studied by free-standing silicon nanowire (SiNW) sensors. The all-around surface of SiNW arrays was functionalized with (3-Mercaptopropyl)trimethoxysilane serving as Hg2+ sensitive layer. Due to effective electrostatic control provided by the free-standing structure, a detection limit as low as 1 ppt was obtained. A linear relationship (R 2 = 0.9838) between log(CHg2+ ) and a device current change from 1 ppt to 5 ppm was observed. Furthermore, the developed SiNW sensor exhibited great selectivity for Hg2+ over other heavy metal ions, including Cd2+. Given the extraordinary ability for real-time Hg2+ detection, the small size and low cost of the SiNW device, it is expected to be a potential candidate in field detection of environmentally toxic mercury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fearn, D.G.
The UK-10 ion thruster system is based closely on the 10 cm diameter T5 Kaufman-type thruster and its power conditioning and control system, which were developed during the 1970s for the North-South station-keeping application. The T5 device was designed to produce a thrust of 10 mN using mercury propellant. However, in the current work, mercury has been replaced by xenon to avoid any possibility of adverse chemical reactions with materials used in constructing spacecraft. In the previous phase of the program, it was shown that the system was fully suitable for its intended mission and that its integration into amore » spacecraft should present no difficulties. This paper reexamines that conclusion, bearing in mind the different physical characteristics of the new propellant. It is confirmed that the UK-10 system, using xenon, is compatible with the requirements of a wide range of applications. 31 references.« less
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME II. APPENDICES F-J
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
This publication is a preliminary announcement and call-for-abstracts for the 5/2001 Workshop on the Fate, Transport, and Transformation of Mercury in Aquatic and Terrestrial Environments. This workshop will 1) describe the current state of knowledge, gaps, and areas of consensus...
NASA Technical Reports Server (NTRS)
Wilbur, P. J.
1976-01-01
Improvements in 15 cm diameter, SERT II, mercury ion thruster performance effected by the use of SHAG optics at 33 V discharge voltage were discussed. At a 200 eV/ion discharge power, 90 percent propellant utilization and 660 mA beam current condition a doubly-to-singly charged ion current ratio of about 4 percent was measured. Performance of the 15 cm multipole mercury thruster (optimized for length and the point of electron injection) was compared to that of divergent (SERT II) and cusped field designs and found to be comparable. The need for a magnetic baffle in the multipole thruster was identified and the preferred point of electron injection was at the upstream end of the discharge chamber. Results of preliminary tests on the effects of discharge voltage and total accelerating voltage on perveance and beam divergence characteristics of two grid ion optics were examined. Experimental data showing the effect of target temperature on sputtering rates in a mercury discharge environment were presented and a deficiency in the tests procedure was identified.
Removal of mercury by adsorption: a review.
Yu, Jin-Gang; Yue, Bao-Yu; Wu, Xiong-Wei; Liu, Qi; Jiao, Fei-Peng; Jiang, Xin-Yu; Chen, Xiao-Qing
2016-03-01
Due to natural and production activities, mercury contamination has become one of the major environmental problems over the world. Mercury contamination is a serious threat to human health. Among the existing technologies available for mercury pollution control, the adsorption process can get excellent separation effects and has been further studied. This review is attempted to cover a wide range of adsorbents that were developed for the removal of mercury from the year 2011. Various adsorbents, including the latest adsorbents, are presented along with highlighting and discussing the key advancements on their preparation, modification technologies, and strategies. By comparing their adsorption capacities, it is evident from the literature survey that some adsorbents have shown excellent potential for the removal of mercury. However, there is still a need to develop novel, efficient adsorbents with low cost, high stability, and easy production and manufacture for practical utility.
Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua
2016-01-15
A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.
A Mass Balance for Mercury in the San Francisco Bay Area
MacLeod, Matthew; McKone, Thomas E.; Mackay, Don
2008-01-01
We develop and illustrate a general regional multi-species model that describes the fate and transport of mercury in three forms, elemental, divalent, and methylated, in a generic regional environment including air, soil, vegetation, water and sediment. The objectives of the model are to describes the fate of the three forms of mercury in the environment and determine the dominant physical sinks that remove mercury from the system. Chemical transformations between the three groups of mercury species are modeled by assuming constant ratios of species concentrations in individual environmental media. We illustrate and evaluate the model with an application to describe the fate and transport of mercury in the San Francisco Bay Area of California. The model successfully rationalizes the identified sources with observed concentrations of total mercury and methyl mercury in the San Francisco Bay Estuary. The mass balance provided by the model indicates that continental and global background sources control mercury concentrations in the atmosphere but loadings to water in the San Francisco Bay estuary are dominated by runoff from the Central Valley catchment and re-mobilization of contaminated sediments deposited during past mining activities. The model suggests that the response time of mercury concentrations in the San Francisco Bay estuary to changes in loadings is long, of the order of 50 years. PMID:16190232
Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina
2016-02-01
Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.
Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun
2018-05-14
At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-01-01
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723).DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321 etmore » seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations:Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho;Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
Final Long-Term Management and Storage of Elemental Mercury Environmental Impact Statement Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Pursuant to the Mercury Export Ban Act of 2008 (P.L. 110-414), DOE was directed to designate a facility or facilities for the long-term management and storage of elemental mercury generated within the United States. Therefore, DOE has analyzed the storage of up to 10,000 metric tons (11,000 tons) of elemental mercury in a facility(ies) constructed and operated in accordance with the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act (74 FR 31723). DOE prepared this Final Mercury Storage EIS in accordance with the National Environmental Policy Act of 1969 (NEPA), as amended (42 U.S.C. 4321more » et seq.), the Council on Environmental Quality (CEQ) implementing regulations (40 CFR 1500–1508), and DOE’s NEPA implementing procedures (10 CFR 1021) to evaluate reasonable alternatives for a facility(ies) for the long-term management and storage of elemental mercury. This Final Mercury Storage EIS analyzes the potential environmental, human health, and socioeconomic impacts of elemental mercury storage at seven candidate locations: Grand Junction Disposal Site near Grand Junction, Colorado; Hanford Site near Richland, Washington; Hawthorne Army Depot near Hawthorne, Nevada; Idaho National Laboratory near Idaho Falls, Idaho; Kansas City Plant in Kansas City, Missouri; Savannah River Site near Aiken, South Carolina; and Waste Control Specialists, LLC, site near Andrews, Texas. As required by CEQ NEPA regulations, the No Action Alternative was also analyzed as a basis for comparison. DOE intends to decide (1) where to locate the elemental mercury storage facility(ies) and (2) whether to use existing buildings, new buildings, or a combination of existing and new buildings. DOE’s Preferred Alternative for the long-term management and storage of mercury is the Waste Control Specialists, LLC, site near Andrews, Texas.« less
Special issue on mercury in Canada's North: summary and recommendations for future research.
Chételat, John; Braune, Birgit; Stow, Jason; Tomlinson, Scott
2015-03-15
Important scientific advances have been made over the last decade in identifying the environmental fate of mercury and the processes that control its cycling in the Canadian Arctic. This special issue includes a series of six detailed reviews that summarize the main findings of a scientific assessment undertaken by the Government of Canada's Northern Contaminants Program. It was the first assessment to focus exclusively on mercury pollution in the Canadian Arctic. Key findings, as detailed in the reviews, relate to sources and long-range transport of mercury to the Canadian Arctic, its cycling within marine, freshwater, and terrestrial environments, and its bioaccumulation in, and effects on, the biota that live there. While these accomplishments are significant, the complex nature of the mercury cycle continues to provide challenges in characterizing and quantifying the relationships of mercury sources and transport processes with mercury levels in biota and biological effects of mercury exposure. Of particular concern are large uncertainties in our understanding of the processes that are contributing to increasing mercury concentrations in some Arctic fish and wildlife. Specific recommendations are provided for future research and monitoring of the environmental impacts of anthropogenic mercury emissions, influences of climate change, and the effectiveness of mitigation strategies for mercury in the Canadian Arctic. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
New Mechanisms of Mercury Binding to Peat
NASA Astrophysics Data System (ADS)
Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.
2007-12-01
Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.
White Room - Mercury-Atlas (MA)-9 Prelaunch Activities - Astronauts Cooper and Shepard - Cape
1963-01-01
S63-03965 (1963) --- Astronauts Alan Shepard (left) and L. Gordon Cooper Jr.(in suit) check over the instrument panel from Mercury spacecraft #20. It contains the instruments necessary to monitor spacecraft systems and sequencing, the controls required to initiate primary sequences manually, and the necessary flight control displays. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-01-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-06-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
Clack, Herek L
2017-08-01
Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.
Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.
Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong
2017-10-01
Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.
2017-02-01
The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.
Tinkov, Alexey A; Skalnaya, Margarita G; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V
2014-12-01
The primary objective of the research is to estimate the dependence between hair mercury content, hair selenium, mercury-to-selenium ratio, serum lipid spectrum, and gamma-glutamyl transferase (GGT) activity in 63 adults (40 men and 23 women). Serum triglyceride (TG) concentration in the high-mercury group significantly exceeded the values obtained for low- and medium-mercury groups by 72 and 42 %, respectively. Serum GGT activity in the examinees from high-Hg group significantly exceeded the values of the first and the second groups by 75 and 28 %, respectively. Statistical analysis of the male sample revealed similar dependences. Surprisingly, no significant changes in the parameters analyzed were detected in the female sample. In all analyzed samples, hair mercury was not associated with hair selenium concentrations. Significant correlation between hair mercury content and serum TG concentration (r = 0.531) and GGT activity (r = 0.524) in the general sample of the examinees was detected. The respective correlations were observed in the male sample. Hair mercury-to-selenium ratios significantly correlated with body weight (r = 0.310), body mass index (r = 0.250), serum TG (r = 0.389), atherogenic index (r = 0.257), and GGT activity (r = 0.393). The same correlations were observed in the male sample. Hg/Se ratio in women did not correlate with the analyzed parameters. Generally, the results of the current study show the following: (1) hair mercury is associated with serum TG concentration and GGT activity in men, (2) hair selenium content is not related to hair mercury concentration, and (3) mercury-to-selenium ratio correlates with lipid spectrum parameters and GGT activity.
Mercury Mining in Mexico: I. Community Engagement to Improve Health Outcomes from Artisanal Mining.
Camacho, Andrea; Van Brussel, Evelyn; Carrizales, Leticia; Flores-Ramírez, Rogelio; Verduzco, Beatriz; Huerta, Selene Ruvalcaba-Aranda; Leon, Mauricio; Díaz-Barriga, Fernando
2016-01-01
Mercury is an element that cannot be destroyed and is a global threat to human and environmental health. In Latin America and the Caribbean, artisanal and small-scale gold mining represents the main source of mercury emissions, releases, and consumption. However, another source of concern is the primary production of mercury. In the case of Mexico, in the past 2 years the informal production of mercury mining has increased 10-fold. Considering this scenario, an intervention program was initiated to reduce health risks in the mining communities. The program's final goal is to introduce different alternatives in line to stop the mining of mercury, but introducing at the same time, a community-based development program. The aim of this study was to present results from a preliminary study in the community of Plazuela, located in the municipality of Peñamiller in the State of Queretaro, Mexico. Total mercury was measured in urine and environmental samples using atomic absorption spectrometry by cold vapor technique. Urine samples were collected from children aged 6-14 years and who had lived in the selected area from birth. Urine samples were also collected from miners who were currently working in the mine. To confirm the presence of mercury in the community, mining waste, water, soil, and sediment samples were collected from those high-risk areas identified by members of the community. Children, women, and miners were heavily exposed to mercury (urine samples); and in agreement, we registered high concentrations of mercury in soils and sediments. Considering these results and taking into account that the risk perception toward mercury toxicity is very low in the community (mining is the only economic activity), an integral intervention program has started. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, A.; Divoll, T.
2014-12-01
Miners in many countries use mercury as an amalgam to separate gold from river sediments. In the last twenty years the price of gold has risen and the number of small-scale, artisanal gold mining operations in the Amazon basin have also increased. The influx of mercury into natural river systems has detrimental consequences for the surrounding ecosystem and for organisms, particularly those at higher trophic levels. Toxic mercury levels have been shown to impair reproductive, neurological and behavioral functioning of organisms. I used bats (Chiroptera) as a mammalian model system to study mercury contamination and accumulation due to gold mining from field caught and museum collection specimens in Amazonian Perú and showed that: (1) Total mercury concentrations in Amazonian bat species have increased over time since the 1920's; (2) Bat species from sites with current active mining have higher concentrations of mercury than non-mining sites, with some species having levels exceeding those considered toxic for mammals; (3) Higher trophic levels of bats (piscivores and insectivores) bioaccumulate more mercury than bats of lower trophic levels (frugivores); (4) Bats located in present day uncontaminated sites have the same mercury levels as bats collected in the 1920's from the Amazon basin. The variety of bat feeding guilds allowed for a comparison of how mercury accumulation is affected by diet within one taxonomic order. The novel use of museum specimens allowed for a look back into the historical timeline of mercury contamination in the Amazon basin. Bats represent a new and exciting study system since, like humans, they are mammals and should therefore show similar neurochemical and behavioral responses to this toxic element.
Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography
NASA Astrophysics Data System (ADS)
Chen, Shuyue; Jiang, Xing; Lu, Guirong
2017-07-01
A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.
[Distribution characteristics of particulate mercury in aerosol in coastal city].
Zhang, Fu-Wang; Zhao, Jin-Ping; Chen, Jin-Sheng; Xu, Ya
2010-10-01
Particulate mercury, which is bound with aerosol in atmosphere, has a negative impact on human health and the environment, also plays an important role in the biogeochemical process of mercury. In this paper, taking southeast coastal city of Xiamen as research object, the PM2.5, PM10 and TSP were collected in residential, tourism, industrial area and background, respectively, during four seasons (October 2008-September 2009). RA-915 + mercury analyzer was employed to determinate mercury concentration in different size particle matters based on zeeman atomic absorption spectrometry. The results showed that the contents of particulate mercury in different size of aerosol during Winter, Spring were obviously higher than that of Summer, Autumn; the concentrations of particulate mercury in fine particle during Spring, Summer, Autumn and Winter were (51.46 +/- 19.28), (42.41 +/- 12.74), (38.38 +/- 6.08) and (127.23 +/- 33.70) pg/m3, respectively. The experimental data showed that the particulate mercury were mainly distributed in fine particles (PM2.5), which covered 42.48%-67.87%, and it can be concluded that the rate of particulate mercury enrichment in coarse particle was much lower than that of fine particle. The sequence of atmospheric particulate mercury concentration in different functional areas was: background < resident < tourism < industrial area < suburban; which showed characteristics of spatial distribution of particulate mercury was affected by the sampling location. On the whole, Xiamen had a low level of atmospheric particulate mercury; the enrichment of PM2.5 to particulate mercury was significantly higher than that of PM10 and TSP, and showed that fine particle pollution should be tightly controlled to reduce particulate mercury.
Velasco, Antonio; Arcega-Cabrera, Flor; Oceguera-Vargas, Ismael; Ramírez, Martha; Ortinez, Abraham; Umlauf, Gunther; Sena, Fabrizio
2016-09-01
Within the Global Mercury Observation System (GMOS) project, long-term continuous measurements of total gaseous mercury (TGM) were carried out by a monitoring station located at Celestun, Yucatan, Mexico, a coastal site along the Gulf of Mexico. The measurements covered the period from January 28th to October 17th, 2012. TGM data, at the Celestun site, were obtained using a high-resolution mercury vapor analyzer. TGM data show values from 0.50 to 2.82 ng/m(3) with an annual average concentration of 1.047 ± 0.271 ng/m(3). Multivariate analyses of TGM and meteorological variables suggest that TGM is correlated with the vertical air mass distribution in the atmosphere, which is influenced by diurnal variations in temperature and relative humidity. Diurnal variation is characterized by higher nighttime mercury concentrations, which might be influenced by convection currents between sea and land. The back trajectory analysis confirmed that local sources do not significantly influence TGM variations. This study shows that TGM monitoring at the Celestun site fulfills GMOS goals for a background site.
NASA Technical Reports Server (NTRS)
Mohler, L. R.; Styf, J. R.; Pedowitz, R. A.; Hargens, A. R.; Gershuni, D. H.
1997-01-01
Currently, the definitive diagnosis of chronic compartment syndrome is based on invasive measurements of intracompartmental pressure. We measured the intramuscular pressure and the relative oxygenation in the anterior compartment of the leg in eighteen patients who were suspected of having chronic compartment syndrome as well as in ten control subjects before, during, and after exercise. Chronic compartment syndrome was considered to be present if the intramuscular pressure was at least fifteen millimeters of mercury (2.00 kilopascals) before exercise, at least thirty millimeters of mercury (4.00 kilopascals) one minute after exercise, or at least twenty millimeters of mercury (2.67 kilopascals) five minutes after exercise. Changes in relative oxygenation were measured with use of the non-invasive method of near-infrared spectroscopy. In all patients and subjects, there was rapid relative deoxygenation after the initiation of exercise, the level of oxygenation remained relatively stable during continued exercise, and there was reoxygenation to a level that exceeded the pre-exercise resting level after the cessation of exercise. During exercise, maximum relative deoxygenation in the patients who had chronic compartment syndrome (mean relative deoxygenation [and standard error], -290 +/- 39 millivolts) was significantly greater than that in the patients who did not have chronic compartment syndrome (-190 +/- 10 millivolts) and that in the control subjects (-179 +/- 14 millivolts) (p < 0.05 for both comparisons). In addition, the interval between the cessation of exercise and the recovery of the pre-exercise resting level of oxygenation was significantly longer for the patients who had chronic compartment syndrome (184 +/- 54 seconds) than for the patients who did not have chronic compartment syndrome (39 +/- 19 seconds) and the control subjects (33 +/- 10 seconds) (p < 0.05 for both comparisons).
A downstream voyage with mercury
Heinz, Gary
2016-01-01
Retrospective essay for the Bulletin of Environmental Contamination and Toxicology.As I look back on my paper, “Effects of Low Dietary Levels of Methyl Mercury on Mallard Reproduction,” published in 1974 in the Bulletin of Environmental Contamination and Toxicology, a thought sticks in my mind. I realize just how much my mercury research was not unlike a leaf in a stream, carried this way and that, sometimes stalled in an eddy, restarted, and carried downstream at a pace and path that was not completely under my control. I was hired in 1969 by the Patuxent Wildlife Research Center to study the effects of environmental pollutants on the behavior of wildlife. A colleague was conducting a study on the reproductive effects of methylmercury on mallards (Anas platyrhynchos), and he offered to give me some of the ducklings. I conducted a pilot study, testing how readily ducklings approached a tape-recorded maternal call. Sample sizes were small, but the results suggested that ducklings from mercury-treated parents behaved differently than controls. That’s how I got into mercury research—pretty much by chance.
Impact of basin scale and time-weighted mercury metrics on intra-/inter-basin mercury comparisons
Paul Bradley; Mark E. Brigham
2016-01-01
Understanding anthropogenic and environmental controls on fluvial Mercury (Hg) bioaccumulation over global and national gradients can be challenging due to the need to integrate discrete-sample results from numerous small scale investigations. Two fundamental issues for such integrative Hg assessments are the wide range of basin scales for included studies and how well...
Characteristics of the optical radiation from Kaufman thrusters
NASA Technical Reports Server (NTRS)
Milder, N. L.; Sovey, J. S.
1971-01-01
The optical radiation from plasma discharges of electron-bombardment mercury-ion thrusters was investigated. Spectrographic measurements indicated that the discharge was composed primarily of mercury atoms and singly charged ions. Excitation spectra of doubly charged mercury ions was measured to obtain the fraction of such ions in the discharge. Accomplishments of spectroscopic measurements of a hollow cathode thruster included the identification of two diagnostic lines in the mercury spectrum and the interpretation of the spectral amplitudes in terms of a superposition of primary and Maxwellian electron distributions. Potential application of optical techniques to thruster control applications was also suggested by the measurements.
Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N
2017-04-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.
Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.
2017-01-01
Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054
Steckling, Nadine; Bose-O'Reilly, Stephan; Pinheiro, Paulo; Plass, Dietrich; Shoko, Dennis; Drasch, Gustav; Bernaudat, Ludovic; Siebert, Uwe; Hornberg, Claudia
2014-12-13
Artisanal small-scale gold mining (ASGM) is a poverty-driven activity practiced in over 70 countries worldwide. Zimbabwe is amongst the top ten countries using large quantities of mercury to extract gold from ore. This analysis was performed to check data availability and derive a preliminary estimate of disability-adjusted life years (DALYs) due to mercury use in ASGM in Zimbabwe. Cases of chronic mercury intoxication were identified following an algorithm using mercury-related health effects and mercury in human specimens. The sample prevalence amongst miners and controls (surveyed by the United Nations Industrial Development Organization in 2004 and the University of Munich in 2006) was determined and extrapolated to the entire population of Zimbabwe. Further epidemiological and demographic data were taken from the literature and missing data modeled with DisMod II to quantify DALYs using the methods from the Global Burden of Disease (GBD) 2004 update published by the World Health Organization (WHO). While there was no disability weight (DW) available indicating the relative disease severity of chronic mercury intoxication, the DW of a comparable disease was assigned by following the criteria 1) chronic condition, 2) triggered by a substance, and 3) causing similar health symptoms. Miners showed a sample prevalence of 72% while controls showed no cases of chronic mercury intoxication. Data availability is very limited why it was necessary to model data and make assumptions about the number of exposed population, the definition of chronic mercury intoxication, DW, and epidemiology. If these assumptions hold, the extrapolation would result in around 95,400 DALYs in Zimbabwe's total population in 2004. This analysis provides a preliminary quantification of the mercury-related health burden from ASGM based on the limited data available. If the determined assumptions hold, chronic mercury intoxication is likely to have been one of the top 20 hazards for population health in Zimbabwe in 2004 when comparing with more than 130 categories of diseases and injuries quantified in the WHO's GBD 2004 update. Improving data quality would allow more accurate estimates. However, the results highlight the need to reduce a burden which could be entirely avoided.
Anjum, Naser A; Ahmad, Iqbal; Válega, Mónica; Pacheco, Mário; Figueira, Etelvina; Duarte, Armando C; Pereira, Eduarda
2011-08-01
The dominance of a plant species in highly metal-contaminated areas reflects its tolerance or adaptability potential to these scenarios. Hence, plants with high adaptability and/or tolerance to exceptionally high metal-contaminated scenarios may help protect environmental degradation. The present study aimed to assess the strategies adopted by common reed, Phragmites australis for its dominance in highly mercury-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stand of Phragmites australis were collected in five replicates from mercury-free (reference) and contaminated sites during low tide between March 2006 and January 2007. The sediments’ physico-chemical traits, plant dry mass, uptake, partitioning, and transfer of mercury were evaluated during growing season (spring, summer, autumn, and winter) of P. australis. Redox potential and pH of the sediment around roots were measured in situ using a WTW-pH 330i meter. Dried sediments were incinerated for 4 h at 500°C for the estimation of organic matter whereas plant samples were oven-dried at 60°C till constant weight for plant dry mass determination. Mercury concentrations in sediments and plant parts were determined by atomic absorption spectrometry with thermal decomposition, using an advanced mercury analyzer (LECO 254) and maintaining the accuracy and precision of the analytical methodologies. In addition, mercury bioaccumulation and translocation factors were also determined to differentiate the accumulation of mercury and its subsequent translocation to plant parts in P. australis. P. australis root exhibited the highest mercury accumulation followed by rhizome and leaves during the reproductive phase (autumn). During the same phase, P. australis exhibited ≈5 times less mercury-translocation factor (0.03 in leaf) when compared with the highest mercury bioaccumulation factor for root (0.14). Moreover, seasonal variations differentially impacted the studied parameters. P. australis’ extraordinary ability to (a) pool the maximum mercury in its roots and rhizomes, (b) protect its leaf against mercury toxicity by adopting the mercury exclusion, and (c) adjust the rhizosphere-sediment environment during the seasonal changes significantly helps to withstand the highly mercury-contaminated Ria de Aveiro lagoon. The current study implies that P. australis has enough potential to be used for mercury stabilization and restoration of sediments/soils rich in mercury as well.
Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong
2015-12-01
To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.
Evers, David C; Keane, Susan Egan; Basu, Niladri; Buck, David
2016-11-01
The Minamata Convention on Mercury is a multilateral environmental agreement that obligates Parties to reduce or control sources of mercury pollution in order to protect human health and the environment. The Convention includes provisions on providing technical assistance and capacity building, particularly for developing countries and countries with economies in transition, to promote its effective implementation. Evaluating the effectiveness of the Convention (as required by Article 22) is a crucial component to ensure that it meets this objective. We describe an approach to measure effectiveness, which includes a suite of short-, medium-, and long-term metrics related to five major mercury control Articles in the Convention, as well as metrics derived from monitoring of mercury in the environment using select bioindicators, including people. The use of existing biotic Hg data will define spatial gradients (e.g., biological mercury hotspots), baselines to develop relevant temporal trends, and an ability to assess risk to taxa and human communities of greatest concern. We also recommend the development of a technical document that describes monitoring options for the Conference of Parties, to provide science-based standardized guidelines for collecting relevant monitoring information, as guided by Article 19. Copyright © 2016 Elsevier B.V. All rights reserved.
The fate of mercury in coal utilization byproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
William Aljoe; Thomas Feeley; James Murphy
2005-05-01
The US Department of Energy National Energy Technology Laboratory's (DOE/NETL's) research has helped to further scientific understanding of the environmental characteristics of coal-utilization by-products (CUBs) in both disposal and beneficial utilization applications. The following general observations can be drawn from results of the research that has been carried out to date: There appears to be only minimal mercury release to the environment in typical disposal or utilization applications for CUBs generated using activated carbon injection (ACI) control technologies; There appears to be only minimal mercury release to the environment in typical disposal and utilization applications for CUBs generated using wetmore » FGD control technologies. The potential release of mercury from wet FGD gypsum during the manufacture of wallboard is still under evaluation; The amount of mercury leached from CUB samples tested by DOE/NETL is significantly lower than the federal drinking water standards and water quality criteria for the protection of aquatic life; in many cases, leachate concentrations were below the standard test method detection limits. DOE/NETL will continue to partner with industry and other key stakeholders in carrying out research to better understand the fate of mercury and other trace elements in the byproducts from coal combustion. 16 refs., 6 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Zhuang; Christopher Martin; John Pavlish
2009-03-31
This project consisted of pilot-scale combustion testing with a representative Illinois basin coal to explore the multi-interactions of SO{sub 3}, mercury, selenium and arsenic. The parameters investigated for SO{sub 3} and mercury interactions included different flue gas conditions, i.e., temperature, moisture content, and particulate alkali content, both with and without activated carbon injection for mercury control. Measurements were also made to track the transformation of selenium and arsenic partitioning as a function of flue gas temperature through the system. The results from the mercury-SO{sub 3} testing support the concept that SO{sub 3} vapor is the predominant factor that impedes efficientmore » mercury removal with activated carbon in an Illinois coal flue gas, while H{sub 2}SO{sub 4} aerosol has less impact on activated carbon injection performance. Injection of a suitably mobile and reactive additives such as sodium- or calcium-based sorbents was the most effective strategy tested to mitigate the effect of SO{sub 3}. Transformation measurements indicate a significant fraction of selenium was associated with the vapor phase at the electrostatic precipitator inlet temperature. Arsenic was primarily particulate-bound and should be captured effectively with existing particulate control technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Wenqing; Chen, Yaowen; Huang, Yue
Objective: Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. Methods: A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteersmore » were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Results: Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18–3.98 μg/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12–1.63 μg/g). We also observed a higher over-limit ratio (>1 μg/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (β=0.299, P<0.001), and frequency of shellfish intake (β=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (β=−0.190, P=0.015) and whether house also served as e-waste workshop (β=−0.278, P=0.001). Conclusions: This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. -- Highlights: • Mercury levels in hair samples from Guiyu and risk factors were assessed. • The recruitments from Guiyu were exposed to high levels of mercury. • Primitive e-waste recycling resulted in high mercury exposure of local people.« less
Langeland, Aubrey L.; Hardin, Rebecca D.; Neitzel, Richard L.
2017-01-01
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)’s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco (Piaractus brachypomus) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities. PMID:28335439
Langeland, Aubrey L; Hardin, Rebecca D; Neitzel, Richard L
2017-03-14
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)'s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco ( Piaractus brachypomus ) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities.
CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME I. REPORT AND APPENDICES A-E
The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...
Anti-Icing Chitin Coating System Development
1990-10-30
medium. Second, antifouling paints must inhibit barnacles, algae and fungi destruction. Current paints contain TBT , cuprous oxide, mercury, water-soluble... TBT ) copolymer (Intersmooth SPC) erodes slowly but requires expensive hull preparation. Courtauld, Jotun, Kansai Paint and Chugoku Marine Paint...manufacturer TBT -free ablative paints. These paints, however, contain cuprous oxide, mercury, water-soluble acrylic organotin polymer or polysiloxane
Temporal and spatial distribution of waterborne mercury in a gold miner's river.
Picado, Francisco; Bengtsson, Göran
2012-10-26
We examined the spatial and temporal (hourly) variation of aqueous concentrations of mercury in a gold miner's river to determine factors that control transport, retention, and export of mercury. The mercury flux was estimated to account for episodic inputs of mercury through mining tailings, variations in flow rate, and the partitioning of mercury between dissolved and particulate phases. Water samples were collected upstream and downstream of two gold mining sites in the Artiguas river, Nicaragua. The samples were analyzed for dissolved and suspended mercury, total solids, dissolved organic carbon, and total iron in water. Water velocity was also measured at the sampling sites. We found that mercury was mainly transported in a suspended phase, with a temporal pattern of diurnal peaks corresponding to the amalgamation schedules at the mining plants. The concentrations decreased with distance from the mining sites, suggesting dilution by tributaries or sedimentation of particle-bound mercury. The lowest total mercury concentrations in the water were less than 0.1 μg l(-1) and the highest concentration was 5.0 μg l(-1). The mercury concentrations are below the present WHO guidelines of 6 μg l(-1) but are considered to lead to a higher risk to aquatic bacteria and fish in the stream than to humans. The aqueous concentrations exceed the hazard endpoints for both groups by a probability of about 1%. Particulate mercury accounted for the largest variation of mercury fluxes, whereas dissolved mercury made up most of the long-range transport along the stream. The estimated total mass of mercury retained due to sedimentation of suspended solids was 2.7 kg per year, and the total mass exported downstream from the mining area was 1.6 kg per year. This study demonstrates the importance of the temporal and spatial resolution of observations in describing the occurrence and fate of mercury in a river affected by anthropogenic activities.
Investigation of hollow cathode performance for 30-cm thrusters
NASA Technical Reports Server (NTRS)
Mirtich, M. J.
1973-01-01
A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, insert position, emission current, cathode temperature, orifice diameter, and mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes. The results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages are also presented.
Methyl Mercury Exposure at Niigata, Japan: Results of Neurological Examinations of 103 Adults
Maruyama, Kimio; Yorifuji, Takashi; Tsuda, Toshihide; Sekikawa, Tomoko; Nakadaira, Hiroto; Saito, Hisashi
2012-01-01
Background. Large-scale poisonings caused by methyl mercury (MeHg) have occurred in Japan (Minamata in the 1950s and Niigata in the 1960s) and Iraq (in the 1970s). The current WHO neurological risk standard for adult exposure (hair level: 50 μg/g) was based partly on evidence from Niigata which did not consider any cases who were diagnosed later and/or exposed to low level of MeHg (hair mercury level less than 50 μg/g). Methods. Early in the Niigata epidemic in June 1965 there were two extensive surveys. From these two surveys, we examined 103 adults with hair mercury measurement who consulted two medical institutions. We compared the prevalence and the distribution of neurological signs related to MeHg poisoning between exposure categories. Result. We found 48 subjects with neurological signs related to MeHg poisoning who had hair mercury concentration less than 50 μg/g. Among the neurological signs, sensory disturbance of the bilateral distal extremities was observed more frequently, followed by disequilibrium, hearing impairment, and ataxia, in groups with hair MeHg concentration both below 50 μg/g and over 50 μg/g. Conclusion. The present study suggests the possibility that exposure to MeHg at levels below the current WHO limits could cause neurologic signs, in particular, sensory disturbance. PMID:22888201
MERCURY SPECIATION AND CAPTURE
In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...
Analysis of Alternative Mercury Control Strategies
2005-01-01
This analysis responds to a September 14, 2004, request from Chairmen James M. Inhofe and George V. Voinovich asking the Energy Information Administration (EIA) to analyze the impacts of different approaches for removing mercury from coal-fired power plants.
Association between Blood Mercury Level and Visceral Adiposity in Adults
Park, Jong Suk; Ha, Kyoung Hwa; He, Ka
2017-01-01
Background Few studies have examined the association between mercury exposure and obesity. The aim of this study is to investigate the association between blood mercury concentrations and indices of obesity in adults. Methods A total of 200 healthy subjects, aged 30 to 64 years, who had no history of cardiovascular or malignant disease, were examined. Anthropometric and various biochemical profiles were measured. Visceral adipose tissue (VAT) was measured using dual-energy X-ray absorptiometry (DXA). Results All subjects were divided into three groups according to blood mercury concentrations. Compared with the subjects in the lowest tertile of mercury, those in the highest tertile were more likely to be male; were current alcohol drinkers and smokers; had a higher body mass index (BMI), waist circumference (WC), and VAT; had higher levels of blood pressure, fasting glucose, and insulin resistance; and consumed more fish. The blood mercury concentration was significantly associated with anthropometric parameters, showing relationships with BMI, WC, and VAT. After adjusting for multiple risk factors, the odds ratios (ORs) for high mercury concentration was significantly higher in the highest VAT tertile than in the lowest VAT tertile (OR, 2.66; 95% confidence interval, 1.05 to 6.62; P<0.05). Conclusion The blood mercury concentration was significantly associated with VAT in healthy adults. Further studies are warranted to confirm our findings. PMID:28029015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, T.; Sjostrom, S.; Smith, J.
1996-11-06
The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine themore » mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.« less
Arisawa, K; Takahashi, T; Nakano, A; Liu, X J; Saito, H; Takizawa, Y; Koba, T
2000-02-01
The purpose of this study was to evaluate the presence of exposure to inorganic mercury and its health effects among people living near a sewage sludge dumping site in Nagasaki Prefecture, Japan. In this area, sewage sludge and industrial waste have been dumped since 1975, and total mercury levels exceeding the water quality standards (0.0006-0.0020 mg/l) have been detected in seeping water and river water since July 1997. The population for the present study comprised 48 subjects (aged 11-91 years) living near a sewage sludge dumping site and 49 subjects (aged 10-82 years) living in a non-polluted area. In November and December 1998, subjective symptoms of inorganic mercury exposure, history of occupational exposure to inorganic mercury, frequency of fish intake, sources of drinking water and other health habits were inquired by a self-administered questionnaire. Total mercury and total protein levels and N-acetyl-beta-D-glucosaminidase (NAG) activity in morning urine specimens were also measured. Among males, the proportion of subjects who complained of tremor in the hands (P = 0.02) and increased irritability (P = 0.10) was higher in the polluted area than in the control area. In addition, the proportion of those who did not report being easily fatigued was lower in the polluted area than in the control area (P = 0.07). Among females there was no significant difference in the prevalence of self-reported symptoms related to the central nervous system disturbance between the two areas. After adjustment for gender and age using logistic regression analysis, the prevalence of increased irritability was significantly higher (P = 0.05) and the proportion of those who did not report being easily fatigued was significantly lower (P = 0.03) in the polluted area than in the control area. However, there was no significant difference in the geometric mean of urinary total mercury concentration (microgram/g creatinine) between the polluted area (0.66, 95% confidence interval [CI] 0.48-0.91 for men and 0.96, 95% CI 0.70-1.33 for women) and the control area (0.81, 95% CI 0.60-1.09 for men and 0.83, 95% CI 0.57-1.22 for women). There was no individual whose total mercury concentration in urine exceeded 30 micrograms/g creatinine, at which level of urinary total mercury toxic effects on the central nervous system have been reported in industrial workers. There was also no significant difference in the geometric means of urinary total protein level and NAG activity. There was no evidence of excessive exposure to inorganic mercury among residents in the polluted area. Thus, we concluded that the difference in the prevalence of subjective symptoms was not due to the direct effect of exposure to inorganic mercury. To prevent the contamination of water by taking measures against pollution sources, monitoring of the quality of drinking water, and finally to secure safe water supply by public waterworks are required.
Multi-decadal Dynamics of Mercury in a Complex Ecosystem
NASA Astrophysics Data System (ADS)
Levin, L.
2016-12-01
A suite of air quality and watershed models was applied to track the ecosystem contributions of mercury (Hg), as well as arsenic (As), and selenium (Se) from local and global sources to the San Juan River basin in the Four Corners region of the American Southwest. Long-term changes in surface water and fish tissue mercury concentrations were also simulated, out to the year 2074.Atmospheric mercury was modeled using a nested, spatial-scale modeling system comprising GEOS-Chem (global scale) and CMAQ-APT (national and regional) models. Four emission scenarios were modeled, including two growth scenarios for Asian mercury emissions. Results showed that the average mercury deposition over the San Juan basin was 21 µg/m2-y. Source contributions to mercury deposition range from 2% to 9% of total deposition prior to post-2016 U.S. controls for air toxics regulatory compliance. Most of the contributions to mercury deposition in the basin are from non-U.S. sources. Watershed simulations showed power plant contributions to fish tissue mercury never exceeded 0.035% during the 85-year model simulation period, even with the long-term growth in fish tissue mercury over that period. Local coal-fired power plants contributed relatively small fractions to mercury deposition (less than 4%) in the basin; background and non-U.S. anthropogenic sources dominated. Fish-tissue mercury levels are projected to increase through 2074 due to growth projections for non-U.S. emission sources. The most important contributor to methylmercury in the lower reaches of the watershed was advection of MeHg produced in situ at upstream headwater locations.
Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol
2018-03-01
Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2 at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assessing sorbent injection mercury control effectiveness in flue gas streams
Carey, T.R.; Richardson, C.F.; Chang, R.; Meserole, F.B.; Rostam-Abadi, M.; Chen, S.
2000-01-01
One promising approach for removing mercury from coal-fired, utility flue gas involves the direct injection of mercury sorbents. Although this method has been effective at removing mercury in municipal waste incinerators, tests conducted to date on utility coal-fired boilers show that mercury removal is much more difficult in utility flue gas. EPRI is conducting research to investigate mercury removal using sorbents in this application. Bench-scale, pilot-scale, and field tests have been conducted to determine the ability of different sorbents to remove mercury in simulated and actual flue gas streams. This paper focuses on recent bench-scale and field test results evaluating the adsorption characteristics of activated carbon and fly ash and the use of these results to develop a predictive mercury removal model. Field tests with activated carbon show that adsorption characteristics measured in the lab agree reasonably well with characteristics measured in the field. However, more laboratory and field data will be needed to identify other gas phase components which may impact performance. This will allow laboratory tests to better simulate field conditions and provide improved estimates of sorbent performance for specific sites. In addition to activated carbon results, bench-scale and modeling results using fly ash are presented which suggest that certain fly ashes are capable of adsorbing mercury.
Mercury removal from coal combustion flue gas by modified fly ash.
Xu, Wenqing; Wang, Hairui; Zhu, Tingyu; Kuang, Junyan; Jing, Pengfei
2013-02-01
Fly ash is a potential alternative to activated carbon for mercury adsorption. The effects of physicochemical properties on the mercury adsorption performance of three fly ash samples were investigated. X-ray fluorescence spectroscopy, X-ray photoelectron spectroscopy, and other methods were used to characterize the samples. Results indicate that mercury adsorption on fly ash is primarily physisorption and chemisorption. High specific surface areas and small pore diameters are beneficial to efficient mercury removal. Incompletely burned carbon is also an important factor for the improvement of mercury removal efficiency, in particular. The C-M bond, which is formed by the reaction of C and Ti, Si and other elements, may improve mercury oxidation. The samples modified with CuBr2, CuCl2 and FeCl3 showed excellent performance for Hg removal, because the chlorine in metal chlorides acts as an oxidant that promotes the conversion of elemental mercury (Hg0) into its oxidized form (Hg2+). Cu2+ and Fe3+ can also promote Hg0 oxidation as catalysts. HCl and O2 promote the adsorption of Hg by modified fly ash, whereas SO2 inhibits the Hg adsorption because of competitive adsorption for active sites. Fly ash samples modified with CuBr2, CuCl2 and FeCl3 are therefore promising materials for controlling mercury emissions.
Mercury: Reusable software application for Metadata Management, Data Discovery and Access
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James; Wilson, Bruce E.
2009-12-01
Mercury is a federated metadata harvesting, data discovery and access tool based on both open source packages and custom developed software. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. Mercury is itself a reusable toolset for metadata, with current use in 12 different projects. Mercury also supports the reuse of metadata by enabling searching across a range of metadata specification and standards including XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115. Mercury provides a single portal to information contained in distributed data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial and temporal searches across these metadata sources. One of the major goals of the recent redesign of Mercury was to improve the software reusability across the projects which currently fund the continuing development of Mercury. These projects span a range of land, atmosphere, and ocean ecological communities and have a number of common needs for metadata searches, but they also have a number of needs specific to one or a few projects To balance these common and project-specific needs, Mercury’s architecture includes three major reusable components; a harvester engine, an indexing system and a user interface component. The harvester engine is responsible for harvesting metadata records from various distributed servers around the USA and around the world. The harvester software was packaged in such a way that all the Mercury projects will use the same harvester scripts but each project will be driven by a set of configuration files. The harvested files are then passed to the Indexing system, where each of the fields in these structured metadata records are indexed properly, so that the query engine can perform simple, keyword, spatial and temporal searches across these metadata sources. The search user interface software has two API categories; a common core API which is used by all the Mercury user interfaces for querying the index and a customized API for project specific user interfaces. For our work in producing a reusable, portable, robust, feature-rich application, Mercury received a 2008 NASA Earth Science Data Systems Software Reuse Working Group Peer-Recognition Software Reuse Award. The new Mercury system is based on a Service Oriented Architecture and effectively reuses components for various services such as Thesaurus Service, Gazetteer Web Service and UDDI Directory Services. The software also provides various search services including: RSS, Geo-RSS, OpenSearch, Web Services and Portlets, integrated shopping cart to order datasets from various data centers (ORNL DAAC, NSIDC) and integrated visualization tools. Other features include: Filtering and dynamic sorting of search results, book-markable search results, save, retrieve, and modify search criteria.
Naugatuck, Conn. Incinerator to Control Mercury Emissions Under Settlement
Equipment to limit the amount of mercury pollution sent into the atmosphere will be installed at an incinerator owned by Naugatuck, Conn., if an agreement between the USEPA, the U.S. Department of Justice, the Borough of Naugatuck...
CONTROL TECHNOLOGY EXTRACTION OF MERCURY FROM GROUNDWATER IMMOBILIZED ALGAE
Bio-Recovery Systems, Inc. conducted a project under the Emerging Technology portion of the United States Environmental Protection Agency (EPAs) Superfund Innovative Technology Evaluation (SITE) Program to evaluate the ability of immobilized algae to adsorb mercury from contamina...
40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion unit uses activated carbon to control dioxins/furans or mercury emissions, you must meet three... feed rate (for example, screw feeder speed). (b) During each dioxins/furans and mercury stack test...
Removal of mercury bonded in residual glass from spent fluorescent lamps.
Rey-Raap, Natalia; Gallardo, Antonio
2013-01-30
The current technologies available for recycling fluorescent lamps do not completely remove the phosphor powder attached to the surface of the glass. Consequently, the glass contains the mercury diffused through the glass matrix and the mercury deposited in the phosphor powder that has not been removed during treatment at the recycling plant. A low-cost process, with just one stage, which can be used to remove the layer of phosphor powder attached to the surface of the glass and its mercury was studied. Several stirring tests were performed with different extraction mixtures, different liquid-solid ratios, and different agitation times. The value of the initial mercury concentration of the residual glass was 2.37 ± 0.50 μg/g. The maximum extraction percentage was 68.38%, obtained by stirring for 24 h with a liquid-solid ratio of 10 and using an extraction solution with 5% of an acid mixture prepared with HCl and HNO(3) at a ratio of 3:1 by volume. On an industrial scale the contact time could be reduced to 8 h without significantly lowering the percentage of mercury extracted. In fact, 64% of the mercury was extracted. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mercury mine drainage and processes that control its environmental impact
Rytuba, J.J.
2000-01-01
Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the pH range of 3.2-7.1 in streams impacted by mine drainage. The dissolved fraction of both mercury species is depleted and concentrated in iron oxyhydroxide such that the amount of iron oxyhydroxide in the water column reflects the concentration of mercury species. In streams impacted by mine drainage, mercury and methylmercury are transported and adsorbed onto particulate phases. During periods of low stream flow, fine-grained iron hydroxide sediment accumulates in the bed load of the stream and adsorbs mercury and methylmercury such that both forms of mercury become highly enriched in the iron oxyhydroxide sediment. During high-flow events, mercury- and methylmercury-enriched iron hydroxide sediment is transported into larger aquatic systems producing a high flux of bioavailable mercury. (C) 2000 Elsevier Science B.V.
Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes
Heinz, G.H.; Hoffman, D.J.
2003-01-01
Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.
Majlesi, Majid; Shekarforoush, Seyed Shahram; Ghaisari, Hamid Reza; Nazifi, Saeid; Sajedianfard, Javad; Eskandari, Mohammad Hadi
2017-09-01
The objective of this study was to evaluate the efficiency of probiotics (Lactobacillus plantarum and Bacillus coagulans) against mercury-induced toxicity using a rat model. Mercury (Hg) is a widespread heavy metal and was shown to be associated with various diseases. Forty-eight adult male Wistar rats were randomly divided into six groups (control, mercury-only, each probiotic-only, and mercury plus each probiotic group). Hg-treated groups received 10 ppm mercuric chloride, and probiotic groups were administrated 1 × 10 9 CFU of probiotics daily for 48 days. Levels of mercury were determined using cold vapor technique, and some biochemical factors (list like glutathione peroxidase (GPx), superoxide dismutase (SOD), creatinine, urea, bilirubin, alanine transaminase (ALT), and aspartate transaminase (AST)) were measured to evaluate changes in oxidative stress. Oral administration of either probiotic was found to provide significant protection against mercury toxicity by decreasing the mercury level in the liver and kidney and preventing alterations in the levels of GPx and SOD. Probiotic treatment generated marked reduction in the levels of creatinine, urea, bilirubin, ALT, and AST indicating the positive influence of the probiotics on the adverse effects of Hg in the body.
Mercury Levels in Locally Manufactured Mexican Skin-Lightening Creams
Peregrino, Claudia P.; Moreno, Myriam V.; Miranda, Silvia V.; Rubio, Alma D.; Leal, Luz O.
2011-01-01
Mercury is considered one of the most toxic elements for plants and animals. Nevertheless, in the Middle East, Asia and Latin America, whitening creams containing mercury are being manufactured and purchased, despite their obvious health risks. Due to the mass distribution of these products, this can be considered a global public health issue. In Mexico, these products are widely available in pharmacies, beauty aid and health stores. They are used for their skin lightening effects. The aim of this work was to analyze the mercury content in some cosmetic whitening creams using the cold vapor technique coupled with atomic absorption spectrometry (CV-AAS). A total of 16 skin-lightening creams from the local market were investigated. No warning information was noted on the packaging. In 10 of the samples, no mercury was detected. The mercury content in six of the samples varied between 878 and 36,000 ppm, despite the fact that the U.S. Food and Drug Administration (FDA) has determined that the limit for mercury in creams should be less than 1 ppm. Skin creams containing mercury are still available and commonly used in Mexico and many developing countries, and their contents are poorly controlled. PMID:21776243
NASA Astrophysics Data System (ADS)
Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.
2015-11-01
Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Korth, H.; Anderson, B. J.; Solomon, S. C.
2015-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Dewey, R. M.; Sarantos, M.
2016-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
Cusack, Leanne K; Eagles-Smith, Collin; Harding, Anna K; Kile, Molly; Stone, Dave
2017-07-01
Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.
2011-01-01
It was claimed by the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)) in a report to the EU-Commission that "....no risks of adverse systemic effects exist and the current use of dental amalgam does not pose a risk of systemic disease..." [1, available from: http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_016.pdf]. SCENIHR disregarded the toxicology of mercury and did not include most important scientific studies in their review. But the real scientific data show that: (a) Dental amalgam is by far the main source of human total mercury body burden. This is proven by autopsy studies which found 2-12 times more mercury in body tissues of individuals with dental amalgam. Autopsy studies are the most valuable and most important studies for examining the amalgam-caused mercury body burden. (b) These autopsy studies have shown consistently that many individuals with amalgam have toxic levels of mercury in their brains or kidneys. (c) There is no correlation between mercury levels in blood or urine, and the levels in body tissues or the severity of clinical symptoms. SCENIHR only relied on levels in urine or blood. (d) The half-life of mercury in the brain can last from several years to decades, thus mercury accumulates over time of amalgam exposure in body tissues to toxic levels. However, SCENIHR state that the half-life of mercury in the body is only "20-90 days". (e) Mercury vapor is about ten times more toxic than lead on human neurons and with synergistic toxicity to other metals. (f) Most studies cited by SCENIHR which conclude that amalgam fillings are safe have severe methodical flaws. PMID:21232090
Cusack, Leanne K.; Eagles-Smith, Collin A.; Harding, Anna K.; Kile, Molly; Stone, Dave
2017-01-01
Fish provide a valuable source of beneficial nutrients and are an excellent source of low fat protein. However, fish are also the primary source of methylmercury exposure in humans. Selenium often co-occurs with mercury and there is some evidence that selenium can protect against mercury toxicity yet States issue fish consumption advisories based solely on the risks that methylmercury pose to human health. Recently, it has been suggested the selenium: mercury molar ratio be considered in risk management. In order for agencies to utilize the ratio to set consumption guidelines, it is important to evaluate the variability in selenium and mercury in different fish species. We examined 10 different freshwater fish species found within the Columbia River Basin in order to determine the inter- and intra-specific variability in the selenium: mercury molar ratios and the selenium health benefit values. We found significant variation in selenium: mercury molar ratios. The mean molar ratios for each species were all above 1:1, ranging from 3.42:1 in Walleye to 27.2:1 in Chinook salmon. There was a positive correlation between both mercury and selenium with length for each fish species apart from yellow perch and rainbow trout. All species had health benefit values greater than 2. We observed considerable variability in selenium: mercury molar ratios within fish species collected in the Columbia River Basin. Although incorporating selenium: mercury molar ratios into fish consumption holds the potential for refining advisories and assessing the risk of methylmercury exposure, the current understanding of how these ratios apply is insufficient, and further understanding of drivers of variability in the ratios is needed.
Seasonality of mercury in the Atlantic marine boundary layer
NASA Astrophysics Data System (ADS)
Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.
2010-05-01
Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.
Carl P.J. Mitchell; Randall K. Kolka; Shawn Fraver
2012-01-01
A number of factors influence the amount of mercury (Hg) in forest floors and soils, including deposition, volatile emission, leaching, and disturbances such as fire. Currently the impact on soil Hg pools from other widespread forest disturbances such as blowdown and management practices like salvage logging are unknown. Moreover, ecological and biogeochemical...
Analysis of Strategies for Multiple Emissions from Electric Power SO2, NOX, CO2, Mercury and RPS
2001-01-01
At the request of the Subcommittee, the Energy Information Administration prepared an initial report that focused on the impacts of reducing power sector NOx, SO2, and CO2 emissions. The current report extends the earlier analysis to add the impacts of reducing power sector mercury emissions and introducing renewable portfolio standard (RPS) requirements.
A passive integrative sampler for mercury vapor in air and neutral mercury species in water
Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.
2000-01-01
A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress.
Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...
Mercury in Bituminous Coal Used in Polish Power Plants
NASA Astrophysics Data System (ADS)
Burmistrz, Piotr; Kogut, Krzysztof
2016-09-01
Poland is a country with the highest anthropogenic mercury emission in the European Union. According to the National Centre for Emissions Management (NCEM) estimation yearly emission exceeds 10 Mg. Within that approximately 56% is a result of energetic coal combustion. In 121 studied coal samples from 30 coal mines an average mercury content was 112.9 ppb with variation between 30 and 321 ppb. These coals have relatively large contents of chlorine and bromine. Such chemical composition is benefitial to formation of oxidized mercury Hg2+, which is easier to remove in Air Pollution Control Devices. The Hgr/Qir (mercury content to net calorific value in working state) ratio varied between 1.187 and 13.758 g Hg · TJ-1, and arithmetic mean was 4.713 g Hg · TJ-1. Obtained results are close to the most recent NCEM mercury emission factor of 1.498 g Hg · TJ-1. Value obtained by us is more reliable that emission factor from 2011 (6.4 g Hg · TJ-1), which caused overestimation of mercury emission from energetic coal combustion.
Simulation of mercury capture by sorbent injection using a simplified model.
Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping
2009-10-30
Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.
Liu, Zhouyang; Li, Can; Sriram, Vishnu; ...
2016-07-25
Linear combination fitting of the X-ray Absorption Near Edge Spectroscopy (XANES) was used to quantify oxidized mercury species over RuO 2/TiO 2 and Selective Catalytic Reduction (SCR) catalysts under different simulated flue gas conditions. Halogen gases play a major role in mercury oxidation. In the absence of halogen gas, elemental mercury can react with sulfur that is contained in both the RuO2/TiO2 and SCR catalysts to form HgS and HgSO 4. In the presence of HCl or HBr gas, HgCl 2 or HgBr 2 is the main oxidized mercury species. When both HCl and HBr gases are present, HgBr2 ismore » the preferred oxidation product and no HgCl 2 can be found. The formation of HgO and HgS cannot be neglected with or without halogen gas. Other simulated flue gas components such as NO, NH 3, SO 2 and CO 2 do not have significant effect on oxidized mercury speciation when halogen gas is present.« less
D'Amore, Francesco; Bencardino, Mariantonia; Cinnirella, Sergio; Sprovieri, Francesca; Pirrone, Nicola
2015-08-01
The overall goal of the on-going Global Mercury Observation System (GMOS) project is to develop a coordinated global monitoring network for mercury, including ground-based, high altitude and sea level stations. In order to ensure data reliability and comparability, a significant effort has been made to implement a centralized system, which is designed to quality assure and quality control atmospheric mercury datasets. This system, GMOS-Data Quality Management (G-DQM), uses a web-based approach with real-time adaptive monitoring procedures aimed at preventing the production of poor-quality data. G-DQM is plugged on a cyberinfrastructure and deployed as a service. Atmospheric mercury datasets, produced during the first-three years of the GMOS project, are used as the input to demonstrate the application of the G-DQM and how it identifies a number of key issues concerning data quality. The major issues influencing data quality are presented and discussed for the GMOS stations under study. Atmospheric mercury data collected at the Longobucco (Italy) station is used as a detailed case study.
Wang, Yuyu; Wang, Dazhi; Lin, Lin; Wang, Minghua
2015-01-01
Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming
2016-02-01
Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Shah, H.; Bannochie, C. J.
Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less
EDITORIAL: Mercury-free discharges for lighting
NASA Astrophysics Data System (ADS)
Haverlag, M.
2007-07-01
This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this special issue. These initiatives may in time offer realistic alternatives for mercury-containing discharge lamps as the efficiency gap with existing products is getting smaller. At the same time, new applications for radiation sources are becoming more important, and in some of them the presence of mercury has other disadvantages besides the environmental aspects. Since in most cases mercury is used in the form of a saturated vapour, the mercury pressure is dependent on the ambient temperature, which means that mercury-containing lamps often show a slow increase to the steady-state light output or a strongly reduced output in cold environments, which is undesirable in many applications. For this reason also, different options for light sources without mercury are being investigated, and a number of them can be found in this special issue. This collection of papers gives a good overview of the different technologies that are currently being investigated as alternatives to existing lamp technologies, and will surely inspire others to reduce the use of mercury for lighting applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Kent; Daniel, Anamary; Tachiev, Georgio
2013-07-01
In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less
Thygesen, Lau Caspar; Flachs, Esben Meulengracht; Hanehøj, Kirsten; Kjuus, Helge; Juel, Knud
2011-12-01
For many years an amalgam containing metallic mercury, which has been associated with neurological and renal diseases, has been used in dentistry. In this nationwide study we compared hospital admissions due to neurological and renal diseases among dentists and dental assistants to admissions in controls. This register-based cohort study included all Danish workers employed in dental clinics, general practitioners' clinics or lawyers' offices between 1964 and 2006. We compared dentists with general practitioners and lawyers, and dental assistants with medical secretaries, nurses and legal secretaries. We also compared dentists and dental assistants employed during periods with high occupational mercury exposure with dentists and dental assistants employed during periods with less mercury exposure. We followed all subjects in a nationwide register of hospital admissions. We analysed risk of neurological diseases, Parkinson's disease and renal diseases using a Cox regression model. The cohort consisted of 122,481 workers including 5371 dentists and 33,858 dental assistants. For neurological diseases, no association was observed for dental assistants, while for dentists an increasing risk for periods with less mercury exposure was observed. Among dental assistants, a negative association between employment length and risk of neurological disease was observed. Admissions for renal disease among dental assistants were increased during periods with less mercury exposure compared with controls. For dentists a non-significant increased risk was observed between employment length and renal disease risk. Our nationwide study does not indicate that occupational exposure to mercury increases the risk of hospital admissions for neurological, Parkinson's or renal diseases.
Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal
2015-03-01
Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.
Spatiotemporal patterns of mercury accumulation in lake sediments of western North America
Drevnick, Paul; Cooke, Colin A.; Barraza, Daniella; Blais, Jules M.; Coale, Kenneth; Cumming, Brian F.; Curtis, Chris; Das, Biplob; Donahue, William F.; Eagles-Smith, Collin A.; Engstrom, Daniel R.; Fitzgerald, William F.; Furl, Chad V.; Gray, John R.; Hall, Roland I.; Jackson, Togwell A.; Laird, Kathleen R.; Lockhart, W. Lyle; Macdonald, Robie W.; Mast, M. Alisa; Mathieu, Callie; Muir, Derek C.G.; Outridge, Peter; Reinemann, Scott; Rothenberg, Sarah E.; Ruiz-Fernandex, Ana Carolina; St. Louis, V.L.; Sanders, Rhea; Sanei, Hamed; Skierszkan, Elliott; Van Metre, Peter C.; Veverica, Timothy; Wiklund, Johan A.; Wolfe, Brent B.
2016-01-01
For the Western North America Mercury Synthesis, we compiled mercury records from 165 dated sediment cores from 138 natural lakes across western North America. Lake sediments are accepted as faithful recorders of historical mercury accumulation rates, and regional and sub-regional temporal and spatial trends were analyzed with descriptive and inferential statistics. Mercury accumulation rates in sediments have increased, on average, four times (4×) from 1850 to 2000 and continue to increase by approximately 0.2 μg/m2 per year. Lakes with the greatest increases were influenced by the Flin Flon smelter, followed by lakes directly affected by mining and wastewater discharges. Of lakes not directly affected by point sources, there is a clear separation in mercury accumulation rates between lakes with no/little watershed development and lakes with extensive watershed development for agricultural and/or residential purposes. Lakes in the latter group exhibited a sharp increase in mercury accumulation rates with human settlement, stabilizing after 1950 at five times (5×) 1850 rates. Mercury accumulation rates in lakes with no/little watershed development were controlled primarily by relative watershed size prior to 1850, and since have exhibited modest increases (in absolute terms and compared to that described above) associated with (regional and global) industrialization. A sub-regional analysis highlighted that in the ecoregion Northwestern Forest Mountains, <1% of mercury deposited to watersheds is delivered to lakes. Research is warranted to understand whether mountainous watersheds act as permanent sinks for mercury or if export of “legacy” mercury (deposited in years past) will delay recovery when/if emissions reductions are achieved.
Kwaansa-Ansah, E E; Basu, N; Nriagu, J O
2010-11-01
Total mercury concentrations in human hair and urine samples were determined to ascertain the extent of environmental and occupational mercury exposure in Dunkwa-On-Offin, a small scale gold mining area of the central-west region of Ghana. In all ninety-four (94) hair and urine samples comprising of forty (40) small scale miners and fifty-four (54) farmers were collected and analyzed for their total mercury levels using the cold vapour atomic absorption spectrometry. The hair total mercury concentrations ranged from 0.63 to 7.19 ug/g with a mean of 2.35 ± 1.58 ug/g for the farmers and 0.57-6.07 ug/g with a mean of 2.14 ± 1.53 ug/g for the small scale gold miners. There was no significant correlation between the total mercury concentration and the average weekly fish diet. The total mercury concentrations in urine of the miners were higher than those of the farmers and ranged from 0.32 to 3.62 ug/L with a mean of 1.23 ± 0.86 ug/L. The urine concentrations of farmers ranged from 0.075 to 2.31 ug/L with a mean of 0.69 ± 0.39 ug/L. Although the results indicate elevated internal dose of mercury the current levels of exposures do not appear to pose a significant health threat to the people.
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Mol, J H; Ramlal, J S; Lietar, C; Verloo, M
2001-06-01
The extent of mercury contamination in Surinamese food fishes due to small-scale gold mining was investigated by determination of the total mercury concentration in 318 freshwater fishes, 109 estuarine fishes, and 110 fishes from the Atlantic Ocean. High background levels were found in the piranha Serrasalmus rhombeus (0.35 microg Hg x g(-1) muscle tissue, wet mass basis) and the peacock cichlid Cichla ocellaris (0.39 microg x g(-1)) from the Central Suriname Nature Reserve. Average mercury levels in freshwater fishes were higher in piscivorous species than in nonpiscivorous species, both in potentially contaminated water bodies (0.71 and 0.19 microg x g(-1), respectively) and in the control site (0.25 and 0.04 microg x g(-1), respectively). Mercury concentrations in piscivorous freshwater fishes were significantly higher in rivers potentially affected by gold mining than in the control site. In 57% of 269 piscivorous freshwater fishes from potentially contaminated sites, mercury levels exceeded the maximum permissible concentration of 0.5 microg Hg x g(-1). The highest mercury concentrations (3.13 and 4.26 microg x g(-1)) were found in two piranhas S. rhombeus from the hydroelectric reservoir Lake Brokopondo. The high mercury levels in fishes from Lake Brokopondo were to some extent related to gold mining because fishes collected at eastern sites (i.e., close to the gold fields) showed significantly higher mercury concentrations than fishes from western localities. In the estuaries, mercury levels in ariid catfish (0.22 microg x g(-1)) and croakers (0.04-0.33 microg x g(-1)) were distinctly lower than those in piscivorous fishes from contaminated freshwater sites. In the isolated Bigi Pan Lagoon, the piscivores snook Centropomus undecimalis (0.04 microg x g(-1)) and tarpon Megalops atlanticus (0.03 microg x g(-1)) showed low mercury levels. Mercury levels were significantly higher in marine fishes than in estuarine fishes, even with the Bigi Pan fishes excluded. High mercury concentrations were found in the shark Mustelus higmani (0.71 microg x g(-1)), the crevalle jack Caranx hippos (1.17 microg x g(-1)), and the barracuda Sphyraena guachancho (0.39 microg x g(-1)), but also in nonpiscivorous species such as Calamus bajonado (0.54 microg x g(-1)), Haemulon plumieri (0.47 microg x g(-1)), and Isopisthus parvipinnis (0.48 microg x g(-1)). Mercury levels were positively correlated with the length of the fish in populations of the freshwater piscivores S. rhombeus, Hoplias malabaricus, and Plagioscion squamosissimus, in estuarine species (Arius couma, Cynoscion virescens, and Macrodon ancylodon), and in S. guachancho from the Atlantic Ocean. Copyright 2001 Academic Press.
Description of a 2.3 kW power transformer for space applications
NASA Technical Reports Server (NTRS)
Hansen, I.
1979-01-01
The principle features and special testing of a high voltage high power transformer designed and developed for space application are described. The transformer is operated in a series resonant inverter supplying beam power to a 30 cm mercury ion thruster. Electrical requirements include operation of 2.3 kW continuous power output, primary currents to 35 amps rms, and frequencies up to 20 kHz. High efficiency was obtained through detailed considerations of the tradeoffs available in core materials, wire selection, coil configurations and thermal control. A number of novel heat removal techniques are discussed which control the winding temperature using only the available conductive cooling.
A Review of Events That Expose Children to Elemental Mercury in the United States
Lee, Robin; Middleton, Dan; Caldwell, Kathleen; Dearwent, Steve; Jones, Steven; Lewis, Brian; Monteilh, Carolyn; Mortensen, Mary Ellen; Nickle, Richard; Orloff, Kenneth; Reger, Meghan; Risher, John; Rogers, Helen Schurz; Watters, Michelle
2009-01-01
Objective Concern for children exposed to elemental mercury prompted the Agency for Toxic Substances and Disease Registry and the Centers for Disease Control and Prevention to review the sources of elemental mercury exposures in children, describe the location and proportion of children affected, and make recommendations on how to prevent these exposures. In this review, we excluded mercury exposures from coal-burning facilities, dental amalgams, fish consumption, medical waste incinerators, or thimerosal-containing vaccines. Data sources We reviewed federal, state, and regional programs with information on mercury releases along with published reports of children exposed to elemental mercury in the United States. We selected all mercury-related events that were documented to expose (or potentially expose) children. We then explored event characteristics (i.e., the exposure source, location). Data synthesis Primary exposure locations were at home, at school, and at other locations such as industrial property not adequately remediated or medical facilities. Exposure to small spills from broken thermometers was the most common scenario; however, reports of such exposures are declining. Discussion and conclusions Childhood exposures to elemental mercury often result from inappropriate handling or cleanup of spilled mercury. The information reviewed suggests that most releases do not lead to demonstrable harm if the exposure period is short and the mercury is properly cleaned up. Recommendations Primary prevention should include health education and policy initiatives. For larger spills, better coordination among existing surveillance systems would assist in understanding the risk factors and in developing effective prevention efforts. PMID:19590676
CONTROL OF DIOXIN, FURAN, AND MERCURY EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS
There is a significant public and scientific concern over the potential risks of air pollution emissions from municipal waste combustors (MWCs). The primary pollutants of concern are polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), and mercury (Hg). Depending on...
[Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].
Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng
2015-12-01
To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.
Investigation of hollow cathode performance for 30-cm thrusters
NASA Technical Reports Server (NTRS)
Mirtich, M. J.
1973-01-01
A parametric investigation of 6.35 mm diameter mercury hollow cathodes was carried out in a bell jar. The parameters that were varied were the amount of initial emissive mix, the insert position, the emission current, the cathode temperature, the orifice diameter, and the mercury flow rate. Flow characteristic curves and performance as a function of time were obtained for the various cathodes of interest. Also presented are the results of a 3880 hr life test of a main cathode run at 15 amps emission current with no noticeable changes in keeper and collector voltages.
NASA Astrophysics Data System (ADS)
Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John
2011-12-01
Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosí and vicinity is at risk of adverse health effects from historical mercury contamination.
Surveillance of Total Mercury and Methylmercury Concentrations in Retail Fish.
Watanabe, Takahiro; Hayashi, Tomoko; Matsuda, Rieko; Akiyama, Hiroshi; Teshima, Reiko
2017-01-01
Most fish samples contain methylmercury, that the concentrations very greatly according to the fish species. To avoid the adverse health effects of methylmercury while retaining the benefits provided by fish consumption, it is important to select suitable fish species and to control the amount of the fish intake. We surveyed the concentrations of total mercury and methylmercury in 210 retail fish samples classified into 19 fish species by using validated analytical methods. The results of this survey were as follows. The total mercury and methylmercury concentrations were higher than 1 mg/kg in some samples of swordfish and bluefin tuna, which are large predatory fish species. In bluefin tuna and yellowtail, total mercury and methylmercury concentrations in farm-raised fish were lower than those in natural fish. There was a positive correlation between total mercury concentration and methylmercury concentration. Our results indicate that a cut-off value of 0.3 mg/kg total mercury in the screening of fish samples would increase the effectiveness of inspection.
Ni, Wenqing; Chen, Yaowen; Huang, Yue; Wang, Xiaoling; Zhang, Gairong; Luo, Jiayi; Wu, Kusheng
2014-01-01
Toxic heavy metals are released to the environment constantly from unregulated electronic waste (e-waste) recycling in Guiyu, China, and thus may contribute to the elevation of mercury (Hg) and other heavy metals levels in human hair. We aimed to investigate concentrations of mercury in hair from Guiyu and potential risk factors and compared them with those from a control area where no e-waste processing occurs. A total of 285 human hair samples were collected from three villages (including Beilin, Xianma, and Huamei) of Guiyu (n=205) and the control area, Jinping district of Shantou city (n=80). All the volunteers were administered a questionnaire regarding socio-demographic characteristics and other possible factors contributed to hair mercury concentration. Hair mercury concentration was analyzed by hydride generation atomic fluorescence spectrometry (AFS). Our results suggested that hair mercury concentrations in volunteers of Guiyu (median, 0.99; range, 0.18-3.98μg/g) were significantly higher than those of Jinping (median, 0.59; range, 0.12-1.63μg/g). We also observed a higher over-limit ratio (>1μg/g according to USEPA) in Guiyu than in Jinping (48.29% vs. 11.25%, P<0.001). Logistic regression model showed that the variables of living house also served as an e-waste workshop, work related to e-waste, family income, time of residence in Guiyu, the distance between home and waste incineration, and fish intake were associated with hair mercury concentration. After multiple stepwise regression analysis, in the Guiyu samples, hair mercury concentration was found positively associated with the time residence in Guiyu (β=0.299, P<0.001), and frequency of shellfish intake (β=0.184, P=0.016); and negatively associated with the distance between home and waste incineration (β=-0.190, P=0.015) and whether house also served as e-waste workshop (β=-0.278, P=0.001). This study investigated human mercury exposure and suggested elevated hair mercury concentrations in an e-waste recycling area, Guiyu, China. Living in Guiyu for a long time and work related to e-waste may primarily contribute to the high hair mercury concentrations. © 2013 Elsevier Inc. All rights reserved.
Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon.
Kim, Eun-Ah; Seyfferth, Angelia L; Fendorf, Scott; Luthy, Richard G
2011-01-01
An effective mercury removal method using polymer-coated activated carbon was studied for possible use in water treatment. In order to increase the affinity of activated carbon for mercury, a sulfur-rich compound, polysulfide-rubber (PSR) polymer, was effectively coated onto the activated carbon. The polymer was synthesized by condensation polymerization between sodium tetrasulfide and 1,2-dichloroethane in water. PSR-mercury interactions and Hg-S bonding were elucidated from x-ray photoelectron spectroscopy, and Fourier transform infra-red spectroscopy analyses. The sulfur loading levels were controlled by the polymer dose during the coating process and the total surface area of the activated carbon was maintained for the sulfur loading less than 2 wt%. Sorption kinetic studies showed that PSR-coated activated carbon facilitates fast reaction by providing a greater reactive surface area than PSR alone. High sulfur loading on activated carbon enhanced mercury adsorption contributing to a three orders of magnitude reduction in mercury concentration. μ-X-ray absorption near edge spectroscopic analyses of the mercury bound to activated carbon and to PSR on activated carbon suggests the chemical bond with mercury on the surface is a combination of Hg-Cl and Hg-S interaction. The pH effect on mercury removal and adsorption isotherm results indicate competition between protons and mercury for binding to sulfur at low pH. Copyright © 2010. Published by Elsevier Ltd.
Embryotoxic thresholds of mercury: estimates from individual mallard eggs
Heinz, G.H.; Hoffman, D.J.
2003-01-01
Eighty pairs of mallards (Anas platyrhynchos) were fed an uncontaminated diet until each female had laid 15 eggs. After each female had laid her 15th egg, the pair was randomly assigned to a control diet or diets containing 5, 10, or 20 ?g/g mercury as methylmercury until she had laid a second set of 15 eggs. There were 20 pairs in each group. After the second set of 15 eggs, the pair was returned to an uncontaminated diet, and the female was permitted to lay another 30 eggs. For those pairs fed the mercury diets, the even-numbered eggs were incubated and the odd-numbered eggs were saved for possible mercury analysis. Mercury in the even-numbered eggs was estimated as the average of what was in the neighboring odd-numbered eggs. Neurological signs of methylmercury poisoning were observed in ducklings that hatched from eggs containing as little as 2.3 ?g/g estimated mercury on a wet-weight basis, and deformities were seen in embryos from eggs containing about 1 ?g/g estimated mercury. Although embryo mortality was seen in eggs estimated to contain as little as 0.74 ?g/g mercury, there were considerable differences in the sensitivity of mallard embryos, especially from different parents, with some embryos surviving as much as 30 or more ?g/g mercury in the egg.
Evaluation of mercury contamination in Smilax myosotiflora herbal preparations.
Ang, Hooi-Hoon; Lee, Kheng-Leng
2007-01-01
The DCA (Drug Control Authority) of Malaysia implemented phase 3 registration of traditional medicines in January 1992 with special emphasis on the quality, efficacy, and safety of all dosage forms of these medicines. For this reason, a total of 100 herbal products containing Smilax myosotiflora were purchased in the Malaysian market and analyzed for mercury content, as mercury is a recognized reproductive toxicant. The products were analyzed using cold vapor atomic absorption spectrophotometry. It was found that 89% of the above products do not exceed 0.5 ppm of mercury. Heavy metal poisoning such as mercury has been associated with traditional medicines. Therefore, it is important that doctors and health care practitioners are aware of these risks and finding ways to minimize them, including questions pertaining to the use of these remedies during the routine taking of a patient's history.
Reconfigurable modular computer networks for spacecraft on-board processing
NASA Technical Reports Server (NTRS)
Rennels, D. A.
1978-01-01
The core electronics subsystems on unmanned spacecraft, which have been sent over the last 20 years to investigate the moon, Mars, Venus, and Mercury, have progressed through an evolution from simple fixed controllers and analog computers in the 1960's to general-purpose digital computers in current designs. This evolution is now moving in the direction of distributed computer networks. Current Voyager spacecraft already use three on-board computers. One is used to store commands and provide overall spacecraft management. Another is used for instrument control and telemetry collection, and the third computer is used for attitude control and scientific instrument pointing. An examination of the control logic in the instruments shows that, for many, it is cost-effective to replace the sequencing logic with a microcomputer. The Unified Data System architecture considered consists of a set of standard microcomputers connected by several redundant buses. A typical self-checking computer module will contain 23 RAMs, two microprocessors, one memory interface, three bus interfaces, and one core building block.
Pilot Jerrie Cobb Trains in the Multi-Axis Space Test Inertia Facility
1960-04-21
Jerrie Cobb prepares to operate the Multi-Axis Space Test Inertia Facility (MASTIF) inside the Altitude Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center to train Project Mercury pilots to bring a spinning spacecraft under control. An astronaut was secured in a foam couch in the center of the rig. The rig was then spun on three axes from 2 to 50 rotations per minute. The pilots were tested on each of the three axis individually, then all three simultaneously. The two controllers in Cobb’s hands activated the small nitrogen gas thrusters that were used to bring the MASTIF under control. A makeshift spacecraft control panel was set up in front of the trainee’s face. Cobb was one of several female pilots who underwent the skill and endurance testing that paralleled that of the Project Mercury astronauts. In 1961 Jerrie Cobb was the first female to pass all three phases of the Mercury Astronaut Program. NASA rules, however, stipulated that only military test pilots could become astronauts and there were no female military test pilots. The seven Mercury astronauts had taken their turns on the MASTIF in February and March 1960.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Carruth, M. R., Jr.
1979-01-01
The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben Hamida, M. B.; Charrada, K.
2012-06-15
This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.
Fast-acting self-healing metallic fuse.
NASA Technical Reports Server (NTRS)
Schwartz, F. C.; Renton, C. A.; Rabinovici, B.
1971-01-01
Description of a fast-acting nonmechanical self-healing mercury fuse capable of protecting a high current circuit or device from overcurrent fault damages. Basically the self-healing fuse consists of two enclosed mercury reservoirs connected by a fine capillary tube filled with mercury that serves as the fusing element. It is pointed out that a better understanding of the energy conversion process involved in the operation of the device could help explore other device configurations (such as a tapering geometry and use of magnetic field to drive the arc into the fuse wall on inductive loads, etc.) and thus extend the range of capabilities for this type of protective device.
Enhanced reproduction in mallards fed a low level of methylmercury: An apparent case of hormesis
Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.
2010-01-01
Breeding pairs of mallards (Anas platyrhynchos) were fed a control diet or a diet containing 0.5 mg/g mercury (Hg) in the form of methylmercury chloride. There were no effects of Hg on adult weights and no overt signs of Hg poisoning in adults. The Hg-containing diet had no effect on fertility of eggs, but hatching success of eggs was significantly higher for females fed 0.5 ??g/g Hg (71.8%) than for controls (57.5%). Survival of ducklings through 6 d of age was the same (97.8%) for controls and mallards fed 0.5 ??g/g mercury. However, the mean number of ducklings produced per female was significantly higher for the pairs fed 0.5 ??g/g Hg (21.4) than for controls (16.8). Although mercury in the parents' diet had no effect on mean duckling weights at hatching, ducklings from parents fed 0.5 mg/g Hg weighed significantly more (mean = 87.2 g) at 6 d of age than did control ducklings (81.0 g). The mean concentration of Hg in eggs laid by parents fed 0.5 ??g/g mercury was 0.81 ??g/g on a wet-weight basis. At this time, one cannot rule out the possibility that low concentrations of Hg in eggs may be beneficial, and this possibility should be considered when setting regulatory thresholds for methylmercury. ?? 2009 SETAC.
Separation of iodine from mercury containing scrubbing solutions
Burger, Leland L.; Scheele, Randall D.
1979-01-01
Radioactive iodines can be recovered from a nitric acid scrub solution containing mercuric nitrate by passing a current through the scrub solution to react the iodine with the mercuric nitrate to form mercuric iodate which precipitates out. The mercuric iodate can then be reacted to recover the radioiodine for further processing into a form suitable for long-term storage and to recover the mercury for recycling.
THE ADVANTAGE OF ILLINOIS COAL FOR FGD REMOVAL OF MERCURY
The paper gives results of an investigation conducted to characterize and modify mercury (Hg) speciation in Illinois coal combustion flue gas so that a Hg control strategy can be implemented in conventional flue gas desulfurization (FGD) units. Hg, in trace concentration in coal,...
Intra-storm variability and soluble fractionation was explored for summer-time rain events in Steubenville, Ohio to evaluate the physical processes controlling mercury (Hg) in wet deposition in this industrialized region. Comprehensive precipitation sample collection was conducte...
MONITORING THE RESPONSE TO CHANGING MERCURY DEPOSITION
There is a crucial need to document the impact and effectiveness of regulation of anthropogenic mercury (Hg) emissions on human, wildlife and ecosystem health to ascertain the need for further controls. The impact of elevated methylmercury (MeHg) levels in fish on human and wildl...
UPTAKE, TOXICITY, AND TROPHIC TRANSFER OF MERCURY IN A COASTAL DIATOM. (R824778)
The primary mechanisms controlling the accumulation of methylmercury and
inorganic mercury in aquatic food chains are not sufficiently understood.
Differences in lipid solubility alone cannot account for the predominance of
methylmercury in fish because inorganic m...
Report #2005-P-00003, February 3, 2005. Evidence indicates that EPA senior management instructed EPA staff to develop a Maximum Achievable Control Technology (MACT) standard for mercury that would result in national emissions of 34 tons annually.
Atmospheric mercury footprints of nations.
Liang, Sai; Wang, Yafei; Cinnirella, Sergio; Pirrone, Nicola
2015-03-17
The Minamata Convention was established to protect humans and the natural environment from the adverse effects of mercury emissions. A cogent assessment of mercury emissions is required to help implement the Minamata Convention. Here, we use an environmentally extended multi-regional input-output model to calculate atmospheric mercury footprints of nations based on upstream production (meaning direct emissions from the production activities of a nation), downstream production (meaning both direct and indirect emissions caused by the production activities of a nation), and consumption (meaning both direct and indirect emissions caused by final consumption of goods and services in a nation). Results show that nations function differently within global supply chains. Developed nations usually have larger consumption-based emissions than up- and downstream production-based emissions. India, South Korea, and Taiwan have larger downstream production-based emissions than their upstream production- and consumption-based emissions. Developed nations (e.g., United States, Japan, and Germany) are in part responsible for mercury emissions of developing nations (e.g., China, India, and Indonesia). Our findings indicate that global mercury abatement should focus on multiple stages of global supply chains. We propose three initiatives for global mercury abatement, comprising the establishment of mercury control technologies of upstream producers, productivity improvement of downstream producers, and behavior optimization of final consumers.
Leclerc, Maxime; Planas, Dolors; Amyot, Marc
2015-07-07
The uptake of mercury by microorganisms is a key step in the production of methylmercury, a biomagnifiable toxin. Mercury complexation by low-molecular-weight (LMW) thiols can affect its bioavailability and thus the production of methylmercury. Freshwater biofilms were sampled in the summer using artificial Teflon substrates submerged for over a year to allow natural community colonization in the littoral zone of a Boreal Shield lake. Inside biofilms, concentrations of different extracellular thiol species (thioglycolic acid, l-cysteine-l-glycine, cysteine, and glutathione) were up to 3 orders of magnitude greater than in the surrounding water column, potentially more readily controlling mercury speciation than in the water column. All biofilm thiols except thioglycolic acid were highly correlated to chlorophyll a, likely indicating an algal origin. Extracellular total mercury represented 3 ± 1% of all biofilm mercury and was preferentially found in the capsular fraction. Levels of LMW thiols of presumed algal origins were highly correlated with total mercury in the mobile colloidal fraction of biofilms. We propose that periphytic phototrophic microorganisms such as algae likely affect the bioavailability of mercury through the exudation of LMW thiols, and thus they may play a key role in the production of methylmercury in biofilms.
Puglisi, Ivana; Faedda, Roberto; Sanzaro, Vincenzo; Lo Piero, Angela R; Petrone, Goffredo; Cacciola, Santa O
2012-09-15
Filamentous fungi are very promising organisms in both the control and the reduction of the amount of heavy metal released by human and industrial activities. In particular, Trichoderma harzianum demonstrated to be tolerant towards different heavy metals, such as mercury and cadmium, even though the mechanism underlying this tolerance is not fully understood. By using a particular strategy of the suppression subtractive hybridization technique, we were able to identify in the strain IMI 393899 of T. harzianum eight different genes up-regulated in the presence of mercury II with respect to cadmium. Among the genes identified, a possible role in the tolerance mechanism could be envisaged for hydrophobin, due to its ability to dissolve hydrophobic molecules into aqueous media. We also show that IMI 393899 grows at the same rate of control culture in the presence of mercury I and that all eight genes isolated were also up-regulated in this condition. Copyright © 2012 Elsevier B.V. All rights reserved.
Artistic View of Mercury Astronaut Training
1959-10-21
This composite image includes a photograph of pilot Joe Algranti testing the Multi-Axis Space Test Inertia Facility (MASTIF) inside Altitude Wind Tunnel at NASA’s Lewis Research Center with other images designed to simulate the interior of a Mercury space capsule. As part of the space agency’s preparations for Project Mercury missions, the seven Mercury astronauts traveled to Cleveland in early 1960 to train on the MASTIF. Researchers used the device to familiarize the astronauts with the sensations of an out-of-control spacecraft. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. The astronauts used small nitrogen gas thrusters to bring the MASTIF under control. In the fall of 1959, prior to the astronauts’ visit, Lewis researcher James Useller and Algranti perfected and calibrated the MASTIF.
Mercury hazards from gold mining to humans, plants, and animals
Eisler, R.
2004-01-01
Mercury contamination of the environment from historical and ongoing mining practices that rely on mercury amalgamation for gold extraction is widespread. Contamination was particularly severe in the immediate vicinity of gold extraction and refining operations; however, mercury--especially in the form of water-soluble methylmercury--may be transported to pristine areas by rainwater, water currents, deforestation, volatilization, and other vectors. Examples of gold mining-associated mercury pollution are shown for Canada, the United States, Africa, China, the Philippines, Siberia, and South America. In parts of Brazil, for example, mercury concentrations in all abiotic materials, plants, and animals--including endangered species of mammals and reptiles--collected near ongoing mercury-amalgamation gold mining sites were far in excess of allowable mercury levels promulgated by regulatory agencies for the protection of human health and natural resources. Although health authorities in Brazil are unable to detect conclusive evidence of human mercury intoxication, the potential exists in the absence of mitigation for epidemic mercury poisoning of the mining population and environs. In the United States, environmental mercury contamination is mostly from historical gold mining practices, and portions of Nevada remain sufficiently mercury-contaminated to pose a hazard to reproduction of carnivorous fishes and fish-eating birds. Concentrations of total mercury lethal to sensitive representative natural resources range from 0.1 to 2.0 ug/L of medium for aquatic organisms; from 2200 to 31,000 ug/kg body weight (acute oral) and 4000 to 40,000 ug/kg (dietary) for birds; and from 100 to 500 ug/kg body weight (daily dose) and 1000 to 5000 ug/kg diet for mammals. Significant adverse sublethal effects were observed among selected aquatic species at water concentrations of 0.03 to 0.1 ug Hg/L. For some birds, adverse effects--mainly on reproduction--have been associated with total mercury concentrations (in ug/kg fresh weight) of 5000 in feather, 900 in egg, and 50 to 100 in diet; and with daily intakes of 640 ug/kg body weight. Sensitive nonhuman mammals showed significant adverse effects of mercury when daily intakes were 250 ug/kg body weight, when dietary levels were 1100 ug/kg, or when tissue concentrations exceeded 1100 ug/kg. Proposed mercury criteria for protection of aquatic life range from 0.012 ug/L for freshwater life to 0.025 ug/L for marine life; for birds, less than 100 ug/kg diet fresh weight; and for small mammals, less than 1100 ug/kg fresh weight diet. All of these proposed criteria provide, at best, minimal protection.
Rumayor, M; Diaz-Somoano, M; Lopez-Anton, M A; Martinez-Tarazona, M R
2015-01-01
The speciation of mercury is currently attracting widespread interest because the emission, transport, deposition and behaviour of toxic mercury species depend on its chemical form. The identification of these species in low concentrations is no easy task and it is even more complex in coal combustion products due to the fact that these products contain organic and mineral matter that give rise to broad peaks and make it difficult to carry out qualitative and quantitative analysis. In this work, a solution to this problem is proposed using a method based on thermal desorption. A sequential extraction procedure was employed for the comparison and validation of the method developed. Samples of fly ashes and soils were analyzed by both of these methods, and thermal desorption was found to be an appropriate technique for mercury speciation. Even in the case of low mercury contents, recovery percentages were close to 100%. The main mercury species identified in the samples studied were HgS and, to a lesser extent, HgO and HgSO4. In addition, although the presence of mercury complexes cannot be demonstrated, the desorption behaviour and sequential extraction results suggest that this element might be associated with the mineral matrix or with carbon particles in some of the solids. Copyright © 2014 Elsevier Ltd. All rights reserved.
Llop, Sabrina; Ibarlucea, Jesús; Sunyer, Jordi; Ballester, Ferran
2013-01-01
Exposure to high levels of mercury during vulnerable periods (such as pregnancy and childhood) may have serious consequences for cognitive development, as observed after acute poisoning episodes in Japan and Irak. The main source of mercury exposure in the general population is consumption of certain types of fish. There is growing concern about the possible neurotoxic effects of mercury, especially in younger children in populations where fish intake is moderate to high. The scientific evidence to date is inconclusive. In Spain, the Childhood and Environment (Infancia y Medio Ambiente [INMA]) project has provided information on levels of prenatal exposure to mercury among 1800 newborns from Valencia, Sabadell, Asturias and Guipúzcoa. In general, levels were high, being above the World Health Organization's recommended dose in 24% of children and above the recommended levels of the U.S. Environmental Protection Agency in 64%. However, the results did not indicate a significant association between prenatal mercury exposure and delayed cognitive development during the second year of life. Various agencies have developed recommendations on fish consumption for pregnant women and children, due to the presence of mercury. These recommendations should be strengthened, since there is general consensus among all regional and national public administrations that fish is an essential source of nutrients for development in the early stages of life. Copyright © 2012 SESPAS. Published by Elsevier Espana. All rights reserved.
Fate of Mercury in Synthetic Gypsum Used for Wallboard Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessica Marshall Sanderson
2006-06-01
This report presents and discusses results from Task 5 of the study ''Fate of Mercury in Synthetic Gypsum Used for Wallboard Production,'' performed at a full-scale commercial wallboard plant. Synthetic gypsum produced by wet flue gas desulfurization (FGD) systems on coal-fired power plants is commonly used in the manufacture of wallboard. The FGD process is used to control the sulfur dioxide emissions which would result in acid rain if not controlled. This practice has long benefited the environment by recycling the FGD gypsum byproduct, which is becoming available in increasing quantities, decreasing the need to landfill this material, and increasingmore » the sustainable design of the wallboard product. However, new concerns have arisen as recent mercury control strategies developed for power plants involve the capture of mercury in FGD systems. The objective of this study is to determine whether any mercury is released into the atmosphere when the synthetic gypsum material is used as a feedstock for wallboard production. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory (Cooperative Agreement DE-FC26-04NT42080), USG Corporation, and EPRI. USG Corporation is the prime contractor, and URS Group is a subcontractor. The project scope includes five discrete tasks, each conducted at various USG wallboard plants using synthetic gypsum from different FGD systems. The five tasks were to include (1) a baseline test, then variations representing differing power plant (2) emissions control configurations, (3) treatment of fine gypsum particles, (4) coal types, and (5) FGD reagent types. However, Task 5, which was to evaluate gypsum produced from an alternate FGD reagent, could not be conducted as planned. Instead, Task 5 was conducted at conditions similar to a previous task, Task 3, although with gypsum from an alternate FGD system. In this project, process stacks in the wallboard plant have been sampled using the Ontario Hydro method. The stack locations sampled for each task include a dryer for the wet gypsum as it enters the plant and a gypsum calciner. The stack of the dryer for the wet wallboard product was also tested as part of this task, and was tested as part of Tasks 1 and 4. Also at each site, in-stream process samples were collected and analyzed for mercury concentration before and after each significant step in wallboard production. The Ontario Hydro results, process sample mercury concentration data, and process data were used to construct mercury mass balances across the wallboard plants. Task 5 was conducted at a wallboard plant processing synthetic gypsum from a power plant that fires Eastern bituminous coal. The power plant is equipped with a selective catalytic reduction (SCR) system for NOX emissions control, but the SCR was bypassed during the time period the gypsum tested was produced. The power plant has a single-loop, open spray tower, limestone reagent FGD system, with forced oxidation conducted in a reaction tank integral with the FGD absorber. The FGD system has gypsum fines blow down as part of the dewatering step. Gypsum fines blow down is believed to be an important variable that impacts the amount of mercury in the gypsum byproduct and possibly its stability during the wallboard process. The results of the Task 5 stack testing, as measured by the Ontario Hydro method, detected that an average of 51% of the incoming mercury in the FGD gypsum was emitted during wallboard production. These losses were distributed as 2% or less each across the wet gypsum dryer and product wallboard dryer, and about 50% across the gypsum calciner. Emissions were similar to what Task 3 results showed, on both a percentage and a mass basis, for gypsum produced by a power plant firing bituminous coal and also having gypsum fines blow down as part of the FGD dewatering scheme. As was seen in the Task 1 through 4 results, most of the mercury detected in the stack testing on the wet gypsum dryer and kettle calciner was in the form of elemental mercury. In the wallboard dryer kiln, a more significant percentage of the mercury detected was in the oxidized form, particularly from the stack near the product discharge end of the kiln. However, this represented a very small percentage of the overall mercury loss.« less
Mercury accumulation in mallards fed methylmercury with or without added DDE
Heinz, G.H.
1987-01-01
Adult female mallards (Anas platyrhynchos) were fed a control diet or diets containing 1 ppm methylmercury chloride, 5 ppm methylmercury chloride, 1 ppm methylmercury chloride plus 5 ppm DDE, or 5 ppm methylmercury chloride plus 5 ppm DDE. The presence of DDE in the diet did not affect retention of mercury in breast muscle or eggs. There was a good correlation between the levels of mercury in the breast muscle of females and their eggs, and this correlation was unaffected by the presence of DDE in the diet. This correlation suggests that one could predict mercury levels in female mallards in the field when only eggs have been collected and vice versa.
Fatigue properties of type 316LN stainless steel in air and mercury
NASA Astrophysics Data System (ADS)
Strizak, J. P.; Tian, H.; Liaw, P. K.; Mansur, L. K.
2005-08-01
An extensive fatigue testing program on 316LN stainless steel was recently carried out to support the design of the mercury target container for the spallation neutron source (SNS) that is currently under construction at the Oak Ridge National Laboratory in the United States. The major objective was to determine the effects of mercury on fatigue behavior. The S- N fatigue behavior of 316LN stainless steel is characterized by a family of bilinear fatigue curves which are dependent on frequency, environment, mean stress and cold work. Generally, fatigue life increases with decreasing stress and levels off in the high cycle region to an endurance limit below which the material will not fail. For fully reversed loading as well as tensile mean stress loading conditions mercury had no effect on endurance limit. However, at higher stresses a synergistic relationship between mercury and cyclic loading frequency was observed at low frequencies. As expected, fatigue life decreased with decreasing frequency, but the response was more pronounced in mercury compared with air. As a result of liquid metal embrittlement (LME), fracture surfaces of specimens tested in mercury showed widespread brittle intergranular cracking as opposed to typical transgranular cracking for specimens tested in air. For fully reversed loading (zero mean stress) the effect of mercury disappeared as frequency increased to 10 Hz. For mean stress conditions with R-ratios of 0.1 and 0.3, LME was still evident at 10 Hz, but at 700 Hz the effect of mercury had disappeared ( R = 0.1). Further, for higher R-ratios (0.5 and 0.75) fatigue curves for 10 Hz showed no environmental effect. Finally, cold working (20%) increased tensile strength and hardness, and improved fatigue resistance. Fatigue behavior at 10 and 700 Hz was similar and no environmental effect was observed.
Matlock, Matthew M; Howerton, Brock S; Van Aelstyn, Mike A; Nordstrom, Fredrik L; Atwood, David A
2002-04-01
Mercury contamination in the Gold-Cyanide Process (GCP) is a serious health and environmental problem. Following the heap leaching of gold and silver ores with NaCN solutions, portions of the mercury-cyano complexes often adhere to the activated carbon (AC) used to extract the gold. During the electrowinning and retorting steps, mercury can be (and often is) emitted to the air as a vapor. This poses a severe health hazard to plant workers and the local environment. Additional concerns relate to the safety of workers when handling the mercury-laden AC. Currently, mercury treatment from the heap leach solution is nonexistent. This is due to the fact that chelating ligands which can effectively work under the adverse pH conditions (as present in the heap leachate solutions) do not exist. In an effort to economically and effectively treat the leachate solution prior to passing over the AC, a dipotassium salt of 1,3-benzenediamidoethanethiol (BDET2-) has been developed to irreversibly bind and precipitate the mercury. The ligand has proven to be highly effective by selectively reducing mercury levels from average initial concentrations of 34.5 ppm (parts per million) to 0.014 ppm within 10 min and to 0.008 ppm within 15 min. X-ray powder diffraction (XRD), proton nuclear magnetic resonance (1H NMR), Raman, and infrared (IR) spectroscopy demonstrate the formation of a mercury-ligand compound, which remains insoluble over pH ranges of 0.0-14.0. Leachate samples from an active gold mine in Peru have been analyzed using cold vapor atomic fluorescence (CVAF) and inductively coupled plasma optical emission spectroscopy (ICP-OES) for metal concentrations before and after treatment with the BDET2- ligand.
Exploring Mercury's Surface in UltraViolet from Orbit
NASA Astrophysics Data System (ADS)
Izenberg, N.
2017-12-01
The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.
Methyl Mercury Production In Tropical Hydromorphic Soils: Impact Of Gold Mining.
NASA Astrophysics Data System (ADS)
Guedron, S.; Charlet, L.; Harris, J.; Grimaldi, M.; Cossa, D.
2007-12-01
Artisanal alluvial gold mining is important in many tropical developing countries and several million people are involved worldwide. The dominant use of mercury for gold amalgamation in this activity leads to mercury accumulation in soils, to sediment contamination and to methyl mercury (MMHg) bioaccumulation along the food chain. In this presentation we will present recent data on methyl mercury production in hydromorphic soils and tailing ponds from a former gold mining area located in French Guiana (South America). Comparison of specific fluxes between a pristine sub watershed and the contaminated watershed shows that former mining activities lead to a large enhancement of dissolved and particulate MMHg emissions at least by a factor of 4 and 6, respectively. MMHg production was identified in sediments from tailing ponds and in surrounding hydromorphic soils. Moreover, interstitial soil water and tailing pond water profiles sampled in an experimental tailing pond demonstrate the presence of a large MMHg production in the suboxic areas. Both tailing ponds and hydromorphic soils present geochemical conditions that are favorable to bacterial mercury methylation (high soil Hg content, high aqueous ferric iron and dissolved organic carbon concentrations). Although sulfate-reducing bacteria have been described as being the principal mercury methylating bacteria, the positive correlation between dissolved MMHg and ferrous iron concentrations argue for a significant role of iron-reducing bacteria. Identifications by sequencing fragments of 16S rRNA from total soil DNA support these interpretations. This study demonstrates that current and past artisanal gold mining in the tropics lead to methyl mercury production in contaminated areas. As artisanal activities are increasing with increasing gold prices, the bio- magnification of methyl mercury in fish presents an increasing threat to local populations whose diet relies on fish consumption.
Database for content of mercury in Polish brown coal
NASA Astrophysics Data System (ADS)
Jastrząb, Krzysztof
2018-01-01
Poland is rated among the countries with largest level of mercury emission in Europe. According to information provided by the National Centre for Balancing and Management of Emissions (KOBiZE) more than 10.5 tons of mercury and its compounds were emitted into the atmosphere in 2015 from the area of Poland. Within the scope of the BazaHg project lasting from 2014 to 2015 and co-financed from the National Centre of Research and Development (NCBiR) a database was set up with specification of mercury content in Polish hard steam coal, coking coal and brown coal (lignite) grades. With regard to domestic brown coal the database comprises information on coal grades from Brown Coal Mines of `Bełchatów', `Adamów', `Turów' and `Sieniawa'. Currently the database contains 130 records with parameters of brown coal, where each record stands for technical analysis (content of moisture, ash and volatile particles), elemental analysis (CHNS), content of chlorine and mercury as well as net calorific value and combustion heat. Content of mercury in samples of brown coal grades under test ranged from 44 to 985 μg of Hg/kg with the average level of 345 μg of Hg/kg. The established database makes up a reliable and trustworthy source of information about content of mercury in Polish fossils. The foregoing details completed with information about consumption of coal by individual electric power stations and multiplied by appropriate emission coefficients may serve as the background to establish loads of mercury emitted into atmosphere from individual stations and by the entire sector of power engineering in total. It will also enable Polish central organizations and individual business entities to implement reasonable policy with respect of mercury emission into atmosphere.
Mercury-impacted scrap metal: Source and nature of the mercury.
Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P
2015-09-15
The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hg-impacted scrap. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chronic psychological effects of exposure to mercury vapour among chlorine-alkali plant workers.
Pranjić, N; Sinanović, O; Jakubović, R
2003-01-01
Quantitative assessment of nervous system function is essential in characterising the nature and extent of impairment in individuals experiencing symptoms following work-place mercury vapour exposure. The purpose of this study was the application of standardised tests of behavioural, psychomotor and memory function to understand the neuropsychological effects of mercury in occupationally exposed chlorine-alkali plant workers. The study comprised 45 workers at a chlorine-alkali plant with the mean age of 39.36 +/- 5.94 years, who had been exposed to daily inhalation of mercury vapour over long-term employment of 16.06 +/- 4.29 years. The cumulative mercury index was 155.32 +/- 95.02 micrograms/g creatinine, the mean of urinary mercury concentrations on the first day of the study was 119.50 +/- 157.24 micrograms/g creatinine, and the mean of urinary mercury concentrations 120 days after cessation of exposure was 21.70 +/- 26.07 micrograms/g creatinine. The analysis included tests of behavioural, psychomotor and memory function. The behavioural test battery consisted of: Environmental Worry Scale (EWS), Minnesota Modified Personal Inventory (MMPI-2), Purdue standard 25 minute test, and adapted, 10 minutes test, Bender's Visual-Motor Gestalt test (BGT), and Eysenck Personality Inventory (EPQ). The data were compared to a control group of 32 not directly exposed workers. In the mercury vapour exposed workers with relatively high level exposure to inorganic mercury vapour (TWA/TLV = 0.12 mg/m3/0.025 mg/m3) we identified somatic depression-hypochondria symptoms with higher scores for scales: hysteria (P < 0.001), schizoid and psycho-asthenia (MMPI-2). The mercury-exposed workers had introvert behaviour (EPQ, MMPI-2). The cognitive disturbances in mercury-exposed workers were identified as: concentration difficulty, psychomotor, perceptual and motor coordination disturbances, and brain effects. We identified fine tremor of the hands in 34 out of 45 mercury-exposed workers (BGT). The results point to a relationship between the duration of mercury exposure and the long-term, probably irreversible, psychological disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan Cao; Hongcang Zhou; Junjie Fan
Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, butmore » not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.« less
Lopez-Anton, M A; Ferrera-Lorenzo, N; Fuente, E; Díaz-Somoano, M; Suarez-Ruíz, I; Martínez-Tarazona, M R; Ruiz, B
2015-04-01
The aim of this study is to understand the different sorption behaviors of mercury species on activated carbons in the oxy-fuel combustion of coal and the effect of high quantities of water vapor on the retention process. The work evaluates the interactions between the mercury species and a series of activated carbons prepared from a macroalgae waste (algae meal) from the agar-agar industry in oxy-combustion atmospheres, focussing on the role that the high concentration of water in the flue gases plays in mercury retention. Two novel aspects are considered in this work (i) the impact of oxy-combustion gases on the retention of mercury by activated carbons and (ii) the performance of activated carbons prepared from biomass algae wastes for this application. The results obtained at laboratory scale indicate that the effect of the chemical and textural characteristics of the activated carbons on mercury capture is not as important as that of reactive gases, such as the SOx and water vapor present in the flue gas. Mercury retention was found to be much lower in the oxy-combustion atmosphere than in the O2+N2 (12.6% O2) atmosphere. However, the oxidation of elemental mercury (Hg0) to form oxidized mercury (Hg2+) amounted to 60%, resulting in an enhancement of mercury retention in the flue gas desulfurization units and a reduction in the amalgamation of Hg0 in the CO2 compression unit. This result is of considerable importance for the development of technologies based on activated carbon sorbents for mercury control in oxy-combustion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Knightes, Christopher D; Sunderland, Elsie M; Craig Barber, M; Johnston, John M; Ambrose, Robert B
2009-04-01
Management strategies for controlling anthropogenic mercury emissions require understanding how ecosystems will respond to changes in atmospheric mercury deposition. Process-based mathematical models are valuable tools for informing such decisions, because measurement data often are sparse and cannot be extrapolated to investigate the environmental impacts of different policy options. Here, we bring together previously developed and evaluated modeling frameworks for watersheds, water bodies, and food web bioaccumulation of mercury. We use these models to investigate the timescales required for mercury levels in predatory fish to change in response to altered mercury inputs. We model declines in water, sediment, and fish mercury concentrations across five ecosystems spanning a range of physical and biological conditions, including a farm pond, a seepage lake, a stratified lake, a drainage lake, and a coastal plain river. Results illustrate that temporal lags are longest for watershed-dominated systems (like the coastal plain river) and shortest for shallow water bodies (like the seepage lake) that receive most of their mercury from deposition directly to the water surface. All ecosystems showed responses in two phases: A relatively rapid initial decline in mercury concentrations (20-60% of steady-state values) over one to three decades, followed by a slower descent lasting for decades to centuries. Response times are variable across ecosystem types and are highly affected by sediment burial rates and active layer depths in systems not dominated by watershed inputs. Additional research concerning watershed processes driving mercury dynamics and empirical data regarding sediment dynamics in freshwater bodies are critical for improving the predictive capability of process-based mercury models used to inform regulatory decisions.
Carlson, Jenna R; Cristol, Daniel; Swaddle, John P
2014-10-01
Mercury is a widespread and persistent environmental contaminant that occurs in aquatic and terrestrial habitats. Recently, songbirds that forage from primarily terrestrial sources have shown evidence of bioaccumulation of mercury, but little research has assessed the effects of mercury on their health and fitness. There are many indications that mercury negatively affects neurological functioning, bioenergetics, and behavior through a variety of mechanisms and in a wide array of avian taxa. Effective flight is crucial to avian fitness and feather molt is an energetically expensive life history trait. Therefore, we investigated whether mercury exposure influenced flight performance and molt in a common songbird, the European starling (Sturnus vulgaris). Specifically, we dosed the diet of captive starlings with methylmercury cysteine at 0.0, 0.75, or 1.5 μg/g wet weight and recorded changes in flight performance after 1 year of dietary mercury exposure. We also recorded the annual molt of wing feathers. We found that individuals dosed with mercury exhibited decreased escape takeoff flight performance compared with controls and blood mercury was also correlated with an increased rate of molt, which can reduce flight performance and thermoregulatory ability. This study reveals two novel endpoints, flight performance and molt, that may be affected by dietary mercury exposure. These findings suggest a potential impact on wild songbirds exposed to mercury levels comparable to the high dosage levels in the present study. Any decrease in flight efficiency could reduce fitness due to a direct impact on survival during predation events or by decreased efficiency in other critical activities (such as foraging or migration) that require efficient flight.
PILOT PLANT TESTING OF ELEMENTAL MERCURY RE-EMISSION FROM WET SCRUBBERS
A pilot-scale wet lime/limestone flue gas desulfurization scrubber system was designed to conduct mercury emission control research. The first tests focused on investigating the phenomenon of Hgo re-emission from wet scrubbers with a specific objective of developing a Hgo re-emis...
NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS
A novel economical oxidant has been developed for elemental mercury (Hg(0)) removal from coal-fired boilers. The oxidant was rigorously tested in a lab-scale fixed-bed system with the Norit America's FGD activated carbon (DOE's benchmark sorbent) in a typical PRB subbituminous/l...
NOVEL OXIDANT FOR ELEMENTAL MERCURY CONTROL FROM FLUE GAS
The primary objective of this study is to develop and test advanced noncarbonaceous solid sorbent materials suitable for removing the elemental form of mercury from power plant emissions. An efficient and cost-effective novel Hg(0) oxidant was evaluated in a lab-scale fixed-bed ...
STATUS OF RESEARCH ON AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER. (R827649)
The Air Quality Conference reviewed the state of science and policy on the pollutants mercury, trace elements, and particulate matter (PM) in the environment. Critical issues dealing with impacts on health and ecosystems, emission prevention and control, measurement methods, a...
This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Rus...