Fundamental Algorithms of the Goddard Battery Model
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1985-01-01
The Goddard Space Flight Center (GSFC) is currently producing a computer model to predict Nickel Cadmium (NiCd) performance in a Low Earth Orbit (LEO) cycling regime. The model proper is currently still in development, but the inherent, fundamental algorithms (or methodologies) of the model are defined. At present, the model is closely dependent on empirical data and the data base currently used is of questionable accuracy. Even so, very good correlations have been determined between model predictions and actual cycling data. A more accurate and encompassing data base has been generated to serve dual functions: show the limitations of the current data base, and be inbred in the model properly for more accurate predictions. The fundamental algorithms of the model, and the present data base and its limitations, are described and a brief preliminary analysis of the new data base and its verification of the model's methodology are presented.
NASA Technical Reports Server (NTRS)
Thottappillil, Rajeev; Uman, Martin A.; Diendorfer, Gerhard
1991-01-01
Compared here are the calculated fields of the Traveling Current Source (TCS), Modified Transmission Line (MTL), and the Diendorfer-Uman (DU) models with a channel base current assumed in Nucci et al. on the one hand and with the channel base current assumed in Diendorfer and Uman on the other hand. The characteristics of the field wave shapes are shown to be very sensitive to the channel base current, especially the field zero crossing at 100 km for the TCS and DU models, and the magnetic hump after the initial peak at close range for the TCS models. Also, the DU model is theoretically extended to include any arbitrarily varying return stroke speed with height. A brief discussion is presented on the effects of an exponentially decreasing speed with height on the calculated fields for the TCS, MTL, and DU models.
Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a
Webb, Lucy
2012-07-01
This article reviews key arguments around evidence-based practice and outlines the methodological demands for effective adoption of recovery model principles. The recovery model is outlined and demonstrated as compatible with current needs in substance misuse service provision. However, the concepts of evidence-based practice and the recovery model are currently incompatible unless the current value system of evidence-based practice changes to accommodate the methodologies demanded by the recovery model. It is suggested that critical health psychology has an important role to play in widening the scope of evidence-based practice to better accommodate complex social health needs.
Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits
ERIC Educational Resources Information Center
Hirvonen, P. E.
2007-01-01
This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…
The Earth's magnetosphere modeling and ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace
An efficient current-based logic cell model for crosstalk delay analysis
NASA Astrophysics Data System (ADS)
Nazarian, Shahin; Das, Debasish
2013-04-01
Logic cell modelling is an important component in the analysis and design of CMOS integrated circuits, mostly due to nonlinear behaviour of CMOS cells with respect to the voltage signal at their input and output pins. A current-based model for CMOS logic cells is presented, which can be used for effective crosstalk noise and delta delay analysis in CMOS VLSI circuits. Existing current source models are expensive and need a new set of Spice-based characterisation, which is not compatible with typical EDA tools. In this article we present Imodel, a simple nonlinear logic cell model that can be derived from the typical cell libraries such as NLDM, with accuracy much higher than NLDM-based cell delay models. In fact, our experiments show an average error of 3% compared to Spice. This level of accuracy comes with a maximum runtime penalty of 19% compared to NLDM-based cell delay models on medium-sized industrial designs.
The Dynamics of the Law of Effect: A Comparison of Models
ERIC Educational Resources Information Center
Navakatikyan, Michael A.; Davison, Michael
2010-01-01
Dynamical models based on three steady-state equations for the law of effect were constructed under the assumption that behavior changes in proportion to the difference between current behavior and the equilibrium implied by current reinforcer rates. A comparison of dynamical models showed that a model based on Navakatikyan's (2007) two-component…
Individual differences in transcranial electrical stimulation current density
Russell, Michael J; Goodman, Theodore; Pierson, Ronald; Shepherd, Shane; Wang, Qiang; Groshong, Bennett; Wiley, David F
2013-01-01
Transcranial electrical stimulation (TCES) is effective in treating many conditions, but it has not been possible to accurately forecast current density within the complex anatomy of a given subject's head. We sought to predict and verify TCES current densities and determine the variability of these current distributions in patient-specific models based on magnetic resonance imaging (MRI) data. Two experiments were performed. The first experiment estimated conductivity from MRIs and compared the current density results against actual measurements from the scalp surface of 3 subjects. In the second experiment, virtual electrodes were placed on the scalps of 18 subjects to model simulated current densities with 2 mA of virtually applied stimulation. This procedure was repeated for 4 electrode locations. Current densities were then calculated for 75 brain regions. Comparison of modeled and measured external current in experiment 1 yielded a correlation of r = .93. In experiment 2, modeled individual differences were greatest near the electrodes (ten-fold differences were common), but simulated current was found in all regions of the brain. Sites that were distant from the electrodes (e.g. hypothalamus) typically showed two-fold individual differences. MRI-based modeling can effectively predict current densities in individual brains. Significant variation occurs between subjects with the same applied electrode configuration. Individualized MRI-based modeling should be considered in place of the 10-20 system when accurate TCES is needed. PMID:24285948
Automated visualization of rule-based models
Tapia, Jose-Juan; Faeder, James R.
2017-01-01
Frameworks such as BioNetGen, Kappa and Simmune use “reaction rules” to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models. PMID:29131816
Physics-based Control-oriented Modeling of the Current Profile Evolution in NSTX-Upgrade
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Shi, Wenyu; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2013-10-01
The operational goals for the NSTX-Upgrade device include non-inductive sustainment of high- β plasmas, realization of the high performance equilibrium scenarios with neutral beam heating, and achievement of longer pulse durations. Active feedback control of the current profile is proposed to enable these goals. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards feedback control design is the development of a physics-based, control-oriented model for the current profile evolution in response to non-inductive current drives and heating systems. For this purpose, the nonlinear magnetic-diffusion equation is coupled with empirical models for the electron density, electron temperature, and non-inductive current drives (neutral beams). The resulting first-principles-driven, control-oriented model is tailored for NSTX-U based on the PTRANSP predictions. Main objectives and possible challenges associated with the use of the developed model for control design are discussed. This work was supported by PPPL.
Evidence-based dentistry: a clinician's perspective.
Bauer, Janet; Spackman, Sue; Chiappelli, Francesco; Prolo, Paolo; Stevenson, Richard
2006-07-01
Evidence-based dentistry is a discipline that provides best, explicit-based evidence to dentists and their patients in shared decision-making. Currently, dentists are being trained and directed to adopt the role of translational researchers in developing evidence-based dental practices. Practically, evidence-based dentistry is not usable in its current mode for the provision of labor-intensive services that characterize current dental practice. The purpose of this article is to introduce a model of evidence-based dental practice. This model conceptualizes a team approach in explaining problems and solutions to change current dental practice. These changes constitute an evidence-based dental practice that involves the electronic chart, centralized database, knowledge management software, and personnel in optimizing effective oral health care to dental patients.
Current Source Based on H-Bridge Inverter with Output LCL Filter
NASA Astrophysics Data System (ADS)
Blahnik, Vojtech; Talla, Jakub; Peroutka, Zdenek
2015-09-01
The paper deals with a control of current source with an LCL output filter. The controlled current source is realized as a single-phase inverter and output LCL filter provides low ripple of output current. However, systems incorporating LCL filters require more complex control strategies and there are several interesting approaches to the control of this type of converter. This paper presents the inverter control algorithm, which combines model based control with a direct current control based on resonant controllers and single-phase vector control. The primary goal is to reduce the current ripple and distortion under required limits and provides fast and precise control of output current. The proposed control technique is verified by measurements on the laboratory model.
Circulation-based Modeling of Gravity Currents
NASA Astrophysics Data System (ADS)
Meiburg, E. H.; Borden, Z.
2013-05-01
Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related phenomena, J. Fluid Mech. 31, 209-248. Shin, J.O., Dalziel, S.B. and Linden, P.F. 2004 Gravity currents produced by lock exchange, J. Fluid Mech. 521, 1-34.
NASA Astrophysics Data System (ADS)
Yu, Fei; Ma, Xiaoyu; Deng, Wanling; Liou, Juin J.; Huang, Junkai
2017-11-01
A physics-based drain current compact model for amorphous InGaZnO (a-InGaZnO) thin-film transistors (TFTs) is proposed. As a key feature, the surface potential model accounts for both exponential tail and deep trap densities of states, which are essential to describe a-InGaZnO TFT electrical characteristics. The surface potential is solved explicitly without the process of amendment and suitable for circuit simulations. Furthermore, based on the surface potential, an explicit closed-form expression of the drain current is developed. For the cases of the different operational voltages, surface potential and drain current are verified by numerical results and experimental data, respectively. As a result, our model can predict DC characteristics of a-InGaZnO TFTs.
NASA Astrophysics Data System (ADS)
Hua, Wei; Qi, Ji; Jia, Meng
2017-05-01
Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.
Tuition Elasticity of the Demand for Higher Education among Current Students: A Pricing Model.
ERIC Educational Resources Information Center
Bryan, Glenn A.; Whipple, Thomas W.
1995-01-01
A pricing model is offered, based on retention of current students, that colleges can use to determine appropriate tuition. A computer-based model that quantifies the relationship between tuition elasticity and projected net return to the college was developed and applied to determine an appropriate tuition rate for a small, private liberal arts…
Hellweger, Ferdi L.; van Sebille, Erik; Calfee, Benjamin C.; Chandler, Jeremy W.; Zinser, Erik R.; Swan, Brandon K.; Fredrick, Neil D.
2016-01-01
Biogeography studies that correlate the observed distribution of organisms to environmental variables are typically based on local conditions. However, in cases with substantial translocation, like planktonic organisms carried by ocean currents, selection may happen upstream and local environmental factors may not be representative of those that shaped the local population. Here we use an individual-based model of microbes in the global surface ocean to explore this effect for temperature. We simulate up to 25 million individual cells belonging to up to 50 species with different temperature optima. Microbes are moved around the globe based on a hydrodynamic model, and grow and die based on local temperature. We quantify the role of currents using the “advective temperature differential” metric, which is the optimum temperature of the most abundant species from the model with advection minus that from the model without advection. This differential depends on the location and can be up to 4°C. Poleward-flowing currents, like the Gulf Stream, generally experience cooling and the differential is positive. We apply our results to three global datasets. For observations of optimum growth temperature of phytoplankton, accounting for the effect of currents leads to a slightly better agreement with observations, but there is large variability and the improvement is not statistically significant. For observed Prochlorococcus ecotype ratios and metagenome nucleotide divergence, accounting for advection improves the correlation significantly, especially in areas with relatively strong poleward or equatorward currents. PMID:27907181
Integrated urban systems model with multiple transportation supply agents.
DOT National Transportation Integrated Search
2012-10-01
This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...
NASA Astrophysics Data System (ADS)
Robinson, R. M.; Zanetti, L. J.; Anderson, B. J.; Korth, H.; Samara, M.; Michell, R.; Grubbs, G. A., II; Hampton, D. L.; Dropulic, A.
2016-12-01
A high latitude conductivity model based on field-aligned currents measured by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides the means for complete specification of electric fields and currents at high latitudes. Based on coordinated measurements made by AMPERE and the Poker Flat Incoherent Scatter Radar, the model determines the most likely value of the ionospheric conductance from the direction, magnitude, and magnetic local time of the field-aligned current. A conductance model driven by field-aligned currents ensures spatial and temporal consistency between the calculated electrodynamic parameters. To validate the results, the Pedersen and Hall conductances were used to calculate the energy flux associated with the energetic particle precipitation. When integrated over the entire hemisphere, the total energy flux compares well with the Hemispheric Power Index derived from the OVATION-PRIME model. The conductances were also combined with the field-aligned currents to calculate the self-consistent electric field, which was then used to compute horizontal currents and Joule heating. The magnetic perturbations derived from the currents replicate most of the variations observed in ground-based magnetograms. The model was used to study high latitude particle precipitation, currents, and Joule heating for 24 magnetic storms. In most cases, the total energy input from precipitating particles and Joule heating exhibits a sharply-peaked maximum at the times of local minima in Dst, suggesting a close coupling between the ring current and the high latitude currents driven by the Region 2 field-aligned currents. The rapid increase and decrease of the high latitude energy deposition suggests an explosive transfer of energy from the magnetosphere to the ionosphere just prior to storm recovery.
Sahakyan, Aleksandr B; Vendruscolo, Michele
2013-02-21
Ring current and electric field effects can considerably influence NMR chemical shifts in biomolecules. Understanding such effects is particularly important for the development of accurate mappings between chemical shifts and the structures of nucleic acids. In this work, we first analyzed the Pople and the Haigh-Mallion models in terms of their ability to describe nitrogen base conjugated ring effects. We then created a database (DiBaseRNA) of three-dimensional arrangements of RNA base pairs from X-ray structures, calculated the corresponding chemical shifts via a hybrid density functional theory approach and used the results to parametrize the ring current and electric field effects in RNA bases. Next, we studied the coupling of the electric field and ring current effects for different inter-ring arrangements found in RNA bases using linear model fitting, with joint electric field and ring current, as well as only electric field and only ring current approximations. Taken together, our results provide a characterization of the interdependence of ring current and electric field geometric factors, which is shown to be especially important for the chemical shifts of non-hydrogen atoms in RNA bases.
An analytical drain current model for symmetric double-gate MOSFETs
NASA Astrophysics Data System (ADS)
Yu, Fei; Huang, Gongyi; Lin, Wei; Xu, Chuanzhong
2018-04-01
An analytical surface-potential-based drain current model of symmetric double-gate (sDG) MOSFETs is described as a SPICE compatible model in this paper. The continuous surface and central potentials from the accumulation to the strong inversion regions are solved from the 1-D Poisson's equation in sDG MOSFETs. Furthermore, the drain current is derived from the charge sheet model as a function of the surface potential. Over a wide range of terminal voltages, doping concentrations, and device geometries, the surface potential calculation scheme and drain current model are verified by solving the 1-D Poisson's equation based on the least square method and using the Silvaco Atlas simulation results and experimental data, respectively. Such a model can be adopted as a useful platform to develop the circuit simulator and provide the clear understanding of sDG MOSFET device physics.
Video-Based Modeling: Differential Effects due to Treatment Protocol
ERIC Educational Resources Information Center
Mason, Rose A.; Ganz, Jennifer B.; Parker, Richard I.; Boles, Margot B.; Davis, Heather S.; Rispoli, Mandy J.
2013-01-01
Identifying evidence-based practices for individuals with disabilities requires specification of procedural implementation. Video-based modeling (VBM), consisting of both video self-modeling and video modeling with others as model (VMO), is one class of interventions that has frequently been explored in the literature. However, current information…
NASA Astrophysics Data System (ADS)
Le, A.; Pricope, N. G.
2015-12-01
Projections indicate that increasing population density, food production, and urbanization in conjunction with changing climate conditions will place stress on water resource availability. As a result, a holistic understanding of current and future water resource distribution is necessary for creating strategies to identify the most sustainable means of accessing this resource. Currently, most water resource management strategies rely on the application of global climate predictions to physically based hydrologic models to understand potential changes in water availability. However, the need to focus on understanding community-level social behaviors that determine individual water usage is becoming increasingly evident, as predictions derived only from hydrologic models cannot accurately represent the coevolution of basin hydrology and human water and land usage. Models that are better equipped to represent the complexity and heterogeneity of human systems and satellite-derived products in place of or in conjunction with historic data significantly improve preexisting hydrologic model accuracy and application outcomes. We used a novel agent-based sociotechnical model that combines the Soil and Water Assessment Tool (SWAT) and Agent Analyst and applied it in the Nzoia Basin, an area in western Kenya that is becoming rapidly urbanized and industrialized. Informed by a combination of satellite-derived products and over 150 household surveys, the combined sociotechnical model provided unique insight into how populations self-organize and make decisions based on water availability. In addition, the model depicted how population organization and current management alter water availability currently and in the future.
Richardson, Magnus J E
2007-08-01
Integrate-and-fire models are mainstays of the study of single-neuron response properties and emergent states of recurrent networks of spiking neurons. They also provide an analytical base for perturbative approaches that treat important biological details, such as synaptic filtering, synaptic conductance increase, and voltage-activated currents. Steady-state firing rates of both linear and nonlinear integrate-and-fire models, receiving fluctuating synaptic drive, can be calculated from the time-independent Fokker-Planck equation. The dynamic firing-rate response is less easy to extract, even at the first-order level of a weak modulation of the model parameters, but is an important determinant of neuronal response and network stability. For the linear integrate-and-fire model the response to modulations of current-based synaptic drive can be written in terms of hypergeometric functions. For the nonlinear exponential and quadratic models no such analytical forms for the response are available. Here it is demonstrated that a rather simple numerical method can be used to obtain the steady-state and dynamic response for both linear and nonlinear models to parameter modulation in the presence of current-based or conductance-based synaptic fluctuations. To complement the full numerical solution, generalized analytical forms for the high-frequency response are provided. A special case is also identified--time-constant modulation--for which the response to an arbitrarily strong modulation can be calculated exactly.
Collaborative learning model inquiring based on digital game
NASA Astrophysics Data System (ADS)
Yuan, Jiugen; Xing, Ruonan
2012-04-01
With the development of computer education software, digital educational game has become an important part in our life, entertainment and education. Therefore how to make full use of digital game's teaching functions and educate through entertainment has become the focus of current research. The thesis make a connection between educational game and collaborative learning, the current popular teaching model, and concludes digital game-based collaborative learning model combined with teaching practice.
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
The feasibility of modeling magnetic fields due to certain electrical currents flowing in the Earth's ionosphere and magnetosphere was investigated. A method was devised to carry out forward modeling of the magnetic perturbations that arise from space currents. The procedure utilizes a linear current element representation of the distributed electrical currents. The finite thickness elements are combined into loops which are in turn combined into cells having their base in the ionosphere. In addition to the extensive field modeling, additional software was developed for the reduction and analysis of the MAGSAT data in terms of the external current effects. Direct comparisons between the models and the MAGSAT data are possible.
Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger
NASA Astrophysics Data System (ADS)
Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun
2011-04-01
This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.
Strained layer relaxation effect on current crowding and efficiency improvement of GaN based LED
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2012-02-01
Efficiency droop effect of GaN based LED at high power and high temperature is addressed by several groups based on career delocalization and photon recycling effect(radiative recombination). We extend the previous droop models to optical loss parameters. We correlate stained layer relaxation at high temperature and high current density to carrier delocalization. We propose a third order model and show that Shockley-Hall-Read and Auger recombination effect is not enough to account for the efficiency loss. Several strained layer modification scheme is proposed based on the model.
NASA Astrophysics Data System (ADS)
Hogg, Charlie; Dalziel, Stuart; Huppert, Herbert; Imberger, Jorg; Department of Applied Mathematics; Theoretical Physics Team; CentreWater Research Team
2014-11-01
Dense gravity currents feed fluid into confined basins in lakes, the oceans and many industrial applications. Existing models of the circulation and mixing in such basins are often based on the currents entraining ambient fluid. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the mixing in such currents. Laboratory experiments were carried out which visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the stratification in the basin. This new model gives a better approximation of the stratification observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lakes.
Black, Dolores Archuleta; Robinson, William H.; Wilcox, Ian Zachary; ...
2015-08-07
Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. Likewise, an accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventionalmore » model based on one double-exponential source can be incomplete. Furthermore, a small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. As a result, the parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.« less
NASA Technical Reports Server (NTRS)
Bolten, John D.; Mladenova, Iliana E.; Crow, Wade; De Jeu, Richard
2016-01-01
A primary operational goal of the United States Department of Agriculture (USDA) is to improve foreign market access for U.S. agricultural products. A large fraction of this crop condition assessment is based on satellite imagery and ground data analysis. The baseline soil moisture estimates that are currently used for this analysis are based on output from the modified Palmer two-layer soil moisture model, updated to assimilate near-real time observations derived from the Soil Moisture Ocean Salinity (SMOS) satellite. The current data assimilation system is based on a 1-D Ensemble Kalman Filter approach, where the observation error is modeled as a function of vegetation density. This allows for offsetting errors in the soil moisture retrievals. The observation error is currently adjusted using Normalized Difference Vegetation Index (NDVI) climatology. In this paper we explore the possibility of utilizing microwave-based vegetation optical depth instead.
NASA Astrophysics Data System (ADS)
Jain, Prateek; Yadav, Chandan; Agarwal, Amit; Chauhan, Yogesh Singh
2017-08-01
We present a surface potential based analytical model for double gate tunnel field effect transistor (DGTFET) for the current, terminal charges, and terminal capacitances. The model accounts for the effect of the mobile charge in the channel and captures the device physics in depletion as well as in the strong inversion regime. The narrowing of the tunnel barrier in the presence of mobile charges in the channel is incorporated via modeling of the inverse decay length, which is constant under channel depletion condition and bias dependent under inversion condition. To capture the ambipolar current behavior in the model, tunneling at the drain junction is also included. The proposed model is validated against TCAD simulation data and it shows close match with the simulation data.
NASA Astrophysics Data System (ADS)
Hosenfeld, Fabian; Horst, Fabian; Iñíguez, Benjamín; Lime, François; Kloes, Alexander
2017-11-01
Source-to-drain (SD) tunneling decreases the device performance in MOSFETs falling below the 10 nm channel length. Modeling quantum mechanical effects including SD tunneling has gained more importance specially for compact model developers. The non-equilibrium Green's function (NEGF) has become a state-of-the-art method for nano-scaled device simulation in the past years. In the sense of a multi-scale simulation approach it is necessary to bridge the gap between compact models with their fast and efficient calculation of the device current, and numerical device models which consider quantum effects of nano-scaled devices. In this work, an NEGF based analytical model for nano-scaled double-gate (DG) MOSFETs is introduced. The model consists of a closed-form potential solution of a classical compact model and a 1D NEGF formalism for calculating the device current, taking into account quantum mechanical effects. The potential calculation omits the iterative coupling and allows the straightforward current calculation. The model is based on a ballistic NEGF approach whereby backscattering effects are considered as second order effect in a closed-form. The accuracy and scalability of the non-iterative DG MOSFET model is inspected in comparison with numerical NanoMOS TCAD data for various channel lengths. With the help of this model investigations on short-channel and temperature effects are performed.
NASA Astrophysics Data System (ADS)
Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam
2018-01-01
An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.
First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2014-10-01
Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.
Intercepting a moving target: On-line or model-based control?
Zhao, Huaiyong; Warren, William H
2017-05-01
When walking to intercept a moving target, people take an interception path that appears to anticipate the target's trajectory. According to the constant bearing strategy, the observer holds the bearing direction of the target constant based on current visual information, consistent with on-line control. Alternatively, the interception path might be based on an internal model of the target's motion, known as model-based control. To investigate these two accounts, participants walked to intercept a moving target in a virtual environment. We degraded the target's visibility by blurring the target to varying degrees in the midst of a trial, in order to influence its perceived speed and position. Reduced levels of visibility progressively impaired interception accuracy and precision; total occlusion impaired performance most and yielded nonadaptive heading adjustments. Thus, performance strongly depended on current visual information and deteriorated qualitatively when it was withdrawn. The results imply that locomotor interception is normally guided by current information rather than an internal model of target motion, consistent with on-line control.
Gordon, Sarah; Daneshian, Mardas; Bouwstra, Joke; Caloni, Francesca; Constant, Samuel; Davies, Donna E; Dandekar, Gudrun; Guzman, Carlos A; Fabian, Eric; Haltner, Eleonore; Hartung, Thomas; Hasiwa, Nina; Hayden, Patrick; Kandarova, Helena; Khare, Sangeeta; Krug, Harald F; Kneuer, Carsten; Leist, Marcel; Lian, Guoping; Marx, Uwe; Metzger, Marco; Ott, Katharina; Prieto, Pilar; Roberts, Michael S; Roggen, Erwin L; Tralau, Tewes; van den Braak, Claudia; Walles, Heike; Lehr, Claus-Michael
2015-01-01
Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields, ranging from the utilization of ex vivo tissue to reconstructed in vitro models, and further to chip-based technologies, synthetic membrane systems and, of increasing current interest, in silico modeling approaches. An international group of experts in the field of epithelial barriers was convened from academia, industry and regulatory bodies to present both the current state of the art of non-animal models of the skin, intestinal and pulmonary barriers in their various fields of application, and to discuss research-based, industry-driven and regulatory-relevant future directions for both the development of new models and the refinement of existing test methods. Issues of model relevance and preference, validation and standardization, acceptance, and the need for simplicity versus complexity were focal themes of the discussions. The outcomes of workshop presentations and discussions, in relation to both current status and future directions in the utilization and development of epithelial barrier models, are presented by the attending experts in the current report.
Validation of Finite-Element Models of Persistent-Current Effects in Nb 3Sn Accelerator Magnets
Wang, X.; Ambrosio, G.; Chlachidze, G.; ...
2015-01-06
Persistent magnetization currents are induced in superconducting filaments during the current ramping in magnets. The resulting perturbation to the design magnetic field leads to field quality degradation, in particular at low field where the effect is stronger relative to the main field. The effects observed in NbTi accelerator magnets were reproduced well with the critical-state model. However, this approach becomes less accurate for the calculation of the persistent-current effects observed in Nb 3Sn accelerator magnets. Here a finite-element method based on the measured strand magnetization is validated against three state-of-art Nb3Sn accelerator magnets featuring different subelement diameters, critical currents, magnetmore » designs and measurement temperatures. The temperature dependence of the persistent-current effects is reproduced. Based on the validated model, the impact of conductor design on the persistent current effects is discussed. The performance, limitations and possible improvements of the approach are also discussed.« less
ERIC Educational Resources Information Center
Hoagwood, Kimberly; Johnson, Jacqueline
2003-01-01
Describes current perspectives on evidence-based practices in psychology, medicine, and education; discusses challenges in the implementation and dissemination of research-based findings into schools; describes differences between current models of organizational behavior as studied in children's mental health services and in education; and…
Electromagnetic field radiation model for lightning strokes to tall structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motoyama, H.; Janischewskyj, W.; Hussein, A.M.
1996-07-01
This paper describes observation and analysis of electromagnetic field radiation from lightning strokes to tall structures. Electromagnetic field waveforms and current waveforms of lightning strokes to the CN Tower have been simultaneously measured since 1991. A new calculation model of electromagnetic field radiation is proposed. The proposed model consists of the lightning current propagation and distribution model and the electromagnetic field radiation model. Electromagnetic fields calculated by the proposed model, based on the observed lightning current at the CN Tower, agree well with the observed fields at 2km north of the tower.
ERIC Educational Resources Information Center
Uzunoz, Abdulkadir
2011-01-01
This study aimed to determine the effects of the activities of current textbook and 5 E Model on the attitude of the students. This study is a research as an experimental model. For testing the effects of geography education supported by 5 E model and geography education based on activities of current textbook attitude of students, controlled…
The objective of current work is to develop a new cancer dose-response assessment for chloroform using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The PBPK/PD model is based on a mode of action in which the cytolethality of chloroform occurs when the ...
Mathieu, Romain; Vartolomei, Mihai D; Mbeutcha, Aurélie; Karakiewicz, Pierre I; Briganti, Alberto; Roupret, Morgan; Shariat, Shahrokh F
2016-08-01
The aim of this review was to provide an overview of current biomarkers and risk stratification models in urothelial cancer of the upper urinary tract (UTUC). A non-systematic Medline/PubMed literature search was performed using the terms "biomarkers", "preoperative models", "postoperative models", "risk stratification", together with "upper tract urothelial carcinoma". Original articles published between January 2003 and August 2015 were included based on their clinical relevance. Additional references were collected by cross referencing the bibliography of the selected articles. Various promising predictive and prognostic biomarkers have been identified in UTUC thanks to the increasing knowledge of the different biological pathways involved in UTUC tumorigenesis. These biomarkers may help identify tumors with aggressive biology and worse outcomes. Current tools aim at predicting muscle invasive or non-organ confined disease, renal failure after radical nephroureterectomy and survival outcomes. These models are still mainly based on imaging and clinicopathological feature and none has integrated biomarkers. Risk stratification in UTUC is still suboptimal, especially in the preoperative setting due to current limitations in staging and grading. Identification of novel biomarkers and external validation of current prognostic models may help improve risk stratification to allow evidence-based counselling for kidney-sparing approaches, perioperative chemotherapy and/or risk-based surveillance. Despite growing understanding of the biology underlying UTUC, management of this disease remains difficult due to the lack of validated biomarkers and the limitations of current predictive and prognostic tools. Further efforts and collaborations are necessaryry to allow their integration in daily practice.
Current-based detection of nonlocal spin transport in graphene for spin-based logic applications
NASA Astrophysics Data System (ADS)
Wen, Hua; Zhu, Tiancong; Luo, Yunqiu Kelly; Amamou, Walid; Kawakami, Roland K.
2014-05-01
Graphene has been proposed for novel spintronic devices due to its robust and efficient spin transport properties at room temperature. Some of the most promising proposals require current-based readout for integration purposes, but the current-based detection of spin accumulation has not yet been developed. In this work, we demonstrate current-based detection of spin transport in graphene using a modified nonlocal geometry. By adding a variable shunt resistor in parallel to the nonlocal voltmeter, we are able to systematically cross over from the conventional voltage-based detection to current-based detection. As the shunt resistor is reduced, the output current from the spin accumulation increases as the shunt resistance drops below a characteristic value R*. We analyze this behavior using a one-dimensional drift-diffusion model, which accounts well for the observed behavior. These results provide the experimental and theoretical foundation for current-based detection of nonlocal spin transport.
NASA Astrophysics Data System (ADS)
Liu, Y.; Weisberg, R. H.
2017-12-01
The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Substantial progress has been made toward the goals of this research effort in the past six months. A simplified rotor model with a flexible shaft and backup bearings has been developed. The model is based upon the work of Ishii and Kirk. Parameter studies of the behavior of this model are currently being conducted. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. The study consists of simulation work coupled with experimental verification. The work is documented in the attached paper. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. The dynamics of this model are currently being studied with the objective of verifying the conclusions obtained from the simpler models. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501.
Predicting responses from Rasch measures.
Linacre, John M
2010-01-01
There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.
Distributed, cooperating knowledge-based systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
Some current research in the development and application of distributed, cooperating knowledge-based systems technology is addressed. The focus of the current research is the spacecraft ground operations environment. The underlying hypothesis is that, because of the increasing size, complexity, and cost of planned systems, conventional procedural approaches to the architecture of automated systems will give way to a more comprehensive knowledge-based approach. A hallmark of these future systems will be the integration of multiple knowledge-based agents which understand the operational goals of the system and cooperate with each other and the humans in the loop to attain the goals. The current work includes the development of a reference model for knowledge-base management, the development of a formal model of cooperating knowledge-based agents, the use of testbed for prototyping and evaluating various knowledge-based concepts, and beginning work on the establishment of an object-oriented model of an intelligent end-to-end (spacecraft to user) system. An introductory discussion of these activities is presented, the major concepts and principles being investigated are highlighted, and their potential use in other application domains is indicated.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian
2017-12-01
Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.
Macroscopic neural mass model constructed from a current-based network model of spiking neurons.
Umehara, Hiroaki; Okada, Masato; Teramae, Jun-Nosuke; Naruse, Yasushi
2017-02-01
Neural mass models (NMMs) are efficient frameworks for describing macroscopic cortical dynamics including electroencephalogram and magnetoencephalogram signals. Originally, these models were formulated on an empirical basis of synaptic dynamics with relatively long time constants. By clarifying the relations between NMMs and the dynamics of microscopic structures such as neurons and synapses, we can better understand cortical and neural mechanisms from a multi-scale perspective. In a previous study, the NMMs were analytically derived by averaging the equations of synaptic dynamics over the neurons in the population and further averaging the equations of the membrane-potential dynamics. However, the averaging of synaptic current assumes that the neuron membrane potentials are nearly time invariant and that they remain at sub-threshold levels to retain the conductance-based model. This approximation limits the NMM to the non-firing state. In the present study, we newly propose a derivation of a NMM by alternatively approximating the synaptic current which is assumed to be independent of the membrane potential, thus adopting a current-based model. Our proposed model releases the constraint of the nearly constant membrane potential. We confirm that the obtained model is reducible to the previous model in the non-firing situation and that it reproduces the temporal mean values and relative power spectrum densities of the average membrane potentials for the spiking neurons. It is further ensured that the existing NMM properly models the averaged dynamics over individual neurons even if they are spiking in the populations.
Model-based Optimization and Feedback Control of the Current Density Profile Evolution in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki Okan
Nuclear fusion research is a highly challenging, multidisciplinary field seeking contributions from both plasma physics and multiple engineering areas. As an application of plasma control engineering, this dissertation mainly explores methods to control the current density profile evolution within the National Spherical Torus eXperiment-Upgrade (NSTX-U), which is a substantial upgrade based on the NSTX device, which is located in Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ. Active control of the toroidal current density profile is among those plasma control milestones that the NSTX-U program must achieve to realize its next-step operational goals, which are characterized by high-performance, long-pulse, MHD-stable plasma operation with neutral beam heating. Therefore, the aim of this work is to develop model-based, feedforward and feedback controllers that can enable time regulation of the current density profile in NSTX-U by actuating the total plasma current, electron density, and the powers of the individual neutral beam injectors. Motivated by the coupled, nonlinear, multivariable, distributed-parameter plasma dynamics, the first step towards control design is the development of a physics-based, control-oriented model for the current profile evolution in NSTX-U in response to non-inductive current drives and heating systems. Numerical simulations of the proposed control-oriented model show qualitative agreement with the high-fidelity physics code TRANSP. The next step is to utilize the proposed control-oriented model to design an open-loop actuator trajectory optimizer. Given a desired operating state, the optimizer produces the actuator trajectories that can steer the plasma to such state. The objective of the feedforward control design is to provide a more systematic approach to advanced scenario planning in NSTX-U since the development of such scenarios is conventionally carried out experimentally by modifying the tokamak's actuator trajectories and analyzing the resulting plasma evolution. Finally, the proposed control-oriented model is embedded in feedback control schemes based on optimal control and Model Predictive Control (MPC) approaches. Integrators are added to the standard Linear Quadratic Gaussian (LQG) and MPC formulations to provide robustness against various modeling uncertainties and external disturbances. The effectiveness of the proposed feedback controllers in regulating the current density profile in NSTX-U is demonstrated in closed-loop nonlinear simulations. Moreover, the optimal feedback control algorithm has been implemented successfully in closed-loop control simulations within TRANSP through the recently developed Expert routine. (Abstract shortened by ProQuest.).
Physics-based coastal current tomographic tracking using a Kalman filter.
Wang, Tongchen; Zhang, Ying; Yang, T C; Chen, Huifang; Xu, Wen
2018-05-01
Ocean acoustic tomography can be used based on measurements of two-way travel-time differences between the nodes deployed on the perimeter of the surveying area to invert/map the ocean current inside the area. Data at different times can be related using a Kalman filter, and given an ocean circulation model, one can in principle now cast and even forecast current distribution given an initial distribution and/or the travel-time difference data on the boundary. However, an ocean circulation model requires many inputs (many of them often not available) and is unpractical for estimation of the current field. A simplified form of the discretized Navier-Stokes equation is used to show that the future velocity state is just a weighted spatial average of the current state. These weights could be obtained from an ocean circulation model, but here in a data driven approach, auto-regressive methods are used to obtain the time and space dependent weights from the data. It is shown, based on simulated data, that the current field tracked using a Kalman filter (with an arbitrary initial condition) is more accurate than that estimated by the standard methods where data at different times are treated independently. Real data are also examined.
DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†
Comer, Jeffrey
2016-01-01
Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233
NASA Astrophysics Data System (ADS)
Iváncsy, T.; Kiss, I.; Szücs, L.; Tamus, Z. Á.
2015-10-01
The lightning current generates time-varying magnetic field near the down- conductor and the down-conductors are mounted on the wall of the buildings where residential places might be situated. It is well known that the rapidly changing magnetic fields can generate dangerous eddy currents in the human body.The higher duration and gradient of the magnetic field can cause potentially life threatening cardiac stimulation. The coupling mechanism between the electromagnetic field and the human body is based on a well-known physical phenomena (e.g. Faradays law of induction). However, the calculation of the induced current is very complicated because the shape of the organs is complex and the determination of the material properties of living tissues is difficult, as well. Our previous study revealed that the cardiac stimulation is independent of the rising time of the lightning current and only the peak of the current counts. In this study, the authors introduce an improved model of the interaction of electromagnetic fields of lighting current near down-conductor and human body. Our previous models are based on the quasi stationer field calculations, the new improved model is a transient model. This is because the magnetic field around the down-conductor and in the human body can be determined more precisely, therefore the dangerous currents in the body can be estimated.
Self-consistent radiation-based simulation of electric arcs: II. Application to gas circuit breakers
NASA Astrophysics Data System (ADS)
Iordanidis, A. A.; Franck, C. M.
2008-07-01
An accurate and robust method for radiative heat transfer simulation for arc applications was presented in the previous paper (part I). In this paper a self-consistent mathematical model based on computational fluid dynamics and a rigorous radiative heat transfer model is described. The model is applied to simulate switching arcs in high voltage gas circuit breakers. The accuracy of the model is proven by comparison with experimental data for all arc modes. The ablation-controlled arc model is used to simulate high current PTFE arcs burning in cylindrical tubes. Model accuracy for the lower current arcs is evaluated using experimental data on the axially blown SF6 arc in steady state and arc resistance measurements close to current zero. The complete switching process with the arc going through all three phases is also simulated and compared with the experimental data from an industrial circuit breaker switching test.
Applying the cell-based coagulation model in the management of critical bleeding.
Ho, K M; Pavey, W
2017-03-01
The cell-based coagulation model was proposed 15 years ago, yet has not been applied commonly in the management of critical bleeding. Nevertheless, this alternative model may better explain the physiological basis of current coagulation management during critical bleeding. In this article we describe the limitations of the traditional coagulation protein cascade and standard coagulation tests, and explain the potential advantages of applying the cell-based model in current coagulation management strategies. The cell-based coagulation model builds on the traditional coagulation model and explains many recent clinical observations and research findings related to critical bleeding unexplained by the traditional model, including the encouraging results of using empirical 1:1:1 fresh frozen plasma:platelets:red blood cells transfusion strategy, and the use of viscoelastic and platelet function tests in patients with critical bleeding. From a practical perspective, applying the cell-based coagulation model also explains why new direct oral anticoagulants are effective systemic anticoagulants even without affecting activated partial thromboplastin time or the International Normalized Ratio in a dose-related fashion. The cell-based coagulation model represents the most cohesive scientific framework on which we can understand and manage coagulation during critical bleeding.
Modeling Addictive Consumption as an Infectious Disease*
Alamar, Benjamin; Glantz, Stanton A.
2011-01-01
The dominant model of addictive consumption in economics is the theory of rational addiction. The addict in this model chooses how much they are going to consume based upon their level of addiction (past consumption), the current benefits and all future costs. Several empirical studies of cigarette sales and price data have found a correlation between future prices and consumption and current consumption. These studies have argued that the correlation validates the rational addiction model and invalidates any model in which future consumption is not considered. An alternative to the rational addiction model is one in which addiction spreads through a population as if it were an infectious disease, as supported by the large body of empirical research of addictive behaviors. In this model an individual's probability of becoming addicted to a substance is linked to the behavior of their parents, friends and society. In the infectious disease model current consumption is based only on the level of addiction and current costs. Price and consumption data from a simulation of the infectious disease model showed a qualitative match to the results of the rational addiction model. The infectious disease model can explain all of the theoretical results of the rational addiction model with the addition of explaining initial consumption of the addictive good. PMID:21339848
Nonlinear Fluid Model Of 3-D Field Effects In Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Callen, J. D.; Hegna, C. C.; Beidler, M. T.
2017-10-01
Extended MHD codes (e.g., NIMROD, M3D-C1) are beginning to explore nonlinear effects of small 3-D magnetic fields on tokamak plasmas. To facilitate development of analogous physically understandable reduced models, a fluid-based dynamic nonlinear model of these added 3-D field effects in the base axisymmetric tokamak magnetic field geometry is being developed. The model incorporates kinetic-based closures within an extended MHD framework. Key 3-D field effects models that have been developed include: 1) a comprehensive modified Rutherford equation for the growth of a magnetic island that includes the classical tearing and NTM perturbed bootstrap current drives, externally applied magnetic field and current drives, and classical and neoclassical polarization current effects, and 2) dynamic nonlinear evolution of the plasma toroidal flow (radial electric field) in response to the 3-D fields. An application of this model to RMP ELM suppression precipitated by an ELM crash will be discussed. Supported by Office of Fusion Energy Sciences, Office of Science, Dept. of Energy Grants DE-FG02-86ER53218 and DE-FG02-92ER54139.
Modeling of a 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Qi, Liang; Xie, Xiaofeng; Ding, Qingqing; Li, Chunwen; Ma, ChenChi M.
The methanol concentrations, temperature and current were considered as inputs, the cell voltage was taken as output, and the performance of a direct methanol fuel cell (DMFC) was modeled by adaptive-network-based fuzzy inference systems (ANFIS). The artificial neural network (ANN) and polynomial-based models were selected to be compared with the ANFIS in respect of quality and accuracy. Based on the ANFIS model obtained, the characteristics of the DMFC were studied. The results show that temperature and methanol concentration greatly affect the performance of the DMFC. Within a restricted current range, the methanol concentration does not greatly affect the stack voltage. In order to obtain higher fuel utilization efficiency, the methanol concentrations and temperatures should be adjusted according to the load on the system.
Analysis of Co-Tunneling Current in Fullerene Single-Electron Transistor
NASA Astrophysics Data System (ADS)
KhademHosseini, Vahideh; Dideban, Daryoosh; Ahmadi, MohammadTaghi; Ismail, Razali
2018-05-01
Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.
NASA Astrophysics Data System (ADS)
Kim, Jae-Chang; Moon, Sung-Ki; Kwak, Sangshin
2018-04-01
This paper presents a direct model-based predictive control scheme for voltage source inverters (VSIs) with reduced common-mode voltages (CMVs). The developed method directly finds optimal vectors without using repetitive calculation of a cost function. To adjust output currents with the CMVs in the range of -Vdc/6 to +Vdc/6, the developed method uses voltage vectors, as finite control resources, excluding zero voltage vectors which produce the CMVs in the VSI within ±Vdc/2. In a model-based predictive control (MPC), not using zero voltage vectors increases the output current ripples and the current errors. To alleviate these problems, the developed method uses two non-zero voltage vectors in one sampling step. In addition, the voltage vectors scheduled to be used are directly selected at every sampling step once the developed method calculates the future reference voltage vector, saving the efforts of repeatedly calculating the cost function. And the two non-zero voltage vectors are optimally allocated to make the output current approach the reference current as close as possible. Thus, low CMV, rapid current-following capability and sufficient output current ripple performance are attained by the developed method. The results of a simulation and an experiment verify the effectiveness of the developed method.
Research on Parallel Three Phase PWM Converters base on RTDS
NASA Astrophysics Data System (ADS)
Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun
2018-01-01
Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.
A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fryberger, David; /SLAC
The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appearmore » evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.« less
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J
2016-12-01
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
Impact analysis of air gap motion with respect to parameters of mooring system for floating platform
NASA Astrophysics Data System (ADS)
Shen, Zhong-xiang; Huo, Fa-li; Nie, Yan; Liu, Yin-dong
2017-04-01
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.
A compact model of the reverse gate-leakage current in GaN-based HEMTs
NASA Astrophysics Data System (ADS)
Ma, Xiaoyu; Huang, Junkai; Fang, Jielin; Deng, Wanling
2016-12-01
The gate-leakage behavior in GaN-based high electron mobility transistors (HEMTs) is studied as a function of applied bias and temperature. A model to calculate this current is given, which shows that trap-assisted tunneling, trap-assisted Frenkel-Poole (FP) emission, and direct Fowler-Nordheim (FN) tunneling have their main contributions at different electric field regions. In addition, the proposed model clearly illustrates the effect of traps and their assistance to the gate leakage. We have demonstrated the validity of the model by comparisons between model simulation results and measured experimental data of HEMTs, and a good agreement is obtained.
An improved large signal model of InP HEMTs
NASA Astrophysics Data System (ADS)
Li, Tianhao; Li, Wenjun; Liu, Jun
2018-05-01
An improved large signal model for InP HEMTs is proposed in this paper. The channel current and charge model equations are constructed based on the Angelov model equations. Both the equations for channel current and gate charge models were all continuous and high order drivable, and the proposed gate charge model satisfied the charge conservation. For the strong leakage induced barrier reduction effect of InP HEMTs, the Angelov current model equations are improved. The channel current model could fit DC performance of devices. A 2 × 25 μm × 70 nm InP HEMT device is used to demonstrate the extraction and validation of the model, in which the model has predicted the DC I–V, C–V and bias related S parameters accurately. Project supported by the National Natural Science Foundation of China (No. 61331006).
NASA Astrophysics Data System (ADS)
Brown, Alexander; Eviston, Connor
2017-02-01
Multiple FEM models of complex eddy current coil geometries were created and validated to calculate the change of impedance due to the presence of a notch. Capable realistic simulations of eddy current inspections are required for model assisted probability of detection (MAPOD) studies, inversion algorithms, experimental verification, and tailored probe design for NDE applications. An FEM solver was chosen to model complex real world situations including varying probe dimensions and orientations along with complex probe geometries. This will also enable creation of a probe model library database with variable parameters. Verification and validation was performed using other commercially available eddy current modeling software as well as experimentally collected benchmark data. Data analysis and comparison showed that the created models were able to correctly model the probe and conductor interactions and accurately calculate the change in impedance of several experimental scenarios with acceptable error. The promising results of the models enabled the start of an eddy current probe model library to give experimenters easy access to powerful parameter based eddy current models for alternate project applications.
Current-limiting challenges for all-spin logic devices
Su, Li; Zhang, Youguang; Klein, Jacques-Olivier; Zhang, Yue; Bournel, Arnaud; Fert, Albert; Zhao, Weisheng
2015-01-01
All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. First, ASLD with perpendicular magnetic anisotropy (PMA) nano-magnet is proposed to reduce the critical current (Ic0). Most important, the spin transport efficiency can be enhanced by analyzing the device structure, dimension, contact resistance as well as material parameters. Furthermore, breakdown current density (JBR) of spin channel is studied for the upper current limitation. As a result, we can deduce current-limiting conditions and estimate energy dissipation. Based on the model, we demonstrate ASLD with different structures and channel materials (graphene and copper). Asymmetric structure is found to be the optimal option for current limitations. Copper channel outperforms graphene in term of energy but seriously suffers from breakdown current limit. By exploring the current limit and performance tradeoffs, the optimization of ASLD is also discussed. This benchmarking model of ASLD opens up new prospects for design and implementation of future spintronics applications. PMID:26449410
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie
2010-01-01
Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.
1982-12-01
1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
Adequacy Model for School Funding
ERIC Educational Resources Information Center
Banicki, Guy; Murphy, Gregg
2014-01-01
This study considers the effectiveness of the Evidence-Based Adequacy model of school funding. In looking at the Evidence-Based Adequacy model for school funding, one researcher has been centrally associated with the development and study of this model. Allen Odden is currently a professor in the Department of Educational Leadership and Policy…
ERIC Educational Resources Information Center
Lakonpol, Thongmee; Ruangsuwan, Chaiyot; Terdtoon, Pradit
2015-01-01
This research aimed to develop a web-based learning environment model for enhancing cognitive skills of undergraduate students in the field of electrical engineering. The research is divided into 4 phases: 1) investigating the current status and requirements of web-based learning environment models. 2) developing a web-based learning environment…
How well do basic models describe the turbidity currents coming down Monterey and Congo Canyon?
NASA Astrophysics Data System (ADS)
Cartigny, M.; Simmons, S.; Heerema, C.; Xu, J. P.; Azpiroz, M.; Clare, M. A.; Cooper, C.; Gales, J. A.; Maier, K. L.; Parsons, D. R.; Paull, C. K.; Sumner, E. J.; Talling, P.
2017-12-01
Turbidity currents rival rivers in their global capacity to transport sediment and organic carbon. Furthermore, turbidity currents break submarine cables that now transport >95% of our global data traffic. Accurate turbidity current models are thus needed to quantify their transport capacity and to predict the forces exerted on seafloor structures. Despite this need, existing numerical models are typically only calibrated with scaled-down laboratory measurements due to the paucity of direct measurements of field-scale turbidity currents. This lack of calibration thus leaves much uncertainty in the validity of existing models. Here we use the most detailed observations of turbidity currents yet acquired to validate one of the most fundamental models proposed for turbidity currents, the modified Chézy model. Direct measurements on which the validation is based come from two sites that feature distinctly different flow modes and grain sizes. The first are from the multi-institution Coordinated Canyon Experiment (CCE) in Monterey Canyon, California. An array of six moorings along the canyon axis captured at least 15 flow events that lasted up to hours. The second is the deep-sea Congo Canyon, where 10 finer grained flows were measured by a single mooring, each lasting several days. Moorings captured depth-resolved velocity and suspended sediment concentration at high resolution (<30 second) for each of the 25 events. We use both datasets to test the most basic model available for turbidity currents; the modified Chézy model. This basic model has been very useful for river studies over the past 200 years, as it provides a rapid estimate of how flow velocity varies with changes in river level and energy slope. Chézy-type models assume that the gravitational force of the flow equals the friction of the river-bed. Modified Chézy models have been proposed for turbidity currents. However, the absence of detailed measurements of friction and sediment concentration within full-scale turbidity currents has forced modellers to make rough assumptions for these parameters. Here we use mooring data to deduce observation-based relations that can replace the previous assumptions. This improvement will significantly enhance the model predictions and allow us to better constrain the behaviour of turbidity currents.
Virtual Universities: Current Models and Future Trends.
ERIC Educational Resources Information Center
Guri-Rosenblit, Sarah
2001-01-01
Describes current models of distance education (single-mode distance teaching universities, dual- and mixed-mode universities, extension services, consortia-type ventures, and new technology-based universities), including their merits and problems. Discusses future trends in potential student constituencies, faculty roles, forms of knowledge…
NASA Astrophysics Data System (ADS)
Indahlastari, Aprinda; Chauhan, Munish; Schwartz, Benjamin; Sadleir, Rosalind J.
2016-12-01
Objective. In this study, we determined efficient head model sizes relative to predicted current densities in transcranial direct current stimulation (tDCS). Approach. Efficiency measures were defined based on a finite element (FE) simulations performed using nine human head models derived from a single MRI data set, having extents varying from 60%-100% of the original axial range. Eleven tissue types, including anisotropic white matter, and three electrode montages (T7-T8, F3-right supraorbital, Cz-Oz) were used in the models. Main results. Reducing head volume extent from 100% to 60%, that is, varying the model’s axial range from between the apex and C3 vertebra to one encompassing only apex to the superior cerebellum, was found to decrease the total modeling time by up to half. Differences between current density predictions in each model were quantified by using a relative difference measure (RDM). Our simulation results showed that {RDM} was the least affected (a maximum of 10% error) for head volumes modeled from the apex to the base of the skull (60%-75% volume). Significance. This finding suggested that the bone could act as a bioelectricity boundary and thus performing FE simulations of tDCS on the human head with models extending beyond the inferior skull may not be necessary in most cases to obtain reasonable precision in current density results.
Louis R. Iverson; Frank R. Thompson; Stephen Matthews; Matthew Peters; Anantha Prasad; William D. Dijak; Jacob Fraser; Wen J. Wang; Brice Hanberry; Hong He; Maria Janowiak; Patricia Butler; Leslie Brandt; Chris Swanston
2016-01-01
Context. Species distribution models (SDM) establish statistical relationships between the current distribution of species and key attributes whereas process-based models simulate ecosystem and tree species dynamics based on representations of physical and biological processes. TreeAtlas, which uses DISTRIB SDM, and Linkages and LANDIS PRO, process...
Mapping Base Modifications in DNA by Transverse-Current Sequencing
NASA Astrophysics Data System (ADS)
Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.
2018-02-01
Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.
Microscopic models for bridging electrostatics and currents
NASA Astrophysics Data System (ADS)
Borghi, L.; DeAmbrosis, A.; Mascheretti, P.
2007-03-01
A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.
Rubin, David C.; Berntsen, Dorthe; Johansen, Malene Klindt
2009-01-01
In the mnemonic model of PTSD, the current memory of a negative event, not the event itself determines symptoms. The model is an alternative to the current event-based etiology of PTSD represented in the DSM. The model accounts for important and reliable findings that are often inconsistent with the current diagnostic view and that have been neglected by theoretical accounts of the disorder, including the following observations. The diagnosis needs objective information about the trauma and peritraumatic emotions, but uses retrospective memory reports that can have substantial biases. Negative events and emotions that do not satisfy the current diagnostic criteria for a trauma can be followed by symptoms that would otherwise qualify for PTSD. Predisposing factors that affect the current memory have large effects on symptoms. The inability-to-recall-an-important-aspect-of-the-trauma symptom does not correlate with other symptoms. Loss or enhancement of the trauma memory affects PTSD symptoms in predictable ways. Special mechanisms that apply only to traumatic memories are not needed, increasing parsimony and the knowledge that can be applied to understanding PTSD. PMID:18954211
Unified Deep Learning Architecture for Modeling Biology Sequence.
Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang
2017-10-09
Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.
Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers
NASA Astrophysics Data System (ADS)
Smagley, Vladimir Anatolievich
Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.
NASA Astrophysics Data System (ADS)
Li, Xiaoyu; Pan, Ke; Fan, Guodong; Lu, Rengui; Zhu, Chunbo; Rizzoni, Giorgio; Canova, Marcello
2017-11-01
State of energy (SOE) is an important index for the electrochemical energy storage system in electric vehicles. In this paper, a robust state of energy estimation method in combination with a physical model parameter identification method is proposed to achieve accurate battery state estimation at different operating conditions and different aging stages. A physics-based fractional order model with variable solid-state diffusivity (FOM-VSSD) is used to characterize the dynamic performance of a LiFePO4/graphite battery. In order to update the model parameter automatically at different aging stages, a multi-step model parameter identification method based on the lexicographic optimization is especially designed for the electric vehicle operating conditions. As the battery available energy changes with different applied load current profiles, the relationship between the remaining energy loss and the state of charge, the average current as well as the average squared current is modeled. The SOE with different operating conditions and different aging stages are estimated based on an adaptive fractional order extended Kalman filter (AFEKF). Validation results show that the overall SOE estimation error is within ±5%. The proposed method is suitable for the electric vehicle online applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Young, Nathan G.
The current-voltage characteristic and ideality factor of III-Nitride quantum well light-emitting diodes (LEDs) grown on bulk GaN substrates are investigated. At operating temperature, these electrical properties exhibit a simple behavior. A model in which only active-region recombinations have a contribution to the LED current is found to account for experimental results. The limit of LED electrical efficiency is discussed based on the model and on thermodynamic arguments, and implications for electroluminescent cooling are examined.
Leigh, Hoyle
2009-01-01
To review recent genetic and neuroscientific research on psychiatric syndromes based on the current diagnostic scheme, and develop a better-fitting multiaxial patient-oriented diagnostic model. DSM I, published in 1952, considered psychiatric illnesses as reactions or extremes of adaptations of the patient's personality to stressful environmental demands. Personality itself was determined by constitution and psychodynamic development. In 1980, this continuum model gave way to an atheoretical categorical diagnostic scheme (DSM III), based on research diagnostic criteria for obtaining 'pure cultures' of patients for biological research. Subsequent research using the 'pure cultures' suggests that psychiatric syndromes represent a phenotypic continuum determined by genes, childhood traumas, and recent stress, mitigated by childhood nurturance, education, and current social support. Specific gene x childhood abuse x recent stress interactions have been discovered, which may serve as a model of how interacting vulnerability genes may or may not result in a psychiatric syndrome, depending on the individual's developmental history and current stress. A continuum model is proposed, with genes interacting with early experiences of stress or nurturance resulting in brain states that may evince minor but persistent symptoms (neurosis) or maladaptive patterns of behavior (personality disorder). The addition of recent or current stress may precipitate a major psychiatric syndrome. While a severe genetic predisposition, such as a mutation, may be sufficient to cause a major syndrome, major psychiatric syndromes are best conceptualized as dysregulation of evolutionarily adaptive brain functions, such as anxiety and vigilance. A new multiaxial model of psychiatric diagnosis is proposed based on this model: axis I for phenomenological diagnoses that include major psychiatric syndromes (e.g. depressive syndrome, psychosis), neuroses, personality disorders, and isolated symptoms; axis II for geno-neuroscience diagnoses, some of which may represent biological conditions associated with axis I, i.e. genes, specific brain morphology, and the functional state of specific brain areas based on laboratory and imaging studies; axis III for medical diseases and conditions; axis IV for stress (childhood, recent, and current); axis V for psychosocial assets (intelligence, education, school/work, social support, and global assessment of functioning) over past 5 years and current. (c) 2008 S. Karger AG, Basel.
Why Doesn't the "High School Drop Out Rate" Drop?
ERIC Educational Resources Information Center
Truby, William F.
2016-01-01
This article provides information, questions, and answers about current approaches to dropping the dropout rate of our students. For example, our current model of education is based on the mass production or assembly line model promoted by Henry Ford back in early years of the 1900s (1900-1920). This model served both factory production and…
NASA Astrophysics Data System (ADS)
Vogler, Marcel; Horiuchi, Michio; Bessler, Wolfgang G.
A detailed computational model of a direct-flame solid oxide fuel cell (DFFC) is presented. The DFFC is based on a fuel-rich methane-air flame stabilized on a flat-flame burner and coupled to a solid oxide fuel cell (SOFC). The model consists of an elementary kinetic description of the premixed methane-air flame, a stagnation-point flow description of the coupled heat and mass transport within the gas phase, an elementary kinetic description of the electrochemistry, as well as heat, mass and charge transport within the SOFC. Simulated current-voltage characteristics show excellent agreement with experimental data published earlier (Kronemayer et al., 2007 [10]). The model-based analysis of loss processes reveals that ohmic resistance in the current collection wires dominates polarization losses, while electronic loss currents in the mixed conducting electrolyte have only little influence on the polarized cell. The model was used to propose an optimized cell design. Based on this analysis, power densities of above 200 mW cm -2 can be expected.
A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314
A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.
Gering, Kevin L
2013-08-27
A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics of the electrochemical cell. The computing system also develops a mechanistic level model of the electrochemical cell to determine performance fade characteristics of the electrochemical cell and analyzing the mechanistic level model to estimate performance fade characteristics over aging of a similar electrochemical cell. The mechanistic level model uses first constant-current pulses applied to the electrochemical cell at a first aging period and at three or more current values bracketing a first exchange current density. The mechanistic level model also is based on second constant-current pulses applied to the electrochemical cell at a second aging period and at three or more current values bracketing the second exchange current density.
Gupta, Saurabh; Black-Schaffer, W Stephen; Crawford, James M; Gross, David; Karcher, Donald S; Kaufman, Jill; Knapman, Doug; Prystowsky, Michael B; Wheeler, Thomas M; Bean, Sarah; Kumar, Paramhans; Sharma, Raghav; Chamoli, Vaibhav; Ghai, Vikrant; Gogia, Vineet; Weintraub, Sally; Cohen, Michael B; Robboy, Stanley J
2015-01-01
Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models.
Gupta, Saurabh; Black-Schaffer, W. Stephen; Crawford, James M.; Gross, David; Karcher, Donald S.; Kaufman, Jill; Knapman, Doug; Prystowsky, Michael B.; Wheeler, Thomas M.; Bean, Sarah; Kumar, Paramhans; Sharma, Raghav; Chamoli, Vaibhav; Ghai, Vikrant; Gogia, Vineet; Weintraub, Sally; Cohen, Michael B.
2015-01-01
Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models. PMID:28725751
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model. PMID:24634645
Cavallari, Stefano; Panzeri, Stefano; Mazzoni, Alberto
2014-01-01
Models of networks of Leaky Integrate-and-Fire (LIF) neurons are a widely used tool for theoretical investigations of brain function. These models have been used both with current- and conductance-based synapses. However, the differences in the dynamics expressed by these two approaches have been so far mainly studied at the single neuron level. To investigate how these synaptic models affect network activity, we compared the single neuron and neural population dynamics of conductance-based networks (COBNs) and current-based networks (CUBNs) of LIF neurons. These networks were endowed with sparse excitatory and inhibitory recurrent connections, and were tested in conditions including both low- and high-conductance states. We developed a novel procedure to obtain comparable networks by properly tuning the synaptic parameters not shared by the models. The so defined comparable networks displayed an excellent and robust match of first order statistics (average single neuron firing rates and average frequency spectrum of network activity). However, these comparable networks showed profound differences in the second order statistics of neural population interactions and in the modulation of these properties by external inputs. The correlation between inhibitory and excitatory synaptic currents and the cross-neuron correlation between synaptic inputs, membrane potentials and spike trains were stronger and more stimulus-modulated in the COBN. Because of these properties, the spike train correlation carried more information about the strength of the input in the COBN, although the firing rates were equally informative in both network models. Moreover, the network activity of COBN showed stronger synchronization in the gamma band, and spectral information about the input higher and spread over a broader range of frequencies. These results suggest that the second order statistics of network dynamics depend strongly on the choice of synaptic model.
Shipborne LF-VLF oceanic lightning observations and modeling
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.
2015-10-01
Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Ho, Fat Duen
1999-01-01
The ferroelectric channel in a Metal-Ferroelectric-Semiconductor Field Effect Transistor (MFSFET) can partially change its polarization when the gate voltage near the polarization threshold voltage. This causes the MFSFET Drain current to change with repeated pulses of the same gate voltage near the polarization threshold voltage. A previously developed model [11, based on the Fermi-Dirac function, assumed that for a given gate voltage and channel polarization, a sin-le Drain current value would be generated. A study has been done to characterize the effects of partial polarization on the Drain current of a MFSFET. These effects have been described mathematically and these equations have been incorporated into a more comprehensive mathematical model of the MFSFET. The model takes into account the hysteresis nature of the MFSFET and the time dependent decay as well as the effects of partial polarization. This model defines the Drain current based on calculating the degree of polarization from previous gate pulses, the present Gate voltage, and the amount of time since the last Gate volta-e pulse.
Validation of a new plasmapause model derived from CHAMP field-aligned current signatures
NASA Astrophysics Data System (ADS)
Heilig, Balázs; Darrouzet, Fabien; Vellante, Massimo; Lichtenberger, János; Lühr, Hermann
2014-05-01
Recently a new model for the plasmapause location in the equatorial plane was introduced based on magnetic field observations made by the CHAMP satellite in the topside ionosphere (Heilig and Lühr, 2013). Related signals are medium-scale field-aligned currents (MSFAC) (some 10km scale size). An empirical model for the MSFAC boundary was developed as a function of Kp and MLT. The MSFAC model then was compared to in situ plasmapause observations of IMAGE RPI. By considering this systematic displacement resulting from this comparison and by taking into account the diurnal variation and Kp-dependence of the residuals an empirical model of the plasmapause location that is based on MSFAC measurements from CHAMP was constructed. As a first step toward validation of the new plasmapause model we used in-situ (Van Allen Probes/EMFISIS, Cluster/WHISPER) and ground based (EMMA) plasma density observations. Preliminary results show a good agreement in general between the model and observations. Some observed differences stem from the different definitions of the plasmapause. A more detailed validation of the method can take place as soon as SWARM and VAP data become available. Heilig, B., and H. Lühr (2013) New plasmapause model derived from CHAMP field-aligned current signatures, Ann. Geophys., 31, 529-539, doi:10.5194/angeo-31-529-2013
Capturing well-being in activity pattern models within activity-based travel demand models.
DOT National Transportation Integrated Search
2013-03-01
The activity-based approach which is based on the premise that the demand for travel is derived : from the demand for activities, currently constitutes the state of the art in metropolitan travel : demand forecasting and particularly in a form known ...
Capturing well-being in activity pattern models within activity-based travel demand models.
DOT National Transportation Integrated Search
2013-04-01
The activity-based approach which is based on the premise that the demand for travel is derived : from the demand for activities, currently constitutes the state of the art in metropolitan travel : demand forecasting and particularly in a form known ...
A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture
NASA Technical Reports Server (NTRS)
Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.
2005-01-01
Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.
Landauer-Datta-Lundstrom model for terahertz transistor amplifier based on graphene
NASA Astrophysics Data System (ADS)
Davidovich, M. V.
2017-08-01
A transistor has been considered in the form of three electrodes connected by graphene ribbons or by metal quantum wires (nanowires) that operate on the principle of the current control by the changing voltage at the central electrode (gate). The analysis has been carried out according to the Landauer-Datta-Lundstrom model in equilibrium approximation for electrodes while fixing their potentials. We have obtained linear models and nonlinear terms in the determining current, and calculated the nonlinear current-voltage performances of graphene nanoribbons.
2016-02-10
using bolt hole eddy current (BHEC) techniques. Data was acquired for a wide range of crack sizes and shapes, including mid- bore , corner and through...to select the most appropriate VIC-3D surrogate model for subsequent crack sizing inversion step. Inversion results for select mid- bore , through and...the flaw. 15. SUBJECT TERMS Bolt hole eddy current (BHEC); mid- bore , corner and through-thickness crack types; VIC-3D generated surrogate models
Towards Current Profile Control in ITER: Potential Approaches and Research Needs
NASA Astrophysics Data System (ADS)
Schuster, E.; Barton, J. E.; Wehner, W. P.
2014-10-01
Many challenging plasma control problems still need to be addressed in order for the ITER Plasma Control System (PCS) to be able to successfully achieve the ITER project goals. For instance, setting up a suitable toroidal current density profile is key for one possible advanced scenario characterized by noninductive sustainment of the plasma current and steady-state operation. The nonlinearity and high dimensionality exhibited by the plasma demand a model-based current-profile control synthesis procedure that can accommodate this complexity through embedding the known physics within the design. The development of a model capturing the dynamics of the plasma relevant for control design enables not only the design of feedback controllers for regulation or tracking but also the design of optimal feedforward controllers for a systematic model-based approach to scenario planning, the design of state estimators for a reliable real-time reconstruction of the plasma internal profiles based on limited and noisy diagnostics, and the development of a fast predictive simulation code for closed-loop performance evaluation before implementation. Progress towards control-oriented modeling of the current profile evolution and associated control design has been reported following both data-driven and first-principles-driven approaches. An overview of these two approaches will be provided, as well as a discussion on research needs associated with each one of the model applications described above. Supported by the US Department of Energy under DE-SC0001334 and DE-SC0010661.
Latent Class Analysis of Incomplete Data via an Entropy-Based Criterion
Larose, Chantal; Harel, Ofer; Kordas, Katarzyna; Dey, Dipak K.
2016-01-01
Latent class analysis is used to group categorical data into classes via a probability model. Model selection criteria then judge how well the model fits the data. When addressing incomplete data, the current methodology restricts the imputation to a single, pre-specified number of classes. We seek to develop an entropy-based model selection criterion that does not restrict the imputation to one number of clusters. Simulations show the new criterion performing well against the current standards of AIC and BIC, while a family studies application demonstrates how the criterion provides more detailed and useful results than AIC and BIC. PMID:27695391
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Hammer, John M.; Wan, C. Yoon; Vasandani, Vijay
1987-01-01
The current research is focused on detection of human error and protection from its consequences. A program for monitoring pilot error by comparing pilot actions to a script was described. It dealt primarily with routine errors (slips) that occurred during checklist activity. The model to which operator actions were compared was a script. Current research is an extension along these two dimensions. The ORS fault detection aid uses a sophisticated device model rather than a script. The newer initiative, the model-based and constraint-based warning system, uses an even more sophisticated device model and is to prevent all types of error, not just slips or bad decision.
Payment models to support population health management.
Huerta, Timothy R; Hefner, Jennifer L; McAlearney, Ann Scheck
2014-01-01
To survey the policy-driven financial controls currently being used to drive physician change in the care of populations. This paper offers a review of current health care payment models and discusses the impact of each on the potential success of PHM initiatives. We present the benefits of a multi-part model, combining visit-based fee-for-service reimbursement with a monthly "care coordination payment" and a performance-based payment system. A multi-part model removes volume-based incentives and promotes efficiency. However, it is predicated on a pay-for-performance framework that requires standardized measurement. Application of this model is limited due to the current lack of standardized measurement of quality goals that are linked to payment incentives. Financial models dictated by health system payers are inextricably linked to the organization and management of health care. There is a need for better measurements and realistic targets as part of a comprehensive system of measurement assessment that focuses on practice redesign, with the goal of standardizing measurement of the structure and process of redesign. Payment reform is a necessary component of an accurate measure of the associations between practice transformation and outcomes important to both patients and society.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
NASA Astrophysics Data System (ADS)
Xie, Lian; Liu, Huiqing; Peng, Machuan
The effects of wave-current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave-current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.
Personalized medicine and chronic obstructive pulmonary disease.
Wouters, E F M; Wouters, B B R A F; Augustin, I M L; Franssen, F M E
2017-05-01
The current review summarizes ongoing developments in personalized medicine and precision medicine in chronic obstructive pulmonary disease (COPD). Our current approach is far away of personalized management algorithms as current recommendations for COPD are largely based on a reductionist disease description, operationally defined by results of spirometry. Besides precision medicine developments, a personalized medicine approach in COPD is described based on a holistic approach of the patient and considering illness as the consequence of dynamic interactions within and between multiple interacting and self-adjusting systems. Pulmonary rehabilitation is described as a model of personalized medicine. Largely based on current understanding of inflammatory processes in COPD, targeted interventions in COPD are reviewed. Augmentation therapy for α-1-antitrypsine deficiency is described as model of precision medicine in COPD based in profound understanding of the related genetic endotype. Future developments of precision medicine in COPD require identification of relevant endotypes combined with proper identification of phenotypes involved in the complex and heterogeneous manifestations of COPD.
Control Strategy of Active Power Filter Based on Modular Multilevel Converter
NASA Astrophysics Data System (ADS)
Xie, Xifeng
2018-03-01
To improve the capacity, pressure resistance and the equivalent switching frequency of active power filter (APF), a control strategy of APF based on Modular Multilevel Converter (MMC) is presented. In this Control Strategy, the indirect current control method is used to achieve active current and reactive current decoupling control; Voltage Balance Control Strategy is to stabilize sub-module capacitor voltage, the predictive current control method is used to Track and control of harmonic currents. As a result, the harmonic current is restrained, and power quality is improved. Finally, the simulation model of active power filter controller based on MMC is established in Matlab/Simulink, the simulation proves that the proposed strategy is feasible and correct.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Han-Wei; Rode, Johann C.; Choudhary, Prateek
2014-01-21
The DC current gain in In{sub 0.53}Ga{sub 0.47}As/InP double-heterojunction bipolar transistors is computed based on a drift-diffusion model, and is compared with experimental data. Even in the absence of other scaling effects, lateral diffusion of electrons to the base Ohmic contacts causes a rapid reduction in DC current gain as the emitter junction width and emitter-base contact spacing are reduced. The simulation and experimental data are compared in order to examine the effect of carrier lateral diffusion on current gain. The impact on current gain due to device scaling and approaches to increase current gain are discussed.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1989-03-01
Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
NASA Astrophysics Data System (ADS)
Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K.
2012-12-01
Several behavioral models of current active elements for experimental purposes are introduced in this paper. These models are based on commercially available devices. They are suitable for experimental tests of current- and mixed-mode filters, oscillators, and other circuits (employing current-mode active elements) frequently used in analog signal processing without necessity of onchip fabrication of proper active element. Several methods of electronic control of intrinsic resistance in the proposed behavioral models are discussed. All predictions and theoretical assumptions are supported by simulations and experiments. This contribution helps to find a cheaper and more effective way to preliminary laboratory tests without expensive on-chip fabrication of special active elements.
Sustainable High-Potential Career Development: A Resource-Based View.
ERIC Educational Resources Information Center
Iles, Paul
1997-01-01
In the current economic climate, fast-track career models pose problems for individuals and organizations. An alternative model uses a resource-based view of the company and principles of sustainable development borrowed from environmentalism. (SK)
Nalladega, V; Sathish, S; Jata, K V; Blodgett, M P
2008-07-01
We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.
Charge-based MOSFET model based on the Hermite interpolation polynomial
NASA Astrophysics Data System (ADS)
Colalongo, Luigi; Richelli, Anna; Kovacs, Zsolt
2017-04-01
An accurate charge-based compact MOSFET model is developed using the third order Hermite interpolation polynomial to approximate the relation between surface potential and inversion charge in the channel. This new formulation of the drain current retains the same simplicity of the most advanced charge-based compact MOSFET models such as BSIM, ACM and EKV, but it is developed without requiring the crude linearization of the inversion charge. Hence, the asymmetry and the non-linearity in the channel are accurately accounted for. Nevertheless, the expression of the drain current can be worked out to be analytically equivalent to BSIM, ACM and EKV. Furthermore, thanks to this new mathematical approach the slope factor is rigorously defined in all regions of operation and no empirical assumption is required.
Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe
2013-01-15
The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES. Copyright © 2012 Elsevier Inc. All rights reserved.
[Neither Descartes nor Freud? current pain models in psychosomatic medicine].
Egloff, N; Egle, U T; von Känel, R
2008-05-14
Models explaining chronic pain based on the mere presence or absence of peripheral somatic findings or which view pain of psychological origin when there is no somatic explanation, have their shortcomings. Current scientific knowledge calls for distinct pain concepts, which integrate neurobiological and neuropsychological aspects of pain processing.
An Entropy-Based Measure for Assessing Fuzziness in Logistic Regression
ERIC Educational Resources Information Center
Weiss, Brandi A.; Dardick, William
2016-01-01
This article introduces an entropy-based measure of data-model fit that can be used to assess the quality of logistic regression models. Entropy has previously been used in mixture-modeling to quantify how well individuals are classified into latent classes. The current study proposes the use of entropy for logistic regression models to quantify…
Application of Complex Adaptive Systems in Portfolio Management
ERIC Educational Resources Information Center
Su, Zheyuan
2017-01-01
Simulation-based methods are becoming a promising research tool in financial markets. A general Complex Adaptive System can be tailored to different application scenarios. Based on the current research, we built two models that would benefit portfolio management by utilizing Complex Adaptive Systems (CAS) in Agent-based Modeling (ABM) approach.…
Rainbow trout-based assays for estrogenicity are currently being used for development of predictive models based upon quantitative structure activity relationships. A predictive model based on a single species raises the question of whether this information is valid for other spe...
Fast solver for large scale eddy current non-destructive evaluation problems
NASA Astrophysics Data System (ADS)
Lei, Naiguang
Eddy current testing plays a very important role in non-destructive evaluations of conducting test samples. Based on Faraday's law, an alternating magnetic field source generates induced currents, called eddy currents, in an electrically conducting test specimen. The eddy currents generate induced magnetic fields that oppose the direction of the inducing magnetic field in accordance with Lenz's law. In the presence of discontinuities in material property or defects in the test specimen, the induced eddy current paths are perturbed and the associated magnetic fields can be detected by coils or magnetic field sensors, such as Hall elements or magneto-resistance sensors. Due to the complexity of the test specimen and the inspection environments, the availability of theoretical simulation models is extremely valuable for studying the basic field/flaw interactions in order to obtain a fuller understanding of non-destructive testing phenomena. Theoretical models of the forward problem are also useful for training and validation of automated defect detection systems. Theoretical models generate defect signatures that are expensive to replicate experimentally. In general, modelling methods can be classified into two categories: analytical and numerical. Although analytical approaches offer closed form solution, it is generally not possible to obtain largely due to the complex sample and defect geometries, especially in three-dimensional space. Numerical modelling has become popular with advances in computer technology and computational methods. However, due to the huge time consumption in the case of large scale problems, accelerations/fast solvers are needed to enhance numerical models. This dissertation describes a numerical simulation model for eddy current problems using finite element analysis. Validation of the accuracy of this model is demonstrated via comparison with experimental measurements of steam generator tube wall defects. These simulations generating two-dimension raster scan data typically takes one to two days on a dedicated eight-core PC. A novel direct integral solver for eddy current problems and GPU-based implementation is also investigated in this research to reduce the computational time.
NASA Astrophysics Data System (ADS)
Liu, Huiqing; Xie, Lian
2009-06-01
The effects of wave-current interactions on ocean surface waves induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal waters are examined by using a three-dimensional (3D) wave-current coupled modeling system. The 3D storm surge modeling component of the coupled system is based on the Princeton Ocean Model (POM), the wave modeling component is based on the third generation wave model, Simulating WAves Nearshore (SWAN), and the inundation model is adopted from [Xie, L., Pietrafesa, L. J., Peng, M., 2004. Incorporation of a mass-conserving inundation scheme into a three-dimensional storm surge model. J. Coastal Res., 20, 1209-1223]. The results indicate that the change of water level associated with the storm surge is the primary cause for wave height changes due to wave-surge interaction. Meanwhile, waves propagating on top of surge cause a feedback effect on the surge height by modulating the surface wind stress and bottom stress. This effect is significant in shallow coastal waters, but relatively small in offshore deep waters. The influence of wave-current interaction on wave propagation is relatively insignificant, since waves generally propagate in the direction of the surface currents driven by winds. Wave-current interactions also affect the surface waves as a result of inundation and drying induced by the storm. Waves break as waters retreat in regions of drying, whereas waves are generated in flooded regions where no waves would have occurred without the flood water.
Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One optionmore » includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.« less
Bringing modeling to the masses: A web based system to predict potential species distributions
Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul
2010-01-01
Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.
NASA Astrophysics Data System (ADS)
Marshall, R. H.; Gabrys, R.
2016-12-01
NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.
Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations
NASA Technical Reports Server (NTRS)
Willis, Emily M.; Pour, Maria Z. A.
2016-01-01
Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.
NASA Astrophysics Data System (ADS)
Tsyganenko, Nikolai
2013-04-01
A new advanced model of the dynamical geomagnetosphere is presented, based on a large set of data from Geotail, Cluster, Polar, and Themis missions, taken during 138 storm events with SYM-H from -40 to -487nT over the period from 1996 through 2012 in the range of geocentric distances from ~3Re to ~60Re. The model magnetic field is confined within a realistic magnetopause, based on Lin et al. [JGRA, v.115, A04207, 2010] empirical boundary, driven by the dipole tilt angle, solar wind pressure, and IMF Bz. The magnetic field is modeled as a flexible combination of several modules, representing contributions from principal magnetospheric current systems such as the symmetric and partial ring currents (SRC/PRC), Region 1 and 2 field-aligned currents (FAC), and the equatorial tail current sheet (TCS). In the inner magnetosphere the model field is dominated by contributions from the SRC and PRC, derived from realistic particle pressure models and represented by four modules, providing variable degree of dawn-dusk and noon-midnight asymmetry. The TCS field is comprised of several independent modules, ensuring sufficient flexibility of the model field and correct asymptotic values in the distant tail. The Region 2 FAC is an inherent part of the PRC, derived from the continuity of the azimuthal current. The Region 1 FAC is modulated by the diurnal and seasonal variations of the dipole tilt angle, in agreement with earlier statistical studies [Ohtani et al., JGRA, v.110, A09230, 2005]. Following the approach introduced in our earlier TS05 model [Tsyganenko and Sitnov, JGRA, v.110, A03208, 2005], contributions from all individual field sources are parameterized by the external driving functions, derived from the solar wind/IMF OMNI database as solutions of dynamic equations with source and loss terms in the right-hand side. Global magnetic configurations and their evolution during magnetospheric storms are analyzed and discussed in context of the model results.
Metocean design parameter estimation for fixed platform based on copula functions
NASA Astrophysics Data System (ADS)
Zhai, Jinjin; Yin, Qilin; Dong, Sheng
2017-08-01
Considering the dependent relationship among wave height, wind speed, and current velocity, we construct novel trivariate joint probability distributions via Archimedean copula functions. Total 30-year data of wave height, wind speed, and current velocity in the Bohai Sea are hindcast and sampled for case study. Four kinds of distributions, namely, Gumbel distribution, lognormal distribution, Weibull distribution, and Pearson Type III distribution, are candidate models for marginal distributions of wave height, wind speed, and current velocity. The Pearson Type III distribution is selected as the optimal model. Bivariate and trivariate probability distributions of these environmental conditions are established based on four bivariate and trivariate Archimedean copulas, namely, Clayton, Frank, Gumbel-Hougaard, and Ali-Mikhail-Haq copulas. These joint probability models can maximize marginal information and the dependence among the three variables. The design return values of these three variables can be obtained by three methods: univariate probability, conditional probability, and joint probability. The joint return periods of different load combinations are estimated by the proposed models. Platform responses (including base shear, overturning moment, and deck displacement) are further calculated. For the same return period, the design values of wave height, wind speed, and current velocity obtained by the conditional and joint probability models are much smaller than those by univariate probability. Considering the dependence among variables, the multivariate probability distributions provide close design parameters to actual sea state for ocean platform design.
Modeling of Metal-Ferroelectric-Semiconductor Field Effect Transistors
NASA Technical Reports Server (NTRS)
Duen Ho, Fat; Macleod, Todd C.
1998-01-01
The characteristics for a MFSFET (metal-ferroelectric-semiconductor field effect transistor) is very different than a conventional MOSFET and must be modeled differently. The drain current has a hysteresis shape with respect to the gate voltage. The position along the hysteresis curve is dependent on the last positive or negative polling of the ferroelectric material. The drain current also has a logarithmic decay after the last polling. A model has been developed to describe the MFSFET drain current for both gate voltage on and gate voltage off conditions. This model takes into account the hysteresis nature of the MFSFET and the time dependent decay. The model is based on the shape of the Fermi-Dirac function which has been modified to describe the MFSFET's drain current. This is different from the model proposed by Chen et. al. and that by Wu.
Simulation analysis of receptive-field size of retinal horizontal cells by ionic current model.
Aoyama, Toshihiro; Kamiyama, Yoshimi; Usui, Shiro
2005-01-01
The size of the receptive field of retinal horizontal cells changes with the state of dark/light adaptation. We have used a mathematical model to determine how changes in the membrane conductance affect the receptive-field properties of horizontal cells. We first modeled the nonlinear membrane properties of horizontal cells based on ionic current mechanisms. The dissociated horizontal cell model reproduced the voltage-current (V-I) relationships for various extracellular glutamate concentrations measured in electrophysiological studies. Second, a network horizontal cell model was also described, and it reproduced the V-I relationship observed in vivo. The network model showed a bell-shaped relationship between the receptive-field size and constant glutamate concentration. The simulated results suggest that the calcium current is a candidate for the bell-shaped length constant relationship.
NASA Astrophysics Data System (ADS)
Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.
2014-12-01
Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.
Development Of Eej Model Based On Dense Ground-based Magnetometer Array
NASA Astrophysics Data System (ADS)
Matsushita, H.; Yoshikawa, A.; Uozumi, T.; Fujimoto, A.; Abe, S.; Ishitsuka I, J. K.; Veliz, O.; Rosales, D.; Safor, E.; Beteta, V.
2016-12-01
Equatorial Electro-jet(here after called EEJ) is the electric current which flows very narrow region in ionosphere of the earth, which is between +- 3 degree from dip latitude. The EEJ was noticed as the significant enhancement of daily variation of magnetic field, and later Hirono, (1950) explained it by adapting Cowling effect to the ionosphere of the earth. The EE index, is one of ICSWSE space weather indices, was developed by Uozumi et al., (2008). Then, ICSWSE has continued to monitor the EEJ activity by using this EE index. Fujimoto et al., (2016) investigated the relationship between solar activity and long term variation of EEJ, and Hamid et al., (2015) investigated longitudinal dependency of EEJ, both of them were based on EE index. The EE index provides EDst value, which is correspond to magnetic field change at dip equator caused by magnetospheric current such as ring current, and EUEL value, which is correspond to the one caused by ionospheric current such as EEJ and Sq. However, actual EEJ is not magnetic field but the current, and it has not only current intensity but also the width. Some previous paper reported the EEJ structure such as current density or the width of EEJ using satellite data (e.g. Lühr et al., 2004; Jadhav et al., 2002), which is good when it checks the longitudinal dependency because it shifts longitude in a day. However, the ground-based magnetometer may be well useful to investigate the day-to-day variability of EEJ because it is fixed to same location. So, we developed a model of EEJ, which can estimate the EEJ current structure by ground magnetometer using dense magnetometer array near dip equator. In this study, the EEJ structures along 75W and 135E longitude are represented, and are compared each other. The result shows that large standard deviation of both current density and the half width are identified, while previous studies reported constant half width (e.g. Lühr et al., 2004). When our EEJ model is compared with CM4 model, which was developed by Sabaka et al., (2004), large discrepancy between them was identified, so it should be more discussed the reason to produce more accurate EEJ model.
Majumder, Rupamanjari; Jangsangthong, Wanchana; Feola, Iolanda; Ypey, Dirk L.; Pijnappels, Daniël A.; Panfilov, Alexander V.
2016-01-01
Atrial fibrillation (AF) is the most frequent form of arrhythmia occurring in the industrialized world. Because of its complex nature, each identified form of AF requires specialized treatment. Thus, an in-depth understanding of the bases of these arrhythmias is essential for therapeutic development. A variety of experimental studies aimed at understanding the mechanisms of AF are performed using primary cultures of neonatal rat atrial cardiomyocytes (NRAMs). Previously, we have shown that the distinct advantage of NRAM cultures is that they allow standardized, systematic, robust re-entry induction in the presence of a constitutively-active acetylcholine-mediated K+ current (IKACh-c). Experimental studies dedicated to mechanistic explorations of AF, using these cultures, often use computer models for detailed electrophysiological investigations. However, currently, no mathematical model for NRAMs is available. Therefore, in the present study we propose the first model for the action potential (AP) of a NRAM with constitutively-active acetylcholine-mediated K+ current (IKACh-c). The descriptions of the ionic currents were based on patch-clamp data obtained from neonatal rats. Our monolayer model closely mimics the action potential duration (APD) restitution and conduction velocity (CV) restitution curves presented in our previous in vitro studies. In addition, the model reproduces the experimentally observed dynamics of spiral wave rotation, in the absence and in the presence of drug interventions, and in the presence of localized myofibroblast heterogeneities. PMID:27332890
Development of a new model for short period ocean tidal variations of Earth rotation
NASA Astrophysics Data System (ADS)
Schuh, Harald
2015-08-01
Within project SPOT (Short Period Ocean Tidal variations in Earth rotation) we develop a new high frequency Earth rotation model based on empirical ocean tide models. The main purpose of the SPOT model is its application to space geodetic observations such as GNSS and VLBI.We consider an empirical ocean tide model, which does not require hydrodynamic ocean modeling to determine ocean tidal angular momentum. We use here the EOT11a model of Savcenko & Bosch (2012), which is extended for some additional minor tides (e.g. M1, J1, T2). As empirical tidal models do not provide ocean tidal currents, which are re- quired for the computation of oceanic relative angular momentum, we implement an approach first published by Ray (2001) to estimate ocean tidal current veloci- ties for all tides considered in the extended EOT11a model. The approach itself is tested by application to tidal heights from hydrodynamic ocean tide models, which also provide tidal current velocities. Based on the tidal heights and the associated current velocities the oceanic tidal angular momentum (OTAM) is calculated.For the computation of the related short period variation of Earth rotation, we have re-examined the Euler-Liouville equation for an elastic Earth model with a liquid core. The focus here is on the consistent calculation of the elastic Love num- bers and associated Earth model parameters, which are considered in the Euler- Liouville equation for diurnal and sub-diurnal periods in the frequency domain.
Houchins, J A; Cifelli, C J; Demmer, E; Fulgoni, V L
2017-01-01
To determine the effects of increasing plant-based foods or dairy products on protein intake in older Americans by performing diet modeling. Data from What We Eat in America (WWEIA), the dietary component of the National Health and Nutrition Examination Survey (NHANES), 2007-2010 for Americans aged 51 years and older (n=5,389), divided as 51-70 years (n=3,513) and 71 years and older (n=1,876) were used. Usual protein intake was compared among three dietary models that increased intakes by 100%: (1) plant-based foods; (2) higher protein plant-based foods (i.e., legumes, nuts, seeds, soy); and (3) dairy products (milk, cheese, and yogurt). Models (1) and (2) had commensurate reductions in animal-based protein intake. Doubling intake of plant-based foods (as currently consumed) resulted in a drop of protein intake by approximately 22% for males and females aged 51+ years. For older males and females, aged 71+ years, doubling intake of plant-based foods (as currently consumed) resulted in an estimated usual intake of 0.83±0.02 g/kg ideal body weight (iBW))/day and 0.78±0.01 g/kg iBW/day, respectively. In this model, 33% of females aged 71+ years did not meet the estimated average requirement for protein. Doubling dairy product consumption achieved current protein intake recommendations. These data illustrate that increasing plant-based foods and reducing animal-based products could have unintended consequences on protein intake of older Americans. Doubling dairy product intake can help older adults get to an intake level of approximately 1.2 g/kg iBW/day, consistent with the growing consensus that older adults need to consume higher levels of protein for health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Cun; He, An; Yong, Huadong
We present an exact analytical approach for arbitrary field-dependent critical state of high-T{sub c} superconducting strip with transport current. The sheet current and flux-density profiles are derived by solving the integral equations, which agree with experiments quite well. For small transport current, the approximate explicit expressions of sheet current, flux-density and penetration depth for the Kim model are derived based on the mean value theorem for integration. We also extend the results to the field-dependent critical state of superconducting strip in the simultaneous presence of applied field and transport current. The sheet current distributions calculated by the Kim model agreemore » with experiments better than that by the Bean model. Moreover, the lines in the I{sub a}-B{sub a} plane for the Kim model are not monotonic, which is quite different from that the Bean model. The results reveal that the maximum transport current in thin superconducting strip will decrease with increasing applied field which vanishes for the Bean model. The results of this paper are useful to calculate ac susceptibility and ac loss.« less
Significance of the model considering mixed grain-size for inverse analysis of turbidites
NASA Astrophysics Data System (ADS)
Nakao, K.; Naruse, H.; Tokuhashi, S., Sr.
2016-12-01
A method for inverse analysis of turbidity currents is proposed for application to field observations. Estimation of initial condition of the catastrophic events from field observations has been important for sedimentological researches. For instance, there are various inverse analyses to estimate hydraulic conditions from topography observations of pyroclastic flows (Rossano et al., 1996), real-time monitored debris-flow events (Fraccarollo and Papa, 2000), tsunami deposits (Jaffe and Gelfenbaum, 2007) and ancient turbidites (Falcini et al., 2009). These inverse analyses need forward models and the most turbidity current models employ uniform grain-size particles. The turbidity currents, however, are the best characterized by variation of grain-size distribution. Though there are numerical models of mixed grain-sized particles, the models have difficulty in feasibility of application to natural examples because of calculating costs (Lesshaft et al., 2011). Here we expand the turbidity current model based on the non-steady 1D shallow-water equation at low calculation costs for mixed grain-size particles and applied the model to the inverse analysis. In this study, we compared two forward models considering uniform and mixed grain-size particles respectively. We adopted inverse analysis based on the Simplex method that optimizes the initial conditions (thickness, depth-averaged velocity and depth-averaged volumetric concentration of a turbidity current) with multi-point start and employed the result of the forward model [h: 2.0 m, U: 5.0 m/s, C: 0.01%] as reference data. The result shows that inverse analysis using the mixed grain-size model found the known initial condition of reference data even if the condition where the optimization started is deviated from the true solution, whereas the inverse analysis using the uniform grain-size model requires the condition in which the starting parameters for optimization must be in quite narrow range near the solution. The uniform grain-size model often reaches to local optimum condition that is significantly different from true solution. In conclusion, we propose a method of optimization based on the model considering mixed grain-size particles, and show its application to examples of turbidites in the Kiyosumi Formation, Boso Peninsula, Japan.
3D digital headform models of Australian cyclists.
Ellena, Thierry; Skals, Sebastian; Subic, Aleksandar; Mustafa, Helmy; Pang, Toh Yen
2017-03-01
Traditional 1D anthropometric data have been the primary source of information used by ergonomists for the dimensioning of head and facial gear. Although these data are simple to use and understand, they only provide univariate measures of key dimensions. 3D anthropometric data, however, describe the complete shape characteristics of the head surface, but are complicated to interpret due to the abundance of information they contain. Consequently, current headform standards based on 1D measurements may not adequately represent the actual head shape variations of the intended user groups. The purpose of this study was to introduce a set of new digital headform models representative of the adult cyclists' community in Australia. Four models were generated based on an Australian 3D anthropometric database of head shapes and a modified hierarchical clustering algorithm. Considerable shape differences were identified between our models and the current headforms from the Australian standard. We conclude that the design of head and facial gear based on current standards might not be favorable for optimal fitting results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preliminary Cost Model for Space Telescopes
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Prince, F. Andrew; Smart, Christian; Stephens, Kyle; Henrichs, Todd
2009-01-01
Parametric cost models are routinely used to plan missions, compare concepts and justify technology investments. However, great care is required. Some space telescope cost models, such as those based only on mass, lack sufficient detail to support such analysis and may lead to inaccurate conclusions. Similarly, using ground based telescope models which include the dome cost will also lead to inaccurate conclusions. This paper reviews current and historical models. Then, based on data from 22 different NASA space telescopes, this paper tests those models and presents preliminary analysis of single and multi-variable space telescope cost models.
Approximation of wave action flux velocity in strongly sheared mean flows
NASA Astrophysics Data System (ADS)
Banihashemi, Saeideh; Kirby, James T.; Dong, Zhifei
2017-08-01
Spectral wave models based on the wave action equation typically use a theoretical framework based on depth uniform current to account for current effects on waves. In the real world, however, currents often have variations over depth. Several recent studies have made use of a depth-weighted current U˜ due to [Skop, R. A., 1987. Approximate dispersion relation for wave-current interactions. J. Waterway, Port, Coastal, and Ocean Eng. 113, 187-195.] or [Kirby, J. T., Chen, T., 1989. Surface waves on vertically sheared flows: approximate dispersion relations. J. Geophys. Res. 94, 1013-1027.] in order to account for the effect of vertical current shear. Use of the depth-weighted velocity, which is a function of wavenumber (or frequency and direction) has been further simplified in recent applications by only utilizing a weighted current based on the spectral peak wavenumber. These applications do not typically take into account the dependence of U˜ on wave number k, as well as erroneously identifying U˜ as the proper choice for current velocity in the wave action equation. Here, we derive a corrected expression for the current component of the group velocity. We demonstrate its consistency using analytic results for a current with constant vorticity, and numerical results for a measured, strongly-sheared current profile obtained in the Columbia River. The effect of choosing a single value for current velocity based on the peak wave frequency is examined, and we suggest an alternate strategy, involving a Taylor series expansion about the peak frequency, which should significantly extend the range of accuracy of current estimates available to the wave model with minimal additional programming and data transfer.
Suicide risk factors for young adults: testing a model across ethnicities.
Gutierrez, P M; Rodriguez, P J; Garcia, P
2001-06-01
A general path model based on existing suicide risk research was developed to test factors contributing to current suicidal ideation in young adults. A sample of 673 undergraduate students completed a packet of questionnaires containing the Beck Depression Inventory, Adult Suicidal Ideation Questionnaire, and Multi-Attitude Suicide Tendency Scale. They also provided information on history of suicidality and exposure to attempted and completed suicide in others. Structural equation modeling was used to test the fit of the data to the hypothesized model. Goodness-of-fit indices were adequate and supported the interactive effects of exposure, repulsion by life, depression, and history of self-harm on current ideation. Model fit for three subgroups based on race/ethnicity (i.e., White, Black, and Hispanic) determined that repulsion by life and depression function differently across groups. Implications of these findings for current methods of suicide risk assessment and future research are discussed in the context of the importance of culture.
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.
2014-05-01
Lagrangian particle trajectory models based on several altimetry-derived surface current products are used to hindcast the drifter trajectories observed in the eastern Gulf of Mexico during May to August 2010 (the Deepwater Horizon oil spill incident). The performances of the trajectory models are gauged in terms of Lagrangian separation distances (d) and a nondimensional skill score (s), respectively. A series of numerical experiments show that these altimetry-based trajectory models have about the same performance, with a certain improvement by adding surface wind Ekman components, especially over the shelf region. However, their hindcast skills are slightly better than those of the data assimilative numerical model output. After 3 days' simulation the altimetry-based trajectory models have mean d values of 75-83 and 34-42 km (s values of 0.49-0.51 and 0.35-0.43) in the Gulf of Mexico deep water area and on the West Florida Continental Shelf, respectively. These satellite altimetry data products are useful for providing essential information on ocean surface currents of use in water property transports, offshore oil and gas operations, hazardous spill mitigation, search and rescue, etc.
Assessing the vertical structure of baroclinic tidal currents in a global model
NASA Astrophysics Data System (ADS)
Timko, Patrick; Arbic, Brian; Scott, Robert
2010-05-01
Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.
Tidal current energy potential of Nalón river estuary assessment using a high precision flow model
NASA Astrophysics Data System (ADS)
Badano, Nicolás; Valdés, Rodolfo Espina; Álvarez, Eduardo Álvarez
2018-05-01
Obtaining energy from tide currents in onshore locations is of great interest due to the proximity to the points of consumption. This opens the door to the feasibility of new installations based on hydrokinetic microturbines even in zones of moderate speed. In this context, the accuracy of energy predictions based on hydrodynamic models is of paramount importance. This research presents a high precision methodology based on a multidimensional hydrodynamic model that is used to study the energetic potential in estuaries. Moreover, it is able to estimate the flow variations caused by microturbine installations. The paper also shows the results obtained from the application of the methodology in a study of the Nalón river mouth (Asturias, Spain).
NASA Astrophysics Data System (ADS)
Akasofu, S.-I.; Kamide, Y.
1998-07-01
A new approach is needed to advance magnetospheric physics in the future to achieve a much closer integration than in the past among satellite-based researchers, ground-based researchers, and theorists/modelers. Specifically, we must find efficient ways to combine two-dimensional ground-based data and single points satellite-based data to infer three-dimensional aspects of magnetospheric disturbances. For this particular integration purpose, we propose a new project. It is designed to determine the currents on the magnetospheric equatorial plane from the ionospheric current distribution which has become available by inverting ground-based magnetic data from an extensive, systematic network of observations, combined with ground-based radar measurements of ionospheric parameters, and satellite observations of auroras, electric fields, and currents. The inversion method is based on the KRM/AMIE algorithms. In the first part of the paper, we extensively review the reliability and accuracy of the KRM and AMIE algorithms and conclude that the ionospheric quantities thus obtained are accurate enough for the next step. In the second part, the ionospheric current distribution thus obtained is projected onto the equatorial plane. This process requires a close cooperation with modelers in determining an accurate configuration of the magnetospheric field lines. If we succeed in this projection, we should be able to study the changing distribution of the currents in a vast region of the magnetospheric equatorial plane for extended periods with a time resolution of about 5 min. This process requires a model of the magnetosphere for the different phases of the magnetospheric substorm. Satellite-based observations are needed to calibrate the projection results. Agreements and disagreements thus obtained will be crucial for theoretical studies of magnetospheric plasma convection and dynamics, particularly in studying substorms. Nothing is easy in these procedures. However, unless we can overcome the associated difficulties, we may not be able to make distinct progresses. We believe that the proposed project is one way to draw the three groups closer together in advancing magnetospheric physics in the future. It is important to note that the proposed project has become possible because ground-based space physics has made a major advance during the last decade.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.
2003-01-01
A complete description of a self-consistent model of magnetospheric ring current interacting with electromagnetic ion cyclotron waves is presented. The model is based on the system of two kinetic equations; one equation describes the ring current ion dynamics, and another equation describes the wave evolution. The effects on ring current ions interacting with electromagnetic ion cyclotron waves and back on waves are considered self-consistently by solving both equations on a global magnetospheric scale under nonsteady state conditions. The developed model is employed to simulate the entire 2-7 May 1998 storm period. First, the trapped number fluxes of the ring current protons are calculated and presented along with comparison with the data measured by the three- dimensional hot plasma instrument Polar/HYDRA. Incorporating in the model the wave-particle interaction leads to much better agreement between the experimental data and the model results. Second, examining of the wave (MLT, L shell) distributions produced by the model during the storm progress reveals an essential intensification of the wave emission about 2 days after the main phase of the storm. This result is well consistent with the earlier ground-based observations. Finally, the theoretical shapes and the occurrence rates of the wave power spectral densities are studied. It is found that about 2 days after the storm s main phase on 4 May, mainly non-Gaussian shapes of power spectral densities are produced.
ERIC Educational Resources Information Center
Laija-Rodriguez, Wilda; Grites, Karen; Bouman, Doug; Pohlman, Craig; Goldman, Richard L.
2013-01-01
Current assessments in the schools are based on a deficit model (Epstein, 1998). "The National Association of School Psychologists (NASP) Model for Comprehensive and Integrated School Psychological Services" (2010), federal initiatives and mandates, and experts in the field of assessment have highlighted the need for the comprehensive…
Modeling current climate conditions for forest pest risk assessment
Frank H. Koch; John W. Coulston
2010-01-01
Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...
DEMONSTRATION OF EQUIVALENCY OF CANE AND SOFTWOOD BASED CELOTEX FOR MODEL 9975 SHIPPING PACKAGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, R; Jason Varble, J
2008-05-27
Cane-based Celotex{trademark} has been used extensively in various Department of Energy (DOE) packages as a thermal insulator and impact absorber. Cane-based Celotex{trademark} fiberboard was only manufactured by Knight-Celotex Fiberboard at their Marrero Plant in Louisiana. However, Knight-Celotex Fiberboard shut down their Marrero Plant in early 2007 due to impacts from hurricane Katrina and other economic factors. Therefore, cane-based Celotex{trademark} fiberboard is no longer available for use in the manufacture of new shipping packages requiring the material as a component. Current consolidation plans for the DOE Complex require the procurement of several thousand new Model 9975 shipping packages requiring cane-based Celotex{trademark}more » fiberboard. Therefore, an alternative to cane-based Celotex{trademark} fiberboard is needed. Knight-Celotex currently manufactures Celotex{trademark} fiberboard from other cellulosic materials, such as hardwood and softwood. A review of the relevant literature has shown that softwood-based Celotex{trademark} meets all parameters important to the Model 9975 shipping package.« less
Reconstruction of the action potential of ventricular myocardial fibres
Beeler, G. W.; Reuter, H.
1977-01-01
1. A mathematical model of membrane action potentials of mammalian ventricular myocardial fibres is described. The reconstruction model is based as closely as possible on ionic currents which have been measured by the voltage-clamp method. 2. Four individual components of ionic current were formulated mathematically in terms of Hodgkin—Huxley type equations. The model incorporates two voltage- and time-dependent inward currents, the excitatory inward sodium current, iNa, and a secondary or slow inward current, is, primarily carried by calcium ions. A time-independent outward potassium current, iK1, exhibiting inward-going rectification, and a voltage- and time-dependent outward current, ix1, primarily carried by potassium ions, are further elements of the model. 3. The iNa is primarily responsible for the rapid upstroke of the action potential, while the other current components determine the configuration of the plateau of the action potential and the re-polarization phase. The relative importance of inactivation of is and of activation of ix1 for termination of the plateau is evaluated by the model. 4. Experimental phenomena like slow recovery of the sodium system from inactivation, frequency dependence of the action potential duration, all-or-nothing re-polarization, membrane oscillations are adequately described by the model. 5. Possible inadequacies and shortcomings of the model are discussed. PMID:874889
ERIC Educational Resources Information Center
Mendonca, Paula Cristina Cardoso; Justi, Rosaria
2011-01-01
Current proposals for science education recognise the importance of students' involvement in activities aimed at favouring the understanding of science as a human, dynamic and non-linear construct. Modelling-based teaching is one of the alternatives through which to address such issues. Modelling-based teaching activities for ionic bonding were…
NASA Astrophysics Data System (ADS)
Dobeš, Josef; Grábner, Martin; Puričer, Pavel; Vejražka, František; Míchal, Jan; Popp, Jakub
2017-05-01
Nowadays, there exist relatively precise pHEMT models available for computer-aided design, and they are frequently compared to each other. However, such comparisons are mostly based on absolute errors of drain-current equations and their derivatives. In the paper, a novel method is suggested based on relative root-mean-square errors of both drain current and its derivatives up to the third order. Moreover, the relative errors are subsequently relativized to the best model in each category to further clarify obtained accuracies of both drain current and its derivatives. Furthermore, one our older and two newly suggested models are also included in comparison with the traditionally precise Ahmed, TOM-2 and Materka ones. The assessment is performed using measured characteristics of a pHEMT operating up to 110 GHz. Finally, a usability of the proposed models including the higher-order derivatives is illustrated using s-parameters analysis and measurement at more operating points as well as computation and measurement of IP3 points of a low-noise amplifier of a multi-constellation satellite navigation receiver with ATF-54143 pHEMT.
Dual metal gate tunneling field effect transistors based on MOSFETs: A 2-D analytical approach
NASA Astrophysics Data System (ADS)
Ramezani, Zeinab; Orouji, Ali A.
2018-01-01
A novel 2-D analytical drain current model of novel Dual Metal Gate Tunnel Field Effect Transistors Based on MOSFETs (DMG-TFET) is presented in this paper. The proposed Tunneling FET is extracted from a MOSFET structure by employing an additional electrode in the source region with an appropriate work function to induce holes in the N+ source region and hence makes it as a P+ source region. The electric field is derived which is utilized to extract the expression of the drain current by analytically integrating the band to band tunneling generation rate in the tunneling region based on the potential profile by solving the Poisson's equation. Through this model, the effects of the thin film thickness and gate voltage on the potential, the electric field, and the effects of the thin film thickness on the tunneling current can be studied. To validate our present model we use SILVACO ATLAS device simulator and the analytical results have been compared with it and found a good agreement.
Optimal trajectory planning for a UAV glider using atmospheric thermals
NASA Astrophysics Data System (ADS)
Kagabo, Wilson B.
An Unmanned Aerial Vehicle Glider (UAV glider) uses atmospheric energy in its different forms to remain aloft for extended flight durations. This UAV glider's aim is to extract atmospheric thermal energy and use it to supplement its battery energy usage and increase the mission period. Given an infrared camera identified atmospheric thermal of known strength and location; current wind speed and direction; current battery level; altitude and location of the UAV glider; and estimating the expected altitude gain from the thermal, is it possible to make an energy-efficient based motivation to fly to an atmospheric thermal so as to achieve UAV glider extended flight time? For this work, an infrared thermal camera aboard the UAV glider takes continuous forward-looking ground images of "hot spots". Through image processing a candidate atmospheric thermal strength and location is estimated. An Intelligent Decision Model incorporates this information with the current UAV glider status and weather conditions to provide an energy-based recommendation to modify the flight path of the UAV glider. Research, development, and simulation of the Intelligent Decision Model is the primary focus of this work. Three models are developed: (1) Battery Usage Model, (2) Intelligent Decision Model, and (3) Altitude Gain Model. The Battery Usage Model comes from the candidate flight trajectory, wind speed & direction and aircraft dynamic model. Intelligent Decision Model uses a fuzzy logic based approach. The Altitude Gain Model requires the strength and size of the thermal and is found a priori.
Liu, Xudong; Zhang, Chenghui; Li, Ke; Zhang, Qi
2017-11-01
This paper addresses the current control of permanent magnet synchronous motor (PMSM) for electric drives with model uncertainties and disturbances. A generalized predictive current control method combined with sliding mode disturbance compensation is proposed to satisfy the requirement of fast response and strong robustness. Firstly, according to the generalized predictive control (GPC) theory based on the continuous time model, a predictive current control method is presented without considering the disturbance, which is convenient to be realized in the digital controller. In fact, it's difficult to derive the exact motor model and parameters in the practical system. Thus, a sliding mode disturbance compensation controller is studied to improve the adaptiveness and robustness of the control system. The designed controller attempts to combine the merits of both predictive control and sliding mode control, meanwhile, the controller parameters are easy to be adjusted. Lastly, the proposed controller is tested on an interior PMSM by simulation and experiment, and the results indicate that it has good performance in both current tracking and disturbance rejection. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Multilevel Latent Growth Curve Approach to Predicting Student Proficiency
ERIC Educational Resources Information Center
Choi, Kilchan; Goldschmidt, Pete
2012-01-01
Value-added models and growth-based accountability aim to evaluate school's performance based on student growth in learning. The current focus is on linking the results from value-added models to the ones from growth-based accountability systems including Adequate Yearly Progress decisions mandated by No Child Left Behind. We present a new…
Biofuel blends of 10% ethanol (EtOH) and gasoline are common in the United States, and higher EtOH concentrations are being considered (15-85%). Currently, no physiologically-based pharmacokinetic (PBPK) models are available to describe the kinetics of EtOH-based biofuels. PBPK...
Recent Achievements of the Collaboratory for the Study of Earthquake Predictability
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.
2016-12-01
The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as they develop their forecast models. We also discuss how CSEP procedures are being adapted to intensity and ground motion prediction experiments as well as hazard model testing.
Overcoming limitations of model-based diagnostic reasoning systems
NASA Technical Reports Server (NTRS)
Holtzblatt, Lester J.; Marcotte, Richard A.; Piazza, Richard L.
1989-01-01
The development of a model-based diagnostic system to overcome the limitations of model-based reasoning systems is discussed. It is noted that model-based reasoning techniques can be used to analyze the failure behavior and diagnosability of system and circuit designs as part of the system process itself. One goal of current research is the development of a diagnostic algorithm which can reason efficiently about large numbers of diagnostic suspects and can handle both combinational and sequential circuits. A second goal is to address the model-creation problem by developing an approach for using design models to construct the GMODS model in an automated fashion.
NASA Astrophysics Data System (ADS)
Golenko, Mariya; Golenko, Nikolay
2014-05-01
Numerical modeling of the currents' spatial structure in some regions of the Baltic Sea is performed on the base of POM (Princeton Ocean Model). The calculations were performed under the westerly (most frequent in the Baltic) and north-easterly wind forcings. In the regions adjacent to the Kaliningrad Region's, Polish and Lithuanian coasts these winds generate oppositely directed geostrophic, drift and others types of currents. On the whole these processes can be considered as downwelling and upwelling. Apart from the regions mentioned above the Slupsk Furrow region, which determines the mass and momentum exchange between the Western and Central Baltic, is also considered. During the analysis of currents not only the whole model velocity but also components directed along and across the barotropic geostrophic current velocity are considered. The along geostrophic component for one's turn is separated into the geostrophic current itself and an ageostrophic part. The across geostrophic component is totally ageostrophic. The velocity components directed along and across the geostrophic current approximately describe the velocity components directed along the coast (along isobathes) and from the coast towards the open sea. The suggested approach allowed to present the currents' spatial structures typical for different wind forcings as two maps with the components directed along and across the barotropic geostrophic current velocity. On these maps the areas of the intensive alongshore currents are clearly depicted (for ex. near the base of the Hel Spit, in the region of the Slupsk Sill). The combined analysis of the vectors of the whole and geostrophic velocities allows to reveal the areas where the geostrophic component is significantly strengthened or weakened by the ageostrophic component. Under the westerly wind such currents' features are clearly observed near the end of the Hel Spit and at the southern boarder of the Slupsk Sill, under the north-easterly wind - near the base of the Hel Spit, at the southern boarder of the Slupsk Furrow, near the Curonian Spit (where the relief is bent). On the maps presenting the spatial distributions of the across shore velocities the areas where the mass and momentum transport from the shore to the open sea in the surface layer and vice versa takes place are discriminated. There are also revealed the areas where sharp changes of different velocity components under the wind changes are expected as well as the areas where such changes are expected to be minimal. The model is validated using the field surveys of current velocities by ADCP in the area adjacent to the Kaliningrad region. The comparison of current velocities has shown a close correspondence. In rather wide area the directions and amplitudes of the model and ADCP surface velocities are close, that is additionally confirmed by the comparison of the local vorticity distributions. On the vertical transects of the ADCP current velocity directed across the shoreline the geostrophic jet is clearly pronounced. Its horizontal and vertical scales are in close correspondence with ones of the model jet. At that the more detail calculations which are allowed during the modeling have shown that the geostrophic currents amount to 40-60% (in average) of the whole velocity; two components of the ageostrophic velocity directed along and across the geostrophic velocity are highly variable (from 10 to 60% of the whole velocity). The ageostrophic component directed along the geostrophic current generally strengthens it (up to 20-40% in average and up to 60-70% near the end of the Hel Spit). But in some regions, for example, in the Slupsk Furrow the ageostrophic component slows down the geostrophic current (to 30-40%). In some narrow local areas immediately adjacent to the coast currents directed oppositely to the general quasi geostrophic jet were registered on both field and model data. Before the comparison with the field data these local jets revealed on the model data were considered as improbable. As a result, the comparative analysis of the field and model data led to more detail understanding of dynamic processes in some coastal parts of the Baltic Sea.
Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin
2017-01-01
Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.
Mathematical modeling and computational prediction of cancer drug resistance.
Sun, Xiaoqiang; Hu, Bin
2017-06-23
Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Godugu, Chandraiah; Singh, Mandip
2016-01-01
Routinely used two-dimensional cell culture-based models often fail while translating the observations into in vivo models. This setback is more common in cancer research, due to several reasons. The extracellular matrix and cell-to-cell interactions are not present in two-dimensional (2D) cell culture models. Diffusion of drug molecules into cancer cells is hindered by barriers of extracellular components in in vivo conditions, these barriers are absent in 2D cell culture models. To better mimic or simulate the in vivo conditions present in tumors, the current study used the alginate based three-dimensional cell culture (AlgiMatrix™) model, which resembles close to the in vivo tumor models. The current study explains the detailed protocols involved in AlgiMatrix™ based in vitro non-small-cell lung cancer (NSCLC) models. The suitability of this model was studied by evaluating, cytotoxicity, apoptosis, and penetration of nanoparticles into the in vitro tumor spheroids. This study also demonstrated the effect of EphA2 receptor targeted docetaxel-loaded nanoparticles on MDA-MB-468 TNBC cell lines. The methods section is subdivided into three subsections such as (1) preparation of AlgiMatrix™-based 3D in vitro tumor models and cytotoxicity assays, (2) free drug and nanoparticle uptake into spheroid studies, and (3) western blot, IHC, and RT-PCR studies.
History of research on modelling gypsy moth population ecology
J. J. Colbert
1991-01-01
History of research to develop models of gypsy moth population dynamics and some related studies are described. Empirical regression-based models are reviewed, and then the more comprehensive process models are discussed. Current model- related research efforts are introduced.
Investigation and Modeling of Cranberry Weather Stress.
NASA Astrophysics Data System (ADS)
Croft, Paul Joseph
Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.
Erdemir, Elif Tokar; Batta, Rajan; Spielman, Seth; Rogerson, Peter A; Blatt, Alan; Flanigan, Marie
2008-05-01
In a recent paper, Tokar Erdemir et al. (2008) introduce models for service systems with service requests originating from both nodes and paths. We demonstrate how to apply and extend their approach to an aeromedical base location application, with specific focus on the state of New Mexico (NM). The current aeromedical base locations of NM are selected without considering motor vehicle crash paths. Crash paths are the roads on which crashes occur, where each road segment has a weight signifying relative crash occurrence. We analyze the loss in accident coverage and location error for current aeromedical base locations. We also provide insights on the relevance of considering crash paths when selecting aeromedical base locations. Additionally, we look briefly at some of the tradeoff issues in locating additional trauma centers vs. additional aeromedical bases in the current aeromedical system of NM. Not surprisingly, tradeoff analysis shows that by locating additional aeromedical bases, we always attain the required coverage level with a lower cost than with locating additional trauma centers.
Power flow analysis and optimal locations of resistive type superconducting fault current limiters.
Zhang, Xiuchang; Ruiz, Harold S; Geng, Jianzhao; Shen, Boyang; Fu, Lin; Zhang, Heng; Coombs, Tim A
2016-01-01
Based on conventional approaches for the integration of resistive-type superconducting fault current limiters (SFCLs) on electric distribution networks, SFCL models largely rely on the insertion of a step or exponential resistance that is determined by a predefined quenching time. In this paper, we expand the scope of the aforementioned models by considering the actual behaviour of an SFCL in terms of the temperature dynamic power-law dependence between the electrical field and the current density, characteristic of high temperature superconductors. Our results are compared to the step-resistance models for the sake of discussion and clarity of the conclusions. Both SFCL models were integrated into a power system model built based on the UK power standard, to study the impact of these protection strategies on the performance of the overall electricity network. As a representative renewable energy source, a 90 MVA wind farm was considered for the simulations. Three fault conditions were simulated, and the figures for the fault current reduction predicted by both fault current limiting models have been compared in terms of multiple current measuring points and allocation strategies. Consequently, we have shown that the incorporation of the E - J characteristics and thermal properties of the superconductor at the simulation level of electric power systems, is crucial for estimations of reliability and determining the optimal locations of resistive type SFCLs in distributed power networks. Our results may help decision making by distribution network operators regarding investment and promotion of SFCL technologies, as it is possible to determine the maximum number of SFCLs necessary to protect against different fault conditions at multiple locations.
Development of a Consumable Inventory Management Strategy for the Supply Management Unit
2007-12-01
should be either returned to the supplier for partial credit or sent to disposal. This means that based 52 upon current and projected consumption ...economical to maintain based upon current and projected consumption rates. The magnitude of the feasible excess is driven by the base stock level prescribed...Days of Supply model to establish Requisitioning Objectives (RO) and Reorder Points (ROP), which are based upon historical usage, lead time, and supply
Zhao, Ping; Pan, Yuzhuo; Wagner, Christian
2017-01-01
A comprehensive search in literature and published US Food and Drug Administration reviews was conducted to assess whether physiologically based pharmacokinetic (PBPK) modeling could be prospectively used to predict clinical food effect on oral drug absorption. Among the 48 resulted food effect predictions, ∼50% were predicted within 1.25‐fold of observed, and 75% within 2‐fold. Dissolution rate and precipitation time were commonly optimized parameters when PBPK modeling was not able to capture the food effect. The current work presents a knowledgebase for documenting PBPK experience to predict food effect. PMID:29168611
Exact simulation of integrate-and-fire models with exponential currents.
Brette, Romain
2007-10-01
Neural networks can be simulated exactly using event-driven strategies, in which the algorithm advances directly from one spike to the next spike. It applies to neuron models for which we have (1) an explicit expression for the evolution of the state variables between spikes and (2) an explicit test on the state variables that predicts whether and when a spike will be emitted. In a previous work, we proposed a method that allows exact simulation of an integrate-and-fire model with exponential conductances, with the constraint of a single synaptic time constant. In this note, we propose a method, based on polynomial root finding, that applies to integrate-and-fire models with exponential currents, with possibly many different synaptic time constants. Models can include biexponential synaptic currents and spike-triggered adaptation currents.
The two-way relationship between ionospheric outflow and the ring current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
The two-way relationship between ionospheric outflow and the ring current
Welling, Daniel T.; Jordanova, Vania Koleva; Glocer, Alex; ...
2015-06-01
It is now well established that the ionosphere, because it acts as a significant source of plasma, plays a critical role in ring current dynamics. However, because the ring current deposits energy into the ionosphere, the inverse may also be true: the ring current can play a critical role in the dynamics of ionospheric outflow. This study uses a set of coupled, first-principles-based numerical models to test the dependence of ionospheric outflow on ring current-driven region 2 field-aligned currents (FACs). A moderate magnetospheric storm event is modeled with the Space Weather Modeling Framework using a global MHD code (Block Adaptivemore » Tree Solar wind Roe-type Upwind Scheme, BATS-R-US), a polar wind model (Polar Wind Outflow Model), and a bounce-averaged kinetic ring current model (ring current atmosphere interaction model with self-consistent magnetic field, RAM-SCB). Initially, each code is two-way coupled to all others except for RAM-SCB, which receives inputs from the other models but is not allowed to feed back pressure into the MHD model. The simulation is repeated with pressure coupling activated, which drives strong pressure gradients and region 2 FACs in BATS-R-US. It is found that the region 2 FACs increase heavy ion outflow by up to 6 times over the non-coupled results. The additional outflow further energizes the ring current, establishing an ionosphere-magnetosphere mass feedback loop. This study further demonstrates that ionospheric outflow is not merely a plasma source for the magnetosphere but an integral part in the nonlinear ionosphere-magnetosphere-ring current system.« less
The Future of Australian Vocational Education Qualifications Depends on a New Social Settlement
ERIC Educational Resources Information Center
Wheelahan, Leesa
2015-01-01
This article argues that the current social settlement underpinning vocational education and training (VET) in Australia is fractured. The current settlement is low trust and consists of qualifications based on competency-based training models of curriculum and competitive markets. The result is narrow qualifications that do not prepare people for…
NASA Astrophysics Data System (ADS)
Chhetri, Nikita; Chatterjee, Somenath
2018-01-01
Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.
Improving orbit prediction accuracy through supervised machine learning
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli
2018-05-01
Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.
Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure
NASA Astrophysics Data System (ADS)
Brown, W. S.; Marques, G. M.
2013-07-01
High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper Outer Zone subregion (33m) bottom current lateral shear and water column stretching/squashing was significant in modulating the eddy motion. We conclude that the transient eddy motions in the GSC region are phase eddies that accompany the change of tide across the GSC and are (1) generated by bottom stress gradients in the shallower nearshore - an issue which needs to be better understood for improved future forecasting.
Process based modeling of total longshore sediment transport
Haas, K.A.; Hanes, D.M.
2004-01-01
Waves, currents, and longshore sand transport are calculated locally as a function of position in the nearshore region using process based numerical models. The resultant longshore sand transport is then integrated across the nearshore to provide predictions of the total longshore transport of sand due to waves and longshore currents. Model results are in close agreement with the I1-P1 correlation described by Komar and Inman (1970) and the CERC (1984) formula. Model results also indicate that the proportionality constant in the I1-P1 formula depends weakly upon the sediment size, the shape of the beach profile, and the particular local sediment flux formula that is employed. Model results indicate that the various effects and influences of sediment size tend to cancel out, resulting in little overall dependence on sediment size.
Numerically pricing American options under the generalized mixed fractional Brownian motion model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Yan, Bowen; Lian, Guanghua; Zhang, Ying
2016-06-01
In this paper, we introduce a robust numerical method, based on the upwind scheme, for the pricing of American puts under the generalized mixed fractional Brownian motion (GMFBM) model. By using portfolio analysis and applying the Wick-Itô formula, a partial differential equation (PDE) governing the prices of vanilla options under the GMFBM is successfully derived for the first time. Based on this, we formulate the pricing of American puts under the current model as a linear complementarity problem (LCP). Unlike the classical Black-Scholes (B-S) model or the generalized B-S model discussed in Cen and Le (2011), the newly obtained LCP under the GMFBM model is difficult to be solved accurately because of the numerical instability which results from the degeneration of the governing PDE as time approaches zero. To overcome this difficulty, a numerical approach based on the upwind scheme is adopted. It is shown that the coefficient matrix of the current method is an M-matrix, which ensures its stability in the maximum-norm sense. Remarkably, we have managed to provide a sharp theoretic error estimate for the current method, which is further verified numerically. The results of various numerical experiments also suggest that this new approach is quite accurate, and can be easily extended to price other types of financial derivatives with an American-style exercise feature under the GMFBM model.
3D analysis of eddy current loss in the permanent magnet coupling.
Zhu, Zina; Meng, Zhuo
2016-07-01
This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.
ERIC Educational Resources Information Center
Schweppe, Judith; Rummer, Ralf
2014-01-01
Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…
Tree injury and mortality in fires: developing process-based models
Bret W. Butler; Matthew B. Dickinson
2010-01-01
Wildland fire managers are often required to predict tree injury and mortality when planning a prescribed burn or when considering wildfire management options; and, currently, statistical models based on post-fire observations are the only tools available for this purpose. Implicit in the derivation of statistical models is the assumption that they are strictly...
Performance of Four-Leg VSC based DSTATCOM using Single Phase P-Q Theory
NASA Astrophysics Data System (ADS)
Jampana, Bangarraju; Veramalla, Rajagopal; Askani, Jayalaxmi
2017-02-01
This paper presents single-phase P-Q theory for four-leg VSC based distributed static compensator (DSTATCOM) in the distribution system. The proposed DSTATCOM maintains unity power factor at source, zero voltage regulation, eliminates current harmonics, load balancing and neutral current compensation. The advantage of using four-leg VSC based DSTATCOM is to eliminate isolated/non-isolated transformer connection at point of common coupling (PCC) for neutral current compensation. The elimination of transformer connection at PCC with proposed topology will reduce cost of DSTATCOM. The single-phase P-Q theory control algorithm is used to extract fundamental component of active and reactive currents for generation of reference source currents which is based on indirect current control method. The proposed DSTATCOM is modelled and the results are validated with various consumer loads under unity power factor and zero voltage regulation modes in the MATLAB R2013a environment using simpower system toolbox.
Internet-based system for simulation-based medical planning for cardiovascular disease.
Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A
2003-06-01
Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.
2014-02-01
Applied Drain Voltage Ids Drain-to-Source current MPa Megapascals σxx x-Component of Stress INTRODUCTION Gallium nitride (GaN) based high electron...the thermodynamic model to obtain the current densities within a semiconductor device. In doing so, it is possible to determine the electric
ERIC Educational Resources Information Center
Newman, Tim A.
2012-01-01
This study described the current state of principal salaries in South Carolina and compared the salaries of similar size schools by specific report card performance and demographic variables. Based on the findings, theoretical models were proposed, and comparisons were made with current salary data. School boards, human resource personnel and…
Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auf der Maur, M., E-mail: auf.der.maur@ing.uniroma2.it; Di Carlo, A.; Galler, B.
Based on numerical simulation and comparison with measured current characteristics, we show that the current in InGaN/GaN single-quantum-well light-emitting diodes at low forward bias can be accurately described by a standard trap-assisted tunneling model. The qualitative and quantitative differences in the current characteristics of devices with different emission wavelengths are demonstrated to be correlated in a physically consistent way with the tunneling model parameters.
Cost-effectiveness of human papillomavirus vaccination in the United States.
Chesson, Harrell W; Ekwueme, Donatus U; Saraiya, Mona; Markowitz, Lauri E
2008-02-01
We describe a simplified model, based on the current economic and health effects of human papillomavirus (HPV), to estimate the cost-effectiveness of HPV vaccination of 12-year-old girls in the United States. Under base-case parameter values, the estimated cost per quality-adjusted life year gained by vaccination in the context of current cervical cancer screening practices in the United States ranged from $3,906 to $14,723 (2005 US dollars), depending on factors such as whether herd immunity effects were assumed; the types of HPV targeted by the vaccine; and whether the benefits of preventing anal, vaginal, vulvar, and oropharyngeal cancers were included. The results of our simplified model were consistent with published studies based on more complex models when key assumptions were similar. This consistency is reassuring because models of varying complexity will be essential tools for policy makers in the development of optimal HPV vaccination strategies.
Unified computational model of transport in metal-insulating oxide-metal systems
NASA Astrophysics Data System (ADS)
Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.
2018-04-01
A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.
Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.
Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert
2012-07-07
Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.
Mackay, Sally; Buch, Tina; Vandevijvere, Stefanie; Goodwin, Rawinia; Korohina, Erina; Funaki-Tahifote, Mafi; Lee, Amanda; Swinburn, Boyd
2018-06-13
The affordability of diets modelled on the current (less healthy) diet compared to a healthy diet based on Dietary Guidelines was calculated for population groups in New Zealand. Diets using common foods were developed for a household of four for the total population, Māori and Pacific groups. Māori and Pacific nutrition expert panels ensured the diets were appropriate. Each current (less healthy) diet was based on eating patterns identified from national nutrition surveys. Food prices were collected from retail outlets. Only the current diets contained alcohol, takeaways and discretionary foods. The modelled healthy diet was cheaper than the current diet for the total population (3.5% difference) and Pacific households (4.5% difference) and similar in cost for Māori households (0.57% difference). When the diets were equivalent in energy, the healthy diet was more expensive than the current diet for all population groups (by 8.5% to 15.6%). For households on the minimum wage, the diets required 27% to 34% of household income, and if receiving income support, required 41⁻52% of household income. Expert panels were invaluable in guiding the process for specific populations. Both the modelled healthy and current diets are unaffordable for some households as a considerable portion of income was required to purchase either diet. Policies are required to improve food security by lowering the cost of healthy food or improving household income.
A quasi-current representation for information needs inspired by Two-State Vector Formalism
NASA Astrophysics Data System (ADS)
Wang, Panpan; Hou, Yuexian; Li, Jingfei; Zhang, Yazhou; Song, Dawei; Li, Wenjie
2017-09-01
Recently, a number of quantum theory (QT)-based information retrieval (IR) models have been proposed for modeling session search task that users issue queries continuously in order to describe their evolving information needs (IN). However, the standard formalism of QT cannot provide a complete description for users' current IN in a sense that it does not take the 'future' information into consideration. Therefore, to seek a more proper and complete representation for users' IN, we construct a representation of quasi-current IN inspired by an emerging Two-State Vector Formalism (TSVF). With the enlightenment of the completeness of TSVF, a "two-state vector" derived from the 'future' (the current query) and the 'history' (the previous query) is employed to describe users' quasi-current IN in a more complete way. Extensive experiments are conducted on the session tracks of TREC 2013 & 2014, and show that our model outperforms a series of compared IR models.
A Self-Consistent Model of the Interacting Ring Current Ions with Electromagnetic ICWs
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two bound kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of ring current ions and ion cyclotron waves in a quasilinear approach. These two equations were solved on a global scale under non steady-state conditions during the May 2-5, 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the wave active zones at three time cuts around initial, main, and late recovery phases of the May 4, 1998 storm phase are presented and discussed in detail. Comparisons of the model wave-ion data with the Polar/HYDRA and Polar/MFE instruments results are presented..
Comparison between two photovoltaic module models based on transistors
NASA Astrophysics Data System (ADS)
Saint-Eve, Frédéric; Sawicki, Jean-Paul; Petit, Pierre; Maufay, Fabrice; Aillerie, Michel
2018-05-01
The main objective of this paper is to verify the possibility to reduce to a simple electronic circuit with very few components the behavior simulation of an un-shaded photovoltaic (PV) module. Particularly, two models based on well-tried elementary structures, i.e., the Darlington structure in first model and the voltage regulation with programmable Zener diode in the second are analyzed. Specifications extracted from the behavior of a real I-V characteristic of a panel are considered and the principal electrical variables are deduced. The two models are expected to match with open circuit voltage, maximum power point (MPP) and short circuit current, without forgetting realistic current slopes on the both sides of MPP. The robustness is mentioned when irradiance varies and is considered as an additional fundamental property. For both models, two simulations are done to identify influence of some parameters. In the first model, a parameter allowing to adjust current slope on left side of MPP proves to be also important for the calculation of open circuit voltage. Besides this model does not authorize an entirely adjustment of I-V characteristic and MPP moves significantly away from real value when irradiance increases. On the contrary, the second model seems to have only qualities: open circuit voltage is easy to calculate, current slopes are realistic and there is perhaps a good robustness when irradiance variations are simulated by adjusting short circuit current of PV module. We have shown that these two simplified models are expected to make reliable and easier simulations of complex PV architecture integrating many different devices like PV modules or other renewable energy sources and storage capacities coupled in parallel association.
Computer Models of Personality: Implications for Measurement
ERIC Educational Resources Information Center
Cranton, P. A.
1976-01-01
Current research on computer models of personality is reviewed and categorized under five headings: (1) models of belief systems; (2) models of interpersonal behavior; (3) models of decision-making processes; (4) prediction models; and (5) theory-based simulations of specific processes. The use of computer models in personality measurement is…
An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment
NASA Astrophysics Data System (ADS)
Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo
2017-02-01
Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.
ERIC Educational Resources Information Center
Losinski, Mickey; Wiseman, Nicole; White, Sherry A.; Balluch, Felicity
2016-01-01
The current study examined the use of video modeling (VM)-based interventions to reduce the challenging behaviors of students with emotional or behavioral disorders. Each study was evaluated using Council for Exceptional Children's (CEC's) quality indicators for evidence-based practices. In addition, study effects were calculated along the three…
Modeling micro-droplet formation in near-field electrohydrodynamic jet printing
NASA Astrophysics Data System (ADS)
Popell, George Colin
Near-field electrohydrodynamic jet (E-jet) printing has recently gained significant interest within the manufacturing research community because of its ability to produce micro/sub-micron-scale droplets using a wide variety of inks and substrates. However, the process currently operates in open-loop and as a result suffers from unpredictable printing quality. The use of physics-based, control-oriented process models is expected to enable closed-loop control of this printing technique. The objective of this research is to perform a fundamental study of the substrate-side droplet shape-evolution in near-field E-jet printing and to develop a physics-based model of the same that links input parameters such as voltage magnitude and ink properties to the height and diameter of the printed droplet. In order to achieve this objective, a synchronized high-speed imaging and substrate-side current-detection system was used implemented to enable a correlation between the droplet shape parameters and the measured current signal. The experimental data reveals characteristic process signatures and droplet spreading regimes. The results of these studies are then used as the basis for a model that predicts the droplet diameter and height using the measured current signal as the input. A unique scaling factor based on the measured current signal is used in this model instead of relying on empirical scaling laws found in literature. For each of the three inks tested in this study, the average absolute error in the model predictions is under 4.6% for diameter predictions and under 10.6% for height predictions of the steady-state droplet. While printing under non-conducive ambient conditions of low humidity and high temperatures, the use of the environmental correction factor in the model is seen to result in average absolute errors of 10.35% and 12.5% for diameter and height predictions.
Hildebrandt, T.; Kraml, F.; Wagner, S.; Hack, C. C.; Thiel, F. C.; Kehl, S.; Winkler, M.; Frobenius, W.; Faschingbauer, F.; Beckmann, M. W.; Lux, M. P.
2013-01-01
Introduction: In Germany, cost and revenue structures of hospitals with defined treatment priorities are currently being discussed to identify uneconomic services. This discussion has also affected perinatal centres (PNCs) and represents a new economic challenge for PNCs. In addition to optimising the time spent in hospital, the hospital management needs to define the “best” patient mix based on costs and revenues. Method: Different theoretical models were proposed based on the cost and revenue structures of the University Perinatal Centre for Franconia (UPF). Multi-step marginal costing was then used to show the impact on operating profits of changes in services and bed occupancy rates. The current contribution margin accounting used by the UPF served as the basis for the calculations. The models demonstrated the impact of changes in services on costs and revenues of a level 1 PNC. Results: Contribution margin analysis was used to calculate profitable and unprofitable DRGs based on average inpatient cost per day. Nineteen theoretical models were created. The current direct costing used by the UPF and a theoretical model with a 100 % bed occupancy rate were used as reference models. Significantly higher operating profits could be achieved by doubling the number of profitable DRGs and halving the number of less profitable DRGs. Operating profits could be increased even more by changing the rates of profitable DRGs per bed occupancy. The exclusive specialisation on pathological and high-risk pregnancies resulted in operating losses. All models which increased the numbers of caesarean sections or focused exclusively on c-sections resulted in operating losses. Conclusion: These theoretical models offer a basis for economic planning. They illustrate the enormous impact potential changes can have on the operating profits of PNCs. Level 1 PNCs require high bed occupancy rates and a profitable patient mix to cover the extremely high costs incurred due to the services they are legally required to offer. Based on our theoretical models it must be stated that spontaneous vaginal births (not caesarean sections) were the most profitable procedures in the current DRG system. Overall, it currently makes economic sense for level I PNCs to treat as many low-risk pregnancies and neonates as possible to cover costs. PMID:24771932
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
A nonlinear model for ionic polymer metal composites as actuators
NASA Astrophysics Data System (ADS)
Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.
2007-02-01
This paper introduces a comprehensive nonlinear dynamic model of motion actuators based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the acting properties of IPMC-based actuators are taken into account. The model is organized as follows. As a first step, the dependence of the IPMC absorbed current on the voltage applied across its thickness is taken into account; a nonlinear circuit model is proposed to describe this relationship. In a second step the transduction of the absorbed current into the IPMC mechanical reaction is modelled. The model resulting from the cascade of both the electrical and the electromechanical stages represents a novel contribution in the field of IPMCs, capable of describing the electromechanical behaviour of these materials and predicting relevant quantities in a large range of applied signals. The effect of actuator scaling is also investigated, giving interesting support to the activities involved in the design of actuating devices based on these novel materials. Evidence of the excellent agreement between the estimations obtained by using the proposed model and experimental signals is given.
NASA Astrophysics Data System (ADS)
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom
2014-01-01
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta
By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency.more » The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.« less
Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng
2015-07-15
In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.
Integrating Research Competencies in Massage Therapy Education.
ERIC Educational Resources Information Center
Hymel, Glenn M.
The massage therapy profession is currently engaged in a competency-based education movement that includes an emphasis on promoting massage therapy research competencies (MTRCs). A systems-based model for integrating MTRCs into massage therapy education was therefore proposed. The model and an accompanying checklist describe an approach to…
Occupational lead poisoning: who should conduct surveillance and training?
Keogh, J P; Gordon, J
1994-11-01
This commentary challenges the current employer-controlled model for delivering occupational health services. Problems emanating from traditional employer-based medical surveillance and worker education programs for occupational lead poisoning are identified. A new public health model for delivering these services is proposed. This model utilizes a case-based and hazard-based method for bringing workplaces and employers into the program and features direct delivery of surveillance and training services by public health agencies.
Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, G.; Lim, Y. L.; Nikolić, M.
2015-04-20
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light–current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency,more » calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs.« less
Meier, Petra S; Holmes, John; Angus, Colin; Ally, Abdallah K; Meng, Yang; Brennan, Alan
2016-02-01
While evidence that alcohol pricing policies reduce alcohol-related health harm is robust, and alcohol taxation increases are a WHO "best buy" intervention, there is a lack of research comparing the scale and distribution across society of health impacts arising from alternative tax and price policy options. The aim of this study is to test whether four common alcohol taxation and pricing strategies differ in their impact on health inequalities. An econometric epidemiological model was built with England 2014/2015 as the setting. Four pricing strategies implemented on top of the current tax were equalised to give the same 4.3% population-wide reduction in total alcohol-related mortality: current tax increase, a 13.4% all-product duty increase under the current UK system; a value-based tax, a 4.0% ad valorem tax based on product price; a strength-based tax, a volumetric tax of £0.22 per UK alcohol unit (= 8 g of ethanol); and minimum unit pricing, a minimum price threshold of £0.50 per unit, below which alcohol cannot be sold. Model inputs were calculated by combining data from representative household surveys on alcohol purchasing and consumption, administrative and healthcare data on 43 alcohol-attributable diseases, and published price elasticities and relative risk functions. Outcomes were annual per capita consumption, consumer spending, and alcohol-related deaths. Uncertainty was assessed via partial probabilistic sensitivity analysis (PSA) and scenario analysis. The pricing strategies differ as to how effects are distributed across the population, and, from a public health perspective, heavy drinkers in routine/manual occupations are a key group as they are at greatest risk of health harm from their drinking. Strength-based taxation and minimum unit pricing would have greater effects on mortality among drinkers in routine/manual occupations (particularly for heavy drinkers, where the estimated policy effects on mortality rates are as follows: current tax increase, -3.2%; value-based tax, -2.9%; strength-based tax, -6.1%; minimum unit pricing, -7.8%) and lesser impacts among drinkers in professional/managerial occupations (for heavy drinkers: current tax increase, -1.3%; value-based tax, -1.4%; strength-based tax, +0.2%; minimum unit pricing, +0.8%). Results from the PSA give slightly greater mean effects for both the routine/manual (current tax increase, -3.6% [95% uncertainty interval (UI) -6.1%, -0.6%]; value-based tax, -3.3% [UI -5.1%, -1.7%]; strength-based tax, -7.5% [UI -13.7%, -3.9%]; minimum unit pricing, -10.3% [UI -10.3%, -7.0%]) and professional/managerial occupation groups (current tax increase, -1.8% [UI -4.7%, +1.6%]; value-based tax, -1.9% [UI -3.6%, +0.4%]; strength-based tax, -0.8% [UI -6.9%, +4.0%]; minimum unit pricing, -0.7% [UI -5.6%, +3.6%]). Impacts of price changes on moderate drinkers were small regardless of income or socioeconomic group. Analysis of uncertainty shows that the relative effectiveness of the four policies is fairly stable, although uncertainty in the absolute scale of effects exists. Volumetric taxation and minimum unit pricing consistently outperform increasing the current tax or adding an ad valorem tax in terms of reducing mortality among the heaviest drinkers and reducing alcohol-related health inequalities (e.g., in the routine/manual occupation group, volumetric taxation reduces deaths more than increasing the current tax in 26 out of 30 probabilistic runs, minimum unit pricing reduces deaths more than volumetric tax in 21 out of 30 runs, and minimum unit pricing reduces deaths more than increasing the current tax in 30 out of 30 runs). Study limitations include reducing model complexity by not considering a largely ineffective ban on below-tax alcohol sales, special duty rates covering only small shares of the market, and the impact of tax fraud or retailer non-compliance with minimum unit prices. Our model estimates that, compared to tax increases under the current system or introducing taxation based on product value, alcohol-content-based taxation or minimum unit pricing would lead to larger reductions in health inequalities across income groups. We also estimate that alcohol-content-based taxation and minimum unit pricing would have the largest impact on harmful drinking, with minimal effects on those drinking in moderation.
Conduction and rectification in NbO x - and NiO-based metal-insulator-metal diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osgood, Richard M.; Giardini, Stephen; Carlson, Joel
2016-09-01
Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ('nanorectennas') are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively themore » rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of ~4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current, given by the rectification responsivity, calculated from the I-V curve times input power.« less
EM calibration based on Post OPC layout analysis
NASA Astrophysics Data System (ADS)
Sreedhar, Aswin; Kundu, Sandip
2010-03-01
Design for Manufacturability (DFM) involves changes to the design and CAD tools to help increase pattern printability and improve process control. Design for Reliability (DFR) performs the same to improve reliability of devices from failures such as Electromigration (EM), gate-oxide break down, hot carrier injection (HCI), Negative Bias Temperature Insatiability (NBTI) and mechanical stress effects. Electromigration (EM) occurs due to migration or displacement of atoms as a result of the movement of electrons through a conducting medium. The rate of migration determines the Mean Time to Failure (MTTF) which is modeled as a function of temperature and current density. The model itself is calibrated through failure analysis (FA) of parts that are deemed to have failed due to EM against design parameters such as linewidth. Reliability Verification (RV) of a design involves verifying that every conducting line in a design meets certain MTTF threshold. In order to perform RV, current density for each wire must be computed. Current itself is a function of the parasitics that are determined through RC extraction. The standard practice is to perform the RC extraction and current density calculation on drawn, pre-OPC layouts. If a wire fails to meet threshold for MTTF, it may be resized. Subsequently, mask preparation steps such as OPC and PSM introduce extra features such as SRAFs, jogs,hammerheads and serifs that change their resistance, capacitance and current density values. Hence, calibrating EM model based on pre-OPC layouts will lead to different results compared to post-OPC layouts. In this work, we compare EM model calibration and reliability check based on drawn layout versus predicted layout, where the drawn layout is pre-OPC layout and predicted layout is based on litho simulation of post-OPC layout. Results show significant divergence between these two approaches, making a case for methodology based on predicted layout.
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Study on residual discharge time of lead-acid battery based on fitting method
NASA Astrophysics Data System (ADS)
Liu, Bing; Yu, Wangwang; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper use the method of fitting to discuss the data of C problem of mathematical modeling in 2016, the residual discharge time model of lead-acid battery with 20A,30A,…,100A constant current discharge is obtained, and the discharge time model of discharge under arbitrary constant current is presented. The mean relative error of the model is calculated to be about 3%, which shows that the model has high accuracy. This model can provide a basis for optimizing the adaptation of power system to the electrical motor vehicle.
Return Stroke Current Reflections in Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Caicedo, J.; Uman, M. A.; Jordan, D.; Biagi, C. J.; Hare, B.
2015-12-01
In the six years from 2009 to 2014, there have been eight triggered flashes at the ICLRT, from a total of 125, in which a total of ten return stroke channel-base currents exhibited a dip 3.0 to 16.6 μs after the initial current peak. Close range electric field measurements show a related dip following the initial electric field peak, and electric field derivative measurements show an associated bipolar pulse, confirming that this phenomenon is not an instrumentation effect in the current measurement. For six of the eight flashes, high-speed video frames show what appears to be suspended sections of unexploded triggering wire at heights of about 150 to 300 m that are illuminated when the upward current wave reaches them. The suspended wire can act as an impedance discontinuity, perhaps as it explodes, and cause a downward reflection of some portion of the upward-propagating current wave. This reflected wave travels down the channel and causes the dip in the measured channel-base current when it reaches ground and reflects upward. The modified transmission line model with exponential decay (MTLE) is used to model the close electric field and electric field derivatives of the postulated initial and reflected current waves, starting with the measured channel base current, and the results are compared favorably with measurements made at distances ranging from 92 to 444 m. From the measured time between current impulse initiation and the time the current reflection reaches the channel base and the current dip initiates, along with the reflection height from the video records, we find the average return stroke current speed for each of the ten strokes to be from 0.28 to 1.9×108 ms-1, with an error of ±0.01×108 ms-1 due to a ±0.1 μs uncertainty in the measurement. This represents the first direct measurement of return stroke current speed, all previous return stroke speed measurements being derived from the luminosity of the process.
A Hybrid RANS/LES Approach for Predicting Jet Noise
NASA Technical Reports Server (NTRS)
Goldstein, Marvin E.
2006-01-01
Hybrid acoustic prediction methods have an important advantage over the current Reynolds averaged Navier-Stokes (RANS) based methods in that they only involve modeling of the relatively universal subscale motion and not the configuration dependent larger scale turbulence. Unfortunately, they are unable to account for the high frequency sound generated by the turbulence in the initial mixing layers. This paper introduces an alternative approach that directly calculates the sound from a hybrid RANS/LES flow model (which can resolve the steep gradients in the initial mixing layers near the nozzle lip) and adopts modeling techniques similar to those used in current RANS based noise prediction methods to determine the unknown sources in the equations for the remaining unresolved components of the sound field. The resulting prediction method would then be intermediate between the current noise prediction codes and previously proposed hybrid noise prediction methods.
A nowcast model for tides and tidal currents in San Francisco Bay, California
Cheng, Ralph T.; Smith, Richard E.
1998-01-01
National Oceanographic and Atmospheric Administration (NOAA) installed Physical Oceanographic Real-Time System (PORTS) in San Francisco Bay, California to provide observations of tides, tidal currents, and meteorological conditions. PORTS data are used for optimizing vessel operations, increasing margin of safety for navigation, and guiding hazardous material spill prevention and response. Because tides and tidal currents in San Francisco Bay are extremely complex, limited real-time observations are insufficient to provide spatial resolution for variations of tides and tidal currents. To fill the information gaps, a highresolution, robust, semi-implicit, finite-difference nowcast numerical model has been implemented for San Francisco Bay. The model grid and water depths are defined on coordinates based on Mercator projection so the model outputs can be directly superimposed on navigation charts. A data assimilation algorithm has been established to derive the boundary conditions for model simulations. The nowcast model is executed every hour continuously for tides and tidal currents starting from 24 hours before the present time (now) covering a total of 48 hours simulation. Forty-eight hours of nowcast model results are available to the public at all times through the World Wide Web (WWW). Users can view and download the nowcast model results for tides and tidal current distributions in San Francisco Bay for their specific applications and for further analysis.
The Economic Impact of the President’s 2013 Budget
2012-04-01
and capital . According to the Solow-type model , people base their decisions about working and saving pri- marily on current economic... model developed by Robert Solow. CBO’s life-cycle growth model is an overlapping - generations general -equilibrium model that is based on a standard...services produced in a given period by the labor and capital supplied by the country’s residents , regardless of where the labor
ERIC Educational Resources Information Center
Aaron, P. G.; Joshi, R. Malatesha; Gooden, Regina; Bentum, Kwesi E.
2008-01-01
Currently, learning disabilities (LD) are diagnosed on the basis of the discrepancy between students' IQ and reading achievement scores. Students diagnosed with LD often receive remedial instruction in resource rooms. The available evidence suggests that the educational policy based on this discrepancy model has not yielded satisfactory results.…
Evaluation of Student Models on Current Socio-Scientific Topics Based on System Dynamics
ERIC Educational Resources Information Center
Nuhoglu, Hasret
2014-01-01
This study aims to 1) enable primary school students to develop models that will help them understand and analyze a system, through a learning process based on system dynamics approach, 2) examine and evaluate students' models related to socio-scientific issues using certain criteria. The research method used is a case study. The study sample…
Unifying Model-Based and Reactive Programming within a Model-Based Executive
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)
1999-01-01
Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.
Mathematical model of the current density for the 30-cm engineering model thruster
NASA Technical Reports Server (NTRS)
Cuffel, R. F.
1975-01-01
Mathematical models are presented for both the singly and doubly charged ion current densities downstream of the 30-cm engineering model thruster with 0.5% compensated dished grids. These models are based on the experimental measurements of Vahrenkamp at a 2-amp ion beam operating condition. The cylindrically symmetric beam of constant velocity ions is modeled with continuous radial source and focusing functions across 'plane' grids with similar angular distribution functions. A computer program is used to evaluate the double integral for current densities in the near field and to obtain a far field approximation beyond 10 grid radii. The utility of the model is demonstrated for (1) calculating the directed thrust and (2) determining the impingement levels on various spacecraft surfaces from a two-axis gimballed, 2 x 3 thruster array.
NASA Astrophysics Data System (ADS)
Zhu, Jun
Ru and Pt are candidate additional component for improving the high temperature properties of Ni-base superalloys. A thermodynamic description of the Ni-Al-Cr-Ru-Pt system, serving as an essential knowledge base for better alloy design and processing control, was developed in the present study by means of thermodynamic modeling coupled with experimental investigations of phase equilibria. To deal with the order/disorder transition occurring in the Ni-base superalloys, a physical sound model, Cluster/Site Approximation (CSA) was used to describe the fcc phases. The CSA offers computational advantages, without loss of accuracy, over the Cluster Variation Method (CVM) in the calculation of multicomponent phase diagrams. It has been successfully applied to fcc phases in calculating technologically important Ni-Al-Cr phase diagrams. Our effort in this study focused on the two key ternary systems: Ni-Al-Ru and Ni-Al-Pt. The CSA calculated Ni-Al-Ru ternary phase diagrams are in good agreement with the experimental results in the literature and from the current study. A thermodynamic description of quaternary Ni-Al-Cr-Ru was obtained based on the descriptions of the lower order systems and the calculated results agree with experimental data available in literature and in the current study. The Ni-Al-Pt system was thermodynamically modeled based on the limited experimental data available in the literature and obtained from the current study. With the help of the preliminary description, a number of alloy compositions were selected for further investigation. The information obtained was used to improve the current modeling. A thermodynamic description of the Ni-Al-Cr-Pt quaternary was then obtained via extrapolation from its constituent lower order systems. The thermodynamic description for Ni-base superalloy containing Al, Cr, Ru and Pt was obtained via extrapolation. It is believed to be reliable and useful to guide the alloy design and further experimental investigation.
NASA Astrophysics Data System (ADS)
Jakacki, Jaromir; Przyborska, Anna; Sunfjord, Arild; Albertsen, Jon; Białoskórski, Michał; Pliszka, Bartosz
2016-04-01
Hornsund is the southernmost fjord of the Svalbard archipelago island - Spitsbergen. It is under the influence of two main currents - the coastal Sørkapp Current (SC) carrying fresher and colder water masses from the Barents Sea and the West Spitsbergen Current (WSC), which is the branch of the Norwegian Atlantic Current (NwAC) and carries warm and salty waters from the North Atlantic. The main local forcing, which is tidal motion, brings shelf waters into the central fjord basin and then the transformed masses are carried into the easternmost part of the fjord, Brepolen. For the purpose of studying circulation and water exchange in this area a three-dimensional hydrodynamic model has been implemented and validated. The model is based on MIKE by DHI product and covers the Hornsund fjord with the shelf area, which is the fjord foreground. It is sigma a coordinate model (in our case 35 vertical levels) with variable horizontal resolution (mesh grid). The smallest cell has a horizontal dimension less than one hundred meters and the largest cells about 5 km. In spite of model limitations, the model reproduces the main circulation and water pathways in the Brepolen area. Seasonal and annual volume, heat and salt exchanges have been also estimated. The influence of freshwater discharge on shelf-fjord exchange will be also analyzed. The model results allow to study full horizontal and vertical fields of physical parameters (temperature, salinity, sea level variations and currents). The model integration covers only years 2005-2010 and the presented results will be based on this simulation. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018
NASA Astrophysics Data System (ADS)
Peysson, Y.; Bonoli, P. T.; Chen, J.; Garofalo, A.; Hillairet, J.; Li, M.; Qian, J.; Shiraiwa, S.; Decker, J.; Ding, B. J.; Ekedahl, A.; Goniche, M.; Zhai, X.
2017-10-01
The Lower Hybrid (LH) wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum). Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model), for robust interpretative and predictive simulations.
Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C
2001-12-01
We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.
A kinematic/kinetic hybrid airplane simulator model : draft.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
A kinematic/kinetic hybrid airplane simulator model.
DOT National Transportation Integrated Search
2008-01-01
A kinematics-based flight model, for normal flight : regimes, currently uses precise flight data to achieve a high : level of aircraft realism. However, it was desired to further : increase the models accuracy, without a substantial increase in : ...
NASA Technical Reports Server (NTRS)
Flowers, George T.
1994-01-01
Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.
De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto
2012-05-01
Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.
Examining the Relationships Between Education, Social Networks and Democratic Support With ABM
NASA Technical Reports Server (NTRS)
Drucker, Nick; Campbell, Kenyth
2011-01-01
This paper introduces an agent-based model that explores the relationships between education, social networks, and support for democratic ideals. This study examines two factors thai affect democratic support, education, and social networks. Current theory concerning these two variables suggests that positive relationships exist between education and democratic support and between social networks and the spread of ideas. The model contains multiple variables of democratic support, two of which are evaluated through experimentation. The model allows individual entities within the system to make "decisions" about their democratic support independent of one another. The agent based approach also allows entities to utilize their social networks to spread ideas. Current theory supports experimentation results. In addion , these results show the model is capable of reproducing real world outcomes. This paper addresses the model creation process and the experimentation procedure, as well as future research avenues and potential shortcomings of the model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musolino, M.; Treeck, D. van, E-mail: treeck@pdi-berlin.de; Tahraoui, A.
2016-01-28
We investigated the origin of the high reverse leakage current in light emitting diodes (LEDs) based on (In,Ga)N/GaN nanowire (NW) ensembles grown by molecular beam epitaxy on Si substrates. To this end, capacitance deep level transient spectroscopy (DLTS) and temperature-dependent current-voltage (I-V) measurements were performed on a fully processed NW-LED. The DLTS measurements reveal the presence of two distinct electron traps with high concentrations in the depletion region of the p-i-n junction. These band gap states are located at energies of 570 ± 20 and 840 ± 30 meV below the conduction band minimum. The physical origin of these deep level states is discussed. Themore » temperature-dependent I-V characteristics, acquired between 83 and 403 K, show that different conduction mechanisms cause the observed leakage current. On the basis of all these results, we developed a quantitative physical model for charge transport in the reverse bias regime. By taking into account the mutual interaction of variable range hopping and electron emission from Coulombic trap states, with the latter being described by phonon-assisted tunnelling and the Poole-Frenkel effect, we can model the experimental I-V curves in the entire range of temperatures with a consistent set of parameters. Our model should be applicable to planar GaN-based LEDs as well. Furthermore, possible approaches to decrease the leakage current in NW-LEDs are proposed.« less
NASA Astrophysics Data System (ADS)
Kelly, R. W.; Chalk, C.; Dorrell, R. M.; Peakall, J.; Burns, A. D.; Keevil, G. M.; Thomas, R. E.; Williams, G.
2016-12-01
In the natural environment, gravity currents transport large volumes of sediment great distances and are often considered one of the most important mechanisms for sediment transport in ocean basins. Deposits from many individual submarine gravity currents, turbidites, ultimately form submarine fan systems. These are the largest sedimentary systems on the planet and contain valuable hydrocarbon reserves. Moreover, the impact of these currents on submarine technologies and seafloor infrastructure can be devastating and therefore they are of significant interest to a wide range of industries. Here we present experimental, numerical and theoretical models of time-averaged turbulent shear stresses, i.e. Reynolds stresses. Reynolds stresses can be conceptually parameterised by an eddy viscosity parameter that relates chaotic fluid motion to diffusive type processes. As such, it is a useful parameter for indicating the extent of internal mixing and is used extensively in both numerical and analytical modelling of both open-channel and gravity driven flows. However, a lack of knowledge of the turbulent structure of gravity currents limits many hydro- and morphodynamic models. High resolution 3-dimensional experimental velocity data, gathered using acoustic Doppler profiling velocimetry, enabled direct calculation of stresses and eddy viscosity. Comparison of experimental data to CFD and analytical models allowed the testing of eddy viscosity-based turbulent mixing models. The calculated eddy viscosity profile is parabolic in nature in both the upper and lower shear layers. However, an apparent breakdown in the Boussinesq hypothesis (used to calculate the eddy viscosity and upon which many numerical models are based) is observed in the region of the current around the velocity maximum. With the use of accompanying density data it is suggested that the effect of stratification on eddy viscosity is significant and alternative formulations may be required.
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; ...
2017-01-25
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.
2017-01-01
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W−1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells. PMID:28120823
Design principles for shift current photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Movement rules for individual-based models of stream fish
Steven F. Railsback; Roland H. Lamberson; Bret C. Harvey; Walter E. Duffy
1999-01-01
Abstract - Spatially explicit individual-based models (IBMs) use movement rules to determine when an animal departs its current location and to determine its movement destination; these rules are therefore critical to accurate simulations. Movement rules typically define some measure of how an individual's expected fitness varies among locations, under the...
NASA Astrophysics Data System (ADS)
Singh, Kirmender; Bhattacharyya, A. B.
2017-03-01
Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.
Smith, Rebecca L.; Schukken, Ynte H.; Lu, Zhao; Mitchell, Rebecca M.; Grohn, Yrjo T.
2013-01-01
Objective To develop a mathematical model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States and predict efficacy of the current national control strategy for tuberculosis in cattle. Design Stochastic simulation model. Sample Theoretical cattle herds in the United States. Procedures A model of within-herd M bovis transmission dynamics following introduction of 1 latently infected cow was developed. Frequency- and density-dependent transmission modes and 3 tuberculin-test based culling strategies (no test-based culling, constant (annual) testing with test-based culling, and the current strategy of slaughterhouse detection-based testing and culling) were investigated. Results were evaluated for 3 herd sizes over a 10-year period and validated via simulation of known outbreaks of M bovis infection. Results On the basis of 1,000 simulations (1000 herds each) at replacement rates typical for dairy cattle (0.33/y), median time to detection of M bovis infection in medium-sized herds (276 adult cattle) via slaughterhouse surveillance was 27 months after introduction, and 58% of these herds would spontaneously clear the infection prior to that time. Sixty-two percent of medium-sized herds without intervention and 99% of those managed with constant test-based culling were predicted to clear infection < 10 years after introduction. The model predicted observed outbreaks best for frequency-dependent transmission, and probability of clearance was most sensitive to replacement rate. Conclusions and Clinical Relevance Although modeling indicated the current national control strategy was sufficient for elimination of M bovis infection from dairy herds after detection, slaughterhouse surveillance was not sufficient to detect M bovis infection in all herds and resulted in subjectively delayed detection, compared with the constant testing method. Further research is required to economically optimize this strategy. PMID:23865885
Analysis and numerical modelling of eddy current damper for vibration problems
NASA Astrophysics Data System (ADS)
Irazu, L.; Elejabarrieta, M. J.
2018-07-01
This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.
Integrated research in constitutive modelling at elevated temperatures, part 2
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Four current viscoplastic models are compared experimentally with Inconel 718 at 1100 F. A series of tests were performed to create a sufficient data base from which to evaluate material constants. The models used include Bodner's anisotropic model; Krieg, Swearengen, and Rhode's model; Schmidt and Miller's model; and Walker's exponential model.
NASA Astrophysics Data System (ADS)
Hasanah, L.; Suhendi, E.; Khairrurijal
2018-05-01
Tunelling current calculation on Si/Si1-xGex/Si heterojunction bipolar transistor was carried out by including the coupling between transversal and longitudinal components of electron motion. The calculation results indicated that the coupling between kinetic energy in parallel and perpendicular to S1-xGex barrier surface affected tunneling current significantly when electron velocity was faster than 1x105 m/s. This analytical tunneling current model was then used to study how the germanium concentration in base to Si/Si1-xGex/Si heterojunction bipolar transistor influenced the tunneling current. It is obtained that tunneling current increased as the germanium concentration given in base decreased.
ERIC Educational Resources Information Center
Nosik, Melissa R.; Williams, W. Larry; Garrido, Natalia; Lee, Sarah
2013-01-01
In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following…
Exact solutions and low-frequency instability of the adiabatic auroral arc model
NASA Technical Reports Server (NTRS)
Cornwall, John M.
1988-01-01
The adiabatic auroral arc model couples a kinetic theory parallel current driven by mirror forces to horizontal ionospheric currents; the resulting equations are nonlinear. Some exact stationary solutions to these equations, some of them based on the Liouville equation, are developed, with both latitudinal and longitudinal spatial variations. These Liouville equation exact solutions are related to stability boundaries of low-frequency instabilities such as Kelvin-Helmholtz, as shown by a study of a simplified model.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
The NASA Space Radiobiology Risk Assessment Project
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Huff, Janice; Ponomarev, Artem; Patel, Zarana; Kim, Myung-Hee
The current first phase (2006-2011) has the three major goals of: 1) optimizing the conventional cancer risk models currently used based on the double-detriment life-table and radiation quality functions; 2) the integration of biophysical models of acute radiation syndromes; and 3) the development of new systems radiation biology models of cancer processes. The first-phase also includes continued uncertainty assessment of space radiation environmental models and transport codes, and relative biological effectiveness factors (RBE) based on flight data and NSRL results, respectively. The second phase of the (2012-2016) will: 1) develop biophysical models of central nervous system risks (CNS); 2) achieve comphrensive systems biology models of cancer processes using data from proton and heavy ion studies performed at NSRL; and 3) begin to identify computational models of biological countermeasures. Goals for the third phase (2017-2021) include: 1) the development of a systems biology model of cancer risks for operational use at NASA; 2) development of models of degenerative risks, 2) quantitative models of counter-measure impacts on cancer risks; and 3) indiviudal based risk assessments. Finally, we will support a decision point to continue NSRL research in support of NASA's exploration goals beyond 2021, and create an archival of NSRL research results for continued analysis. Details on near term goals, plans for a WEB based data resource of NSRL results, and a space radiation Wikepedia are described.
NASA Astrophysics Data System (ADS)
Fontchastagner, Julien; Lubin, Thierry; Mezani, Smaïl; Takorabet, Noureddine
2018-03-01
This paper presents a design optimization of an axial-flux eddy-current magnetic coupling. The design procedure is based on a torque formula derived from a 3D analytical model and a population algorithm method. The main objective of this paper is to determine the best design in terms of magnets volume in order to transmit a torque between two movers, while ensuring a low slip speed and a good efficiency. The torque formula is very accurate and computationally efficient, and is valid for any slip speed values. Nevertheless, in order to solve more realistic problems, and then, take into account the thermal effects on the torque value, a thermal model based on convection heat transfer coefficients is also established and used in the design optimization procedure. Results show the effectiveness of the proposed methodology.
Hotspot relaxation dynamics in a current-carrying superconductor
NASA Astrophysics Data System (ADS)
Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.
2016-03-01
We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.
Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.
NASA Astrophysics Data System (ADS)
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu
2017-06-01
Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.
In situ Observations of Heliospheric Current Sheets Evolution
NASA Astrophysics Data System (ADS)
Liu, Yong; Peng, Jun; Huang, Jia; Klecker, Berndt
2017-04-01
We investigate the Heliospheric current sheet observation time difference of the spacecraft using the STEREO, ACE and WIND data. The observations are first compared to a simple theory in which the time difference is only determined by the radial and longitudinal separation between the spacecraft. The predictions fit well with the observations except for a few events. Then the time delay caused by the latitudinal separation is taken in consideration. The latitude of each spacecraft is calculated based on the PFSS model assuming that heliospheric current sheets propagate at the solar wind speed without changing their shapes from the origin to spacecraft near 1AU. However, including the latitudinal effects does not improve the prediction, possibly because that the PFSS model may not locate the current sheets accurately enough. A new latitudinal delay is predicted based on the time delay using the observations on ACE data. The new method improved the prediction on the time lag between spacecraft; however, further study is needed to predict the location of the heliospheric current sheet more accurately.
Crack problem in superconducting cylinder with exponential distribution of critical-current density
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
Base and collector resistances in heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Anholt, R.; Bozada, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Jenkins, T.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Quach, T.; Sewell, J.; Via, D.
1997-11-01
In heterojunction bipolar transistors (HBTs), the reverse base currents flow from the outer base periphery to the collector. The reverse base and collector resistances are therefore dominated by contact resistance, which is inversely proportional to the outer base and inner collector periphery lengths which are larger than the emitter lengths when the base and collector electrodes surround the emitter element. These resistances can be extracted from reverse Gummel (current vs Vbc with Vbc = 0) and from measurements of output resistances at zero collector voltage sweeps. We compare models with measurements where the base and collector peripheries decrease with increasing emitter diameters.
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.; Jordanova, V. K.; Krivorutsky, E. N.
2002-01-01
Initial results from a newly developed model of the interacting ring current ions and ion cyclotron waves are presented. The model is based on the system of two kinetic equations: one equation describes the ring current ion dynamics, and another equation describes wave evolution. The system gives a self-consistent description of the ring current ions and ion cyclotron waves in a quasilinear approach. These equations for the ion phase space distribution function and for the wave power spectral density were solved on aglobal magnetospheric scale undernonsteady state conditions during the 2-5 May 1998 storm. The structure and dynamics of the ring current proton precipitating flux regions and the ion cyclotron wave-active zones during extreme geomagnetic disturbances on 4 May 1998 are presented and discussed in detail.
Can Direct Current Electrotherapy Be Used for Patients With Orthopedic Implants?
Thaler, Evangeline; Korte, Holger
2017-01-01
Introduction: Although electrotherapy appears to have particularly interesting applications in the field of postoperative orthopedic rehabilitation, relatively little scientifically based research has been conducted in the area of electrotherapy with regard to safety involving patients with orthopedic implants. Method: Three electrotherapy forms were tested, such as high-volt stimulation (HVS), transcutaneous electric nerve stimulation (TENS), and galvanic current (GAL), using a model system containing a metal implant plate to evaluate whether heating in excess of 3°C would occur. Results: All changes in temperature for HVS, GAL, and TENS therapeutic electrical currents observed in our model system fall below the predefined 3°C. Conclusion: To the best of our knowledge, this is the first experimental based observation that prolonged exposure to a direct electrical current at therapeutic strength does not result in heating of metal titanium plates. PMID:28255511
Cestari, Andrea
2013-01-01
Predictive modeling is emerging as an important knowledge-based technology in healthcare. The interest in the use of predictive modeling reflects advances on different fronts such as the availability of health information from increasingly complex databases and electronic health records, a better understanding of causal or statistical predictors of health, disease processes and multifactorial models of ill-health and developments in nonlinear computer models using artificial intelligence or neural networks. These new computer-based forms of modeling are increasingly able to establish technical credibility in clinical contexts. The current state of knowledge is still quite young in understanding the likely future direction of how this so-called 'machine intelligence' will evolve and therefore how current relatively sophisticated predictive models will evolve in response to improvements in technology, which is advancing along a wide front. Predictive models in urology are gaining progressive popularity not only for academic and scientific purposes but also into the clinical practice with the introduction of several nomograms dealing with the main fields of onco-urology.
Three Collaborative Models for Scaling Up Evidence-Based Practices
Roberts, Rosemarie; Jones, Helen; Marsenich, Lynne; Sosna, Todd; Price, Joseph M.
2015-01-01
The current paper describes three models of research-practice collaboration to scale-up evidence-based practices (EBP): (1) the Rolling Cohort model in England, (2) the Cascading Dissemination model in San Diego County, and (3) the Community Development Team model in 53 California and Ohio counties. Multidimensional Treatment Foster Care (MTFC) and KEEP are the focal evidence-based practices that are designed to improve outcomes for children and families in the child welfare, juvenile justice, and mental health systems. The three scale-up models each originated from collaboration between community partners and researchers with the shared goal of wide-spread implementation and sustainability of MTFC/KEEP. The three models were implemented in a variety of contexts; Rolling Cohort was implemented nationally, Cascading Dissemination was implemented within one county, and Community Development Team was targeted at the state level. The current paper presents an overview of the development of each model, the policy frameworks in which they are embedded, system challenges encountered during scale-up, and lessons learned. Common elements of successful scale-up efforts, barriers to success, factors relating to enduring practice relationships, and future research directions are discussed. PMID:21484449
Three-dimensional electrical impedance tomography based on the complete electrode model.
Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P
1999-09-01
In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.
Auditory models for speech analysis
NASA Astrophysics Data System (ADS)
Maybury, Mark T.
This paper reviews the psychophysical basis for auditory models and discusses their application to automatic speech recognition. First an overview of the human auditory system is presented, followed by a review of current knowledge gleaned from neurological and psychoacoustic experimentation. Next, a general framework describes established peripheral auditory models which are based on well-understood properties of the peripheral auditory system. This is followed by a discussion of current enhancements to that models to include nonlinearities and synchrony information as well as other higher auditory functions. Finally, the initial performance of auditory models in the task of speech recognition is examined and additional applications are mentioned.
The Role of Additional Pulses in Electropermeabilization Protocols
Suárez, Cecilia; Soba, Alejandro; Maglietti, Felipe; Olaiz, Nahuel; Marshall, Guillermo
2014-01-01
Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes. PMID:25437512
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Design of permanent magnet eddy current brake for a small scaled electromagnetic launch model
NASA Astrophysics Data System (ADS)
Zhou, Shigui; Yu, Haitao; Hu, Minqiang; Huang, Lei
2012-04-01
A variable pole-pitch double-sided permanent magnet (PM) linear eddy current brake (LECB) is proposed for a small scaled electromagnetic launch model. A two-dimensional (2D) analytical steady state model is presented for the double-sided PM-LECB, and the expression for the braking force is derived. Based on the analytical model, the material and eddy current skin effect of the conducting plate are analyzed. Moreover, a variable pole-pitch double-sided PM-LECB is proposed for the effective braking of the moving plate. In addition, the braking force is predicted by finite element (FE) analysis, and the simulated results are in good agreement with the analytical model. Finally, a prototype is presented to test the braking profile for validation of the proposed design.
Ring Current Pressure Estimation withRAM-SCB using Data Assimilation and VanAllen Probe Flux Data
NASA Astrophysics Data System (ADS)
Godinez, H. C.; Yu, Y.; Henderson, M. G.; Larsen, B.; Jordanova, V.
2015-12-01
Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is particularly important for understanding the formation and evolution of Earth's ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB is corrected via an ensemble based data assimilation technique by using proton flux from one of the Van Allen Probes, to capture the enhancement of ring current following an isolated substorm event on July 18 2013. The results show significant improvement in the estimation of the ring current particle distributions in the RAM-SCB model, leading to better agreement with observations. This newly implemented data assimilation technique in the global modeling of the ring current thus provides a promising tool to better characterize the effect of substorm injections in the near-Earth regions. The work is part of the Space Hazards Induced near Earth by Large, Dynamic Storms (SHIELDS) project in Los Alamos National Laboratory.
An Automated Method for High-Definition Transcranial Direct Current Stimulation Modeling*
Huang, Yu; Su, Yuzhuo; Rorden, Christopher; Dmochowski, Jacek; Datta, Abhishek; Parra, Lucas C.
2014-01-01
Targeted transcranial stimulation with electric currents requires accurate models of the current flow from scalp electrodes to the human brain. Idiosyncratic anatomy of individual brains and heads leads to significant variability in such current flows across subjects, thus, necessitating accurate individualized head models. Here we report on an automated processing chain that computes current distributions in the head starting from a structural magnetic resonance image (MRI). The main purpose of automating this process is to reduce the substantial effort currently required for manual segmentation, electrode placement, and solving of finite element models. In doing so, several weeks of manual labor were reduced to no more than 4 hours of computation time and minimal user interaction, while current-flow results for the automated method deviated by less than 27.9% from the manual method. Key facilitating factors are the addition of three tissue types (skull, scalp and air) to a state-of-the-art automated segmentation process, morphological processing to correct small but important segmentation errors, and automated placement of small electrodes based on easily reproducible standard electrode configurations. We anticipate that such an automated processing will become an indispensable tool to individualize transcranial direct current stimulation (tDCS) therapy. PMID:23367144
Alisa A. Wade; Kevin S. McKelvey; Michael K. Schwartz
2015-01-01
Resistance-surface-based connectivity modeling has become a widespread tool for conservation planning. The current ease with which connectivity models can be created, however, masks the numerous untested assumptions underlying both the rules that produce the resistance surface and the algorithms used to locate low-cost paths across the target landscape. Here we present...
LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.
King, Christopher R
2002-01-01
Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (<70 Gy), but similar to results from dose escalation series. LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy using current dose regimens. However, HDR brachytherapy dose escalation regimens might be able to achieve higher biologically effective doses of irradiation in comparison to LDR, and hence improved outcomes. This advantage over LDR would be amplified should prostate cancer possess a high sensitivity to dose fractionation (i.e., a low alpha/beta ratio) as the current evidence suggests.
Torén, Kjell; Murgia, Nicola; Schiöler, Linus; Bake, Björn; Olin, Anna-Carin
2017-08-25
Fractional exhaled nitric oxide (FE NO ) is used to assess of airway inflammation; diagnose asthma and monitor adherence to advised therapy. Reliable and accurate reference values for FE NO are needed for both non-smoking and current smoking adults in the clinical setting. The present study was performed to establish reference adult FE NO values among never-smokers, former smokers and current smokers. FE NO was measured in 5265 subjects aged 25-75 years in a general-population study, using a chemiluminescence (Niox ™) analyser according to the guidelines of the American Thoracic Society and the European Respiratory Society. Atopy was based on the presence of immunoglobulin E (IgE) antibodies to common inhalant allergens (measured using Phadiatop® test). Spirometry without bronchodilation was performed and forced vital capacity (FVC), forced expired volume in 1 s (FEV 1 ) and the ratio of FEV 1 to FVC values were obtained. After excluding subjects with asthma, chronic bronchitis, spirometric airway obstruction and current cold, 3378 subjects remained. Equations for predictions of FE NO values were modelled using nonparametric regression models. FE NO levels were similar in never-smokers and former smokers, and these two groups were therefore merged into a group termed "non-smokers". Reference equations, including the 5th and 95th percentiles, were generated for female and male non-smokers, based on age, height and atopy. Regression models for current smokers were unstable. Hence, the proposed reference values for current smokers are based on the univariate distribution of FE NO and fixed cut-off limits. Reference values for FE NO among respiratory healthy non-smokers should be outlined stratified for gender using individual reference values. For current smokers separate cut-off limits are proposed.
Theory of plasma contactors in ground-based experiments and low Earth orbit
NASA Technical Reports Server (NTRS)
Gerver, M. J.; Hastings, Daniel E.; Oberhardt, M. R.
1990-01-01
Previous theoretical work on plasma contactors as current collectors has fallen into two categories: collisionless double layer theory (describing space charge limited contactor clouds) and collisional quasineutral theory. Ground based experiments at low current are well explained by double layer theory, but this theory does not scale well to power generation by electrodynamic tethers in space, since very high anode potentials are needed to draw a substantial ambient electron current across the magnetic field in the absence of collisions (or effective collisions due to turbulence). Isotropic quasineutral models of contactor clouds, extending over a region where the effective collision frequency upsilon sub e exceeds the electron cyclotron frequency omega sub ce, have low anode potentials, but would collect very little ambient electron current, much less than the emitted ion current. A new model is presented, for an anisotropic contactor cloud oriented along the magnetic field, with upsilon sub e less than omega sub ce. The electron motion along the magnetic field is nearly collisionless, forming double layers in that direction, while across the magnetic field the electrons diffuse collisionally and the potential profile is determined by quasineutrality. Using a simplified expression for upsilon sub e due to ion acoustic turbulence, an analytic solution has been found for this model, which should be applicable to current collection in space. The anode potential is low and the collected ambient electron current can be several times the emitted ion current.
ERIC Educational Resources Information Center
Guzel, Hattice
2017-01-01
In this research, the purpose was to examine and compare the effect of teaching Electric Current, which is a topic of grade 11 physics lesson, on student achievement and attitude according to the 5E model belonging to the constructivist learning theory and the traditional teaching method. The research was conducted in the spring semester of…
Development of Cell Models as a Basis for Bioreactor Design for Genetically Modified Bacteria
1986-10-30
of future behavior based on specifying the current state vector . Generally a total population greater than 10,000 is sufficient to allow treatment of...specifying the current state vector (essentially values for all variables in the model). Deterministic models become increasingly valid as the number of...host I A) and therein PARASItIS converts the host’s biomaterial or activities into its own + A and B are in physical contact. SYMBIOSIS (or perhaps Oi
Eddy current modeling in linear and nonlinear multifilamentary composite materials
NASA Astrophysics Data System (ADS)
Menana, Hocine; Farhat, Mohamad; Hinaje, Melika; Berger, Kevin; Douine, Bruno; Lévêque, Jean
2018-04-01
In this work, a numerical model is developed for a rapid computation of eddy currents in composite materials, adaptable for both carbon fiber reinforced polymers (CFRPs) for NDT applications and multifilamentary high temperature superconductive (HTS) tapes for AC loss evaluation. The proposed model is based on an integro-differential formulation in terms of the electric vector potential in the frequency domain. The high anisotropy and the nonlinearity of the considered materials are easily handled in the frequency domain.
Investigation of Collection Ion Acceleration Using Intense Relativistic Electron Beams.
1980-02-01
in these results ’.. . supports the reflecting bea model of Ryutov. IM 1. Introduction Graybill and TUglual appear to have first studied...current (Figure 5). 1600 ~ aupild4 ho a- Doi"e Time Og0s4.Ter E The present model extends that of Ryutov by including 1200a description of the...potential-electron density relation Ech Data POW Is based on measurements of the transmitted beam current. ’L l " j This model is applicable to the
Integrated Models of School-Based Prevention: Logic and Theory
ERIC Educational Resources Information Center
Domitrovich, Celene E.; Bradshaw, Catherine P.; Greenberg, Mark T.; Embry, Dennis; Poduska, Jeanne M.; Ialongo, Nicholas S.
2010-01-01
School-based prevention programs can positively impact a range of social, emotional, and behavioral outcomes. Yet the current climate of accountability pressures schools to restrict activities that are not perceived as part of the core curriculum. Building on models from public health and prevention science, we describe an integrated approach to…
Automatic Generation of Customized, Model Based Information Systems for Operations Management.
The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)
Integrating the Demonstration Orientation and Standards-Based Models of Achievement Goal Theory
ERIC Educational Resources Information Center
Wynne, Heather Marie
2014-01-01
Achievement goal theory and thus, the empirical measures stemming from the research, are currently divided on two conceptual approaches, namely the reason versus aims-based models of achievement goals. The factor structure and predictive utility of goal constructs from the Patterns of Adaptive Learning Strategies (PALS) and the latest two versions…
The need for conducting forensic analysis of decommissioned bridges.
DOT National Transportation Integrated Search
2014-01-01
A limiting factor in current bridge management programs is a lack of detailed knowledge of bridge deterioration : mechanisms and processes. The current state of the art is to predict future condition using statistical forecasting : models based upon ...
ERIC Educational Resources Information Center
Willis, Jerry
2011-01-01
This is the first in a series of two articles examining the current status of instructional design (ID) scholarship and theory in four different cultures or traditions. In this article, the focus is on, first, ID models based on traditional behavioral theories of learning and, second, on models based on cognitive science and the learning sciences.…
Improving wave forecasting by integrating ensemble modelling and machine learning
NASA Astrophysics Data System (ADS)
O'Donncha, F.; Zhang, Y.; James, S. C.
2017-12-01
Modern smart-grid networks use technologies to instantly relay information on supply and demand to support effective decision making. Integration of renewable-energy resources with these systems demands accurate forecasting of energy production (and demand) capacities. For wave-energy converters, this requires wave-condition forecasting to enable estimates of energy production. Current operational wave forecasting systems exhibit substantial errors with wave-height RMSEs of 40 to 60 cm being typical, which limits the reliability of energy-generation predictions thereby impeding integration with the distribution grid. In this study, we integrate physics-based models with statistical learning aggregation techniques that combine forecasts from multiple, independent models into a single "best-estimate" prediction of the true state. The Simulating Waves Nearshore physics-based model is used to compute wind- and currents-augmented waves in the Monterey Bay area. Ensembles are developed based on multiple simulations perturbing input data (wave characteristics supplied at the model boundaries and winds) to the model. A learning-aggregation technique uses past observations and past model forecasts to calculate a weight for each model. The aggregated forecasts are compared to observation data to quantify the performance of the model ensemble and aggregation techniques. The appropriately weighted ensemble model outperforms an individual ensemble member with regard to forecasting wave conditions.
The Ensemble Space Weather Modeling System (eSWMS): Status, Capabilities and Challenges
NASA Astrophysics Data System (ADS)
Fry, C. D.; Eccles, J. V.; Reich, J. P.
2010-12-01
Marking a milestone in space weather forecasting, the Space Weather Modeling System (SWMS) successfully completed validation testing in advance of operational testing at Air Force Weather Agency’s primary space weather production center. This is the first coupling of stand-alone, physics-based space weather models that are currently in operations at AFWA supporting the warfighter. Significant development effort went into ensuring the component models were portable and scalable while maintaining consistent results across diverse high performance computing platforms. Coupling was accomplished under the Earth System Modeling Framework (ESMF). The coupled space weather models are the Hakamada-Akasofu-Fry version 2 (HAFv2) solar wind model and GAIM1, the ionospheric forecast component of the Global Assimilation of Ionospheric Measurements (GAIM) model. The SWMS was developed by team members from AFWA, Explorations Physics International, Inc. (EXPI) and Space Environment Corporation (SEC). The successful development of the SWMS provides new capabilities beyond enabling extended lead-time, data-driven ionospheric forecasts. These include ingesting diverse data sets at higher resolution, incorporating denser computational grids at finer time steps, and performing probability-based ensemble forecasts. Work of the SWMS development team now focuses on implementing the ensemble-based probability forecast capability by feeding multiple scenarios of 5 days of solar wind forecasts to the GAIM1 model based on the variation of the input fields to the HAFv2 model. The ensemble SWMS (eSWMS) will provide the most-likely space weather scenario with uncertainty estimates for important forecast fields. The eSWMS will allow DoD mission planners to consider the effects of space weather on their systems with more advance warning than is currently possible. The payoff is enhanced, tailored support to the warfighter with improved capabilities, such as point-to-point HF propagation forecasts, single-frequency GPS error corrections, and high cadence, high-resolution Space Situational Awareness (SSA) products. We present the current status of eSWMS, its capabilities, limitations and path of transition to operational use.
NASA Astrophysics Data System (ADS)
Jiang, Chunsheng; Liang, Renrong; Wang, Jing; Xu, Jun
2015-09-01
A carrier-based analytical drain current model for negative capacitance symmetric double-gate field effect transistors (NC-SDG FETs) is proposed by solving the differential equation of the carrier, the Pao-Sah current formulation, and the Landau-Khalatnikov equation. The carrier equation is derived from Poisson’s equation and the Boltzmann distribution law. According to the model, an amplified semiconductor surface potential and a steeper subthreshold slope could be obtained with suitable thicknesses of the ferroelectric film and insulator layer at room temperature. Results predicted by the analytical model agree well with those of the numerical simulation from a 2D simulator without any fitting parameters. The analytical model is valid for all operation regions and captures the transitions between them without any auxiliary variables or functions. This model can be used to explore the operating mechanisms of NC-SDG FETs and to optimize device performance.
A New Regulatory Policy for FTTx-Based Next-Generation Access Networks
NASA Astrophysics Data System (ADS)
Makarovič, Boštjan
2013-07-01
This article critically assesses the latest European Commission policies in relation to next-generation access investment that put focus on regulated prices and relaxing of wholesale access obligations. Pointing at the vital socio-legal and economic arguments, it further challenges the assumptions of the current EU regulatory framework and calls for a more contractual utility-based model of regulation instead of the current system that overly relies on market-driven infrastructure-based competition.
Integrated modeling of high βN steady state scenario on DIII-D
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...
2018-01-10
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
Integrated modeling of high βN steady state scenario on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less
Integrated modeling of high βN steady state scenario on DIII-D
NASA Astrophysics Data System (ADS)
Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.
2018-01-01
Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.
Temperature characteristics of silicon space solar cells and underlying parameters
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Kachare, Ram; Garlick, G. F. J.
1987-01-01
Silicon space cells, 2 cm x 2 cm, with 10 ohm-cm p-base resistivity, 8-mil base thickness, and no back-surface fields have been investigated over the temperature range from 301 to 223 K by measurements of dark forward and reverse current-voltage characteristics and current-voltage relations under illumination. From dark forward bias data, the first and second diode saturation currents, I01 and I02, are determined and hence the base diffusion length and lifetime of minority carriers as functions of temperature. Lifetime increases exponentially with temperature and is explained by a Shockley-Read-Hall model with deep recombination levels 0.245 eV above the valence band. The I02 variation with temperature follows the Sah-Noyce-Shockley-Choo model except at low temperature where extra transitions raise the value above the predicted level. Reverse bias current at low voltage is a thermally assisted tunneling process via deep levels which are observed in base recombination at higher temperatures. The tunneling effects tend to become independent of temperature in the low-temperature region. These results demonstrate the ability to deduce basic parameters such as lifetime from simple measurements and show that back-surface fields offer no advantage at temperatures below 230 K. The analysis also explains the fall in lifetimes observed as the base conductivity increases, attributing it to native defects (perhaps carbon-oxygen-vacancy complexes) rather than the concentration of base dopant.
Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P
2009-06-17
Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.
NASA Astrophysics Data System (ADS)
Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian
Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.
Navigating the flow: individual and continuum models for homing in flowing environments
Painter, Kevin J.; Hillen, Thomas
2015-01-01
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to ‘homing’ problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. PMID:26538557
NASA Astrophysics Data System (ADS)
Rezaei Mianroodi, Jaber; Svendsen, Bob
2015-04-01
The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Köhler force.
Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta
2013-07-01
With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the neuronal reactivity to an electrical stimulation using external microelectrodes.
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K.T.
2016-01-01
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. PMID:26928563
Determination of viable legionellae in engineered water systems: Do we find what we are looking for?
Kirschner, Alexander K T
2016-04-15
In developed countries, legionellae are one of the most important water-based bacterial pathogens caused by management failure of engineered water systems. For routine surveillance of legionellae in engineered water systems and outbreak investigations, cultivation-based standard techniques are currently applied. However, in many cases culture-negative results are obtained despite the presence of viable legionellae, and clinical cases of legionellosis cannot be traced back to their respective contaminated water source. Among the various explanations for these discrepancies, the presence of viable but non-culturable (VBNC) Legionella cells has received increased attention in recent discussions and scientific literature. Alternative culture-independent methods to detect and quantify legionellae have been proposed in order to complement or even substitute the culture method in the future. Such methods should detect VBNC Legionella cells and provide a more comprehensive picture of the presence of legionellae in engineered water systems. However, it is still unclear whether and to what extent these VBNC legionellae are hazardous to human health. Current risk assessment models to predict the risk of legionellosis from Legionella concentrations in the investigated water systems contain many uncertainties and are mainly based on culture-based enumeration. If VBNC legionellae should be considered in future standard analysis, quantitative risk assessment models including VBNC legionellae must be proven to result in better estimates of human health risk than models based on cultivation alone. This review critically evaluates current methods to determine legionellae in the VBNC state, their potential to complement the standard culture-based method in the near future, and summarizes current knowledge on the threat that VBNC legionellae may pose to human health. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.
Blue, Christine M.; Funkhouser, D. Ellen; Riggs, Sheila; Rindal, D. Brad; Worley, Donald; Pihlstrom, Daniel J.; Benjamin, Paul; Gilbert, Gregg H.
2014-01-01
Objectives The purpose of this study was to quantify within The National Dental Practice-Based Research Network current utilization of dental hygienists and assistants with expanded functions and quantify network dentists’ attitudes toward a new non-dentist provider model - the dental therapist. Methods Dental practice-based research network practitioner-investigators participated in a single, cross-sectional administration of a questionnaire. Results Current non-dentist providers are not being utilized by network practitioner-investigators to the fullest extent allowed by law. Minnesota practitioners, practitioners in large group practices, and those with prior experience with expanded function non-dentist providers delegate at a higher rate and had more-positive perceptions of the new dental therapist model. Conclusions Expanding scopes of practice for dental hygienists and assistants has not translated to the maximal delegation allowed by law among network practices. This finding may provide insight into dentists’ acceptance of newer non-dentist provider models. PMID:23668892
An analysis of USSPACECOM's space surveillance network sensor tasking methodology
NASA Astrophysics Data System (ADS)
Berger, Jeff M.; Moles, Joseph B.; Wilsey, David G.
1992-12-01
This study provides the basis for the development of a cost/benefit assessment model to determine the effects of alterations to the Space Surveillance Network (SSN) on orbital element (OE) set accuracy. It provides a review of current methods used by NORAD and the SSN to gather and process observations, an alternative to the current Gabbard classification method, and the development of a model to determine the effects of observation rate and correction interval on OE set accuracy. The proposed classification scheme is based on satellite J2 perturbations. Specifically, classes were established based on mean motion, eccentricity, and inclination since J2 perturbation effects are functions of only these elements. Model development began by creating representative sensor observations using a highly accurate orbital propagation model. These observations were compared to predicted observations generated using the NORAD Simplified General Perturbation (SGP4) model and differentially corrected using a Bayes, sequential estimation, algorithm. A 10-run Monte Carlo analysis was performed using this model on 12 satellites using 16 different observation rate/correction interval combinations. An ANOVA and confidence interval analysis of the results show that this model does demonstrate the differences in steady state position error based on varying observation rate and correction interval.
Theory and observations of upward field-aligned currents at the magnetopause boundary layer.
Wing, Simon; Johnson, Jay R
2015-11-16
The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .
NASA Astrophysics Data System (ADS)
Buzulukova, Natalia; Fok, Mei-Ching; Glocer, Alex; Moore, Thomas E.
2013-04-01
We report studies of the storm time ring current and its influence on the radiation belts, plasmasphere and global magnetospheric dynamics. The near-Earth space environment is described by multiscale physics that reflects a variety of processes and conditions that occur in magnetospheric plasma. For a successful description of such a plasma, a complex solution is needed which allows multiple physics domains to be described using multiple physical models. A key population of the inner magnetosphere is ring current plasma. Ring current dynamics affects magnetic and electric fields in the entire magnetosphere, the distribution of cold ionospheric plasma (plasmasphere), and radiation belts particles. To study electrodynamics of the inner magnetosphere, we present a MHD model (BATSRUS code) coupled with ionospheric solver for electric field and with ring current-radiation belt model (CIMI code). The model will be used as a tool to reveal details of coupling between different regions of the Earth's magnetosphere. A model validation will be also presented based on comparison with data from THEMIS, POLAR, GOES, and TWINS missions. INVITED TALK
Characterization of YBa2Cu3O7, including critical current density Jc, by trapped magnetic field
NASA Technical Reports Server (NTRS)
Chen, In-Gann; Liu, Jianxiong; Weinstein, Roy; Lau, Kwong
1992-01-01
Spatial distributions of persistent magnetic field trapped by sintered and melt-textured ceramic-type high-temperature superconductor (HTS) samples have been studied. The trapped field can be reproduced by a model of the current consisting of two components: (1) a surface current Js and (2) a uniform volume current Jv. This Js + Jv model gives a satisfactory account of the spatial distribution of the magnetic field trapped by different types of HTS samples. The magnetic moment can be calculated, based on the Js + Jv model, and the result agrees well with that measured by standard vibrating sample magnetometer (VSM). As a consequence, Jc predicted by VSM methods agrees with Jc predicted from the Js + Jv model. The field mapping method described is also useful to reveal the granular structure of large HTS samples and regions of weak links.
NASA Astrophysics Data System (ADS)
Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.
2018-01-01
Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.
Model-Driven Useware Engineering
NASA Astrophysics Data System (ADS)
Meixner, Gerrit; Seissler, Marc; Breiner, Kai
User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.
NASA Astrophysics Data System (ADS)
Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli
2018-05-01
Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a useful guidance for future design of observing system in this region.
A Working Model for Reconstruction in the central Asian States
2010-04-01
20 Proposal: SCG Model...model, the SSTR Coordination Group ( SCG ) model, connects with current CENTCOM practices and based on an example within Central Asia, seems to harmonize...relative simplicity of this Phase 0 situation, does not result in reduced emphasis on engaging all appropriate elements of USG. Proposal: SCG Model
Measurement of positive direct current corona pulse in coaxial wire-cylinder gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Han, E-mail: hanyin1986@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn
In this paper, a system is designed and developed to measure the positive corona current in coaxial wire-cylinder gaps. The characteristic parameters of corona current pulses, such as the amplitude, rise time, half-wave time, and repetition frequency, are statistically analyzed and a new set of empirical formulas are derived by numerical fitting. The influence of space charges on corona currents is tested by using three corona cages with different radii. A numerical method is used to solve a simplified ion-flow model to explain the influence of space charges. Based on the statistical results, a stochastic model is developed to simulatemore » the corona pulse trains. And this model is verified by comparing the simulated frequency-domain responses with the measured ones.« less
NASA Astrophysics Data System (ADS)
Mandache, C.; Khan, M.; Fahr, A.; Yanishevsky, M.
2011-03-01
Probability of detection (PoD) studies are broadly used to determine the reliability of specific nondestructive inspection procedures, as well as to provide data for damage tolerance life estimations and calculation of inspection intervals for critical components. They require inspections on a large set of samples, a fact that makes these statistical assessments time- and cost-consuming. Physics-based numerical simulations of nondestructive testing inspections could be used as a cost-effective alternative to empirical investigations. They realistically predict the inspection outputs as functions of the input characteristics related to the test piece, transducer and instrument settings, which are subsequently used to partially substitute and/or complement inspection data in PoD analysis. This work focuses on the numerical modelling aspects of eddy current testing for the bolt hole inspections of wing box structures typical of the Lockheed Martin C-130 Hercules and P-3 Orion aircraft, found in the air force inventory of many countries. Boundary element-based numerical modelling software was employed to predict the eddy current signal responses when varying inspection parameters related to probe characteristics, crack geometry and test piece properties. Two demonstrator exercises were used for eddy current signal prediction when lowering the driver probe frequency and changing the material's electrical conductivity, followed by subsequent discussions and examination of the implications on using simulated data in the PoD analysis. Despite some simplifying assumptions, the modelled eddy current signals were found to provide similar results to the actual inspections. It is concluded that physics-based numerical simulations have the potential to partially substitute or complement inspection data required for PoD studies, reducing the cost, time, effort and resources necessary for a full empirical PoD assessment.
Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc
NASA Astrophysics Data System (ADS)
Kano, Ryota; Mitubori, Hironori; Iwao, Toru
2015-11-01
Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.
Improving clinical models based on knowledge extracted from current datasets: a new approach.
Mendes, D; Paredes, S; Rocha, T; Carvalho, P; Henriques, J; Morais, J
2016-08-01
The Cardiovascular Diseases (CVD) are the leading cause of death in the world, being prevention recognized to be a key intervention able to contradict this reality. In this context, although there are several models and scores currently used in clinical practice to assess the risk of a new cardiovascular event, they present some limitations. The goal of this paper is to improve the CVD risk prediction taking into account the current models as well as information extracted from real and recent datasets. This approach is based on a decision tree scheme in order to assure the clinical interpretability of the model. An innovative optimization strategy is developed in order to adjust the decision tree thresholds (rule structure is fixed) based on recent clinical datasets. A real dataset collected in the ambit of the National Registry on Acute Coronary Syndromes, Portuguese Society of Cardiology is applied to validate this work. In order to assess the performance of the new approach, the metrics sensitivity, specificity and accuracy are used. This new approach achieves sensitivity, a specificity and an accuracy values of, 80.52%, 74.19% and 77.27% respectively, which represents an improvement of about 26% in relation to the accuracy of the original score.
Health Monitoring of a Planetary Rover Using Hybrid Particle Petri Nets
NASA Technical Reports Server (NTRS)
Gaudel, Quentin; Ribot, Pauline; Chanthery, Elodie; Daigle, Matthew J.
2016-01-01
This paper focuses on the application of a Petri Net-based diagnosis method on a planetary rover prototype.The diagnosis is performed by using a model-based method in the context of health management of hybrid systems.In system health management, the diagnosis task aims at determining the current health state of a system and the fault occurrences that lead to this state. The Hybrid Particle Petri Nets (HPPN) formalism is used to model hybrid systems behavior and degradation, and to define the generation of diagnosers to monitor the health states of such systems under uncertainty. At any time, the HPPN-based diagnoser provides the current diagnosis represented by a distribution of beliefs over the health states. The health monitoring methodology is demonstrated on the K11 rover. A hybrid model of the K11 is proposed and experimental results show that the approach is robust to real system data and constraints.
Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.
Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A
2014-07-01
Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.
Modelling the Auroral Magnetosphere-Ionosphere Coupling System at Jupiter
NASA Astrophysics Data System (ADS)
Bunce, E. J.; Cowley, S.; Provan, G.
2016-12-01
The magnetosphere-ionosphere coupling system at Jupiter is a topic of central significance in understanding the fundamental properties of its large-scale plasma environment. Theoretical discussion of this topic typically considers the properties of the field-aligned current systems that form part of a large-scale magnetosphere-ionosphere coupling current system associated with momentum exchange between the ionosphere and the magnetosphere, communicated via the magnetic field. The current system associated with the main oval is believed to be related to centrifugally-driven outward radial transport of iogenic plasma that leads to sub-corotation in the middle magnetosphere. In addition to the magnetosphere-ionosphere coupling current system, upward-directed field-aligned currents may flow at the open-closed field line boundary due to the shear between outer closed field lines and open field lines, which may relate to emission poleward of the main oval. An axi-symmetric model of the plasma flow in the jovian system, the related coupling currents, and the consequent auroral precipitation based on these combined ideas was initially devised to represent typical steady-state conditions for the system and later extended to consider auroral effects resulting from sudden compressions of the magnetosphere. More recently, the model has been extended along model magnetic field lines into the magnetosphere in order to relate them to in situ observations from the NASA Juno spacecraft at Jupiter. The field-aligned coupling currents associated with the modelled current systems produce a readily-observable azimuthal field signature that bends the field lines out of magnetic meridians. Here we show the computed azimuthal fields produced by our model auroral current system throughout the region between the ionosphere and the magnetic equator, and illustrate the results by evaluation of various model parameters (e.g. field-aligned current density, accelerating voltages, accelerated energy flux) along the Juno orbits.
Women's Self-definition in Adulthood: From a Different Model?
ERIC Educational Resources Information Center
Peck, Teresa A.
1986-01-01
Examines criticisms of existing models of adult development from both feminist and developmental psychologists. A model of women's adult self-definition is presented, based upon current research on women's adult experience. The model combines a dialectical approach, which considers the effects of social/historical factors, with a feminist…
Most predictions of the effect of climate change on species’ ranges are based on correlations between climate and current species’ distributions. These so-called envelope models may be a good first approximation, but we need demographically mechanistic models to incorporate the ...
Forecasting Pell Program Applications Using Structural Aggregate Models.
ERIC Educational Resources Information Center
Cavin, Edward S.
1995-01-01
Demand for Pell Grant financial aid has become difficult to predict when using the current microsimulation model. This paper proposes an alternative model that uses aggregate data (based on individuals' microlevel decisions and macrodata on family incomes, college costs, and opportunity wages) and avoids some limitations of simple linear models.…
Conceptual Commitments of the LIDA Model of Cognition
NASA Astrophysics Data System (ADS)
Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard
2013-06-01
Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.
Orbital debris environment for spacecraft in low earth orbit
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1990-01-01
Modeling and measurement results used in formulating an environment model that can be used for the engineering design of spacecraft are reviewed. Earth-based and space-based sensors are analyzed and it is noted that the effects of satellite breakups can be modeled to predict a uncatalogued population, if the nature of the breakup is understood. It is observed that the telescopic data indicate that the current model is too low for sizes slightly larger than 10 cm, and may be too low for sizes between 2 cm and 10 cm, while there is an uncertainty in the current development, especially for sizes smaller than 10 cm, and at altitudes different from 500 km. Projections for the catastrophic collision rate for different growth conditions are made, emphasizing that the rate of growth of fragments will be twice the rate of intact objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenzi, P., E-mail: lorenzi@die.uniroma1.it; Rao, R.; Irrera, F.
2015-09-14
According to previous reports, filamentary electron transport in resistive switching HfO{sub 2}-based metal-insulator-metal structures can be modeled using a diode-like conduction mechanism with a series resistance. Taking the appropriate limits, the model allows simulating the high (HRS) and low (LRS) resistance states of the devices in terms of exponential and linear current-voltage relationships, respectively. In this letter, we show that this simple equivalent circuit approach can be extended to represent the progressive reset transition between the LRS and HRS if a generalized logistic growth model for the pre-exponential diode current factor is considered. In this regard, it is demonstrated heremore » that a Verhulst logistic model does not provide accurate results. The reset dynamics is interpreted as the sequential deactivation of multiple conduction channels spanning the dielectric film. Fitting results for the current-voltage characteristics indicate that the voltage sweep rate only affects the deactivation rate of the filaments without altering the main features of the switching dynamics.« less
Integrated freight network model : a GIS-based platform for transportation analyses.
DOT National Transportation Integrated Search
2015-01-01
The models currently used to examine the behavior transportation systems are usually mode-specific. That is, they focus on a single mode (i.e. railways, highways, or waterways). The lack of : integration limits the usefulness of models to analyze the...
A review of computer evacuation models and their data needs.
DOT National Transportation Integrated Search
1994-05-01
This document reviews the history and current status of computer models of the evacuation of an airliner cabin. Basic concepts upon which evacuation models are based are discussed, followed by a review of the Civil Aerospace Medical Institute s effor...
NASA Astrophysics Data System (ADS)
Vallino, J. J.; Huber, J. A.
2016-02-01
Marine biogeochemistry is orchestrated by a complex and dynamic community of microorganisms that attempt to maximize their own fecundity through a combination of competition and cooperation. At a systems level, the community can be described as a distributed metabolic network, where different species contribute their own unique set of metabolic capabilities. Our current project attempts to understand the governing principles that describe amplification or attenuation of metabolic pathways within the network through a combination of modeling and metagenomic, metatranscriptomic and biogeochemical observations. We will describe and present results from our thermodynamic-based model that determines optimal pathway expression from available resources based on the principle of maximum entropy production (MEP); that is, based on the hypothesis that non-equilibrium systems organize to maximize energy dissipation. The MEP model currently predicts metabolic pathway expression over time, and one spatial dimension. Model predictions will be compared to biogeochemical observations and gene presence and expression from samples collected over time and space from a costal meromictic basin (Siders Pond) located in Falmouth MA, US. Siders Pond permanent stratification, caused by occasional seawater intrusion, results in steep chemoclines and redox gradients, which supports both aerobic and anaerobic phototrophs as well as sulfur, Fe and Mn redox cycles. The diversity of metabolic capability and expression we have observed over depth makes it an ideal system to test our thermodynamic-based model.
SOA-based model for value-added ITS services delivery.
Herrera-Quintero, Luis Felipe; Maciá-Pérez, Francisco; Marcos-Jorquera, Diego; Gilart-Iglesias, Virgilio
2014-01-01
Integration is currently a key factor in intelligent transportation systems (ITS), especially because of the ever increasing service demands originating from the ITS industry and ITS users. The current ITS landscape is made up of multiple technologies that are tightly coupled, and its interoperability is extremely low, which limits ITS services generation. Given this fact, novel information technologies (IT) based on the service-oriented architecture (SOA) paradigm have begun to introduce new ways to address this problem. The SOA paradigm allows the construction of loosely coupled distributed systems that can help to integrate the heterogeneous systems that are part of ITS. In this paper, we focus on developing an SOA-based model for integrating information technologies (IT) into ITS to achieve ITS service delivery. To develop our model, the ITS technologies and services involved were identified, catalogued, and decoupled. In doing so, we applied our SOA-based model to integrate all of the ITS technologies and services, ranging from the lowest-level technical components, such as roadside unit as a service (RSUAAS), to the most abstract ITS services that will be offered to ITS users (value-added services). To validate our model, a functionality case study that included all of the components of our model was designed.
Geospace environment modeling 2008--2009 challenge: Dst index
Rastätter, L.; Kuznetsova, M.M.; Glocer, A.; Welling, D.; Meng, X.; Raeder, J.; Wittberger, M.; Jordanova, V.K.; Yu, Y.; Zaharia, S.; Weigel, R.S.; Sazykin, S.; Boynton, R.; Wei, H.; Eccles, V.; Horton, W.; Mays, M.L.; Gannon, J.
2013-01-01
This paper reports the metrics-based results of the Dst index part of the 2008–2009 GEM Metrics Challenge. The 2008–2009 GEM Metrics Challenge asked modelers to submit results for four geomagnetic storm events and five different types of observations that can be modeled by statistical, climatological or physics-based models of the magnetosphere-ionosphere system. We present the results of 30 model settings that were run at the Community Coordinated Modeling Center and at the institutions of various modelers for these events. To measure the performance of each of the models against the observations, we use comparisons of 1 hour averaged model data with the Dst index issued by the World Data Center for Geomagnetism, Kyoto, Japan, and direct comparison of 1 minute model data with the 1 minute Dst index calculated by the United States Geological Survey. The latter index can be used to calculate spectral variability of model outputs in comparison to the index. We find that model rankings vary widely by skill score used. None of the models consistently perform best for all events. We find that empirical models perform well in general. Magnetohydrodynamics-based models of the global magnetosphere with inner magnetosphere physics (ring current model) included and stand-alone ring current models with properly defined boundary conditions perform well and are able to match or surpass results from empirical models. Unlike in similar studies, the statistical models used in this study found their challenge in the weakest events rather than the strongest events.
Abascal, Ana J; Sanchez, Jorge; Chiri, Helios; Ferrer, María I; Cárdenas, Mar; Gallego, Alejandro; Castanedo, Sonia; Medina, Raúl; Alonso-Martirena, Andrés; Berx, Barbara; Turrell, William R; Hughes, Sarah L
2017-06-15
This paper presents a novel operational oil spill modelling system based on HF radar currents, implemented in a northwest European shelf sea. The system integrates Open Modal Analysis (OMA), Short Term Prediction algorithms (STPS) and an oil spill model to simulate oil spill trajectories. A set of 18 buoys was used to assess the accuracy of the system for trajectory forecast and to evaluate the benefits of HF radar data compared to the use of currents from a hydrodynamic model (HDM). The results showed that simulated trajectories using OMA currents were more accurate than those obtained using a HDM. After 48h the mean error was reduced by 40%. The forecast skill of the STPS method was valid up to 6h ahead. The analysis performed shows the benefits of HF radar data for operational oil spill modelling, which could be easily implemented in other regions with HF radar coverage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Event-driven simulations of nonlinear integrate-and-fire neurons.
Tonnelier, Arnaud; Belmabrouk, Hana; Martinez, Dominique
2007-12-01
Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.
Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem
2014-09-30
on trophic interactions affecting habitat utilization and foraging patterns of California sea lions (CSL) in the California Current Large Marine...middle (sardine and anchovy) and higher (sea lions ) trophic level species. To this end, our numerical experiments are designed to isolate patterns of...NEMURO) embedded in a regional ocean circulation model (ROMS), and both coupled with a multi- species individual-based model (IBM) for forage fish
The use of fractional order derivatives for eddy current non-destructive testing
NASA Astrophysics Data System (ADS)
Sikora, Ryszard; Grzywacz, Bogdan; Chady, Tomasz
2018-04-01
The paper presents the possibility of using the fractional derivatives for non-destructive testing when a multi-frequency method based on eddy current is applied. It is shown that frequency characteristics obtained during tests can be approximated by characteristics of a proposed model in the form of fractional order transfer function, and values of parameters of this model can be utilized for detection and identification of defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shurupov, A. V.; Zavalova, V. E., E-mail: zavalova@fites.ru; Kozlov, A. V.
The report presents the results of the development and field testing of a mobile test facility based on a helical magnetic cumulative generator (MCGTF). The system is designed for full-scale modeling of lightning currents to study the safety of power plants of any type, including nuclear power plants. Advanced technologies of high-energy physics for solving both engineering and applied problems underlie this pilot project. The energy from the magnetic cumulative generator (MCG) is transferred to a high-impedance load with high efficiency of more than 50% using pulse transformer coupling. Modeling of the dynamics of the MEG that operates in amore » circuit with lumped parameters allows one to apply the law of inductance output during operation of the MCG, thus providing the required front of the current pulse in the load without using any switches. The results of field testing of the MCGTF are presented for both the ground loop and the model load. The ground loop generates a load resistance of 2–4 Ω. In the tests, the ohmic resistance of the model load is 10 Ω. It is shown that the current pulse parameters recorded in the resistive-inductive load are close to the calculated values.« less
Meyer, Swen; Blaschek, Michael; Duttmann, Rainer; Ludwig, Ralf
2016-02-01
According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments. Copyright © 2015 Elsevier B.V. All rights reserved.
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions
Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo; ...
2016-11-16
This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less
Modelling of project cash flow on construction projects in Malang city
NASA Astrophysics Data System (ADS)
Djatmiko, Bambang
2017-09-01
Contractors usually prepare a project cash flow (PCF) on construction projects. The flow of cash in and cash out within a construction project may vary depending on the owner, contract documents, and construction service providers who have their own authority. Other factors affecting the PCF are down payment, termyn, progress schedule, material schedule, equipment schedule, manpower schedules, and wages of workers and subcontractors. This study aims to describe the cash inflow and cash outflow based on the empirical data obtained from contractors, develop a PCF model based on Halpen & Woodhead's PCF model, and investigate whether or not there is a significant difference between the Halpen & Woodhead's PCF model and the empirical PCF model. Based on the researcher's observation, the PCF management has never been implemented by the contractors in Malang in serving their clients (owners). The research setting is in Malang City because physical development in all field and there are many new construction service providers. The findings in this current study are summarised as follows: 1) Cash in included current assets (20%), owner's down payment (20%), termyin I (5%-25%), termyin II (20%), termyin III (25%), termyin IV (25%) and retention (5%). Cash out included direct cost (65%), indirect cost (20%), and profit + informal cost(15%), 2)the construction work involving the empirical PCF model in this study was started with the funds obtained from DP or current assets and 3) The two models bear several similarities in the upward trends of direct cost, indirect cost, Pro Ic, progress billing, and S-curve. The difference between the two models is the occurrence of overdraft in the Halpen and Woodhead's PCF model only.
High-resolution modelling of waves, currents and sediment transport in the Catalan Sea.
NASA Astrophysics Data System (ADS)
Sánchez-Arcilla, Agustín; Grifoll, Manel; Pallares, Elena; Espino, Manuel
2013-04-01
In order to investigate coastal shelf dynamics, a sequence of high resolution multi-scale models have been implemented for the Catalan shelf (North-western Mediterranean Sea). The suite consists of a set of increasing-resolution nested models, based on the circulation model ROMS (Regional Ocean Modelling System), the wave model SWAN (Simulation Waves Nearshore) and the sediment transport model CSTM (Community Sediment Transport Model), covering different ranges of spatial (from ~1 km at shelf-slope regions to ~40 m around river mouth or local beaches) and temporal scales (from storms events to seasonal variability). Contributions in the understanding of local processes such as along-shelf dynamics in the inner-shelf, sediment dispersal from the river discharge or bi-directional wave-current interactions under different synoptic conditions and resolution have been obtained using the Catalan Coast as a pilot site. Numerical results have been compared with "ad-hoc" intensive field campaigns, data from observational models and remote sensing products. The results exhibit acceptable agreement with observations and the investigation has allowed developing generic knowledge and more efficient (process-based) strategies for the coastal and shelf management.
Properties of a Formal Method to Model Emergence in Swarm-Based Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy; Truszkowski, Walt; Rash, James; Hinchey, Mike
2004-01-01
Future space missions will require cooperation between multiple satellites and/or rovers. Developers are proposing intelligent autonomous swarms for these missions, but swarm-based systems are difficult or impossible to test with current techniques. This viewgraph presentation examines the use of formal methods in testing swarm-based systems. The potential usefulness of formal methods in modeling the ANTS asteroid encounter mission is also examined.
Global evaluation of biofuel potential from microalgae
Moody, Jeffrey W.; McGinty, Christopher M.; Quinn, Jason C.
2014-01-01
In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of 13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176
de Carvalho, Elias César Araujo; Batilana, Adelia Portero; Simkins, Julie; Martins, Henrique; Shah, Jatin; Rajgor, Dimple; Shah, Anand; Rockart, Scott; Pietrobon, Ricardo
2010-02-19
Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
Tertiary structure-based analysis of microRNA–target interactions
Gan, Hin Hark; Gunsalus, Kristin C.
2013-01-01
Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009
Lin, Meihua; Li, Haoli; Zhao, Xiaolei; Qin, Jiheng
2013-01-01
Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic components that can not be detected by using current single-point association analysis. Recently, several model-free methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error, in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models. Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects. PMID:24339984
Pinkernell, Stefan; Beszteri, Bánk
2014-08-01
Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
Army Manpower Cost System (AMCOS): Active Enlisted Force Prototype
1986-03-01
cost element in both economic and budget models includes both a soldier’s Base Pay and the Service’s FICA contribu- tion at the current tax rate . a...mean base pay for the position calculated from BP T I FCAP - curret maxilum ICA payable FRATE - current FICA tax rate Tlij - total base pay distributed...Group, Santa Monica, 1982. Butler, R. and T. Neches, " HARDMAN Program Manager’s LCC Handbook: Avionics Equip- ments," D-201, The Assessment Group
Cygnus X-1: A Case for a Magnetic Accretion Disk?
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.
1996-01-01
With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.
NASA Astrophysics Data System (ADS)
Ohara, Masaki; Noguchi, Toshihiko
This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Antiresonance induced spin-polarized current generation
NASA Astrophysics Data System (ADS)
Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng
2011-12-01
According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.
Note: Void effects on eddy current distortion in two-phase liquid metal.
Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M
2015-10-01
A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf.
Current progress in patient-specific modeling
2010-01-01
We present a survey of recent advancements in the emerging field of patient-specific modeling (PSM). Researchers in this field are currently simulating a wide variety of tissue and organ dynamics to address challenges in various clinical domains. The majority of this research employs three-dimensional, image-based modeling techniques. Recent PSM publications mostly represent feasibility or preliminary validation studies on modeling technologies, and these systems will require further clinical validation and usability testing before they can become a standard of care. We anticipate that with further testing and research, PSM-derived technologies will eventually become valuable, versatile clinical tools. PMID:19955236
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanfilippo, Antonio P.
2010-05-23
The increasing asymmetric nature of threats to the security, health and sustainable growth of our society requires that anticipatory reasoning become an everyday activity. Currently, the use of anticipatory reasoning is hindered by the lack of systematic methods for combining knowledge- and evidence-based models, integrating modeling algorithms, and assessing model validity, accuracy and utility. The workshop addresses these gaps with the intent of fostering the creation of a community of interest on model integration and evaluation that may serve as an aggregation point for existing efforts and a launch pad for new approaches.
ERIC Educational Resources Information Center
Kong, Luis J.
2010-01-01
In this chapter, the author will explore the significance of race from a social constructionist perspective. He will focus on immigration laws and on examples of legal cases that have set the stage for current definitions of whiteness and racial identification. A community-based transformational organizing model will be presented. The model will…
ERIC Educational Resources Information Center
Baghaei, Nilufar; Mitrovic, Antonija; Irwin, Warwick
2007-01-01
We present COLLECT-UML, a constraint-based intelligent tutoring system (ITS) that teaches object-oriented analysis and design using Unified Modelling Language (UML). UML is easily the most popular object-oriented modelling technology in current practice. While teaching how to design UML class diagrams, COLLECT-UML also provides feedback on…
New turbidity current model based on high-resolution monitoring of the longest flow ever measured
NASA Astrophysics Data System (ADS)
Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed
2016-04-01
Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting chance to explore the full range of turbidity current behaviour in nature.
NASA Astrophysics Data System (ADS)
Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser
2015-08-01
In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.
An analysis of household waste management policy using system dynamics modelling.
Inghels, Dirk; Dullaert, Wout
2011-04-01
This paper analyses the Flemish household waste management policy. Based on historical data from the period 1991-2006, literature reviews and interviews, both mathematical and descriptive relationships are derived that describe Flemish waste collection, reuse, recycling and disposal behaviour. This provides insights into how gross domestic product (GDP), population and selective collection behaviour have influenced household waste production and collection over time. These relationships are used to model the dynamic relationships underlying household waste management in Flanders by using a system dynamics (SD) modelling approach. Where most SD models in literature are conceptual and descriptive, in the present study a real-life case with both correlational and descriptive relationships was modelled for Flanders, a European region with an outstanding waste management track record. This model was used to evaluate the current Flemish household waste management policy based on the principles of the waste hierarchy, also referred as the Lansink ranking. The results show that Flemish household waste targets up to 2015 can be achieved by the current waste policy measures. It also shows the sensitivity of some key policy parameters such as prevention and reuse. Given the general nature of the model and its limited data requirements, the authors believe that the approach implemented in this model can also assist waste policy makers in other regions or countries to meet their policy targets by simulating the effect of their current and potential household waste policy measures.
2013 CAEL Forum & News: Competency-Based Education
ERIC Educational Resources Information Center
Council for Adult and Experiential Learning, 2013
2013-01-01
In 2012, CAEL released the report "Competency-Based Degree Programs in the U.S.: Postsecondary Credentials for Measurable Student Learning and Performance," which examined the current state of competency-based postsecondary education in the U.S., profiling the various types of competency-based, or competency-focused, models that…
Information-Flow-Based Access Control for Web Browsers
NASA Astrophysics Data System (ADS)
Yoshihama, Sachiko; Tateishi, Takaaki; Tabuchi, Naoshi; Matsumoto, Tsutomu
The emergence of Web 2.0 technologies such as Ajax and Mashup has revealed the weakness of the same-origin policy[1], the current de facto standard for the Web browser security model. We propose a new browser security model to allow fine-grained access control in the client-side Web applications for secure mashup and user-generated contents. We propose a browser security model that is based on information-flow-based access control (IBAC) to overcome the dynamic nature of the client-side Web applications and to accurately determine the privilege of scripts in the event-driven programming model.
Meier, Petra S.; Holmes, John; Angus, Colin; Ally, Abdallah K.; Meng, Yang; Brennan, Alan
2016-01-01
Introduction While evidence that alcohol pricing policies reduce alcohol-related health harm is robust, and alcohol taxation increases are a WHO “best buy” intervention, there is a lack of research comparing the scale and distribution across society of health impacts arising from alternative tax and price policy options. The aim of this study is to test whether four common alcohol taxation and pricing strategies differ in their impact on health inequalities. Methods and Findings An econometric epidemiological model was built with England 2014/2015 as the setting. Four pricing strategies implemented on top of the current tax were equalised to give the same 4.3% population-wide reduction in total alcohol-related mortality: current tax increase, a 13.4% all-product duty increase under the current UK system; a value-based tax, a 4.0% ad valorem tax based on product price; a strength-based tax, a volumetric tax of £0.22 per UK alcohol unit (= 8 g of ethanol); and minimum unit pricing, a minimum price threshold of £0.50 per unit, below which alcohol cannot be sold. Model inputs were calculated by combining data from representative household surveys on alcohol purchasing and consumption, administrative and healthcare data on 43 alcohol-attributable diseases, and published price elasticities and relative risk functions. Outcomes were annual per capita consumption, consumer spending, and alcohol-related deaths. Uncertainty was assessed via partial probabilistic sensitivity analysis (PSA) and scenario analysis. The pricing strategies differ as to how effects are distributed across the population, and, from a public health perspective, heavy drinkers in routine/manual occupations are a key group as they are at greatest risk of health harm from their drinking. Strength-based taxation and minimum unit pricing would have greater effects on mortality among drinkers in routine/manual occupations (particularly for heavy drinkers, where the estimated policy effects on mortality rates are as follows: current tax increase, −3.2%; value-based tax, −2.9%; strength-based tax, −6.1%; minimum unit pricing, −7.8%) and lesser impacts among drinkers in professional/managerial occupations (for heavy drinkers: current tax increase, −1.3%; value-based tax, −1.4%; strength-based tax, +0.2%; minimum unit pricing, +0.8%). Results from the PSA give slightly greater mean effects for both the routine/manual (current tax increase, −3.6% [95% uncertainty interval (UI) −6.1%, −0.6%]; value-based tax, −3.3% [UI −5.1%, −1.7%]; strength-based tax, −7.5% [UI −13.7%, −3.9%]; minimum unit pricing, −10.3% [UI −10.3%, −7.0%]) and professional/managerial occupation groups (current tax increase, −1.8% [UI −4.7%, +1.6%]; value-based tax, −1.9% [UI −3.6%, +0.4%]; strength-based tax, −0.8% [UI −6.9%, +4.0%]; minimum unit pricing, −0.7% [UI −5.6%, +3.6%]). Impacts of price changes on moderate drinkers were small regardless of income or socioeconomic group. Analysis of uncertainty shows that the relative effectiveness of the four policies is fairly stable, although uncertainty in the absolute scale of effects exists. Volumetric taxation and minimum unit pricing consistently outperform increasing the current tax or adding an ad valorem tax in terms of reducing mortality among the heaviest drinkers and reducing alcohol-related health inequalities (e.g., in the routine/manual occupation group, volumetric taxation reduces deaths more than increasing the current tax in 26 out of 30 probabilistic runs, minimum unit pricing reduces deaths more than volumetric tax in 21 out of 30 runs, and minimum unit pricing reduces deaths more than increasing the current tax in 30 out of 30 runs). Study limitations include reducing model complexity by not considering a largely ineffective ban on below-tax alcohol sales, special duty rates covering only small shares of the market, and the impact of tax fraud or retailer non-compliance with minimum unit prices. Conclusions Our model estimates that, compared to tax increases under the current system or introducing taxation based on product value, alcohol-content-based taxation or minimum unit pricing would lead to larger reductions in health inequalities across income groups. We also estimate that alcohol-content-based taxation and minimum unit pricing would have the largest impact on harmful drinking, with minimal effects on those drinking in moderation. PMID:26905063
TRANPLAN and GIS support for agencies in Alabama
DOT National Transportation Integrated Search
2001-08-06
Travel demand models are computerized programs intended to forecast future roadway traffic volumes for a community based on selected socioeconomic variables and travel behavior algorithms. Software to operate these travel demand models is currently a...
A new approach to identify, classify and count drugrelated events
Bürkle, Thomas; Müller, Fabian; Patapovas, Andrius; Sonst, Anja; Pfistermeister, Barbara; Plank-Kiegele, Bettina; Dormann, Harald; Maas, Renke
2013-01-01
Aims The incidence of clinical events related to medication errors and/or adverse drug reactions reported in the literature varies by a degree that cannot solely be explained by the clinical setting, the varying scrutiny of investigators or varying definitions of drug-related events. Our hypothesis was that the individual complexity of many clinical cases may pose relevant limitations for current definitions and algorithms used to identify, classify and count adverse drug-related events. Methods Based on clinical cases derived from an observational study we identified and classified common clinical problems that cannot be adequately characterized by the currently used definitions and algorithms. Results It appears that some key models currently used to describe the relation of medication errors (MEs), adverse drug reactions (ADRs) and adverse drug events (ADEs) can easily be misinterpreted or contain logical inconsistencies that limit their accurate use to all but the simplest clinical cases. A key limitation of current models is the inability to deal with complex interactions such as one drug causing two clinically distinct side effects or multiple drugs contributing to a single clinical event. Using a large set of clinical cases we developed a revised model of the interdependence between MEs, ADEs and ADRs and extended current event definitions when multiple medications cause multiple types of problems. We propose algorithms that may help to improve the identification, classification and counting of drug-related events. Conclusions The new model may help to overcome some of the limitations that complex clinical cases pose to current paper- or software-based drug therapy safety. PMID:24007453
A series of case studies is presented focusing on multimedia/multipathway population exposures to arsenic, employing the Population Based Modeling approach of the MENTOR (Modeling Environment for Total Risks) framework. This framework considers currently five exposure routes: i...
Robust Synchronization Models for Presentation System Using SMIL-Driven Approach
ERIC Educational Resources Information Center
Asnawi, Rustam; Ahmad, Wan Fatimah Wan; Rambli, Dayang Rohaya Awang
2013-01-01
Current common Presentation System (PS) models are slide based oriented and lack synchronization analysis either with temporal or spatial constraints. Such models, in fact, tend to lead to synchronization problems, particularly on parallel synchronization with spatial constraints between multimedia element presentations. However, parallel…
Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; ...
2017-01-18
Currently, Constraint-Based Reconstruction and Analysis (COBRA) is the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Furthermore, standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We also developed a quadrupleprecision version of ourmore » linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.« less
Assessing the Health of LiFePO4 Traction Batteries through Monotonic Echo State Networks
Anseán, David; Otero, José; Couso, Inés
2017-01-01
A soft sensor is presented that approximates certain health parameters of automotive rechargeable batteries from on-vehicle measurements of current and voltage. The sensor is based on a model of the open circuit voltage curve. This last model is implemented through monotonic neural networks and estimate over-potentials arising from the evolution in time of the Lithium concentration in the electrodes of the battery. The proposed soft sensor is able to exploit the information contained in operational records of the vehicle better than the alternatives, this being particularly true when the charge or discharge currents are between moderate and high. The accuracy of the neural model has been compared to different alternatives, including data-driven statistical models, first principle-based models, fuzzy observers and other recurrent neural networks with different topologies. It is concluded that monotonic echo state networks can outperform well established first-principle models. The algorithms have been validated with automotive Li-FePO4 cells. PMID:29267219
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.
Currently, Constraint-Based Reconstruction and Analysis (COBRA) is the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Furthermore, standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We also developed a quadrupleprecision version of ourmore » linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.« less
Calculation of conductivities and currents in the ionosphere
NASA Technical Reports Server (NTRS)
Kirchhoff, V. W. J. H.; Carpenter, L. A.
1975-01-01
Formulas and procedures to calculate ionospheric conductivities are summarized. Ionospheric currents are calculated using a semidiurnal E-region neutral wind model and electric fields from measurements at Millstone Hill. The results agree well with ground based magnetogram records for magnetic quiet days.
Linking Quality and Spending to Measure Value for People with Serious Illness.
Ryan, Andrew M; Rodgers, Phillip E
2018-03-01
Healthcare payment is rapidly evolving to reward value by measuring and paying for quality and spending performance. Rewarding value for the care of seriously ill patients presents unique challenges. To evaluate the state of current efforts to measure and reward value for the care of seriously ill patients. We performed a PubMed search of articles related to (1) measures of spending for people with serious illness and (2) linking spending and quality measures and rewarding performance for the care of people with serious illness. We limited our search to U.S.-based studies published in English between January 1, 1960, and March 31, 2017. We supplemented this search by identifying public programs and other known initiatives that linked quality and spending for the seriously ill and extracted key program elements. Our search related to linking spending and quality measures and rewarding performance for the care of people with serious illness yielded 277 articles. We identified three current public programs that currently link measures of quality and spending-or are likely to within the next few years-the Oncology Care Model; the Comprehensive End-Stage Renal Disease Model; and Home Health Value-Based Purchasing. Models that link quality and spending consist of four core components: (1) measuring quality, (2) measuring spending, (3) the payment adjustment model, and (4) the linking/incentive model. We found that current efforts to reward value for seriously ill patients are targeted for specific patient populations, do not broadly encourage the use of palliative care, and have not closely aligned quality and spending measures related to palliative care. We develop recommendations for policymakers and stakeholders about how measures of spending and quality can be balanced in value-based payment programs.
Linking Quality and Spending to Measure Value for People with Serious Illness
Rodgers, Phillip E.
2018-01-01
Abstract Background: Healthcare payment is rapidly evolving to reward value by measuring and paying for quality and spending performance. Rewarding value for the care of seriously ill patients presents unique challenges. Objective: To evaluate the state of current efforts to measure and reward value for the care of seriously ill patients. Design: We performed a PubMed search of articles related to (1) measures of spending for people with serious illness and (2) linking spending and quality measures and rewarding performance for the care of people with serious illness. We limited our search to U.S.-based studies published in English between January 1, 1960, and March 31, 2017. We supplemented this search by identifying public programs and other known initiatives that linked quality and spending for the seriously ill and extracted key program elements. Results: Our search related to linking spending and quality measures and rewarding performance for the care of people with serious illness yielded 277 articles. We identified three current public programs that currently link measures of quality and spending—or are likely to within the next few years—the Oncology Care Model; the Comprehensive End-Stage Renal Disease Model; and Home Health Value-Based Purchasing. Models that link quality and spending consist of four core components: (1) measuring quality, (2) measuring spending, (3) the payment adjustment model, and (4) the linking/incentive model. We found that current efforts to reward value for seriously ill patients are targeted for specific patient populations, do not broadly encourage the use of palliative care, and have not closely aligned quality and spending measures related to palliative care. Conclusions: We develop recommendations for policymakers and stakeholders about how measures of spending and quality can be balanced in value-based payment programs. PMID:29091529
Baghianimoghadam, M H; Hadavandkhani, M; Mohammadi, M; Fallahzade, H; Baghianimoghadam, B
2012-01-01
Diabetes is a disease with several metabolic and organic symptoms. Physical activity plays a key role in controlling type 2 diabetes. Several researches confirm that educational strategies can lead to healthy behaviors and its continuation is effective and can indicate what type of relationship with the client is better. The purpose of this study is comparing the Effect of Current Education and Peer-Education on Walking in Type 2 Diabetic Patients based on Health Belief Model (HBM). This was a clinical trial (RCT) study done on 80 people with type 2 diabetes. Patients were divided into two groups, Current education and Peer education groups. Data were collected using a questionnaire based on the health belief model, a checklist related to patients' practice and recording patients' HbA1c, 2HPP and FBS levels. Results were documented before and three months after intervention. The patients participated in 2 educational classes during three months of intervention, as the follow-up of the intervention. Mean scores for HBM Model variables, i.e. perceived susceptibility, perceived severity, perceived benefit and self-efficacy, were significantly increased in the peer education group compared to current education group after intervention. Also, behavioral walking, rates of HbA1c and FBS and 2HPP levels were improved significantly among the peer education group. Applying walking training program developed for diabetic patients and its implementation by the peers in order to control blood sugar using the health belief model is very useful and effective. During implementation of these control programs, monitoring and follow-up training is recommended.
NASA Astrophysics Data System (ADS)
Koniczek, Martin; El-Mohri, Youcef; Antonuk, Larry E.; Liang, Albert; Zhao, Qihua; Jiang, Hao
2011-03-01
A decade after the clinical introduction of active matrix, flat-panel imagers (AMFPIs), the performance of this technology continues to be limited by the relatively large additive electronic noise of these systems - resulting in significant loss of detective quantum efficiency (DQE) under conditions of low exposure or high spatial frequencies. An increasingly promising approach for overcoming such limitations involves the incorporation of in-pixel amplification circuits, referred to as active pixel architectures (AP) - based on low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this study, a methodology for theoretically examining the limiting noise and DQE performance of circuits employing 1-stage in-pixel amplification is presented. This methodology involves sophisticated SPICE circuit simulations along with cascaded systems modeling. In these simulations, a device model based on the RPI poly-Si TFT model is used with additional controlled current sources corresponding to thermal and flicker (1/f) noise. From measurements of transfer and output characteristics (as well as current noise densities) performed upon individual, representative, poly-Si TFTs test devices, model parameters suitable for these simulations are extracted. The input stimuli and operating-point-dependent scaling of the current sources are derived from the measured current noise densities (for flicker noise), or from fundamental equations (for thermal noise). Noise parameters obtained from the simulations, along with other parametric information, is input to a cascaded systems model of an AP imager design to provide estimates of DQE performance. In this paper, this method of combining circuit simulations and cascaded systems analysis to predict the lower limits on additive noise (and upper limits on DQE) for large area AP imagers with signal levels representative of those generated at fluoroscopic exposures is described, and initial results are reported.
Simulating Cancer Growth with Multiscale Agent-Based Modeling
Wang, Zhihui; Butner, Joseph D.; Kerketta, Romica; Cristini, Vittorio; Deisboeck, Thomas S.
2014-01-01
There have been many techniques developed in recent years to in silico model a variety of cancer behaviors. Agent-based modeling is a specific discrete-based hybrid modeling approach that allows simulating the role of diversity in cell populations as well as within each individual cell; it has therefore become a powerful modeling method widely used by computational cancer researchers. Many aspects of tumor morphology including phenotype-changing mutations, the adaptation to microenvironment, the process of angiogenesis, the influence of extracellular matrix, reactions to chemotherapy or surgical intervention, the effects of oxygen and nutrient availability, and metastasis and invasion of healthy tissues have been incorporated and investigated in agent-based models. In this review, we introduce some of the most recent agent-based models that have provided insight into the understanding of cancer growth and invasion, spanning multiple biological scales in time and space, and we further describe several experimentally testable hypotheses generated by those models. We also discuss some of the current challenges of multiscale agent-based cancer models. PMID:24793698
Mechanistic materials modeling for nuclear fuel performance
Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...
2017-03-15
Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less
An Agent Based Collaborative Simplification of 3D Mesh Model
NASA Astrophysics Data System (ADS)
Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro
Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.
Classification of Initial conditions required for Substorm prediction.
NASA Astrophysics Data System (ADS)
Patra, S.; Spencer, E. A.
2014-12-01
We investigate different classes of substorms that occur as a result of various drivers such as the conditions in the solar wind and the internal state of the magnetosphere ionosphere system during the geomagnetic activity. In performing our study, we develop and use our low order physics based nonlinear model of the magnetosphere called WINDMI to establish the global energy exchange between the solar wind, magnetosphere and ionosphere by constraining the model results to satellite and ground measurements. On the other hand, we make quantitative and qualitative comparisons between our low order model with available MHD, multi-fluid and ring current simulations in terms of the energy transfer between the geomagnetic tail, plasma sheet, field aligned currents, ionospheric currents and ring current, during isolated substorms, storm time substorms, and sawtooth events. We use high resolution solar wind data from the ACE satellite, measurements from the CLUSTER and THEMIS missions satellites, and ground based magnetometer measurements from SUPERMAG and WDC Kyoto, to further develop our low order physics based model. Finally, we attempt to answer the following questions: 1) What conditions in the solar wind influence the type of substorm event. This includes the IMF strength and orientation, the particle densities, velocities and temperatures, and the timing of changes such as shocks, southward turnings or northward turnings of the IMF. 2) What is the state of the magnetosphere ionosphere system before an event begins. These are the steady state conditions prior to an event, if they exist, which produce the satellite and ground based measurements matched to the WINDMI model. 3) How does the prior state of the magnetosphere influence the transition into a particular mode of behavior under solar wind forcing. 4) Is it possible to classify the states of the magnetosphere into distinct categories depending on pre-conditioning, and solar wind forcing conditions? 5) Can we predict the occurrence of substorms with any confidence?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, C.M.; Fortmann, K.M.; Hill, S.W.
1994-12-01
Environmental restoration is an area of concern in an environmentally conscious world. Much effort is required to clean up the environment and promote environmentally sound methods for managing current land use. In light of the public consciousness with the latter topic, the United States Air Force must also take an active role in addressing these environmental issues with respect to current and future USAF base land use. This thesis uses the systems engineering technique to assess human health risks and to evaluate risk management options with respect to depleted uranium contamination in the sampled region of Test Area (TA) C-64more » at Eglin Air Force Base (AFB). The research combines the disciplines of environmental data collection, DU soil concentration distribution modeling, ground water modeling, particle resuspension modeling, exposure assessment, health hazard assessment, and uncertainty analysis to characterize the test area. These disciplines are required to quantify current and future health risks, as well as to recommend cost effective ways to increase confidence in health risk assessment and remediation options.« less
NASA Astrophysics Data System (ADS)
Konesev, S. G.; Khazieva, R. T.; Kirllov, R. V.; Konev, A. A.
2017-01-01
Some electrical consumers (the charge system of storage capacitor, powerful pulse generators, electrothermal systems, gas-discharge lamps, electric ovens, plasma torches) require constant power consumption, while their resistance changes in the limited range. Current stabilization systems (CSS) with inductive-capacitive transducers (ICT) provide constant power, when the load resistance changes over a wide range and increaseы the efficiency of high-power loads’ power supplies. ICT elements are selected according to the maximum load, which leads to exceeding a predetermined value of capacity. The paper suggests carrying load power by the ICT based on multifunction integrated electromagnetic components (MIEC) to reduce the predetermined capacity of ICT elements and CSS weights and dimensions. The authors developed and patented ICT based on MIEC that reduces the CSS weights and dimensions by reducing components number with the possibility of device’s electric energy transformation and resonance frequency changing. An ICT mathematical model was produced. The model determines the width of the load stabilization range. Electromagnetic processes study model was built with the MIEC integral parameters (full inductance of the electrical lead, total capacity, current of electrical lead). It shows independence of the load current from the load resistance for different ways of MIEC connection.
A unifying framework for marginalized random intercept models of correlated binary outcomes
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.
2013-01-01
We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871
Utilizing DMAIC six sigma and evidence-based medicine to streamline diagnosis in chest pain.
Kumar, Sameer; Thomas, Kory M
2010-01-01
The purpose of this study was to quantify the difference between the current process flow model for a typical patient workup for chest pain and development of a new process flow model that incorporates DMAIC (define, measure, analyze, improve, control) Six Sigma and evidence-based medicine in a best practices model for diagnosis and treatment. The first stage, DMAIC Six Sigma, is used to highlight areas of variability and unnecessary tests in the current process flow for a patient presenting to the emergency department or physician's clinic with chest pain (also known as angina). The next stage, patient process flow, utilizes DMAIC results in the development of a simulated model that represents real-world variability in the diagnosis and treatment of a patient presenting with angina. The third and final stage is used to analyze the evidence-based output and quantify the factors that drive physician diagnosis accuracy and treatment, as well as review the potential for a broad national evidence-based database. Because of the collective expertise captured within the computer-oriented evidence-based model, the study has introduced an innovative approach to health care delivery by bringing expert-level care to any physician triaging a patient for chest pain anywhere in the world. Similar models can be created for other ailments as well, such as headache, gastrointestinal upset, and back pain. This updated way of looking at diagnosing patients stemming from an evidence-based best practice decision support model may improve workflow processes and cost savings across the health care continuum.
Organ allocation for chronic liver disease: model for end-stage liver disease and beyond.
Asrani, Sumeet K; Kim, W Ray
2010-05-01
Implementation of the model for end-stage liver disease (MELD) score has led to a reduction in waiting list registration and waitlist mortality. Prognostic models have been proposed to either refine or improve the current MELD-based liver allocation. The model for end-stage liver disease - sodium (MELDNa) incorporates serum sodium and has been shown to improve the predictive accuracy of the MELD score. However, laboratory variation and manipulation of serum sodium is a concern. Organ allocation in the United Kingdom is now based on a model that includes serum sodium. An updated MELD score is associated with a lower relative weight for serum creatinine coefficient and a higher relative weight for bilirubin coefficient, although the contribution of reweighting coefficients as compared with addition of variables is unclear. The D-MELD, the arithmetic product of donor age and preoperative MELD, proposes donor-recipient matching; however, inappropriate transplantation of high-risk donors is a concern. Finally, the net benefit model ranks patients according to the net survival benefit that they would derive from the transplant. However, complex statistical models are required and unmeasured characteristics may unduly affect the model. Despite their limitations, efforts to improve the current MELD-based organ allocation are encouraging.
Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra
2015-08-15
There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.
Collaborative Care in Schools: Enhancing Integration and Impact in Youth Mental Health
Lyon, Aaron R.; Whitaker, Kelly; French, William P.; Richardson, Laura P.; Wasse, Jessica Knaster; McCauley, Elizabeth
2016-01-01
Collaborative Care is an innovative approach to integrated mental health service delivery that focuses on reducing access barriers, improving service quality, and lowering healthcare expenditures. A large body of evidence supports the effectiveness of Collaborative Care models with adults and, increasingly, for youth. Although existing studies examining these models for youth have focused exclusively on primary care, the education sector is also an appropriate analog for the accessibility that primary care offers to adults. Collaborative Care aligns closely with the practical realities of the education sector and may represent a strategy to achieve some of the objectives of increasingly popular multi-tiered systems of supports frameworks. Unfortunately, no resources exist to guide the application of Collaborative Care models in schools. Based on the existing evidence for Collaborative Care models, the current paper (1) provides a rationale for the adaptation of Collaborative Care models to improve mental health service accessibility and effectiveness in the education sector; (2) presents a preliminary Collaborative Care model for use in schools; and (3) describes avenues for research surrounding school-based Collaborative Care, including the currently funded Accessible, Collaborative Care for Effective School-based Services (ACCESS) project. PMID:28392832
Developing a Learning Progression for Number Sense Based on the Rule Space Model in China
ERIC Educational Resources Information Center
Chen, Fu; Yan, Yue; Xin, Tao
2017-01-01
The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Comparison of different stomatal conductance algorithms for ozone flux modelling [Proceedings
P. Buker; L. D. Emberson; M. R. Ashmore; G. Gerosa; C. Jacobs; W. J. Massman; J. Muller; N. Nikolov; K. Novak; E. Oksanen; D. De La Torre; J. -P. Tuovinen
2006-01-01
The ozone deposition model (D03SE) that has been developed and applied within the EMEP photooxidant model (Emberson et al., 2000, Simpson et al. 2003) currently estimates stomatal ozone flux using a stomatal conductance (gs) model based on the multiplicative algorithm initially developed by Jarvis (1976). This model links gs to environmental and phenological parameters...
Zhang, Kai; Cao, Libo; Fanta, Abeselom; Reed, Matthew P; Neal, Mark; Wang, Jenne-Tai; Lin, Chin-Hsu; Hu, Jingwen
2017-07-26
Field data analyses have shown that small female, obese, and/or older occupants are at increased risks of death and serious injury in motor-vehicle crashes compared with mid-size young men. The current adult finite element (FE) human models represent occupants in the same three body sizes (large male, mid-size male, and small female) as those for the contemporary adult crash dummies. Further, the time needed to develop an FE human model using the traditional method is measured in months or even years. In the current study, an improved regional mesh morphing method based on landmark-based radial basis function (RBF) interpolation was developed to rapidly morph a mid-size male FE human model into different geometry targets. A total of 100 human models with a wide range of human attributes were generated. A pendulum chest impact condition was applied to each model as an initial assessment of the resulting variability in response. The morphed models demonstrated mesh quality similar to the baseline model. The peak impact forces and chest deflections in the chest pendulum impacts varied substantially with different models, supportive of consideration of population variation in evaluating the occupant injury risks. The method developed in this study will enable future safety design optimizations targeting at various vulnerable populations that cannot be considered with the current models. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the behavior of return stroke current and the remotely detected electric field change waveform
NASA Astrophysics Data System (ADS)
Shao, Xuan-Min; Lay, Erin; Jacobson, Abram R.
2012-04-01
After accumulating a large number of remotely recorded negative return stroke electric field change waveforms, a subtle but persistent kink was found following the main return stroke peak by several microseconds. To understand the corresponding return stroke current properties behind the kink and the general return stroke radiation waveform, we analyze strokes occurring in triggered lightning flashes for which have been measured both the channel base current and simultaneous remote electric radiation field. In this study, the channel base current is assumed to propagate along the return stroke channel in a dispersive and lossy manner. The measured channel base current is band-pass filtered, and the higher-frequency component is assumed to attenuate faster than the lower-frequency component. The radiation electric field is computed for such a current behavior and is then propagated to distant sensors. It is found that such a return stroke model is capable of very closely reproducing the measured electric waveforms at multiple stations for the triggered return strokes, and such a model is considered applicable to the common behavior of the natural return stroke as well. On the basis of the analysis, a number of other observables are derived. The time-evolving current dispersion and attenuation compare well with previously reported optical observations. The observable speed tends to agree with optical and VHF observations. Line charge density that is removed or deposited by the return stroke is derived, and the implication of the charge density distribution on leader channel decay is discussed.
Han, Dianwei; Zhang, Jun; Tang, Guiliang
2012-01-01
An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
NASA Astrophysics Data System (ADS)
Ding, Y.; Yu, J.; Bao, X.; Yao, Z.
2016-02-01
The characteristics and dynamical mechanism of summer-time coastal current over the northwestern South China Sea (NSCS) shelf have been investigated based on a high resolution unstructured-grid finite volume community ocean model (FVCOM). Model-data comparison demonstrates that model well resolves the coastal dynamics over the NSCS shelf. The coastal current on the NSCS shelf is intensively influenced by monsoon and freshwater discharge of the Pearl River. Strong southwesterly wind drive the coastal current northeastward. However, under weak southwest monsoon, the coastal current west of Pearl River estuary (PRE) advects toward southwest, and splits into two parts when reaching east of the Qiongzhou Strait, with one branch entering the Gulf of Tonkin through the Qiongzhou Strait, transporting low salinity water into the Gulf of Tonkin, and the other part flows cyclonic and interacts with the northeastward current around southeast of Hainan Island, forming a cyclonic eddy east of the Qiongzhou Strait. A variety of model experiments focused on freshwater discharge, wind forcing, tidal rectification, and stratification are performed to study the physical mechanism of the southwestward coastal current which is usually against the summer wind. Process-oriented experiment results indicate that the southwest monsoon and freshwater discharge are important factors influencing the formation of southwestward coastal current during summer. Momentum balance analysis suggests that the along shelf barotropic pressure gradient due to the Pearl River discharge and wind forcing provides the main driving force for the southwestward coastal current.
Automated MRI segmentation for individualized modeling of current flow in the human head.
Huang, Yu; Dmochowski, Jacek P; Su, Yuzhuo; Datta, Abhishek; Rorden, Christopher; Parra, Lucas C
2013-12-01
High-definition transcranial direct current stimulation (HD-tDCS) and high-density electroencephalography require accurate models of current flow for precise targeting and current source reconstruction. At a minimum, such modeling must capture the idiosyncratic anatomy of the brain, cerebrospinal fluid (CSF) and skull for each individual subject. Currently, the process to build such high-resolution individualized models from structural magnetic resonance images requires labor-intensive manual segmentation, even when utilizing available automated segmentation tools. Also, accurate placement of many high-density electrodes on an individual scalp is a tedious procedure. The goal was to develop fully automated techniques to reduce the manual effort in such a modeling process. A fully automated segmentation technique based on Statical Parametric Mapping 8, including an improved tissue probability map and an automated correction routine for segmentation errors, was developed, along with an automated electrode placement tool for high-density arrays. The performance of these automated routines was evaluated against results from manual segmentation on four healthy subjects and seven stroke patients. The criteria include segmentation accuracy, the difference of current flow distributions in resulting HD-tDCS models and the optimized current flow intensities on cortical targets. The segmentation tool can segment out not just the brain but also provide accurate results for CSF, skull and other soft tissues with a field of view extending to the neck. Compared to manual results, automated segmentation deviates by only 7% and 18% for normal and stroke subjects, respectively. The predicted electric fields in the brain deviate by 12% and 29% respectively, which is well within the variability observed for various modeling choices. Finally, optimized current flow intensities on cortical targets do not differ significantly. Fully automated individualized modeling may now be feasible for large-sample EEG research studies and tDCS clinical trials.
A local-circulation model for Darrieus vertical-axis wind turbines
NASA Astrophysics Data System (ADS)
Masse, B.
1986-04-01
A new computational model for the aerodynamics of the vertical-axis wind turbine is presented. Based on the local-circulation method generalized for curved blades, combined with a wake model for the vertical-axis wind turbine, it differs markedly from current models based on variations in the streamtube momentum and vortex models using the lifting-line theory. A computer code has been developed to calculate the loads and performance of the Darrieus vertical-axis wind turbine. The results show good agreement with experimental data and compare well with other methods.
Modelling of nanoscale quantum tunnelling structures using algebraic topology method
NASA Astrophysics Data System (ADS)
Sankaran, Krishnaswamy; Sairam, B.
2018-05-01
We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.
Advanced RF Sources Based on Novel Nonlinear Transmission Lines
2015-01-26
microwave (HPM) sources. It is also critical to thin film devices and integrated circuits, carbon nanotube based cathodes and interconnects, field emitters ... line model (TLM) in Fig. 6b. Our model is compared with TLM, shown in Fig. 7a. When the interface resistance rc is small, TLM becomes inaccurate...due to current crowding. Fig. 6. (a) Electrical contact including specific interfacial resistivity ρc, and (b) its transmission line model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiskumara, R.; Joshi, R. P., E-mail: ravi.joshi@ttu.edu; Mauch, D.
A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC is carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, are comprehensively included. Results of our model match the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters are also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples can be discounted upmore » to applied fields as high as ∼275 kV/cm.« less
Automated Verification of Specifications with Typestates and Access Permissions
NASA Technical Reports Server (NTRS)
Siminiceanu, Radu I.; Catano, Nestor
2011-01-01
We propose an approach to formally verify Plural specifications based on access permissions and typestates, by model-checking automatically generated abstract state-machines. Our exhaustive approach captures all the possible behaviors of abstract concurrent programs implementing the specification. We describe the formal methodology employed by our technique and provide an example as proof of concept for the state-machine construction rules. The implementation of a fully automated algorithm to generate and verify models, currently underway, provides model checking support for the Plural tool, which currently supports only program verification via data flow analysis (DFA).
Regional climate model downscaling may improve the prediction of alien plant species distributions
NASA Astrophysics Data System (ADS)
Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.
2014-12-01
Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.
Extreme bottom velocities induced by wind wave and currents in the Gulf of Gdańsk
NASA Astrophysics Data System (ADS)
Cieślikiewicz, Witold; Dudkowska, Aleksandra; Gic-Grusza, Gabriela; Jędrasik, Jan
2017-11-01
The principal goal of this study is to get some preliminary insights about the intensity of water movement generated by wind waves, and due to the currents in the bottom waters of Gulf of Gdańsk, during severe storms. The Gulf of Gdańsk is located in the southern Baltic Sea. This paper presents the results of analysis of wave and current-induced velocities during extreme wind conditions, which are determined based on long-term historical records. The bottom velocity fields originated from wind wave and wind currents, during analysed extreme wind events, are computed independently of each other. The long-term wind wave parameters for the Baltic Sea region are derived from the 44-year hindcast wave database generated in the framework of the project HIPOCAS funded by the European Union. The output from the numerical wave model WAM provides the boundary conditions for the model SWAN operating in high-resolution grid covering the area of the Gulf of Gdańsk. Wind current velocities are calculated with the M3D hydrodynamic model developed in the Institute of Oceanography of the University of Gdańsk based on the POM model. The three dimensional current fields together with trajectories of particle tracers spreading out of bottom boundary layer are modelled, and the calculated fields of bottom velocities are presented in the form of 2D maps. During northerly winds, causing in the Gulf of Gdańsk extreme waves and most significant wind-driven circulation, the wave-induced bottom velocities are greater than velocities due to currents. The current velocities in the bottom layer appeared to be smaller by an order of magnitude than the wave-induced bottom orbital velocities. Namely, during most severe northerly storms analysed, current bottom velocities ranged about 0.1-0.15 m/s, while the root mean square of wave-induced near-seabed velocities reached maximum values of up to 1.4 m/s in the southern part of Gulf of Gdańsk.
a Physical Parameterization of Snow Albedo for Use in Climate Models.
NASA Astrophysics Data System (ADS)
Marshall, Susan Elaine
The albedo of a natural snowcover is highly variable ranging from 90 percent for clean, new snow to 30 percent for old, dirty snow. This range in albedo represents a difference in surface energy absorption of 10 to 70 percent of incident solar radiation. Most general circulation models (GCMs) fail to calculate the surface snow albedo accurately, yet the results of these models are sensitive to the assumed value of the snow albedo. This study replaces the current simple empirical parameterizations of snow albedo with a physically-based parameterization which is accurate (within +/- 3% of theoretical estimates) yet efficient to compute. The parameterization is designed as a FORTRAN subroutine (called SNOALB) which can be easily implemented into model code. The subroutine requires less then 0.02 seconds of computer time (CRAY X-MP) per call and adds only one new parameter to the model calculations, the snow grain size. The snow grain size can be calculated according to one of the two methods offered in this thesis. All other input variables to the subroutine are available from a climate model. The subroutine calculates a visible, near-infrared and solar (0.2-5 μm) snow albedo and offers a choice of two wavelengths (0.7 and 0.9 mu m) at which the solar spectrum is separated into the visible and near-infrared components. The parameterization is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, version 1 (CCM1), and the results of a five -year, seasonal cycle, fixed hydrology experiment are compared to the current model snow albedo parameterization. The results show the SNOALB albedos to be comparable to the old CCM1 snow albedos for current climate conditions, with generally higher visible and lower near-infrared snow albedos using the new subroutine. However, this parameterization offers a greater predictability for climate change experiments outside the range of current snow conditions because it is physically-based and not tuned to current empirical results.
Pursiainen, S; Vorwerk, J; Wolters, C H
2016-12-21
The goal of this study is to develop focal, accurate and robust finite element method (FEM) based approaches which can predict the electric potential on the surface of the computational domain given its structure and internal primary source current distribution. While conducting an EEG evaluation, the placement of source currents to the geometrically complex grey matter compartment is a challenging but necessary task to avoid forward errors attributable to tissue conductivity jumps. Here, this task is approached via a mathematically rigorous formulation, in which the current field is modeled via divergence conforming H(div) basis functions. Both linear and quadratic functions are used while the potential field is discretized via the standard linear Lagrangian (nodal) basis. The resulting model includes dipolar sources which are interpolated into a random set of positions and orientations utilizing two alternative approaches: the position based optimization (PBO) and the mean position/orientation (MPO) method. These results demonstrate that the present dipolar approach can reach or even surpass, at least in some respects, the accuracy of two classical reference methods, the partial integration (PI) and St. Venant (SV) approach which utilize monopolar loads instead of dipolar currents.
Development of a numerical model for the electric current in burner-stabilised methane-air flames
NASA Astrophysics Data System (ADS)
Speelman, N.; de Goey, L. P. H.; van Oijen, J. A.
2015-03-01
This study presents a new model to simulate the electric behaviour of one-dimensional ionised flames and to predict the electric currents in these flames. The model utilises Poisson's equation to compute the electric potential. A multi-component diffusion model, including the influence of an electric field, is used to model the diffusion of neutral and charged species. The model is incorporated into the existing CHEM1D flame simulation software. A comparison between the computed electric currents and experimental values from the literature shows good qualitative agreement for the voltage-current characteristic. Physical phenomena, such as saturation and the diodic effect, are captured by the model. The dependence of the saturation current on the equivalence ratio is also captured well for equivalence ratios between 0.6 and 1.2. Simulations show a clear relation between the saturation current and the total number of charged particles created. The model shows that the potential at which the electric field saturates is strongly dependent on the recombination rate and the diffusivity of the charged particles. The onset of saturation occurs because most created charged particles are withdrawn from the flame and because the electric field effects start dominating over mass based diffusion. It is shown that this knowledge can be used to optimise ionisation chemistry mechanisms. It is shown numerically that the so-called diodic effect is caused primarily by the distance the heavier cations have to travel to the cathode.
Five Bit, Five Gigasample TED Analog-to-Digital Converter Development.
1981-06-01
pliers. TRW uses two sources at present: materials grown by Horizontal I Bridgman technique from Crystal Specialties, and Czochralski from MRI. The...the circuit modelling and circuit design tasks. A number of design iterations were required to arrive at a satisfactory design. In or-der to riake...made by modeling the TELD as a voltage-controlled current generator with a built-in time delay between impressed voltage and output current. Based on
Small aquarium fishes provide a model organism that recapitulates the development, physiology and specific disease processes present in humans without the many limitations of rodent-based models currently in use. Fish models offer advantages in cost, rapid life-cycles, and extern...
Estimating wildfire behavior and effects
Frank A. Albini
1976-01-01
This paper presents a brief survey of the research literature on wildfire behavior and effects and assembles formulae and graphical computation aids based on selected theoretical and empirical models. The uses of mathematical fire behavior models are discussed, and the general capabilities and limitations of currently available models are outlined.
A Public-Health-Based Vision for the Management and Regulation of Psychedelics.
Haden, Mark; Emerson, Brian; Tupper, Kenneth W
2016-01-01
The Health Officers Council of British Columbia has proposed post-prohibition regulatory models for currently illegal drugs based on public health principles, and this article continues this work by proposing a model for the regulation and management of psychedelics. This article outlines recent research on psychedelic substances and the key determinants of benefit and harm from their use. It then describes a public-health-based model for the regulation of psychedelics, which includes governance, supervision, set and setting controls, youth access, supply control, demand limitation, and evaluation.
Proactive tobacco treatment and population-level cessation: a pragmatic randomized clinical trial.
Fu, Steven S; van Ryn, Michelle; Sherman, Scott E; Burgess, Diana J; Noorbaloochi, Siamak; Clothier, Barbara; Taylor, Brent C; Schlede, Carolyn M; Burke, Randy S; Joseph, Anne M
2014-05-01
Current tobacco use treatment approaches require smokers to request treatment or depend on the provider to initiate smoking cessation care and are therefore reactive. Most smokers do not receive evidence-based treatments for tobacco use that include both behavioral counseling and pharmacotherapy. To assess the effect of a proactive, population-based tobacco cessation care model on use of evidence-based tobacco cessation treatments and on population-level smoking cessation rates (ie, abstinence among all smokers including those who use and do not use treatment) compared with usual care among a diverse population of current smokers. The Veterans Victory Over Tobacco Study, a pragmatic randomized clinical trial involving a population-based registry of current smokers aged 18 to 80 years. A total of 6400 current smokers, identified using the Department of Veterans Affairs (VA) electronic medical record, were randomized prior to contact to evaluate both the reach and effectiveness of the proactive care intervention. Current smokers were randomized to usual care or proactive care. Proactive care combined (1) proactive outreach and (2) offer of choice of smoking cessation services (telephone or in-person). Proactive outreach included mailed invitations followed by telephone outreach to motivate smokers to seek treatment with choice of services. The primary outcome was 6-month prolonged smoking abstinence at 1 year and was assessed by a follow-up survey among all current smokers regardless of interest in quitting or treatment utilization. A total of 5123 participants were included in the primary analysis. The follow-up survey response rate was 66%. The population-level, 6-month prolonged smoking abstinence rate at 1 year was 13.5% for proactive care compared with 10.9% for usual care (P = .02). Logistic regression mixed model analysis showed a significant effect of the proactive care intervention on 6-month prolonged abstinence (odds ratio [OR], 1.27 [95% CI, 1.03-1.57]). In analyses accounting for nonresponse using likelihood-based not-missing-at-random models, the effect of proactive care on 6-month prolonged abstinence persisted (OR, 1.33 [95% CI, 1.17-1.51]). Proactive, population-based tobacco cessation care using proactive outreach to connect smokers to evidence-based telephone or in-person smoking cessation services is effective for increasing long-term population-level cessation rates. clinicaltrials.gov Identifier: NCT00608426.
NASA Astrophysics Data System (ADS)
Dmochowski, Jacek P.; Bikson, Marom; Parra, Lucas C.
2012-10-01
Rational development of transcranial current stimulation (tCS) requires solving the ‘forward problem’: the computation of the electric field distribution in the head resulting from the application of scalp currents. Derivation of forward models has represented a major effort in brain stimulation research, with model complexity ranging from spherical shells to individualized head models based on magnetic resonance imagery. Despite such effort, an easily accessible benchmark head model is greatly needed when individualized modeling is either undesired (to observe general population trends as opposed to individual differences) or unfeasible. Here, we derive a closed-form linear system which relates the applied current to the induced electric potential. It is shown that in the spherical harmonic (Fourier) domain, a simple scalar multiplication relates the current density on the scalp to the electric potential in the brain. Equivalently, the current density in the head follows as the spherical convolution between the scalp current distribution and the point spread function of the head, which we derive. Thus, if one knows the spherical harmonic representation of the scalp current (i.e. the electrode locations and current intensity to be employed), one can easily compute the resulting electric field at any point inside the head. Conversely, one may also readily determine the scalp current distribution required to generate an arbitrary electric field in the brain (the ‘backward problem’ in tCS). We demonstrate the simplicity and utility of the model with a series of characteristic curves which sweep across a variety of stimulation parameters: electrode size, depth of stimulation, head size and anode-cathode separation. Finally, theoretically optimal montages for targeting an infinitesimal point in the brain are shown.
Analysis of transient state in HTS tapes under ripple DC load current
NASA Astrophysics Data System (ADS)
Stepien, M.; Grzesik, B.
2014-05-01
The paper concerns the analysis of transient state (quench transition) in HTS tapes loaded with the current having DC component together with a ripple component. Two shapes of the ripple were taken into account: sinusoidal and triangular. Very often HTS tape connected to a power electronic current supply (i.e. superconducting coil for SMES) that delivers DC current with ripples and it needs to be examined under such conditions. Additionally, measurements of electrical (and thermal) parameters under such ripple excitation is useful to tape characterization in broad range of load currents. The results presented in the paper were obtained using test bench which contains programmable DC supply and National Instruments data acquisition system. Voltage drops and load currents were measured vs. time. Analysis of measured parameters as a function of the current was used to tape description with quench dynamics taken into account. Results of measurements were also used to comparison with the results of numerical modelling based on FEM. Presented provisional results show possibility to use results of measurements in transient state to prepare inverse models of superconductors and their detailed numerical modelling.
Robust model predictive control for constrained continuous-time nonlinear systems
NASA Astrophysics Data System (ADS)
Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong
2018-02-01
In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.
Calibration of controlling input models for pavement management system.
DOT National Transportation Integrated Search
2013-07-01
The Oklahoma Department of Transportation (ODOT) is currently using the Deighton Total Infrastructure Management System (dTIMS) software for pavement management. This system is based on several input models which are computational backbones to dev...
COMPILATION OF GROUND WATER MODELS
The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...
NASA Technical Reports Server (NTRS)
James, G. H.; Imbrie, P. K.; Hill, P. S.; Allen, D. H.; Haisler, W. E.
1988-01-01
Four current viscoplastic models are compared experimentally for Inconel 718 at 593 C. This material system responds with apparent negative strain rate sensitivity, undergoes cyclic work softening, and is susceptible to low cycle fatigue. A series of tests were performed to create a data base from which to evaluate material constants. A method to evaluate the constants is developed which draws on common assumptions for this type of material, recent advances by other researchers, and iterative techniques. A complex history test, not used in calculating the constants, is then used to compare the predictive capabilities of the models. The combination of exponentially based inelastic strain rate equations and dynamic recovery is shown to model this material system with the greatest success. The method of constant calculation developed was successfully applied to the complex material response encountered. Backstress measuring tests were found to be invaluable and to warrant further development.
Mathematical modeling of electrical activity of uterine muscle cells.
Rihana, Sandy; Terrien, Jeremy; Germain, Guy; Marque, Catherine
2009-06-01
The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.
Browsing Space Weather Data and Models with the Integrated Space Weather Analysis (iSWA) System
NASA Technical Reports Server (NTRS)
Maddox, Marlo M.; Mullinix, Richard E.; Berrios, David H.; Hesse, Michael; Rastaetter, Lutz; Pulkkinen, Antti; Hourcle, Joseph A.; Thompson, Barbara J.
2011-01-01
The Integrated Space Weather Analysis (iSWA) System is a comprehensive web-based platform for space weather information that combines data from solar, heliospheric and geospace observatories with forecasts based on the most advanced space weather models. The iSWA system collects, generates, and presents a wide array of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. iSWA currently provides over 200 data and modeling products, and features a variety of tools that allow the user to browse, combine, and examine data and models from various sources. This presentation will consist of a summary of the iSWA products and an overview of the customizable user interfaces, and will feature several tutorial demonstrations highlighting the interactive tools and advanced capabilities.
Forecasting of wet snow avalanche activity: Proof of concept and operational implementation
NASA Astrophysics Data System (ADS)
Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph
2017-04-01
State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.
Carrier velocity effect on carbon nanotube Schottky contact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi, Amir, E-mail: fathi.amir@hotmail.com; Ahmadi, M. T., E-mail: mt.ahmadi@urmia.ac.ir; Ismail, Razali, E-mail: Razali@fke.utm.my
One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to themore » small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I–V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn’t increase sharply by voltage variations over different number of carriers.« less
NASA Astrophysics Data System (ADS)
Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan
2018-01-01
The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.
NASA Astrophysics Data System (ADS)
de Andrés, Javier; Landajo, Manuel; Lorca, Pedro; Labra, Jose; Ordóñez, Patricia
Artificial neural networks have proven to be useful tools for solving financial analysis problems such as financial distress prediction and audit risk assessment. In this paper we focus on the performance of robust (least absolute deviation-based) neural networks on measuring liquidity of firms. The problem of learning the bivariate relationship between the components (namely, current liabilities and current assets) of the so-called current ratio is analyzed, and the predictive performance of several modelling paradigms (namely, linear and log-linear regressions, classical ratios and neural networks) is compared. An empirical analysis is conducted on a representative data base from the Spanish economy. Results indicate that classical ratio models are largely inadequate as a realistic description of the studied relationship, especially when used for predictive purposes. In a number of cases, especially when the analyzed firms are microenterprises, the linear specification is improved by considering the flexible non-linear structures provided by neural networks.
A Model-Based Expert System for Space Power Distribution Diagnostics
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Schlegelmilch, Richard F.
1994-01-01
When engineers diagnose system failures, they often use models to confirm system operation. This concept has produced a class of advanced expert systems that perform model-based diagnosis. A model-based diagnostic expert system for the Space Station Freedom electrical power distribution test bed is currently being developed at the NASA Lewis Research Center. The objective of this expert system is to autonomously detect and isolate electrical fault conditions. Marple, a software package developed at TRW, provides a model-based environment utilizing constraint suspension. Originally, constraint suspension techniques were developed for digital systems. However, Marple provides the mechanisms for applying this approach to analog systems such as the test bed, as well. The expert system was developed using Marple and Lucid Common Lisp running on a Sun Sparc-2 workstation. The Marple modeling environment has proved to be a useful tool for investigating the various aspects of model-based diagnostics. This report describes work completed to date and lessons learned while employing model-based diagnostics using constraint suspension within an analog system.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
Module-based multiscale simulation of angiogenesis in skeletal muscle
2011-01-01
Background Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem. Results We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis. Conclusions This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions. PMID:21463529
Current Sensor Fault Reconstruction for PMSM Drives
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan
2016-01-01
This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform. PMID:26840317
A biokinetic model for systemic nickel
Melo, Dunstana; Leggett, Richard Wayne
2017-01-01
The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less
A biokinetic model for systemic nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melo, Dunstana; Leggett, Richard Wayne
The International Commission on Radiological Protection (ICRP) is updating its suite of reference biokinetic models for internally deposited radionuclides. This paper reviews data for nickel and proposes an updated biokinetic model for systemic (absorbed) nickel in adult humans for use in radiation protection. Compared with the ICRP s current model for nickel, the proposed model is based on a larger set of observations of the behavior of nickel in human subjects and laboratory animals and provides a more realistic description of the paths of movement of nickel in the body. For the two most important radioisotopes of nickel, 59Ni andmore » 63Ni, the proposed model yields substantially lower dose estimates per unit of activity reaching blood than the current ICRP model.« less
Siegel, J; Kirkland, D
1991-01-01
The Composite Health Care System (CHCS), a MUMPS-based hospital information system (HIS), has evolved from the Decentralized Hospital Computer Program (DHCP) installed within VA Hospitals. The authors explore the evolution of an ancillary-based system toward an integrated model with a look at its current state and possible future. The history and relationships between orders of different types tie specific patient-related data into a logical and temporal model. Diagrams demonstrate how the database structure has evolved to support clinical needs for integration. It is suggested that a fully integrated model is capable of meeting traditional HIS needs.
MgB2-based superconductors for fault current limiters
NASA Astrophysics Data System (ADS)
Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.
2017-02-01
A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.
Alfinito, Eleonora; Reggiani, Lino
2016-10-01
Current-voltage characteristics of metal-protein-metal structures made of proteorhodopsin and bacteriorhodopsin are modeled by using a percolation-like approach. Starting from the tertiary structure pertaining to the single protein, an analogous resistance network is created. Charge transfer inside the network is described as a sequential tunneling mechanism and the current is calculated for each value of the given voltage. The theory is validated with available experiments, in dark and light. The role of the tertiary structure of the single protein and of the mechanisms responsible for the photo-activity is discussed.
Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.
2009-01-01
Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643
NASA Astrophysics Data System (ADS)
Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.
2011-12-01
Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.
Franco, Antonio; Price, Oliver R; Marshall, Stuart; Jolliet, Olivier; Van den Brink, Paul J; Rico, Andreu; Focks, Andreas; De Laender, Frederik; Ashauer, Roman
2017-03-01
Current regulatory practice for chemical risk assessment suffers from the lack of realism in conventional frameworks. Despite significant advances in exposure and ecological effect modeling, the implementation of novel approaches as high-tier options for prospective regulatory risk assessment remains limited, particularly among general chemicals such as down-the-drain ingredients. While reviewing the current state of the art in environmental exposure and ecological effect modeling, we propose a scenario-based framework that enables a better integration of exposure and effect assessments in a tiered approach. Global- to catchment-scale spatially explicit exposure models can be used to identify areas of higher exposure and to generate ecologically relevant exposure information for input into effect models. Numerous examples of mechanistic ecological effect models demonstrate that it is technically feasible to extrapolate from individual-level effects to effects at higher levels of biological organization and from laboratory to environmental conditions. However, the data required to parameterize effect models that can embrace the complexity of ecosystems are large and require a targeted approach. Experimental efforts should, therefore, focus on vulnerable species and/or traits and ecological conditions of relevance. We outline key research needs to address the challenges that currently hinder the practical application of advanced model-based approaches to risk assessment of down-the-drain chemicals. Integr Environ Assess Manag 2017;13:233-248. © 2016 SETAC. © 2016 SETAC.
Transverse oscillations and stability of prominences in a magnetic field dip
NASA Astrophysics Data System (ADS)
Kolotkov, D. Y.; Nisticò, G.; Nakariakov, V. M.
2016-05-01
Aims: We developed an analytical model of the global transverse oscillations and mechanical stability of a quiescent prominence in the magnetised environment with a magnetic field dip that accounts for the mirror current effect. Methods: The model is based on the interaction of line currents through the Lorentz force. Within this concept the prominence is treated as a straight current-carrying wire, and the magnetic dip is provided by two photospheric current sources. Results: Properties of both vertical and horizontal oscillations are determined by the value of the prominence current, its density and height above the photosphere, and the parameters of the magnetic dip. The prominence can be stable in both horizontal and vertical directions simultaneously when the prominence current dominates in the system and its height is less than the half-distance between the photospheric sources.
Fuzzy logic and causal reasoning with an 'n' of 1 for diagnosis and treatment of the stroke patient.
Helgason, Cathy M; Jobe, Thomas H
2004-03-01
The current scientific model for clinical decision-making is founded on binary or Aristotelian logic, classical set theory and probability-based statistics. Evidence-based medicine has been established as the basis for clinical recommendations. There is a problem with this scientific model when the physician must diagnose and treat the individual patient. The problem is a paradox, which is that the scientific model of evidence-based medicine is based upon a hypothesis aimed at the group and therefore, any conclusions cannot be extrapolated but to a degree to the individual patient. This extrapolation is dependent upon the expertise of the physician. A fuzzy logic multivalued-based scientific model allows this expertise to be numerically represented and solves the clinical paradox of evidence-based medicine.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
NASA Astrophysics Data System (ADS)
Panda, D. K.; Lenka, T. R.
2017-06-01
An enhancement mode p-GaN gate AlGaN/GaN HEMT is proposed and a physics based virtual source charge model with Landauer approach for electron transport has been developed using Verilog-A and simulated using Cadence Spectre, in order to predict device characteristics such as threshold voltage, drain current and gate capacitance. The drain current model incorporates important physical effects such as velocity saturation, short channel effects like DIBL (drain induced barrier lowering), channel length modulation (CLM), and mobility degradation due to self-heating. The predicted I d-V ds, I d-V gs, and C-V characteristics show an excellent agreement with the experimental data for both drain current and capacitance which validate the model. The developed model was then utilized to design and simulate a single-pole single-throw (SPST) RF switch.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.
Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.
Agent-Based Modeling in Public Health: Current Applications and Future Directions.
Tracy, Melissa; Cerdá, Magdalena; Keyes, Katherine M
2018-04-01
Agent-based modeling is a computational approach in which agents with a specified set of characteristics interact with each other and with their environment according to predefined rules. We review key areas in public health where agent-based modeling has been adopted, including both communicable and noncommunicable disease, health behaviors, and social epidemiology. We also describe the main strengths and limitations of this approach for questions with public health relevance. Finally, we describe both methodologic and substantive future directions that we believe will enhance the value of agent-based modeling for public health. In particular, advances in model validation, comparisons with other causal modeling procedures, and the expansion of the models to consider comorbidity and joint influences more systematically will improve the utility of this approach to inform public health research, practice, and policy.
Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results
Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.
2016-01-01
A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575
Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems
NASA Technical Reports Server (NTRS)
Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael
2013-01-01
The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.
ERIC Educational Resources Information Center
Yadiannur, Mitra; Supahar
2017-01-01
This research aims to determine the feasibility and effectivity of mobile learning based Worked Example in Electric Circuits (WEIEC) application in improving the high school students' electric circuits interpretation ability on Direct Current Circuits materials. The research method used was a combination of Four-D Models and ADDIE model. The…
Application of a DRAINMOD-based watershed model to a lower coastal plain watershed
Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya
2003-01-01
This is a case study for applying DRAINMOD-GIS, a DRAINMOD based lumped parameter watershed model to Chicod Creek, a 11300 ha coastal plain watershed in North Carolina which is not intensively instrumented or documented. The study utilized the current database of land-use, topography, stream network, soil, and weather data available to the State and Federal agencies....
ERIC Educational Resources Information Center
Saarti, Jarmo; Tuominen, Kimmo
2017-01-01
Introduction: Even though the current publishing model is based on digital dissemination, it still utilizes some of the basic principles of printed culture. Recently a policy emphasis towards open access has been set for publicly funded research. This paper reports on a study of the practices, business models and values linked with scholarly…
ERIC Educational Resources Information Center
Denies, Katrijn; Yashima, Tomoko; Janssen, Rianne
2015-01-01
This study investigates willingness to communicate (WTC) and its determinants through structural equation modelling (SEM). Building on models by MacIntyre and Charos (1996) and Yashima (2002), it addresses 3 apparent gaps in the current knowledge base: It is the first SEM-based WTC study in a Western European context, investigating French as a…
ERIC Educational Resources Information Center
Harvey, S. Marie; Kraft, Joan Marie; West, Stephen G.; Taylor, Aaron B.; Pappas-DeLuca, Katina A.; Beckman, Linda J.
2009-01-01
This study examines an intervention for heterosexual couples to prevent human immunodeficiency virus/sexually transmitted infections. It also evaluates the effect of the intervention, which is based on current models of health behavior change, on intermediate outcomes (individual and relationship factors) and consistency of condom use. Eligible…
The Reallocation of Human Resources to Improve Student Achievement in a Time of Fiscal Constraints
ERIC Educational Resources Information Center
Behar, Steve
2013-01-01
This study compared the allocation of human resources of a K-12 unified school district in Southern California to the Evidence-Based model (Odden & Picus, 2008). Using document analysis and interviews of key administrators of the district, data was input into a spreadsheet to identify gaps between current practice and the Evidence-Based model.…
Model-Based, Noninvasive Monitoring of Intracranial Pressure
2013-07-01
patients. A physiologically based model relates ICP to simultaneously measured waveforms of arterial blood pressure ( ABP ), obtained via radial... ABP and CBFV are currently measured as the clinical standard of care. The project’s major accomplishments include: assembling a suitable system for...synchronized arterial blood pressure ( ABP ) and cerebral blood flow velocity (CBFV) waveform measurements that can be obtained quite routinely. Our processing
ERIC Educational Resources Information Center
Li, Deping; Oranje, Andreas
2007-01-01
Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…
Wahman, David G; Speitel, Gerald E; Katz, Lynn E
2017-11-21
Chloramine chemistry is complex, with a variety of reactions occurring in series and parallel and many that are acid or base catalyzed, resulting in numerous rate constants. Bromide presence increases system complexity even further with possible bromamine and bromochloramine formation. Therefore, techniques for parameter estimation must address this complexity through thoughtful experimental design and robust data analysis approaches. The current research outlines a rational basis for constrained data fitting using Brønsted theory, application of the microscopic reversibility principle to reversible acid or base catalyzed reactions, and characterization of the relative significance of parallel reactions using fictive product tracking. This holistic approach was used on a comprehensive and well-documented data set for bromamine decomposition, allowing new interpretations of existing data by revealing that a previously published reaction scheme was not robust; it was not able to describe monobromamine or dibromamine decay outside of the conditions for which it was calibrated. The current research's simplified model (3 reactions, 17 constants) represented the experimental data better than the previously published model (4 reactions, 28 constants). A final model evaluation was conducted based on representative drinking water conditions to determine a minimal model (3 reactions, 8 constants) applicable for drinking water conditions.
Current Sensor Fault Diagnosis Based on a Sliding Mode Observer for PMSM Driven Systems
Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; Huang, Yi-Shan; Zhao, Kai-Hui
2015-01-01
This paper proposes a current sensor fault detection method based on a sliding mode observer for the torque closed-loop control system of interior permanent magnet synchronous motors. First, a sliding mode observer based on the extended flux linkage is built to simplify the motor model, which effectively eliminates the phenomenon of salient poles and the dependence on the direct axis inductance parameter, and can also be used for real-time calculation of feedback torque. Then a sliding mode current observer is constructed in αβ coordinates to generate the fault residuals of the phase current sensors. The method can accurately identify abrupt gain faults and slow-variation offset faults in real time in faulty sensors, and the generated residuals of the designed fault detection system are not affected by the unknown input, the structure of the observer, and the theoretical derivation and the stability proof process are concise and simple. The RT-LAB real-time simulation is used to build a simulation model of the hardware in the loop. The simulation and experimental results demonstrate the feasibility and effectiveness of the proposed method. PMID:25970258
NASA Astrophysics Data System (ADS)
Shen, Yan; Ge, Jin-ming; Zhang, Guo-qing; Yu, Wen-bin; Liu, Rui-tong; Fan, Wei; Yang, Ying-xuan
2018-01-01
This paper explores the problem of signal processing in optical current transformers (OCTs). Based on the noise characteristics of OCTs, such as overlapping signals, noise frequency bands, low signal-to-noise ratios, and difficulties in acquiring statistical features of noise power, an improved standard Kalman filtering algorithm was proposed for direct current (DC) signal processing. The state-space model of the OCT DC measurement system is first established, and then mixed noise can be processed by adding mixed noise into measurement and state parameters. According to the minimum mean squared error criterion, state predictions and update equations of the improved Kalman algorithm could be deduced based on the established model. An improved central difference Kalman filter was proposed for alternating current (AC) signal processing, which improved the sampling strategy and noise processing of colored noise. Real-time estimation and correction of noise were achieved by designing AC and DC noise recursive filters. Experimental results show that the improved signal processing algorithms had a good filtering effect on the AC and DC signals with mixed noise of OCT. Furthermore, the proposed algorithm was able to achieve real-time correction of noise during the OCT filtering process.
NASA Astrophysics Data System (ADS)
Ram Prabhakar, J.; Ragavan, K.
2013-07-01
This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.
Process-Response Numerical Modeling in Carbonate Systems - Current Status and Importance (Invited)
NASA Astrophysics Data System (ADS)
Sarg, J.; Jenkins, C. J.; Burgess, P. M.; Budd, D. A.; Rankey, E. C.; Demicco, R. V.
2009-12-01
Developing predictive models of carbonate systems has important implications for monitoring and managing global climate change affecting societies around the world. Carbonate sediments and rocks form an important part of the global carbon cycle. More than 80% of Earth’s carbon is locked up in carbonate rocks, and is the primary ultimate sink for CO2 introduced into the atmosphere. Reefs and carbonate platforms, in general, are sensitive climatic indicators, and contain important records of past climate change. Ancient carbonate platforms and systems play a significant role in the global economy. They are the raw material for construction, and through their high permeability’s and porosities, carbonate rocks serve as important fresh water aquifers and petroleum reservoirs. They host more than half of the world’s petroleum. The systems that produce carbonate sediments have multiple interacting biologic, chemical, and hydrodynamic elements. Carbonate sediments are originally and predominantly derived from biological mineralization directly from seawater. Waves, tides, and marine currents can redistribute these sediments landward into lagoons or tidal flats, send them seaward into the deep or sea, or trap them within the hydraulic regime in which they originated. The characteristics of carbonate sediments are thus sensitive to environmental parameters like light, bathymetry, temperature, salinity, turbidity, nutrient and oxygen levels, hydrodynamics, and mineral saturation states. Localized buildups of carbonate sediments can alter the local hydraulic regime and change the nature of surrounding sediments. The prospect of modeling carbonates in detail has been daunting. Existing carbonate models are a class of rule-based ‘simulations’ with limited predictive qualities. The earliest computer models of carbonate deposition were 1-D and 2-D, and essentially modeled carbonates as “in-place” accumulations of sediment. In most cases, sediment production in these models was directly related to water depth based on assumptions that carbonate production is a function of light attenuation with depth. These models were followed by so-called “geometric” models (SedPak), where sediment transport was allowed, and models were based on simply depositing sediment vertically into assumed shoreline geometries. There are computer models of carbonate deposition that model wave and current dynamics over platforms and then base sediment erosion, transport and deposition on the results of the circulation modeling: Carb3D and Carb3D+, Dionysus and Carbonate GPM. In addition, Carb3D+ approximates some diagenetic processes as a function of hydrologic residence times. New types of rule-based models, such as cellular automata have also been developed that model the interaction of many different elements of carbonate deposition. Based on this progress, and with recent advances in ecological modeling, treating uncertainty in models, high performance computing, and handling heterogeneous and linguistic data types, the time is right to tackle the challenges of mathematically modeling carbonate sediments.
Li, Yue-Song; Chen, Xin-Jun; Yang, Hong
2012-06-01
By adopting FVCOM-simulated 3-D physical field and based on the biological processes of chub mackerel (Scomber japonicas) in its early life history from the individual-based biological model, the individual-based ecological model for S. japonicas at its early growth stages in the East China Sea was constructed through coupling the physical field in March-July with the biological model by the method of Lagrange particle tracking. The model constructed could well simulate the transport process and abundance distribution of S. japonicas eggs and larvae. The Taiwan Warm Current, Kuroshio, and Tsushima Strait Warm Current directly affected the transport process and distribution of the eggs and larvae, and indirectly affected the growth and survive of the eggs and larvae through the transport to the nursery grounds with different water temperature and foods. The spawning grounds in southern East China Sea made more contributions to the recruitment to the fishing grounds in northeast East China Sea, but less to the Yangtze estuary and Zhoushan Island. The northwestern and southwestern parts of spawning grounds had strong connectivity with the nursery grounds of Cheju and Tsushima Straits, whereas the northeastern and southeastern parts of the spawning ground had strong connectivity with the nursery grounds of Kyushu and Pacific Ocean.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
NASA Technical Reports Server (NTRS)
Taguchi, S.; Sugiura, M.; Winningham, J. D.; Slavin, J. A.
1993-01-01
The magnetic field and plasma data from 47 passes of DE-2 are used to study the IMF By-dependent distribution of field-aligned currents in the cleft region. It is proposed that the low-latitude cleft current (LCC) region is not an extension of the region 1 or region 2 current system and that a pair of LCCs and high-latitude cleft currents (HCCs) constitutes the cleft field-aligned current regime. The proposed pair of cleft field-aligned currents is explained with a qualitative model in which this pair of currents is generated on open field lines that have just been reconnected on the dayside magnetopause. The electric fields are transmitted along the field lines to the ionosphere, creating a poleward electric field and a pair of field-aligned currents when By is positive; the pair of field-aligned currents consists of a downward current at lower latitudes and an upward current at higher latitudes. In the By negative case, the model explains the reversal of the field-aligned current direction in the LCC and HCC regions.
A modeling study of the radar signatures of rip currents with comparisons to data
NASA Astrophysics Data System (ADS)
O'Dea, A.; Haller, M. C.
2016-12-01
Rip currents are important components of nearshore circulation systems and can pose serious dangers to swimmers. In recent years, X-band imaging radar has been shown to be an effective remote sensor of rip currents over large spatial scales, for long durations, and with high temporal resolution. In contrast to remote sensing methods that infer rip location through the identification of morphological features (i.e. rip channels), rip detection in radar arises directly from the backscatter characteristics of the rip current flow field, thus offering the potential of direct extraction of quantitative information on rip current hydrodynamics. In this study, we present a model for the radar imaging of rip currents based on the wave action balance equation and the changes to the wind-wave spectrum at Bragg (capillary) wavelengths induced by the underlying rip current field. Model results are compared to field data (both in situ and remote sensing) from a 10-day experiment at Duck, NC conducted in September 2010. The model/data comparisons are then used to assess the physical mechanisms contributing to the radar imaging of rip currents including the role of rip current strength, wind speed, wind direction, and very short-scale wave breaking in rip current imaging. Following the methodology of Rascle et al. (J. Phys. Oceanography, 2014), the radar imaging model uses a relaxation approach that models perturbations to the equilibrium wave action spectrum induced by gradients in the underlying current field (specifically, the divergence and strain components of the deformation tensor). From the perturbed wind-wave spectrum, changes in the mean square slope (MSS) are then calculated and taken as a proxy for the change in radar backscatter intensity due to rip currents. Model simulations of rip current velocity fields for the field experiments were developed previously by Wilson et al. (J. Geophys. Res., 2014) using ROMS. The modeled velocities are used as input into the backscatter model and the predicted changes in MSS are compared with the radar observations. Modeled changes in MSS are shown to compare well with the observed occurrence and spatial scales of the rips, including their oblique orientation and their offshore extent. Remaining questions include the effect of wind direction and fetch on the imaging of rips.
Toward micro-scale spatial modeling of gentrification
NASA Astrophysics Data System (ADS)
O'Sullivan, David
A simple preliminary model of gentrification is presented. The model is based on an irregular cellular automaton architecture drawing on the concept of proximal space, which is well suited to the spatial externalities present in housing markets at the local scale. The rent gap hypothesis on which the model's cell transition rules are based is discussed. The model's transition rules are described in detail. Practical difficulties in configuring and initializing the model are described and its typical behavior reported. Prospects for further development of the model are discussed. The current model structure, while inadequate, is well suited to further elaboration and the incorporation of other interesting and relevant effects.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
NASA Astrophysics Data System (ADS)
Wong-Ala, J.; Neuheimer, A. B.; Hixon, M.; Powell, B.
2016-02-01
Connectivity estimates, which measure the exchange of individuals among populations, are necessary to create effective reserves for marine life. Connectivity can be influenced by a combination of biology (e.g. spawning time) and physics (e.g. currents). In the past a dispersal model was created in an effort to explain connectivity for the highly sought after reef fish Lau`ipala (Yellow Tang, Zebrasoma flavescens) around Hawai`i Island using physics alone, but this was shown to be insufficient. Here we created an individual based model (IBM) to describe Lau`ipala life history and behavior forced with ocean currents and temperature (via coupling to a physical model) to examine biophysical interactions. The IBM allows for tracking of individual fish from spawning to settlement, and individual variability in modeled processes. We first examined the influence of different reproductive (e.g. batch vs. constant spawners), developmental (e.g. pelagic larval duration), and behavioral (e.g. active vs. passive buoyancy control) traits on modeled connectivity estimates for larval reef fish around Hawai`i Island and compared results to genetic observations of parent-offspring pair distribution. Our model is trait-based which allows individuals to vary in life history strategies enabling mechanistic links between predictions and underlying traits and straightforward applications to other species and sites.
A 1D ion species model for an RF driven negative ion source
NASA Astrophysics Data System (ADS)
Turner, I.; Holmes, A. J. T.
2017-08-01
A one-dimensional model for an RF driven negative ion source has been developed based on an inductive discharge. The RF source differs from traditional filament and arc ion sources because there are no primary electrons present, and is simply composed of an antenna region (driver) and a main plasma discharge region. However the model does still make use of the classical plasma transport equations for particle energy and flow, which have previously worked well for modelling DC driven sources. The model has been developed primarily to model the Small Negative Ion Facility (SNIF) ion source at CCFE, but may be easily adapted to model other RF sources. Currently the model considers the hydrogen ion species, and provides a detailed description of the plasma parameters along the source axis, i.e. plasma temperature, density and potential, as well as current densities and species fluxes. The inputs to the model are currently the RF power, the magnetic filter field and the source gas pressure. Results from the model are presented and where possible compared to existing experimental data from SNIF, with varying RF power, source pressure.
Cashin, Cheryl; Phuong, Nguyen Khanh; Shain, Ryan; Oanh, Tran Thi Mai; Thuy, Nguyen Thi
2015-01-01
Vietnam is currently considering a revision of its 2008 Health Insurance Law, including the regulation of provider payment methods. This study uses a simple spreadsheet-based, micro-simulation model to analyse the potential impacts of different provider payment reform scenarios on resource allocation across health care providers in three provinces in Vietnam, as well as on the total expenditure of the provincial branches of the public health insurance agency (Provincial Social Security [PSS]). The results show that currently more than 50% of PSS spending is concentrated at the provincial level with less than half at the district level. There is also a high degree of financial risk on district hospitals with the current fund-holding arrangement. Results of the simulation model show that several alternative scenarios for provider payment reform could improve the current payment system by reducing the high financial risk currently borne by district hospitals without dramatically shifting the current level and distribution of PSS expenditure. The results of the simulation analysis provided an empirical basis for health policy-makers in Vietnam to assess different provider payment reform options and make decisions about new models to support health system objectives.
Dynamic modeling method for infrared smoke based on enhanced discrete phase model
NASA Astrophysics Data System (ADS)
Zhang, Zhendong; Yang, Chunling; Zhang, Yan; Zhu, Hongbo
2018-03-01
The dynamic modeling of infrared (IR) smoke plays an important role in IR scene simulation systems and its accuracy directly influences the system veracity. However, current IR smoke models cannot provide high veracity, because certain physical characteristics are frequently ignored in fluid simulation; simplifying the discrete phase as a continuous phase and ignoring the IR decoy missile-body spinning. To address this defect, this paper proposes a dynamic modeling method for IR smoke, based on an enhanced discrete phase model (DPM). A mathematical simulation model based on an enhanced DPM is built and a dynamic computing fluid mesh is generated. The dynamic model of IR smoke is then established using an extended equivalent-blackbody-molecule model. Experiments demonstrate that this model realizes a dynamic method for modeling IR smoke with higher veracity.
ERIC Educational Resources Information Center
Yan, Duanli; Lewis, Charles; Stocking, Martha
It is unrealistic to suppose that standard item response theory (IRT) models will be appropriate for all new and currently considered computer-based tests. In addition to developing new models, researchers will need to give some attention to the possibility of constructing and analyzing new tests without the aid of strong models. Computerized…
Modelling and Simulation for Requirements Engineering and Options Analysis
2010-05-01
should be performed to work successfully in the domain; and process-based techniques model the processes that occur in the work domain. There is a crisp ...acad/sed/sedres/ dm /erg/cwa. DRDC Toronto CR 2010-049 39 23. Can the current technique for developing simulation models for assessments
ERIC Educational Resources Information Center
Cleaveland, Bonnie L.
1994-01-01
Current state-of-the-art substance abuse prevention programs are mostly social cognitive theory based. However, there are few publications which review specifically how modeling is applied to adolescent substance abuse prevention programs. This article reviews theoretical considerations for implementing modeling for this purpose. (Author/LKS)
A Noncentral "t" Regression Model for Meta-Analysis
ERIC Educational Resources Information Center
Camilli, Gregory; de la Torre, Jimmy; Chiu, Chia-Yi
2010-01-01
In this article, three multilevel models for meta-analysis are examined. Hedges and Olkin suggested that effect sizes follow a noncentral "t" distribution and proposed several approximate methods. Raudenbush and Bryk further refined this model; however, this procedure is based on a normal approximation. In the current research literature, this…
Methods are needed improve the timeliness and accuracy of recreational water‐quality assessments. Traditional culture methods require 18–24 h to obtain results and may not reflect current conditions. Predictive models, based on environmental and water quality variables, have been...
A Survey of Model Evaluation Approaches with a Tutorial on Hierarchical Bayesian Methods
ERIC Educational Resources Information Center
Shiffrin, Richard M.; Lee, Michael D.; Kim, Woojae; Wagenmakers, Eric-Jan
2008-01-01
This article reviews current methods for evaluating models in the cognitive sciences, including theoretically based approaches, such as Bayes factors and minimum description length measures; simulation approaches, including model mimicry evaluations; and practical approaches, such as validation and generalization measures. This article argues…
Theoretical and experimental studies on ionic currents in nanopore-based biosensors.
Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei
2014-12-01
Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.
Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.
Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng
2015-01-07
An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.
Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms
NASA Astrophysics Data System (ADS)
Segars, W. P.; Lalush, D. S.; Tsui, B. M. W.
2001-02-01
Respiratory motion can cause artifacts in myocardial SPECT and computed tomography (CT). The authors incorporate models of respiratory mechanics into the current 4D MCAT and into the next generation spline-based MCAT phantoms. In order to simulate respiratory motion in the current MCAT phantom, the geometric solids for the diaphragm, heart, ribs, and lungs were altered through manipulation of parameters defining them. Affine transformations were applied to the control points defining the same respiratory structures in the spline-based MCAT phantom to simulate respiratory motion. The Non-Uniform Rational B-Spline (NURBS) surfaces for the lungs and body outline were constructed in such a way as to be linked to the surrounding ribs. Expansion and contraction of the thoracic cage then coincided with expansion and contraction of the lungs and body. The changes both phantoms underwent were spline-interpolated over time to create time continuous 4D respiratory models. The authors then used the geometry-based and spline-based MCAT phantoms in an initial simulation study of the effects of respiratory motion on myocardial SPECT. The simulated reconstructed images demonstrated distinct artifacts in the inferior region of the myocardium. It is concluded that both respiratory models can be effective tools for researching effects of respiratory motion.
The Research and Evaluation of Road Environment in the Block of City Based on 3-D Streetscape Data
NASA Astrophysics Data System (ADS)
Guan, L.; Ding, Y.; Ge, J.; Yang, H.; Feng, X.; Chen, P.
2018-04-01
This paper focus on the problem of the street environment of block unit, based on making clear the acquisition mode and characteristics of 3D streetscape data, the paper designs the assessment model of regional block unit based on 3D streetscape data. The 3D streetscape data with the aid of oblique photogrammetry surveying and mobile equipment, will greatly improve the efficiency and accuracy of urban regional assessment, and expand the assessment scope. Based on the latest urban regional assessment model, with the street environment assessment model of the current situation, this paper analyzes the street form and street environment assessment of current situation in the typical area of Beijing. Through the street environment assessment of block unit, we found that in the megacity street environment assessment model of block unit based on 3D streetscape data has greatly help to improve the assessment efficiency and accuracy. At the same time, motor vehicle lane, green shade deficiency, bad railings and street lost situation is still very serious in Beijing, the street environment improvement of the block unit is still a heavy task. The research results will provide data support for urban fine management and urban design, and provide a solid foundation for the improvement of city image.
Analysis of electric current flow through the HTc multilayered superconductors
NASA Astrophysics Data System (ADS)
Sosnowski, J.
2016-02-01
Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Babauta, Jerome T.; Kuprat, Andrew P.
Electrochemically active biofilms have a unique form of respiration in which they utilize solid external materials as terminal electron acceptors for their metabolism. Currently, two primary mechanisms have been identified for long-range extracellular electron transfer (EET): a diffusion- and a conduction-based mechanism. Evidence in the literature suggests that some biofilms, particularly Shewanella oneidensis, produce the requisite components for both mechanisms. In this study, a generic model is presented that incorporates the diffusion- and the conduction-based mechanisms and allows electrochemically active biofilms to utilize both simultaneously. The model was applied to S. oneidensis and Geobacter sulfurreducens biofilms using experimentally generated datamore » found in the literature. Our simulation results show that 1) biofilms having both mechanisms available, especially if they can interact, may have a metabolic advantage over biofilms that can use only a single mechanism; 2) the thickness of G. sulfurreducens biofilms is likely not limited by conductivity; 3) accurate intrabiofilm diffusion coefficient values are critical for current generation predictions; and 4) the local biofilm potential and redox potential are two distinct parameters and cannot be assumed to have identical values. Finally, we determined that simulated cyclic and squarewave voltammetry based on our model are currently not capable of determining the specific percentages of extracellular electron transfer mechanisms in a biofilm. The developed model will be a critical tool for designing experiments to explain EET mechanisms.« less
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-12-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
Optimising Habitat-Based Models for Wide-Ranging Marine Predators: Scale Matters
NASA Astrophysics Data System (ADS)
Scales, K. L.; Hazen, E. L.; Jacox, M.; Edwards, C. A.; Bograd, S. J.
2016-02-01
Predicting the responses of marine top predators to dynamic oceanographic conditions requires habitat-based models that sufficiently capture environmental preferences. Spatial resolution and temporal averaging of environmental data layers is a key aspect of model construction. The utility of surfaces contemporaneous to animal movement (e.g. daily, weekly), versus synoptic products (monthly, seasonal, climatological) is currently under debate, as is the optimal spatial resolution for predictive products. Using movement simulations with built-in environmental preferences (correlated random walks, multi-state hidden Markov-type models) together with modeled (Regional Oceanographic Modeling System, ROMS) and remotely-sensed (MODIS-Aqua) datasets, we explored the effects of degrading environmental surfaces (3km - 1 degree, daily - climatological) on model inference. We simulated the movements of a hypothetical wide-ranging marine predator through the California Current system over a three month period (May-June-July), based on metrics derived from previously published blue whale Balaenoptera musculus tracking studies. Results indicate that models using seasonal or climatological data fields can overfit true environmental preferences, in both presence-absence and behaviour-based model formulations. Moreover, the effects of a degradation in spatial resolution are more pronounced when using temporally averaged fields than when using daily, weekly or monthly datasets. In addition, we observed a notable divergence between the `best' models selected using common methods (e.g. AUC, AICc) and those that most accurately reproduced built-in environmental preferences. These findings have important implications for conservation and management of marine mammals, seabirds, sharks, sea turtles and large teleost fish, particularly in implementing dynamic ocean management initiatives and in forecasting responses to future climate-mediated ecosystem change.
NASA Astrophysics Data System (ADS)
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
Scanning SQUID Microscope and its Application in Detecting Weak Currents
NASA Astrophysics Data System (ADS)
Zhong, Chaorong; Li, Fei; Zhang, Fenghui; Ding, Hongsheng; Luo, Sheng; Lin, Dehua; He, Yusheng
A scanning SQUID microscope based on HTS dc SQUID has been developed. One of the applications of this microscope is to detect weak currents inside the sample. Considering that what being detected by the SQUID is the vertical component of the magnetic field on a plan where the SQUID lies, whereas the current which produces the magnetic field is actually located in a plan below the SQUID, a TWO PLAN model has been established. In this model Biot-Savart force laws and Fourier transformation were used to inverse the detected magnetic field into the underneath weak current. It has been shown that the distance between the current and the SQUID and the noise ratio of the experimental data have significant effects on the quality of the inverse process.
The Structure of Psychopathology: Toward an Expanded Quantitative Empirical Model
Wright, Aidan G.C.; Krueger, Robert F.; Hobbs, Megan J.; Markon, Kristian E.; Eaton, Nicholas R.; Slade, Tim
2013-01-01
There has been substantial recent interest in the development of a quantitative, empirically based model of psychopathology. However, the majority of pertinent research has focused on analyses of diagnoses, as described in current official nosologies. This is a significant limitation because existing diagnostic categories are often heterogeneous. In the current research, we aimed to redress this limitation of the existing literature, and to directly compare the fit of categorical, continuous, and hybrid (i.e., combined categorical and continuous) models of syndromes derived from indicators more fine-grained than diagnoses. We analyzed data from a large representative epidemiologic sample (the 2007 Australian National Survey of Mental Health and Wellbeing; N = 8,841). Continuous models provided the best fit for each syndrome we observed (Distress, Obsessive Compulsivity, Fear, Alcohol Problems, Drug Problems, and Psychotic Experiences). In addition, the best fitting higher-order model of these syndromes grouped them into three broad spectra: Internalizing, Externalizing, and Psychotic Experiences. We discuss these results in terms of future efforts to refine emerging empirically based, dimensional-spectrum model of psychopathology, and to use the model to frame psychopathology research more broadly. PMID:23067258
Climate Model Diagnostic Analyzer
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Pan, Lei; Zhai, Chengxing; Tang, Benyang; Kubar, Terry; Zhang, Zia; Wang, Wei
2015-01-01
The comprehensive and innovative evaluation of climate models with newly available global observations is critically needed for the improvement of climate model current-state representation and future-state predictability. A climate model diagnostic evaluation process requires physics-based multi-variable analyses that typically involve large-volume and heterogeneous datasets, making them both computation- and data-intensive. With an exploratory nature of climate data analyses and an explosive growth of datasets and service tools, scientists are struggling to keep track of their datasets, tools, and execution/study history, let alone sharing them with others. In response, we have developed a cloud-enabled, provenance-supported, web-service system called Climate Model Diagnostic Analyzer (CMDA). CMDA enables the physics-based, multivariable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. At the same time, CMDA provides a crowd-sourcing space where scientists can organize their work efficiently and share their work with others. CMDA is empowered by many current state-of-the-art software packages in web service, provenance, and semantic search.
Navigating the flow: individual and continuum models for homing in flowing environments.
Painter, Kevin J; Hillen, Thomas
2015-11-06
Navigation for aquatic and airborne species often takes place in the face of complicated flows, from persistent currents to highly unpredictable storms. Hydrodynamic models are capable of simulating flow dynamics and provide the impetus for much individual-based modelling, in which particle-sized individuals are immersed into a flowing medium. These models yield insights on the impact of currents on population distributions from fish eggs to large organisms, yet their computational demands and intractability reduce their capacity to generate the broader, less parameter-specific, insights allowed by traditional continuous approaches. In this paper, we formulate an individual-based model for navigation within a flowing field and apply scaling to derive its corresponding macroscopic and continuous model. We apply it to various movement classes, from drifters that simply go with the flow to navigators that respond to environmental orienteering cues. The utility of the model is demonstrated via its application to 'homing' problems and, in particular, the navigation of the marine green turtle Chelonia mydas to Ascension Island. © 2015 The Author(s).
The System of Systems Architecture Feasibility Assessment Model
2016-06-01
OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL by Stephen E. Gillespie June 2016 Dissertation Supervisor Eugene Paulo THIS PAGE...Dissertation 4. TITLE AND SUBTITLE THE SYSTEM OF SYSTEMS ARCHITECTURE FEASIBILITY ASSESSMENT MODEL 5. FUNDING NUMBERS 6. AUTHOR(S) Stephen E...SoS architecture feasibility assessment model (SoS-AFAM). Together, these extend current model- based systems engineering (MBSE) and SoS engineering
A physiome standards-based model publication paradigm.
Nickerson, David P; Buist, Martin L
2009-05-28
In this era of widespread broadband Internet penetration and powerful Web browsers on most desktops, a shift in the publication paradigm for physiome-style models is envisaged. No longer will model authors simply submit an essentially textural description of the development and behaviour of their model. Rather, they will submit a complete working implementation of the model encoded and annotated according to the various standards adopted by the physiome project, accompanied by a traditional human-readable summary of the key scientific goals and outcomes of the work. While the final published, peer-reviewed article will look little different to the reader, in this new paradigm, both reviewers and readers will be able to interact with, use and extend the models in ways that are not currently possible. Here, we review recent developments that are laying the foundations for this new model publication paradigm. Initial developments have focused on the publication of mathematical models of cellular electrophysiology, using technology based on a CellML- or Systems Biology Markup Language (SBML)-encoded implementation of the mathematical models. Here, we review the current state of the art and what needs to be done before such a model publication becomes commonplace.
Fechter, Dominik; Storch, Ilse
2014-01-01
Due to legislative protection, many species, including large carnivores, are currently recolonizing Europe. To address the impending human-wildlife conflicts in advance, predictive habitat models can be used to determine potentially suitable habitat and areas likely to be recolonized. As field data are often limited, quantitative rule based models or the extrapolation of results from other studies are often the techniques of choice. Using the wolf (Canis lupus) in Germany as a model for habitat generalists, we developed a habitat model based on the location and extent of twelve existing wolf home ranges in Eastern Germany, current knowledge on wolf biology, different habitat modeling techniques and various input data to analyze ten different input parameter sets and address the following questions: (1) How do a priori assumptions and different input data or habitat modeling techniques affect the abundance and distribution of potentially suitable wolf habitat and the number of wolf packs in Germany? (2) In a synthesis across input parameter sets, what areas are predicted to be most suitable? (3) Are existing wolf pack home ranges in Eastern Germany consistent with current knowledge on wolf biology and habitat relationships? Our results indicate that depending on which assumptions on habitat relationships are applied in the model and which modeling techniques are chosen, the amount of potentially suitable habitat estimated varies greatly. Depending on a priori assumptions, Germany could accommodate between 154 and 1769 wolf packs. The locations of the existing wolf pack home ranges in Eastern Germany indicate that wolves are able to adapt to areas densely populated by humans, but are limited to areas with low road densities. Our analysis suggests that predictive habitat maps in general, should be interpreted with caution and illustrates the risk for habitat modelers to concentrate on only one selection of habitat factors or modeling technique. PMID:25029506
NASA Astrophysics Data System (ADS)
Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.
2015-11-01
Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j
An IBM PC-based math model for space station solar array simulation
NASA Technical Reports Server (NTRS)
Emanuel, E. M.
1986-01-01
This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.
Nowcasting Ground Magnetic Perturbations with the Space Weather Modeling Framework
NASA Astrophysics Data System (ADS)
Welling, D. T.; Toth, G.; Singer, H. J.; Millward, G. H.; Gombosi, T. I.
2015-12-01
Predicting ground-based magnetic perturbations is a critical step towards specifying and predicting geomagnetically induced currents (GICs) in high voltage transmission lines. Currently, the Space Weather Modeling Framework (SWMF), a flexible modeling framework for simulating the multi-scale space environment, is being transitioned from research to operational use (R2O) by NOAA's Space Weather Prediction Center. Upon completion of this transition, the SWMF will provide localized B/t predictions using real-time solar wind observations from L1 and the F10.7 proxy for EUV as model input. This presentation describes the operational SWMF setup and summarizes the changes made to the code to enable R2O progress. The framework's algorithm for calculating ground-based magnetometer observations will be reviewed. Metrics from data-model comparisons will be reviewed to illustrate predictive capabilities. Early data products, such as regional-K index and grids of virtual magnetometer stations, will be presented. Finally, early successes will be shared, including the code's ability to reproduce the recent March 2015 St. Patrick's Day Storm.
Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause
NASA Technical Reports Server (NTRS)
Tsyganenko, N. A.
1995-01-01
Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallo, Giulia
Integrating increasingly high levels of variable generation in U.S. electricity markets requires addressing not only power system and grid modeling challenges but also an understanding of how market participants react and adapt to them. Key elements of current and future wholesale power markets can be modeled using an agent-based approach, which may prove to be a useful paradigm for researchers studying and planning for power systems of the future.
Using Historical Data to Automatically Identify Air-Traffic Control Behavior
NASA Technical Reports Server (NTRS)
Lauderdale, Todd A.; Wu, Yuefeng; Tretto, Celeste
2014-01-01
This project seeks to develop statistical-based machine learning models to characterize the types of errors present when using current systems to predict future aircraft states. These models will be data-driven - based on large quantities of historical data. Once these models are developed, they will be used to infer situations in the historical data where an air-traffic controller intervened on an aircraft's route, even when there is no direct recording of this action.
Process modeling for carbon-phenolic nozzle materials
NASA Technical Reports Server (NTRS)
Letson, Mischell A.; Bunker, Robert C.; Remus, Walter M., III; Clinton, R. G.
1989-01-01
A thermochemical model based on the SINDA heat transfer program is developed for carbon-phenolic nozzle material processes. The model can be used to optimize cure cycles and to predict material properties based on the types of materials and the process by which these materials are used to make nozzle components. Chemical kinetic constants for Fiberite MX4926 were determined so that optimization of cure cycles for the current Space Shuttle Solid Rocket Motor nozzle rings can be determined.
NASA Technical Reports Server (NTRS)
Stouffer, D. C.; Sheh, M. Y.
1988-01-01
A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.
The October 1973 expendable launch vehicle traffic model, revision 2
NASA Technical Reports Server (NTRS)
1974-01-01
Traffic model data for current expendable launch vehicles (assuming no space shuttle) for calendar years 1980 through 1991 are presented along with some supporting and summary data. This model was based on a payload program equivalent in scientific return to the October 1973 NASA Payload Model, the NASA estimated non NASA/non DoD Payload Model, and the 1971 DoD Mission Model.
3D modeling based on CityEngine
NASA Astrophysics Data System (ADS)
Jia, Guangyin; Liao, Kaiju
2017-03-01
Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.
Modeling Requirements for Cohort and Register IT.
Stäubert, Sebastian; Weber, Ulrike; Michalik, Claudia; Dress, Jochen; Ngouongo, Sylvie; Stausberg, Jürgen; Winter, Alfred
2016-01-01
The project KoRegIT (funded by TMF e.V.) aimed to develop a generic catalog of requirements for research networks like cohort studies and registers (KoReg). The catalog supports such kind of research networks to build up and to manage their organizational and IT infrastructure. To make transparent the complex relationships between requirements, which are described in use cases from a given text catalog. By analyzing and modeling the requirements a better understanding and optimizations of the catalog are intended. There are two subgoals: a) to investigate one cohort study and two registers and to model the current state of their IT infrastructure; b) to analyze the current state models and to find simplifications within the generic catalog. Processing the generic catalog was performed by means of text extraction, conceptualization and concept mapping. Then methods of enterprise architecture planning (EAP) are used to model the extracted information. To work on objective a) questionnaires are developed by utilizing the model. They are used for semi-structured interviews, whose results are evaluated via qualitative content analysis. Afterwards the current state was modeled. Objective b) was done by model analysis. A given generic text catalog of requirements was transferred into a model. As result of objective a) current state models of one existing cohort study and two registers are created and analyzed. An optimized model called KoReg-reference-model is the result of objective b). It is possible to use methods of EAP to model requirements. This enables a better overview of the partly connected requirements by means of visualization. The model based approach also enables the analysis and comparison of the empirical data from the current state models. Information managers could reduce the effort of planning the IT infrastructure utilizing the KoReg-reference-model. Modeling the current state and the generation of reports from the model, which could be used as requirements specification for bids, is supported, too.
Apostol, Izydor; Kelner, Drew; Jiang, Xinzhao Grace; Huang, Gang; Wypych, Jette; Zhang, Xin; Gastwirt, Jessica; Chen, Kenneth; Fodor, Szilan; Hapuarachchi, Suminda; Meriage, Dave; Ye, Frank; Poppe, Leszek; Szpankowski, Wojciech
2012-12-01
To predict precision and other performance characteristics of chromatographic purity methods, which represent the most widely used form of analysis in the biopharmaceutical industry. We have conducted a comprehensive survey of purity methods, and show that all performance characteristics fall within narrow measurement ranges. This observation was used to develop a model called Uncertainty Based on Current Information (UBCI), which expresses these performance characteristics as a function of the signal and noise levels, hardware specifications, and software settings. We applied the UCBI model to assess the uncertainty of purity measurements, and compared the results to those from conventional qualification. We demonstrated that the UBCI model is suitable to dynamically assess method performance characteristics, based on information extracted from individual chromatograms. The model provides an opportunity for streamlining qualification and validation studies by implementing a "live validation" of test results utilizing UBCI as a concurrent assessment of measurement uncertainty. Therefore, UBCI can potentially mitigate the challenges associated with laborious conventional method validation and facilitates the introduction of more advanced analytical technologies during the method lifecycle.
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
NASA Astrophysics Data System (ADS)
Zhang, Mingyang
2018-06-01
To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert
A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape jointmore » degradation, a possible failure mode, can be incorporated into the model.« less
Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.
2000-01-01
Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.
Model-based learning and the contribution of the orbitofrontal cortex to the model-free world
McDannald, Michael A.; Takahashi, Yuji K.; Lopatina, Nina; Pietras, Brad W.; Jones, Josh L.; Schoenbaum, Geoffrey
2012-01-01
Learning is proposed to occur when there is a discrepancy between reward prediction and reward receipt. At least two separate systems are thought to exist: one in which predictions are proposed to be based on model-free or cached values; and another in which predictions are model-based. A basic neural circuit for model-free reinforcement learning has already been described. In the model-free circuit the ventral striatum (VS) is thought to supply a common-currency reward prediction to midbrain dopamine neurons that compute prediction errors and drive learning. In a model-based system, predictions can include more information about an expected reward, such as its sensory attributes or current, unique value. This detailed prediction allows for both behavioral flexibility and learning driven by changes in sensory features of rewards alone. Recent evidence from animal learning and human imaging suggests that, in addition to model-free information, the VS also signals model-based information. Further, there is evidence that the orbitofrontal cortex (OFC) signals model-based information. Here we review these data and suggest that the OFC provides model-based information to this traditional model-free circuitry and offer possibilities as to how this interaction might occur. PMID:22487030