Sookpeng, S; Martin, C J; Gentle, D J; Lopez-Gonzalez, M R
2014-03-01
Automatic tube current modulation (ATCM) systems are now used for the majority of CT scans. The principles of ATCM operation are different in CT scanners from different manufacturers. Toshiba and GE scanners base the current modulation on a target noise setting, while Philips and Siemens scanners use reference image and reference mAs concepts respectively. Knowledge of the relationships between patient size, dose and image noise are important for CT patient dose optimisation. In this study, the CT patient doses were surveyed for 14 CT scanners from four different CT scanner manufacturers. The patient cross sectional area, the tube current modulation and the image noise from the CT images were analysed using in-house software. The Toshiba and GE scanner results showed that noise levels are relatively constant but tube currents are dependent on patient size. As a result of this there is a wide range in tube current values across different patient sizes, and doses for large patients are significantly higher in these scanners. In contrast, in the Philips and Siemens scanners, tube currents are less dependent on patient size, the range in tube current is narrower, and the doses for larger patients are not as high. Image noise is more dependent on the patient size.
NASA Astrophysics Data System (ADS)
Angel, Erin; Yaghmai, Nazanin; Matilda Jude, Cecilia; DeMarco, John J.; Cagnon, Christopher H.; Goldin, Jonathan G.; Primak, Andrew N.; Stevens, Donna M.; Cody, Dianna D.; McCollough, Cynthia H.; McNitt-Gray, Michael F.
2009-02-01
Tube current modulation was designed to reduce radiation dose in CT imaging while maintaining overall image quality. This study aims to develop a method for evaluating the effects of tube current modulation (TCM) on organ dose in CT exams of actual patient anatomy. This method was validated by simulating a TCM and a fixed tube current chest CT exam on 30 voxelized patient models and estimating the radiation dose to each patient's glandular breast tissue. This new method for estimating organ dose was compared with other conventional estimates of dose reduction. Thirty detailed voxelized models of patient anatomy were created based on image data from female patients who had previously undergone clinically indicated CT scans including the chest area. As an indicator of patient size, the perimeter of the patient was measured on the image containing at least one nipple using a semi-automated technique. The breasts were contoured on each image set by a radiologist and glandular tissue was semi-automatically segmented from this region. Previously validated Monte Carlo models of two multidetector CT scanners were used, taking into account details about the source spectra, filtration, collimation and geometry of the scanner. TCM data were obtained from each patient's clinical scan and factored into the model to simulate the effects of TCM. For each patient model, two exams were simulated: a fixed tube current chest CT and a tube current modulated chest CT. X-ray photons were transported through the anatomy of the voxelized patient models, and radiation dose was tallied in the glandular breast tissue. The resulting doses from the tube current modulated simulations were compared to the results obtained from simulations performed using a fixed mA value. The average radiation dose to the glandular breast tissue from a fixed tube current scan across all patient models was 19 mGy. The average reduction in breast dose using the tube current modulated scan was 17%. Results were size dependent with smaller patients getting better dose reduction (up to 64% reduction) and larger patients getting a smaller reduction, and in some cases the dose actually increased when using tube current modulation (up to 41% increase). The results indicate that radiation dose to glandular breast tissue generally decreases with the use of tube current modulated CT acquisition, but that patient size (and in some cases patient positioning) may affect dose reduction.
Inoue, Yusuke; Nagahara, Kazunori; Kudo, Hiroko; Itoh, Hiroyasu
2018-01-01
Automatic exposure control (AEC) modulates tube current and consequently X-ray exposure in CT. We investigated the behavior of AEC systems in whole-body PET/CT. CT images of a whole-body phantom were acquired using AEC on two scanners from different manufactures. The effects of scout imaging direction and arm positioning on dose modulation were evaluated. Image noise was assessed in the chest and upper abdomen. On one scanner, AEC using two scout images in the posteroanterior (PA) and lateral (Lat) directions provided relatively constant image noise along the z-axis with the arms at the sides. Raising the arms increased tube current in the head and neck and decreased it in the body trunk. Image noise increased in the upper abdomen, suggesting excessive reduction in radiation exposure. AEC using the PA scout alone strikingly increased tube current and reduced image noise in the shoulder. Raising the arms did not substantially influence dose modulation and decreased noise in the abdomen. On the other scanner, AEC using the PA scout alone or Lat scout alone resulted in similar dose modulation. Raising the arms increased tube current in the head and neck and decreased it in the trunk. Image noise was higher in the upper abdomen than in the middle and lower chest, and was not influenced by arm positioning. CT dose modulation using AEC may vary greatly depending on scout direction. Raising the arms tended to decrease radiation exposure; however, the effect depends on scout direction and the AEC system.
2018-01-01
Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.
Funama, Yoshinori; Awai, Kazuo; Hatemura, Masahiro; Shimamura, Masamitchi; Yanaga, Yumi; Oda, Seitaro; Yamashita, Yasuyuki
2008-01-01
To investigate whether it is possible to obtain adequate images at uniform image noise levels and reduced radiation exposure with our automatic tube current modulation (ATCM) technique for 64-detector CT. The study population consisted of 64 patients with known or suspected lung or abdominal disease. We used a 64-detector CT scanner (LightSpeed VCT, GE Healthcare, Waukesha, WI, USA) and a combined angular and longitudinal tube current modulation technique (Smart mA, GE Healthcare, Waukesha, WI, USA) to examine 34 patients. The scanning parameters were identical; the minimum and maximum tube current thresholds were 50 and 800 mA, respectively. For study of the constant tube current technique, 30 additional patients were examined at 350 mA. The CT number and image noise (SD of the CT number) were measured in the 64 patients at six levels, i.e., the center of the left ventricle, the liver dome, the porta hepatis, the center of the spleen and the right and left renal pelvis. When we used the ATCM technique, the mean image noise ranged from 8.40 at the center of the left ventricle to 11.31 at the porta hepatis; the mean tube current ranged from 105.9 mAs at the center of the left ventricle to 169.6 mAs at the center of the spleen. The mean dose reduction rate per constant tube current at 175 mAs ranged from 3.1 to 39.5%. By use of the ATCM technique, it is possible to maintain a constant image noise level with a 64-detector CT.
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Sturgeon, Gregory M.; Agasthya, Greeshma; Segars, W. Paul; Kapadia, Anuj J.; Samei, Ehsan
2017-03-01
This study aimed to estimate the organ dose reduction potential for organ-dose-based tube current modulated (ODM) thoracic CT with wide dose reduction arc. Twenty-one computational anthropomorphic phantoms (XCAT, age range: 27- 75 years, weight range: 52.0-105.8 kg) were used to create a virtual patient population with clinical anatomic variations. For each phantom, two breast tissue compositions were simulated: 50/50 and 20/80 (glandular-to-adipose ratio). A validated Monte Carlo program was used to estimate the organ dose for standard tube current modulation (TCM) (SmartmA, GE Healthcare) and ODM (GE Healthcare) for a commercial CT scanner (Revolution, GE Healthcare) with explicitly modeled tube current modulation profile, scanner geometry, bowtie filtration, and source spectrum. Organ dose was determined using a typical clinical thoracic CT protocol. Both organ dose and CTDIvol-to-organ dose conversion coefficients (h factors) were compared between TCM and ODM. ODM significantly reduced all radiosensitive organ doses (p<0.01). The breast dose was reduced by 30+/-2%. For h factors, organs in the anterior region (e.g. thyroid, stomach) exhibited substantial decreases, and the medial, distributed, and posterior region either saw an increase or no significant change. The organ-dose-based tube current modulation significantly reduced organ doses especially for radiosensitive superficial anterior organs such as the breasts.
Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-01-01
Introduction Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. Materials and Methods A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Results Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13–53.8% reduction in low dose protocol. Conclusion The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose. PMID:27437322
Koteshwar, Prakashini; Kakkar, Chandan; Sripathi, Smiti; Parakh, Anushri; Shrivastav, Rajendra
2016-05-01
Urolithiasis is one of the major, recurring problem in young individuals and CT being the commonest diagnostic modality used. In order to reduce the radiation dose to the patient who are young and as stone formation is a recurring process; one of the simplest way would be, low dose CT along with tube current modulation. Aim of this study was to compare the sensitivity and specificity of low dose (70mAs) with standard dose (250mAs) protocol in detecting urolithiasis and to define the tube current and mean effective patient dose by these protocols. A prospective study was conducted in 200 patients over a period of 2 years with acute flank pain presentation. CT was performed in 100 cases with standard dose and another 100 with low dose protocol using tube current modulation. Sensitivity and specificity for calculus detection, percentage reduction of dose and tube current with low dose protocol was calculated. Urolithiasis was detected in 138 patients, 67 were examined by high dose and 71 were by low dose protocol. Sensitivity and Specificity of low dose protocol was 97.1% and 96.4% with similar results found in high BMI patients. Tube current modulation resulted in reduction of effective tube current by 12.17%. The mean effective patient dose for standard dose was 10.33 mSv whereas 2.92 mSv for low dose with 51.13-53.8% reduction in low dose protocol. The study has reinforced that low-dose CT with tube current modulation is appropriate for diagnosis of urolithiasis with significant reduction in tube current and patient effective dose.
WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu
2014-11-01
Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, K; Lee, H; Kim, C
2016-06-15
Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less
NASA Astrophysics Data System (ADS)
Tian, Yi; Chen, Mahao; Kong, Jun
2009-02-01
With the online z-axis tube current modulation (OZTCM) technique proposed by this work, full automatic exposure control (AEC) for CT systems could be realized with online feedback not only for angular tube current modulation (TCM) but also for z-axis TCM either. Then the localizer radiograph was not required for TCM any more. OZTCM could be implemented with 2 schemes as attenuation based μ-OZTCM and image noise level based μ-OZTCM. Respectively the maximum attenuation of projection readings and standard deviation of reconstructed images can be used to modulate the tube current level in z-axis adaptively for each half (180 degree) or full (360 degree) rotation. Simulation results showed that OZTCM achieved better noise level than constant tube current scan case by using same total dose in mAs. The OZTCM can provide optimized base tube current level for angular TCM to realize an effective auto exposure control when localizer radiograph is not available or need to be skipped for simplified scan protocol in case of emergency procedure or children scan, etc.
NASA Astrophysics Data System (ADS)
Budde, Adam; Nilsen, Roy; Nett, Brian
2014-03-01
State of the art automatic exposure control modulates the tube current across view angle and Z based on patient anatomy for use in axial full scan reconstructions. Cardiac CT, however, uses a fundamentally different image reconstruction that applies a temporal weighting to reduce motion artifacts. This paper describes a phase based mA modulation that goes beyond axial and ECG modulation; it uses knowledge of the temporal view weighting applied within the reconstruction algorithm to improve dose efficiency in cardiac CT scanning. Using physical phantoms and synthetic noise emulation, we measure how knowledge of sinogram temporal weighting and the prescribed cardiac phase can be used to improve dose efficiency. First, we validated that a synthetic CT noise emulation method produced realistic image noise. Next, we used the CT noise emulation method to simulate mA modulation on scans of a physical anthropomorphic phantom where a motion profile corresponding to a heart rate of 60 beats per minute was used. The CT noise emulation method matched noise to lower dose scans across the image within 1.5% relative error. Using this noise emulation method to simulate modulating the mA while keeping the total dose constant, the image variance was reduced by an average of 11.9% on a scan with 50 msec padding, demonstrating improved dose efficiency. Radiation dose reduction in cardiac CT can be achieved while maintaining the same level of image noise through phase based dose modulation that incorporates knowledge of the cardiac reconstruction algorithm.
Influence of CT automatic tube current modulation on uncertainty in effective dose.
Sookpeng, S; Martin, C J; Gentle, D J
2016-01-01
Computed tomography (CT) scanners are equipped with automatic tube current modulation (ATCM) systems that adjust the current to compensate for variations in patient attenuation. CT dosimetry variables are not defined for ATCM situations and, thus, only the averaged values are displayed and analysed. The patient effective dose (E), which is derived from a weighted sum of organ equivalent doses, will be modified by the ATCM. Values for E for chest-abdomen-pelvis CT scans have been calculated using the ImPACT spreadsheet for patients on five CT scanners. Values for E resulting from the z-axis modulation under ATCM have been compared with results assessed using the same effective mAs values with constant tube currents. Mean values for E under ATCM were within ±10 % of those for fixed tube currents for all scanners. Cumulative dose distributions under ATCM have been simulated for two patient scans using single-slice dose profiles measured in elliptical and cylindrical phantoms on one scanner. Contributions to the effective dose from organs in the upper thorax under ATCM are 30-35 % lower for superficial tissues (e.g. breast) and 15-20 % lower for deeper organs (e.g. lungs). The effect on doses to organs in the abdomen depends on body shape, and they can be 10-22 % higher for larger patients. Results indicate that scan dosimetry parameters, dose-length product and effective mAs averaged over the whole scan can provide an assessment in terms of E that is sufficiently accurate to quantify relative risk for routine patient exposures under ATCM. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K
2009-10-01
The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.
Organ dose conversion coefficients for tube current modulated CT protocols for an adult population
NASA Astrophysics Data System (ADS)
Fu, Wanyi; Tian, Xiaoyu; Sahbaee, Pooyan; Zhang, Yakun; Segars, William Paul; Samei, Ehsan
2016-03-01
In computed tomography (CT), patient-specific organ dose can be estimated using pre-calculated organ dose conversion coefficients (organ dose normalized by CTDIvol, h factor) database, taking into account patient size and scan coverage. The conversion coefficients have been previously estimated for routine body protocol classes, grouped by scan coverage, across an adult population for fixed tube current modulated CT. The coefficients, however, do not include the widely utilized tube current (mA) modulation scheme, which significantly impacts organ dose. This study aims to extend the h factors and the corresponding dose length product (DLP) to create effective dose conversion coefficients (k factor) database incorporating various tube current modulation strengths. Fifty-eight extended cardiac-torso (XCAT) phantoms were included in this study representing population anatomy variation in clinical practice. Four mA profiles, representing weak to strong mA dependency on body attenuation, were generated for each phantom and protocol class. A validated Monte Carlo program was used to simulate the organ dose. The organ dose and effective dose was further normalized by CTDIvol and DLP to derive the h factors and k factors, respectively. The h factors and k factors were summarized in an exponential regression model as a function of body size. Such a population-based mathematical model can provide a comprehensive organ dose estimation given body size and CTDIvol. The model was integrated into an iPhone app XCATdose version 2, enhancing the 1st version based upon fixed tube current modulation. With the organ dose calculator, physicists, physicians, and patients can conveniently estimate organ dose.
Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas
2016-01-01
To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.
Lin, Ming-Fang; Chen, Chia-Yuen; Lee, Yuan-Hao; Li, Chia-Wei; Gerweck, Leo E; Wang, Hao; Chan, Wing P
2018-01-01
Background Multiple rounds of head computed tomography (CT) scans increase the risk of radiation-induced lens opacification. Purpose To investigate the effects of CT eye shielding and topogram-based tube current modulation (TCM) on the radiation dose received by the lens and the image quality of nasal and periorbital imaging. Material and Methods An anthropomorphic phantom was CT-scanned using either automatic tube current modulation or a fixed tube current. The lens radiation dose was estimated using cropped Gafchromic films irradiated with or without a shield over the orbit. Image quality, assessed using regions of interest drawn on the bilateral extraorbital areas and the nasal bone with a water-based marker, was evaluated using both a signal-to-noise ratio (SNR) and contrast-noise ratio (CNR). Two CT specialists independently assessed image artifacts using a three-point Likert scale. Results The estimated radiation dose received by the lens was significantly lower when barium sulfate or bismuth-antimony shields were used in conjunction with a fixed tube current (22.0% and 35.6% reduction, respectively). Topogram-based TCM mitigated the beam hardening-associated artifacts of bismuth-antimony and barium sulfate shields. This increased the SNR by 21.6% in the extraorbital region and the CNR by 7.2% between the nasal bones and extraorbital regions. The combination of topogram-based TCM and barium sulfate or bismuth-antimony shields reduced lens doses by 12.2% and 27.2%, respectively. Conclusion Image artifacts induced by the bismuth-antimony shield at a fixed tube current for lenticular radioprotection were significantly reduced by topogram-based TCM, which increased the SNR of the anthropomorphic nasal bones and periorbital tissues.
Papadakis, Antonios E; Perisinakis, Kostas; Damilakis, John
2014-10-01
To study the effect of patient size, body region and modulation strength on tube current and image quality on CT examinations that use automatic tube current modulation (ATCM). Ten physical anthropomorphic phantoms that simulate an individual as neonate, 1-, 5-, 10-year-old and adult at various body habitus were employed. CT acquisition of head, neck, thorax and abdomen/pelvis was performed with ATCM activated at weak, average and strong modulation strength. The mean modulated mAs (mAsmod) values were recorded. Image noise was measured at selected anatomical sites. The mAsmod recorded for neonate compared to 10-year-old increased by 30 %, 14 %, 6 % and 53 % for head, neck, thorax and abdomen/pelvis, respectively, (P < 0.05). The mAsmod was lower than the preselected mAs with the exception of the 10-year-old phantom. In paediatric and adult phantoms, the mAsmod ranged from 44 and 53 for weak to 117 and 93 for strong modulation strength, respectively. At the same exposure parameters image noise increased with body size (P < 0.05). The ATCM system studied here may affect dose differently for different patient habitus. Dose may decrease for overweight adults but increase for children older than 5 years old. Care should be taken when implementing ATCM protocols to ensure that image quality is maintained. • ATCM efficiency is related to the size of the patient's body. • ATCM should be activated without caution in overweight adult individuals. • ATCM may increase radiation dose in children older than 5 years old. • ATCM efficiency depends on the protocol selected for a specific anatomical region. • Modulation strength may be appropriately tuned to enhance ATCM efficiency.
A methodology for image quality evaluation of advanced CT systems.
Wilson, Joshua M; Christianson, Olav I; Richard, Samuel; Samei, Ehsan
2013-03-01
This work involved the development of a phantom-based method to quantify the performance of tube current modulation and iterative reconstruction in modern computed tomography (CT) systems. The quantification included resolution, HU accuracy, noise, and noise texture accounting for the impact of contrast, prescribed dose, reconstruction algorithm, and body size. A 42-cm-long, 22.5-kg polyethylene phantom was designed to model four body sizes. Each size was represented by a uniform section, for the measurement of the noise-power spectrum (NPS), and a feature section containing various rods, for the measurement of HU and the task-based modulation transfer function (TTF). The phantom was scanned on a clinical CT system (GE, 750HD) using a range of tube current modulation settings (NI levels) and reconstruction methods (FBP and ASIR30). An image quality analysis program was developed to process the phantom data to calculate the targeted image quality metrics as a function of contrast, prescribed dose, and body size. The phantom fabrication closely followed the design specifications. In terms of tube current modulation, the tube current and resulting image noise varied as a function of phantom size as expected based on the manufacturer specification: From the 16- to 37-cm section, the HU contrast for each rod was inversely related to phantom size, and noise was relatively constant (<5% change). With iterative reconstruction, the TTF exhibited a contrast dependency with better performance for higher contrast objects. At low noise levels, TTFs of iterative reconstruction were better than those of FBP, but at higher noise, that superiority was not maintained at all contrast levels. Relative to FBP, the NPS of iterative reconstruction exhibited an ~30% decrease in magnitude and a 0.1 mm(-1) shift in the peak frequency. Phantom and image quality analysis software were created for assessing CT image quality over a range of contrasts, doses, and body sizes. The testing platform enabled robust NPS, TTF, HU, and pixel noise measurements as a function of body size capable of characterizing the performance of reconstruction algorithms and tube current modulation techniques.
TU-EF-204-07: Add Tube Current Modulation to a Low Dose Simulation Tool for CT Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y.; Department of Physics, University of Arizona, Tucson, AZ; Wen, G.
2015-06-15
Purpose: We extended the capabilities of a low dose simulation tool to model Tube-Current Modulation (TCM). TCM is widely used in clinical practice to reduce radiation dose in CT scans. We expect the tool to be valuable for various clinical applications (e.g., optimize protocols, compare reconstruction techniques and evaluate TCM methods). Methods: The tube current is input as a function of z location, instead of a fixed value. Starting from the line integrals of a scan, a new Poisson noise realization at a lower dose is generated for each view. To validate the new functionality, we compared simulated scans withmore » real scans in image space. Results: First we assessed noise in the difference between the low-dose simulations and the original high-dose scan. When the simulated tube current is a step function of z location, the noise at each segment matches the noise of 3 separate constant-tube-current-simulations. Secondly, with a phantom that forces TCM, we compared a low-dose simulation with an equivalent real low-dose scan. The mean CT number of the simulated scan and the real low-dose scan were 137.7±0.6 and 137.8±0.5 respectively. Furthermore, with 240 ROIs, the noise of the simulated scan and the real low-dose scan were 24.03±0.45 and 23.99±0.43 respectively, and they were not statistically different (2-sample t-test, p-value=0.28). The facts that the noise reflected the trend of the TCM curve, and that the absolute noise measurements were not statistically different validated the TCM function. Conclusion: We successfully added tube-current modulation functionality in an existing low dose simulation tool. We demonstrated that the noise reflected an input tube-current modulation curve. In addition, we verified that the noise and mean CT number of our simulation agreed with a real low dose scan. The authors are all employees of Philips. Yijun Ding is also supported by NIBIB P41EB002035 and NIBIB R01EB000803.« less
Estimating Radiation Dose Metrics for Patients Undergoing Tube Current Modulation CT Scans
NASA Astrophysics Data System (ADS)
McMillan, Kyle Lorin
Computed tomography (CT) has long been a powerful tool in the diagnosis of disease, identification of tumors and guidance of interventional procedures. With CT examinations comes the concern of radiation exposure and the associated risks. In order to properly understand those risks on a patient-specific level, organ dose must be quantified for each CT scan. Some of the most widely used organ dose estimates are derived from fixed tube current (FTC) scans of a standard sized idealized patient model. However, in current clinical practice, patient size varies from neonates weighing just a few kg to morbidly obese patients weighing over 200 kg, and nearly all CT exams are performed with tube current modulation (TCM), a scanning technique that adjusts scanner output according to changes in patient attenuation. Methods to account for TCM in CT organ dose estimates have been previously demonstrated, but these methods are limited in scope and/or restricted to idealized TCM profiles that are not based on physical observations and not scanner specific (e.g. don't account for tube limits, scanner-specific effects, etc.). The goal of this work was to develop methods to estimate organ doses to patients undergoing CT scans that take into account both the patient size as well as the effects of TCM. This work started with the development and validation of methods to estimate scanner-specific TCM schemes for any voxelized patient model. An approach was developed to generate estimated TCM schemes that match actual TCM schemes that would have been acquired on the scanner for any patient model. Using this approach, TCM schemes were then generated for a variety of body CT protocols for a set of reference voxelized phantoms for which TCM information does not currently exist. These are whole body patient models representing a variety of sizes, ages and genders that have all radiosensitive organs identified. TCM schemes for these models facilitated Monte Carlo-based estimates of fully-, partially- and indirectly-irradiated organ dose from TCM CT exams. By accounting for the effects of patient size in the organ dose estimates, a comprehensive set of patient-specific dose estimates from TCM CT exams was developed. These patient-specific organ dose estimates from TCM CT exams will provide a more complete understanding of the dose impact and risks associated with modern body CT scanning protocols.
SU-F-207-03: Dosimetric Effect of the Position of Arms in Torso CT Scan with Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Institute, Troy, NY; Gao, Y
Purpose: To evaluate the patient organ dose differences between the arms-raised and arms-lowered postures in Torso multidetector computed tomography (MDCT) scan protocols with tube current modulation (TCM). Methods: Patient CT organ doses were simulated using the Monte Carlo method with human phantoms and a validated CT scanner model. A set of adult human phantoms with arms raised and arms lowered postures were developed using advanced BREP-based mesh surface geometries. Organ doses from routine Torso scan protocols such as chest, abdomen-pelvis, and CAP scans were simulated. The organ doses differences caused by two different posutres were investigated when tube current modulationmore » (TCM) were applied during the CT scan. Results: With TCM applied, organ doses of all the listed organs of arms-lowered posture phantom are larger than those of arms raised phantom. The dose difference for most of the organs or tissues are larger than 50%, and the skin doses difference for abdomen-pelvis scan even reaches 112.03%. This is due to the fact that the tube current for patient with arms-lowered is much higher than for the arms raised posture. Conclusion: Considering CT scan with TCM, which is commonly applied clinically, patients who could not raise their arms will receive higher radiation dose than the arms raised patient, with dose differences for some tissues such as the skin being larger than 100%. This is due to the additional tube current necessary to penetrate the arms while maintaining consistent image quality. National Nature Science Foundation of China(No.11475047)« less
Prospective estimation of organ dose in CT under tube current modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Xiaoyu, E-mail: xt3@duke.edu; Li, Xiang; Segars, W. Paul
Purpose: Computed tomography (CT) has been widely used worldwide as a tool for medical diagnosis and imaging. However, despite its significant clinical benefits, CT radiation dose at the population level has become a subject of public attention and concern. In this light, optimizing radiation dose has become a core responsibility for the CT community. As a fundamental step to manage and optimize dose, it may be beneficial to have accurate and prospective knowledge about the radiation dose for an individual patient. In this study, the authors developed a framework to prospectively estimate organ dose for chest and abdominopelvic CT examsmore » under tube current modulation (TCM). Methods: The organ dose is mainly dependent on two key factors: patient anatomy and irradiation field. A prediction process was developed to accurately model both factors. To model the anatomical diversity and complexity in the patient population, the authors used a previously developed library of computational phantoms with broad distributions of sizes, ages, and genders. A selected clinical patient, represented by a computational phantom in the study, was optimally matched with another computational phantom in the library to obtain a representation of the patient’s anatomy. To model the irradiation field, a previously validated Monte Carlo program was used to model CT scanner systems. The tube current profiles were modeled using a ray-tracing program as previously reported that theoretically emulated the variability of modulation profiles from major CT machine manufacturers Li et al., [Phys. Med. Biol. 59, 4525–4548 (2014)]. The prediction of organ dose was achieved using the following process: (1) CTDI{sub vol}-normalized-organ dose coefficients (h{sub organ}) for fixed tube current were first estimated as the prediction basis for the computational phantoms; (2) each computation phantom, regarded as a clinical patient, was optimally matched with one computational phantom in the library; (3) to account for the effect of the TCM scheme, a weighted organ-specific CTDI{sub vol} [denoted as (CTDI{sub vol}){sub organ,weighted}] was computed for each organ based on the TCM profile and the anatomy of the “matched” phantom; (4) the organ dose was predicted by multiplying the weighted organ-specific CTDI{sub vol} with the organ dose coefficients (h{sub organ}). To quantify the prediction accuracy, each predicted organ dose was compared with the corresponding organ dose simulated from the Monte Carlo program with the TCM profile explicitly modeled. Results: The predicted organ dose showed good agreements with the simulated organ dose across all organs and modulation profiles. The average percentage error in organ dose estimation was generally within 20% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. For an average CTDI{sub vol} of a CT exam of 10 mGy, the average error at full modulation strength (α = 1) across all organs was 0.91 mGy for chest exams, and 0.82 mGy for abdominopelvic exams. Conclusions: This study developed a quantitative model to predict organ dose for clinical chest and abdominopelvic scans. Such information may aid in the design of optimized CT protocols in relation to a targeted level of image quality.« less
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
Neculaes, V. Bogdan; Caiafa, Antonio; Cao, Yang; De Man, Bruno; Edic, Peter M.; Frutschy, Kristopher; Gunturi, Satish; Inzinna, Lou; Reynolds, Joseph; Vermilyea, Mark; Wagner, David; Zhang, Xi; Zou, Yun; Pelc, Norbert J.; Lounsberry, Brian
2016-01-01
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode block per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations. PMID:27487878
Multisource inverse-geometry CT. Part II. X-ray source design and prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neculaes, V. Bogdan, E-mail: neculaes@ge.com; Caia
2016-08-15
Purpose: This paper summarizes the development of a high-power distributed x-ray source, or “multisource,” designed for inverse-geometry computed tomography (CT) applications [see B. De Man et al., “Multisource inverse-geometry CT. Part I. System concept and development,” Med. Phys. 43, 4607–4616 (2016)]. The paper presents the evolution of the source architecture, component design (anode, emitter, beam optics, control electronics, high voltage insulator), and experimental validation. Methods: Dispenser cathode emitters were chosen as electron sources. A modular design was adopted, with eight electron emitters (two rows of four emitters) per module, wherein tungsten targets were brazed onto copper anode blocks—one anode blockmore » per module. A specialized ceramic connector provided high voltage standoff capability and cooling oil flow to the anode. A matrix topology and low-noise electronic controls provided switching of the emitters. Results: Four modules (32 x-ray sources in two rows of 16) have been successfully integrated into a single vacuum vessel and operated on an inverse-geometry computed tomography system. Dispenser cathodes provided high beam current (>1000 mA) in pulse mode, and the electrostatic lenses focused the current beam to a small optical focal spot size (0.5 × 1.4 mm). Controlled emitter grid voltage allowed the beam current to be varied for each source, providing the ability to modulate beam current across the fan of the x-ray beam, denoted as a virtual bowtie filter. The custom designed controls achieved x-ray source switching in <1 μs. The cathode-grounded source was operated successfully up to 120 kV. Conclusions: A high-power, distributed x-ray source for inverse-geometry CT applications was successfully designed, fabricated, and operated. Future embodiments may increase the number of spots and utilize fast read out detectors to increase the x-ray flux magnitude further, while still staying within the stationary target inherent thermal limitations.« less
CT breast dose reduction with the use of breast positioning and organ-based tube current modulation.
Fu, Wanyi; Tian, Xiaoyu; Sturgeon, Gregory M; Agasthya, Greeshma; Segars, William Paul; Goodsitt, Mitchell M; Kazerooni, Ella A; Samei, Ehsan
2017-02-01
This study aimed to investigate the breast dose reduction potential of a breast-positioning (BP) technique for thoracic CT examinations with organ-based tube current modulation (OTCM). This study included 13 female anthropomorphic computational phantoms (XCAT, age range: 27-65 y.o., weight range: 52-105.8 kg). Each phantom was modified to simulate three breast sizes in standard supine geometry. The modeled breasts were then morphed to emulate BP that constrained the majority of the breast tissue inside the 120° anterior tube current (mA) reduction zone. The OTCM mA value was modeled using a ray-tracing program, which reduced the mA to 20% in the anterior region with a corresponding increase to the posterior region. The organ doses were estimated by a validated Monte Carlo program for a typical clinical CT system (SOMATOM Definition Flash, Siemens Healthcare). The simulated organ doses and organ doses normalized by CTDI vol were used to compare three CT protocols: attenuation-based tube current modulation (ATCM), OTCM, and OTCM with BP (OTCM BP ). On average, compared to ATCM, OTCM reduced breast dose by 19.3 ± 4.5%, whereas OTCM BP reduced breast dose by 38.6 ± 8.1% (an additional 23.8 ± 9.4%). The dose saving of OTCM BP was more significant for larger breasts (on average 33, 38, and 44% reduction for 0.5, 1, and 2 kg breasts, respectively). Compared to ATCM, OTCM BP also reduced thymus and heart dose by 15.1 ± 7.4% and 15.9 ± 6.2% respectively. In thoracic CT examinations, OTCM with a breast-positioning technique can markedly reduce unnecessary exposure to radiosensitive organs in anterior chest wall, specifically breast tissue. The breast dose reduction is more notable for women with larger breasts. © 2016 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Mathews, A. J.; Gang, G.; Levinson, R.; Zbijewski, W.; Kawamoto, S.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Acquisition of CT images with comparable diagnostic power can potentially be achieved with lower radiation exposure than the current standard of care through the adoption of hardware-based fluence-field modulation (e.g. dynamic bowtie filters). While modern CT scanners employ elements such as static bowtie filters and tube-current modulation, such solutions are limited in the fluence patterns that they can achieve, and thus are limited in their ability to adapt to broad classes of patient morphology. Fluence-field modulation also enables new applications such as region-of-interest imaging, task specific imaging, reducing measurement noise or improving image quality. The work presented in this paper leverages a novel fluence modulation strategy that uses "Multiple Aperture Devices" (MADs) which are, in essence, binary filters, blocking or passing x-rays on a fine scale. Utilizing two MAD devices in series provides the capability of generating a large number of fluence patterns via small relative motions between the MAD filters. We present the first experimental evaluation of fluence-field modulation using a dual-MAD system, and demonstrate the efficacy of this technique with a characterization of achievable fluence patterns and an investigation of experimental projection data.
Funama, Yoshinori; Taguchi, Katsuyuki; Utsunomiya, Daisuke; Oda, Seitaro; Murasaki, Hiroo; Yamashita, Yasuyuki; Awai, Kazuo
2012-01-01
The purpose of our study was to acquire dose profiles at critical organs of lung and breast regions using optically stimulated luminescence (OSL) dosimeters; assess the actual radiation dose delivered at retrospective and prospective computed tomography coronary angiography (CTCA). Using a chest CT phantom we applied a prospectively-gated step-and-shoot- and a retrospectively-gated helical mode on a 64-detector row CT scanner. Retrospective scan mode was used with and without electrocardiogram (ECG) based tube current modulation. OSL dosimeters were used to measure dose profiles. In the both scan modes we acquired dose profiles and determined the mean and maximum dose in left lung and in left breast regions. In prospective mode, the mean dose was 21.53 mGy in left lung- and 23.59 mGy in left breast region. With respect to the retrospective mode, the mean dose with tube current modulation was 38.63 mGy for left lung- and 46.02 mGy for left breast region, i.e. 0.56 and 0.55 times lower than the mean dose without modulation. The OSL dosimeter is useful for measurement of the actual radiation dose along z-axis at lung and breast regions in the prospective and the retrospective CTCA. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Nikupaavo, Ulla; Kaasalainen, Touko; Reijonen, Vappu; Ahonen, Sanna-Mari; Kortesniemi, Mika
2015-01-01
The purpose of this study was to study different optimization methods for reducing eye lens dose in head CT. Two anthropomorphic phantoms were scanned with a routine head CT protocol for evaluation of the brain that included bismuth shielding, gantry tilting, organ-based tube current modulation, or combinations of these techniques. Highsensitivity metal oxide semiconductor field effect transistor dosimeters were used to measure local equivalent doses in the head region. The relative changes in image noise and contrast were determined by ROI analysis. The mean absorbed lens doses varied from 4.9 to 19.7 mGy and from 10.8 to 16.9 mGy in the two phantoms. The most efficient method for reducing lens dose was gantry tilting, which left the lenses outside the primary radiation beam, resulting in an approximately 75% decrease in lens dose. Image noise decreased, especially in the anterior part of the brain. The use of organ-based tube current modulation resulted in an approximately 30% decrease in lens dose. However, image noise increased as much as 30% in the posterior and central parts of the brain. With bismuth shields, it was possible to reduce lens dose as much as 25%. Our results indicate that gantry tilt, when possible, is an effective method for reducing exposure of the eye lenses in CT of the brain without compromising image quality. Measurements in two different phantoms showed how patient geometry affects the optimization. When lenses can only partially be cropped outside the primary beam, organ-based tube current modulation or bismuth shields can be useful in lens dose reduction.
Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning.
Iball, Gareth R; Tout, Deborah
2014-04-01
Computed tomography (CT) automatic exposure control (AEC) systems are now used in all modern PET-CT scanners. A collaborative study was undertaken to compare AEC techniques of the three major PET-CT manufacturers for fluorine-18 fluorodeoxyglucose half-body oncology imaging. An audit of 70 patients was performed for half-body CT scans taken on a GE Discovery 690, Philips Gemini TF and Siemens Biograph mCT (all 64-slice CT). Patient demographic and dose information was recorded and image noise was calculated as the SD of Hounsfield units in the liver. A direct comparison of the AEC systems was made by scanning a Rando phantom on all three systems for a range of AEC settings. The variation in dose and image quality with patient weight was significantly different for all three systems, with the GE system showing the largest variation in dose with weight and Philips the least. Image noise varied with patient weight in Philips and Siemens systems but was constant for all weights in GE. The z-axis mA profiles from the Rando phantom demonstrate that these differences are caused by the nature of the tube current modulation techniques applied. The mA profiles varied considerably according to the AEC settings used. CT AEC techniques from the three manufacturers yield significantly different tube current modulation patterns and hence deliver different doses and levels of image quality across a range of patient weights. Users should be aware of how their system works and of steps that could be taken to optimize imaging protocols.
Assessment of an organ-based tube current modulation in thoracic computed tomography.
Matsubara, Kosuke; Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-03-08
Recently, specific computed tomography (CT) scanners have been equipped with organ-based tube current modulation (TCM) technology. It is possible that organ-based TCM will replace the conventional dose-reduction technique of reducing the effective milliampere-second. The aim of this study was to determine if organ-based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ-based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ-based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ-based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ-based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, K; Bostani, M; McNitt-Gray, M
2015-06-15
Purpose: Most patient models used in Monte Carlo-based estimates of CT dose, including computational phantoms, do not have tube current modulation (TCM) data associated with them. While not a problem for fixed tube current simulations, this is a limitation when modeling the effects of TCM. Therefore, the purpose of this work was to develop and validate methods to estimate TCM schemes for any voxelized patient model. Methods: For 10 patients who received clinically-indicated chest (n=5) and abdomen/pelvis (n=5) scans on a Siemens CT scanner, both CT localizer radiograph (“topogram”) and image data were collected. Methods were devised to estimate themore » complete x-y-z TCM scheme using patient attenuation data: (a) available in the Siemens CT localizer radiograph/topogram itself (“actual-topo”) and (b) from a simulated topogram (“sim-topo”) derived from a projection of the image data. For comparison, the actual TCM scheme was extracted from the projection data of each patient. For validation, Monte Carlo simulations were performed using each TCM scheme to estimate dose to the lungs (chest scans) and liver (abdomen/pelvis scans). Organ doses from simulations using the actual TCM were compared to those using each of the estimated TCM methods (“actual-topo” and “sim-topo”). Results: For chest scans, the average differences between doses estimated using actual TCM schemes and estimated TCM schemes (“actual-topo” and “sim-topo”) were 3.70% and 4.98%, respectively. For abdomen/pelvis scans, the average differences were 5.55% and 6.97%, respectively. Conclusion: Strong agreement between doses estimated using actual and estimated TCM schemes validates the methods for simulating Siemens topograms and converting attenuation data into TCM schemes. This indicates that the methods developed in this work can be used to accurately estimate TCM schemes for any patient model or computational phantom, whether a CT localizer radiograph is available or not. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rupcich, Franco; Badal, Andreu; Kyprianou, Iacovos
Purpose: The purpose of this study was to develop a database for estimating organ dose in a voxelized patient model for coronary angiography and brain perfusion CT acquisitions with any spectra and angular tube current modulation setting. The database enables organ dose estimation for existing and novel acquisition techniques without requiring Monte Carlo simulations. Methods: The study simulated transport of monoenergetic photons between 5 and 150 keV for 1000 projections over 360 Degree-Sign through anthropomorphic voxelized female chest and head (0 Degree-Sign and 30 Degree-Sign tilt) phantoms and standard head and body CTDI dosimetry cylinders. The simulations resulted in tablesmore » of normalized dose deposition for several radiosensitive organs quantifying the organ dose per emitted photon for each incident photon energy and projection angle for coronary angiography and brain perfusion acquisitions. The values in a table can be multiplied by an incident spectrum and number of photons at each projection angle and then summed across all energies and angles to estimate total organ dose. Scanner-specific organ dose may be approximated by normalizing the database-estimated organ dose by the database-estimated CTDI{sub vol} and multiplying by a physical CTDI{sub vol} measurement. Two examples are provided demonstrating how to use the tables to estimate relative organ dose. In the first, the change in breast and lung dose during coronary angiography CT scans is calculated for reduced kVp, angular tube current modulation, and partial angle scanning protocols relative to a reference protocol. In the second example, the change in dose to the eye lens is calculated for a brain perfusion CT acquisition in which the gantry is tilted 30 Degree-Sign relative to a nontilted scan. Results: Our database provides tables of normalized dose deposition for several radiosensitive organs irradiated during coronary angiography and brain perfusion CT scans. Validation results indicate total organ doses calculated using our database are within 1% of those calculated using Monte Carlo simulations with the same geometry and scan parameters for all organs except red bone marrow (within 6%), and within 23% of published estimates for different voxelized phantoms. Results from the example of using the database to estimate organ dose for coronary angiography CT acquisitions show 2.1%, 1.1%, and -32% change in breast dose and 2.1%, -0.74%, and 4.7% change in lung dose for reduced kVp, tube current modulated, and partial angle protocols, respectively, relative to the reference protocol. Results show -19.2% difference in dose to eye lens for a tilted scan relative to a nontilted scan. The reported relative changes in organ doses are presented without quantification of image quality and are for the sole purpose of demonstrating the use of the proposed database. Conclusions: The proposed database and calculation method enable the estimation of organ dose for coronary angiography and brain perfusion CT scans utilizing any spectral shape and angular tube current modulation scheme by taking advantage of the precalculated Monte Carlo simulation results. The database can be used in conjunction with image quality studies to develop optimized acquisition techniques and may be particularly beneficial for optimizing dual kVp acquisitions for which numerous kV, mA, and filtration combinations may be investigated.« less
NASA Astrophysics Data System (ADS)
Li, Xiang; Segars, W. Paul; Samei, Ehsan
2014-08-01
Body CT scans are routinely performed using tube-current-modulation (TCM) technology. There is notable variability across CT manufacturers in terms of how TCM technology is implemented. Some manufacturers aim to provide uniform image noise across body regions and patient sizes, whereas others aim to provide lower noise for smaller patients. The purpose of this study was to conduct a theoretical investigation to understand how manufacturer-dependent TCM scheme affects organ dose, and to develop a generic approach for assessing organ dose across TCM schemes. The adult reference female extended cardiac-torso (XCAT) phantom was used for this study. A ray-tracing method was developed to calculate the attenuation of the phantom for a given projection angle based on phantom anatomy, CT system geometry, x-ray energy spectrum, and bowtie filter filtration. The tube current (mA) for a given projection angle was then calculated as a log-linear function of the attenuation along that projection. The slope of this function, termed modulation control strength, α, was varied from 0 to 1 to emulate the variability in TCM technology. Using a validated Monte Carlo program, organ dose was simulated for five α values (α = 0, 0.25, 0.5, 0.75, and 1) in the absence and presence of a realistic system mA limit. Organ dose was further normalized by volume-weighted CT dose index (CTDIvol) to obtain conversion factors (h factors) that are relatively independent of system specifics and scan parameters. For both chest and abdomen-pelvis scans and for 24 radiosensitive organs, organ dose conversion factors varied with α, following second-order polynomial equations. This result suggested the need for α-specific organ dose conversion factors (i.e., conversion factors specific to the modulation scheme used). On the other hand, across the full range of α values, organ dose in a TCM scan could be derived from the conversion factors established for a fixed-mA scan (hFIXED). This was possible by multiplying hFIXED by a revised definition of CTDIvol that accounts for two factors: (a) the tube currents at the location of an organ and (b) the variation in organ volume along the longitudinal direction. This α-generic approach represents an approximation. The error associated with this approximation was evaluated using the α-specific organ dose (i.e., the organ dose obtained by using α-specific mA profiles as inputs into the Monte Carlo simulation) as the reference standard. When the mA profiles were constrained by a realistic system limit, this α-generic approach had errors of less than ~20% for the full range of α values. This was the case for 24 radiosensitive organs in both chest and abdomen-pelvis CT scans with the exception of thyroid in the chest scan and bladder in the abdomen-pelvis scan. For these two organs, the errors were less than ~40%. The results of this theoretical study suggested that knowing the mA modulation profile and the fixed-mA conversion factors, organ dose may be estimated for a TCM scan independent of the specific modulation scheme applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Y; Liu, B; Kalra, M
Purpose: X-rays from CT scans can increase cancer risk to patients. Lifetime Attributable Risk of Cancer Incidence for adult patients has been investigated and shown to decrease as patient age. However, a new risk model shows an increasing risk trend for several radiosensitive organs for middle age patients. This study investigates the feasibility of a general method for optimizing tube current modulation (TCM) functions to minimize risk by reducing radiation dose to radiosensitive organs of patients. Methods: Organ-based TCM has been investigated in literature for eye lens dose and breast dose. Adopting the concept in organ-based TCM, this study seeksmore » to find an optimized tube current for minimal total risk to breasts and lungs by reducing dose to these organs. The contributions of each CT view to organ dose are determined through simulations of CT scan view-by-view using a GPU-based fast Monte Carlo code, ARCHER. A Linear Programming problem is established for tube current optimization, with Monte Carlo results as weighting factors at each view. A pre-determined dose is used as upper dose boundary, and tube current of each view is optimized to minimize the total risk. Results: An optimized tube current is found to minimize the total risk of lungs and breasts: compared to fixed current, the risk is reduced by 13%, with breast dose reduced by 38% and lung dose reduced by 7%. The average tube current is maintained during optimization to maintain image quality. In addition, dose to other organs in chest region is slightly affected, with relative change in dose smaller than 10%. Conclusion: Optimized tube current plans can be generated to minimize cancer risk to lungs and breasts while maintaining image quality. In the future, various risk models and greater number of projections per rotation will be simulated on phantoms of different gender and age. National Institutes of Health R01EB015478.« less
Assessment of an organ‐based tube current modulation in thoracic computed tomography
Sugai, Mai; Toyoda, Asami; Koshida, Haruka; Sakuta, Keita; Takata, Tadanori; Koshida, Kichiro; Iida, Hiroji; Matsui, Osamu
2012-01-01
Recently, specific computed tomography (CT) scanners have been equipped with organ‐based tube current modulation (TCM) technology. It is possible that organ‐based TCM will replace the conventional dose‐reduction technique of reducing the effective milliampere‐second. The aim of this study was to determine if organ‐based TCM could reduce radiation exposure to the breasts without compromising the image uniformity and beam hardening effect in thoracic CT examinations. Breast and skin radiation doses and the absorbed radiation dose distribution within a single section were measured with an anthropomorphic phantom and radiophotoluminescent glass dosimeters using four approaches to thoracic CT (reference, organ‐based TCM, copper shielding, and the combination of the above two techniques, hereafter referred to as the combination technique). The CT value and noise level were measured using the same calibration phantom. Organ‐based TCM and copper shielding reduced radiation doses to the breast by 23.7% and 21.8%, respectively. However, the CT value increased, especially in the anterior region, using copper shielding. In contrast, the CT value and noise level barely increased using organ‐based TCM. The combination technique reduced the radiation dose to the breast by 38.2%, but greatly increased the absorbed radiation dose from the central to the posterior regions. Moreover, the CT value increased in the anterior region and the noise level increased by more than 10% in the entire region. Therefore, organ‐based TCM can reduce radiation doses to breasts with only small increases in noise levels, making it preferable for specific groups of patients, such as children and young women. PACS numbers: 87.53.Bn; 87.57.Q‐; 87.57.qp PMID:22402390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, R. M.; Silosky, M., E-mail: michael.silosky@ucdenver.edu
Purpose: The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. Methods: This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position themore » dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. Results: (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R{sup 2} = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o’clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. Conclusions: (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.« less
Marsh, R M; Silosky, M
2015-04-01
The purpose of this work was to characterize commercially available optically stimulated luminescent (OSL) dosimeters for general clinical applications and apply the results to the development of a method to evaluate the efficacy of a vendor-specific organ-based tube current modulation application for both phantom and clinical computed tomography (CT) scans of the face and orbits. This study consisted of three components: (1) thorough characterization of the dosimeters for CT scans in phantom, including evaluations of depletion, fading, angular dependence, and conversion from counts to absorbed dose; (2) evaluation of the efficacy of using plastic glasses to position the dosimeters over the eyes in both phantom and clinical studies; and (3) preliminary dosimetry measurements made using organ-based tube current modulation in computed tomography dose index (CTDI) and anthropomorphic phantom studies. (1) Depletion effects were found to have a linear relationship with the output of the OSL dosimeters (R(2) = 0.96). Fading was found to affect dosimeter readings during the first two hours following exposure but had no effect during the remaining 60-h period observed. No significant angular dependence was observed for the exposure conditions used in this study (with p-values ranging from 0.9 to 0.26 for all t-tests). Dosimeter counts varied linearly with absorbed dose when measured in the center and 12 o'clock positions of the CTDI phantoms. These linear models of counts versus absorbed dose had overlapping 95% confidence intervals for the intercepts but not for the slopes. (2) When dosimeters were positioned using safety glasses, there was no adverse effect on image quality, and there was no statistically significant difference between this placement and placement of the dosimeters directly on the eyes of the phantom (p = 0.24). (3) When using organ-based tube current modulation, the dose to the lens of the eye was reduced between 19% and 43%, depending on the scan protocol used and the positioning of the phantom. Furthermore, the amount of dose reduction was significantly affected by the vertical position of the phantom, with the largest reduction in dose seen when the phantom was centered in the gantry. (1) An appropriate correction factor, specific to CT scanning, was developed to account for depletion and fading characteristics of the dosimeters. Additionally, an equation to convert dosimeter counts to absorbed dose was established. (2) The use of plastic safety glasses was validated as an appropriate positioning device when measuring dose to the lens of the eye. (3) The use of organ-based tube current modulation can reduce dose to the lens of the eye during CT scanning. The amount of dose reduction, however, is largely influenced by the positioning of the anatomy in the gantry.
Methods for CT automatic exposure control protocol translation between scanner platforms.
McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M
2014-03-01
An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of quantitative metrics (volumetric CT dose index or measured image noise) is feasible. Protocol translation has a dependency on patient size, especially between the GE and Siemens systems. Translation schemes that preserve dose levels may not produce identical image quality. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Dosimetric changes with computed tomography automatic tube-current modulation techniques.
Spampinato, Sofia; Gueli, Anna Maria; Milone, Pietro; Raffaele, Luigi Angelo
2018-04-06
The study is aimed at a verification of dose changes for a computed tomography automatic tube-current modulation (ATCM) technique. For this purpose, anthropomorphic phantom and Gafchromic ® XR-QA2 films were used. Radiochromic films were cut according to the shape of two thorax regions. The ATCM algorithm is based on noise index (NI) and three exam protocols with different NI were chosen, of which one was a reference. Results were compared with dose values displayed by the console and with Poisson statistics. The information obtained with radiochromic films has been normalized with respect to the NI reference value to compare dose percentage variations. Results showed that, on average, the information reported by the CT console and calculated values coincide with measurements. The study allowed verification of the dose information reported by the CT console for an ATCM technique. Although this evaluation represents an estimate, the method can be a starting point for further studies.
SU-E-I-37: Eye Lens Dose Reduction From CT Scan Using Organ Based Tube Current Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Rensselaer Polytechnic Inst., Troy, NY; Liu, T
Purpose: To investigate the eye lens dose reduction by CT scan with organ based tube current modulation (OBTCM) using GPU Monte Carlo code ARCHER-CT. Methods: 36 X-ray sources and bowtie filters were placed around the patient head with the projection angle interval of 10° for one rotation of CT scan, each projection was simulated respectively. The voxel eye models with high resolution(0.1mm*0.1mm*0.1mm) were used in the simulation and different tube voltage including 80kVp, 100kVp, 120kVp and 140kVp were taken into consideration. Results: The radiation doses to the eye lens increased with the tube voltage raised from 80kVp to 140kVp, andmore » the dose results from 0° (AP) direction are much higher than those from 180° (PA) direction for all the 4 different tube voltage investigated. This 360° projection dose characteristic enables organ based TCM, which can reduce the eye lens dose by more than 55%. Conclusion: As the eye lens belongs to superficial tissues, its radiation dose to external exposure like CT is direction sensitive, and this characteristic feature makes organ based TCM to be an effective way to reduce the eye lens dose, so more clinical use of this technique were recommended. National Nature Science Foundation of China(No.11475047)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jia; Duan Xinhui; Christner, Jodie A.
2011-11-15
Purpose: The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. Methods: Semi-anthropomorphic thorax phantoms of four different sizes (15, 30, 35, and 40 cm lateral width) were used for dose measurement and image quality assessment. Four scans were performed on each phantom using 100 or 120 kV with a clinical CT scanner: (1) reference scan; (2) scan with bismuth breast shield of an appropriate thickness; (3) scan with organ-based TCM; and (4)more » scan with a global reduction in tube current chosen to match the dose reduction from bismuth shielding. Dose to the breast was measured with an ion chamber on the surface of the phantom. Image quality was evaluated by measuring the mean and standard deviation of CT numbers within the lung and heart regions. Results: Compared to the reference scan, dose to the breast region was decreased by about 21% for the 15-cm phantom with a pediatric (2-ply) shield and by about 37% for the 30, 35, and 40-cm phantoms with adult (4-ply) shields. Organ-based TCM decreased the dose by 12% for the 15-cm phantom, and 34-39% for the 30, 35, and 40-cm phantoms. Global lowering of the tube current reduced breast dose by 23% for the 15-cm phantom and 39% for the 30, 35, and 40-cm phantoms. In phantoms of all four sizes, image noise was increased in both the lung and heart regions with bismuth shielding. No significant increase in noise was observed with organ-based TCM. Decreasing tube current globally led to similar noise increases as bismuth shielding. Streak and beam hardening artifacts, and a resulting artifactual increase in CT numbers, were observed for scans with bismuth shields, but not for organ-based TCM or global tube current reduction. Conclusions: Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.« less
Saltybaeva, Natalia; Krauss, Andreas; Alkadhi, Hatem
2017-03-01
Purpose To calculate the effect of localizer radiography projections to the total radiation dose, including both the dose from localizer radiography and that from subsequent chest computed tomography (CT) with tube current modulation (TCM). Materials and Methods An anthropomorphic phantom was scanned with 192-section CT without and with differently sized breast attachments. Chest CT with TCM was performed after one localizer radiographic examination with anteroposterior (AP) or posteroanterior (PA) projections. Dose distributions were obtained by means of Monte Carlo simulations based on acquired CT data. For Monte Carlo simulations of localizer radiography, the tube position was fixed at 0° and 180°; for chest CT, a spiral trajectory with TCM was used. The effect of tube start angles on dose distribution was investigated with Monte Carlo simulations by using TCM curves with fixed start angles (0°, 90°, and 180°). Total doses for lungs, heart, and breast were calculated as the sum of the dose from localizer radiography and CT. Image noise was defined as the standard deviation of attenuation measured in 14 circular regions of interest. The Wilcoxon signed rank test, paired t test, and Friedman analysis of variance were conducted to evaluate differences in noise, TCM curves, and organ doses, respectively. Results Organ doses from localizer radiography were lower when using a PA instead of an AP projection (P = .005). The use of a PA projection resulted in higher TCM values for chest CT (P < .001) owing to the higher attenuation (P < .001) and thus resulted in higher total organ doses for all investigated phantoms and protocols (P < .001). Noise in CT images was lower with PA localizer radiography than with AP localizer radiography (P = .03). The use of an AP projection allowed for total dose reductions of 16%, 15%, and 12% for lungs, breast, and heart, respectively. Differences in organ doses were not related to tube start angles (P = .17). Conclusion The total organ doses are higher when using PA projection localizer radiography owing to higher TCM values, whereas the organ doses from PA localizer radiography alone are lower. Thus, PA localizer radiography should be used in combination with reduced reference tube current at subsequent chest CT. © RSNA, 2016 Online supplemental material is available for this article.
The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.
Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia
2015-10-01
The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.
Estimating organ doses from tube current modulated CT examinations using a generalized linear model.
Bostani, Maryam; McMillan, Kyle; Lu, Peiyun; Kim, Grace Hyun J; Cody, Dianna; Arbique, Gary; Greenberg, S Bruce; DeMarco, John J; Cagnon, Chris H; McNitt-Gray, Michael F
2017-04-01
Currently, available Computed Tomography dose metrics are mostly based on fixed tube current Monte Carlo (MC) simulations and/or physical measurements such as the size specific dose estimate (SSDE). In addition to not being able to account for Tube Current Modulation (TCM), these dose metrics do not represent actual patient dose. The purpose of this study was to generate and evaluate a dose estimation model based on the Generalized Linear Model (GLM), which extends the ability to estimate organ dose from tube current modulated examinations by incorporating regional descriptors of patient size, scanner output, and other scan-specific variables as needed. The collection of a total of 332 patient CT scans at four different institutions was approved by each institution's IRB and used to generate and test organ dose estimation models. The patient population consisted of pediatric and adult patients and included thoracic and abdomen/pelvis scans. The scans were performed on three different CT scanner systems. Manual segmentation of organs, depending on the examined anatomy, was performed on each patient's image series. In addition to the collected images, detailed TCM data were collected for all patients scanned on Siemens CT scanners, while for all GE and Toshiba patients, data representing z-axis-only TCM, extracted from the DICOM header of the images, were used for TCM simulations. A validated MC dosimetry package was used to perform detailed simulation of CT examinations on all 332 patient models to estimate dose to each segmented organ (lungs, breasts, liver, spleen, and kidneys), denoted as reference organ dose values. Approximately 60% of the data were used to train a dose estimation model, while the remaining 40% was used to evaluate performance. Two different methodologies were explored using GLM to generate a dose estimation model: (a) using the conventional exponential relationship between normalized organ dose and size with regional water equivalent diameter (WED) and regional CTDI vol as variables and (b) using the same exponential relationship with the addition of categorical variables such as scanner model and organ to provide a more complete estimate of factors that may affect organ dose. Finally, estimates from generated models were compared to those obtained from SSDE and ImPACT. The Generalized Linear Model yielded organ dose estimates that were significantly closer to the MC reference organ dose values than were organ doses estimated via SSDE or ImPACT. Moreover, the GLM estimates were better than those of SSDE or ImPACT irrespective of whether or not categorical variables were used in the model. While the improvement associated with a categorical variable was substantial in estimating breast dose, the improvement was minor for other organs. The GLM approach extends the current CT dose estimation methods by allowing the use of additional variables to more accurately estimate organ dose from TCM scans. Thus, this approach may be able to overcome the limitations of current CT dose metrics to provide more accurate estimates of patient dose, in particular, dose to organs with considerable variability across the population. © 2017 American Association of Physicists in Medicine.
Falsetta, Megan L.; Klein, Marlise I.; Lemos, José A.; Silva, Bruno B.; Agidi, Senyo; Scott-Anne, Kathy K.
2012-01-01
Fluoride is the mainstay of dental caries prevention, and yet current applications offer incomplete protection and may not effectively address the infectious character of the disease. Therefore, we evaluated the effectiveness of a novel combination therapy (CT; 2 mM myricetin, 4 mM tt-farnesol, 250 ppm of fluoride) that supplements fluoride with naturally occurring, food-derived, antibiofilm compounds. Treatment regimens simulating those experienced clinically (twice daily for ≤60 s) were used both in vitro over a saliva-coated hydroxyapatite biofilm model and in vivo with a rodent model of dental caries. The effectiveness of CT was evaluated based on the incidence and severity of carious lesions (compared to fluoride or vehicle control). We found that CT was superior to fluoride (positive control, P < 0.05); topical applications dramatically reduced caries development in Sprague-Dawley rats, all without altering the Streptococcus mutans or total populations within the plaque. We subsequently identified the underlying mechanisms through which applications of CT modulate biofilm virulence. CT targets expression of key Streptococcus mutans genes during biofilm formation in vitro and in vivo. These are associated with exopolysaccharide matrix synthesis (gtfB) and the ability to tolerate exogenous stress (e.g., sloA), which are essential for cariogenic biofilm assembly. We also identified a unique gene (SMU.940) that was severely repressed and may represent a potentially novel target; its inactivation disrupted exopolysaccharide accumulation and matrix development. Altogether, CT may be clinically more effective than current anticaries modalities, targeting expression of bacterial virulence associated with pathogenesis of the disease. These observations may have relevance for development of enhanced therapies against other biofilm-dependent infections. PMID:22985885
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hui-Yu; Liao, Ying-Lan; Chang Gung University / Chang Gung Memorial Hospital, Taoyun, Taiwan
Purpose: The purpose of this study is to assess eye-lens dose for patients who underwent brain CT examinations using two dose reduction Methods: organ-based tube current modulation (OBTCM) and in-plane bismuth shielding method. Methods: This study received institutional review board approval; written informed consent to participate was obtained from all patients. Ninety patients who underwent the routine brain CT examination were randomly assigned to three groups, ie. routine, OBTCM, and bismuth shield. The OBTCM technique reduced the tube current when the X-ray tube rotates in front of patients’ eye-lens region. The patients in the bismuth shield group were covered one-plymore » bismuth shield in the eyes’ region. Eye-lens doses were measured using TLD-100H chips and the total effective doses were calculated using CT-Expo according to the CT scanning parameters. The surface doses for patients at off-center positions were assessed to evaluate the off-centering effect. Results: Phantom measurements indicates that OBTCM technique could reduced by 26% to 28% of the surface dose to the eye lens, and increased by 25% of the surface dose at the opposed incident direction at the angle of 180°. Patients’ eye-lens doses were reduced 16.9% and 30.5% dose of bismuth shield scan and OBTCM scan, respectively compared to the routine scan. The eye-lens doses were apparently increased when the table position was lower than isocenter. Conclusion: Reducing the dose to the radiosensitive organs, such as eye lens, during routine brain CT examinations could lower the radiation risks. The OBTCM technique and in-plane bismuth shielding could be used to reduce the eye-lens dose. The eye-lens dose could be effectively reduced using OBTCM scan without interfering the diagnostic image quality. Patient position relative the CT gantry also affects the dose level of the eye lens. This study was supported by the grants from the Ministry of Science and Technology of Taiwan (MOST103-2314-B-182-009-MY2), and Chang Gung Memorial Hospital (CMRPD1C0682)« less
Scatter correction using a primary modulator on a clinical angiography C-arm CT system.
Bier, Bastian; Berger, Martin; Maier, Andreas; Kachelrieß, Marc; Ritschl, Ludwig; Müller, Kerstin; Choi, Jang-Hwan; Fahrig, Rebecca
2017-09-01
Cone beam computed tomography (CBCT) suffers from a large amount of scatter, resulting in severe scatter artifacts in the reconstructions. Recently, a new scatter correction approach, called improved primary modulator scatter estimation (iPMSE), was introduced. That approach utilizes a primary modulator that is inserted between the X-ray source and the object. This modulation enables estimation of the scatter in the projection domain by optimizing an objective function with respect to the scatter estimate. Up to now the approach has not been implemented on a clinical angiography C-arm CT system. In our work, the iPMSE method is transferred to a clinical C-arm CBCT. Additional processing steps are added in order to compensate for the C-arm scanner motion and the automatic X-ray tube current modulation. These challenges were overcome by establishing a reference modulator database and a block-matching algorithm. Experiments with phantom and experimental in vivo data were performed to evaluate the method. We show that scatter correction using primary modulation is possible on a clinical C-arm CBCT. Scatter artifacts in the reconstructions are reduced with the newly extended method. Compared to a scan with a narrow collimation, our approach showed superior results with an improvement of the contrast and the contrast-to-noise ratio for the phantom experiments. In vivo data are evaluated by comparing the results with a scan with a narrow collimation and with a constant scatter correction approach. Scatter correction using primary modulation is possible on a clinical CBCT by compensating for the scanner motion and the tube current modulation. Scatter artifacts could be reduced in the reconstructions of phantom scans and in experimental in vivo data. © 2017 American Association of Physicists in Medicine.
Standardization and Optimization of Computed Tomography Protocols to Achieve Low-Dose
Chin, Cynthia; Cody, Dianna D.; Gupta, Rajiv; Hess, Christopher P.; Kalra, Mannudeep K.; Kofler, James M.; Krishnam, Mayil S.; Einstein, Andrew J.
2014-01-01
The increase in radiation exposure due to CT scans has been of growing concern in recent years. CT scanners differ in their capabilities and various indications require unique protocols, but there remains room for standardization and optimization. In this paper we summarize approaches to reduce dose, as discussed in lectures comprising the first session of the 2013 UCSF Virtual Symposium on Radiation Safety in Computed Tomography. The experience of scanning at low dose in different body regions, for both diagnostic and interventional CT procedures, is addressed. An essential primary step is justifying the medical need for each scan. General guiding principles for reducing dose include tailoring a scan to a patient, minimizing scan length, use of tube current modulation and minimizing tube current, minimizing-tube potential, iterative reconstruction, and periodic review of CT studies. Organized efforts for standardization have been spearheaded by professional societies such as the American Association of Physicists in Medicine. Finally, all team members should demonstrate an awareness of the importance of minimizing dose. PMID:24589403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsalafoutas, Ioannis A.; Varsamidis, Athanasios; Thalassinou, Stella
Purpose: To investigate the utility of the nested polymethylacrylate (PMMA) phantom (which is available in many CT facilities for CTDI measurements), as a tool for the presentation and comparison of the ways that two different CT automatic exposure control (AEC) systems respond to a phantom when various scan parameters and AEC protocols are modified.Methods: By offsetting the two phantom's components (the head phantom and the body ring) half-way along their longitudinal axis, a phantom with three sections of different x-ray attenuation was created. Scan projection radiographs (SPRs) and helical scans of the three-section phantom were performed on a Toshiba Aquilionmore » 64 and a Philips Brilliance 64 CT scanners, with different scan parameter selections [scan direction, pitch factor, slice thickness, and reconstruction interval (ST/RI), AEC protocol, and tube potential used for the SPRs]. The dose length product (DLP) values of each scan were recorded and the tube current (mA) values of the reconstructed CT images were plotted against the respective Z-axis positions on the phantom. Furthermore, measurements of the noise levels at the center of each phantom section were performed to assess the impact of mA modulation on image quality.Results: The mA modulation patterns of the two CT scanners were very dissimilar. The mA variations were more pronounced for Aquilion 64, where changes in any of the aforementioned scan parameters affected both the mA modulations curves and DLP values. However, the noise levels were affected only by changes in pitch, ST/RI, and AEC protocol selections. For Brilliance 64, changes in pitch affected the mA modulation curves but not the DLP values, whereas only AEC protocol and SPR tube potential selection variations affected both the mA modulation curves and DLP values. The noise levels increased for smaller ST/RI, larger weight category AEC protocol, and larger SPR tube potential selection.Conclusions: The nested PMMA dosimetry phantom can be effectively utilized for the comprehension of CT AEC systems performance and the way that different scan conditions affect the mA modulation patterns, DLP values, and image noise. However, in depth analysis of the reasons why these two systems exhibited such different behaviors in response to the same phantom requires further investigation which is beyond the scope of this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, Mats, E-mail: mats.persson@mi.physics.kth
Purpose: The highest photon fluence rate that a computed tomography (CT) detector must be able to measure is an important parameter. The authors calculate the maximum transmitted fluence rate in a commercial CT scanner as a function of patient size for standard head, chest, and abdomen protocols. Methods: The authors scanned an anthropomorphic phantom (Kyoto Kagaku PBU-60) with the reference CT protocols provided by AAPM on a GE LightSpeed VCT scanner and noted the tube current applied with the tube current modulation (TCM) system. By rescaling this tube current using published measurements on the tube current modulation of a GEmore » scanner [N. Keat, “CT scanner automatic exposure control systems,” MHRA Evaluation Report 05016, ImPACT, London, UK, 2005], the authors could estimate the tube current that these protocols would have resulted in for other patient sizes. An ECG gated chest protocol was also simulated. Using measured dose rate profiles along the bowtie filters, the authors simulated imaging of anonymized patient images with a range of sizes on a GE VCT scanner and calculated the maximum transmitted fluence rate. In addition, the 99th and the 95th percentiles of the transmitted fluence rate distribution behind the patient are calculated and the effect of omitting projection lines passing just below the skin line is investigated. Results: The highest transmitted fluence rates on the detector for the AAPM reference protocols with centered patients are found for head images and for intermediate-sized chest images, both with a maximum of 3.4 ⋅ 10{sup 8} mm{sup −2} s{sup −1}, at 949 mm distance from the source. Miscentering the head by 50 mm downward increases the maximum transmitted fluence rate to 5.7 ⋅ 10{sup 8} mm{sup −2} s{sup −1}. The ECG gated chest protocol gives fluence rates up to 2.3 ⋅ 10{sup 8} − 3.6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} depending on miscentering. Conclusions: The fluence rate on a CT detector reaches 3 ⋅ 10{sup 8} − 6 ⋅ 10{sup 8} mm{sup −2} s{sup −1} in standard imaging protocols, with the highest rates occurring for ECG gated chest and miscentered head scans. These results will be useful to developers of CT detectors, in particular photon counting detectors.« less
Brady, Samuel L; Moore, Bria M; Yee, Brian S; Kaufman, Robert A
2014-01-01
To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current-modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. © RSNA, 2013.
Effect of topogram-tube angle combination on CT radiation dose reduction
NASA Astrophysics Data System (ADS)
Shim, J.; Yoon, M.
2017-09-01
This study assessed the ability of various types of topograms, when used with an automatic tube current modulation (ATCM) technique, to reduce radiation dose from computed tomography (CT) scans. Three types of topograms were used with the ATCM technique: (i) anteroposterior (AP) topograms alone, (ii) AP topograms followed by lateral topograms, and (iii) lateral topograms followed by AP topograms. Various regions (chest, abdomen and whole-body) of a humanoid phantom were scanned at several tube voltages (80, 100 and 120 kVp) with the selected topograms. Although the CT dose depended on the order of topograms, the CT dose with respect to patient positioning depended on the number of topograms performed. The magnitude of the difference in CT dose between number and order of topograms was greater for the scans of the abdomen than the chest. These results suggest that, for the Siemens SOMATOM Definition AS CT scanner, choosing the right combination of CT scan conditions with the ATCM technique can minimize radiation dose to a patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Cagnon, Chris H.
2014-11-01
Purpose: Monte Carlo (MC) simulation methods have been widely used in patient dosimetry in computed tomography (CT), including estimating patient organ doses. However, most simulation methods have undergone a limited set of validations, often using homogeneous phantoms with simple geometries. As clinical scanning has become more complex and the use of tube current modulation (TCM) has become pervasive in the clinic, MC simulations should include these techniques in their methodologies and therefore should also be validated using a variety of phantoms with different shapes and material compositions to result in a variety of differently modulated tube current profiles. The purposemore » of this work is to perform the measurements and simulations to validate a Monte Carlo model under a variety of test conditions where fixed tube current (FTC) and TCM were used. Methods: A previously developed MC model for estimating dose from CT scans that models TCM, built using the platform of MCNPX, was used for CT dose quantification. In order to validate the suitability of this model to accurately simulate patient dose from FTC and TCM CT scan, measurements and simulations were compared over a wide range of conditions. Phantoms used for testing range from simple geometries with homogeneous composition (16 and 32 cm computed tomography dose index phantoms) to more complex phantoms including a rectangular homogeneous water equivalent phantom, an elliptical shaped phantom with three sections (where each section was a homogeneous, but different material), and a heterogeneous, complex geometry anthropomorphic phantom. Each phantom requires varying levels of x-, y- and z-modulation. Each phantom was scanned on a multidetector row CT (Sensation 64) scanner under the conditions of both FTC and TCM. Dose measurements were made at various surface and depth positions within each phantom. Simulations using each phantom were performed for FTC, detailed x–y–z TCM, and z-axis-only TCM to obtain dose estimates. This allowed direct comparisons between measured and simulated dose values under each condition of phantom, location, and scan to be made. Results: For FTC scans, the percent root mean square (RMS) difference between measurements and simulations was within 5% across all phantoms. For TCM scans, the percent RMS of the difference between measured and simulated values when using detailed TCM and z-axis-only TCM simulations was 4.5% and 13.2%, respectively. For the anthropomorphic phantom, the difference between TCM measurements and detailed TCM and z-axis-only TCM simulations was 1.2% and 8.9%, respectively. For FTC measurements and simulations, the percent RMS of the difference was 5.0%. Conclusions: This work demonstrated that the Monte Carlo model developed provided good agreement between measured and simulated values under both simple and complex geometries including an anthropomorphic phantom. This work also showed the increased dose differences for z-axis-only TCM simulations, where considerable modulation in the x–y plane was present due to the shape of the rectangular water phantom. Results from this investigation highlight details that need to be included in Monte Carlo simulations of TCM CT scans in order to yield accurate, clinically viable assessments of patient dosimetry.« less
Söderberg, Marcus
2016-06-01
Today, computed tomography (CT) systems routinely use automatic exposure control (AEC), which modulates the tube current. However, for optimal use, there are several aspects of an AEC system that need to be considered. The purpose of this study was to provide an overview of the Siemens CARE Dose 4D AEC system, discuss practical tips and demonstrate potential pitfalls. Two adult anthropomorphic phantoms were examined using two different Siemens CT systems. When optimising the CT radiation dose and image quality, the projection angle of the localiser, patient centring, protocol selection, scanning direction and the use of protective devices requires special attention. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzan, D; Bujila, R; Nowik, P
Purpose: To manufacture a phantom specifically designed for the purpose of evaluating the performance of the longitudinal and angular automatic tube current modulation (ATCM) on modern CT scanners. Methods: In order to evaluate angular ATCM, the phantom has an elliptical cross section (aspect ratio 3:2). To evaluate longitudinal ATCM, the phantom consists of 3 sections, with different major axes (25 cm, 30 cm and 35 cm). Each section is 15 cm long in the longitudinal direction. Between each section is a smooth transition. The phantom was milled from a solid block of PMMA. ATCM performance is evaluated by 1) analyzingmore » the applied tube current for each slice of the phantom and 2) analyzing the distribution of image noise (σ) along the scan direction at different positions in the phantom. A demonstration of the ATCM performance evaluation is given by investigating the effects of miscentering during a CT scan. Results: The developed phantom has proven useful for evaluating both the longitudinal and angular ATCM on modern CT scanners (spiral collimations ≥ 4 cm). Further benefits are the smooth transitions between the sections that prevent abnormal responses in the ATCM and the invariant sections that provide a means for investigating the stability of image noise. The homogeneity of the phantom makes image noise at different positions along the scan direction easy to quantify, which is crucial to understand how well the applied ATCM can produce a desired image quality. Conclusion: It is important to understand how the ATCM functions on CT scanners as it can directly affect dose and image quality. The phantom that has been developed is a most valuable tool to understand how different variables during a scan can affect the outcome of the longitudinal and angular ATCM.« less
Generation of synthetic CT data using patient specific daily MR image data and image registration
NASA Astrophysics Data System (ADS)
Melanie Kraus, Kim; Jäkel, Oliver; Niebuhr, Nina I.; Pfaffenberger, Asja
2017-02-01
To fully exploit the advantages of magnetic resonance imaging (MRI) for radiotherapy (RT) treatment planning, a method is required to overcome the problem of lacking electron density information. We aim to establish and evaluate a new method for computed tomography (CT) data generation based on MRI and image registration. The thereby generated CT data is used for dose accumulation. We developed a process flow based on an initial pair of rigidly co-registered CT and T2-weighted MR image representing the same anatomical situation. Deformable image registration using anatomical landmarks is performed between the initial MRI data and daily MR images. The resulting transformation is applied to the initial CT, thus fractional CT data is generated. Furthermore, the dose for a photon intensity modulated RT (IMRT) or intensity modulated proton therapy (IMPT) plan is calculated on the generated fractional CT and accumulated on the initial CT via inverse transformation. The method is evaluated by the use of phantom CT and MRI data. Quantitative validation is performed by evaluation of the mean absolute error (MAE) between the measured and the generated CT. The effect on dose accumulation is examined by means of dose-volume parameters. One patient case is presented to demonstrate the applicability of the method introduced here. Overall, CT data derivation lead to MAEs with a median of 37.0 HU ranging from 29.9 to 66.6 HU for all investigated tissues. The accuracy of image registration showed to be limited in the case of unexpected air cavities and at tissue boundaries. The comparisons of dose distributions based on measured and generated CT data agree well with the published literature. Differences in dose volume parameters kept within 1.6% and 3.2% for photon and proton RT, respectively. The method presented here is particularly suited for application in adaptive RT in current clinical routine, since only minor additional technical equipment is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landry, Guillaume, E-mail: g.landry@lmu.de; Nijhuis, Reinoud; Thieke, Christian
2015-03-15
Purpose: Intensity modulated proton therapy (IMPT) of head and neck (H and N) cancer patients may be improved by plan adaptation. The decision to adapt the treatment plan based on a dose recalculation on the current anatomy requires a diagnostic quality computed tomography (CT) scan of the patient. As gantry-mounted cone beam CT (CBCT) scanners are currently being offered by vendors, they may offer daily or weekly updates of patient anatomy. CBCT image quality may not be sufficient for accurate proton dose calculation and it is likely necessary to perform CBCT CT number correction. In this work, the authors investigatedmore » deformable image registration (DIR) of the planning CT (pCT) to the CBCT to generate a virtual CT (vCT) to be used for proton dose recalculation. Methods: Datasets of six H and N cancer patients undergoing photon intensity modulated radiation therapy were used in this study to validate the vCT approach. Each dataset contained a CBCT acquired within 3 days of a replanning CT (rpCT), in addition to a pCT. The pCT and rpCT were delineated by a physician. A Morphons algorithm was employed in this work to perform DIR of the pCT to CBCT following a rigid registration of the two images. The contours from the pCT were deformed using the vector field resulting from DIR to yield a contoured vCT. The DIR accuracy was evaluated with a scale invariant feature transform (SIFT) algorithm comparing automatically identified matching features between vCT and CBCT. The rpCT was used as reference for evaluation of the vCT. The vCT and rpCT CT numbers were converted to stopping power ratio and the water equivalent thickness (WET) was calculated. IMPT dose distributions from treatment plans optimized on the pCT were recalculated with a Monte Carlo algorithm on the rpCT and vCT for comparison in terms of gamma index, dose volume histogram (DVH) statistics as well as proton range. The DIR generated contours on the vCT were compared to physician-drawn contours on the rpCT. Results: The DIR accuracy was better than 1.4 mm according to the SIFT evaluation. The mean WET differences between vCT (pCT) and rpCT were below 1 mm (2.6 mm). The amount of voxels passing 3%/3 mm gamma criteria were above 95% for the vCT vs rpCT. When using the rpCT contour set to derive DVH statistics from dose distributions calculated on the rpCT and vCT the differences, expressed in terms of 30 fractions of 2 Gy, were within [−4, 2 Gy] for parotid glands (D{sub mean}), spinal cord (D{sub 2%}), brainstem (D{sub 2%}), and CTV (D{sub 95%}). When using DIR generated contours for the vCT, those differences ranged within [−8, 11 Gy]. Conclusions: In this work, the authors generated CBCT based stopping power distributions using DIR of the pCT to a CBCT scan. DIR accuracy was below 1.4 mm as evaluated by the SIFT algorithm. Dose distributions calculated on the vCT agreed well to those calculated on the rpCT when using gamma index evaluation as well as DVH statistics based on the same contours. The use of DIR generated contours introduced variability in DVH statistics.« less
NASA Astrophysics Data System (ADS)
Szczepura, Katy; Tomkinson, David; Manning, David
2017-03-01
Tube current modulation is a method employed in the use of CT in an attempt to optimize radiation dose to the patient. The acceptable noise (noise index) can be varied, based on the level of optimization required; higher accepted noise reduces the patient dose. Recent research [1] suggests that measuring the conspicuity index (C.I.) of focal lesions within an image is more reflective of a clinical reader's ability to perceive focal lesions than traditional physical measures such as contrast to noise (CNR) and signal to noise ratio (SNR). Software has been developed and validated to calculate the C.I. in DICOM images. The aim of this work is assess the impact of tube current modulation on conspicuity index and CTDIvol, to indicate the benefits and limitations of tube current modulation on lesion detectability. Method An anthropomorphic chest phantom was used "Lungman" with inserted lesions of varying size and HU (see table below) a range of Hounsfield units and sizes were used to represent the variation in lesion Hounsfield units found. This meant some lesions had negative Hounsfield unit values.
Herts, Brian R; Baker, Mark E; Obuchowski, Nancy; Primak, Andrew; Schneider, Erika; Rhana, Harpreet; Dong, Frank
2013-06-01
The purpose of this article is to determine the decrease in volume CT dose index (CTDI(vol)) and dose-length product (DLP) achieved by switching from fixed quality reference tube current protocols with automatic tube current modulation to protocols adjusting the quality reference tube current, slice collimation, and peak kilovoltage according to patient weight. All adult patients who underwent CT examinations of the abdomen or abdomen and pelvis during 2010 using weight-based protocols who also underwent a CT examination in 2008 or 2009 using fixed quality reference tube current protocols were identified from the radiology information system. Protocol pages were electronically retrieved, and the CT model, examination date, scan protocol, CTDI(vol), and DLP were extracted from the DICOM header or by optical character recognition. There were 15,779 scans with dose records for 2700 patients. Changes in CTDI(vol) and DLP were compared only between examinations of the same patient and same CT system model for examinations performed in 2008 or 2009 and those performed in 2010. The final analysis consisted of 1117 comparisons in 1057 patients, and 1209 comparisons in 988 patients for CTDI(vol) and DLP, respectively. The change to a weight-based protocol resulted in a statistically significant reduction in CTDI(vol) and DLP on three MDCT system models (p < 0.001). The largest average CTDI(vol) decrease was 13.9%, and the largest average DLP decrease was 16.1% on a 64-MDCT system. Both the CTDI(vol) and DLP decreased the most for patients who weighed less than 250 lb (112.5 kg). Adjusting the CT protocol by selecting parameters according to patient weight is a viable method for reducing CT radiation dose. The largest reductions occurred in the patients weighing less than 250 lb.
Application of fluence field modulation to proton computed tomography for proton therapy imaging.
Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G
2017-07-12
This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found outside the target.
Lee, Choonsik; Kim, Kwang Pyo; Bolch, Wesley E; Moroz, Brian E; Folio, Les
2015-12-01
We developed computational methods and tools to assess organ doses for pediatric and adult patients undergoing computed tomography (CT) examinations. We used the International Commission on Radiological Protection (ICRP) reference pediatric and adult phantoms combined with the Monte Carlo simulation of a reference CT scanner to establish comprehensive organ dose coefficients (DC), organ absorbed dose per unit volumetric CT Dose Index (CTDIvol) (mGy/mGy). We also developed methods to estimate organ doses with tube current modulation techniques and size specific dose estimates. A graphical user interface was designed to obtain user input of patient- and scan-specific parameters, and to calculate and display organ doses. A batch calculation routine was also integrated into the program to automatically calculate organ doses for a large number of patients. We entitled the computer program, National Cancer Institute dosimetry system for CT(NCICT). We compared our dose coefficients with those from CT-Expo, and evaluated the performance of our program using CT patient data. Our pediatric DCs show good agreements of organ dose estimation with those from CT-Expo except for thyroid. Our results support that the adult phantom in CT-Expo seems to represent a pediatric individual between 10 and 15 years rather than an adult. The comparison of CTDIvol values between NCICT and dose pages from 10 selected CT scans shows good agreements less than 12% except for two cases (up to 20%). The organ dose comparison between mean and modulated mAs shows that mean mAs-based calculation significantly overestimates dose (up to 2.4-fold) to the organs in close proximity to lungs in chest and chest-abdomen-pelvis scans. Our program provides more realistic anatomy based on the ICRP reference phantoms, higher age resolution, the most up-to-date bone marrow dosimetry, and several convenient features compared to previous tools. The NCICT will be available for research purpose in the near future.
Sato, Eiichi; Sugimura, Shigeaki; Endo, Haruyuki; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-01-01
15Mcps photon-counting X-ray computed tomography (CT) system is a first-generation type and consists of an X-ray generator, a turntable, a translation stage, a two-stage controller, a detector consisting of a 2mm-thick zinc-oxide (ZnO) single-crystal scintillator and an MPPC (multipixel photon counter) module, a counter card (CC), and a personal computer (PC). High-speed photon counting was carried out using the detector in the X-ray CT system. The maximum count rate was 15Mcps (mega counts per second) at a tube voltage of 100kV and a tube current of 1.95mA. Tomography is accomplished by repeated translations and rotations of an object, and projection curves of the object are obtained by the translation. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The minimum exposure time for obtaining a tomogram was 15min, and photon-counting CT was accomplished using gadolinium-based contrast media. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Angelis, L; Landry, G; Dedes, G
Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBsmore » was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)« less
NASA Astrophysics Data System (ADS)
Khatonabadi, Maryam; Zhang, Di; Yang, Jeffrey; DeMarco, John J.; Cagnon, Chris C.; McNitt-Gray, Michael F.
2012-03-01
Recently published AAPM Task Group 204 developed conversion coefficients that use scanner reported CTDIvol to estimate dose to the center of patient undergoing fixed tube current body exam. However, most performed CT exams use TCM to reduce dose to patients. Therefore, the purpose of this study was to investigate the correlation between organ dose and a variety of patient size metrics in adult chest CT scans that use tube current modulation (TCM). Monte Carlo simulations were performed for 32 voxelized models with contoured lungs and glandular breasts tissue, consisting of females and males. These simulations made use of patient's actual TCM data to estimate organ dose. Using image data, different size metrics were calculated, these measurements were all performed on one slice, at the level of patient's nipple. Estimated doses were normalized by scanner-reported CTDIvol and plotted versus different metrics. CTDIvol values were plotted versus different metrics to look at scanner's output versus size. The metrics performed similarly in terms of correlating with organ dose. Looking at each gender separately, for male models normalized lung dose showed a better linear correlation (r2=0.91) with effective diameter, while female models showed higher correlation (r2=0.59) with the anterior-posterior measurement. There was essentially no correlation observed between size and CTDIvol-normalized breast dose. However, a linear relationship was observed between absolute breast dose and size. Dose to lungs and breasts were consistently higher in females with similar size as males which could be due to shape and composition differences between genders in the thoracic region.
Convolution-based estimation of organ dose in tube current modulated CT
NASA Astrophysics Data System (ADS)
Tian, Xiaoyu; Segars, W. Paul; Dixon, Robert L.; Samei, Ehsan
2016-05-01
Estimating organ dose for clinical patients requires accurate modeling of the patient anatomy and the dose field of the CT exam. The modeling of patient anatomy can be achieved using a library of representative computational phantoms (Samei et al 2014 Pediatr. Radiol. 44 460-7). The modeling of the dose field can be challenging for CT exams performed with a tube current modulation (TCM) technique. The purpose of this work was to effectively model the dose field for TCM exams using a convolution-based method. A framework was further proposed for prospective and retrospective organ dose estimation in clinical practice. The study included 60 adult patients (age range: 18-70 years, weight range: 60-180 kg). Patient-specific computational phantoms were generated based on patient CT image datasets. A previously validated Monte Carlo simulation program was used to model a clinical CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Forchheim, Germany). A practical strategy was developed to achieve real-time organ dose estimation for a given clinical patient. CTDIvol-normalized organ dose coefficients ({{h}\\text{Organ}} ) under constant tube current were estimated and modeled as a function of patient size. Each clinical patient in the library was optimally matched to another computational phantom to obtain a representation of organ location/distribution. The patient organ distribution was convolved with a dose distribution profile to generate {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} values that quantified the regional dose field for each organ. The organ dose was estimated by multiplying {{≤ft(\\text{CTD}{{\\text{I}}\\text{vol}}\\right)}\\text{organ, \\text{convolution}}} with the organ dose coefficients ({{h}\\text{Organ}} ). To validate the accuracy of this dose estimation technique, the organ dose of the original clinical patient was estimated using Monte Carlo program with TCM profiles explicitly modeled. The discrepancy between the estimated organ dose and dose simulated using TCM Monte Carlo program was quantified. We further compared the convolution-based organ dose estimation method with two other strategies with different approaches of quantifying the irradiation field. The proposed convolution-based estimation method showed good accuracy with the organ dose simulated using the TCM Monte Carlo simulation. The average percentage error (normalized by CTDIvol) was generally within 10% across all organs and modulation profiles, except for organs located in the pelvic and shoulder regions. This study developed an improved method that accurately quantifies the irradiation field under TCM scans. The results suggested that organ dose could be estimated in real-time both prospectively (with the localizer information only) and retrospectively (with acquired CT data).
Padole, Atul; Deedar Ali Khawaja, Ranish; Otrakji, Alexi; Zhang, Da; Liu, Bob; Xu, X George; Kalra, Mannudeep K
2016-05-01
The aim of this study was to compare the directly measured and the estimated computed tomography (CT) organ doses obtained from commercial radiation dose-tracking (RDT) software for CT performed with modulated tube current or automatic exposure control (AEC) technique and fixed tube current (mAs). With the institutional review board (IRB) approval, the ionization chambers were surgically implanted in a human cadaver (88 years old, male, 68 kg) in six locations such as liver, stomach, colon, left kidney, small intestine, and urinary bladder. The cadaver was scanned with routine abdomen pelvis protocol on a 128-slice, dual-source multidetector computed tomography (MDCT) scanner using both AEC and fixed mAs. The effective and quality reference mAs of 100, 200, and 300 were used for AEC and fixed mAs, respectively. Scanning was repeated three times for each setting, and measured and estimated organ doses (from RDT software) were recorded (N = 3*3*2 = 18). Mean CTDIvol for AEC and fixed mAs were 4, 8, 13 mGy and 7, 14, 21 mGy, respectively. The most estimated organ doses were significantly greater (P < 0.01) than the measured organ doses for both AEC and fixed mAs. At AEC, the mean estimated organ doses (for six organs) were 14.7 mGy compared to mean measured organ doses of 12.3 mGy. Similarly, at fixed mAs, the mean estimated organ doses (for six organs) were 24 mGy compared to measured organ doses of 22.3 mGy. The differences among the measured and estimated organ doses were higher for AEC technique compared to the fixed mAs for most organs (P < 0.01). The most CT organ doses estimated from RDT software are greater compared to directly measured organ doses, particularly when AEC technique is used for CT scanning. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Eunbin; Ahn, SoHyun; Cho, Samju
Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize suchmore » an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.« less
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
Objective To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Methods Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Results Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79±1.17, 1.69±0.59, 0.74±0.29, and 0.37±0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Conclusions Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED. PMID:24691208
Chen, Jiang-Hong; Jin, Er-Hu; He, Wen; Zhao, Li-Qin
2014-01-01
To reduce radiation dose while maintaining image quality in low-dose chest computed tomography (CT) by combining adaptive statistical iterative reconstruction (ASIR) and automatic tube current modulation (ATCM). Patients undergoing cancer screening (n = 200) were subjected to 64-slice multidetector chest CT scanning with ASIR and ATCM. Patients were divided into groups 1, 2, 3, and 4 (n = 50 each), with a noise index (NI) of 15, 20, 30, and 40, respectively. Each image set was reconstructed with 4 ASIR levels (0% ASIR, 30% ASIR, 50% ASIR, and 80% ASIR) in each group. Two radiologists assessed subjective image noise, image artifacts, and visibility of the anatomical structures. Objective image noise and signal-to-noise ratio (SNR) were measured, and effective dose (ED) was recorded. Increased NI was associated with increased subjective and objective image noise results (P<0.001), and SNR decreased with increasing NI (P<0.001). These values improved with increased ASIR levels (P<0.001). Images from all 4 groups were clinically diagnosable. Images with NI = 30 and 50% ASIR had average subjective image noise scores and nearly average anatomical structure visibility scores, with a mean objective image noise of 23.42 HU. The EDs for groups 1, 2, 3 and 4 were 2.79 ± 1.17, 1.69 ± 0.59, 0.74 ± 0.29, and 0.37 ± 0.22 mSv, respectively. Compared to group 1 (NI = 15), the ED reductions were 39.43%, 73.48%, and 86.74% for groups 2, 3, and 4, respectively. Using NI = 30 with 50% ASIR in the chest CT protocol, we obtained average or above-average image quality but a reduced ED.
NASA Astrophysics Data System (ADS)
Chen, Liang-Kuang; Wu, Tung-Hsin; Yang, Ching-Ching; Tsai, Chia-Jung; Lee, Jason J. S.
2010-07-01
The aim of this study is to assess radiation dose and the corresponding image quality from suggested CT protocols which depends on different mean heart rate and high heart rate variability by using 256-slice CT. Fifty consecutive patients referred for a cardiac CT examination were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on a 256-slice CT scanner with one of five different protocols: retrospective ECG-gating (RGH) with full dose exposure in all R-R intervals (protocol A), RGH of 30-80% pulsing window with tube current modulation (B), RGH of 78±5% pulsing window with tube current modulation (C), prospective ECG-triggering (PGT) of 78% R-R interval with 5% padding window (D) and PGT of 78% R-R interval without padding window (E). Radiation dose parameters and image quality scoring were determined and compared. In this study, no significant differences were found in comparison on image quality of the five different protocols. Protocol A obtained the highest radiation dose comparing with those of protocols B, C, D and E by a factor of 1.6, 2.4, 2.5 and 4.3, respectively ( p<0.001), which were ranged between 2.7 and 11.8 mSv. The PGT could significantly reduce radiation dose delivered to patients, as compared to the RGH. However, the use of PGT has limitations and is only good in assessing cases with lower mean heart rate and stable heart rate variability. With higher mean heart rate and high heart rate variability circumstances, the RGH within 30-80% of R-R interval pulsing window is suggested as a feasible technique for assessing diagnostic performance.
Creation of an atlas of filter positions for fluence field modulated CT.
Szczykutowicz, Timothy P; Hermus, James
2015-04-01
Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectively span the infinite number of possible fluence profiles with minimal loss in performance. CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19,440 unique filters (the number of atlas entries ranged from 7213 to 1). Additionally, for VOI applications implemented with a single VOI region, the number of required filter configurations was expressed in a simple closed form solution. The methodology proposed in this work will enable DBA-FFMCT and DBA-VOI imaging in the clinic without the need for patient specific air-scans to be performed. In addition, the methodology proposed here is directly applicable to other modulator designs such as piecewise linear, TomoTherapy multi leaf collimators, 2D fluid arrays, and inverse geometry CT.
McLean, Michelle; Murrell, Kathy
2002-03-01
WebCT, front-end software for Internet-delivered material, became an integral part of a problem-based learning, student-centred curriculum introduced in January 2001 at the Nelson R. Mandela School of Medicine (South Africa). A template for six curriculum and two supplementary modules was developed. Organiser and Tool pages were added and files uploaded as each module progressed. This study provides feedback from students with regard to the value of WebCT in their curriculum, as well as discussing the value of WebCT for the delivery of digitized material (e.g., images, videos, PowerPoint presentations). In an anonymous survey following the completion of the first module, students, apparently irrespective of their level of computer literacy, responded positively to the communication facility between staff and students and amongst students, the resources and the URLs. Based on these preliminary responses, WebCT courses for all six modules were developed during 2001. With Faculty support, WebCT will probably be integrated into the rest of the MBChB programme. It will be particularly useful when students are off campus, undertaking electives and community service in the later years.
Kong, Lingyan; Liang, Jixiang; Xue, Huadan; Wang, Yining; Wang, Yun; Jin, Zhengyu; Zhang, Daming; Chen, Jin
2017-02-20
Objective To evaluate the application of automated tube potential selection technique in high-pitch dual-source CT aortic angiography on a third-generation dual-source CT scanner. Methods Whole aorta angiography were indiated in 59 patients,who were divided into 2 groups using a simple random method:in group 1 there were 31 patients who underwent the examination with automated tube potential selection using a vascular setting with a preferred image quality of 288 mA/100 kV;in group 2 there were 28 patients who underwent the examination with a tube voltage of 100 kV and automated tube current modulation using a reference tube current of 288 mA. Both groups were scanned on a third generation dual-source CT device operated in dual-source high-pitch ECG-gating mode with a pitch of 3.0,collimation of 2×192×0.6 mm,and a rotation time of 0.25 s. Iterative reconstruction algorithm was used. For group 1,the volume and flow of contrast medium and chasing saline were adapted to the tube voltage. For group 2,a contrast material bolus of 45 ml with a flow of 4.5 ml/s followed by a 50 ml saline chaser at 5 ml/s was used. CTA scan was automatically started using a bolus tracking technique at the level of the original part of aorta after a trigger threshold of 100 HU was reached. The start delay was set to 6 s in both groups. Effective dose (ED),signal to noise ratio (SNR),contrast to noise ratio (CNR),and subjective diagnostic quality of both groups were evaluated. Results The mean ED were 21.3% lower (t=-3.099,P=0.000) in group 1 [(2.48±0.80) mSv] than in group 2 [(3.15±0.86) mSv]. Two groups showed no significant difference in attenuation,SD,SNR,or CNR at all evaluational parts of aorta (ascending aorta,aortic arch,diaphragmatic aorta,or iliac bifurcation)(all P>0.05). There was no significant difference in subjective diagnostic quality values of two groups [(1.41±0.50) scores vs. (1.39±0.50) scores;W=828.5,P=0.837]. Conclusion Compared with automated tube current modulation,the automated tube potential selection technique in aorta CT angiography on a third-generation dual-source CT can dramatically reduce radiation dose without affecting image quality.
Gang, G J; Siewerdsen, J H; Stayman, J W
2016-02-01
This work applies task-driven optimization to design CT tube current modulation and directional regularization in penalized-likelihood (PL) reconstruction. The relative performance of modulation schemes commonly adopted for filtered-backprojection (FBP) reconstruction were also evaluated for PL in comparison. We adopt a task-driven imaging framework that utilizes a patient-specific anatomical model and information of the imaging task to optimize imaging performance in terms of detectability index ( d' ). This framework leverages a theoretical model based on implicit function theorem and Fourier approximations to predict local spatial resolution and noise characteristics of PL reconstruction as a function of the imaging parameters to be optimized. Tube current modulation was parameterized as a linear combination of Gaussian basis functions, and regularization was based on the design of (directional) pairwise penalty weights for the 8 in-plane neighboring voxels. Detectability was optimized using a covariance matrix adaptation evolutionary strategy algorithm. Task-driven designs were compared to conventional tube current modulation strategies for a Gaussian detection task in an abdomen phantom. The task-driven design yielded the best performance, improving d' by ~20% over an unmodulated acquisition. Contrary to FBP, PL reconstruction using automatic exposure control and modulation based on minimum variance (in FBP) performed worse than the unmodulated case, decreasing d' by 16% and 9%, respectively. This work shows that conventional tube current modulation schemes suitable for FBP can be suboptimal for PL reconstruction. Thus, the proposed task-driven optimization provides additional opportunities for improved imaging performance and dose reduction beyond that achievable with conventional acquisition and reconstruction.
Imanli, Hasan; Bhatty, Shaun; Jeudy, Jean; Ghzally, Yousra; Ume, Kiddy; Vunnam, Rama; Itah, Refael; Amit, Mati; Duell, John; See, Vincent; Shorofsky, Stephen; Dickfeld, Timm M
2017-11-01
Visualization of left atrial (LA) anatomy using image integration modules has been associated with decreased radiation exposure and improved procedural outcome when used for guidance of pulmonary vein isolation (PVI) in atrial fibrillation (AF) ablation. We evaluated the CARTOSEG™ CT Segmentation Module (Biosense Webster, Inc.) that offers a new CT-specific semiautomatic reconstruction of the atrial endocardium. The CARTOSEG™ CT Segmentation Module software was assessed prospectively in 80 patients undergoing AF ablation. Using preprocedural contrast-enhanced computed tomography (CE-CT), cardiac chambers, coronary sinus (CS), and esophagus were semiautomatically segmented. Segmentation quality was assessed from 1 (poor) to 4 (excellent). The reconstructed structures were registered with the electroanatomic map (EAM). PVI was performed using the registered 3D images. Semiautomatic reconstruction of the heart chambers was successfully performed in all 80 patients with AF. CE-CT DICOM file import, semiautomatic segmentation of cardiac chambers, esophagus, and CS was performed in 185 ± 105, 18 ± 5, 119 ± 47, and 69 ± 19 seconds, respectively. Average segmentation quality was 3.9 ± 0.2, 3.8 ± 0.3, and 3.8 ± 0.2 for LA, esophagus, and CS, respectively. Registration accuracy between the EAM and CE-CT-derived segmentation was 4.2 ± 0.9 mm. Complications consisted of one perforation (1%) which required pericardiocentesis, one increased pericardial effusion treated conservatively (1%), and one early termination of ablation due to thrombus formation on the ablation sheath without TIA/stroke (1%). All targeted PVs (n = 309) were successfully isolated. The novel CT- CARTOSEG™ CT Segmentation Module enables a rapid and reliable semiautomatic 3D reconstruction of cardiac chambers and adjacent anatomy, which facilitates successful and safe PVI. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
Mcps-range photon-counting x-ray computed tomography system
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Enomoto, Toshiyuki; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-10-01
10 Mcps photon counting was carried out using a detector consisting of a 2.0 mm-thick ZnO (zinc oxide) single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 10 Mcps (mega counts per second) at a tube voltage of 70 kV and a tube current of 2.0 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the ZnO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using iodine-based contrast media.
Emerging Techniques for Dose Optimization in Abdominal CT
Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit
2014-01-01
Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277
In vivo dosimetry for total body irradiation: five-year results and technique comparison.
Patel, Reshma P; Warry, Alison J; Eaton, David J; Collis, Christopher H; Rosenberg, Ivan
2014-07-08
The aim of this work is to establish if the new CT-based total body irradiation (TBI) planning techniques used at University College London Hospital (UCLH) and Royal Free Hospital (RFH) are comparable to the previous technique at the Middlesex Hospital (MXH) by analyzing predicted and measured diode results. TBI aims to deliver a homogeneous dose to the entire body, typically using extended SSD fields with beam modulation to limit doses to organs at risk. In vivo dosimetry is used to verify the accuracy of delivered doses. In 2005, when the Middlesex Hospital was decommissioned and merged with UCLH, both UCLH and the RFH introduced updated CT-planned TBI techniques, based on the old MXH technique. More CT slices and in vivo measurement points were used by both; UCLH introduced a beam modulation technique using MLC segments, while RFH updated to a combination of lead compensators and bolus. Semiconductor diodes were used to measure entrance and exit doses in several anatomical locations along the entire body. Diode results from both centers for over five years of treatments were analyzed and compared to the previous MXH technique for accuracy and precision of delivered doses. The most stable location was the field center with standard deviations of 4.1% (MXH), 3.7% (UCLH), and 1.7% (RFH). The least stable position was the ankles. Mean variation with fraction number was within 1.5% for all three techniques. In vivo dosimetry can be used to verify complex modulated CT-planned TBI, and demonstrate improvements and limitations in techniques. The results show that the new UCLH technique is no worse than the previous MXH one and comparable to the current RFH technique.
Sookpeng, Supawitoo; Butdee, Chitsanupong
2017-06-01
The study aimed to evaluate the image quality in terms of signal-to-noise ratio (SNR) and dose to the lens of the eye and the other nearby organs from the CT brain scan using an automatic tube current modulation (ATCM) system with or without CT gantry tilt is needed. An anthropomorphic phantom was scanned with different settings including use of different ATCM, fixed tube current time product (mAs) settings and degree angles of gantry tilt. Gafchromic film XR-QA2 was used to measure absorbed dose of the organs. Relative doses and SNR for the various scan settings were compared with the reference setting of the fixed 330 mAs. Average absorbed dose for the lens of the eyes varied from 8.7 to 21.7 mGy. The use of the ATCM system with the gantry tilt resulted in up to 60% decrease in the dose to the lens of the eye. SNR significantly decreased while tilting the gantry using the fixed mAs techniques, compared to that of the reference setting. However, there were no statistical significant differences for SNRs between the reference setting and all ATCM settings. Compared to the reference setting of the fixed effective mAs, using the ATCM system and appropriate tilting, the gantry resulted in a substantial decrease in the dose to the lens of the eye while preserving signal-to-noise ratio. CT brain examination should be carefully controlled to optimize dose for lens of the eye and image quality of the examination.
Inpainting approaches to fill in detector gaps in phase contrast computed tomography
NASA Astrophysics Data System (ADS)
Brun, F.; Delogu, P.; Longo, R.; Dreossi, D.; Rigon, L.
2018-01-01
Photon counting semiconductor detectors in radiation imaging present attractive properties, such as high efficiency, low noise, and energy sensitivity. The very complex electronics limits the sensitive area of current devices to a few square cm. This disadvantage is often compensated by tiling a larger matrix with an adequate number of detector units but this usually results in non-negligible insensitive gaps between two adjacent modules. When considering the case of Computed Tomography (CT), these gaps lead to degraded reconstructed images with severe streak and ring artifacts. This work presents two digital image processing solutions to fill in these gaps when considering the specific case of synchrotron radiation x-ray parallel beam phase contrast CT. While not discussed with experimental data, other CT modalities, such as spectral, cone beam and other geometries might benefit from the presented approaches.
SU-E-T-671: Range-Modulation Effects of Carbon Ion Beams in Lung Tissue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witt, M; Weber, U; Simeonov, Y
Purpose: When particles traversing inhomogeneous materials like lung they show a characteristic range modulation which cannot be observed in homogeneous materials. It is possible to describe the range modulation by a convolution of an unperturbed Bragg-Curve and a normal distribution. The sigma of the normal distribution is a parameter for the strength of the modulation effect. A new material parameter (modulation power, P-mod) is introduced which is independent of the material thickness. It is defined as the square of sigma divided by the mean water equivalent thickness of the target (µ). Methods: The modulation power of lung tissue was determinedmore » by actual Bragg-peak measurements after traversing an ex-vivo porcine lung and by Monte-Carlo simulations with micro-CT data of human lung tissue. The determined modulation powers were used to show the effect of range modulation effects in a simplified treatment situation. A four centimeter spread-out Bragg-peak after traversing eight centimeter of lung tissue was simulated in FLUKA. The SOBP with and without consideration of range modulation effects were compared. Results: As well in the measurements as in the MC simulations range modulation effects of lung tissue were observed. The determined modulation powers showed a great range from 0.05 mm, in the micro-CT data, to 0.7 mm in the lung measurements. The SOBP comparison showed that range modulation effects Result in over- and underdosages at the distal and proximal edge of the SOBP. In the investigated case, the last 0.5 cm of the SOBP showed an underdosage of up to 50% at the distal edge, while 0.5 cm distal to the SOBP an overdosage of up to 50% was observed. Conclusion: Range modulation effects occur in inhomogeneous materials like lung. These modulation effects may Result in clinically relevant over- and underdosages but are currently not considered in commercially available treatment planning systems.« less
Optimization-based scatter estimation using primary modulation for computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yi; Ma, Jingchen; Zhao, Jun, E-mail: junzhao
Purpose: Scatter reduces the image quality in computed tomography (CT), but scatter correction remains a challenge. A previously proposed primary modulation method simultaneously obtains the primary and scatter in a single scan. However, separating the scatter and primary in primary modulation is challenging because it is an underdetermined problem. In this study, an optimization-based scatter estimation (OSE) algorithm is proposed to estimate and correct scatter. Methods: In the concept of primary modulation, the primary is modulated, but the scatter remains smooth by inserting a modulator between the x-ray source and the object. In the proposed algorithm, an objective function ismore » designed for separating the scatter and primary. Prior knowledge is incorporated in the optimization-based framework to improve the accuracy of the estimation: (1) the primary is always positive; (2) the primary is locally smooth and the scatter is smooth; (3) the location of penumbra can be determined; and (4) the scatter-contaminated data provide knowledge about which part is smooth. Results: The simulation study shows that the edge-preserving weighting in OSE improves the estimation accuracy near the object boundary. Simulation study also demonstrates that OSE outperforms the two existing primary modulation algorithms for most regions of interest in terms of the CT number accuracy and noise. The proposed method was tested on a clinical cone beam CT, demonstrating that OSE corrects the scatter even when the modulator is not accurately registered. Conclusions: The proposed OSE algorithm improves the robustness and accuracy in scatter estimation and correction. This method is promising for scatter correction of various kinds of x-ray imaging modalities, such as x-ray radiography, cone beam CT, and the fourth-generation CT.« less
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
Can SNOMED CT be squeezed without losing its shape?
López-García, Pablo; Schulz, Stefan
2016-09-21
In biomedical applications where the size and complexity of SNOMED CT become problematic, using a smaller subset that can act as a reasonable substitute is usually preferred. In a special class of use cases-like ontology-based quality assurance, or when performing scaling experiments for real-time performance-it is essential that modules show a similar shape than SNOMED CT in terms of concept distribution per sub-hierarchy. Exactly how to extract such balanced modules remains unclear, as most previous work on ontology modularization has focused on other problems. In this study, we investigate to what extent extracting balanced modules that preserve the original shape of SNOMED CT is possible, by presenting and evaluating an iterative algorithm. We used a graph-traversal modularization approach based on an input signature. To conform to our definition of a balanced module, we implemented an iterative algorithm that carefully bootstraped and dynamically adjusted the signature at each step. We measured the error for each sub-hierarchy and defined convergence as a residual sum of squares <1. Using 2000 concepts as an initial signature, our algorithm converged after seven iterations and extracted a module 4.7 % the size of SNOMED CT. Seven sub-hierarhies were either over or under-represented within a range of 1-8 %. Our study shows that balanced modules from large terminologies can be extracted using ontology graph-traversal modularization techniques under certain conditions: that the process is repeated a number of times, the input signature is dynamically adjusted in each iteration, and a moderate under/over-representation of some hierarchies is tolerated. In the case of SNOMED CT, our results conclusively show that it can be squeezed to less than 5 % of its size without any sub-hierarchy losing its shape more than 8 %, which is likely sufficient in most use cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, J; Fan, J; Gopinatha Pillai, A
Purpose: To further reduce CT dose, a practical sparse-view acquisition scheme is proposed to provide the same attenuation estimation as higher dose for PET imaging in the extended scan field-of-view. Methods: CT scans are often used for PET attenuation correction and can be acquired at very low CT radiation dose. Low dose techniques often employ low tube voltage/current accompanied with a smooth filter before backprojection to reduce CT image noise. These techniques can introduce bias in the conversion from HU to attenuation values, especially in the extended CT scan field-of-view (FOV). In this work, we propose an ultra-low dose CTmore » technique for PET attenuation correction based on sparse-view acquisition. That is, instead of an acquisition of full amount of views, only a fraction of views are acquired. We tested this technique on a 64-slice GE CT scanner using multiple phantoms. CT scan FOV truncation completion was performed based on the published water-cylinder extrapolation algorithm. A number of continuous views per rotation: 984 (full), 246, 123, 82 and 62 have been tested, corresponding to a CT dose reduction of none, 4x, 8x, 12x and 16x. We also simulated sparse-view acquisition by skipping views from the fully-acquired view data. Results: FBP reconstruction with Q. AC filter on reduced views in the full extended scan field-of-view possesses similar image quality to the reconstruction on acquired full view data. The results showed a further potential for dose reduction compared to the full acquisition, without sacrificing any significant attenuation support to the PET. Conclusion: With the proposed sparse-view method, one can potential achieve at least 2x more CT dose reduction compared to the current Ultra-Low Dose (ULD) PET/CT protocol. A pre-scan based dose modulation scheme can be combined with the above sparse-view approaches, which can even further reduce the CT scan dose during a PET/CT exam.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Supanich, M; Bevins, N
Purpose: This review of scanners from 4 major manufacturers examines the clinical impact of performing CT scans that extend into areas of the body that were not acquired in the CT localizer radiograph. Methods: Anthropomorphic chest and abdomen phantoms were positioned together on the tables of CT scanners from 4 different vendors. All of the scanners offered an Automatic Exposure Control (AEC) option with both lateral and axial tube current modulation. A localizer radiograph was taken covering the entire extent of both phantoms and then the scanner's Chest-Abdomen-Pelvis (CAP) study was performed with the clinical AEC settings employed and themore » scan and reconstruction range extending from the superior portion of the chest phantom through the inferior portion of the abdomen phantom. A new study was then initiated with a localizer radiograph extending the length of the chest phantom (not covering the abdomen phantom). The same CAP protocol and AEC settings were then used to scan and reconstruct the entire length of both phantoms. Scan parameters at specific locations in the abdomen phantom from both studies were investigated using the information contained in the DICOM metadata of the reconstructed images. Results: The AEC systems on all scanners utilized different tube current settings in the abdomen phantom for the scan completed without the full localizer radiograph. The AEC system behavior was also scanner dependent with the default manual tube current, the maximum tube current and the tube current at the last known position observed as outcomes. Conclusion: The behavior of the AEC systems of CT scanners in regions not covered by the localizer radiograph is vendor dependent. To ensure optimal image quality and radiation exposure it is important to include the entire planned scan region in the localizer radiograph.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; McMillan, K
2015-06-15
Purpose: The aim of this study is to evaluate the difference in radiation doses from adult Brain-Neck CT angiography (CTA) between two CT scanners. Methods: We collected CT dose index data (CTDIvol, DLP) from adult Brain-Neck CTA performed with two CT scanners (Sensation 64 (S64) and Definition AS (AS), Siemens Healthcare) performed at two of our facilities from Jan 1st to Dec 31th, 2014. X-ray dose management software (Radmetrics, Bayer Healthcare) was used to mine these data. All exams were performed with Tube Current Modulation (Care Dose 4D), tube voltage of 120 kVp, quality reference mAs of 300, beam collimationmore » of 64*0.6 mm. The rotation time was set to 0.5 sec for S64 and 1.0 sec for AS. We also scanned an anthropomorphic skull and chest phantom under routine Brain-Neck CTA protocol with the two scanners and extracted the tube current values from the raw projection data. Results: The mean CTDIvol and DLP in Brain-Neck CTA was 72 mGy and 2554 mGy*cm for AS, which was substantially larger than the mean values of 46 mGy and 1699 mGy*cm for S64. The maximum tube current was 583 mA for most cases on the S64 while the maximum was 666 mA for AS even though the rotation time set for AS was 1.0 sec. Measurements obtained with the anthropomorphic phantom showed that the tube current reached 583 mA at the shoulder region for S64 while it reached to 666 mA for AS. Conclusion: The results of this study showed that substantially different CT doses can Result from Brain-Neck CTA protocols even when similar scanners and similar settings are used. Though both scanners have a similar maximum mA rating, differences in mA were observed through the shoulders, resulting in substantially different CTDIvol values.« less
Aissa, Joel; Boos, Johannes; Rubbert, Christian; Caspers, Julian; Schleich, Christoph; Thomas, Christoph; Kröpil, Patric; Antoch, Gerald; Miese, Falk
2017-06-01
The aim of this study was to evaluate the objective and subjective image quality of a novel computed tomography (CT) protocol with reduced radiation dose for body packing with 80 kVp and automated tube current modulation (ATCM) compared to a standard body packing CT protocol. 80 individuals who were examined between March 2012 and July 2015 in suspicion of ingested drug packets were retrospectively included in this study. Thirty-one CT examinations were performed using ATCM and a fixed tube voltage of 80 kVp (group A). Forty-nine CT examinations were performed using a standard protocol with a tube voltage of 120 kVp and a fixed tube current time product of 40 mAs (group B). Subjective and objective image quality and visibility of drug packets were assessed. Radiation exposure of both protocols was compared. Contrast-to-noise ratio (group A: 0.56 ± 0.36; group B: 1.13 ± 0.91) and Signal-to-noise ratio (group A: 3.69 ± 0.98; group B: 7.08 ± 2.67) were significantly lower for group A compared to group B (p < 0.001). Subjectively, image quality was decreased for group A compared to group B (2.5 ± 0.8 vs. 1.2 ± 0.4; p < 0.001). Attenuation of body packets was higher with the new protocol (group A: 362.2 ± 70.3 Hounsfield Units (HU); group B: 210.6 ± 60.2 HU; p = 0.005). Volumetric Computed Tomography Dose Index (CTDIvol) and Dose Length Product (DLP) were significantly lower in group A (CTDIvol 2.2 ± 0.9 mGy, DLP 105.7 ± 52.3 mGycm) as compared to group B (CTDIvol 2.7 ± 0.1 mGy, DLP 126.0 ± 9.7 mGycm, p = 0.002 and p = 0.01). The novel 80 kVp CT protocol with ATCM leads to a significant dose reduction compared to a standard CT body packing protocol. The novel protocol led to a diagnostic image quality and cocaine body packets were reliably detected due to the high attenuation.
Development of a method to estimate organ doses for pediatric CT examinations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadakis, Antonios E., E-mail: apapadak@pagni.gr; Perisinakis, Kostas; Damilakis, John
Purpose: To develop a method for estimating doses to primarily exposed organs in pediatric CT by taking into account patient size and automatic tube current modulation (ATCM). Methods: A Monte Carlo CT dosimetry software package, which creates patient-specific voxelized phantoms, accurately simulates CT exposures, and generates dose images depicting the energy imparted on the exposed volume, was used. Routine head, thorax, and abdomen/pelvis CT examinations in 92 pediatric patients, ranging from 1-month to 14-yr-old (49 boys and 43 girls), were simulated on a 64-slice CT scanner. Two sets of simulations were performed in each patient using (i) a fixed tubemore » current (FTC) value over the entire examination length and (ii) the ATCM profile extracted from the DICOM header of the reconstructed images. Normalized to CTDI{sub vol} organ dose was derived for all primary irradiated radiosensitive organs. Normalized dose data were correlated to patient’s water equivalent diameter using log-transformed linear regression analysis. Results: The maximum percent difference in normalized organ dose between FTC and ATCM acquisitions was 10% for eyes in head, 26% for thymus in thorax, and 76% for kidneys in abdomen/pelvis. In most of the organs, the correlation between dose and water equivalent diameter was significantly improved in ATCM compared to FTC acquisitions (P < 0.001). Conclusions: The proposed method employs size specific CTDI{sub vol}-normalized organ dose coefficients for ATCM-activated and FTC acquisitions in pediatric CT. These coefficients are substantially different between ATCM and FTC modes of operation and enable a more accurate assessment of patient-specific organ dose in the clinical setting.« less
Creation of an atlas of filter positions for fluence field modulated CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, Timothy P., E-mail: TSzczykutowicz@uwhealth.org; Hermus, James
2015-04-15
Purpose: Fluence field modulated CT (FFMCT) and volume of interest (VOI) CT imaging applications require adjustment of the profile of the x-ray fluence incident on a patient as a function of view angle. Since current FFMCT prototypes can theoretically take on an infinite number of configurations, measuring a calibration data set for all possible positions would not be feasible. The present work details a methodology for calculating an atlas of configurations that will span all likely body regions, patient sizes, patient positioning, and imaging modes. The hypothesis is that there exists a finite number of unique modulator configurations that effectivelymore » span the infinite number of possible fluence profiles with minimal loss in performance. Methods: CT images of a head, shoulder, thorax, abdominal, wrist, and leg anatomical slices were dilated and contracted to model small, medium, and large sized patients. Additionally, the images were positioned from iso-center by three different amounts. The modulator configurations required to compensate for each image were computed assuming a FFMCT prototype, digital beam attenuator, (DBA), was set to equalize the detector exposure. Each atlas configuration should be different from the other atlas configurations. The degree of difference was quantified using the sum of the absolute differences in filter thickness between configurations. Using this metric, a set of unique wedge configurations for which no two configurations have a metric value smaller than some threshold can be constructed. Differences in the total number of incident photons between the unconstrained filters and the atlas were studied as a function of the number of atlas positions for each anatomical site and size/off-centering combination. Results: By varying the threshold used in creating the atlas, it was found that roughly 322 atlas positions provided an incident number of photons within 20% of using 19 440 unique filters (the number of atlas entries ranged from 7213 to 1). Additionally, for VOI applications implemented with a single VOI region, the number of required filter configurations was expressed in a simple closed form solution. Conclusions: The methodology proposed in this work will enable DBA-FFMCT and DBA-VOI imaging in the clinic without the need for patient specific air-scans to be performed. In addition, the methodology proposed here is directly applicable to other modulator designs such as piecewise linear, TomoTherapy multi leaf collimators, 2D fluid arrays, and inverse geometry CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Rong, J
Purpose: To quantify a radiology team’s assessment of image quality differences between two CT scanner models currently in clinical use, with emphasis on spatial resolution that could be impacted by focal spot size. Methods: Modulation Transfer Functions (MTF) measurements were performed by scanning the impulse source insert module of the Catphan 600 at 120/140 kVp with both large (LFS) and small (SFS) focal spots and reconstructed to 2.5mm and 5.0mm thicknesses on a GE Discovery CT750 HD and a LightSpeed VCT CT scanner. MTFs were calculated by summing the 2D PSF along one-dimension to obtain line-spread-function (LSF), and calculating themore » Fourier Transform of the zero-padded and background corrected LSF. Spatial resolution performance was evaluated by comparing MTF curves, 50% and 10% MTF cutoff, and total area under the MTF curve (AUC). In addition, images of the Catphan high-contrast module and a Kagaku anthropomorphic body phantom were acquired from the HD scanner for visual comparisons. Results: For each scanner model, SFS was superior to LFS spatial resolution with respect to 50%/10% MTF cutoff and AUC. For the HD, 50%/10% cutoff was 4.29/7.22cm-1 for the LFS and 4.43/7.45cm-1 for the SFS. VCT outperformed HD, with 50%/10% cutoff of 4.40/7.29 cm-1 for LFS and 4.62/7.47cm-1 for SFS. Scanner model performance in order of decreasing AUC performance was VCT SFS (7.43), HD SFS (7.20), VCT LFS (7.09) and HD LFS (6.93). Visual evaluations of Kagaku phantom images confirmed that VCT outperformed HD. Conclusion: VCT outperformed HD and small focal spot is desired for either model over large focal spot in term of spatial resolution – in agreement with radiologist feedback of overall image quality. In-depth evaluations of clinical impact and focal spot selection mechanisms is currently being assessed.« less
Qi, Zhihua; Gates, Erica L; O'Brien, Maureen M; Trout, Andrew T
2018-02-01
Both [F-18]2-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) and diagnostic CT are at times required for lymphoma staging. This means some body segments are exposed twice to X-rays for generation of CT data (diagnostic CT + localization CT). To describe a combined PET/diagnostic CT approach that modulates CT tube current along the z-axis, providing diagnostic CT of some body segments and localization CT of the remaining body segments, thereby reducing patient radiation dose. We retrospectively compared total patient radiation dose between combined PET/diagnostic CT and separately acquired PET/CT and diagnostic CT exams. When available, we calculated effective doses for both approaches in the same patient; otherwise, we used data from patients of similar size. To confirm image quality, we compared image noise (Hounsfield unit [HU] standard deviation) as measured in the liver on both combined and separately acquired diagnostic CT images. We used t-tests for dose comparisons and two one-sided tests for image-quality equivalence testing. Mean total effective dose for the CT component of the combined and separately acquired diagnostic CT exams were 6.20±2.69 and 8.17±2.61 mSv, respectively (P<0.0001). Average dose savings with the combined approach was 24.8±17.8% (2.60±2.51 mSv [range: 0.32-4.72 mSv]) of total CT effective dose. Image noise was not statistically significantly different between approaches (12.2±1.8 HU vs. 11.7±1.5 HU for the combined and separately acquired diagnostic CT images, respectively). A combined PET/diagnostic CT approach as described offers dose savings at similar image quality for children and young adults with lymphoma who have indications for both PET and diagnostic CT examinations.
Recent technologic advances in multi-detector row cardiac CT.
Halliburton, Sandra Simon
2009-11-01
Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.
Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-10-01
To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.
Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun
2015-01-01
Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Oda, Yasuyuki; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-12-01
6 Mcps photon counting was carried out using a detector consisting of a 1.0 mm-thick LSO [Lu 2(SiO 4)O] single-crystal scintillator and an MPPC (multipixel photon counter) module in an X-ray computed tomography (CT) system. The maximum count rate was 6 Mcps (mega counts per second) at a tube voltage of 100 kV and a tube current of 0.91 mA. Next, a photon-counting X-ray CT system consists of an X-ray generator, a turntable, a scan stage, a two-stage controller, the LSO-MPPC detector, a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan with a scan velocity of 25 mm/s. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The exposure time for obtaining a tomogram was 600 s at a scan step of 0.5 mm and a rotation step of 1.0°, and photon-counting CT was accomplished using gadolinium-based contrast media.
Optimizing the acquisition geometry for digital breast tomosynthesis using the Defrise phantom
NASA Astrophysics Data System (ADS)
Acciavatti, Raymond J.; Chang, Alice; Woodbridge, Laura; Maidment, Andrew D. A.
2014-03-01
In cone beam computed tomography (CT), it is common practice to use the Defrise phantom for image quality assessment. The phantom consists of a stack of plastic plates with low frequency spacing. Because the x-ray beam may traverse multiple plates, the spacing between plates can appear blurry in the reconstruction, and hence modulation provides a measure of image quality. This study considers the potential merit of using the Defrise phantom in digital breast tomosynthesis (DBT), a modality with a smaller projection range than CT. To this end, a Defrise phantom was constructed and subsequently imaged with a commercial DBT system. It was demonstrated that modulation is dependent on position and orientation in the reconstruction. Modulation is preserved over a broad range of positions along the chest wall if the input frequency is oriented in the tube travel direction. By contrast, modulation is degraded with increasing distance from the chest wall if the input frequency is oriented in the posteroanterior (PA) direction. A theoretical framework was then developed to model these results. Reconstructions were calculated in an acquisition geometry designed to improve modulation. Unlike current geometries in which the x-ray tube motion is restricted to the plane of the chest wall, we consider a geometry with an additional component of tube motion along the PA direction. In simulations, it is shown that the newly proposed geometry improves modulation at positions distal to the chest wall. In conclusion, this study demonstrates that the Defrise phantom is a tool for optimizing DBT systems.
Azevedo, Luciene Ferreira; Perlingeiro, Patricia; Hachul, Denise Tessariol; Gomes-Santos, Igor Lucas; Tsutsui, Jeane Mike; Negrao, Carlos Eduardo; De Matos, Luciana D N J
2016-01-01
Different season trainings may influence autonomic and non-autonomic cardiac control of heart rate and provokes specific adaptations on heart's structure in athletes. We investigated the influence of transition training (TT) and competitive training (CT) on resting heart rate, its mechanisms of control, spontaneous baroreflex sensitivity (BRS) and relationships between heart rate mechanisms and cardiac structure in professional cyclists (N = 10). Heart rate (ECG) and arterial blood pressure (Pulse Tonometry) were recorded continuously. Autonomic blockade was performed (atropine-0.04 mg.kg-1; esmolol-500 μg.kg-1 = 0.5 mg). Vagal effect, intrinsic heart rate, parasympathetic (n) and sympathetic (m) modulations, autonomic influence, autonomic balance and BRS were calculated. Plasma norepinephrine (high-pressure liquid chromatography) and cardiac structure (echocardiography) were evaluated. Resting heart rate was similar in TT and CT. However, vagal effect, intrinsic heart rate, autonomic influence and parasympathetic modulation (higher n value) decreased in CT (P≤0.05). Sympathetic modulation was similar in both trainings. The autonomic balance increased in CT but still showed parasympathetic predominance. Cardiac diameter, septum and posterior wall thickness and left ventricular mass also increased in CT (P<0.05) as well as diastolic function. We observed an inverse correlation between left ventricular diastolic diameter, septum and posterior wall thickness and left ventricular mass with intrinsic heart rate. Blood pressure and BRS were similar in both trainings. Intrinsic heart rate mechanism is predominant over vagal effect during CT, despite similar resting heart rate. Preserved blood pressure levels and BRS during CT are probably due to similar sympathetic modulation in both trainings.
CT reconstruction from portal images acquired during volumetric-modulated arc therapy
NASA Astrophysics Data System (ADS)
Poludniowski, G.; Thomas, M. D. R.; Evans, P. M.; Webb, S.
2010-10-01
Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.
Bour, Robert K.; Pozniak, Myron; Ranallo, Frank N.
2015-01-01
The purpose of this paper is to describe our experience with the AAPM Medical Physics Practice Guideline 1.a: “CT Protocol Management and Review Practice Guideline”. Specifically, we will share how our institution's quality management system addresses the suggestions within the AAPM practice report. We feel this paper is needed as it was beyond the scope of the AAPM practice guideline to provide specific details on fulfilling individual guidelines. Our hope is that other institutions will be able to emulate some of our practices and that this article would encourage other types of centers (e.g., community hospitals) to share their methodology for approaching CT protocol optimization and quality control. Our institution had a functioning CT protocol optimization process, albeit informal, since we began using CT. Recently, we made our protocol development and validation process compliant with a number of the ISO 9001:2008 clauses and this required us to formalize the roles of the members of our CT protocol optimization team. We rely heavily on PACS‐based IT solutions for acquiring radiologist feedback on the performance of our CT protocols and the performance of our CT scanners in terms of dose (scanner output) and the function of the automatic tube current modulation. Specific details on our quality management system covering both quality control and ongoing optimization have been provided. The roles of each CT protocol team member have been defined, and the critical role that IT solutions provides for the management of files and the monitoring of CT protocols has been reviewed. In addition, the invaluable role management provides by being a champion for the project has been explained; lack of a project champion will mitigate the efforts of a CT protocol optimization team. Meeting the guidelines set forth in the AAPM practice guideline was not inherently difficult, but did, in our case, require the cooperation of radiologists, technologists, physicists, IT, administrative staff, and hospital management. Some of the IT solutions presented in this paper are novel and currently unique to our institution. PACS number: 87.57.Q PMID:26103176
Harding-Esch, E M; Cousins, E C; Chow, S-L C; Phillips, L T; Hall, C L; Cooper, N; Fuller, S S; Nori, A V; Patel, R; Thomas-William, S; Whitlock, G; Edwards, S J E; Green, M; Clarkson, J; Arlett, B; Dunbar, J K; Lowndes, C M; Sadiq, S T
2018-02-01
Rapid Point-Of-Care Tests for Chlamydia trachomatis (CT) may reduce onward transmission and reproductive sexual health (RSH) sequelae by reducing turnaround times between diagnosis and treatment. The io® single module system (Atlas Genetics Ltd.) runs clinical samples through a nucleic acid amplification test (NAAT)-based CT cartridge, delivering results in 30min. Prospective diagnostic accuracy study of the io® CT-assay in four UK Genito-Urinary Medicine (GUM)/RSH clinics on additional-to-routine self-collected vulvovaginal swabs. Samples were tested "fresh" within 10days of collection, or "frozen" at -80°C for later testing. Participant characteristics were collected to assess risk factors associated with CT infection. CT prevalence was 7.2% (51/709) overall. Sensitivity, specificity, positive and negative predictive values of the io® CT assay were, respectively, 96.1% (95% Confidence Interval (CI): 86.5-99.5), 97.7% (95%CI: 96.3-98.7), 76.6% (95%CI: 64.3-86.2) and 99.7% (95%CI: 98.9-100). The only risk factor associated with CT infection was being a sexual contact of an individual with CT. The io® CT-assay is a 30-min, fully automated, high-performing NAAT currently CE-marked for CT diagnosis in women, making it a highly promising diagnostic to enable specific treatment, initiation of partner notification and appropriately intensive health promotion at the point of care. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Giacino, Joseph; Fins, Joseph J; Machado, Andre; Schiff, Nicholas D
2012-07-01
Central thalamic deep brain stimulation (CT-DBS) may have therapeutic potential to improve behavioral functioning in patients with severe traumatic brain injury (TBI), but its use remains experimental. Current research suggests that the central thalamus plays a critical role in modulating arousal during tasks requiring sustained attention, working memory, and motor function. The aim of the current article is to review the methodology used in the CT-DBS protocol developed by our group, outline the challenges we encountered and offer suggestions for future DBS trials in this population. RATIONAL FOR CT-DBS IN TBI: CT-DBS may therefore be able to stimulate these functions by eliciting action potentials that excite thalamocortical and thalamostriatal pathways. Because patients in chronic minimally conscious state (MCS) have a very low probability of regaining functional independence, yet often have significant sparing of cortical connectivity, they may represent a particularly appropriate target group for CT-DBS. PIlOT STUDY RESULTS: We have conducted a series of single-subject studies of CT-DBS in patients with chronic posttraumatic MCS, with 24-month follow-up. Outcomes were measured using the Coma Recovery Scale-Revised as well as a battery of secondary outcome measures to capture more granular changes. Findings from our index case suggest that CT-DBS can significantly increase functional communication, motor performance, feeding, and object naming in the DBS on state, with performance in some domains remaining above baseline even after DBS was turned off. The use of CT-DBS in patients in MCS, however, presents challenges at almost every step, including during surgical planning, outcome measurement, and postoperative care. Additionally, given the difficulties of obtaining informed consent from patients in MCS and the experimental nature of the treatment, a robust, scientifically rooted ethical framework is resented for pursuing this line of work. © 2012 International Neuromodulation Society.
Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jost, Gregor; Mensing, Tristan; Golfier, Sven
2009-06-15
Photoelectric-enhanced radiation therapy is a bimodal therapy, consisting of the administration of highly radiation-absorbing substances into the tumor area and localized regional irradiation with orthovoltage x-rays. Irradiation can be performed by a modified computed tomography (CT) unit equipped with an additional x-ray optical module which converts the polychromatic, fan-shaped CT beam into a monochromatized and focused beam for energy-tuned photoelectric-enhanced radiotherapy. A dedicated x-ray optical module designed for spatial collimation, focusing, and monochromatization was mounted at the exit of the x-ray tube of a clinical CT unit. Spectrally resolved measurements of the resulting beam were performed using an energy-dispersive detectionmore » system calibrated by synchrotron radiation. The spatial photon fluence was determined by film dosimetry. Depth-dose measurements were performed and compared to the polychromatic CT and a therapeutic 6 MV beam. The spatial dose distribution in phantoms using a rotating radiation source (quasi-monochromatic CT and 6 MV, respectively) was investigated by gel dosimetry. The photoelectric dose enhancement for an iodine fraction of 1% in tissue was calculated and verified experimentally. The x-ray optical module selectively filters the energy of the tungsten K{alpha} emission line with an FWHM of 5 keV. The relative photon fluence distribution demonstrates the focusing characteristic of the x-ray optical module. A beam width of about 3 mm was determined at the isocenter of the CT gantry. The depth-dose measurements resulted in a half-depth value of approximately 36 mm for the CT beams (quasi-monochromatic, polychromatic) compared to 154 mm for the 6 MV beam. The rotation of the radiation source leads to a steep dose gradient at the center of rotation; the gel dosimetry yields an entrance-to-peak dose ratio of 1:10.8 for the quasi-monochromatic CT and 1:37.3 for a 6 MV beam of the same size. The photoelectric dose enhancement factor increases from 2.2 to 2.4 by using quasi-monochromatic instead of polychromatic radiation. An additional increase in the radiation dose by a factor of 1.4 due to the focusing characteristic of the x-ray optical module was calculated. Photoelectric-enhanced radiation therapy based on a clinical CT unit combined with an x-ray optical module is a novel therapy option in radiation oncology. The optimized quasi-monochromatic radiation is strongly focused and ensures high photoelectric dose enhancement for iodine.« less
Integrated circuit detector technology in abdominal CT: added value in obese patients.
Morsbach, Fabian; Bickelhaupt, Sebastian; Rätzer, Susan; Schmidt, Bernhard; Alkadhi, Hatem
2014-02-01
The purpose of this article was to assess the effect of an integrated circuit (IC) detector for abdominal CT on image quality. In the first study part, an abdominal phantom was scanned with various extension rings using a CT scanner equipped with a conventional discrete circuit (DC) detector and on the same scanner with an IC detector (120 kVp, 150 effective mAs, and 75 effective mAs). In the second study part, 20 patients were included who underwent abdominal CT both with the IC detector and previously at similar protocol parameters (120 kVp tube current-time product and 150 reference mAs using automated tube current modulation) with the DC detector. Images were reconstructed with filtered back projection. Image quality in the phantom was higher for images acquired with the IC compared with the DC detector. There was a gradually increasing noise reduction with increasing phantom sizes, with the highest (37% in the largest phantom) at 75 effective mAs (p < 0.001). In patients, noise was overall significantly (p = 0.025) reduced by 6.4% using the IC detector. Similar to the phantom, there was a gradual increase in noise reduction to 7.9% in patients with a body mass index of 25 kg/m(2) or lower (p = 0.008). Significant correlation was found in patients between noise and abdominal diameter in DC detector images (r = 0.604, p = 0.005), whereas no such correlation was found for the IC detector (r = 0.427, p = 0.060). Use of an IC detector in abdominal CT improves image quality and reduces image noise, particularly in overweight and obese patients. This noise reduction has the potential for dose reduction in abdominal CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H; Hu, Y; Hwang, Y
Purpose: This study was to investigate size-specific dose estimates (SSDE) for routine adult abdominal CT examinations in Taiwan. Methods: A national survey was conducted in Taiwan in 2014 to investigate SSDEs for routine adult abdominal CT examinations. The hospitals involved in this study provided CT images of their typical patients. The CT image in the level of the middle liver was selected to record the corresponding tube current, slice mAs or effective mAs. The image was also used to estimate the dimensions of patient as measuring the lengths in the anterior to posterior (AP) and lateral (LAT) directions. The effectivemore » diameter was then calculated from AP and LAT, and used to look up conversion factors in the AAPM 204 report. The volume CTDI (CTDIvol) for each CT unit was measured on sites using a 32-cm cylindrical standard dose phantom and a calibrated pencil-type ionization chamber. Individual patient’s SSDEs were then calculated from the corresponding SSDE conversion factor and the CTDIvol. Results: The study cohort included 111 CT units. The ratio of turning on automatic tube current modulation (ATCM) or not is 88:23. Effective diameters are 258.7±25.1 mm (167–366 mm). 99.3% of typical patients selected by each hospital have smaller effective diameter than the 32-cm dosimetry phantom. Adult abdomenal SSDE is 17.5 ± 8.8 mGy (1.9-58 mGy). The SSDE seems to decrease as the effective diameter increases as the ATCM turns off, and independent with the effective diameter as the ATCM turns on. Conclusion: The SSDE for typical patients in Taiwan was investigated. We continue to complete this investigation in 2015 to include more valid data to establish SSDE reference level in Taiwan. This study was financially supported by the Atomic Energy Council in Taiwan.« less
TLD assessment of mouse dosimetry during microCT imaging
Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.
2008-01-01
Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837
Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian
2018-01-01
Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.
Teaching CSD Graduate Students to Think Critically, Apply Evidence, and Write Professionally
ERIC Educational Resources Information Center
Grillo, Elizabeth U.; Koenig, Mareile A.; Gunter, Cheryl D.; Kim, Sojung
2015-01-01
The purpose of this study was to assess the effectiveness of teaching modules designed to enhance the use of critical thinking (CT), evidence-based practice (EBP), and professional writing (PW) skills by graduate students in communication sciences and disorders. Three single-session teaching modules were developed to highlight key features of CT,…
McMillan, Kyle; Bostani, Maryam; Cagnon, Christopher H; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H; McNitt-Gray, Michael F
2017-08-01
The vast majority of body CT exams are performed with automatic exposure control (AEC), which adapts the mean tube current to the patient size and modulates the tube current either angularly, longitudinally or both. However, most radiation dose estimation tools are based on fixed tube current scans. Accurate estimates of patient dose from AEC scans require knowledge of the tube current values, which is usually unavailable. The purpose of this work was to develop and validate methods to accurately estimate the tube current values prescribed by one manufacturer's AEC system to enable accurate estimates of patient dose. Methods were developed that took into account available patient attenuation information, user selected image quality reference parameters and x-ray system limits to estimate tube current values for patient scans. Methods consistent with AAPM Report 220 were developed that used patient attenuation data that were: (a) supplied by the manufacturer in the CT localizer radiograph and (b) based on a simulated CT localizer radiograph derived from image data. For comparison, actual tube current values were extracted from the projection data of each patient. Validation of each approach was based on data collected from 40 pediatric and adult patients who received clinically indicated chest (n = 20) and abdomen/pelvis (n = 20) scans on a 64 slice multidetector row CT (Sensation 64, Siemens Healthcare, Forchheim, Germany). For each patient dataset, the following were collected with Institutional Review Board (IRB) approval: (a) projection data containing actual tube current values at each projection view, (b) CT localizer radiograph (topogram) and (c) reconstructed image data. Tube current values were estimated based on the actual topogram (actual-topo) as well as the simulated topogram based on image data (sim-topo). Each of these was compared to the actual tube current values from the patient scan. In addition, to assess the accuracy of each method in estimating patient organ doses, Monte Carlo simulations were performed by creating voxelized models of each patient, identifying key organs and incorporating tube current values into the simulations to estimate dose to the lungs and breasts (females only) for chest scans and the liver, kidney, and spleen for abdomen/pelvis scans. Organ doses from simulations using the actual tube current values were compared to those using each of the estimated tube current values (actual-topo and sim-topo). When compared to the actual tube current values, the average error for tube current values estimated from the actual topogram (actual-topo) and simulated topogram (sim-topo) was 3.9% and 5.8% respectively. For Monte Carlo simulations of chest CT exams using the actual tube current values and estimated tube current values (based on the actual-topo and sim-topo methods), the average differences for lung and breast doses ranged from 3.4% to 6.6%. For abdomen/pelvis exams, the average differences for liver, kidney, and spleen doses ranged from 4.2% to 5.3%. Strong agreement between organ doses estimated using actual and estimated tube current values provides validation of both methods for estimating tube current values based on data provided in the topogram or simulated from image data. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Surowka, Artur D.; Ziomber, Agata; Czyzycki, Mateusz; Migliori, Alessandro; Kasper, Kaja; Szczerbowska-Boruchowska, Magdalena
2018-04-01
Recent studies highlight that obesity may alter the electric activity in brain areas triggering appetite and craving. Transcranial direct current brain stimulation (tDCS) has recently emerged as a safe alternative for treating food addiction via modulating cortical excitability without any high-risk surgical procedure to be utilized. As for anodal-type tDCS (atDCS), we observe increased excitability and spontaneous firing of the cortical neurons, whilst for the cathodal-type tDCS (ctDCS) a significant decrease is induced. Unfortunately, for the method to be fully used in a clinical setting, its biochemical action mechanism must be precisely defined, although it is proposed that molecular remodelling processes play in concert with brain activity changes involving the ions of: Na, Cl, K and Ca. Herein, we proposed for the first time Fourier transform infrared (FTIR) and synchrotron X-ray fluorescence (SRXRF) microprobes for a combined molecular and elemental analysis in the brain areas implicated appetite control, upon experimental treatment by either atDCS or ctDCS. The study, although preliminary, shows that by stimulating the prefrontal cortex in the rats fed high-caloric nutrients, the feeding behavior can be significantly changed, resulting in significantly inhibited appetite. Both, atDCS and ctDCS produced significant molecular changes involving qualitative and structural properties of lipids, whereas atDCS was found with a somewhat more significant effect on protein secondary structure in all the brain areas investigated. Also, tDCS was reported to reduce surface masses of Na, Cl, K, and Ca in almost all brain areas investigated, although the atDCS deemed to have a stronger neuro-modulating effect. Taken together, one can report that tDCS is an effective treatment technique, and its action mechanism in the appetite control seems to involve a variety of lipid-, protein- and metal/non-metal-ion-driven biochemical changes, regardless the current polarization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, A; Bostani, M; McMillan, K
Purpose: The purpose of this work is to estimate effective and lung doses from a low-dose lung cancer screening CT protocol using Tube Current Modulation (TCM) across patient models of different sizes. Methods: Monte Carlo simulation methods were used to estimate effective and lung doses from a low-dose lung cancer screening protocol for a 64-slice CT (Sensation 64, Siemens Healthcare) that used TCM. Scanning parameters were from the AAPM protocols. Ten GSF voxelized patient models were used and had all radiosensitive organs identified to facilitate estimating both organ and effective doses. Predicted TCM schemes for each patient model were generatedmore » using a validated method wherein tissue attenuation characteristics and scanner limitations were used to determine the TCM output as a function of table position and source angle. The water equivalent diameter (WED) was determined by estimating the attenuation at the center of the scan volume for each patient model. Monte Carlo simulations were performed using the unique TCM scheme for each patient model. Lung doses were tallied and effective doses were estimated using ICRP 103 tissue weighting factors. Effective and lung dose values were normalized by scanspecific 32 cm CTDIvol values based upon the average tube current across the entire simulated scan. Absolute and normalized doses were reported as a function of WED for each patient. Results: For all ten patients modeled, the effective dose using TCM protocols was below 1.5 mSv. Smaller sized patient models experienced lower absolute doses compared to larger sized patients. Normalized effective and lung doses showed some dependence on patient size (R2 = 0.77 and 0.78, respectively). Conclusion: Effective doses for a low-dose lung screening protocol using TCM were below 1.5 mSv for all patient models used in this study. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
Scatter correction method for x-ray CT using primary modulation: Phantom studies
Gao, Hewei; Fahrig, Rebecca; Bennett, N. Robert; Sun, Mingshan; Star-Lack, Josh; Zhu, Lei
2010-01-01
Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems, the method is investigated using three phantoms: A Catphan©600 phantom, an anthropomorphic chest phantom, and the Catphan©600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan©600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan©600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an elliptical annulus (30 cm in the minor axis and 38 cm in the major axis) and with a circular annulus (38 cm in diameter). Conclusions: On the three phantom studies, good scatter correction performance of the proposed method has been demonstrated using both image comparisons and quantitative analysis. The theory and experiments demonstrate that a strong primary modulation that possesses a low transmission factor and a high modulation frequency is preferred for high scatter correction accuracy. PMID:20229902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Victor Ho Fun, E-mail: vhflee@hku.hk; Ng, Sherry Chor Yi; Kwong, Dora Lai Wan
The aim of this study was to investigate if intravenous contrast injection affected the radiation doses to carotid arteries and thyroid during intensity-modulated radiation therapy (IMRT) planning for nasopharyngeal carcinoma (NPC). Thirty consecutive patients with NPC underwent plain computed tomography (CT) followed by repeated scanning after contrast injection. Carotid arteries (common, external, internal), thyroid, target volumes, and other organs-at-risk (OARs), as well as IMRT planning, were based on contrast-enhanced CT (CE-CT) images. All these structures and the IMRT plans were then copied and transferred to the non–contrast-enhanced CT (NCE-CT) images, and dose calculation without optimization was performed again. The radiationmore » doses to the carotid arteries and the thyroid based on CE-CT and NCE-CT were then compared. Based on CE-CT, no statistical differences, despite minute numeric decreases, were noted in all dosimetric parameters (minimum, maximum, mean, median, D05, and D01) of the target volumes, the OARs, the carotid arteries, and the thyroid compared with NCE-CT. Our results suggested that compared with NCE-CT planning, CE-CT scanning should be performed during IMRT for better target and OAR delineation, without discernible change in radiation doses.« less
Brady, Samuel L.; Moore, Bria M.; Yee, Brian S.; Kaufman, Robert A.
2015-01-01
Purpose To determine a comprehensive method for the implementation of adaptive statistical iterative reconstruction (ASIR) for maximal radiation dose reduction in pediatric computed tomography (CT) without changing the magnitude of noise in the reconstructed image or the contrast-to-noise ratio (CNR) in the patient. Materials and Methods The institutional review board waived the need to obtain informed consent for this HIPAA-compliant quality analysis. Chest and abdominopelvic CT images obtained before ASIR implementation (183 patient examinations; mean patient age, 8.8 years ± 6.2 [standard deviation]; range, 1 month to 27 years) were analyzed for image noise and CNR. These measurements were used in conjunction with noise models derived from anthropomorphic phantoms to establish new beam current–modulated CT parameters to implement 40% ASIR at 120 and 100 kVp without changing noise texture or magnitude. Image noise was assessed in images obtained after ASIR implementation (492 patient examinations; mean patient age, 7.6 years ± 5.4; range, 2 months to 28 years) the same way it was assessed in the pre-ASIR analysis. Dose reduction was determined by comparing size-specific dose estimates in the pre- and post-ASIR patient cohorts. Data were analyzed with paired t tests. Results With 40% ASIR implementation, the average relative dose reduction for chest CT was 39% (2.7/4.4 mGy), with a maximum reduction of 72% (5.3/18.8 mGy). The average relative dose reduction for abdominopelvic CT was 29% (4.8/6.8 mGy), with a maximum reduction of 64% (7.6/20.9 mGy). Beam current modulation was unnecessary for patients weighing 40 kg or less. The difference between 0% and 40% ASIR noise magnitude was less than 1 HU, with statistically nonsignificant increases in patient CNR at 100 kVp of 8% (15.3/14.2; P = .41) for chest CT and 13% (7.8/6.8; P = .40) for abdominopelvic CT. Conclusion Radiation dose reduction at pediatric CT was achieved when 40% ASIR was implemented as a dose reduction tool only; no net change to the magnitude of noise in the reconstructed image or the patient CNR occurred. PMID:23901128
Lv, Peijie; Liu, Jie; Zhang, Rui; Jia, Yan
2015-01-01
Objective To assess the lesion conspicuity and image quality in CT evaluation of small (≤ 3 cm) hepatocellular carcinomas (HCCs) using automatic tube voltage selection (ATVS) and automatic tube current modulation (ATCM) with or without iterative reconstruction. Materials and Methods One hundred and five patients with 123 HCC lesions were included. Fifty-seven patients were scanned using both ATVS and ATCM and images were reconstructed using either filtered back-projection (FBP) (group A1) or sinogram-affirmed iterative reconstruction (SAFIRE) (group A2). Forty-eight patients were imaged using only ATCM, with a fixed tube potential of 120 kVp and FBP reconstruction (group B). Quantitative parameters (image noise in Hounsfield unit and contrast-to-noise ratio of the aorta, the liver, and the hepatic tumors) and qualitative visual parameters (image noise, overall image quality, and lesion conspicuity as graded on a 5-point scale) were compared among the groups. Results Group A2 scanned with the automatically chosen 80 kVp and 100 kVp tube voltages ranked the best in lesion conspicuity and subjective and objective image quality (p values ranging from < 0.001 to 0.004) among the three groups, except for overall image quality between group A2 and group B (p = 0.022). Group A1 showed higher image noise (p = 0.005) but similar lesion conspicuity and overall image quality as compared with group B. The radiation dose in group A was 19% lower than that in group B (p = 0.022). Conclusion CT scanning with combined use of ATVS and ATCM and image reconstruction with SAFIRE algorithm provides higher lesion conspicuity and better image quality for evaluating small hepatic HCCs with radiation dose reduction. PMID:25995682
Papadakis, Antonios E; Perisinakis, Kostas; Raissaki, Maria; Damilakis, John
2013-04-01
The aim of the present phantom study was to investigate the effect of x-ray tube parameters and iodine concentration on image quality and radiation dose in cerebral computed tomographic (CT) angiographic examinations of pediatric and adult individuals. Four physical anthropomorphic phantoms that represent the average individual as neonate, 1-year-old, 5-year-old, and 10-year-old children and the RANDO phantom that simulates the average adult individual were used. Cylindrical vessels were bored along the brain-equivalent plugs of each physical phantom. To simulate the brain vasculature, vessels of 0.6, 1, 2, and 3 mm in diameter were created. These vessels were filled with contrast medium (CM) solutions at different iodine concentrations, that is, 5.6, 4.2, 2.7, and 1.4 mg I/mL. The phantom heads were scanned at 120, 100, and 80 kV. The applied quality reference tube current-time product values ranged from a minimum of 45 to a maximum of 680. The CT acquisitions were performed on a 16-slice CT scanner using the automatic exposure control system. Image quality was evaluated on the basis of image noise and contrast-to-noise ratio (CNR) between the contrast-enhanced iodinated vessels and the unenhanced regions of interest. Dose reduction was calculated as the percentage difference of the CT dose index value at the quality reference tube current-time product and the CT dose index at the mean modulated tube current-time product. Image noise that was measured using the preset tube current-time product settings varied significantly among the different phantoms (P < 0.0001). Hounsfield unit number of iodinated vessels was linearly related to CM concentration (r² = 0.907) and vessel diameter (r² = 0.918). The Hounsfield unit number of iodinated vessels followed a decreasing trend from the neonate phantom to the adult phantom at all kilovoltage settings. For the same image noise level, a CNR improvement of up to 69% and a dose reduction of up to 61% may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. For the same CNR, a reduction by 25% of the administered CM concentration may be achieved when CT acquisition is performed at 80 kV compared with 120 kV. In cerebral CT angiographic studies, appropriate adjustment of the preset tube current-time product settings is required to achieve the same image noise level among participants of different age. Cerebral CT angiography at 80 kV significantly improves CNR and significantly reduces radiation dose. Moreover, at 80 kV, a considerable reduction of the administered amount of the CM may be reached, thus reducing potential risks for contrast-induced nephropathy.
Guberina, Nika; Forsting, Michael; Ringelstein, Adrian
2017-06-15
To evaluate the dose-reduction potential with different lens protectors for patients undergoing cranial computed tomography (CT) scans. Eye lens dose was assessed in vitro (α-Al2O3:C thermoluminescence dosemeters) using an Alderson-Rando phantom® in cranial CT protocols at different CT scanners (SOMATOM-Definition-AS+®(CT1) and SOMATOM-Definition-Flash® (CT2)) using two different lens-protection systems (Somatex® (SOM) and Medical Imaging Systems® (MIS)). Summarised percentage of the transmitted photons: (1) CT1 (a) unenhanced CT (nCT) with gantry angulation: SOM = 103%, MIS = 111%; (2) CT2 (a) nCT without gantry angulation: SOM = 81%, MIS = 91%; (b) CT angiography (CTA) with automatic dose-modulation technique: SOM = 39%, MIS = 74%; (c) CTA without dose-modulation technique: SOM = 22%, MIS = 48%; (d) CT perfusion: SOM = 44%, MIS = 69%. SOM showed a higher dose-reduction potential than MIS maintaining equal image quality. Lens-protection systems are most effective in CTA protocols without dose-reduction techniques. Lens-protection systems lower the average eye lens dose during CT scans up to 1/3 (MIS) and 2/3 (SOM), respectively, if the eye lens is exposed to the direct beam of radiation. Considering both the CT protocol and the material of lens protectors, they seem to be mandatory for reducing the radiation exposure of the eye lens. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SU-F-J-205: Effect of Cone Beam Factor On Cone Beam CT Number Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Hua, C; Farr, J
Purpose: To examine the suitability of a Catphan™ 700 phantom for image quality QA of a cone beam computed tomography (CBCT) system deployed for proton therapy. Methods: Catphan phantoms, particularly Catphan™ 504, are commonly used in image quality QA for CBCT. As a newer product, Catphan™ 700 offers more tissue equivalent inserts which may be useful for generating the electron density – CT number curve for CBCT based treatment planning. The sensitometry-and-geometry module used in Catphan™ 700 is located at the end of the phantom and after the resolution line pair module. In Catphan™ 504 the line pair module ismore » located at the end of the phantom and after the sensitometry-and-geometry module. To investigate the effect of difference in location on CT number accuracy due to the cone beam factor, we scanned the Catphan™ 700 with the central plane of CBCT at the center of the phantom, line pair and sensitometry-andgeometry modules of the phantom, respectively. The protocol head and thorax scan modes were used. For each position, scans were repeated 4 times. Results: For the head scan mode, the standard deviation (SD) of the CT numbers of each insert under 4 repeated scans was up to 20 HU, 11 HU, and 11 HU, respectively, for the central plane of CBCT located at the center of the phantom, line pair, and sensitometry-and-geometry modules of the phantom. The mean of the SD was 9.9 HU, 5.7 HU, and 5.9 HU, respectively. For the thorax mode, the mean of the SD was 4.5 HU, 4.4 HU, and 4.4 HU, respectively. The assessment of image quality based on resolution and spatial linearity was not affected by imaging location changes. Conclusion: When the Catphan™ 700 was aligned to the center of imaging region, the CT number accuracy test may not meet expectations. We recommend reconfiguration of the modules.« less
van Osch, Liesbeth; Schulz, Daniela N; Kremers, Stef PJ; de Vries, Hein
2012-01-01
Background The Internet is a promising medium in the field of health promotion for offering tailored and targeted lifestyle interventions applying computer-tailored (CT) techniques to the general public. Actual exposure to CT interventions is not living up to its high expectations, as only a (limited) proportion of the target group is actually using these programs. Objective To investigate exposure to an Internet-delivered, CT lifestyle intervention, targeting physical activity, fruit and vegetable intake, smoking behavior, and alcohol intake, we focused on three processes: first use, prolonged use, and sustained use. The first objectives were to identify user characteristics that predict initiation of an online CT lifestyle program (first use) and completion of this program (prolonged use). Furthermore, we studied the effect of using a proactive strategy, consisting of periodic email prompts, on program revisits (sustained use). Methods The research population for this study consisted of Dutch adults participating in the Adult Health Monitor, offered by the regional public health services. We used a randomized controlled trial design to assess predictors of first use, prolonged use, and sustained use. Demographics and behavioral characteristics, as well as the strategy used for revisiting, were included as predictors in the model. Results A total of 9169 participants indicated their interest in the new program and 5168 actually logged in to the program. Participants significantly more likely to initiate one of the CT modules were male, older, and employed, and had a lower income, higher body mass index, and relatively unhealthy lifestyle. Participants significantly more likely to complete one of the CT modules were older and had a higher income and a relatively healthier lifestyle. Finally, using a proactive strategy influenced sustained use, with people from the prompting condition being more likely to revisit the program (odds ratio 28.92, 95% confidence interval 10.65–78.52; P < .001). Conclusions Older, male, and employed participants, and those with a lower income, higher body mass index, and a relatively unhealthy lifestyle were more likely to initiate a CT module. Module completers predominantly had a higher income and age. The current program therefore succeeded in reaching those people who benefit most from online lifestyle interventions. However, these people tended to disengage from the program. This underlines the importance of additional research into program adjustments and strategies that can be used to stimulate prolonged program use. Furthermore, sending periodic email prompts significantly increased revisits to the program. Though promising, this effect was modest and needs to be further examined, in order to maximize the potential of periodic email prompting. Trial Registration Nederlands Trial Register (NTR: 1786) and Medical Ethics Committee of Maastricht University and the University Hospital Maastricht (NL2723506809/MEC0903016); http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1786 (Archived by WebCite at http://www.webcitation.org/65hBXA6V7) PMID:22382037
Fluence-field modulated x-ray CT using multiple aperture devices
NASA Astrophysics Data System (ADS)
Stayman, J. Webster; Mathews, Aswin; Zbijewski, Wojciech; Gang, Grace; Siewerdsen, Jeffrey; Kawamoto, Satomi; Blevis, Ira; Levinson, Reuven
2016-03-01
We introduce a novel strategy for fluence field modulation (FFM) in x-ray CT using multiple aperture devices (MADs). MAD filters permit FFM by blocking or transmitting the x-ray beam on a fine (0.1-1 mm) scale. The filters have a number of potential advantages over other beam modulation strategies including the potential for a highly compact design, modest actuation speed and acceleration requirements, and spectrally neutral filtration due to their essentially binary action. In this work, we present the underlying MAD filtration concept including a design process to achieve a specific class of FFM patterns. A set of MAD filters is fabricated using a tungsten laser sintering process and integrated into an x-ray CT test bench. A characterization of the MAD filters is conducted and compared to traditional attenuating bowtie filters and the ability to flatten the fluence profile for a 32 cm acrylic phantom is demonstrated. MAD-filtered tomographic data was acquired on the CT test bench and reconstructed without artifacts associated with the MAD filter. These initial studies suggest that MAD-based FFM is appropriate for integration in clinical CT system to create patient-specific fluence field profile and reduce radiation exposures.
Multiple supervised residual network for osteosarcoma segmentation in CT images.
Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin
2018-01-01
Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simsek, Meric; Quezada-Calvillo, Roberto; Ferruzzi, Mario G; Nichols, Buford L; Hamaker, Bruce R
2015-04-22
In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhibition by chlorogenic acid, caffeic acid, gallic acid, (+)-catechin, and (-)-epigallocatechin gallate (EGCG) on individual recombinant human Nt-MGAM and Nt-SI and on mouse Ct-MGAM and Ct-SI was assayed using maltose as the substrate. Inhibition constants, inhibition mechanisms, and IC50 values for each combination of phenolic compound and enzymatic subunit were determined. EGCG and chlorogenic acid were found to be more potent inhibitors for selectively inhibiting the two subunits with highest activity, Ct-MGAM and Ct-SI. All compounds displayed noncompetitive type inhibition. Inhibition of fast-digesting Ct-MGAM and Ct-SI by EGCG and chlorogenic acid could lead to a slow, but complete, digestion of starch for improved glycemic response of starchy foods with potential health benefit.
Computerized Training in Critical Thinking (CT)2: A Skill-Based Program for Army Personnel
2008-06-01
15-minute break, and then completed the Skill 8 posttest . After completing the Skill 8 pretest , the experimental group completed the Skill training...including pretests , training modules, and posttests for each of eight CT skills. The pretests and training modules are highly interactive, include...usability evaluations .....................................26 Table 6: Pretest and posttest means and standard deviations by group, investigation 1
Kanczler, Janos M; Smith, Emma L; Roberts, Carol A; Oreffo, Richard O C
2012-10-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, S; Wang, Y; Weng, H
Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiationmore » dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.« less
NASA Astrophysics Data System (ADS)
Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong
2013-06-01
By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.
Gandhi, Diksha; Crotty, Dominic J; Stevens, Grant M; Schmidt, Taly Gilat
2015-11-01
This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings. Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%-20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostani, Maryam, E-mail: mbostani@mednet.ucla.edu; McMillan, Kyle; Lu, Peiyun
2015-02-15
Purpose: Task Group 204 introduced effective diameter (ED) as the patient size metric used to correlate size-specific-dose-estimates. However, this size metric fails to account for patient attenuation properties and has been suggested to be replaced by an attenuation-based size metric, water equivalent diameter (D{sub W}). The purpose of this study is to investigate different size metrics, effective diameter, and water equivalent diameter, in combination with regional descriptions of scanner output to establish the most appropriate size metric to be used as a predictor for organ dose in tube current modulated CT exams. Methods: 101 thoracic and 82 abdomen/pelvis scans frommore » clinically indicated CT exams were collected retrospectively from a multidetector row CT (Sensation 64, Siemens Healthcare) with Institutional Review Board approval to generate voxelized patient models. Fully irradiated organs (lung and breasts in thoracic scans and liver, kidneys, and spleen in abdominal scans) were segmented and used as tally regions in Monte Carlo simulations for reporting organ dose. Along with image data, raw projection data were collected to obtain tube current information for simulating tube current modulation scans using Monte Carlo methods. Additionally, previously described patient size metrics [ED, D{sub W}, and approximated water equivalent diameter (D{sub Wa})] were calculated for each patient and reported in three different ways: a single value averaged over the entire scan, a single value averaged over the region of interest, and a single value from a location in the middle of the scan volume. Organ doses were normalized by an appropriate mAs weighted CTDI{sub vol} to reflect regional variation of tube current. Linear regression analysis was used to evaluate the correlations between normalized organ doses and each size metric. Results: For the abdominal organs, the correlations between normalized organ dose and size metric were overall slightly higher for all three differently (global, regional, and middle slice) reported D{sub W} and D{sub Wa} than they were for ED, but the differences were not statistically significant. However, for lung dose, computed correlations using water equivalent diameter calculated in the middle of the image data (D{sub W,middle}) and averaged over the low attenuating region of lung (D{sub W,regional}) were statistically significantly higher than correlations of normalized lung dose with ED. Conclusions: To conclude, effective diameter and water equivalent diameter are very similar in abdominal regions; however, their difference becomes noticeable in lungs. Water equivalent diameter, specifically reported as a regional average and middle of scan volume, was shown to be better predictors of lung dose. Therefore, an attenuation-based size metric (water equivalent diameter) is recommended because it is more robust across different anatomic regions. Additionally, it was observed that the regional size metric reported as a single value averaged over a region of interest and the size metric calculated from a single slice/image chosen from the middle of the scan volume are highly correlated for these specific patient models and scan types.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez, A; Boone, J
Purpose: To implement a 3D beam modulation filter (3D-BMF) in dedicated breast CT (bCT) and develop a method for conforming the patient’s breast to a pre-defined shape, optimizing the effects of the filter. This work expands on previous work reporting the methodology for designing a 3D-BMF that can spare unnecessary dose and improve signal equalization at the detector by preferentially filtering the beam in the thinner anterior and peripheral breast regions. Methods: Effective diameter profiles were measured for 219 segmented bCT images, grouped into volume quintiles, and averaged within each group to represent the range of breast sizes found clinically.more » These profiles were then used to generate five size-specific computational phantoms and fabricate five size-specific UHMW phantoms. Each computational phantom was utilized for designing a size-specific 3D-BMF using previously reported methods. Glandular dose values and projection images were simulated in MCNP6 with and without the 3DBMF using the system specifications of our prototype bCT scanner “Doheny”. Lastly, thermoplastic was molded around each of the five phantom sizes and used to produce a series of breast immobilizers for use in conforming the patient’s breast during bCT acquisition. Results: After incorporating the 3D-BMF, MC simulations estimated an 80% average reduction in the detector dynamic range requirements across all phantom sizes. The glandular dose was reduced on average 57% after normalizing by the number of quanta reaching the detector under the thickest region of the breast. Conclusion: A series of bCT-derived breast phantoms were used to design size-specific 3D-BMFs and breast immobilizers that can be used on the bCT platform to conform the patient’s breast and therefore optimally exploit the benefits of the 3D-BMF. Current efforts are focused on fabricating several prototype 3D-BMFs and performing phantom scans on Doheny for MC simulation validation and image quality analysis. Research reported in this paper was supported in part by the National Cancer Institute of the National Institutes of Health under award R01CA181081. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institue of Health.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Rosica, D; Agarwal, V
Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less
NASA Astrophysics Data System (ADS)
Rupcich, Franco John
The purpose of this study was to quantify the effectiveness of techniques intended to reduce dose to the breast during CT coronary angiography (CTCA) scans with respect to task-based image quality, and to evaluate the effectiveness of optimal energy weighting in improving contrast-to-noise ratio (CNR), and thus the potential for reducing breast dose, during energy-resolved dedicated breast CT. A database quantifying organ dose for several radiosensitive organs irradiated during CTCA, including the breast, was generated using Monte Carlo simulations. This database facilitates estimation of organ-specific dose deposited during CTCA protocols using arbitrary x-ray spectra or tube-current modulation schemes without the need to run Monte Carlo simulations. The database was used to estimate breast dose for simulated CT images acquired for a reference protocol and five protocols intended to reduce breast dose. For each protocol, the performance of two tasks (detection of signals with unknown locations) was compared over a range of breast dose levels using a task-based, signal-detectability metric: the estimator of the area under the exponential free-response relative operating characteristic curve, AFE. For large-diameter/medium-contrast signals, when maintaining equivalent AFE, the 80 kV partial, 80 kV, 120 kV partial, and 120 kV tube-current modulated protocols reduced breast dose by 85%, 81%, 18%, and 6%, respectively, while the shielded protocol increased breast dose by 68%. Results for the small-diameter/high-contrast signal followed similar trends, but with smaller magnitude of the percent changes in dose. The 80 kV protocols demonstrated the greatest reduction to breast dose, however, the subsequent increase in noise may be clinically unacceptable. Tube output for these protocols can be adjusted to achieve more desirable noise levels with lesser dose reduction. The improvement in CNR of optimally projection-based and image-based weighted images relative to photon-counting was investigated for six different energy bin combinations using a bench-top energy-resolving CT system with a cadmium zinc telluride (CZT) detector. The non-ideal spectral response reduced the CNR for the projection-based weighted images, while image-based weighting improved CNR for five out of the six investigated bin combinations, despite this non-ideal response, indicating potential for image-based weighting to reduce breast dose during dedicated breast CT.
MO-PIS-Exhibit Hall-01: Imaging: CT Dose Optimization Technologies I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denison, K; Smith, S
Partners in Solutions is an exciting new program in which AAPM partners with our vendors to present practical “hands-on” information about the equipment and software systems that we use in our clinics. The imaging topic this year is CT scanner dose optimization capabilities. Note that the sessions are being held in a special purpose room built on the Exhibit Hall Floor, to encourage further interaction with the vendors. Dose Optimization Capabilities of GE Computed Tomography Scanners Presentation Time: 11:15 – 11:45 AM GE Healthcare is dedicated to the delivery of high quality clinical images through the development of technologies, whichmore » optimize the application of ionizing radiation. In computed tomography, dose management solutions fall into four categories: employs projection data and statistical modeling to decrease noise in the reconstructed image - creating an opportunity for mA reduction in the acquisition of diagnostic images. Veo represents true Model Based Iterative Reconstruction (MBiR). Using high-level algorithms in tandem with advanced computing power, Veo enables lower pixel noise standard deviation and improved spatial resolution within a single image. Advanced Adaptive Image Filters allow for maintenance of spatial resolution while reducing image noise. Examples of adaptive image space filters include Neuro 3-D filters and Cardiac Noise Reduction Filters. AutomA adjusts mA along the z-axis and is the CT equivalent of auto exposure control in conventional x-ray systems. Dynamic Z-axis Tracking offers an additional opportunity for dose reduction in helical acquisitions while SmartTrack Z-axis Tracking serves to ensure beam, collimator and detector alignment during tube rotation. SmartmA provides angular mA modulation. ECG Helical Modulation reduces mA during the systolic phase of the heart cycle. SmartBeam optimization uses bowtie beam-shaping hardware and software to filter off-axis x-rays - minimizing dose and reducing x-ray scatter. The DICOM Radiation Dose Structured Report (RDSR) generates a dose report at the conclusion of every examination. Dose Check preemptively notifies CT operators when scan parameters exceed user-defined dose thresholds. DoseWatch is an information technology application providing vendor-agnostic dose tracking and analysis for CT (and all other diagnostic x-ray modalities) SnapShot Pulse improves coronary CTA dose management. VolumeShuttle uses two acquisitions to increase coverage, decrease dose, and conserve on contrast administration. Color-Coding for Kids applies the Broselow-Luten Pediatric System to facilitate pediatric emergency care and reduce medical errors. FeatherLight achieves dose optimization through pediatric procedure-based protocols. Adventure Series scanners provide a child-friendly imaging environment promoting patient cooperation with resultant reduction in retakes and patient motion. Philips CT Dose Optimization Tools and Advanced Reconstruction Presentation Time: 11:45 ‘ 12:15 PM The first part of the talk will cover “Dose Reduction and Dose Optimization Technologies” present in Philips CT Scanners. The main Technologies to be presented include: DoseRight and tube current modulation (DoseRight, Z-DOM, 3D-DOM, DoseRight Cardiac) Special acquisition modes Beam filtration and beam shapers Eclipse collimator and ClearRay collimator NanoPanel detector DoseRight will cover automatic tube current selection that automatically adjusts the dose for the individual patient. The presentation will explore the modulation techniques currently employed in Philips CT scanners and will include the algorithmic concepts as well as illustrative examples. Modulation and current selection technologies to be covered include the Automatic Current Selection component of DoseRight, ZDOM longitudinal dose modulation, 3D-DOM (combination of longitudinal and rotational dose modulation), Cardiac Dose right (an ECG based dose modulation scheme), and the DoseRight Index (DRI) IQ index. The special acquisition modes covers acquisition techniques such as prospective gating that is designed to reduce exposure to the patient through the Cardiac Step and Shoot scan mode. This mode can substitute the much higher dose retrospective scan modes for certain types of cardiac imaging. The beam filtration and beam shaper portion will discuss the variety of filtration and beam shaping configurations available on Philips scanners. This topic includes the x-ray beam characteristics, tube filtration as well as dose compensator characteristics. The Eclipse collimator, ClearRay collimator and the NanoPanel detector portion will discuss additional technologies specific to wide coverage CT that address some of the unique challenges encountered and techniques employed to optimize image quality and optimize dose utilization. The Eclipse collimator reduces extraneous exposure by actively blocking the radiation tails at either end of helical scans that do not contribute to the image generation. The ClearRay collimator and the NanoPanel detector optimize the quality of the signal that reaches the detectors by addressing the increased scattered radiation present in wide coverage and the NanoPanel detector adds superior electronic noise characteristics valuable when imaging at a low dose level. The second part of the talk will present “Advanced Reconstruction Technologies” currently available on Philips CT Scanners. The talk will cover filtered back projection (FBP), iDose4 and Iterative Model Reconstruction (IMR). Each reconstruction method will include a discussion of the algorithm as well as similarities and differences between the algorithms. Examples illustrating the merits of each algorithm will be presented, and techniques and metrics to characterize the performance of each type of algorithm will be presented. The Filtered Back projection portion will discuss and provide a brief summary of relevant standard image reconstruction techniques in common use, and discuss the common tradeoffs when using the FBP algorithm. The iDose4 portion will present the algorithms used for iDose4 as well the different levels. The meaning of different levels of iDose4 available will be presented and quantified. Guidelines for selection iDose4 parameters based on the imaging need will be explained. The different image quality goals available with iDose4 and specifically how iDose4 enables noise reduction, spatial resolution improvement or both will be explained. The approaches to leveraging the benefits of iDose4 such as improved spatial resolution, decreased noise, and artifact prevention will be described and quantified; and measurements and metrics behind the improvements will be presented. The image quality benefits in specific imaging situations as well as how to best combine the technology with other dose reduction strategies to ensure the best image quality at a given dose level will be presented. Insight into the IMR algorithm as well as contrast to the iDose4 techniques and performance characteristics will be discussed. Metrics and techniques for characterizing this class of algorithm and IQ performance will be presented. The image quality benefits and the dose reduction capabilities of IMR will be explored. Illustrative examples of the noise reduction, spatial resolution improvement, and low contrast detectability improvements of the reconstruction method will be presented: clinical cases and phantom measurements demonstrating the benefits of IMR in the areas of low dose imaging, spatial resolution and low contrast resolution are discussed and the technical details behind the measurements will be presented compared to both iDose4 and traditional filtered back projection (FBP)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadakis, Antonios E.; Perisinakis, Kostas; Damilakis, John
2007-07-15
The purpose of this study was to assess the potential of angular on-line tube current modulation on dose reduction in pediatric and adult patients undergoing multidetector computed tomography (MDCT) examinations. Five physical anthropomorphic phantoms that simulate the average individual as neonate, 1-year-old, 5-year-old, 10-year-old, and adult were employed in the current study. Phantoms were scanned with the use of on-line tube current modulation (TCM). Percent dose reduction (%DR) factors achieved by applying TCM, were determined for standard protocols used for head and neck, shoulder, thorax, thorax and abdomen, abdomen, abdomen and pelvis, pelvis, and whole body examinations. A preliminary studymore » on the application of TCM in MDCT examinations of adult patients was performed to validate the results obtained in anthropomorphic phantoms. Dose reduction was estimated as the percentage difference of the modulated milliamperes for each scan and the preset milliamperes prescribed by the scan protocol. The dose reduction in children was found to be much lower than the corresponding reduction achieved for adults. For helical scans the %DR factors, ranged between 1.6% and 7.4% for the neonate, 2.9% and 8.7% for the 1-year old, 2% and 6% for the 5-year-old, 5% and 10.9% for the 10-year-old, and 10.4% and 20.7% for the adult individual. For sequential scans the corresponding %DR factors ranged between 1.3% and 6.7%, 4.5% and 11%, 4.2% and 6.6%, 6.4% and 12.3%, and 8.9% and 23.3%, respectively. Broader beam collimations are associated with decreased %DR factors, when other scanning parameters are held constant. TCM did not impair image noise. In adult patients, the %DR values were found to be in good agreement with the corresponding results obtained in the anthropomorphic adult phantom. In conclusion, on-line TCM may be considered as a valuable tool for reducing dose in routine CT examinations of pediatric and adult patients. However, the dose reduction achieved with TCM in neonates and young children was found to be lower than that obtained for adults. Therefore, on-line TCM should work as an additional means to reduce dose and should not replace other conventional means of reducing dose, especially in neonates and young children.« less
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
[State of the art and future trends in technology for computed tomography dose reduction].
Calzado Cantera, A; Hernández-Girón, I; Salvadó Artells, M; Rodríguez González, R
2013-12-01
The introduction of helical and multislice acquisitions in CT scanners together with decreased image reconstruction times has had a tremendous impact on radiological practice. Technological developments in the last 10 to 12 years have enabled very high quality images to be obtained in a very short time. Improved image quality has led to an increase in the number of indications for CT. In parallel to this development, radiation exposure in patients has increased considerably. Concern about the potential health risks posed by CT imaging, reflected in diverse initiatives and actions by official organs and scientific societies, has prompted the search for ways to reduce radiation exposure in patients without compromising diagnostic efficacy. To this end, good practice guidelines have been established, special applications have been developed for scanners, and research has been undertaken to optimize the clinical use of CT. Noteworthy technical developments incorporated in scanners include the different modes of X-ray tube current modulation, automatic selection of voltage settings, selective organ protection, adaptive collimation, and iterative reconstruction. The appropriate use of these tools to reduce radiation doses requires thorough knowledge of how they work. Copyright © 2013 SERAM. Published by Elsevier Espana. All rights reserved.
McCloskey, Diana T; Doherty, Lynda; Dai, Yan-Ping; Miller, Lisa; Hume, Joseph R; Yamboliev, Ilia A
2007-06-08
Short ClC3 isoform (sClC3) functions as a volume-sensitive outwardly rectifying anion channel (VSOAC) in some cell types. In previous studies, we have shown that the hypotonic activation of sClC3 is linked to cell swelling-mediated remodeling of the actin cytoskeleton. In the present study, we have tested the hypothesis that the cytosolic tails of sClC3 bind to actin directly and that binding modulates the hypotonic activation of the channel. Co-sedimentation assays in vitro demonstrated a strong binding between the glutathione S-transferase-fused cytosolic C terminus of sClC3 (GST-sClC3-CT) to filamentous actin (F-actin) but not to globular monomeric actin (G-actin). The GST-fused N terminus (GST-sClC3-NT) exhibited low binding affinity to both G- and F-actin. Co-sedimentation experiments with progressively truncated GST-sClC3-CT indicated that the F-actin binding region is located between amino acids 690 and 760 of sClC3. Two synthetic peptides mapping basic clusters of the cytosolic sClC3-CT (CTP2, isoleucine 716 to leucine 734; and CTP3, proline 688 to proline 709) prevented binding of GST-sClC3-CT to F-actin in vitro. Dialysis into NIH/3T3 cells of these two peptides (but not of synthetic peptide CTP1 (isoleucine 737 to glutamine 748)) reduced the maximal current density by 60 and 38%, respectively. Based on these results, we have concluded that, by direct interaction with subcortical actin filaments, sClC3 contributes to the hypotonic stress-induced VSOACs in NIH/3T3 cells.
SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J
Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. Themore » phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.« less
Schreiner, Markus M; Platzgummer, Hannes; Unterhumer, Sylvia; Weber, Michael; Mistelbauer, Gabriel; Loewe, Christian; Schernthaner, Ruediger E
2017-08-01
To investigate radiation exposure, objective image quality, and the diagnostic accuracy of a BMI-adjusted ultra-low-dose CT angiography (CTA) protocol for the assessment of peripheral arterial disease (PAD), with digital subtraction angiography (DSA) as the standard of reference. In this prospective, IRB-approved study, 40 PAD patients (30 male, mean age 72 years) underwent CTA on a dual-source CT scanner at 80kV tube voltage. The reference amplitude for tube current modulation was personalized based on the body mass index (BMI) with 120 mAs for [BMI≤25] or 150 mAs for [25
Pourmand, Ali; Woodward, Christina; Shokoohi, Hamid; King, Jordan B; Taheri, M Reza; King, Jackson; Lawrence, Christopher
2018-01-01
Context Web-based learning (WBL) modules are effectively used to improve medical education curriculum; however, they have not been evaluated to improve head computed tomography (CT) scan interpretation in an emergency medicine (EM) setting. Objective To evaluate the effectiveness of a WBL module to aid identification of cranial structures on CT and to improve ability to distinguish between normal and abnormal findings. Design Prospective, before-and-after trial in the Emergency Department of an academic center. Baseline head CT knowledge was assessed via a standardized test containing ten head CT scans, including normal scans and those showing hemorrhagic stroke, trauma, and infection (abscess). All trainees then participated in a WBL intervention. Three weeks later, they were given the same ten CT scans to evaluate in a standardized posttest. Main Outcome Measures Improvement in test scores. Results A total of 131 EM clerkship students and 32 EM residents were enrolled. Pretest scores correlated with stage of training, with students and first-year residents demonstrating the lowest scores. Overall, there was a significant improvement in percentage of correctly classified CT images after the training intervention from a mean pretest score of 32% ± 12% to posttest score of 67% ± 13% (mean improvement = 35% ± 13%, p < 0.001). Among subsets by training level, all subgroups except first-year residents demonstrated a statistically significant increase in scores after the training. Conclusion Incorporating asynchronous WBL modules into EM clerkship and residency curriculum provides early radiographic exposure in their clinical training and can enhance diagnostic head CT scan interpretation. PMID:29272248
Design of dual multiple aperture devices for dynamical fluence field modulated CT.
Mathews, Aswin John; Tilley, Steven; Gang, Grace; Kawamoto, Satomi; Zbijewski, Wojciech; Siewerdsen, Jeffrey H; Levinson, Reuven; Webster Stayman, J
2016-07-01
A Multiple Aperture Device (MAD) is a novel x-ray beam modulator that uses binary filtration on a fine scale to spatially modulate an x-ray beam. Using two MADs in series enables a large variety of fluence profiles by shifting the MADS relative to each other. This work details the design and control of dual MADs for a specific class of desired fluence patterns. Specifically, models of MAD operation are integrated into a best fit objective followed by CMA-ES optimization. To illustrate this framework we demonstrate the design process for an abdominal phantom with the goal of uniform detected signal. Achievable fluence profiles show good agreement with target fluence profiles, and the ability to flatten projections when a phantom is scanned is demonstrated. Simulated data reconstruction using traditional tube current modulation (TCM) and MAD filtering with TCM are investigated with the dual MAD system demonstrating more uniformity in noise and illustrating the potential for dose reduction under a maximum noise level constraint.
Hwang, Jae-Yeon; Do, Kyung-Hyun; Yang, Dong Hyun; Cho, Young Ah; Yoon, Hye-Kyung; Lee, Jin Seong; Koo, Hyun Jung
2015-01-01
Abstract Children are at greater risk of radiation exposure than adults because the rapidly dividing cells of children tend to be more radiosensitive and they have a longer expected life time in which to develop potential radiation injury. Some studies have surveyed computed tomography (CT) radiation doses and several studies have established diagnostic reference levels according to patient age or body size; however, no survey of CT radiation doses with a large number of patients has yet been carried out in South Korea. The aim of the present study was to investigate the radiation dose in pediatric CT examinations performed throughout South Korea. From 512 CT (222 brain CT, 105 chest CT, and 185 abdominopelvic CT) scans that were referred to our tertiary hospital, a dose report sheet was available for retrospective analysis of CT scan protocols and dose, including the volumetric CT dose index (CTDIvol), dose-length product (DLP), effective dose, and size-specific dose estimates (SSDE). At 55.2%, multiphase CT was the most frequently performed protocol for abdominopelvic CT. Tube current modulation was applied most often in abdominopelvic CT and chest CT, accounting for 70.1% and 62.7%, respectively. Regarding the CT dose, the interquartile ranges of the CTDIvol were 11.1 to 22.5 (newborns), 16.6 to 39.1 (≤1 year), 14.6 to 41.7 (2–5 years), 23.5 to 44.1 (6–10 years), and 31.4 to 55.3 (≤15 years) for brain CT; 1.3 to 5.7 (≤1 year), 3.9 to 6.8 (2–5 years), 3.9 to 9.3 (6–10 years), and 7.7 to 13.8 (≤15 years) for chest CT; and 4.0 to 7.5 (≤1 year), 4.2 to 8.9 (2–5 years), 5.7 to 12.4 (6–10 years), and 7.6 to 16.6 (≤15 years) for abdominopelvic CT. The SSDE and CTDIvol were well correlated for patients <5 years old, whereas the CTDIvol was lower in patients ≥6 years old. Our study describes the various parameters and dosimetry metrics of pediatric CT in South Korea. The CTDIvol, DLP, and effective dose were generally lower than in German and UK surveys, except in certain age groups. PMID:26683922
Yartsev, S; Kron, T; Van Dyk, J
2007-01-01
Modern radiotherapy is characterised by a better target definition through medical imaging accompanied by significantly improved radiation delivery methods, most notably Intensity-Modulate Radiation Therapy (IMRT). However, the treatment can only be as accurate as the positioning of patients for their daily radiotherapy fraction. It is in this context that a number of imaging modalities - ranging from ultrasound to on-board kilovoltage imaging and computed tomography (CT) - have found their way into the treatment room where they verify accurate patient positioning prior to or even during delivery of radiation. Helical tomotherapy (HT) combines IMRT delivery with in-built image guidance using megavoltage CT scanning. This paper discusses the initial experience of different centres with IGRT using HT illustrated by a number of clinical examples from the installation in London in Ontario, Canada, one of the world’s first HT sites. We found that HT allows the delivery of highly conformal radiation dose distributions combined with adequate daily image acquisition. An important feature of this unit is its seamless integration, which also includes a customised inverse treatment planning system and a quality assurance module for individual patients. PMID:21614258
NASA Astrophysics Data System (ADS)
Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah
2017-05-01
The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.
Gudjonsdottir, J; Svensson, J R; Campling, S; Brennan, P C; Jonsdottir, B
2009-11-01
Image quality and radiation dose to the patient are important factors in computed tomography (CT). To provide constant image quality, tube current modulation (TCM) performed by automatic exposure control (AEC) adjusts the tube current to the patient's size and shape. To evaluate the effects of patient centering on tube current-time product (mAs) and image noise. An oval-shaped acrylic phantom was scanned in various off-center positions, at 30-mm intervals within a 500-mm field of view, using three different CT scanners. Acquisition parameters were similar to routine abdomen examinations at each site. The mAs was recorded and noise measured in the images. The correlation of mAs and noise with position was calculated using Pearson correlation. In all three scanners, the mAs delivered by the AEC changed with y-position of the phantom (P<0.001), with correlation values of 0.98 for scanners A and B and -0.98 for scanner C. With x-position, mAs changes were 4.9% or less. As the phantom moved into the y-positions, compared with the iso-center, the mAs varied by up to +70%, -34%, and +56% in scanners A, B, and C, respectively. For scanners A and B, noise in two regions of interest in the lower part of the phantom decreased with elevation, with correlation factors from -0.95 to -0.86 (P<0.02). In the x-direction, significant noise relationships (P<0.005) were only seen in scanner A. This study demonstrates that patient centering markedly affects the efficacy of AEC function and that tube current changes vary between scanners. Tube position when acquiring the scout projection radiograph is decisive for the direction of the mAs change. Off-center patient positions cause errors in tube current modulation that can outweigh the dose reduction gained by AEC use, and image quality is affected.
Smith, Emma L.; Roberts, Carol A.
2012-01-01
Understanding the structural development of embryonic bone in a three dimensional framework is fundamental to developing new strategies for the recapitulation of bone tissue in latter life. We present an innovative combined approach of an organotypic embryonic femur culture model, microcomputed tomography (μCT) and immunohistochemistry to examine the development and modulation of the three dimensional structures of the developing embryonic femur. Isolated embryonic chick femurs were organotypic (air/liquid interface) cultured for 10 days in either basal, chondrogenic, or osteogenic supplemented culture conditions. The growth development and modulating effects of basal, chondrogenic, or osteogenic culture media of the embryonic chick femurs was investigated using μCT, immunohistochemistry, and histology. The growth and development of noncultured embryonic chick femur stages E10, E11, E12, E13, E15, and E17 were very closely correlated with increased morphometric indices of bone formation as determined by μCT. After 10 days in the organotpyic culture set up, the early aged femurs (E10 and E11) demonstrated a dramatic response to the chondrogenic or osteogenic culture conditions compared to the basal cultured femurs as determined by a change in μCT morphometric indices and modified expression of chondrogenic and osteogenic markers. Although the later aged femurs (E12 and E13) increased in size and structure after 10 days organotpypic culture, the effects of the osteogenic and chondrogenic organotypic cultures on these femurs were not significantly altered compared to basal conditions. We have demonstrated that the embryonic chick femur organotpyic culture model combined with the μCT and immunohistochemical analysis can provide an integral methodology for investigating the modulation of bone development in an ex vivo culture setting. Hence, these interdisciplinary techniques of μCT and whole organ bone cultures will enable us to delineate some of the temporal, structural developmental paradigms and modulation of bone tissue formation to underpin innovative skeletal regenerative technology for clinical therapeutic strategies in musculoskeletal trauma and diseases. PMID:22472170
CT dose minimization using personalized protocol optimization and aggressive bowtie
NASA Astrophysics Data System (ADS)
Wang, Hui; Yin, Zhye; Jin, Yannan; Wu, Mingye; Yao, Yangyang; Tao, Kun; Kalra, Mannudeep K.; De Man, Bruno
2016-03-01
In this study, we propose to use patient-specific x-ray fluence control to reduce the radiation dose to sensitive organs while still achieving the desired image quality (IQ) in the region of interest (ROI). The mA modulation profile is optimized view by view, based on the sensitive organs and the ROI, which are obtained from an ultra-low-dose volumetric CT scout scan [1]. We use a clinical chest CT scan to demonstrate the feasibility of the proposed concept: the breast region is selected as the sensitive organ region while the cardiac region is selected as IQ ROI. Two groups of simulations are performed based on the clinical CT dataset: (1) a constant mA scan adjusted based on the patient attenuation (120 kVp, 300 mA), which serves as baseline; (2) an optimized scan with aggressive bowtie and ROI centering combined with patient-specific mA modulation. The results shows that the combination of the aggressive bowtie and the optimized mA modulation can result in 40% dose reduction in the breast region, while the IQ in the cardiac region is maintained. More generally, this paper demonstrates the general concept of using a 3D scout scan for optimal scan planning.
Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom.
Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R; Zöllner, Frank G
2017-06-01
This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for 1 H and 23 Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1 H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T 1 and T 2 values comparable to human tissues (lung module: -756±148HU, artificial ribs: 218±56HU (low CaCO 3 concentration) and 339±121 (high CaCO 3 concentration), liver module: T 1 =790±28ms, T 2 =65±1ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900HU, T 1 relaxation time from 550ms to 2000ms, T 2 relaxation time from 40ms to 200ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, 23 Na MR quantification experiments and an increasing level of complexity for motion studies. Copyright © 2016. Published by Elsevier GmbH.
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B; Lee, S; Chen, S
Purpose: Monitoring the delivered dose is an important task for the adaptive radiotherapy (ART) and for determining time to re-plan. A software tool which enables automatic delivered dose calculation using cone-beam CT (CBCT) has been developed and tested. Methods: The tool consists of four components: a CBCT Colleting Module (CCM), a Plan Registration Moduel (PRM), a Dose Calculation Module (DCM), and an Evaluation and Action Module (EAM). The CCM is triggered periodically (e.g. every 1:00 AM) to search for newly acquired CBCTs of patients of interest and then export the DICOM files of the images and related registrations defined inmore » ARIA followed by triggering the PRM. The PRM imports the DICOM images and registrations, links the CBCTs to the related treatment plan of the patient in the planning system (RayStation V4.5, RaySearch, Stockholm, Sweden). A pre-determined CT-to-density table is automatically generated for dose calculation. Current version of the DCM uses a rigid registration which regards the treatment isocenter of the CBCT to be the isocenter of the treatment plan. Then it starts the dose calculation automatically. The AEM evaluates the plan using pre-determined plan evaluation parameters: PTV dose-volume metrics and critical organ doses. The tool has been tested for 10 patients. Results: Automatic plans are generated and saved in the order of the treatment dates of the Adaptive Planning module of the RayStation planning system, without any manual intervention. Once the CTV dose deviates more than 3%, both email and page alerts are sent to the physician and the physicist of the patient so that one can look the case closely. Conclusion: The tool is capable to perform automatic dose tracking and to alert clinicians when an action is needed. It is clinically useful for off-line adaptive therapy to catch any gross error. Practical way of determining alarming level for OAR is under development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gandhi, Diksha; Schmidt, Taly Gilat, E-mail: taly.gilat-schmidt@marquette.edu; Crotty, Dominic J.
Purpose: This technical note quantifies the dose and image quality performance of a clinically available organ-dose-based tube current modulation (ODM) technique, using experimental and simulation phantom studies. The investigated ODM implementation reduces the tube current for the anterior source positions, without increasing current for posterior positions, although such an approach was also evaluated for comparison. Methods: Axial CT scans at 120 kV were performed on head and chest phantoms on an ODM-equipped scanner (Optima CT660, GE Healthcare, Chalfont St. Giles, England). Dosimeters quantified dose to breast, lung, heart, spine, eye lens, and brain regions for ODM and 3D-modulation (SmartmA) settings.more » Monte Carlo simulations, validated with experimental data, were performed on 28 voxelized head phantoms and 10 chest phantoms to quantify organ dose and noise standard deviation. The dose and noise effects of increasing the posterior tube current were also investigated. Results: ODM reduced the dose for all experimental dosimeters with respect to SmartmA, with average dose reductions across dosimeters of 31% (breast), 21% (lung), 24% (heart), 6% (spine), 19% (eye lens), and 11% (brain), with similar results for the simulation validation study. In the phantom library study, the average dose reduction across all phantoms was 34% (breast), 20% (lung), 8% (spine), 20% (eye lens), and 8% (brain). ODM increased the noise standard deviation in reconstructed images by 6%–20%, with generally greater noise increases in anterior regions. Increasing the posterior tube current provided similar dose reduction as ODM for breast and eye lens, increased dose to the spine, with noise effects ranging from 2% noise reduction to 16% noise increase. At noise equal to SmartmA, ODM increased the estimated effective dose by 4% and 8% for chest and head scans, respectively. Increasing the posterior tube current further increased the effective dose by 15% (chest) and 18% (head) relative to SmartmA. Conclusions: ODM reduced dose in all experimental and simulation studies over a range of phantoms, while increasing noise. The results suggest a net dose/noise benefit for breast and eye lens for all studied phantoms, negligible lung dose effects for two phantoms, increased lung dose and/or noise for eight phantoms, and increased dose and/or noise for brain and spine for all studied phantoms compared to the reference protocol.« less
Concentrating Solar Power Projects - Andasol-1 | Concentrating Solar Power
: UTE CT Andasol-1: Cobra (80%) and Sener (20%) Operator(s): Cobra O&M Generation Offtaker(s # of Modules per SCA: 12 SCA Manufacturer (Model): UTE CT Andasol-1 (SKAL-ET) Mirror Manufacturer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Hewei; Fahrig, Rebecca; Bennett, N. Robert
Purpose: Scatter correction is a major challenge in x-ray imaging using large area detectors. Recently, the authors proposed a promising scatter correction method for x-ray computed tomography (CT) using primary modulation. Proof of concept was previously illustrated by Monte Carlo simulations and physical experiments on a small phantom with a simple geometry. In this work, the authors provide a quantitative evaluation of the primary modulation technique and demonstrate its performance in applications where scatter correction is more challenging. Methods: The authors first analyze the potential errors of the estimated scatter in the primary modulation method. On two tabletop CT systems,more » the method is investigated using three phantoms: A Catphan(c)600 phantom, an anthropomorphic chest phantom, and the Catphan(c)600 phantom with two annuli. Two different primary modulators are also designed to show the impact of the modulator parameters on the scatter correction efficiency. The first is an aluminum modulator with a weak modulation and a low modulation frequency, and the second is a copper modulator with a strong modulation and a high modulation frequency. Results: On the Catphan(c)600 phantom in the first study, the method reduces the error of the CT number in the selected regions of interest (ROIs) from 371.4 to 21.9 Hounsfield units (HU); the contrast to noise ratio also increases from 10.9 to 19.2. On the anthropomorphic chest phantom in the second study, which represents a more difficult case due to the high scatter signals and object heterogeneity, the method reduces the error of the CT number from 327 to 19 HU in the selected ROIs and from 31.4% to 5.7% on the overall average. The third study is to investigate the impact of object size on the efficiency of our method. The scatter-to-primary ratio estimation error on the Catphan(c)600 phantom without any annulus (20 cm in diameter) is at the level of 0.04, it rises to 0.07 and 0.1 on the phantom with an elliptical annulus (30 cm in the minor axis and 38 cm in the major axis) and with a circular annulus (38 cm in diameter). Conclusions: On the three phantom studies, good scatter correction performance of the proposed method has been demonstrated using both image comparisons and quantitative analysis. The theory and experiments demonstrate that a strong primary modulation that possesses a low transmission factor and a high modulation frequency is preferred for high scatter correction accuracy.« less
Tan, J S P; Tan, K-L; Lee, J C L; Wan, C-M; Leong, J-L; Chan, L-L
2009-02-01
To our knowledge, there has been no study that compares the radiation dose delivered to the eye lens by 16- and 64-section multidetector CT (MDCT) for standard clinical neuroimaging protocols. Our aim was to assess radiation-dose differences between 16- and 64-section MDCT from the same manufacturer, by using near-identical neuroimaging protocols. Three cadaveric heads were scanned on 16- and 64-section MDCT by using standard neuroimaging CT protocols. Eye lens dose was measured by using thermoluminescent dosimeters (TLD), and each scanning was repeated to reduce random error. The dose-length product, volume CT dose index (CTDI(vol)), and TLD readings for each imaging protocol were averaged and compared between scanners and protocols, by using the paired Student t test. Statistical significance was defined at P < .05. The radiation dose delivered and eye lens doses were lower by 28.1%-45.7% (P < .000) on the 64-section MDCT for near-identical imaging protocols. On the 16-section MDCT, lens dose reduction was greatest (81.1%) on a tilted axial mode, compared with a nontilted helical mode for CT brain scans. Among the protocols studied, CT of the temporal bone delivered the greatest radiation dose to the eye lens. Eye lens radiation doses delivered by the 64-section MDCT are significantly lower, partly due to improvements in automatic tube current modulation technology. However, where applicable, protection of the eyes from the radiation beam by either repositioning the head or tilting the gantry remains the best way to reduce eye lens dose.
Development of a Timepix based detector for the NanoXCT project
NASA Astrophysics Data System (ADS)
Nachtrab, F.; Hofmann, T.; Speier, C.; Lučić, J.; Firsching, M.; Uhlmann, N.; Takman, P.; Heinzl, C.; Holmberg, A.; Krumm, M.; Sauerwein, C.
2015-11-01
The NanoXCT EU FP7 project [1] aims at developing a laboratory, i.e. bench top sized X-ray nano-CT system with a large field-of-view (FOV) for non-destructive testing needs in the micro- and nano-technology sector. The targeted voxel size is 50 nm at 0.175 mm FOV, the maximum FOV is 1 mm at 285 nm voxel size. Within the project a suitable X-ray source, detector and manipulation system have been developed. The system concept [2] omits the use of X-ray optics, to be able to provide a large FOV of up to 1 mm and to preserve the flexibility of state-of-the-art micro-CT systems. The targeted resolution will be reached via direct geometric magnification made possible by the development of a specialized high-flux nano-focus transmission X-ray tube. The end-user's demand for elemental analysis will be covered by energy-resolved measurement techniques, in particular a K-edge imaging method. Timepix [3] modules were chosen as the basis for the detector system, since a photon counting detector is advantageous for the long exposure times that come with very small focal spot sizes. Additional advantages are the small pixel size and adjustable energy threshold. To fulfill the requirements on field-of-view, a detector width 0> 300 pixels was needed. The NanoXCT detector consists of four Hexa modules with 500 μm silicon sensors supplied by X-ray Imaging Europe. An adapter board was developed to connect all four modules to one Fitpix3 readout. The final detector has an active area of 3072 × 512 pixels or approximately 17 × 3 cm2.In this contribution we present the development of the Timepix based NanoXCT detector, it's application in the NanoXCT project for CT and material specific measurements and the current status of results.
SU-F-I-32: Organ Doses from Pediatric Head CT Scan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, H; Liu, Q; Qiu, J
Purpose: To evaluate the organ doses of pediatric patients who undergoing head CT scan using Monte Carlo (MC) simulation and compare it with measurements in anthropomorphic child phantom.. Methods: A ten years old children voxel phantom was developed from CT images, the voxel size of the phantom was 2mm*2mm*2mm. Organ doses from head CT scan were simulated using MCNPX software, 180 detectors were placed in the voxel phantom to tally the doses of the represented tissues or organs. When performing the simulation, 120 kVp and 88 mA were selected as the scan parameters. The scan range covered from the topmore » of the head to the end of the chain, this protocol was used at CT simulator for radiotherapy. To validate the simulated results, organ doses were measured with radiophotoluminescence (RPL) detectors, placed in the 28 organs of the 10 years old CIRS ATOM phantom. Results: The organ doses results matched well between MC simulation and phantom measurements. The eyes dose was showed to be as expected the highest organ dose: 28.11 mGy by simulation and 27.34 mGy by measurement respectively. Doses for organs not included in the scan volume were much lower than those included in the scan volume, thymus doses were observed more than 10 mGy due the CT protocol for radiotherapy covered more body part than routine head CT scan. Conclusion: As the eyes are superficial organs, they may receive the highest radiation dose during the CT scan. Considering the relatively high radio sensitivity, using shielding material or organ based tube current modulation technique should be encouraged to reduce the eye radiation risks. Scan range was one of the most important factors that affects the organ doses during the CT scan. Use as short as reasonably possible scan range should be helpful to reduce the patient radiation dose. This work was supported by the National Natural Science Foundation of China(11475047)« less
Shiradkar, Rakesh; Podder, Tarun K; Algohary, Ahmad; Viswanath, Satish; Ellis, Rodney J; Madabhushi, Anant
2016-11-10
Radiomics or computer - extracted texture features have been shown to achieve superior performance than multiparametric MRI (mpMRI) signal intensities alone in targeting prostate cancer (PCa) lesions. Radiomics along with deformable co-registration tools can be used to develop a framework to generate targeted focal radiotherapy treatment plans. The Rad-TRaP framework comprises three distinct modules. Firstly, a module for radiomics based detection of PCa lesions on mpMRI via a feature enabled machine learning classifier. The second module comprises a multi-modal deformable co-registration scheme to map tissue, organ, and delineated target volumes from MRI onto CT. Finally, the third module involves generation of a radiomics based dose plan on MRI for brachytherapy and on CT for EBRT using the target delineations transferred from the MRI to the CT. Rad-TRaP framework was evaluated using a retrospective cohort of 23 patient studies from two different institutions. 11 patients from the first institution were used to train a radiomics classifier, which was used to detect tumor regions in 12 patients from the second institution. The ground truth cancer delineations for training the machine learning classifier were made by an experienced radiation oncologist using mpMRI, knowledge of biopsy location and radiology reports. The detected tumor regions were used to generate treatment plans for brachytherapy using mpMRI, and tumor regions mapped from MRI to CT to generate corresponding treatment plans for EBRT. For each of EBRT and brachytherapy, 3 dose plans were generated - whole gland homogeneous ([Formula: see text]) which is the current clinical standard, radiomics based focal ([Formula: see text]), and whole gland with a radiomics based focal boost ([Formula: see text]). Comparison of [Formula: see text] against conventional [Formula: see text] revealed that targeted focal brachytherapy would result in a marked reduction in dosage to the OARs while ensuring that the prescribed dose is delivered to the lesions. [Formula: see text] resulted in only a marginal increase in dosage to the OARs compared to [Formula: see text]. A similar trend was observed in case of EBRT with [Formula: see text] and [Formula: see text] compared to [Formula: see text]. A radiotherapy planning framework to generate targeted focal treatment plans has been presented. The focal treatment plans generated using the framework showed reduction in dosage to the organs at risk and a boosted dose delivered to the cancerous lesions.
Chen, Wei-Qiang; Cheng, Yi-Yong; Li, Shu-Tian; Hong, Yan; Wang, Dong-Lan; Hou, Yue
2009-02-01
To explore the effects of different doses of tyrosine modulation on behavioral performances in open field test of psychological stress rats. The animal model of psychological stress was developed by restraint stress for 21 days. Wistar rats were randomly assigned to five groups (n = 10) as follows: control group (CT), stress control group (SCT), low, medium and high-doses of tyrosine modulation stress groups (SLT, SMT and SIT). The changes of behavioral performances were examined by open-field test. Serum levels of cortisol, norepinephrine and dopamine were also detected. The levels of serum cortisol were all increased obviously in the four stress groups, and their bodyweight gainings were diminished. The behavioral performances of SCT rats in open-field test were changed significantly in contrast to that of CT rats. However, The behavioral performances of SMT and SHT rats were not different from that of CT rats. In addition, the serum levels of norepinephrine and dopamine were downregulated obviously in SCT and SLT groups, and no differences were observed in other groups. Psychological stress can impair body behavioral performances, and moderate tyrosine modulation may improve these abnormal changes. The related mechanisms may be involved with the changes of norepinephrine and dopamine.
Ryska, Pavel; Kvasnicka, Tomas; Jandura, Jiri; Klzo, Ludovit; Grepl, Jakub; Zizka, Jan
2014-06-01
To compare the effective and eye lens radiation dose in helical MDCT brain examinations using automatic tube current modulation in conjunction with either standard filtered back projection (FBP) technique or iterative reconstruction in image space (IRIS). Of 400 adult brain MDCT examinations, 200 were performed using FBP and 200 using IRIS with the following parameters: tube voltage 120 kV, rotation period 1 second, pitch factor 0.55, automatic tube current modulation in both transverse and longitudinal planes with reference mAs 300 (FBP) and 200 (IRIS). Doses were calculated from CT dose index and dose length product values utilising ImPACT software; the organ dose to the lens was derived from the actual tube current-time product value applied to the lens. Image quality was assessed by two independent readers blinded to the type of image reconstruction technique. The average effective scan dose was 1.47±0.26 mSv (FBP) and 0.98±0.15 mSv (IRIS), respectively (33.3% decrease). The average organ dose to the eye lens decreased from 40.0±3.3 mGy (FBP) to 26.6±2.0 mGy (IRIS, 33.5% decrease). No significant change in diagnostic image quality was noted between IRIS and FBP scans (P=0.17). Iterative reconstruction of cerebral MDCT examinations enables reduction of both effective and organ eye lens dose by one third without signficant loss of image quality.
Environmental signals modulate ToxT-dependent virulence factor expression in Vibrio cholerae.
Schuhmacher, D A; Klose, K E
1999-03-01
The regulatory protein ToxT directly activates the transcription of virulence factors in Vibrio cholerae, including cholera toxin (CT) and the toxin-coregulated pilus (TCP). Specific environmental signals stimulate virulence factor expression by inducing the transcription of toxT. We demonstrate that transcriptional activation by the ToxT protein is also modulated by environmental signals. ToxT expressed from an inducible promoter activated high-level expression of CT and TCP in V. cholerae at 30 degrees C, but expression of CT and TCP was significantly decreased or abolished by the addition of 0.4% bile to the medium and/or an increase of the temperature to 37 degrees C. Also, expression of six ToxT-dependent TnphoA fusions was modulated by temperature and bile. Measurement of ToxT-dependent transcription of genes encoding CT and TCP by ctxAp- and tcpAp-luciferase fusions confirmed that negative regulation by 37 degrees C or bile occurs at the transcriptional level in V. cholerae. Interestingly, ToxT-dependent transcription of these same promoters in Salmonella typhimurium was relatively insensitive to regulation by temperature or bile. These data are consistent with ToxT transcriptional activity being modulated by environmental signals in V. cholerae and demonstrate an additional level of complexity governing the expression of virulence factors in this pathogen. We propose that negative regulation of ToxT-dependent transcription by environmental signals prevents the incorrect temporal and spatial expression of virulence factors during cholera pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gang, G; Stayman, J; Ouadah, S
2015-06-15
Purpose: This work introduces a task-driven imaging framework that utilizes a patient-specific anatomical model, mathematical definition of the imaging task, and a model of the imaging system to prospectively design acquisition and reconstruction techniques that maximize task-based imaging performance. Utility of the framework is demonstrated in the joint optimization of tube current modulation and view-dependent reconstruction kernel in filtered-backprojection reconstruction and non-circular orbit design in model-based reconstruction. Methods: The system model is based on a cascaded systems analysis of cone-beam CT capable of predicting the spatially varying noise and resolution characteristics as a function of the anatomical model and amore » wide range of imaging parameters. Detectability index for a non-prewhitening observer model is used as the objective function in a task-driven optimization. The combination of tube current and reconstruction kernel modulation profiles were identified through an alternating optimization algorithm where tube current was updated analytically followed by a gradient-based optimization of reconstruction kernel. The non-circular orbit is first parameterized as a linear combination of bases functions and the coefficients were then optimized using an evolutionary algorithm. The task-driven strategy was compared with conventional acquisitions without modulation, using automatic exposure control, and in a circular orbit. Results: The task-driven strategy outperformed conventional techniques in all tasks investigated, improving the detectability of a spherical lesion detection task by an average of 50% in the interior of a pelvis phantom. The non-circular orbit design successfully mitigated photon starvation effects arising from a dense embolization coil in a head phantom, improving the conspicuity of an intracranial hemorrhage proximal to the coil. Conclusion: The task-driven imaging framework leverages a knowledge of the imaging task within a patient-specific anatomical model to optimize image acquisition and reconstruction techniques, thereby improving imaging performance beyond that achievable with conventional approaches. 2R01-CA-112163; R01-EB-017226; U01-EB-018758; Siemens Healthcare (Forcheim, Germany)« less
Four-arm variable-resolution x-ray detector for CT target imaging
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.
2005-04-01
The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.
Influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer.
López, Escarlata; Lazo, Antonio; Gutiérrez, Antonio; Arregui, Gregorio; Núñez, Isabel; Sacchetti, Antonio
2015-01-01
To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients. Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation. In conjunction with high-accuracy techniques, it might offer an opportunity of dose escalation and better tumour control while sparing healthy tissues. We carried out a retrospective study in order to analyse RT planning modification based on (11)C-choline PET/CT in 16 prostate cancer patients. Patients were treated with hypofractionated step-and-shoot Intensity Modulated Radiotherapy (IMRT), or Volumetric Modulated Arc Therapy (VMAT), and a daily cone-beam CT for Image Guided Radiation Therapy (IGRT). All patients underwent a (11)C-choline-PET/CT scan prior to radiotherapy. In 37.5% of cases, a re-delineation and new dose prescription occurred. Data show good preliminary clinical results in terms of biochemical control and toxicity. No gastrointestinal (GI)/genitourinary (GU) grade III toxicities were observed after a median follow-up of 9.5 months. In our experience, concerning the treatment of prostate cancer (PCa), (11)C-choline PET/CT may be helpful in radiotherapy planning, either for dose escalation or exclusion of selected sites.
Wang, Xiao-Ping; Zhu, Xiao-Mei; Zhu, Yin-Su; Liu, Wang-Yan; Yang, Xiao-Han; Huang, Wei-Wei; Xu, Yi; Tang, Li-Jun
2018-07-01
The present study included a total of 111 consecutive patients who had undergone coronary computed tomography (CT) angiography, using a first-generation dual-source CT with automatic tube potential selection and tube current modulation. Body weight (BW) and body mass index (BMI) were recorded prior to CT examinations. Image noise and attenuation of the proximal ascending aorta (AA) and descending aorta (DA) at the middle level of the left ventricle were measured. Correlations between BW, BMI and objective image quality were evaluated using linear regression. In addition, two subgroups based on BMI (BMI ≤25 and >25 kg/m 2 ) were analyzed. Subjective image quality, image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were all compared between those. The image noise of the AA increased with the BW and BMI (BW: r=0.453, P<0.001; BMI: r=0.545, P<0.001). The CNR and SNR of the AA were inversely correlated with BW and BMI, respectively. The image noise of the DA and the CNR and SNR of the DA exhibited a similar association to those with the BW or BMI. The BMI >25 kg/m 2 group had a significant increase in image noise (33.1±6.9 vs. 27.8±4.0 HU, P<0.05) and a significant reduction in CNR and SNR, when compared with those in the BMI ≤25 kg/m 2 group (CNR: 18.9±4.3 vs. 16.1±3.7, P<0.05; SNR: 16.0±3.8 vs. 13.6±3.2, P<0.05). Patients with a BMI of ≤25 kg/m 2 had more coronary artery segments scored as excellent, compared with patients with a BMI of >25 kg/m 2 (P=0.02). In conclusion, this method is not able to achieve a consistent objective image quality across the entire patient population. The impact of BW and BMI on objective image quality was not completely eliminated. BMI-based adjustment of the tube potential may achieve a more consistent image quality compared to automatic tube potential selection, particularly in patients with a larger body habitus.
Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A
2005-06-01
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.
Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.
2016-01-01
The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298
A routine quality assurance test for CT automatic exposure control systems.
Iball, Gareth R; Moore, Alexis C; Crawford, Elizabeth J
2016-07-08
The study purpose was to develop and validate a quality assurance test for CT automatic exposure control (AEC) systems based on a set of nested polymethylmethacrylate CTDI phantoms. The test phantom was created by offsetting the 16 cm head phantom within the 32 cm body annulus, thus creating a three part phantom. This was scanned at all acceptance, routine, and some nonroutine quality assurance visits over a period of 45 months, resulting in 115 separate AEC tests on scanners from four manufacturers. For each scan the longitudinal mA modulation pattern was generated and measurements of image noise were made in two annular regions of interest. The scanner displayed CTDIvol and DLP were also recorded. The impact of a range of AEC configurations on dose and image quality were assessed at acceptance testing. For systems that were tested more than once, the percentage of CTDIvol values exceeding 5%, 10%, and 15% deviation from baseline was 23.4%, 12.6%, and 8.1% respectively. Similarly, for the image noise data, deviations greater than 2%, 5%, and 10% from baseline were 26.5%, 5.9%, and 2%, respectively. The majority of CTDIvol and noise deviations greater than 15% and 5%, respectively, could be explained by incorrect phantom setup or protocol selection. Barring these results, CTDIvol deviations of greater than 15% from baseline were found in 0.9% of tests and noise deviations greater than 5% from baseline were found in 1% of tests. The phantom was shown to be sensitive to changes in AEC setup, including the use of 3D, longitudinal or rotational tube current modulation. This test methodology allows for continuing performance assessment of CT AEC systems, and we recommend that this test should become part of routine CT quality assurance programs. Tolerances of ± 15% for CTDIvol and ± 5% for image noise relative to baseline values should be used. © 2016 The Authors
Dual-Energy CT: New Horizon in Medical Imaging
Goo, Jin Mo
2017-01-01
Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector. PMID:28670151
Würschmidt, Florian; Petersen, Cordula; Wahl, Andreas; Dahle, Jörg; Kretschmer, Matthias
2011-05-01
At present there is no consensus on irradiation treatment volumes for intermediate to high-risk primary cancers or recurrent disease. Conventional imaging modalities, such as CT, MRI and transrectal ultrasound, are considered suboptimal for treatment decisions. Choline-PET/CT might be considered as the imaging modality in radiooncology to select and delineate clinical target volumes extending the prostate gland or prostate fossa. In conjunction with intensity modulated radiotherapy (IMRT) and imaged guided radiotherapy (IGRT), it might offer the opportunity of dose escalation to selected sites while avoiding unnecessary irradiation of healthy tissues. Twenty-six patients with primary (n = 7) or recurrent (n = 19) prostate cancer received Choline-PET/CT planned 3D conformal or intensity modulated radiotherapy. The median age of the patients was 65 yrs (range 45 to 78 yrs). PET/CT-scans with F18-fluoroethylcholine (FEC) were performed on a combined PET/CT-scanner equipped for radiation therapy planning. The majority of patients had intermediate to high risk prostate cancer. All patients received 3D conformal or intensity modulated and imaged guided radiotherapy with megavoltage cone beam CT. The median dose to primary tumours was 75.6 Gy and to FEC-positive recurrent lymph nodal sites 66,6 Gy. The median follow-up time was 28.8 months. The mean SUV(max) in primary cancer was 5,97 in the prostate gland and 3,2 in pelvic lymph nodes. Patients with recurrent cancer had a mean SUV(max) of 4,38. Two patients had negative PET/CT scans. At 28 months the overall survival rate is 94%. Biochemical relapse free survival is 83% for primary cancer and 49% for recurrent tumours. Distant disease free survival is 100% and 75% for primary and recurrent cancer, respectively. Acute normal tissue toxicity was mild in 85% and moderate (grade 2) in 15%. No or mild late side effects were observed in the majority of patients (84%). One patient had a severe bladder shrinkage (grade 4) after a previous treatment with TUR of the prostate and seed implantation. FEC-PET/CT planning could be helpful in dose escalation to lymph nodal sites of prostate cancer.
Highly efficient low color temperature organic LED using blend carrier modulation layer
NASA Astrophysics Data System (ADS)
Hsieh, Yao-Ching; Chen, Szu-Hao; Shen, Shih-Ming; Wang, Ching-Chiun; Chen, Chien-Chih; Jou, Jwo-Huei
2012-10-01
Color temperature (CT) of light has great effect on human physiology and psychology, and low CT light, minimizing melatonin suppression and decreasing the risk of breast, colorectal, and prostate cancer. We demonstrates the incorporation of a blend carrier modulation interlayer (CML) between emissive layers to improve the device performance of low CT organic light emitting diodes, which exhibits an external quantum efficiency of 22.7% and 36 lm W-1 (54 cd A-1) with 1880 K at 100 cd m-2, or 20.8% and 29 lm W-1 (50 cd A-1) with 1940 K at 1000 cd m-2. The result shows a CT much lower than that of incandescent bulbs, which is 2500 K with 15 lmW-1 efficiency, and even as low as that of candles, which is 2000 K with 0.1 lmW-1. The high efficiency of the proposed device may be attributed to its CML, which helps effectively distribute the entering carriers into the available recombination zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, H; Cho, S; Cheong, K
Purpose: To reconstruct patient images at the time of radiation delivery using measured transit images of treatment beams through patient and calculated transit images through planning CT images. Methods: We hypothesize that the ratio of the measured transit images to the calculated images may provide changed amounts of the patient image between times of planning CT and treatment. To test, we have devised lung phantoms with a tumor object (3-cm diameter) placed at iso-center (simulating planning CT) and off-center by 1 cm (simulating treatment). CT images of the two phantoms were acquired; the image of the off-centered phantom, unavailable clinically,more » represents the reference on-treatment image in the image quality of planning CT. Cine-transit images through the two phantoms were also acquired in EPID from a non-modulated 6 MV beam when the gantry was rotated 360 degrees; the image through the centered phantom simulates calculated image. While the current study is a feasibility study, in reality our computational EPID model can be applicable in providing accurate transit image from MC simulation. Changed MV HU values were reconstructed from the ratio between two EPID projection data, converted to KV HU values, and added to the planning CT, thereby reconstructing the on-treatment image of the patient limited to the irradiated region of the phantom. Results: The reconstructed image was compared with the reference image. Except for local HU differences>200 as a maximum, excellent agreement was found. The average difference across the entire image was 16.2 HU. Conclusion: We have demonstrated the feasibility of a method of reconstructing on-treatment images of a patient using EPID image and planning CT images. Further studies will include resolving the local HU differences and investigation on the dosimetry impact of the reconstructed image.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Mitsuhiro; Shibuya, Keiko, E-mail: kei@kuhp.kyoto-u.ac.jp; Nakamura, Akira
2012-04-01
Purpose: To investigate the interfractional dose variations for intensity-modulated radiotherapy (RT) combined with breath-hold (BH) at end-exhalation (EE) for pancreatic cancer. Methods and Materials: A total of 10 consecutive patients with pancreatic cancer were enrolled. Each patient was fixed in the supine position on an individualized vacuum pillow with both arms raised. Computed tomography (CT) scans were performed before RT, and three additional scans were performed during the course of chemoradiotherapy using a conventional RT technique. The CT data were acquired under EE-BH conditions (BH-CT) using a visual feedback technique. The intensity-modulated RT plan, which used five 15-MV coplanar ports,more » was designed on the initial BH-CT set with a prescription dose of 39 Gy at 2.6 Gy/fraction. After rigid image registration between the initial and subsequent BH-CT scans, the dose distributions were recalculated on the subsequent BH-CT images under the same conditions as in planning. Changes in the dose-volume metrics of the gross tumor volume (GTV), clinical target volume (CTV = GTV + 5 mm), stomach, and duodenum were evaluated. Results: For the GTV and clinical target volume (CTV), the 95th percentile of the interfractional variations in the maximal dose, mean dose, dose covering 95% volume of the region of structure, and percentage of the volume covered by the 90% isodose line were within {+-}3%. Although the volume covered by the 39 Gy isodose line for the stomach and duodenum did not exceed 0.1 mL at planning, the volume covered by the 39 Gy isodose line for these structures was up to 11.4 cm{sup 3} and 1.8 cm{sup 3}, respectively. Conclusions: Despite variations in the gastrointestinal state and abdominal wall position at EE, the GTV and CTV were mostly ensured at the planned dose, with the exception of 1 patient. Compared with the duodenum, large variations in the stomach volume receiving high-dose radiation were observed, which might be beyond the negligible range in achieving dose escalation with intensity-modulated RT combined with BH at EE.« less
Foumani, Maryam; Vuong, Thu V.; MacCormick, Benjamin; Master, Emma R.
2015-01-01
The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %. PMID:25932926
NASA Astrophysics Data System (ADS)
Oda, Yasuyuki; Sato, Eiichi; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sugimura, Shigeaki; Endo, Haruyuki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-07-01
High-speed X-ray photon counting is useful for discriminating photon energy, and the counting can be used for constructing an X-ray computed tomography (CT) system. A photon-counting X-ray CT system consists of an X-ray generator, a turntable, an oscillation linear detector, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0 mm-thick crystal (scintillator) of YAP(Ce) (cerium-doped yttrium aluminum perovskite), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of an MPPC module, the YAP(Ce), and a scan stage. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. Because the lower level of the photon energy was roughly determined by a comparator in the module, the average photon energy of the X-ray spectra increased with increase in the lower-level voltage of the comparator at a constant tube voltage. The maximum count rate was approximately 3 Mcps (mega counts per second), and photon-counting CT was carried out.
High-speed photon-counting x-ray computed tomography system utilizing a multipixel photon counter
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akiro; Onagawa, Jun
2009-07-01
High-speed photon counting is useful for discriminating photon energy and for decreasing absorbed dose for patients in medical radiography, and the counting is usable for constructing an x-ray computed tomography (CT) system. A photon-counting x-ray CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0-mm-thick LSO crystal (scintillator), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of a MPPC module and the LSO. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The lower level of the photon energy is roughly determined by a comparator circuit in the module, and the unit of the level is the photon equivalent (pe). Thus, the average photon energy of the x-ray spectra increases with increasing the lower-level voltage of the comparator. The maximum count rate was approximately 20 Mcps, and energy-discriminated CT was roughly carried out.
Persson, Emilia; Gustafsson, Christian; Nordström, Fredrik; Sohlin, Maja; Gunnlaugsson, Adalsteinn; Petruson, Karin; Rintelä, Niina; Hed, Kristoffer; Blomqvist, Lennart; Zackrisson, Björn; Nyholm, Tufve; Olsson, Lars E; Siversson, Carl; Jonsson, Joakim
2017-11-01
To validate the dosimetric accuracy and clinical robustness of a commercially available software for magnetic resonance (MR) to synthetic computed tomography (sCT) conversion, in an MR imaging-only workflow for 170 prostate cancer patients. The 4 participating centers had MriPlanner (Spectronic Medical), an atlas-based sCT generation software, installed as a cloud-based service. A T2-weighted MR sequence, covering the body contour, was added to the clinical protocol. The MR images were sent from the MR scanner workstation to the MriPlanner platform. The sCT was automatically returned to the treatment planning system. Four MR scanners and 2 magnetic field strengths were included in the study. For each patient, a CT-treatment plan was created and approved according to clinical practice. The sCT was rigidly registered to the CT, and the clinical treatment plan was recalculated on the sCT. The dose distributions from the CT plan and the sCT plan were compared according to a set of dose-volume histogram parameters and gamma evaluation. Treatment techniques included volumetric modulated arc therapy, intensity modulated radiation therapy, and conventional treatment using 2 treatment planning systems and different dose calculation algorithms. The overall (multicenter/multivendor) mean dose differences between sCT and CT dose distributions were below 0.3% for all evaluated organs and targets. Gamma evaluation showed a mean pass rate of 99.12% (0.63%, 1 SD) in the complete body volume and 99.97% (0.13%, 1 SD) in the planning target volume using a 2%/2-mm global gamma criteria. Results of the study show that the sCT conversion method can be used clinically, with minimal differences between sCT and CT dose distributions for target and relevant organs at risk. The small differences seen are consistent between centers, indicating that an MR imaging-only workflow using MriPlanner is robust for a variety of field strengths, vendors, and treatment techniques. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
DiBianca, Frank A.; Melnyk, Roman; Sambari, Aniket; Jordan, Lawrence M.; Laughter, Joseph S.; Zou, Ping
2000-04-01
A technique called Variable-Resolution X-ray (VRX) detection that greatly increases the spatial resolution in computed tomography (CT) and digital radiography (DR) is presented. The technique is based on a principle called 'projective compression' that allows the resolution element of a CT detector to scale with the subject or field size. For very large (40 - 50 cm) field sizes, resolution exceeding 2 cy/mm is possible and for very small fields, microscopy is attainable with resolution exceeding 100 cy/mm. Preliminary results from a 576-channel solid-state detector are presented. The detector has a dual-arm geometry and is comprised of CdWO4 scintillator crystals arranged in 24 modules of 24 channels/module. The scintillators are 0.85 mm wide and placed on 1 mm centers. Measurements of signal level, MTF and SNR, all versus detector angle, are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatonabadi, Maryam; Kim, Hyun J.; Lu, Peiyun
Purpose: In AAPM Task Group 204, the size-specific dose estimate (SSDE) was developed by providing size adjustment factors which are applied to the Computed Tomography (CT) standardized dose metric, CTDI{sub vol}. However, that work focused on fixed tube current scans and did not specifically address tube current modulation (TCM) scans, which are currently the majority of clinical scans performed. The purpose of this study was to extend the SSDE concept to account for TCM by investigating the feasibility of using anatomic and organ specific regions of scanner output to improve accuracy of dose estimates. Methods: Thirty-nine adult abdomen/pelvis and 32more » chest scans from clinically indicated CT exams acquired on a multidetector CT using TCM were obtained with Institutional Review Board approval for generating voxelized models. Along with image data, raw projection data were obtained to extract TCM functions for use in Monte Carlo simulations. Patient size was calculated using the effective diameter described in TG 204. In addition, the scanner-reported CTDI{sub vol} (CTDI{sub vol,global}) was obtained for each patient, which is based on the average tube current across the entire scan. For the abdomen/pelvis scans, liver, spleen, and kidneys were manually segmented from the patient datasets; for the chest scans, lungs and for female models only, glandular breast tissue were segmented. For each patient organ doses were estimated using Monte Carlo Methods. To investigate the utility of regional measures of scanner output, regional and organ anatomic boundaries were identified from image data and used to calculate regional and organ-specific average tube current values. From these regional and organ-specific averages, CTDI{sub vol} values, referred to as regional and organ-specific CTDI{sub vol}, were calculated for each patient. Using an approach similar to TG 204, all CTDI{sub vol} values were used to normalize simulated organ doses; and the ability of each normalized dose to correlate with patient size was investigated. Results: For all five organs, the correlations with patient size increased when organ doses were normalized by regional and organ-specific CTDI{sub vol} values. For example, when estimating dose to the liver, CTDI{sub vol,global} yielded a R{sup 2} value of 0.26, which improved to 0.77 and 0.86, when using the regional and organ-specific CTDI{sub vol} for abdomen and liver, respectively. For breast dose, the global CTDI{sub vol} yielded a R{sup 2} value of 0.08, which improved to 0.58 and 0.83, when using the regional and organ-specific CTDI{sub vol} for chest and breasts, respectively. The R{sup 2} values also increased once the thoracic models were separated for the analysis into females and males, indicating differences between genders in this region not explained by a simple measure of effective diameter. Conclusions: This work demonstrated the utility of regional and organ-specific CTDI{sub vol} as normalization factors when using TCM. It was demonstrated that CTDI{sub vol,global} is not an effective normalization factor in TCM exams where attenuation (and therefore tube current) varies considerably throughout the scan, such as abdomen/pelvis and even thorax. These exams can be more accurately assessed for dose using regional CTDI{sub vol} descriptors that account for local variations in scanner output present when TCM is employed.« less
Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension.
Hoyle, G
1984-01-01
The third pair of legs of the primitive New Zealand orthopteran insect, the " weta ", has and innervation and muscle cell distribution exactly similar to that of locusts, but wetas do not jump. Neuromuscular transmission to the slow excitatory axon ( SETi ) is potentiated more than 10-fold by the natural modulator octopamine (OCT). A brief burst of SETi impulses following infusion of as little as 10(-8) M OCT is followed by a very long-lasting plateau of catch-like tension (CT). The plateau is abruptly relaxed by a single inhibitory impulse, or even by a single SETi impulse if this arrives no sooner than about 30 sec following excitation. CT is used by wetas in a defense posture. Locusts and grasshoppers have a different type of modulation by OCT.
Lee, Yong S; Tresguerres, Martin; Hess, Kenneth; Marmorstein, Lihua Y; Levin, Lonny R; Buck, Jochen; Marmorstein, Alan D
2011-12-02
Glaucoma is a leading cause of blindness affecting as many as 2.2 million Americans. All current glaucoma treatment strategies aim to reduce intraocular pressure (IOP). IOP results from the resistance to drainage of aqueous humor (AH) produced by the ciliary body in a process requiring bicarbonate. Once secreted into the anterior chamber, AH drains from the eye via two pathways: uveoscleral and pressure-dependent or conventional outflow (C(t)). Modulation of "inflow" and "outflow" pathways is thought to occur via distinct, local mechanisms. Mice deficient in the bicarbonate channel bestrophin-2 (Best2), however, exhibit a lower IOP despite an increase in AH production. Best2 is expressed uniquely in nonpigmented ciliary epithelial (NPE) cells providing evidence for a bicarbonate-dependent communicative pathway linking inflow and outflow. Here, we show that bicarbonate-sensitive soluble adenylyl cyclase (sAC) is highly expressed in the ciliary body in NPE cells, but appears to be absent from drainage tissues. Pharmacologic inhibition of sAC in mice causes a significant increase in IOP due to a decrease in C(t) with no effect on inflow. In mice deficient in sAC IOP is elevated, and C(t) is decreased relative to wild-type mice. Pharmacologic inhibition of sAC did not alter IOP or C(t) in sAC-deficient mice. Based on these data we propose that the ciliary body can regulate C(t) and that sAC serves as a critical sensor of bicarbonate in the ciliary body regulating the secretion of substances into the AH that govern outflow facility independent of pressure.
Sun, Z; Al Ghamdi, KS; Baroum, IH
2012-01-01
Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059
Cardiac CT for myocardial ischaemia detection and characterization--comparative analysis.
Bucher, A M; De Cecco, C N; Schoepf, U J; Wang, R; Meinel, F G; Binukrishnan, S R; Spearman, J V; Vogl, T J; Ruzsics, B
2014-11-01
The assessment of patients presenting with symptoms of myocardial ischaemia remains one of the most common and challenging clinical scenarios faced by physicians. Current imaging modalities are capable of three-dimensional, functional and anatomical views of the heart and as such offer a unique contribution to understanding and managing the pathology involved. Evidence has accumulated that visual anatomical coronary evaluation does not adequately predict haemodynamic relevance and should be complemented by physiological evaluation, highlighting the importance of functional assessment. Technical advances in CT technology over the past decade have progressively moved cardiac CT imaging into the clinical workflow. In addition to anatomical evaluation, cardiac CT is capable of providing myocardial perfusion parameters. A variety of CT techniques can be used to assess the myocardial perfusion. The single energy first-pass CT and dual energy first-pass CT allow static assessment of myocardial blood pool. Dynamic cardiac CT imaging allows quantification of myocardial perfusion through time-resolved attenuation data. CT-based myocardial perfusion imaging (MPI) is showing promising diagnostic accuracy compared with the current reference modalities. The aim of this review is to present currently available myocardial perfusion techniques with a focus on CT imaging in light of recent clinical investigations. This article provides a comprehensive overview of currently available CT approaches of static and dynamic MPI and presents the results of corresponding clinical trials.
NASA Astrophysics Data System (ADS)
Shin, Wook-Geun; Testa, Mauro; Kim, Hak Soo; Jeong, Jong Hwi; Byeong Lee, Se; Kim, Yeon-Joo; Min, Chul Hee
2017-10-01
For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method. The CT phantom was modeled based on the DICOM CT files with TOPAS-built-in function, and an in-house-developed C++ code directly imports the CT files for positioning the CT phantom, RT-plan file for simulating the treatment plan, and RT-structure file for applying the Hounsfield unit (HU) assignment, respectively. The developed system was validated by comparing the dose distributions with those calculated by the treatment planning system (TPS) for a lung phantom and two patient cases of abdomen and internal mammary node. The results of the beam commissioning were in good agreement of up to 0.8 mm2 g-1 for B8 option in both of the beam range and the modulation width of the spread-out Bragg peaks. The beam set-up technique can predict the range and modulation width with an accuracy of 0.06% and 0.51%, respectively, with respect to the prescribed range and modulation in arbitrary points of B5 option (128.3, 132.0, and 141.2 mm2 g-1 of range). The dose distributions showed higher than 99% passing rate for the 3D gamma index (3 mm distance to agreement and 3% dose difference) between the MC simulations and the clinical TPS in the target volume. However, in the normal tissues, less favorable agreements were obtained for the radiation treatment planning with the lung phantom and internal mammary node cases. The discrepancies might come from the limitations of the clinical TPS, which is the inaccurate dose calculation algorithm for the scattering effect, in the range compensator and inhomogeneous material. Moreover, the steep slope of the compensator, conversion of the HU values to the human phantom, and the dose calculation algorithm for the HU assignment also could be reasons of the discrepancies. The current study could be used for the independent dose validation of treatment plans including high inhomogeneities, the steep compensator, and riskiness such as lung, head & neck cases. According to the treatment policy, the dose discrepancies predicted with MC could be used for the acceptance decision of the original treatment plan.
NASA Astrophysics Data System (ADS)
Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.
2005-11-01
Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.
Hepatic encephalopathy in acute-on-chronic liver failure.
Lee, Guan-Huei
2015-10-01
The presence of hepatic encephalopathy (HE) within 4 weeks is part of the criteria for defining acute-on-chronic liver failure (ACLF). The pathophysiology of HE is complex, and hyperammonemia and cerebral hemodynamic dysfunction appear to be central in the pathogenesis of encephalopathy. Recent data also suggest that inflammatory mediators may have a significant role in modulating the cerebral effect of ammonia. Multiple prospective and retrospective studies have shown that hepatic encephalopathy in ACLF patients is associated with higher mortality, especially in those with grade III-IV encephalopathy, similar to that of acute liver failure (ALF). Although significant cerebral edema detected by CT in ACLF patients appeared to be less common, specialized MRI imaging was able to detect cerebral edema even in low grade HE. Ammonia-focused therapy constitutes the basis of current therapy, as in the treatment of ALF. Emerging treatment strategies focusing on modulating the gut-liver-circulation-brain axis are discussed.
Paul, Jijo; Banckwitz, Rosemarie; Krauss, Bernhard; Vogl, Thomas J; Maentele, Werner; Bauer, Ralf W
2012-04-01
To determine effective dose (E) during standard chest CT using an organ dose-based and a dose-length-product-based (DLP) approach for four different scan protocols including high-pitch and dual-energy in a dual-source CT scanner of the second generation. Organ doses were measured with thermo luminescence dosimeters (TLD) in an anthropomorphic male adult phantom. Further, DLP-based dose estimates were performed by using the standard 0.014mSv/mGycm conversion coefficient k. Examinations were performed on a dual-source CT system (Somatom Definition Flash, Siemens). Four scan protocols were investigated: (1) single-source 120kV, (2) single-source 100kV, (3) high-pitch 120kV, and (4) dual-energy with 100/Sn140kV with equivalent CTDIvol and no automated tube current modulation. E was then determined following recommendations of ICRP publication 103 and 60 and specific k values were derived. DLP-based estimates differed by 4.5-16.56% and 5.2-15.8% relatively to ICRP 60 and 103, respectively. The derived k factors calculated from TLD measurements were 0.0148, 0.015, 0.0166, and 0.0148 for protocol 1, 2, 3 and 4, respectively. Effective dose estimations by ICRP 103 and 60 for single-energy and dual-energy protocols show a difference of less than 0.04mSv. Estimates of E based on DLP work equally well for single-energy, high-pitch and dual-energy CT examinations. The tube potential definitely affects effective dose in a substantial way. Effective dose estimations by ICRP 103 and 60 for both single-energy and dual-energy examinations differ not more than 0.04mSv. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A
2017-07-01
The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.
Unit Cost Analysis of PET-CT at an Apex Public Sector Health Care Institute in India.
Gajuryal, S H; Daga, A; Siddharth, V; Bal, C S; Satpathy, S
2017-01-01
PET/CT scan service is one of the capital intensive and revenue-generating centres of a tertiary care hospital. The cost associated with the provisioning of PET services is dependent upon the unit costs of the resources consumed. The study aims to determine the cost of providing PET/CT Scan services in a hospital. This descriptive and observational study was conducted in the Department of Nuclear Medicine at a tertiary apex teaching hospital in New Delhi, India in the year 2014-15. Traditional costing methodology was used for calculating the unit cost of PET/CT scan service. The cost was calculated under two heads that is capital and operating cost. Annualized cost of capital assets was calculated using methodology prescribed by WHO and operating costs was taken on an actual basis. Average number of PET/CT scan performed in a day is 30. The annual cost of providing PET/CT scan services was calculated to be 65,311,719 Indian Rupees (INR) (US$ 1,020,496), while the unit cost of PET scan was calculated to be 9625.92 INR (US$ 150). 3/4th cost was spent on machinery and equipment (75.3%) followed by healthcare personnel (11.37%), electricity (5%), consumables and supplies (4%) engineering maintenance (3.24%), building, furniture and HVAC capital cost (0.76%), and manifold cost (0.05%). Of the total cost, 76% was capital cost while the remaining was operating cost. Total cost for establishing PET/CT scan facility with cyclotron and chemistry module and PET/CT scan without cyclotron and chemistry module was calculated to be INR 610,873,517 (US$9944899) and 226,745,158 (US$3542893), respectively. (US$ 1=INR 64).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomson, David J.; The University of Manchester, Manchester Academic Health Science Centre, Institute of Cancer Sciences, Manchester; Beasley, William J.
Introduction: Interfractional anatomical alterations may have a differential effect on the dose delivered by step-and-shoot intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT). The increased degrees of freedom afforded by rotational delivery may increase plan robustness (measured by change in target volume coverage and doses to organs at risk [OARs]). However, this has not been evaluated for head and neck cancer. Materials and methods: A total of 10 patients who required repeat computed tomography (CT) simulation and replanning during head and neck IMRT were included. Step-and-shoot IMRT and VMAT plans were generated from the original planning scan. The initial andmore » second CT simulation scans were fused and targets/OAR contours transferred, reviewed, and modified. The plans were applied to the second CT scan and doses recalculated without repeat optimization. Differences between step-and-shoot IMRT and VMAT for change in target volume coverage and doses to OARs between first and second CT scans were compared by Wilcoxon signed rank test. Results: There were clinically relevant dosimetric changes between the first and the second CT scans for both the techniques (reduction in mean D{sub 95%} for PTV2 and PTV3, D{sub min} for CTV2 and CTV3, and increased mean doses to the parotid glands). However, there were no significant differences between step-and-shoot IMRT and VMAT for change in any target coverage parameter (including D{sub 95%} for PTV2 and PTV3 and D{sub min} for CTV2 and CTV3) or dose to any OARs (including parotid glands) between the first and the second CT scans. Conclusions: For patients with head and neck cancer who required replanning mainly due to weight loss, there were no significant differences in plan robustness between step-and-shoot IMRT and VMAT. This information is useful with increased clinical adoption of VMAT.« less
2006-05-01
d). (e) In the histogram analysis eld units are observed initially for voxels located on the d to 250 Hounsfield units.ses (a) el the tration...CT10, CT20, and CT30. Histogram ximum difference of 250 Hounsfield units . Only 0.01% d units.d imag ts a mand finite-element model. The fluid flow...cause Hounsfield unit calibration problems. While this does not seem to influence the image registration, the use of CBCT for dose calculation should
Lee, Sang-Min; Hay, Debbie L; Pioszak, Augen A
2016-04-15
Receptor activity-modifying proteins (RAMP1-3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8-37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Influence of metallic dental implants and metal artefacts on dose calculation accuracy.
Maerz, Manuel; Koelbl, Oliver; Dobler, Barbara
2015-03-01
Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy. Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic™ EBT2 films. For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p = 0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p = 0.011) as well as on corrected CT data (p = 0.029). For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.
An evaluation of the Meditech M250 and a comparison with other CT scanners.
Greensmith, R; Richardson, R B; Sargood, A J; Stevens, P H; Mackintosh, I P
1985-11-01
The Meditech M250 computerised tomography (CT) machine was evaluated during the first half of 1984. Measurements were made of noise, modulation transfer function, slice width, radiation dose profile, uniformity and linearity of CT number, effective photon energy and parameters relating to machine specification, such as pixel size and scan time. All breakdowns were logged to indicate machine reliability. A comparison with the established EMI CT1010 and CT5005 was made for noise, resolution and multislice radiation dose, as well as the dose efficiency or quality (Q) factor for both head and body modes of operation. The M250 was found to perform to its intended specification with an acceptable level of reliability.
NASA Astrophysics Data System (ADS)
Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin
2011-10-01
Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.
Food Insecurity, Poor Diet Quality, and Obesity among Food Pantry Participants in Hartford, CT
ERIC Educational Resources Information Center
Robaina, Kate A.; Martin, Katie S.
2013-01-01
Objective: Examine relationships between food security, diet quality, and body mass index (BMI) among food pantry users. Methods: Convenience sample of 212 food pantry clients in Hartford, CT from June, 2010 to May, 2011. Main outcomes included food security (United States Department of Agriculture module), fruit and vegetable consumption (Block…
Men, Kuo; Dai, Jianrong
2017-12-01
To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.
Lechuga, Lawrence; Weidlich, Georg A
2016-09-12
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.
Weidlich, Georg A.
2016-01-01
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404
Scatter correction for x-ray conebeam CT using one-dimensional primary modulation
NASA Astrophysics Data System (ADS)
Zhu, Lei; Gao, Hewei; Bennett, N. Robert; Xing, Lei; Fahrig, Rebecca
2009-02-01
Recently, we developed an efficient scatter correction method for x-ray imaging using primary modulation. A two-dimensional (2D) primary modulator with spatially variant attenuating materials is inserted between the x-ray source and the object to separate primary and scatter signals in the Fourier domain. Due to the high modulation frequency in both directions, the 2D primary modulator has a strong scatter correction capability for objects with arbitrary geometries. However, signal processing on the modulated projection data requires knowledge of the modulator position and attenuation. In practical systems, mainly due to system gantry vibration, beam hardening effects and the ramp-filtering in the reconstruction, the insertion of the 2D primary modulator results in artifacts such as rings in the CT images, if no post-processing is applied. In this work, we eliminate the source of artifacts in the primary modulation method by using a one-dimensional (1D) modulator. The modulator is aligned parallel to the ramp-filtering direction to avoid error magnification, while sufficient primary modulation is still achieved for scatter correction on a quasicylindrical object, such as a human body. The scatter correction algorithm is also greatly simplified for the convenience and stability in practical implementations. The method is evaluated on a clinical CBCT system using the Catphan© 600 phantom. The result shows effective scatter suppression without introducing additional artifacts. In the selected regions of interest, the reconstruction error is reduced from 187.2HU to 10.0HU if the proposed method is used.
Tuning Up the Old Brain with New Tricks: Attention Training via Neurofeedback
Jiang, Yang; Abiri, Reza; Zhao, Xiaopeng
2017-01-01
Neurofeedback (NF) is a form of biofeedback that uses real-time (RT) modulation of brain activity to enhance brain function and behavioral performance. Recent advances in Brain-Computer Interfaces (BCI) and cognitive training (CT) have provided new tools and evidence that NF improves cognitive functions, such as attention and working memory (WM), beyond what is provided by traditional CT. More published studies have demonstrated the efficacy of NF, particularly for treating attention deficit hyperactivity disorder (ADHD) in children. In contrast, there have been fewer studies done in older adults with or without cognitive impairment, with some notable exceptions. The focus of this review is to summarize current success in RT NF training of older brains aiming to match those of younger brains during attention/WM tasks. We also outline potential future advances in RT brainwave-based NF for improving attention training in older populations. The rapid growth in wireless recording of brain activity, machine learning classification and brain network analysis provides new tools for combating cognitive decline and brain aging in older adults. We optimistically conclude that NF, combined with new neuro-markers (event-related potentials and connectivity) and traditional features, promises to provide new hope for brain and CT in the growing older population. PMID:28348527
Recent Developments and Applications of Radiation/Detection Technology in Tsinghua University
NASA Astrophysics Data System (ADS)
Kang, Ke-Jun
2010-03-01
Nuclear technology applications have been very important research fields in Tsinghua University (THU) for more than 50 years. This paper describes two major directions and related projects running in THU concerning nuclear technology applications for radiation imaging and nuclear technology applications for astrophysics. Radiation imaging is a significant application of nuclear technology for all kinds of real world needs including security inspections, anti-smuggling operations, and medicine. The current improved imaging systems give much higher quality radiation images. THU has produced accelerating tubes for both industrial and medical accelerators with energy levels ranging from 2.5˜20Mev. Detectors have been produced for medical and industrial imaging as well as for high energy physics experiments such as the MRPC with fast time and position resolutions. DR and CT systems for radiation imaging systems have been continuously improved with new system designs and improved algorithms for image reconstruction and processing. Two important new key initiatives are the dual-energy radiography and dual-energy CT systems. Dual-energy CT imaging improves material discrimination by providing both the electron density and the atomic number distribution of scanned objects. Finally, this paper also introduces recent developments related to the hard X-ray modulation telescope (HXMT) provided by THU.
Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A
2005-06-01
The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.
Noël, Peter B; Engels, Stephan; Köhler, Thomas; Muenzel, Daniela; Franz, Daniela; Rasper, Michael; Rummeny, Ernst J; Dobritz, Martin; Fingerle, Alexander A
2018-01-01
Background The explosive growth of computer tomography (CT) has led to a growing public health concern about patient and population radiation dose. A recently introduced technique for dose reduction, which can be combined with tube-current modulation, over-beam reduction, and organ-specific dose reduction, is iterative reconstruction (IR). Purpose To evaluate the quality, at different radiation dose levels, of three reconstruction algorithms for diagnostics of patients with proven liver metastases under tumor follow-up. Material and Methods A total of 40 thorax-abdomen-pelvis CT examinations acquired from 20 patients in a tumor follow-up were included. All patients were imaged using the standard-dose and a specific low-dose CT protocol. Reconstructed slices were generated by using three different reconstruction algorithms: a classical filtered back projection (FBP); a first-generation iterative noise-reduction algorithm (iDose4); and a next generation model-based IR algorithm (IMR). Results The overall detection of liver lesions tended to be higher with the IMR algorithm than with FBP or iDose4. The IMR dataset at standard dose yielded the highest overall detectability, while the low-dose FBP dataset showed the lowest detectability. For the low-dose protocols, a significantly improved detectability of the liver lesion can be reported compared to FBP or iDose 4 ( P = 0.01). The radiation dose decreased by an approximate factor of 5 between the standard-dose and the low-dose protocol. Conclusion The latest generation of IR algorithms significantly improved the diagnostic image quality and provided virtually noise-free images for ultra-low-dose CT imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Na, Y; Black, P; Wuu, C
2016-06-15
Purpose: With an increasing use of small field size and high dose rate irradiation in the advances of radiotherapy techniques, such as stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS), an in-depth quality assurance (QA) system is required. The purpose of this study is to investigate a high resolution optical CT-based 3D radiochromic dosimetry system for SBRT with intensity modulated radiotherapy (IMRT) and flattening filter free (FFF) volumetric modulated arc therapy (VMAT). Methods: Cylindrical PRESAGE radiochromic dosimeters of 10cm height and 11cm diameter were used to validate SBRT. Four external landmarks were placed on the surface of each dosimeter tomore » define the isocenter of target. SBRT plans were delivered using a Varian TrueBeam™ linear accelerator (LINAC). Three validation plans, SBRT with IMRT (6MV 600MU/min), FFF-VMAT (10MV 2400MU/min), and mixed FFF-VMAT (6MV 1400MU/min, 10MV 2400MU/min), were delivered to the PRESAGE dosimeters. Each irradiated PRESAGE dosimeter was scanned using a single laser beam optical CT scanner and reconstructed with a 1mm × 1mm high spatial resolution. The comparison of measured dose distributions of irradiated PRESAGE dosimeters to those calculated by Pinnacle{sup 3} treatment planning system (TPS) were performed with a 10% dose threshold, 3% dose difference (DD), and 3mm distance-to-agreement (DTA) Gamma criteria. Results: The average pass rates for the gamma comparisons between PRESAGE and Pinnacle{sup 3} in the transverse, sagittal, coronal planes were 94.6%, 95.9%, and 96.4% for SBRT with IMRT, FFF-VMAT, and mixed FFF-VMAT plans, respectively. A good agreement of the isodose distributions of those comparisons were shown at the isodose lines 50%, 70%, 80%, 90% and 98%. Conclusion: This study demonstrates the feasibility of the high resolution optical CT-based 3D radiochromic dosimetry system for validation of SBRT with IMRT and FFF-VMAT. This dosimetry system offers higher precision QA with 3D dose information for small beams compared to what is currently available.« less
Grosser, Oliver S.; Kupitz, Dennis; Ruf, Juri; Czuczwara, Damian; Steffen, Ingo G.; Furth, Christian; Thormann, Markus; Loewenthal, David; Ricke, Jens; Amthauer, Holger
2015-01-01
Background Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT) or positron emission tomography (PET) with computed tomography (CT). Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR) on the image quality of the low-dose CT images. Methodology/Principal Findings Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU) values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88) and the contrast-to-noise ratio (CNR) was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04). In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001). Conclusion/Significance In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality. PMID:26390216
SU-E-I-02: Characterizing Low-Contrast Resolution for Non-Circular CBCT Trajectories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A; Pan, X; Pelizzari, C
Purpose: The use of non-circular scanning trajectories with optimization-basedreconstruction algorithms can be used in conjunction with non-planaracquisition geometries for axial field-of-view (FOV) extension incone-beam CT (CBCT). To evaluate the utility of these trajectories,quantitative image quality metrics should be evaluated. Low-contrastresolution (LCR) and CT number accuracy are significant challenges forCBCT. With unprecedented axial coverage provided by thesetrajectories, measuring such metrics throughout the axial range iscritical. There are currently no phantoms designed to measurelow-contrast resolution over such an extended volume. Methods: The CATPHAN (The Phantom Laboratory, Salem NY) is the current standardfor image quality evaluation. While providing several useful modulesfor different evaluationmore » metrics, each module was designed to beevaluated in a single slice and not for comparison across axialpositions. To characterize the LCR and HU accuracy over an extendedaxial length, we have designed and built a phantom with evaluationmodules at multiple and adjustable axial positions. Results: The modules were made from a cast polyurethane resin. Holes rangingfrom 1/8 to 5/8 inch were added at a constant radius from the modulecenter into which rods of two different plastic materials were pressedto provide two nominal levels of contrast (1.0% and 0.5%). Largerholes were bored to accept various RMI plugs with known electrondensities for HU accuracy evaluation. The modules can be inserted intoan acrylic tube long enough to cover the entire axial FOV and theirpositions adjusted to desired evaluation points. Conclusion: This phantom allows us to measure the LCR and HU accuracy across theaxial coverage within a single acquisition. These metrics can be usedto characterize the impact different trajectories and reconstructionparameters have on clinically relevant image quality performancemetrics. Funding was provided in part by Varian Medical Systems and NIH R01 Grants Nos. CA158446, CA182264, EB018102, and EB000225. The contents of this poster are solely the responsibility of the authors and do not necessarily represent the official view of any of the supporting organizations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruan, C; Sodickson, A; Hamberg, L
2016-06-15
Purpose: Apparent patient size in CT localizers varies with localizer type and patient positioning, resulting in variation in effective mAs as guided by Tube Current Modulation (TCM). Our aim was to investigate the effects of vertical off-centering on CTDI-vol when using different localizer types and TCM strengths. Methods: A CTDI body phantom was scanned using an abdominal protocol with three TCM strengths (Siemens Definition AS40, CAREDose4D; very weak, average, very strong). Data was acquired at 11 table height positions; with phantom center at isocenter and at 10 other positions between 142mm below and 53mm above. At each position, scans weremore » acquired using 5 different localizer types: PA, AP, Lateral, PA+Lateral, and Lateral+PA. CTDI-vol was recorded for the 165 combinations of table height, localizer type, and TCM strength, and magnification factors measured from localizer images. Results: Magnification factors from AP and PA localizers ranged from 0.79–1.11 and 1.35–0.91, respectively from lowest to highest positions (highest with phantom located closest to X-ray tube), with a smaller impact when using Lateral, PA+Lateral, Lateral+PA localizer types, all of which behaved similarly. For an average TCM strength and PA localizer, CTDI-vol ranged from 75% higher to 12% lower than the isocenter value for the lowest to highest table positions, respectively. For table positions ranging from lowest to highest, CTDI-vol ranged from −23% to 17% for AP, from −8% to 0.3% for lateral and from −7% to 1% for a combination of PA and Lateral in either order. Similar behavior was found for different TCM strengths, but effects were more pronounced for very strong compared with very weak modulation strengths. Conclusion: Patient off-centering substantially impacts radiation dose, which depends on the amount of vertical offcentering and type of the localizer used. The combination of PA and Lateral localizers is most robust against effects of patient off-centering.« less
Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)
NASA Astrophysics Data System (ADS)
Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie
2011-03-01
In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.
NASA Astrophysics Data System (ADS)
Hor, Amy; Dagel, Daryl; Luu, Quocanh; Savaikar, Madhusudan; Ding, Shi-You; Smith, Steve
2015-03-01
Photo Activated Localization Microscopy (PALM) is used to conduct an in vivo study of the binding affinity of polysaccharide-specific Carbohydrate Binding Modules (CBMs) to insoluble cellulose substrates. Two families of CBMs, namely TrCBM1 and CtCBM3, were modified to incorporate photo-activatable mCherry fluorescent protein (PAmCherry), and exposed to highly crystalline Valonia cellulose nano-fibrils. The resulting PALM images show CBMs binding along the nano-fibril long axis in a punctuated linear array, localized with, on average, 10 nm precision. Statistical analysis of the binding events results in nearest neighbor distributions between CBMs. A comparison between TrCBM1 and CtCBM3 reveals a similarity in the nearest neighbor distribution peaks but differences in the overall binding density. The former is attributed to steric hindrance among the CBMs on the nano-fibril whereas the latter is attributed to differences in the CBMs' binding strength. These results are compared to similar distributions derived from TEM measurements of dried samples of CtCBM3-CdSs quantum dot bioconjugates and AFM images of CtCBM3-GFP bound to similar Valonia nano-fibrils. Funding provided by NSF MPS/DMR/BMAT Award # 1206908.
Yoshikawa, Hiroto; Roback, Donald M; Larue, Susan M; Nolan, Michael W
2015-01-01
Potential benefits of planning radiation therapy on a contrast-enhanced computed tomography scan (ceCT) should be weighed against the possibility that this practice may be associated with an inadvertent risk of overdosing nearby normal tissues. This study investigated the influence of ceCT on intensity-modulated stereotactic body radiotherapy (IM-SBRT) planning. Dogs with head and neck, pelvic, or appendicular tumors were included in this retrospective cross-sectional study. All IM-SBRT plans were constructed on a pre- or ceCT. Contours for tumor and organs at risk (OAR) were manually constructed and copied onto both CT's; IM-SBRT plans were calculated on each CT in a manner that resulted in equal radiation fluence. The maximum and mean doses for OAR, and minimum, maximum, and mean doses for targets were compared. Data were collected from 40 dogs per anatomic site (head and neck, pelvis, and limbs). The average dose difference between minimum, maximum, and mean doses as calculated on pre- and ceCT plans for the gross tumor volume was less than 1% for all anatomic sites. Similarly, the differences between mean and maximum doses for OAR were less than 1%. The difference in dose distribution between plans made on CTs with and without contrast enhancement was tolerable at all treatment sites. Therefore, although caution would be recommended when planning IM-SBRT for tumors near "reservoirs" for contrast media (such as the heart and urinary bladder), findings supported the use of ceCT with this dose calculation algorithm for both target delineation and IM-SBRT treatment planning. © 2015 American College of Veterinary Radiology.
C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein
Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis
2011-01-01
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223
NASA Astrophysics Data System (ADS)
Kim, Youngsun
2017-05-01
The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Rieken, Stefan; Habermehl, Daniel; Giesel, Frederik L; Hoffmann, Christoph; Burger, Ute; Rief, Harald; Welzel, Thomas; Haberkorn, Uwe; Debus, Jürgen; Combs, Stephanie E
2013-12-01
Modern radiotherapy (RT) techniques such as stereotactic RT, intensity-modulated RT, or particle irradiation allow local dose escalation with simultaneous sparing of critical organs. Several trials are currently investigating their benefit in glioma reirradiation and boost irradiation. Target volume definition is of critical importance especially when steep dose gradient techniques are employed. In this manuscript we investigate the impact of O-(2-(F-18)fluoroethyl)-l-tyrosine-positron emission tomography/computer tomography (FET-PET/CT) on target volume definition in low and high grade glioma patients undergoing either first or re-irradiation with particles. We investigated volumetric size and uniformity of magnetic resonance imaging (MRI)- vs. FET-PET/CT-derived gross tumor volumes (GTVs) and planning target volumes (PTVs) of 41 glioma patients. Clinical cases are presented to demonstrate potential benefits of integrating FET-PET/CT-planning into daily routine. Integrating FET-uptake into the delineation of GTVs yields larger volumes. Combined modality-derived PTVs are significantly enlarged in high grade glioma patients and in case of primary RT. The congruence of MRI and FET signals for the identification of glioma GTVs is poor with mean uniformity indices of 0.39. MRI-based PTVs miss 17% of FET-PET/CT-based GTVs. Non significant alterations were detected in low grade glioma patients and in those undergoing reirradiation. Target volume definition for malignant gliomas during initial RT may yield significantly differing results depending upon the imaging modality, which the contouring process is based upon. The integration of both MRI and FET-PET/CT may help to improve GTV coverage by avoiding larger incongruences between physical and biological imaging techniques. In low grade gliomas and in cases of reirradiation, more studies are needed in order to investigate a potential benefit of FET-PET/CT for planning of RT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide
2018-03-01
To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.
Recent Developments in Computed Tomography for Urolithiasis: Diagnosis and Characterization
Mc Laughlin, P. D.; Crush, L.; Maher, M. M.; O'Connor, O. J.
2012-01-01
Objective. To critically evaluate the current literature in an effort to establish the current role of radiologic imaging, advances in computed tomography (CT) and standard film radiography in the diagnosis, and characterization of urinary tract calculi. Conclusion. CT has a valuable role when utilized prudently during surveillance of patients following endourological therapy. In this paper, we outline the basic principles relating to the effects of exposure to ionizing radiation as a result of CT scanning. We discuss the current developments in low-dose CT technology, which have resulted in significant reductions in CT radiation doses (to approximately one-third of what they were a decade ago) while preserving image quality. Finally, we will discuss an important recent development now commercially available on the latest generation of CT scanners, namely, dual energy imaging, which is showing promise in urinary tract imaging as a means of characterizing the composition of urinary tract calculi. PMID:22952473
Advances in cardiac CT contrast injection and acquisition protocols.
Scholtz, Jan-Erik; Ghoshhajra, Brian
2017-10-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors.
Advances in cardiac CT contrast injection and acquisition protocols
Scholtz, Jan-Erik
2017-01-01
Cardiac computed tomography (CT) imaging has become an important part of modern cardiovascular care. Coronary CT angiography (CTA) is the first choice imaging modality for non-invasive visualization of coronary artery stenosis. In addition, cardiac CT does not only provide anatomical evaluation, but also functional and valvular assessment, and myocardial perfusion evaluation. In this article we outline the factors which influence contrast enhancement, give an overview of current contrast injection and acquisition protocols, with focus on current emerging topics such as pre-transcatheter aortic valve replacement (TAVR) planning, cardiac CT for congenital heart disease (CHD) patients, and myocardial CT perfusion (CTP). Further, we point out areas where we see potential for future improvements in cardiac CT imaging based on a closer interaction between CT scanner settings and contrast injection protocols to tailor injections to patient- and exam-specific factors. PMID:29255688
Groth, Michael; Barthe, Käthe Greta; Riemer, Martin; Ernst, Marielle; Herrmann, Jochen; Fiehler, Jens; Buhk, Jan-Hendrik
2018-04-01
To compare the learning benefit of three different teaching strategies on the interpretation of emergency cerebral computed tomography (CT) pathologies by medical students. Three groups of students with different types of teaching (e-learning, interactive teaching, and standard curricular education in neuroradiology) were tested with respect to the detection of seven CT pathologies. The test results of each group were compared for each CT pathology using the chi-square test. A p-value ≤ 0.05 was considered to be significant. Opposed to the results of the comparison group (curricular education), the e-learning group and interactive teaching tutorial group both showed a significantly better performance in detecting hyperdense middle cerebral artery sign (p = 0.001 and p < 0.0001) as well as subarachnoid hemorrhage (p = 0.03 and p = 0.001) on CT. Moreover, an increase in performance for the detection of subdural hematoma and skull fracture could be observed for both the interactive teaching group and the e-learning group, with statistical significance in the latter (p = 0.03 and p < 0.0001, respectively). No statistically significant differences were found for the detection of intracranial and epidural hemorrhage, as well as midline shift, among the groups studied. Our study demonstrates potential learning benefits for both the interactive teaching tutorial and e-learning module group with respect to reading CT scans with slightly different advantages. Thus, the introduction of new learning methods in radiological education might be reasonable at an undergraduate stage but requires learning content-based considerations. · E-learning can offer benefits regarding the reading of cerebral CT scans by students. · Interactive tutorial can offer benefits regarding the reading of cerebral CT scans by students. · E-learning and interactive tutorial feature different strengths for student learning in radiology. · Application of interactive teaching methods in radiology requires learning content-based considerations. · Groth M, Barthe KG, Riemer M et al. Critical Analysis of an e-Learning and Interactive Teaching Module with Respect to the Interpretation of Emergency Computed Tomography of the Brain. Fortschr Röntgenstr 2017; 190: 334 - 340. © Georg Thieme Verlag KG Stuttgart · New York.
Oechsner, Markus; Odersky, Leonhard; Berndt, Johannes; Combs, Stephanie Elisabeth; Wilkens, Jan Jakob; Duma, Marciana Nona
2015-12-01
The purpose of this study was to assess the impact on dose to the planning target volume (PTV) and organs at risk (OAR) by using four differently generated CT datasets for dose calculation in stereotactic body radiotherapy (SBRT) of lung and liver tumors. Additionally, dose differences between 3D conformal radiotherapy and volumetric modulated arc therapy (VMAT) plans calculated on these CT datasets were determined. Twenty SBRT patients, ten lung cases and ten liver cases, were retrospectively selected for this study. Treatment plans were optimized on average intensity projection (AIP) CTs using 3D conformal radiotherapy (3D-CRT) and volumetric modulated arc therapy (VMAT). Afterwards, the plans were copied to the planning CTs (PCT), maximum intensity projection (MIP) and mid-ventilation (MidV) CT datasets and dose was recalculated keeping all beam parameters and monitor units unchanged. Ipsilateral lung and liver volumes and dosimetric parameters for PTV (Dmean, D2, D98, D95), ipsilateral lung and liver (Dmean, V30, V20, V10) were determined and statistically analysed using Wilcoxon test. Significant but small mean differences were found for PTV dose between the CTs (lung SBRT: ≤2.5 %; liver SBRT: ≤1.6 %). MIPs achieved the smallest lung and the largest liver volumes. OAR mean doses in MIP plans were distinctly smaller than in the other CT datasets. Furthermore, overlapping of tumors with the diaphragm results in underestimated ipsilateral lung dose in MIP plans. Best agreement was found between AIP and MidV (lung SBRT). Overall, differences in liver SBRT were smaller than in lung SBRT and VMAT plans achieved slightly smaller differences than 3D-CRT plans. Only small differences were found for PTV parameters between the four CT datasets. Larger differences occurred for the doses to organs at risk (ipsilateral lung, liver) especially for MIP plans. No relevant differences were observed between 3D-CRT or VMAT plans. MIP CTs are not appropriate for OAR dose assessment. PCT, AIP and MidV resulted in similar doses. If a 4DCT is acquired PCT can be omitted using AIP or MidV for treatment planning.
Connect Global Positioning System RF Module
NASA Technical Reports Server (NTRS)
Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.
2012-01-01
The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.
Botticella, Angela; Defraene, Gilles; Nackaerts, Kristiaan; Deroose, Christophe M; Coolen, Johan; Nafteux, Philippe; Peeters, Stephanie; Ricardi, Umberto; De Ruysscher, Dirk
2016-12-01
The gross tumor volume (GTV) definition for malignant pleural mesothelioma (MPM) is ill-defined. We therefore investigated which imaging modality is optimal: computed tomography (CT) with intravenous contrast (IVC), positron emission tomography-CT (PET/CT) or magnetic resonance imaging (MRI). Sixteen consecutive patients with untreated stage I-IV MPM were included. Patients with prior pleurodesis were excluded. CT with IVC, 18FDG-PET/CT and MRI (T2 and contrast-enhanced T1) were obtained. CT was rigidly co-registered with PET/CT and with MRI. Three sets of pleural GTVs were defined: GTV CT , GTV CT+PET/CT and GTV CT+MRI . Quantitative and qualitative evaluations of the contoured GTVs were performed. Compared to CT-based GTV definition, PET/CT identified additional tumor sites (defined as either separate nodules or greater extent of a known tumor) in 12/16 patients. Compared to either CT or PET/CT, MRI identified additional tumor sites in 15/16 patients (p = .7). The mean GTV CT , GTV CT+PET/CT and GTV CT+MRI [±standard deviation (SD)] were 630.1 cm 3 (±302.81), 640.23 cm 3 (±302.83) and 660.8 cm 3 (±290.8), respectively. Differences in mean volumes were not significant. The mean Jaccard Index was significantly lower in MRI-based contours versus all the others. As MRI identified additional pleural disease sites in the majority of patients, it may play a role in optimal target volume definition.
Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay
2015-01-01
Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.
Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay
2015-01-01
Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T; Du, X; Su, L
2014-06-15
Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5−0.6CT and 10×6−0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. Formore » the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandapaka, A; Ghebremedhin, A; Farley, D
Purpose: To develop the methodology to evaluate the clinical performance of a Phase II Proton CT scanner Methods: Range errors on the order of 3%-5% constitute a major uncertainty in current charged particle treatment planning based on Hounsfield Unit (HU)-relative stopping power (RSP) calibration curves. Within our proton CT collaboration, we previously developed and built a Phase I proton CT scanner that provided a sensitive area of 9 cm (axial) × 18 cm (in-plane). This scanner served to get initial experience with this new treatment planning tool and to incorporate lessons learned into the next generation design. A Phase IImore » scanner was recently completed and is now undergoing initial performance testing. It will increase the proton acquisition rate and provide a larger detection area of 9 cm x 36 cm. We are now designing a comprehensive evaluation program to test the image quality, imaging dose, and range uncertainty associated with this scanner. The testing will be performed along the lines of AAPM TG 66. Results: In our discussion of the evaluation protocol we identified the following priorities. The image quality of proton CT images, in particular spatial resolution and low-density contrast discrimination, will be evaluated with the Catphan600 phantom. Initial testing showed that the Catphan uniformity phantom did not provide sufficient uniformity; it was thus replaced by a cylindrical water phantom. The imaging dose will be tested with a Catphan dose module, and compared to a typical cone beam CT dose for comparable image quality. Lastly, we developed a dedicated dosimetry range phantom based on the CIRS pediatric head phantom HN715. Conclusion: A formal evaluation of proton CT as a new tool for proton treatment planning is an important task. The availability of the new Phase II proton CT scanner will allow us to perform this task. This research is supported by the National Institute of Biomedical Imaging and Bioengineering of the NIH under award number R01EB013118. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.« less
Ultra-Low-Dose Fetal CT With Model-Based Iterative Reconstruction: A Prospective Pilot Study.
Imai, Rumi; Miyazaki, Osamu; Horiuchi, Tetsuya; Asano, Keisuke; Nishimura, Gen; Sago, Haruhiko; Nosaka, Shunsuke
2017-06-01
Prenatal diagnosis of skeletal dysplasia by means of 3D skeletal CT examination is highly accurate. However, it carries a risk of fetal exposure to radiation. Model-based iterative reconstruction (MBIR) technology can reduce radiation exposure; however, to our knowledge, the lower limit of an optimal dose is currently unknown. The objectives of this study are to establish ultra-low-dose fetal CT as a method for prenatal diagnosis of skeletal dysplasia and to evaluate the appropriate radiation dose for ultra-low-dose fetal CT. Relationships between tube current and image noise in adaptive statistical iterative reconstruction and MBIR were examined using a 32-cm CT dose index (CTDI) phantom. On the basis of the results of this examination and the recommended methods for the MBIR option and the known relationship between noise and tube current for filtered back projection, as represented by the expression SD = (milliamperes) -0.5 , the lower limit of the optimal dose in ultra-low-dose fetal CT with MBIR was set. The diagnostic power of the CT images obtained using the aforementioned scanning conditions was evaluated, and the radiation exposure associated with ultra-low-dose fetal CT was compared with that noted in previous reports. Noise increased in nearly inverse proportion to the square root of the dose in adaptive statistical iterative reconstruction and in inverse proportion to the fourth root of the dose in MBIR. Ultra-low-dose fetal CT was found to have a volume CTDI of 0.5 mGy. Prenatal diagnosis was accurately performed on the basis of ultra-low-dose fetal CT images that were obtained using this protocol. The level of fetal exposure to radiation was 0.7 mSv. The use of ultra-low-dose fetal CT with MBIR led to a substantial reduction in radiation exposure, compared with the CT imaging method currently used at our institution, but it still enabled diagnosis of skeletal dysplasia without reducing diagnostic power.
Baptista, Abrahão Fontes; de Sena, Eduardo Pondé
2015-01-01
Background The applicability of transcranial direct current stimulation (tDCS) in individuals with attention deficit hyperactivity disorder (ADHD) has not yet been investigated. This low-cost, non-invasive, and safe technique optimized to modulate the inhibitory response might be a useful treatment option for those affected by this condition. Objective The aim of this single center, parallel, randomized, double-blinded, sham-controlled trial is to investigate the efficacy of transcranial direct current stimulation over the prefrontal cortex on the modulation of inhibitory control in adults with attention deficit hyperactivity disorder. Methods A total of 60 individuals will be divided into 2 groups by block randomization to receive active or sham stimulation. Anodal stimulation over the left dorsolateral prefrontal cortex will be applied at 1 mA during a single 20-minute session. Before and after interventions, subjects will perform 2 go/no go tasks and the brain electrical activity will be recorded by electroencephalogram (EEG) with 32 channels, according to the 10-20 international EEG system. Results The trial began in May 2013 and we are currently performing the statistical analysis for the secondary outcomes. Conclusions The findings from this study will provide preliminary results about the role of prefrontal cortex activation through tDCS on ADHD patients. Trial Registration Clinicaltrials.gov NCT01968512; http://clinicaltrials.gov/ct2/show/NCT01968512 (Archived by WebCite at www.webcitation.org/6YMSW2tkD). PMID:25986784
Cosmo, Camila; Baptista, Abrahão Fontes; de Sena, Eduardo Pondé
2015-05-18
The applicability of transcranial direct current stimulation (tDCS) in individuals with attention deficit hyperactivity disorder (ADHD) has not yet been investigated. This low-cost, non-invasive, and safe technique optimized to modulate the inhibitory response might be a useful treatment option for those affected by this condition. The aim of this single center, parallel, randomized, double-blinded, sham-controlled trial is to investigate the efficacy of transcranial direct current stimulation over the prefrontal cortex on the modulation of inhibitory control in adults with attention deficit hyperactivity disorder. A total of 60 individuals will be divided into 2 groups by block randomization to receive active or sham stimulation. Anodal stimulation over the left dorsolateral prefrontal cortex will be applied at 1 mA during a single 20-minute session. Before and after interventions, subjects will perform 2 go/no go tasks and the brain electrical activity will be recorded by electroencephalogram (EEG) with 32 channels, according to the 10-20 international EEG system. The trial began in May 2013 and we are currently performing the statistical analysis for the secondary outcomes. The findings from this study will provide preliminary results about the role of prefrontal cortex activation through tDCS on ADHD patients. Clinicaltrials.gov NCT01968512; http://clinicaltrials.gov/ct2/show/NCT01968512 (Archived by WebCite at www.webcitation.org/6YMSW2tkD).
Clinical Implementation Of Megavoltage Cone Beam CT As Part Of An IGRT Program
NASA Astrophysics Data System (ADS)
Gonzalez, Albin; Bauer, Lisa; Kinney, Vicki; Crooks, Cheryl
2008-03-01
Knowing where the tumor is at all times during treatment is the next challenge in the field of radiation therapy. This issue has become more important because with treatments such as Intensity Modulated Radiation Therapy (IMRT), healthy tissue is spared by using very tight margins around the tumor. These tight margins leave very small room for patient setup errors. The use of an imaging modality in the treatment room as a way to localize the tumor for patient set up is generally known as "Image Guided Radiation Therapy" or IGRT. This article deals with a form of IGRT known as Megavoltage Cone Beam Computed Tomography (MCBCT) using a Siemens Oncor linear accelerator currently in use at Firelands Regional Medical Center. With MCBCT, we are capable of acquiring CT images right before the treatment of the patient and then use this information to position the patient tumor according to the treatment plan. This article presents the steps followed in order to clinically implement this system, as well as some of the quality assurance tests suggested by the manufacturer and some tests developed in house
WebCT: A Major Shift of Emphasis
ERIC Educational Resources Information Center
Morningstar, Barbara; Schubert, Jeremy; Thibeault, Kristine
2004-01-01
The evaluation reports in this series usually feature several products at once. The current review, however, comes at a time when one of the most widely used (and expensive) online learning management systems is undergoing a major change in its marketing strategy and corporate focus. "WebCT" is currently evolving to a new version ("WebCT Vista"),…
Derrick, Tamsyn; Holland, Martin J; Cassama, Eunice; Markham-David, Rod; Nabicassa, Meno; Marks, Michael; Bailey, Robin L; Last, Anna R
2016-01-27
Trachoma is a blinding disease caused by conjunctival infection with Chlamydia trachomatis (Ct). Mass drug administration (MDA) for trachoma control is administered based on the population prevalence of the clinical sign of trachomatis inflammation - follicular (TF). However, the prevalence of TF is often much higher than the prevalence of Ct infection. The addition of a clinical sign specific for current ocular Ct infection to TF could save resources by preventing unnecessary additional rounds of MDA. Study participants were aged between 1-9 years and resided on 7 islands of the Bijagos Archipelago, Guinea Bissau. Clinical grades for trachoma and corneal pannus and ocular swab samples were taken from 80 children with TF and from 81 matched controls without clinical evidence of trachoma. Ct infection testing was performed using droplet digital PCR. New pannus was significantly associated with Ct infection after adjustment for TF (P = 0.009, OR = 3.65 (1.4-9.8)). Amongst individuals with TF, individuals with new pannus had significantly more Ct infection than individuals with none or old pannus (75.0% vs 45.5%, Chi(2) P = 0.01). TF and new pannus together provide a highly specific (91.7%), but a poorly sensitive (51.9%) clinical diagnostic test for Ct infection. As we move towards trachoma elimination it may be desirable to use a combined clinical sign (new pannus in addition to TF) that is highly specific for current ocular Ct infection. This would allow national health systems to obtain a more accurate estimate of Ct population prevalence to inform further need for MDA without the expense of Ct molecular diagnostics, which are currently unaffordable in programmatic contexts.
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
Affective touch and attachment style modulate pain: a laser-evoked potentials study
Drabek, Marianne M.; Paloyelis, Yannis; Fotopoulou, Aikaterini
2016-01-01
Affective touch and cutaneous pain are two sub-modalities of interoception with contrasting affective qualities (pleasantness/unpleasantness) and social meanings (care/harm), yet their direct relationship has not been investigated. In 50 women, taking into account individual attachment styles, we assessed the role of affective touch and particularly the contribution of the C tactile (CT) system in subjective and electrophysiological responses to noxious skin stimulation, namely N1 and N2-P2 laser-evoked potentials. When pleasant, slow (versus fast) velocity touch was administered to the (non-CT-containing) palm of the hand, higher attachment anxiety predicted increased subjective pain ratings, in the same direction as changes in N2 amplitude. By contrast, when pleasant touch was administered to CT-containing skin of the arm, higher attachment anxiety predicted attenuated N1 and N2 amplitudes. Higher attachment avoidance predicted opposite results. Thus, CT-based affective touch can modulate pain in early and late processing stages (N1 and N2 components), with the direction of effects depending on attachment style. Affective touch not involving the CT system seems to affect predominately the conscious perception of pain, possibly reflecting socio-cognitive factors further up the neurocognitive hierarchy. Affective touch may thus convey information about available social resources and gate pain responses depending on individual expectations of social support. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’. PMID:28080967
USDA-ARS?s Scientific Manuscript database
In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal alpha-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhi...
Embedding Personal Development Planning within a WebCT Supported Module--A Collaborative Venture
ERIC Educational Resources Information Center
Bloxham, Sefton; Cerevkova, Andrea; Waddelove, Christine
2007-01-01
This paper describes the background to and development of a first year undergraduate law module which has been re-designed to enable the embedding of Personal Development Planning (PDP) within the curriculum, with particular emphasis on career management skills. The pedagogic rationale for the approach adopted is identified and it is then…
Duma, Marciana Nona; Berndt, Johannes; Rondak, Ina-Christine; Devecka, Michal; Wilkens, Jan J; Geinitz, Hans; Combs, Stephanie Elisabeth; Oechsner, Markus
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc-RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (Dmin) and mean dose (Dmean) to the esophagus within the planning target volume, the volume changes of the lungs, the Dmean and the total lung volume receiving at least 40Gy (V40), and the V30, V20, V10, and V5. For the heart we assessed the Dmean and the V25. Over all techniques and all patients the change in Dmean as compared with the planned Dmean (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT_insp) and 0.55% in maximum free expiration (CT_exp). The Dmin CT_insp change was 0.86% and CT_exp change was 0.89%. The Dmean change of the lungs (heart) was in CT_insp 1.95% (2.89%) and 3.88% (2.38%) in CT_exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% Dmean to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duma, Marciana Nona, E-mail: Marciana.Duma@mri.tum.de; Berndt, Johannes; Rondak, Ina-Christine
2015-01-01
The aim of this study was to assess the effect of breathing motion on the delivered dose in esophageal cancer 3-dimensional (3D)-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT). We assessed 16 patients with esophageal cancer. All patients underwent 4D-computed tomography (4D-CT) for treatment planning. For each of the analyzed patients, 1 3D-CRT, 1 IMRT, and 1 VMAT (RapidArc—RA) plan were calculated. Each of the 3 initial plans was recalculated on the 4D-CT (for the maximum free inspiration and maximum free expiration) to assess the effect of breathing motion. We assessed the minimum dose (D{sub min})more » and mean dose (D{sub mean}) to the esophagus within the planning target volume, the volume changes of the lungs, the D{sub mean} and the total lung volume receiving at least 40 Gy (V{sub 40}), and the V{sub 30}, V{sub 20}, V{sub 10}, and V{sub 5}. For the heart we assessed the D{sub mean} and the V{sub 25}. Over all techniques and all patients the change in D{sub mean} as compared with the planned D{sub mean} (planning CT [PCT]) to the esophagus was 0.48% in maximum free inspiration (CT-insp) and 0.55% in maximum free expiration (CT-exp). The D{sub min} CT-insp change was 0.86% and CT-exp change was 0.89%. The D{sub mean} change of the lungs (heart) was in CT-insp 1.95% (2.89%) and 3.88% (2.38%) in CT-exp. In all, 4 patients had a clinically relevant change of the dose (≥ 5% D{sub mean} to the heart and the lungs) between inspiration and expiration. These patients had a very cranially or caudally situated tumor. There are no relevant differences in the delivered dose to the regions of interest among the 3 techniques. Breathing motion management could be considered to achieve a better sparing of the lungs or heart in patients with cranially or caudally situated tumors.« less
Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Silva, Filipi Nascimento; da Fontoura Costa, Luciano; Ferreira, Leandro Rodrigues; Furlanetto, Glaucio; Chacur, Paulo; Zerbini, Maria Claudia Nogueira; Carneiro-Sampaio, Magda
2016-01-01
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue - obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT) - and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the “canonical” way of thymus functioning. Conversely, DS networks represent a “non-canonical” way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes. PMID:26848775
Friesen, Melissa C.; Wheeler, David C.; Vermeulen, Roel; Locke, Sarah J.; Zaebst, Dennis D.; Koutros, Stella; Pronk, Anjoeka; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Malats, Nuria; Schwenn, Molly; Johnson, Alison; Armenti, Karla R.; Rothman, Nathanial; Stewart, Patricia A.; Kogevinas, Manolis; Silverman, Debra T.
2016-01-01
Objectives: To efficiently and reproducibly assess occupational diesel exhaust exposure in a Spanish case-control study, we examined the utility of applying decision rules that had been extracted from expert estimates and questionnaire response patterns using classification tree (CT) models from a similar US study. Methods: First, previously extracted CT decision rules were used to obtain initial ordinal (0–3) estimates of the probability, intensity, and frequency of occupational exposure to diesel exhaust for the 10 182 jobs reported in a Spanish case-control study of bladder cancer. Second, two experts reviewed the CT estimates for 350 jobs randomly selected from strata based on each CT rule’s agreement with the expert ratings in the original study [agreement rate, from 0 (no agreement) to 1 (perfect agreement)]. Their agreement with each other and with the CT estimates was calculated using weighted kappa (κ w) and guided our choice of jobs for subsequent expert review. Third, an expert review comprised all jobs with lower confidence (low-to-moderate agreement rates or discordant assignments, n = 931) and a subset of jobs with a moderate to high CT probability rating and with moderately high agreement rates (n = 511). Logistic regression was used to examine the likelihood that an expert provided a different estimate than the CT estimate based on the CT rule agreement rates, the CT ordinal rating, and the availability of a module with diesel-related questions. Results: Agreement between estimates made by two experts and between estimates made by each of the experts and the CT estimates was very high for jobs with estimates that were determined by rules with high CT agreement rates (κ w: 0.81–0.90). For jobs with estimates based on rules with lower agreement rates, moderate agreement was observed between the two experts (κ w: 0.42–0.67) and poor-to-moderate agreement was observed between the experts and the CT estimates (κ w: 0.09–0.57). In total, the expert review of 1442 jobs changed 156 probability estimates, 128 intensity estimates, and 614 frequency estimates. The expert was more likely to provide a different estimate when the CT rule agreement rate was <0.8, when the CT ordinal ratings were low to moderate, or when a module with diesel questions was available. Conclusions: Our reliability assessment provided important insight into where to prioritize additional expert review; as a result, only 14% of the jobs underwent expert review, substantially reducing the exposure assessment burden. Overall, we found that we could efficiently, reproducibly, and reliably apply CT decision rules from one study to assess exposure in another study. PMID:26732820
Qureshi, N R; Rintoul, R C; Miles, K A; George, S; Harris, S; Madden, J; Cozens, K; Little, L A; Eichhorst, K; Jones, J; Moate, P; McClement, C; Pike, L; Sinclair, D; Wong, W L; Shekhdar, J; Eaton, R; Shah, A; Brindle, L; Peebles, C; Banerjee, A; Dizdarevic, S; Han, S; Poon, F W; Groves, A M; Kurban, L; Frew, A J; Callister, M E; Crosbie, P; Gleeson, F V; Karunasaagarar, K; Kankam, O; Gilbert, F J
2016-01-01
Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrast-enhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) ( 18 FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18 FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals. ISRCTN30784948; Pre-results.
Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V
2014-05-01
To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.
Neuromuscular control of fundamental frequency and glottal posture at phonation onset
Chhetri, Dinesh K.; Neubauer, Juergen; Berry, David A.
2012-01-01
The laryngeal neuromuscular mechanisms for modulating glottal posture and fundamental frequency are of interest in understanding normal laryngeal physiology and treating vocal pathology. The intrinsic laryngeal muscles in an in vivo canine model were electrically activated in a graded fashion to investigate their effects on onset frequency, phonation onset pressure, vocal fold strain, and glottal distance at the vocal processes. Muscle activation plots for these laryngeal parameters were evaluated for the interaction of following pairs of muscle activation conditions: (1) cricothyroid (CT) versus all laryngeal adductors (TA/LCA/IA), (2) CT versus LCA/IA, (3) CT versus thyroarytenoid (TA) and, (4) TA versus LCA/IA (LCA: lateral cricoarytenoid muscle, IA: interarytenoid). Increases in onset frequency and strain were primarily affected by CT activation. Onset pressure correlated with activation of all adductors in activation condition 1, but primarily with CT activation in conditions 2 and 3. TA and CT were antagonistic for strain. LCA/IA activation primarily closed the cartilaginous glottis while TA activation closed the mid-membranous glottis. PMID:22352513
Cognitive Reserve in Dementia: Implications for Cognitive Training
Mondini, Sara; Madella, Ileana; Zangrossi, Andrea; Bigolin, Angela; Tomasi, Claudia; Michieletto, Marta; Villani, Daniele; Di Giovanni, Giuseppina; Mapelli, Daniela
2016-01-01
Cognitive reserve (CR) is a potential mechanism to cope with brain damage. The aim of this study was to evaluate the effect of CR on a cognitive training (CT) in a group of patients with dementia. Eighty six participants with mild to moderate dementia were identified by their level of CR quantified by the CR Index questionnaire (CRIq) and underwent a cycle of CT. A global measure of cognition mini mental state examination (MMSE) was obtained before (T0) and after (T1) the training. Multiple linear regression analyses highlighted CR as a significant factor able to predict changes in cognitive performance after the CT. In particular, patients with lower CR benefited from a CT program more than those with high CR. These data show that CR can modulate the outcome of a CT program and that it should be considered as a predictive factor of neuropsychological rehabilitation training efficacy in people with dementia. PMID:27199734
Yao, William C; Regone, Rachel M; Huyhn, Nancy; Butler, E Brian; Takashima, Masayoshi
2014-03-01
Develop a novel three-dimensional (3-D) anatomical model to assist in improving spatial knowledge of the skull base, paranasal sinuses, and adjacent structures, and validate the utilization of 3-D reconstruction to augment two-dimensional (2-D) computed tomography (CT) for the training of medical students and otolaryngology-head and neck surgery residents. Prospective study. A study of 18 subjects studying sinus anatomy was conducted at a tertiary academic center during the 2011 to 2012 academic year. An image processing and 3-D modeling program was used to create a color coded 3-D scalable/layerable/rotatable model of key paranasal and skull base structures from a 2-D high-resolution sinus CT scan. Subjects received instruction of the sinus anatomy in two sessions, first through review of a 2-D CT sinus scan, followed by an educational module of the 3-D reconstruction. After each session, subjects rated their knowledge of the sinus and adjacent structures on a self-assessment questionnaire. Significant improvement in the perceived understanding of the anatomy was noted after the 3-D educational module session when compared to the 2-D CT session alone (P < .01). Every subject believed the addition of 3-D imaging accelerated their education of sinus anatomy and recommended its use to others. The impression of the learners was that a 3-D educational module, highlighting key structures, is a highly effective tool to enhance the education of medical students and otolaryngology residents in sinus and skull base anatomy and its adjacent structures, specifically in conceptualizing the spatial orientation of these structures. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus
Sayles, Mark; Füllgrabe, Christian; Winter, Ian M
2013-01-01
Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation frequency are (95% CI) 11.6% (10.0–13.1) for PL units, 9.8% (8.2–11.5) for CT units, and 10.8% (8.4–13.2) for CS units. The most sensitive guinea-pig VCN single unit AM detection thresholds are similar to human psychophysical performance (∼3% AM), while the mean neurometric thresholds approach whole animal behavioural performance (∼10% AM). PMID:23629508
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L., E-mail: rdixon@wfubmc.edu; Boone, John M.; Kraft, Robert A.
2014-11-01
Purpose: With the increasing clinical use of shift-variant CT protocols involving tube current modulation (TCM), variable pitch or pitch modulation (PM), and variable aperture a(t), the interpretation of the scanner-reported CTDI{sub vol} is called into question. This was addressed for TCM in their previous paper published by Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)] and is extended to PM and concurrent TCM/PM as well as variable aperture in this work. Methods: Rigorous convolution equations are derived to describe the accumulated dose distributions for TCM, PM, and concurrent TCM/PM. A comparison with scanner-reported CTDI{sub vol} formulae clearly identifies themore » source of their differences with the traditional CTDI{sub vol}. Dose distribution simulations using the convolution are provided for a variety of TCM and PM scenarios including a helical shuttle used for perfusion studies (as well as constant mA)—all having the same scanner-reported CTDI{sub vol}. These new convolution simulations for TCM are validated by comparison with their previous discrete summations. Results: These equations show that PM is equivalent to TCM if the pitch variation p(z) is proportional to 1/i(z), where i(z) is the local tube current. The simulations show that the local dose at z depends only weakly on the local tube current i(z) or local pitch p(z) due to scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” or “CTDI{sub vol} per slice” do not represent a local dose but rather only a relative i(z) or p(z). The CTDI-paradigm does not apply to shift-variant techniques and the scanner-reported CTDI{sub vol} for the same lacks physical significance and relevance. Conclusions: While the traditional CTDI{sub vol} at constant tube current and pitch conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} for shift-variant techniques (TCM or PM) conveys no useful information about the associated dose distribution it purportedly represents. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust (invariant) with respect to shift-variance, depending only on the total mAs = 〈i〉t{sub 0} accumulated during the total beam-on time t{sub 0} and aperture a, where 〈i〉 is the average current.« less
Dual energy exposure control (DEEC) for computed tomography: algorithm and simulation study.
Stenner, Philip; Kachelriess, Marc
2008-11-01
DECT means acquiring the same object at two different energies, respectively two different tube voltages U1 and U2. The raw data q1 and q2 undergo a decomposition process of type p = p(q1,q2). The raw data p are reconstructed to obtain monochromatic images of the attenuation mu, of the object density rho, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)]. Given p and a raw data-based projection-wise patient dose estimation D(alpha) the authors determine the optimal tube current curves I1(alpha) and I2(alpha), with alpha being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I1(alpha) and I2(alpha) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate mu-images and density images were evaluated. Image quality was compared to standard scans at U0=120 kV (clinical CT) and U0=45 kV (micro-CT) that were taken at the same dose level (D0=D1 + D2) and identical spatial resolution. Appropriate choice of p(q1, q2) allows to obtain mu-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to mu-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with mu-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular mu-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.
Dual energy exposure control (DEEC) for computed tomography: Algorithm and simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenner, Philip; Kachelriess, Marc
2008-11-15
DECT means acquiring the same object at two different energies, respectively two different tube voltages U{sub 1} and U{sub 2}. The raw data q{sub 1} and q{sub 2} undergo a decomposition process of type p=p(q{sub 1},q{sub 2}). The raw data p are reconstructed to obtain monochromatic images of the attenuation {mu}, of the object density {rho}, or of a specific material distribution. Recent advances in DECT focus on noise reduction techniques [S. Richard and J. H. Siewerdsen, Med. Phys. 35(2), 586-600 (2008)] and enable high performance DECT such as lung nodule detection [Shkumat et al., Med. Phys. 35(2), 629-632 (2008)].more » Given p and a raw data-based projection-wise patient dose estimation D({alpha}) the authors determine the optimal tube current curves I{sub 1}({alpha}) and I{sub 2}({alpha}), with {alpha} being the view angle, which minimizes image noise for a given patient dose level. DEEC can perform online; I{sub 1}({alpha}) and I{sub 2}({alpha}) can be determined during the scan. Simulation studies using semianthropomorphic phantom data were carried out. In particular, functions p that generate {mu}-images and density images were evaluated. Image quality was compared to standard scans at U{sub 0}=120 kV (clinical CT) and U{sub 0}=45 kV (micro-CT) that were taken at the same dose level (D{sub 0}=D{sub 1}+D{sub 2}) and identical spatial resolution. Appropriate choice of p(q{sub 1},q{sub 2}) allows to obtain {mu}-images that show fewer artifacts and yield image noise levels comparable to the noise of the standard scan. The authors compared the standard scan to {mu}-images at 70 keV, which is the effective energy used in clinical CT, and found optimal results with {mu}-images at 25 keV for micro-CT. Nonoptimal choice of the decomposition function will, however, significantly increase image noise. In particular {mu}-images at 511 keV, as needed for PET/CT attenuation correction, exhibit more than twice as much image noise as the standard scan. With DEEC, which guarantees best dose usage possible, monochromatic images are generated with only slightly increased noise levels at the same dose compared to a standard scan. The benefit of significantly decreased artifacts appears to allow using DEEC-generated monochromatic images in daily routine. Furthermore, DEEC is not restricted to DECT and the inherent tube current modulation algorithm may also be applied to single energy CT.« less
Performance evaluation of a modular detector unit for X-ray computed tomography.
Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui
2013-04-18
A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners.
Role of the Astroglial Glutamate Exchanger xCT in Ventral Hippocampus in Resilience to Stress.
Nasca, Carla; Bigio, Benedetta; Zelli, Danielle; de Angelis, Paolo; Lau, Timothy; Okamoto, Masahiro; Soya, Hideyo; Ni, Jason; Brichta, Lars; Greengard, Paul; Neve, Rachael L; Lee, Francis S; McEwen, Bruce S
2017-10-11
We demonstrate that stress differentially regulates glutamate homeostasis in the dorsal and ventral hippocampus and identify a role for the astroglial xCT in ventral dentate gyrus (vDG) in stress and antidepressant responses. We provide an RNA-seq roadmap for the stress-sensitive vDG. The transcription factor REST binds to xCT promoter in co-occupancy with the epigenetic marker H3K27ac to regulate expression of xCT, which is also reduced in a genetic mouse model of inherent susceptibility to depressive-like behavior. Pharmacologically, modulating histone acetylation with acetyl-L-carnitine (LAC) or acetyl-N-cysteine (NAC) rapidly increases xCT and activates a network with mGlu2 receptors to prime an enhanced glutamate homeostasis that promotes both pro-resilient and antidepressant-like responses. Pharmacological xCT blockage counteracts NAC prophylactic effects. GFAP + -Cre-dependent overexpression of xCT in vDG mimics pharmacological actions in promoting resilience. This work establishes a mechanism by which vDG protection leads to stress resilience and antidepressant responses via epigenetic programming of an xCT-mGlu2 network. Copyright © 2017 Elsevier Inc. All rights reserved.
Chung, Jonathan H; Oldham, Justin M; Montner, Steven M; Vij, Rekha; Adegunsoye, Ayodeji; Husain, Aliya N; Noth, Imre; Lynch, David A; Strek, Mary E
2018-05-01
The purpose of this study was to assess the diagnostic significance of CT patterns that cannot be classified according to current idiopathic pulmonary fibrosis (IPF) guidelines and of specific findings of the inconsistent with usual interstitial pneumonitis (UIP) pattern. Subjects with a multidisciplinary diagnosis of interstitial lung disease who had undergone surgical lung biopsy and chest CT within 1 year of each other were included in the study. The predominant distribution and pattern of disease were scored. Cases were classified as UIP, possible UIP, or inconsistent with UIP at chest CT according to 2011 IPF guidelines. Cases that could not be confidently categorized with current guidelines were annotated as indeterminate. UIP, possible UIP, and inconsistent with UIP CT patterns were associated with pathologic UIP in 89.6%, 81.6%, and 60.0% of subjects. An indeterminate CT pattern (7.7% [20/259]) was associated with a UIP pathologic diagnosis in 55.0% of cases. This finding was not statistically different from the findings in the group with the inconsistent with UIP CT pattern (p = 0.677) but was different from the findings in the UIP (p < 0.001) and possible UIP (p = 0.031) groups. In regard to specific findings of the inconsistent with UIP CT category, ground-glass opacity, air-trapping, consolidation, and axial distribution were associated with a non-UIP pathologic diagnosis; however, there was no significant association with zonal distribution. A substantial minority of cases cannot be confidently categorized according to current guidelines for IPF and differ diagnostically from the possible UIP and UIP CT categories. The term "inconsistent with UIP" is misleading and should be renamed.
Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration
NASA Astrophysics Data System (ADS)
Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.
2015-12-01
The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with 3.5 km of fiber optic, Kevlar reinforced cable, which provides point-to-point communications as well as a stable recovery platform between missions. SUPPORT: Icefin was designed and built at Georgia Tech, under Dr. Britney Schmidt's startup funds with effort contributed from Georgia Tech Research Institute (GTRI).
Dane, Bari; Grechushkin, Vadim; Plank, April; Moore, William; Bilfinger, Thomas
2013-01-01
18F-FDG PET/CT was compared with non-contrast chest CT in monitoring for recurrence 1-year after lobectomy of stage 1 non-small-cell lung cancer (NSCLC). For surveillance after treatment with curative intent, current (April 2012) National Comprehensive Cancer network guidelines recommend chest CT with or without contrast every 6-12 months for 2 years, then non-contrast chest CT annually. PET/CT is not currently indicated for routine follow-up. One hundred patients receiving surveillance PET/CT 1-year after lobectomy for the treatment of stage 1a or 1b NSCLC were included in the study. Exclusion criteria included the presence or interval diagnosis of a second malignancy, or surgical treatment more radical than single lobectomy. The non-contrast CT obtained from the 1-year PET/CT was interpreted by an experienced chest radiologist blinded to the PET/CT for evidence of recurrence using the following findings: pulmonary nodule, pleural effusion, pleural mass, adenopathy, and extrathoracic mass. The ecision about recurrence was made solely from the non-contrast CT without PET/CT findings. This was compared with the determination made with PET/CT. The reference standard for determination of recurrence was the multi-disciplinary tumor board who had access to all imaging and clinical data. Recurrence at 1 year was documented in 16 of 90 patients. All 16 recurrences were documented with PET/CT and 9 were found with non-contrast CT. Five of the 7 recurrences missed with non-contrast CT were extrathoracic metastases. Sensitivity of CT and PET/CT for recurrence was 56.3% and 100%, respectively (p = 0.015). Specificity of CT and PET/CT for recurrence was 95.9% and 93.2%, respectively (p = 0.62). PMID:24116349
Calcitonin and Amylin Receptor Peptide Interaction Mechanisms
Lee, Sang-Min; Hay, Debbie L.; Pioszak, Augen A.
2016-01-01
Receptor activity-modifying proteins (RAMP1–3) determine the selectivity of the class B G protein-coupled calcitonin receptor (CTR) and the CTR-like receptor (CLR) for calcitonin (CT), amylin (Amy), calcitonin gene-related peptide (CGRP), and adrenomedullin (AM) peptides. RAMP1/2 alter CLR selectivity for CGRP/AM in part by RAMP1 Trp-84 or RAMP2 Glu-101 contacting the distinct CGRP/AM C-terminal residues. It is unclear whether RAMPs use a similar mechanism to modulate CTR affinity for CT and Amy, analogs of which are therapeutics for bone disorders and diabetes, respectively. Here, we reproduced the peptide selectivity of intact CTR, AMY1 (CTR·RAMP1), and AMY2 (CTR·RAMP2) receptors using purified CTR extracellular domain (ECD) and tethered RAMP1- and RAMP2-CTR ECD fusion proteins and antagonist peptides. All three proteins bound salmon calcitonin (sCT). Tethering RAMPs to CTR enhanced binding of rAmy, CGRP, and the AMY antagonist AC413. Peptide alanine-scanning mutagenesis and modeling of receptor-bound sCT and AC413 supported a shared non-helical CGRP-like conformation for their TN(T/V)G motif prior to the C terminus. After this motif, the peptides diverged; the sCT C-terminal Pro was crucial for receptor binding, whereas the AC413/rAmy C-terminal Tyr had little or no influence on binding. Accordingly, mutant RAMP1 W84A- and RAMP2 E101A-CTR ECD retained AC413/rAmy binding. ECD binding and cell-based signaling assays with antagonist sCT/AC413/rAmy variants with C-terminal residue swaps indicated that the C-terminal sCT/rAmy residue identity affects affinity more than selectivity. rAmy(8–37) Y37P exhibited enhanced antagonism of AMY1 while retaining selectivity. These results reveal unexpected differences in how RAMPs determine CTR and CLR peptide selectivity and support the hypothesis that RAMPs allosterically modulate CTR peptide affinity. PMID:26895962
Shin, Hyun Joo; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2013-01-01
Objective To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. Materials and Methods This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Results Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Conclusion Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images. PMID:24265563
Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko
2010-01-01
Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC patients. PMID:17869020
Fukunaga, Masaaki; Onishi, Hideo; Matsutomo, Norikazu; Yamamoto, Hiroyuki
2016-06-01
The purpose of this study was to evaluate the effects of target diameter and display-field of view (D-FOV) in modulation transfer function (MTF) by circular edge strategy using the computed tomography (CT) image measurement program "CTmeasure". We calculated the MTF (MTF(edge)) using the circular edge strategy applied to cylindrical phantom (200 mmφ) that inserted with cylinders have 10, 20, 30, and 40 mm diameters. The phantom images were reconstructed using filtered back projection method varied with D-FOV (240, 320, 400, and 500 mm). The study compared both MTF(edge) and MTF(wire) at MTF50% and MTF(10%) for target diameter and D-FOV, respectively. The MTF(edge) by the different of target diameter indicated in rough compatibility. However, MTF(edge) of D-FOV diameters (320, 400, and 500 mm) decreased in the high frequency range. The circular edge strategy for MTF depended on the D-FOV, however, it was little dependent on target diameter using the CT image measurement program "CTmeasure".
Hernandez-Gomez, Mercedes C.; Rydahl, Maja G.; Rogowski, Artur; Morland, Carl; Cartmell, Alan; Crouch, Lucy; Labourel, Aurore; Fontes, Carlos M. G. A.; Willats, William G. T.; Gilbert, Harry J; Knox, J. Paul
2018-01-01
Type A non-catalytic carbohydrate-binding modules (CBMs), exemplified by CtCBM3acipA, are widely believed to specifically target crystalline cellulose through entropic forces. Here we have tested the hypothesis that type A CBMs can also bind to xyloglucan, a soluble β-1,4-glucan containing α-1,6-xylose side chains. CtCBM3acipA bound to xyloglucan in cell walls and arrayed on solid surfaces. Xyloglucan and cellulose were shown to bind to the same planar surface on CBM3acipA. A range of type A CBMs from different families were shown to bind to xyloglucan in solution with ligand binding driven by enthalpic changes. The nature of CBM-polysaccharide interactions is discussed. PMID:26193423
Verma, Anil Kumar; Goyal, Arun; Freire, Filipe; Bule, Pedro; Venditto, Immacolata; Brás, Joana L. A.; Santos, Helena; Cardoso, Vânia; Bonifácio, Cecília; Thompson, Andrew; Romão, Maria João; Prates, José A. M.; Ferreira, Luís M. A.; Fontes, Carlos M. G. A.; Najmudin, Shabir
2013-01-01
The modular carbohydrate-active enzyme belonging to glycoside hydrolase family 30 (GH30) from Clostridium thermocellum (CtXynGH30) is a cellulosomal protein which plays an important role in plant cell-wall degradation. The full-length CtXynGH30 contains an N-terminal catalytic module (Xyn30A) followed by a family 6 carbohydrate-binding module (CBM6) and a dockerin at the C-terminus. The recombinant protein has a molecular mass of 45 kDa. Preliminary structural characterization was carried out on Xyn30A crystallized in different conditions. All tested crystals belonged to space group P1 with one molecule in the asymmetric unit. Molecular replacement has been used to solve the Xyn30A structure. PMID:24316849
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jiahua; Penfold, Scott N., E-mail: scott.penfold@adelaide.edu.au
Purpose: The accuracy of proton dose calculation is dependent on the ability to correctly characterize patient tissues with medical imaging. The most common method is to correlate computed tomography (CT) numbers obtained via single-energy CT (SECT) with proton stopping power ratio (SPR). CT numbers, however, cannot discriminate between a change in mass density and change in chemical composition of patient tissues. This limitation can have consequences on SPR calibration accuracy. Dual-energy CT (DECT) is receiving increasing interest as an alternative imaging modality for proton therapy treatment planning due to its ability to discriminate between changes in patient density and chemicalmore » composition. In the current work we use a phantom of known composition to demonstrate the dosimetric advantages of proton therapy treatment planning with DECT over SECT. Methods: A phantom of known composition was scanned with a clinical SECT radiotherapy CT-simulator. The phantom was rescanned at a lower X-ray tube potential to generate a complimentary DECT image set. A set of reference materials similar in composition to the phantom was used to perform a stoichiometric calibration of SECT CT number to proton SPRs. The same set of reference materials was used to perform a DECT stoichiometric calibration based on effective atomic number. The known composition of the phantom was used to assess the accuracy of SPR calibration with SECT and DECT. Intensity modulated proton therapy (IMPT) treatment plans were generated with the SECT and DECT image sets to assess the dosimetric effect of the imaging modality. Isodose difference maps and root mean square (RMS) error calculations were used to assess dose calculation accuracy. Results: SPR calculation accuracy was found to be superior, on average, with DECT relative to SECT. Maximum errors of 12.8% and 2.2% were found for SECT and DECT, respectively. Qualitative examination of dose difference maps clearly showed the dosimetric advantages of DECT imaging, compared to SECT imaging for IMPT dose calculation for the case investigated. Quantitatively, the maximum dose calculation error in the SECT plan was 7.8%, compared to a value of 1.4% in the DECT plan. When considering the high dose target region, the root mean square (RMS) error in dose calculation was 2.1% and 0.4% for SECT and DECT, respectively. Conclusions: DECT-based proton treatment planning in a commercial treatment planning system was successfully demonstrated for the first time. DECT is an attractive imaging modality for proton therapy treatment planning owing to its ability to characterize density and chemical composition of patient tissues. SECT and DECT scans of a phantom of known composition have been used to demonstrate the dosimetric advantages obtainable in proton therapy treatment planning with DECT over the current approach based on SECT.« less
An approach for quantitative image quality analysis for CT
NASA Astrophysics Data System (ADS)
Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe
2016-03-01
An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.
SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K; Matthews, K
2014-06-01
Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less
Qureshi, N R; Rintoul, R C; Miles, K A; George, S; Harris, S; Madden, J; Cozens, K; Little, L A; Eichhorst, K; Jones, J; Moate, P; McClement, C; Pike, L; Sinclair, D; Wong, W L; Shekhdar, J; Eaton, R; Shah, A; Brindle, L; Peebles, C; Banerjee, A; Dizdarevic, S; Han, S; Poon, F W; Groves, A M; Kurban, L; Frew, A J; Callister, M E; Crosbie, P; Gleeson, F V; Karunasaagarar, K; Kankam, O; Gilbert, F J
2016-01-01
Introduction Solitary pulmonary nodules (SPNs) are common on CT. The most cost-effective investigation algorithm is still to be determined. Dynamic contrast-enhanced CT (DCE-CT) is an established diagnostic test not widely available in the UK currently. Methods and analysis The SPUtNIk study will assess the diagnostic accuracy, clinical utility and cost-effectiveness of DCE-CT, alongside the current CT and 18-flurodeoxyglucose-positron emission tomography) (18FDG-PET)-CT nodule characterisation strategies in the National Health Service (NHS). Image acquisition and data analysis for 18FDG-PET-CT and DCE-CT will follow a standardised protocol with central review of 10% to ensure quality assurance. Decision analytic modelling will assess the likely costs and health outcomes resulting from incorporation of DCE-CT into management strategies for patients with SPNs. Ethics and dissemination Approval has been granted by the South West Research Ethics Committee. Ethics reference number 12/SW/0206. The results of the trial will be presented at national and international meetings and published in an Health Technology Assessment (HTA) Monograph and in peer-reviewed journals. Trial registration number ISRCTN30784948; Pre-results. PMID:27843550
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik
2017-06-01
Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanders, J; Tian, X; Segars, P
2016-06-15
Purpose: To develop an automated technique for estimating patient-specific regional imparted energy and dose from tube current modulated (TCM) computed tomography (CT) exams across a diverse set of head and body protocols. Methods: A library of 58 adult computational anthropomorphic extended cardiac-torso (XCAT) phantoms were used to model a patient population. A validated Monte Carlo program was used to simulate TCM CT exams on the entire library of phantoms for three head and 10 body protocols. The net imparted energy to the phantoms, normalized by dose length product (DLP), and the net tissue mass in each of the scan regionsmore » were computed. A knowledgebase containing relationships between normalized imparted energy and scanned mass was established. An automated computer algorithm was written to estimate the scanned mass from actual clinical CT exams. The scanned mass estimate, DLP of the exam, and knowledgebase were used to estimate the imparted energy to the patient. The algorithm was tested on 20 chest and 20 abdominopelvic TCM CT exams. Results: The normalized imparted energy increased with increasing kV for all protocols. However, the normalized imparted energy was relatively unaffected by the strength of the TCM. The average imparted energy was 681 ± 376 mJ for abdominopelvic exams and 274 ± 141 mJ for chest exams. Overall, the method was successful in providing patientspecific estimates of imparted energy for 98% of the cases tested. Conclusion: Imparted energy normalized by DLP increased with increasing tube potential. However, the strength of the TCM did not have a significant effect on the net amount of energy deposited to tissue. The automated program can be implemented into the clinical workflow to provide estimates of regional imparted energy and dose across a diverse set of clinical protocols.« less
Wang, Xinlian; Chen, Jianghong; Hu, Zhihai; Zhao, Liqin
2015-01-01
Objective To evaluate image quality of female pelvic computed tomography (CT) scans reconstructed with the adaptive statistical iterative reconstruction (ASIR) technique combined with low tube-voltage and to explore the feasibility of its clinical application. Materials and Methods Ninety-four patients were divided into two groups. The study group used 100 kVp, and images were reconstructed with 30%, 50%, 70%, and 90% ASIR. The control group used 120 kVp, and images were reconstructed with 30% ASIR. The noise index was 15 for the study group and 11 for the control group. The CT values and noise levels of different tissues were measured. The contrast to noise ratio (CNR) was calculated. A subjective evaluation was carried out by two experienced radiologists. The CT dose index volume (CTDIvol) was recorded. Results A 44.7% reduction in CTDIvol was observed in the study group (8.18 ± 3.58 mGy) compared with that in the control group (14.78 ± 6.15 mGy). No significant differences were observed in the tissue noise levels and CNR values between the 70% ASIR group and the control group (p = 0.068-1.000). The subjective scores indicated that visibility of small structures, diagnostic confidence, and the overall image quality score in the 70% ASIR group was the best, and were similar to those in the control group (1.87 vs. 1.79, 1.26 vs. 1.28, and 4.53 vs. 4.57; p = 0.122-0.585). No significant difference in diagnostic accuracy was detected between the study group and the control group (42/47 vs. 43/47, p = 1.000). Conclusion Low tube-voltage combined with automatic tube current modulation and 70% ASIR allowed the low CT radiation dose to be reduced by 44.7% without losing image quality on female pelvic scan. PMID:26357499
Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel
2017-01-05
Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.
Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram
2016-01-01
Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
de Bakker, Chantal M J; Altman, Allison R; Tseng, Wei-Ju; Tribble, Mary Beth; Li, Connie; Chandra, Abhishek; Qin, Ling; Liu, X Sherry
2015-04-01
Current osteoporosis treatments improve bone mass by increasing net bone formation: anti-resorptive drugs such as bisphosphonates block osteoclast activity, while anabolic agents such as parathyroid hormone (PTH) increase bone remodeling, with a greater effect on formation. Although these drugs are widely used, their role in modulating formation and resorption is not fully understood, due in part to technical limitations in the ability to longitudinally assess bone remodeling. Importantly, it is not known whether or not PTH-induced bone formation is independent of resorption, resulting in controversy over the effectiveness of combination therapies that use both PTH and an anti-resorptive. In this study, we developed a μCT-based, in vivo dynamic bone histomorphometry technique for rat tibiae, and applied this method to longitudinally track changes in bone resorption and formation as a result of treatment with alendronate (ALN), PTH, or combination therapy of both PTH and ALN (PTH+ALN). Correlations between our μCT-based measures of bone formation and measures of bone formation based on calcein-labeled histology (r=0.72-0.83) confirm the accuracy of this method. Bone remodeling parameters measured through μCT-based in vivo dynamic bone histomorphometry indicate an increased rate of bone formation in rats treated with PTH and PTH+ALN, together with a decrease in bone resorption measures in rats treated with ALN and PTH+ALN. These results were further supported by traditional histology-based measurements, suggesting that PTH was able to induce bone formation while bone resorption was suppressed. Copyright © 2014 Elsevier Inc. All rights reserved.
Tang, Hui; Yu, Nan; Jia, Yongjun; Yu, Yong; Duan, Haifeng; Han, Dong; Ma, Guangming; Ren, Chenglong; He, Taiping
2018-01-01
To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm. 30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists. For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher. In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.
2018-01-01
Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996
Brachytherapy next generation: robotic systems
Popescu, Tiberiu; Kacsó, Alex Cristian; Pisla, Doina
2015-01-01
In a field dominated by external beam radiation therapy (EBRT), both the therapeutic and technical possibilities of brachytherapy (BT) are underrated, shadowed by protons and intensity modulated radiotherapy. Decreasing expertise and indications, as well as increasing lack of specific BT training for radiation therapy (RT) residents led to the real need of shortening its learning curve and making it more popular. Developing robotic BT devices can be a way to mitigate the above issues. There are many teams working at custom-made robotic BT platforms to perfect and overcome the limitations of the existing systems. This paper provides a picture of the current state-of-the-art in robotic assisted BT, as it also conveys the author's solution to the problem, a parallel robot that uses CT-guidance. PMID:26816510
SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction
NASA Astrophysics Data System (ADS)
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
2017-03-01
State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.
A Japanese Agenda for Management Development.
ERIC Educational Resources Information Center
Lim, Howard
1982-01-01
Discusses myths about the Japanese management styles; what the West can learn from the Japanese; the concept of nonlinear management; and training modules which teach self-discipline, tolerance, and nonlinear management. (CT)
Montie, Eric W; Manire, Charlie A; Mann, David A
2011-03-15
In June 2008, two pygmy killer whales (Feresa attenuata) were stranded alive near Boca Grande, FL, USA, and were taken into rehabilitation. We used this opportunity to learn about the peripheral anatomy of the auditory system and hearing sensitivity of these rare toothed whales. Three-dimensional (3-D) reconstructions of head structures from X-ray computed tomography (CT) images revealed mandibles that were hollow, lacked a bony lamina medial to the pan bone and contained mandibular fat bodies that extended caudally and abutted the tympanoperiotic complex. Using auditory evoked potential (AEP) procedures, the modulation rate transfer function was determined. Maximum evoked potential responses occurred at modulation frequencies of 500 and 1000 Hz. The AEP-derived audiograms were U-shaped. The lowest hearing thresholds occurred between 20 and 60 kHz, with the best hearing sensitivity at 40 kHz. The auditory brainstem response (ABR) was composed of seven waves and resembled the ABR of the bottlenose and common dolphins. By changing electrode locations, creating 3-D reconstructions of the brain from CT images and measuring the amplitude of the ABR waves, we provided evidence that the neuroanatomical sources of ABR waves I, IV and VI were the auditory nerve, inferior colliculus and the medial geniculate body, respectively. The combination of AEP testing and CT imaging provided a new synthesis of methods for studying the auditory system of cetaceans.
Hammond, Emily; Sloan, Chelsea; Newell, John D; Sieren, Jered P; Saylor, Melissa; Vidal, Craig; Hogue, Shayna; De Stefano, Frank; Sieren, Alexa; Hoffman, Eric A; Sieren, Jessica C
2017-09-01
Quantitative computed tomography (CT) measures are increasingly being developed and used to characterize lung disease. With recent advances in CT technologies, we sought to evaluate the quantitative accuracy of lung imaging at low- and ultralow-radiation doses with the use of iterative reconstruction (IR), tube current modulation (TCM), and spectral shaping. We investigated the effect of five independent CT protocols reconstructed with IR on quantitative airway measures and global lung measures using an in vivo large animal model as a human subject surrogate. A control protocol was chosen (NIH-SPIROMICS + TCM) and five independent protocols investigating TCM, low- and ultralow-radiation dose, and spectral shaping. For all scans, quantitative global parenchymal measurements (mean, median and standard deviation of the parenchymal HU, along with measures of emphysema) and global airway measurements (number of segmented airways and pi10) were generated. In addition, selected individual airway measurements (minor and major inner diameter, wall thickness, inner and outer area, inner and outer perimeter, wall area fraction, and inner equivalent circle diameter) were evaluated. Comparisons were made between control and target protocols using difference and repeatability measures. Estimated CT volume dose index (CTDIvol) across all protocols ranged from 7.32 mGy to 0.32 mGy. Low- and ultralow-dose protocols required more manual editing and resolved fewer airway branches; yet, comparable pi10 whole lung measures were observed across all protocols. Similar trends in acquired parenchymal and airway measurements were observed across all protocols, with increased measurement differences using the ultralow-dose protocols. However, for small airways (1.9 ± 0.2 mm) and medium airways (5.7 ± 0.4 mm), the measurement differences across all protocols were comparable to the control protocol repeatability across breath holds. Diameters, wall thickness, wall area fraction, and equivalent diameter had smaller measurement differences than area and perimeter measurements. In conclusion, the use of IR with low- and ultralow-dose CT protocols with CT volume dose indices down to 0.32 mGy maintains selected quantitative parenchymal and airway measurements relevant to pulmonary disease characterization. © 2017 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahi-Anwar, M; Young, S; Lo, P
Purpose: A method to discriminate different types of renal cell carcinoma (RCC) was developed using attenuation values observed in multiphasic contrast-enhanced CT. This work evaluates the sensitivity of this RCC discrimination task at different CT radiation dose levels. Methods: We selected 5 cases of kidney lesion patients who had undergone four-phase CT scans covering the abdomen to the lilac crest. Through an IRB-approved study, the scans were conducted on 64-slice CT scanners (Definition AS/Definition Flash, Siemens Healthcare) using automatic tube-current modulation (TCM). The protocol included an initial baseline unenhanced scan, followed by three post-contrast injection phases. CTDIvol (32 cm phantom)more » measured between 9 to 35 mGy for any given phase. As a preliminary study, we limited the scope to the cortico-medullary phase—shown previously to be the most discriminative phase. A previously validated method was used to simulate a reduced dose acquisition via adding noise to raw CT sinogram data, emulating corresponding images at simulated doses of 50%, 25%, and 10%. To discriminate the lesion subtype, ROIs were placed in the most enhancing region of the lesion. The mean HU value of an ROI was extracted and used to discriminate to the worst-case RCC subtype, ranked in the order of clear cell, papillary, chromophobe and the benign oncocytoma. Results: Two patients exhibited a change of worst case RCC subtype between original and simulated scans, at 25% and 10% doses. In one case, the worst-case RCC subtype changed from oncocytoma to chromophobe at 10% and 25% doses, while the other case changed from oncocytoma to clear cell at 10% dose. Conclusion: Based on preliminary results from an initial cohort of 5 patients, worst-case RCC subtypes remained constant at all simulated dose levels except for 2 patients. Further study conducted on more patients will be needed to confirm our findings. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant Support from: U01 CA181156.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujii, K; UCLA School of Medicine, Los Angeles, CA; Bostani, M
Purpose: The aim of this study was to collect CT dose index data from adult head exams to establish benchmarks based on either: (a) values pooled from all head exams or (b) values for specific protocols. One part of this was to investigate differences in scan frequency and CT dose index data for inpatients versus outpatients. Methods: We collected CT dose index data (CTDIvol) from adult head CT examinations performed at our medical facilities from Jan 1st to Dec 31th, 2014. Four of these scanners were used for inpatients, the other five were used for outpatients. All scanners used Tubemore » Current Modulation. We used X-ray dose management software to mine dose index data and evaluate CTDIvol for 15807 inpatients and 4263 outpatients undergoing Routine Brain, Sinus, Facial/Mandible, Temporal Bone, CTA Brain and CTA Brain-Neck protocols, and combined across all protocols. Results: For inpatients, Routine Brain series represented 84% of total scans performed. For outpatients, Sinus scans represented the largest fraction (36%). The CTDIvol (mean ± SD) across all head protocols was 39 ± 30 mGy (min-max: 3.3–540 mGy). The CTDIvol for Routine Brain was 51 ± 6.2 mGy (min-max: 36–84 mGy). The values for Sinus were 24 ± 3.2 mGy (min-max: 13–44 mGy) and for Facial/Mandible were 22 ± 4.3 mGy (min-max: 14–46 mGy). The mean CTDIvol for inpatients and outpatients was similar across protocols with one exception (CTA Brain-Neck). Conclusion: There is substantial dose variation when results from all protocols are pooled together; this is primarily a function of the differences in technical factors of the protocols themselves. When protocols are analyzed separately, there is much less variability. While analyzing pooled data affords some utility, reviewing protocols segregated by clinical indication provides greater opportunity for optimization and establishing useful benchmarks.« less
NASA Astrophysics Data System (ADS)
Bennett, P. F. D.; Underhill, P. R.; Morelli, J.; Krause, T. W.
2018-04-01
Fuel channels in CANDU® (CANada Deuterium Uranium) nuclear reactors consist of two non-concentric tubes; an inner pressure tube (PT) and a larger diameter calandria tube (CT). Up to 400 horizontally mounted fuel channels are contained within a calandria vessel, which also holds the heavy water moderator. Certain fuel channels pass perpendicularly over horizontally oriented tubes (nozzles) that are part of the reactor's liquid injection shutdown system (LISS). Due to sag, these fuel channels are at risk of coming into contact with the LISS nozzles. In the event of contact between the LISS nozzle and CT, flow-induced vibrations from within the moderator could lead to fretting and deformation of the CT. LISS nozzle proximity to CTs is currently measured optically from within the calandria vessel, but from outside the fuel channels. Measurement by an independent means would provide confidence in optical results and supplement cases where optical observations are not possible. Separation of PT and CT, known as gap, is monitored from within the PT using a transmit-receive eddy current probe. Investigation of the eddy current based gap probe as a tool to also measure proximity of LISS nozzles was carried out experimentally in this work. Eddy current response as a function of LISS-PT proximity was recorded. When PT-CT gap, PT wall thickness, PT resistivity and probe lift-off variations were not present this dependence could be used to determine the LISS-PT proximity. This method has the potential to provide LISS-CT proximity using existing gap measurement data. Obtaining LISS nozzle proximity at multiple inspection intervals could be used to provide an estimate of the time to LISS-CT contact, and thereby provide a means of optimizing maintenance schedules.
Meira, Cristina da Silva; Pereira-Chioccola, Vera Lucia; Vidal, José Ernesto; Motoie, Gabriela; Costa-Silva, Thaís Alves da; Gava, Ricardo
2015-11-01
This study was to follow IFN-γ, TNF-α and IL-10 modulation of peripheral blood mononuclear cells (PBMC) from HIV/cerebral toxoplasmosis patients (CT) during specific treatment. The results were compared with two other groups: HIV patients that had CT at least one year before (P/CT) and individuals with chronic toxoplasmosis (CHR). Blood samples (63) collected from three groups were analyzed. CT, 15 patients (3 blood samples collected one day before Toxoplasma gondii treatment; 7 and 15days during the treatment). P/CT, 5 patients (one blood sample collected at least, one year after the treatment). CHR, 13 individuals with chronic toxoplasmosis (one blood sample). Cytokine levels were assessed by ELISA after PBMC stimulation with T. gondii antigen. CT patients had low IFN-γ; discrete increase at 7th and 15th days; and the levels were recovered in cured patients (P/CT). CT patients had high TNF-α in the beginning of the treatment. TNF-α levels decrease during the treatment (7th and 15th) and in those patients who were treated (P/CT). IL-10 levels were almost similar in CT and P/CT groups but low when compared with CHR individuals. The evolution of the infection was correlated to restoration of IFN-γ response and a decrease of the inflammation. The evaluation of the immune response can provide valuable information and better monitoring of patients during specific treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhong, Guangming; Brunham, Robert C; de la Maza, Luis M; Darville, Toni; Deal, Carolyn
2017-10-31
Chlamydia trachomatis (Ct), an intracellular pathogen, is the most common bacterial sexually transmitted infection. In addition to acute cervicitis and urethritis, Ct can lead to serious sequelae of significant public health burden including pelvic inflammatory disease (PID) and infertility. Ct control efforts have not resulted in desired outcomes such as reduced incidence and reinfection, and this highlights the need for the development of an effective Ct vaccine. To this end, NIAID organized a workshop to consider the current status of Ct vaccine research and address critical questions in Ct vaccine design and clinical testing. Topics included the goal(s) of a vaccine and the feasibility of achieving these goals, animal models of infection including mouse and nonhuman primate (NHP) models, and correlates of protection to guide vaccine design. Decades of research have provided both whole cell-based and subunit vaccine candidates for development. At least one is currently in clinical development and efforts now need to be directed toward further development of the most attractive candidates. Overall, the discussions and presentations from the workshop highlighted optimism about the current status of Ct vaccine research and detailed the remaining gaps and questions needed to move vaccines forward. Copyright © 2017 Elsevier Ltd. All rights reserved.
A web-based instruction module for interpretation of craniofacial cone beam CT anatomy.
Hassan, B A; Jacobs, R; Scarfe, W C; Al-Rawi, W T
2007-09-01
To develop a web-based module for learner instruction in the interpretation and recognition of osseous anatomy on craniofacial cone-beam CT (CBCT) images. Volumetric datasets from three CBCT systems were acquired (i-CAT, NewTom 3G and AccuiTomo FPD) for various subjects using equipment-specific scanning protocols. The datasets were processed using multiple software to provide two-dimensional (2D) multiplanar reformatted (MPR) images (e.g. sagittal, coronal and axial) and three-dimensional (3D) visual representations (e.g. maximum intensity projection, minimum intensity projection, ray sum, surface and volume rendering). Distinct didactic modules which illustrate the principles of CBCT systems, guided navigation of the volumetric dataset, and anatomic correlation of 3D models and 2D MPR graphics were developed using a hybrid combination of web authoring and image analysis techniques. Interactive web multimedia instruction was facilitated by the use of dynamic highlighting and labelling, and rendered video illustrations, supplemented with didactic textual material. HTML coding and Java scripting were heavily implemented for the blending of the educational modules. An interactive, multimedia educational tool for visualizing the morphology and interrelationships of osseous craniofacial anatomy, as depicted on CBCT MPR and 3D images, was designed and implemented. The present design of a web-based instruction module may assist radiologists and clinicians in learning how to recognize and interpret the craniofacial anatomy of CBCT based images more efficiently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Lee, H
2015-06-15
Purpose: To perform a dosimetric evaluation on a new developed volumetric modulated arc therapy based total body irradiation (VMAT-TBI). Methods: Three patients were CT scanned with an indexed rotatable body frame to get whole body CT images. Concatenated CT images were imported in Pinnacle treatment planning system and whole body and lung were contoured as PTV and organ at risk, respectively. Treatment plans were generated by matching multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. For each plan, 1200 cGy in 8 fractions was prescribed to the wholemore » body volume and the lung dose was constrained to a mean dose of 750 cGy. Such a two-level dose plan was achieved by inverse planning of the torso VMAT fields. For comparison, conventional standing TBI (cTBI) plans were generated on the same whole body CT images at an extended SSD (550cm).The shape of compensators and lung blocks are simulated using body segments and lung contours Compensation was calculated based on the patient CT images, in mimic of the standing TBI treatment. The whole body dose distribution of cTBI plans were calculated with a home-developed GPU Monte Carlo dose engine. Calculated cTBI dose distribution was prescribed to the mid-body point at umbilical level. Results: The VMAT-TBI treatment plans of three patients’ plans achieved 80.2%±5.0% coverage of the total body volume within ±10% of the prescription dose, while cTBI treatment plans achieved 72.2%±4.0% coverage of the total body volume. The averaged mean lung dose of all three patients is lower for VMAT-TBI (7.48 cGy) than for cTBI (8.96 cGy). Conclusion: The proposed patient comfort-oriented VMAT-TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
NASA Astrophysics Data System (ADS)
Matussek, Robert; Dzienis, Cezary; Blumschein, Jörg; Schulte, Horst
2014-12-01
In this paper, a generic enhanced protection current transformer (CT) model with saturation effects and transient behavior is presented. The model is used for the purpose of analysis and design of power system protection algorithms. Three major classes of protection CT have been modeled which all take into account the nonlinear inductance with remanence effects. The transient short-circuit currents in power systems are simulated under CT saturation condition. The response of a common power system protection algorithm with respect to robustness to nominal parameter variations and sensitivity against maloperation is demonstrated by simulation studies.
An Evaluation of Critical Thinking Competencies in Business Settings
ERIC Educational Resources Information Center
Dwyer, Christopher P.; Boswell, Amy; Elliott, Mark A.
2015-01-01
Although critical thinking (CT) skills are usually considered as domain general (Gabbenesch, 2006; Halpern, 2003), CT ability may benefit from expertise knowledge and skill. The current study examined both general CT ability and CT ability related to business scenarios for individuals (a) expert in business, (b) novice in business, and (c) with no…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish
2013-08-15
Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reedmore » National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 mGy, respectively. The GE Discovery delivers about the same amount of dose (43.7 mGy) when run under similar operating and image-reconstruction conditions, i.e., without tube current modulation and ASIR. The image-metrics analysis likewise showed that the MTF, NPS, and CNR associated with the reconstructed images are mutually comparable when the three scanners are run with similar settings, and differences can be attributed to different edge-enhancement properties of the applied reconstruction filters. Moreover, when the GE scanner was operated with the facility's scanner settings for routine head exams, which apply 50% ASIR and use only approximately half of the 100%-FBP dose, the CNR of the images showed no significant change. Even though the CNR alone is not sufficient to characterize the image quality and justify any dose reduction claims, it can be useful as a constancy test metric.Conclusions: This work presents a straightforward method to connect direct measurements of CT dose with objective image metrics such as high-contrast resolution, noise, and CNR. It demonstrates that OSLD measurements in an anthropomorphic head phantom allow a realistic and locally precise estimation of magnitude and spatial distribution of dose in tissue delivered during a typical CT head scan. Additional objective analysis of the images of the ACR accreditation phantom can be used to relate the measured doses to high contrast resolution, noise, and CNR.« less
A Corticothalamic Circuit for Refining Tactile Encoding.
Pauzin, François Philippe; Krieger, Patrik
2018-05-01
A fundamental task for the brain is to determine which aspects of the continuous flow of information is the most relevant in a given behavioral situation. The information flow is regulated via dynamic interactions between feedforward and feedback pathways. One such pathway is via corticothalamic feedback. Layer 6 (L6) corticothalamic (CT) cells make both cortical and thalamic connections and, therefore, are key modulators of activity in both areas. The functional properties of L6 CT cells in sensory processing were investigated in the mouse whisker system. Optogenetic activation of L6 CT neurons decreased spontaneous spiking, with the net effect that a whisker-evoked response was more accurately detected (larger evoked-to-spontaneous spiking ratio) but at the expense of reducing the response probability. In addition, L6 CT activation decreases sensory adaptation in both the thalamus and cortex. L6 CT activity can thus tune the tactile system, depending on the behaviorally relevant tactile input. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Usage of CT data in biomechanical research
NASA Astrophysics Data System (ADS)
Safonov, Roman A.; Golyadkina, Anastasiya A.; Kirillova, Irina V.; Kossovich, Leonid Y.
2017-02-01
Object of study: The investigation is focused on development of personalized medicine. The determination of mechanical properties of bone tissues based on in vivo data was considered. Methods: CT, MRI, natural experiments on versatile test machine Instron 5944, numerical experiments using Python programs. Results: The medical diagnostics methods, which allows determination of mechanical properties of bone tissues based on in vivo data. The series of experiments to define the values of mechanical parameters of bone tissues. For one and the same sample, computed tomography (CT), magnetic resonance imaging (MRI), ultrasonic investigations and mechanical experiments on single-column test machine Instron 5944 were carried out. The computer program for comparison of CT and MRI images was created. The grayscale values in the same points of the samples were determined on both CT and MRI images. The Haunsfield grayscale values were used to determine rigidity (Young module) and tensile strength of the samples. The obtained data was compared to natural experiments results for verification.
ESTIMATION OF GIARDIA CT VALUES AT HIGH PH FOR THE SURFACE WATER TREATMENT RULE
The U.S. Environmental Protection Agency currently recommends Ct (disinfectant concentration multiplied by the exposure time) values to achieve required levels of inactivation of Giardia lamblia cysts by different disinfectants including free chlorine. Current guidance covers ina...
Benoit, A.; Mustafy, T.; Londono, I.; Grimard, G.; Aubin, C-E.; Villemure, I.
2016-01-01
Fusionless devices are currently designed to treat spinal deformities such as scoliosis by the application of a controlled mechanical loading. Growth modulation by dynamic compression was shown to preserve soft tissues. The objective of this in vivo study was to characterize the effect of static vs. dynamic loading on the bone formed during growth modulation. Controlled compression was applied during 15 days on the 7th caudal vertebra (Cd7) of rats during growth spurt. The load was sustained in the “static” group and sinusoidally oscillating in the “dynamic” group. The effect of surgery and of the device was investigated using control and sham (operated on but no load applied) groups. A high resolution CT-scan of Cd7 was acquired at days 2, 8 and 15 of compression. Growth rates, histomorphometric parameters and mineral density of the newly formed bone were quantified and compared. Static and dynamic loadings significantly reduced the growth rate by 20% compared to the sham group. Dynamic loading preserved newly formed bone histomorphometry and mineral density whereas static loading induced thicker (+31%) and more mineralized (+12%) trabeculae. A significant sham effect was observed. Growth modulation by dynamic compression constitutes a promising way to develop new treatment for skeletal deformities. PMID:27609036
Multi-institutional MicroCT image comparison of image-guided small animal irradiators
NASA Astrophysics Data System (ADS)
Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena
2017-07-01
To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2 > 0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR > 36 and noise levels <55 HU were obtained at five of the eleven institutions, where failing scans were acquired with current-exposure time of less than 120 mAs. Acceptable spatial resolution (>1.5 lp mm-1 for MTF = 0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (<1.5%) and nine of the eleven institutions passed the QA tolerance for contrast (>2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set was less than 20 s. We present image quality assurance recommendations for image-guided small animal radiotherapy systems that can aid researchers in maintaining high image quality, allowing for spatially precise conformal dose delivery to small animals.
Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W
2014-09-01
The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.
Epidemiology, radiology, and genetics of nicotine dependence in COPD.
Kim, Deog Kyeom; Hersh, Craig P; Washko, George R; Hokanson, John E; Lynch, David A; Newell, John D; Murphy, James R; Crapo, James D; Silverman, Edwin K
2011-01-13
Cigarette smoking is the principal environmental risk factor for developing COPD, and nicotine dependence strongly influences smoking behavior. This study was performed to elucidate the relationship between nicotine dependence, genetic susceptibility to nicotine dependence, and volumetric CT findings in smokers. Current smokers with COPD (GOLD stage ≥ 2) or normal spirometry were analyzed from the COPDGene Study, a prospective observational study. Nicotine dependence was determined by the Fagerstrom test for nicotine dependence (FTND). Volumetric CT acquisitions measuring the percent of emphysema on inspiratory CT (% of lung <-950 HU) and gas trapping on expiratory CT (% of lung <-856 HU) were obtained. Genotypes for two SNPs in the CHRNA3/5 region (rs8034191, rs1051730) previously associated with nicotine dependence and COPD were analyzed for association to COPD and nicotine dependence phenotypes. Among 842 currently smoking subjects (335 COPD cases and 507 controls), 329 subjects (39.1%) showed high nicotine dependence. Subjects with high nicotine dependence had greater cumulative and current amounts of smoking. However, emphysema severity was negatively correlated with the FTND score in controls (ρ = -0.19, p < .0001) as well as in COPD cases (ρ = -0.18, p = 0.0008). Lower FTND score, male gender, lower body mass index, and lower FEV1 were independent risk factors for emphysema severity in COPD cases. Both CHRNA3/5 SNPs were associated with FTND in current smokers. An association of genetic variants in CHRNA3/5 with severity of emphysema was only found in former smokers, but not in current smokers. Nicotine dependence was a negative predictor for emphysema on CT in COPD and control smokers. Increased inflammation in more highly addicted current smokers could influence the CT lung density distribution, which may influence genetic association studies of emphysema phenotypes.
Material Separation Using Dual-Energy CT: Current and Emerging Applications.
Patino, Manuel; Prochowski, Andrea; Agrawal, Mukta D; Simeone, Frank J; Gupta, Rajiv; Hahn, Peter F; Sahani, Dushyant V
2016-01-01
Dual-energy (DE) computed tomography (CT) offers the opportunity to generate material-specific images on the basis of the atomic number Z and the unique mass attenuation coefficient of a particular material at different x-ray energies. Material-specific images provide qualitative and quantitative information about tissue composition and contrast media distribution. The most significant contribution of DE CT-based material characterization comes from the capability to assess iodine distribution through the creation of an image that exclusively shows iodine. These iodine-specific images increase tissue contrast and amplify subtle differences in attenuation between normal and abnormal tissues, improving lesion detection and characterization in the abdomen. In addition, DE CT enables computational removal of iodine influence from a CT image, generating virtual noncontrast images. Several additional materials, including calcium, fat, and uric acid, can be separated, permitting imaging assessment of metabolic imbalances, elemental deficiencies, and abnormal deposition of materials within tissues. The ability to obtain material-specific images from a single, contrast-enhanced CT acquisition can complement the anatomic knowledge with functional information, and may be used to reduce the radiation dose by decreasing the number of phases in a multiphasic CT examination. DE CT also enables generation of energy-specific and virtual monochromatic images. Clinical applications of DE CT leverage both material-specific images and virtual monochromatic images to expand the current role of CT and overcome several limitations of single-energy CT. (©)RSNA, 2016.
ERIC Educational Resources Information Center
Literacy Volunteers of America--Connecticut, Hartford.
The set of instructional materials is designed as a training module for volunteer tutors in English as a Second Language (ESL) for adults. It presents the content of a workshop, about 2.5 hours long, with three main objectives: to (1) help tutors understand the distinction between basic skills and life skills in ESL; (2) develop skills in two…
Xin, Yong; Wang, Jia-Yang; Li, Liang; Tang, Tian-You; Liu, Gui-Hong; Wang, Jian-She; Xu, Yu-Mei; Chen, Yong; Zhang, Long-Zhen
2012-01-01
To make sure the feasibility with (18F)FDG PET/CT to guided dynamic intensity-modulated radiation therapy (IMRT) for nasopharyngeal carcinoma patients, by dosimetric verification before treatment. Chose 11 patients in III~IVA nasopharyngeal carcinoma treated with functional image-guided IMRT and absolute and relative dosimetric verification by Varian 23EX LA, ionization chamber, 2DICA of I'mRT Matrixx and IBA detachable phantom. Drawing outline and making treatment plan were by different imaging techniques (CT and (18F)FDG PET/CT). The dose distributions of the various regional were realized by SMART. The absolute mean errors of interest area were 2.39%±0.66 using 0.6 cc ice chamber. Results using DTA method, the average relative dose measurements within our protocol (3%, 3 mm) were 87.64% at 300 MU/min in all filed. Dosimetric verification before IMRT is obligatory and necessary. Ionization chamber and 2DICA of I'mRT Matrixx was the effective dosimetric verification tool for primary focal hyper metabolism in functional image-guided dynamic IMRT for nasopharyngeal carcinoma. Our preliminary evidence indicates that functional image-guided dynamic IMRT is feasible.
Dane, Bari; Doshi, Ankur; Gfytopoulos, Soterios; Bhattacharji, Priya; Recht, Michael; Moore, William
2018-05-01
Radiology-pathology correlation is time-consuming and is not feasible in most clinical settings, with the notable exception of breast imaging. The purpose of this study was to determine if an automated radiology-pathology report pairing system could accurately match radiology and pathology reports, thus creating a feedback loop allowing for more frequent and timely radiology-pathology correlation. An experienced radiologist created a matching matrix of radiology and pathology reports. These matching rules were then exported to a novel comprehensive radiology-pathology module. All distinct radiology-pathology pairings at our institution from January 1, 2016 to July 1, 2016 were included (n = 8999). The appropriateness of each radiology-pathology report pairing was scored as either "correlative" or "non-correlative." Pathology reports relating to anatomy imaged in the specific imaging study were deemed correlative, whereas pathology reports describing anatomy not imaged with the particular study were denoted non-correlative. Overall, there was 88.3% correlation (accuracy) of the radiology and pathology reports (n = 8999). Subset analysis demonstrated that computed tomography (CT) abdomen/pelvis, CT head/neck/face, CT chest, musculoskeletal CT (excluding spine), mammography, magnetic resonance imaging (MRI) abdomen/pelvis, MRI brain, musculoskeletal MRI (excluding spine), breast MRI, positron emission tomography (PET), breast ultrasound, and head/neck ultrasound all demonstrated greater than 91% correlation. When further stratified by imaging modality, CT, MRI, mammography, and PET demonstrated excellent correlation (greater than 96.3%). Ultrasound and non-PET nuclear medicine studies demonstrated poorer correlation (80%). There is excellent correlation of radiology imaging reports and appropriate pathology reports when matched by organ system. Rapid, appropriate radiology-pathology report pairings provide an excellent opportunity to close feedback loop to the interpreting radiologist. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
N-geranyl cyclopropyl-carboximide modulates salty and umami taste in humans and animal models
Dewis, Mark L.; Phan, Tam-Hao T.; Ren, ZuoJun; Meng, Xuanyu; Cui, Meng; Mummalaneni, Shobha; Rhyu, Mee-Ra; DeSimone, John A.
2013-01-01
Effects of N-geranyl cyclopropylcarboxamide (NGCC) and four structurally related compounds (N-cyclopropyl E2,Z6-nonadienamide, N-geranyl isobutanamide, N-geranyl 2-methylbutanamide, and allyl N-geranyl carbamate) were evaluated on the chorda tympani (CT) nerve response to NaCl and monosodium glutamate (MSG) in rats and wild-type (WT) and TRPV1 knockout (KO) mice and on human salty and umami taste intensity. NGCC enhanced the rat CT response to 100 mM NaCl + 5 μM benzamil (Bz; an epithelial Na+ channel blocker) between 1 and 2.5 μM and inhibited it above 5 μM. N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791, a TRPV1t blocker) inhibited the NaCl+Bz CT response in the absence and presence of NGCC. Unlike the WT mice, no NaCl+Bz CT response was observed in TRPV1 KO mice in the absence or presence of NGCC. NGCC enhanced human salt taste intensity of fish soup stock containing 60 mM NaCl at 5 and 10 μM and decreased it at 25 μM. Rat CT responses to NaCl+Bz and human salt sensory perception were not affected by the above four structurally related compounds. Above 10 μM, NGCC increased the CT response to MSG+Bz+SB-366791 and maximally enhanced the response between 40 and 60 μM. Increasing taste cell Ca2+ inhibited the NGCC-induced increase but not the inosine monophosphate-induced increase in glutamate response. Addition of 45 μM NGCC to chicken broth containing 60 mM sodium enhanced the human umami taste intensity. Thus, depending upon its concentration, NGCC modulates salt taste by interacting with the putative TRPV1t-dependent salt taste receptor and umami taste by interacting with a Ca2+-dependent transduction pathway. PMID:23221408
Dang, Pragya; Singh, Sarabjeet; Saini, Sanjay; Shepard, Jo-Anne O.
2009-01-01
Objective To assess effects of off-centering, automatic exposure control, and padding on attenuation values, noise, and radiation dose when using in-plane bismuth-based shields for CT scanning. Materials and Methods A 30 cm anthropomorphic chest phantom was scanned on a 64-multidetector CT, with the center of the phantom aligned to the gantry isocenter. Scanning was repeated after placing a bismuth breast shield on the anterior surface with no gap and with 1, 2, and 6 cm of padding between the shield and the phantom surface. The "shielded" phantom was also scanned with combined modulation and off-centering of the phantom at 2 cm, 4 cm and 6 cm below the gantry isocenter. CT numbers, noise, and surface radiation dose were measured. The data were analyzed using an analysis of variance. Results The in-plane shield was not associated with any significant increment for the surface dose or CT dose index volume, which was achieved by comparing the radiation dose measured by combined modulation technique to the fixed mAs (p > 0.05). Irrespective of the gap or the surface CT numbers, surface noise increased to a larger extent compared to Hounsfield unit (HU) (0-6 cm, 26-55%) and noise (0-6 cm, 30-40%) in the center. With off-centering, in-plane shielding devices are associated with less dose savings, although dose reduction was still higher than in the absence of shielding (0 cm off-center, 90% dose reduction; 2 cm, 61%) (p < 0.0001). Streak artifacts were noted at 0 cm and 1 cm gaps but not at 2 cm and 6 cm gaps of shielding to the surface distances. Conclusion In-plane shields are associated with greater image noise, artifactually increased attenuation values, and streak artifacts. However, shields reduce radiation dose regardless of the extent of off-centering. Automatic exposure control did not increase radiation dose when using a shield. PMID:19270862
Micro CT based truth estimation of nodule volume
NASA Astrophysics Data System (ADS)
Kinnard, L. M.; Gavrielides, M. A.; Myers, K. J.; Zeng, R.; Whiting, B.; Lin-Gibson, S.; Petrick, N.
2010-03-01
With the advent of high-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that there is variability associated with the patient, the software tool and the CT system. A primary goal of our current research efforts is to quantify the various sources of measurement error and, when possible, minimize their effects. In order to assess the bias of an estimate, the actual value, or "truth," must be known. In this work we investigate the reliability of micro CT to determine the "true" volume of synthetic nodules. The advantage of micro CT over other truthing methods is that it can provide both absolute volume and shape information in a single measurement. In the current study we compare micro CT volume truth to weight-density truth for spherical, elliptical, spiculated and lobulated nodules with diameters from 5 to 40 mm, and densities of -630 and +100 HU. The percent differences between micro CT and weight-density volume for -630 HU nodules range from [-21.7%, -0.6%] (mean= -11.9%) and the differences for +100 HU nodules range from [-0.9%, 3.0%] (mean=1.7%).
Liu, Dan; Khong, Pek-Lan; Gao, Yiming; Mahmood, Usman; Quinn, Brian; St Germain, Jean; Xu, X George; Dauer, Lawrence T
2016-06-01
Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial radiation dose incurred, judicious medical justification is required with every whole-body dual-tracer PET/CT referral. Although radiation risks may have less impact for the population with cancer because of their reduced life expectancy, the information is of interest and relevant for both justification, to evaluate risk/benefit, and protocol optimization. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaballa, H; O’Brien, M; Riegel, A
Purpose: To develop a daily quality assurance (QA) device that can test the 6DoF (degrees of freedom) couch repositioning accuracy, prior to SBRT treatment deliveries, with an accuracy of ±0.3 degrees and ±0.3 mm. Methods: A daily QA phantom is designed with a focus on the derived center of projections of its markers, rather than tracking its individual markers one at a time. This approach can be the most favorable to address the intended machining accuracy of the QA phantom and the CBCT spatial resolution limitations, primarily 1 mm min slice thickness, simultaneously. With the current design, ±0.1 mm congruencemore » of the resultant center of gravity of the markers with reference CT (0.6 mm minimum slice thickness) vs CBCT (1.0 mm minimum slice thickness) can be achieved. If successful, the QA device should be qualified to test 6DoF couch performance with a gauged accuracy of ±0.3 degrees/±0.3 mm. Testing is performed for the Varian True Beam 2.0 6DoF system. Results: Once the QA phantom is constructed and tested, agreement of the center of gravity of the reference CT scan and the CBCT scan of ±0.1 mm is achieved. This has translated into a consistent 3D-3D match on the treatment machine, CT vs CBCT, with a repetitive ±0.1 mm variation, thus exceeding our expectations. We have deployed the phantom for daily QA on one of our accelerators, and found that the QA time has increased by only 10 minutes. Conclusion: A 6DoF phantom has been designed (patent pending) and built with a realistic work flow in mind where the daily couch accuracy QA checks taking less than 10 minutes. Current developments include integration with the Varian’s Machine Performance Check consistency module.« less
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications
Leng, Shuai; Yu, Lifeng; Fletcher, Joel G.
2015-01-01
In x-ray computed tomography (CT), materials having different elemental compositions can be represented by identical pixel values on a CT image (ie, CT numbers), depending on the mass density of the material. Thus, the differentiation and classification of different tissue types and contrast agents can be extremely challenging. In dual-energy CT, an additional attenuation measurement is obtained with a second x-ray spectrum (ie, a second “energy”), allowing the differentiation of multiple materials. Alternatively, this allows quantification of the mass density of two or three materials in a mixture with known elemental composition. Recent advances in the use of energy-resolving, photon-counting detectors for CT imaging suggest the ability to acquire data in multiple energy bins, which is expected to further improve the signal-to-noise ratio for material-specific imaging. In this review, the underlying motivation and physical principles of dual- or multi-energy CT are reviewed and each of the current technical approaches is described. In addition, current and evolving clinical applications are introduced. © RSNA, 2015 PMID:26302388
Ronan, Nicola J; Einarsson, Gisli G; Twomey, Maria; Mooney, Denver; Mullane, David; NiChroinin, Muireann; O'Callaghan, Grace; Shanahan, Fergus; Murphy, Desmond M; O'Connor, Owen J; Shortt, Cathy A; Tunney, Michael M; Eustace, Joseph A; Maher, Michael M; Elborn, J Stuart; Plant, Barry J
2018-02-01
Ivacaftor produces significant clinical benefit in patients with cystic fibrosis (CF) with the G551D mutation. Prevalence of this mutation at the Cork CF Centre is 23%. This study assessed the impact of cystic fibrosis transmembrane conductance regulator modulation on multiple modalities of patient assessment. Thirty-three patients with the G551D mutation were assessed at baseline and prospectively every 3 months for 1 year after initiation of ivacaftor. Change in ultra-low-dose chest CT scans, blood inflammatory mediators, and the sputum microbiome were assessed. Significant improvements in FEV 1 , BMI, and sweat chloride levels were observed post-ivacaftor treatment. Improvement in ultra-low-dose CT imaging scores were observed after treatment, with significant mean reductions in total Bhalla score (P < .01), peribronchial thickening (P = .035), and extent of mucous plugging (P < .001). Reductions in circulating inflammatory markers, including interleukin (IL)-1β, IL-6, and IL-8 were demonstrated. There was a 30% reduction in the relative abundance of Pseudomonas species and an increase in the relative abundance of bacteria associated with more stable community structures. Posttreatment community richness increased significantly (P = .03). Early and sustained improvements on ultra-low-dose CT scores suggest it may be a useful method of evaluating treatment response. It paralleled improvement in symptoms, circulating inflammatory markers, and changes in the lung microbiota. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Mege, J L; Capo, C; Purgus, R; Olmer, M
1996-09-01
Cytokines are likely involved in hemodialysis-associated complications such as immunodeficiency and beta 2 microglobulin amyloidosis. Because transforming growth factors beta (TGF beta) exert immunosuppressive effects on lymphocytes, down-modulate monocyte functions, and promote fibrosis, we hypothesize that they participate in the deleterious effects of hemodialysis. We investigated the production of TGF beta 1 and TGF beta 2 by monocytes from controls and patients dialyzed with high-flux cellulose triacetate (CT) and polyacrylonitrile (PAN) membranes. The detection of both TGF beta s required an acidification step, suggesting that they are secreted as latent complexes. The spontaneous production of TGF beta 1 and TGF beta 2 was significantly higher in patients dialyzed with CT or PAN than in controls, but the oversecretion of TGF beta 1 was more sustained in CT-treated patients than in PAN-dialyzed patients. The production of interleukin-6 (IL-6) was increased in both patient groups as compared with controls. In contrast to TGF beta 1, the increase was greater in PAN-treated patients than in CT-treated patients, and the release of tumor necrosis factor alpha (TNF alpha) was increased only in PAN-treated patients. Taken together, our results show that hemodialysis is associated with the oversecretion of monocyte cytokines. Moreover, the type of dialysis membrane specifically affects the balance between the secretion of suppressive cytokines such as TGF beta and that of inflammatory cytokines such as IL-6 and TNF alpha.
The influence of CT based attenuation correction on PET/CT registration: an evaluation study
NASA Astrophysics Data System (ADS)
Yaniv, Ziv; Wong, Kenneth H.; Banovac, Filip; Levy, Elliot; Cleary, Kevin
2007-03-01
We are currently developing a PET/CT based navigation system for guidance of biopsies and radiofrequency ablation (RFA) of early stage hepatic tumors. For these procedures, combined PET/CT data can potentially improve current interventions. The diagnostic efficacy of biopsies can potentially be improved by accurately targeting the region within the tumor that exhibits the highest metabolic activity. For RFA procedures the system can potentially enable treatment of early stage tumors, targeting tumors before structural abnormalities are clearly visible on CT. In both cases target definition is based on the metabolic data (PET), and navigation is based on the spatial data (CT), making the system highly dependent upon accurate spatial alignment between these data sets. In our institute all clinical data sets include three image volumes: one CT, and two PET volumes, with and without CT-based attenuation correction. This paper studies the effect of the CT-based attenuation correction on the registration process. From comparing the pairs of registrations from five data sets we observe that the point motion magnitude difference between registrations is on the same scale as the point motion magnitude in each one of the registrations, and that visual inspection cannot identify this discrepancy. We conclude that using non-rigid registration to align the PET and CT data sets is too variable, and most likely does not provide sufficient accuracy for interventional procedures.
Vision 20/20: Single photon counting x-ray detectors in medical imaging
Taguchi, Katsuyuki; Iwanczyk, Jan S.
2013-01-01
Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms
Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X. George; Liu, Bob
2013-01-01
Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues. Conclusions: The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols. PMID:23927332
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms.
Zhang, Da; Li, Xinhua; Gao, Yiming; Xu, X George; Liu, Bob
2013-08-01
To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters "nanoDots" and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method--a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future. A standard ATOM phantom has densely located holes (in 3×3 cm or 1.5×1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations. Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues. The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols.
A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da; Li, Xinhua; Liu, Bob
Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified themore » conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated relatively small variations, with the maximum COV around 11.4%. This might be attributed to the angular mA modulation, the placement of the dosimeters, the chest cavity of the scanned region, and the size of the phantom. Doses to the spinal cord were consistently lower than those to other soft tissues.Conclusions: The method is suited for acquiring densely sampled organ dose maps, and can be used for studying dose distributions relevant to subject size, organ location, and clinical CT protocols.« less
Gupta, Sandeep Kumar; Trethewey, Scott; Brooker, Bree; Rutherford, Natalie; Diffey, Jenny; Viswanathan, Suresh; Attia, John
2017-01-01
The CT component of SPECT-CT is required for attenuation correction and anatomical localization of the uptake on SPECT but there is no guideline about the optimal CT acquisition parameters. In our department, a standard CT acquisition protocol was changed in 2013 to give lower radiation dose to the patient. In this study, we retrospectively compared the effects on patient dose as well as the CT image quality with current versus older CT protocols. Ninety nine consecutive patients [n=51 Standard dose ‘old’ protocol (SDP); n=48 lower dose ‘new’ protocol (LDP)] with lumbar spine SPECT-CT for bone scan were examined. The main differences between the two protocols were that SDP used 130 kVp tube voltage and reference current-time product of 70 mAs whereas the LDP used 110 kVp and 40 mAs respectively. Various quantitative parameters from the CT images were obtained and the images were also rated blindly by two experienced nuclear medicine physicians for bony definition and noise. The mean calculated dose length product of the LDP group (121.5±39.6 mGy.cm) was significantly lower compared to the SDP group patients (266.9±96.9 mGy.cm; P<0.0001). This translated into a significant reduction in the mean effective dose to 1.8 mSv from 4.0 mSv. The physicians reported better CT image quality for the bony structures in LDP group although for soft tissue structures, the SDP group had better image quality. The optimized new CT acquisition protocol significantly reduced the radiation dose to the patient and in-fact improved CT image quality for the assessment of bony structures. PMID:28533938
Dynamic CT for Parathyroid Adenoma Detection: How Does Radiation Dose Compare With Nuclear Medicine?
Czarnecki, Caroline A; Einsiedel, Paul F; Phal, Pramit M; Miller, Julie A; Lichtenstein, Meir; Stella, Damien L
2018-05-01
Dynamic CT is increasingly used for preoperative localization of parathyroid adenomas, but concerns remain about the radiation effective dose of CT compared with that of 99m Tc-sestamibi scintigraphy. The purpose of this study was to compare the radiation dose delivered by three-phase dynamic CT with that delivered by 99m Tc-sestamibi SPECT/CT performed in accordance with our current protocols and to assess the possible reduction in effective dose achieved by decreasing the scan length (i.e., z-axis) of two phases of the dynamic CT protocol. The effective dose of a 99m Tc-sestamibi nuclear medicine parathyroid study performed with and without coregistration CT was calculated and compared with the effective dose of our current three-phase dynamic CT protocol as well as a proposed protocol involving CT with reduced scan length. The median effective dose for a 99m Tc-sestamibi nuclear medicine study was 5.6 mSv. This increased to 12.4 mSv with the addition of coregistration CT, which is higher than the median effective dose of 9.3 mSv associated with the dynamic CT protocol. Reducing the scan length of two phases in the dynamic CT protocol could reduce the median effective dose to 6.1 mSv, which would be similar to that of the dose from the 99m Tc-sestamibi study alone. Dynamic CT used for the detection of parathyroid adenoma can deliver a lower radiation dose than 99m Tc-sestamibi SPECT/CT. It may be possible to reduce the dose further by decreasing the scan length of two of the phases, although whether this has an impact on accuracy of the localization needs further investigation.
Ottestad-Hansen, Sigrid; Hu, Qiu Xiang; Follin-Arbelet, Virgine Veronique; Bentea, Eduard; Sato, Hideyo; Massie, Ann; Zhou, Yun; Danbolt, Niels Christian
2018-05-01
The cystine-glutamate exchanger (xCT) promotes glutathione synthesis by catalyzing cystine uptake and glutamate release. The released glutamate may modulate normal neural signaling and contribute to excitotoxicity in pathological situations. Uncertainty, however, remains as neither the expression levels nor the distribution of xCT have been unambiguously determined. In fact, xCT has been reported in astrocytes, neurons, oligodendrocytes and microglia, but most of the information derives from cell cultures. Here, we show by immunohistochemistry and by Western blotting that xCT is widely expressed in the central nervous system of both sexes. The labeling specificity was validated using tissue from xCT knockout mice as controls. Astrocytes were selectively labeled, but showed greatly varying labeling intensities. This astroglial heterogeneity resulted in an astrocyte domain-like labeling pattern. Strong xCT labeling was also found in the leptomeninges, along some blood vessels, in selected circumventricular organs and in a subpopulation of tanycytes residing the lateral walls of the ventral third ventricle. Neurons, oligodendrocytes and resting microglia, as well as reactive microglia induced by glutamine synthetase deficiency, were unlabeled. The concentration of xCT protein in hippocampus was compared with that of the EAAT3 glutamate transporter by immunoblotting using a chimeric xCT-EAAT3 protein to normalize xCT and EAAT3 labeling intensities. The immunoblots suggested an xCT/EAAT3 ratio close to one (0.75 ± 0.07; average ± SEM; n = 4) in adult C57BL6 mice. xCT is present in select blood/brain/CSF interface areas and in an astrocyte subpopulation, in sufficient quantities to support the notion that system xc- provides physiologically relevant transport activity. © 2018 Wiley Periodicals, Inc.
STF Optimierung von single-bit CT ΣΔ Modulatoren basierend auf skalierten Filterkoeffizienten
NASA Astrophysics Data System (ADS)
Widemann, C.; Zorn, C.; Brückner, T.; Ortmanns, M.; Mathis, W.
2012-09-01
Die vorliegende Arbeit beschäftigt sich mit dem Signalübertragungsverhalten von single-bit continuous-time (CT) ΣΔ Modulatoren. Dabei liegt der Fokus der Untersuchung auf dem Peaking der Signaltransferfunktion (STF). Dieser Effekt kann die Performance und die Stabilität des Gesamtsystems negativ beeinflussen, da bei auftretendem STF-Peaking Signale außerhalb des Signalbands verstärkt werden. In dieser Arbeit wird ein neuer Ansatz zur Reduktion des Peakings vorgestellt, der auf der Optimierung der Systemdynamik basiert. Dabei werden die Filterkoeffizienten des Modulators systematisch angepasst. Anhand eines Beispielsystems wird gezeigt, dass der Ansatz genutzt werden kann, um das Übertragungsverhalten des Modulators abhängig vom Ausgangssystem zu verändern. So kann entweder die Systemsperformance verbessert werden, ohne Peaking in der STF zu erzeugen, oder das STF-Peaking reduziert werden, ohne die Systemperformance stark zu beeinflussen.
NASA Astrophysics Data System (ADS)
Suzuki, H.; Mizuguchi, R.; Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.
2015-03-01
Computed tomography has been used for assessing structural abnormalities associated with emphysema. It is important to develop a robust CT based imaging biomarker that would allow quantification of emphysema progression in early stage. This paper presents effect of smoking on emphysema progression using annual changes of low attenuation volume (LAV) by each lung lobe acquired from low-dose CT images in longitudinal screening for lung cancer. The percentage of LAV (LAV%) was measured after applying CT value threshold method and small noise reduction. Progression of emphysema was assessed by statistical analysis of the annual changes represented by linear regression of LAV%. This method was applied to 215 participants in lung cancer CT screening for five years (18 nonsmokers, 85 past smokers, and 112 current smokers). The results showed that LAV% is useful to classify current smokers with rapid progression of emphysema (0.2%/year, p<0.05). This paper demonstrates effectiveness of the proposed method in diagnosis and prognosis of early emphysema in CT screening for lung cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cassidy, R.J., E-mail: richardjcassidy@emory.edu; Yang, X.; Liu, T.
Purpose: Sexual dysfunction after radiotherapy for prostate cancer remains an important late adverse toxicity. The neurovascular bundles (NVB) that lie posterolaterally to the prostate are typically spared during prostatectomy, but in traditional radiotherapy planning they are not contoured as an organ-at-risk with dose constraints. Our goal was to determine the dosimetric feasibility of “NVB-sparing” prostate radiotherapy while still delivering adequate dose to the prostate. Methods: Twenty-five consecutive patients with prostate cancer (with no extraprostatic disease on pelvic magnetic resonance imaging [MRI]) who that were treated with external beam radiotherapy, with the same primary planning target volume margins, to a dosemore » of 79.2 Gy were evaluated. Pelvic MRI and simulation computed tomography scans were registered using dedicated software to allow for bilateral NVB target delineation on T2-weighted MRI. A volumetric modulated arc therapy plan was generated using the NVB bilaterally with 2 mm margin as an organ to spare and compared to the patient’s previously delivered plan. Dose-volume histogram endpoints for NVB, rectum, bladder, and planning target volume 79.2 were compared between the 2 plans using a 2-tailed paired t-test. Results: The V70 for the NVB was significantly lower on the NVB-sparing plan (p <0.01), while rectum and bladder endpoints were similar. Target V100% was similar but V{sub 105%} was higher for the NVB-sparing plans (p <0.01). Conclusions: “NVB-sparing” radiotherapy is dosimetrically feasible using CT-MRI registration, and for volumetric modulated arc therapy technology — target coverage is acceptable without increased dose to other normal structures, but with higher target dose inhomogeneity. The clinical impact of “NVB-sparing” radiotherapy is currently under study at our institution.« less
Wu, Abraham J; Bosch, Walter R; Chang, Daniel T; Hong, Theodore S; Jabbour, Salma K; Kleinberg, Lawrence R; Mamon, Harvey J; Thomas, Charles R; Goodman, Karyn A
2015-07-15
Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Abraham J., E-mail: wua@mskcc.org; Bosch, Walter R.; Chang, Daniel T.
Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophagealmore » cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future.« less
[Quantitative Evaluation of Metal Artifacts on CT Images on the Basis of Statistics of Extremes].
Kitaguchi, Shigetoshi; Imai, Kuniharu; Ueda, Suguru; Hashimoto, Naomi; Hattori, Shouta; Saika, Takahiro; Ono, Yoshifumi
2016-05-01
It is well-known that metal artifacts have a harmful effect on the image quality of computed tomography (CT) images. However, the physical property remains still unknown. In this study, we investigated the relationship between metal artifacts and tube currents using statistics of extremes. A commercially available phantom for measuring CT dose index 160 mm in diameter was prepared and a brass rod 13 mm in diameter was placed at the centerline of the phantom. This phantom was used as a target object to evaluate metal artifacts and was scanned using an area detector CT scanner with various tube currents under a constant tube voltage of 120 kV. Sixty parallel line segments with a length of 100 pixels were placed to cross metal artifacts on CT images and the largest difference between two adjacent CT values in each of 60 CT value profiles of these line segments was employed as a feature variable for measuring metal artifacts; these feature variables were analyzed on the basis of extreme value theory. The CT value variation induced by metal artifacts was statistically characterized by Gumbel distribution, which was one of the extreme value distributions; namely, metal artifacts have the same statistical characteristic as streak artifacts. Therefore, Gumbel evaluation method makes it possible to analyze not only streak artifacts but also metal artifacts. Furthermore, the location parameter in Gumbel distribution was shown to be in inverse proportion to the square root of a tube current. This result suggested that metal artifacts have the same dose dependence as image noises.
Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging
Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.
2015-01-01
Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan
2015-08-15
Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less
CT dose reduction in children.
Vock, Peter
2005-11-01
World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure.
SNOMED CT module-driven clinical archetype management.
Allones, J L; Taboada, M; Martinez, D; Lozano, R; Sobrido, M J
2013-06-01
To explore semantic search to improve management and user navigation in clinical archetype repositories. In order to support semantic searches across archetypes, an automated method based on SNOMED CT modularization is implemented to transform clinical archetypes into SNOMED CT extracts. Concurrently, query terms are converted into SNOMED CT concepts using the search engine Lucene. Retrieval is then carried out by matching query concepts with the corresponding SNOMED CT segments. A test collection of the 16 clinical archetypes, including over 250 terms, and a subset of 55 clinical terms from two medical dictionaries, MediLexicon and MedlinePlus, were used to test our method. The keyword-based service supported by the OpenEHR repository offered us a benchmark to evaluate the enhancement of performance. In total, our approach reached 97.4% precision and 69.1% recall, providing a substantial improvement of recall (more than 70%) compared to the benchmark. Exploiting medical domain knowledge from ontologies such as SNOMED CT may overcome some limitations of the keyword-based systems and thus improve the search experience of repository users. An automated approach based on ontology segmentation is an efficient and feasible way for supporting modeling, management and user navigation in clinical archetype repositories. Copyright © 2013 Elsevier Inc. All rights reserved.
Estimation of radiation cancer risk in CT-KUB
NASA Astrophysics Data System (ADS)
Karim, M. K. A.; Hashim, S.; Bakar, K. A.; Bradley, D. A.; Ang, W. C.; Bahrudin, N. A.; Mhareb, M. H. A.
2017-08-01
The increased demand for computed tomography (CT) in radiological scanning examinations raises the question of a potential health impact from the associated radiation exposures. Focusing on CT kidney-ureter-bladder (CT-KUB) procedures, this work was aimed at determining organ equivalent dose using a commercial CT dose calculator and providing an estimate of cancer risks. The study, which included 64 patients (32 males and 32 females, mean age 55.5 years and age range 30-80 years), involved use of a calibrated CT scanner (Siemens-Somatom Emotion 16-slice). The CT exposures parameter including tube potential, pitch factor, tube current, volume CT dose index (CTDIvol) and dose-length product (DLP) were recorded and analyzed using CT-EXPO (Version 2.3.1, Germany). Patient organ doses, including for stomach, liver, colon, bladder, red bone marrow, prostate and ovaries were calculated and converted into cancer risks using age- and sex-specific data published in the Biological Effects of Ionizing Radiation (BEIR) VII report. With a median value scan range of 36.1 cm, the CTDIvol, DLP, and effective dose were found to be 10.7 mGy, 390.3 mGy cm and 6.2 mSv, respectively. The mean cancer risks for males and females were estimated to be respectively 25 and 46 out of 100,000 procedures with effective doses between 4.2 mSv and 10.1 mSv. Given the increased cancer risks from current CT-KUB procedures compared to conventional examinations, we propose that the low dose protocols for unenhanced CT procedures be taken into consideration before establishing imaging protocols for CT-KUB.
Goltzman, D; Tannenbaum, G S
1987-07-21
Calcitonin (CT), when administered peripherally, is a potent hypocalcemic agent. This peptide can also exert a variety of profound effects through brain receptors after central injection. We examined the capacity of CT to alter plasma calcium of freely moving conscious rats after intracerebroventricular (i.c.v.) injection. A dose-dependent decrease in plasma calcium was seen after administration of 25 ng, 250 ng or 2500 ng of salmon calcitonin (sCT). The extent and duration of hypocalcemia after central injection was equal to, or greater than, that seen after giving the same doses of peptide intravenously (i.v.). Calcitonin gene-related peptide (CGRP), when administered centrally at a 50-fold molar excess, produced only a transient decrease in plasma calcium. No increase in plasma levels of sCT could be detected by RIA after i.c.v. injection, although measurable levels were obtained by i.v. injection. Centrally administered sCT did not appear to produce hypocalcemia by enhancing the release of endogenous rat CT. In contrast to the rise in rat immunoreactive parathyroid hormone (PTH) seen after i.v. injection of sCT, no significant elevation occurred after central administration of the peptide despite induction of comparable levels of hypocalcemia. Consequently, reduced PTH release may contribute to the central hypocalcemic action of CT. The results indicate that peptides acting through the brain CT receptor may modulate peripheral blood calcium.
NASA Astrophysics Data System (ADS)
Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.
2013-10-01
3D Computed Tomography (CT) image segmentation is already well established tool in medical research and in routine daily clinical practice. However, such techniques have not been used in the context of 3D CT image segmentation for baggage and package security screening using CT imagery. CT systems are increasingly used in airports for security baggage examination. We propose in this contribution an investigation of the current 3D CT medical image segmentation methods for use in this new domain. Experimental results of 3D segmentation on real CT baggage security imagery using a range of techniques are presented and discussed.
NASA Astrophysics Data System (ADS)
Sramek, Benjamin Koerner
The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.
Software Defined GPS Receiver for International Space Station
NASA Technical Reports Server (NTRS)
Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee
2011-01-01
JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.
Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu
2014-03-01
The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.
Pereira, Elena; Camacho-Vanegas, Olga; Anand, Sanya; Sebra, Robert; Catalina Camacho, Sandra; Garnar-Wortzel, Leopold; Nair, Navya; Moshier, Erin; Wooten, Melissa; Uzilov, Andrew; Chen, Rong; Prasad-Hayes, Monica; Zakashansky, Konstantin; Beddoe, Ann Marie; Schadt, Eric; Dottino, Peter; Martignetti, John A
2015-01-01
High-grade serous ovarian and endometrial cancers are the most lethal female reproductive tract malignancies worldwide. In part, failure to treat these two aggressive cancers successfully centers on the fact that while the majority of patients are diagnosed based on current surveillance strategies as having a complete clinical response to their primary therapy, nearly half will develop disease recurrence within 18 months and the majority will die from disease recurrence within 5 years. Moreover, no currently used biomarkers or imaging studies can predict outcome following initial treatment. Circulating tumor DNA (ctDNA) represents a theoretically powerful biomarker for detecting otherwise occult disease. We therefore explored the use of personalized ctDNA markers as both a surveillance and prognostic biomarker in gynecologic cancers and compared this to current FDA-approved surveillance tools. Tumor and serum samples were collected at time of surgery and then throughout treatment course for 44 patients with gynecologic cancers, representing 22 ovarian cancer cases, 17 uterine cancer cases, one peritoneal, three fallopian tube, and one patient with synchronous fallopian tube and uterine cancer. Patient/tumor-specific mutations were identified using whole-exome and targeted gene sequencing and ctDNA levels quantified using droplet digital PCR. CtDNA was detected in 93.8% of patients for whom probes were designed and levels were highly correlated with CA-125 serum and computed tomography (CT) scanning results. In six patients, ctDNA detected the presence of cancer even when CT scanning was negative and, on average, had a predictive lead time of seven months over CT imaging. Most notably, undetectable levels of ctDNA at six months following initial treatment was associated with markedly improved progression free and overall survival. Detection of residual disease in gynecologic, and indeed all cancers, represents a diagnostic dilemma and a potential critical inflection point in precision medicine. This study suggests that the use of personalized ctDNA biomarkers in gynecologic cancers can identify the presence of residual tumor while also more dynamically predicting response to treatment relative to currently used serum and imaging studies. Of particular interest, ctDNA was an independent predictor of survival in patients with ovarian and endometrial cancers. Earlier recognition of disease persistence and/or recurrence and the ability to stratify into better and worse outcome groups through ctDNA surveillance may open the window for improved survival and quality and life in these cancers.
A new methodological approach for PET implementation in radiotherapy treatment planning.
Bellan, Elena; Ferretti, Alice; Capirci, Carlo; Grassetto, Gaia; Gava, Marcello; Chondrogiannis, Sotirios; Virdis, Graziella; Marzola, Maria Cristina; Massaro, Arianna; Rubello, Domenico; Nibale, Otello
2012-05-01
In this paper, a new methodological approach to using PET information in radiotherapy treatment planning has been discussed. Computed tomography (CT) represents the primary modality to plan personalized radiation treatment, because it provides the basic electron density map for correct dose calculation. If PET scanning is also performed it is typically coregistered with the CT study. This operation can be executed automatically by a hybrid PET/CT scanner or, if the PET and CT imaging sets have been acquired through different equipment, by a dedicated module of the radiotherapy treatment planning system. Both approaches have some disadvantages: in the first case, the bore of a PET/CT system generally used in clinical practice often does not allow the use of certain bulky devices for patient immobilization in radiotherapy, whereas in the second case the result could be affected by limitations in window/level visualization of two different image modalities, and the displayed PET volumes can appear not to be related to the actual uptake into the patient. To overcome these problems, at our centre a specific procedure has been studied and tested in 30 patients, allowing good results of precision in the target contouring to be obtained. The process consists of segmentation of the biological target volume by a dedicated PET/CT console and its export to a dedicated radiotherapy system, where an image registration between the CT images acquired by the PET/CT scanner and a large-bore CT is performed. The planning target volume is contoured only on the large-bore CT and is used for virtual simulation, to individuate permanent skin markers on the patient.
TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury
NASA Astrophysics Data System (ADS)
Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo
2010-03-01
Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.
Azimi, Arsalan
2015-12-01
Cystic fibrosis, the most common inherited disease of white population, is a disease of CFTR channels, in which mucosal function of many organs especially respiratory tract is impaired. Decreased mucociliary clearance and accumulation of mucus in airways facilitates colonization of infectious microorganisms, followed by infection. Following chronic infection, persistent inflammation ensues, which results in airway remodeling and deterioration of mucociliary clearance and result in a vicious cycle. Here, it is hypothesized that cholera toxin (CT) could ameliorate symptoms of cystic fibrosis as CT could dilute the thickened mucus, improve mucociliary clearance and alleviate airway obstruction. CT strengthens immunity of airway mucosa and it could attenuates bacterial growth and reduce persistency of infection. CT also modulates cellular immune response and it could decrease airway inflammation, hinder airway remodeling and prevent respiratory deterioration. Thereby it is hypothesized that CT could target and ameliorate many of pathophysiologic steps of the disease and it explores new horizons in treatment of CF. Copyright © 2015 Elsevier Ltd. All rights reserved.
Reinartz, Gabriele; Haverkamp, Uwe; Wullenkord, Ramona; Lehrich, Philipp; Kriz, Jan; Büther, Florian; Schäfers, Klaus; Schäfers, Michael; Eich, Hans Theodor
2016-05-01
New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach. Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins) plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed. The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients. IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.
Zhang, M; Westerly, D C; Mackie, T R
2011-08-07
With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D(98%), D(50%) and D(2%) values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.
NASA Astrophysics Data System (ADS)
Zhang, M.; Westerly, D. C.; Mackie, T. R.
2011-08-01
With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D98%, D50% and D2% values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.
Task-driven imaging in cone-beam computed tomography.
Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H
Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.
Multiple-energy Techniques in Industrial Computerized Tomography
DOE R&D Accomplishments Database
Schneberk, D.; Martz, H.; Azevedo, S.
1990-08-01
Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodge, C.T.; Rong, J.; Dodge, C.W.
2014-06-15
Purpose: To determine how filtered back-projection (FBP), adaptive statistical (ASiR), and model based (MBIR) iterative reconstruction algorithms affect the measured modulation transfer functions (MTFs) of variable-contrast targets over a wide range of clinically applicable dose levels. Methods: The Catphan 600 CTP401 module, surrounded by an oval, fat-equivalent ring to mimic patient size/shape, was scanned on a GE HD750 CT scanner at 1, 2, 3, 6, 12 and 24 mGy CTDIvol levels with typical patient scan parameters: 120kVp, 0.8s, 40mm beam width, large SFOV, 2.5mm thickness, 0.984 pitch. The images were reconstructed using GE's Standard kernel with FBP; 20%, 40% andmore » 70% ASiR; and MBIR. A task-based MTF (MTFtask) was computed for six cylindrical targets: 2 low-contrast (Polystyrene, LDPE), 2 medium-contrast (Delrin, PMP), and 2 high-contrast (Teflon, air). MTFtask was used to compare the performance of reconstruction algorithms with decreasing CTDIvol from 24mGy, which is currently used in the clinic. Results: For the air target and 75% dose savings (6 mGy), MBIR MTFtask at 5 lp/cm measured 0.24, compared to 0.20 for 70% ASiR and 0.11 for FBP. Overall, for both high-contrast targets, MBIR MTFtask improved with increasing CTDIvol and consistently outperformed ASiR and FBP near the system's Nyquist frequency. Conversely, for Polystyrene at 6 mGy, MBIR (0.10) and 70% ASiR (0.07) MTFtask was lower than for FBP (0.18). For medium and low-contrast targets, FBP remains the best overall algorithm for improved resolution at low CTDIvol (1–6 mGy) levels, whereas MBIR is comparable at higher dose levels (12–24 mGy). Conclusion: MBIR improved the MTF of small, high-contrast targets compared to FBP and ASiR at doses of 50%–12.5% of those currently used in the clinic. However, for imaging low- and mediumcontrast targets, FBP performed the best across all dose levels. For assessing MTF from different reconstruction algorithms, task-based MTF measurements are necessary.« less
Ebenhan, Thomas; Vorster, Mariza; Marjanovic-Painter, Biljana; Wagener, Judith; Suthiram, Janine; Modiselle, Moshe; Mokaleng, Brenda; Zeevaart, Jan Rijn; Sathekge, Mike
2015-08-14
Prostate-specific membrane antigen (PSMA), a type II glycoprotein, is highly expressed in almost all prostate cancers. By playing such a universal role in the disease, PSMA provides a target for diagnostic imaging of prostate cancer using positron emission tomography/computed tomography (PET/CT). The PSMA-targeting ligand Glu-NH-CO-NH-Lys-(Ahx)-HBED-CC (DKFZ-PSMA-11) has superior imaging properties and allows for highly-specific complexation of the generator-based radioisotope Gallium-68 ((68)Ga). However, only module-based radiolabeling procedures are currently available. This study intended to develop a single vial kit solution to radiolabel buffered DKFZ-PSMA-11 with (68)Ga. A (68)Ge/(68)Ga-generator was utilized to yield (68)GaCl3 and major aspects of the kit development were assessed, such as radiolabeling performance, quality assurance, and stability. The final product was injected into patients with prostate cancer for PET/CT imaging and the kit performance was evaluated on the basis of the expected biodistribution, lesion detection, and dose optimization. Kits containing 5 nmol DKFZ-PSMA-11 showed rapid, quantitative (68)Ga-complexation and all quality measurements met the release criteria for human application. The increased precursor content did not compromise the ability of (68)Ga-DKFZ-PSMA-11 PET/CT to detect primary prostate cancer and its advanced lymphatic- and metastatic lesions. The (68)Ga-DKFZ-PSMA-11 kit is a robust, ready-to-use diagnostic agent in prostate cancer with high diagnostic performance.
Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa
2011-04-01
The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.
3D-printed surface mould applicator for high-dose-rate brachytherapy
NASA Astrophysics Data System (ADS)
Schumacher, Mark; Lasso, Andras; Cumming, Ian; Rankin, Adam; Falkson, Conrad B.; Schreiner, L. John; Joshi, Chandra; Fichtinger, Gabor
2015-03-01
In contemporary high-dose-rate brachytherapy treatment of superficial tumors, catheters are placed in a wax mould. The creation of current wax models is a difficult and time consuming proces.The irradiation plan can only be computed post-construction and requires a second CT scan. In case no satisfactory dose plan can be created, the mould is discarded and the process is repeated. The objective of this work was to develop an automated method to replace suboptimal wax moulding. We developed a method to design and manufacture moulds that guarantee to yield satisfactory dosimetry. A 3D-printed mould with channels for the catheters designed from the patient's CT and mounted on a patient-specific thermoplastic mesh mask. The mould planner was implemented as an open-source module in the 3D Slicer platform. Series of test moulds were created to accommodate standard brachytherapy catheters of 1.70mm diameter. A calibration object was used to conclude that tunnels with a diameter of 2.25mm, minimum 12mm radius of curvature, and 1.0mm open channel gave the best fit for this printer/catheter combination. Moulds were created from the CT scan of thermoplastic mesh masks of actual patients. The patient-specific moulds have been visually verified to fit on the thermoplastic meshes. The masks were visually shown to fit onto the thermoplastic meshes, next the resulting dosimetry will have to be compared with treatment plans and dosimetry achieved with conventional wax moulds in order to validate our 3D printed moulds.
WE-E-18C-01: Multi-Energy CT: Current Status and Recent Innovations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelc, N; McCollough, C; Yu, L
2014-06-15
Conventional computed tomography (CT) uses a single polychromatic x-ray spectrum and energy integrating detectors, and produces images whose contrast depends on the effective attenuation coefficient of the broad spectrum beam. This can introduce errors from beam hardening and does not produce the optimal contrast-to-noise ratio. In addition, multiple materials can have the same effective attenuation coefficient, causing different materials to be indistinguishable in conventional CT images. If transmission measurements at two or more energies are obtained, even with polychromatic beams, more specific information about the object can be obtained. If the object does not contain materials with k-edges in themore » spectrum, the x-ray attenuation can be well-approximated by a linear combination of two processes (photoelectric absorption and Compton scattering) or, equivalently, two basis materials. For such cases, two spectral measurements suffice, although additional measurements can provide higher precision. If K-edge materials are present, additional spectral measurements can allow these materials to be isolated. Current commercial implementations use varied approaches, including two sources operating a different kVp, one source whose kVp is rapidly switched in a single scan, and a dual layer detector that can provide spectral information in every reading. Processing of the spectral information can be performed in the raw data domain or in the image domain. The process of calculating the amount of the two basis functions implicitly corrects for beam hardening and therefore can lead to improvements in quantitative accuracy. Information can be extracted to provide material specific information beyond that of conventional CT. This additional information has been shown to be important in several clinical applications, and can also lead to more efficient clinical protocols. Recent innovations in x-ray sources, detectors, and systems have made multi-energy CT much more practical and improved its performance. In addition, this is a very active area of research and further improvements are expected through further technological improvements. Learning Objectives: Basic principles of multi-energy CT Current implementations of mutli-energy CT Data and image analysis methods in multi-energy CT Current clinical applications of dual energy CT5. recent innovations and anticipated advances in multi-energy CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurz, C; LMU Munich, Munich; Park, Y
2016-06-15
Purpose: To enable adaptive intensity modulated proton therapy for sites sensitive to inter-fractional changes on the basis of accurate CBCT-based proton dose calculations. To this aim two CBCT intensity correction methods are considered: planning CT (pCT) to CBCT DIR and projection correction based on pCT DIR prior. Methods: 3 H&N and 3 prostate cancer patients with CBCT images and corresponding projections were used in this study, in addition to pCT and re-planning CT (rpCT) images (H&N only). A virtual CT (vCT) was generated by pCT to CBCT DIR. In a second approach, the vCT was used as prior for scattermore » correction of the CBCT projections to yield a CBCTcor image. BEV 2D range maps of SFUD IMPT plans were compared. For the prostate cases, the geometric accuracy of the vCT was also evaluated by contour comparison to physician delineation of the CBCTcor and original CBCT. Results: SFUD dose calculations on vCT and CBCTcor were found to be within 3mm for 97% to 99% of 2D range maps. Median range differences compared to rpCT were below 0.5mm. Analysis showed that the DIR-based vCT approach exhibits inaccuracies in the pelvic region due to the very low soft-tissue contrast in the CBCT. The CBCTcor approach yielded results closer to the original CBCT in terms of DICE coefficients than the vCT (median 0.91 vs 0.81) for targets and OARs. In general, the CBCTcor approach was less affected by inaccuracies of the DIR used during the generation of the vCT prior. Conclusion: Both techniques yield 3D CBCT images with intensities equivalent to diagnostic CT and appear suitable for IMPT dose calculation for most sites. For H&N cases, no considerable differences between the two techniques were found, while improved results of the CBCTcor were observed for pelvic cases due to the reduced sensitivity to registration inaccuracies. Deutsche Forschungsgemeinschaft (MAP); Bundesministerium fur Bildung und Forschung (01IB13001)« less
Ye, Q; Heck, G L; DeSimone, J A
1993-07-01
1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na+ to stimulate receptor cells from the submucosal side. Because the submucosal intercellular spaces are nearly isopotential regions, this effect is insensitive to voltage clamp of the TP. The large AIC associated with this anion effect is due to the low permeability of amiloride.
Scarfone, Christopher; Lavely, William C; Cmelak, Anthony J; Delbeke, Dominique; Martin, William H; Billheimer, Dean; Hallahan, Dennis E
2004-04-01
The aim of this investigation was to evaluate the influence and accuracy of (18)F-FDG PET in target volume definition as a complementary modality to CT for patients with head and neck cancer (HNC) using dedicated PET and CT scanners. Six HNC patients were custom fitted with head and neck and upper body immobilization devices, and conventional radiotherapy CT simulation was performed together with (18)F-FDG PET imaging. Gross target volume (GTV) and pathologic nodal volumes were first defined in the conventional manner based on CT. A segmentation and surface-rendering registration technique was then used to coregister the (18)F-FDG PET and CT planning image datasets. (18)F-FDG PET GTVs were determined and displayed simultaneously with the CT contours. CT GTVs were then modified based on the PET data to form final PET/CT treatment volumes. Five-field intensity-modulated radiation therapy (IMRT) was then used to demonstrate dose targeting to the CT GTV or the PET/CT GTV. One patient was PET-negative after induction chemotherapy. The CT GTV was modified in all remaining patients based on (18)F-FDG PET data. The resulting PET/CT GTV was larger than the original CT volume by an average of 15%. In 5 cases, (18)F-FDG PET identified active lymph nodes that corresponded to lymph nodes contoured on CT. The pathologically enlarged CT lymph nodes were modified to create final lymph node volumes in 3 of 5 cases. In 1 of 6 patients, (18)F-FDG-avid lymph nodes were not identified as pathologic on CT. In 2 of 6 patients, registration of the independently acquired PET and CT data using segmentation and surface rendering resulted in a suboptimal alignment and, therefore, had to be repeated. Radiotherapy planning using IMRT demonstrated the capability of this technique to target anatomic or anatomic/physiologic target volumes. In this manner, metabolically active sites can be intensified to greater daily doses. Inclusion of (18)F-FDG PET data resulted in modified target volumes in radiotherapy planning for HNC. PET and CT data acquired on separate, dedicated scanners may be coregistered for therapy planning; however, dual-acquisition PET/CT systems may be considered to reduce the need for reregistrations. It is possible to use IMRT to target dose to metabolically active sites based on coregistered PET/CT data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siversson, Carl, E-mail: carl.siversson@med.lu.se; Nordström, Fredrik; Department of Radiation Physics, Skåne University Hospital, Lund 214 28
2015-10-15
Purpose: In order to enable a magnetic resonance imaging (MRI) only workflow in radiotherapy treatment planning, methods are required for generating Hounsfield unit (HU) maps (i.e., synthetic computed tomography, sCT) for dose calculations, directly from MRI. The Statistical Decomposition Algorithm (SDA) is a method for automatically generating sCT images from a single MR image volume, based on automatic tissue classification in combination with a model trained using a multimodal template material. This study compares dose calculations between sCT generated by the SDA and conventional CT in the male pelvic region. Methods: The study comprised ten prostate cancer patients, for whommore » a 3D T2 weighted MRI and a conventional planning CT were acquired. For each patient, sCT images were generated from the acquired MRI using the SDA. In order to decouple the effect of variations in patient geometry between imaging modalities from the effect of uncertainties in the SDA, the conventional CT was nonrigidly registered to the MRI to assure that their geometries were well aligned. For each patient, a volumetric modulated arc therapy plan was created for the registered CT (rCT) and recalculated for both the sCT and the conventional CT. The results were evaluated using several methods, including mean average error (MAE), a set of dose-volume histogram parameters, and a restrictive gamma criterion (2% local dose/1 mm). Results: The MAE within the body contour was 36.5 ± 4.1 (1 s.d.) HU between sCT and rCT. Average mean absorbed dose difference to target was 0.0% ± 0.2% (1 s.d.) between sCT and rCT, whereas it was −0.3% ± 0.3% (1 s.d.) between CT and rCT. The average gamma pass rate was 99.9% for sCT vs rCT, whereas it was 90.3% for CT vs rCT. Conclusions: The SDA enables a highly accurate MRI only workflow in prostate radiotherapy planning. The dosimetric uncertainties originating from the SDA appear negligible and are notably lower than the uncertainties introduced by variations in patient geometry between imaging sessions.« less
Agarwal, Saurabh; Jokerst, Clinton; Siegel, Marilyn J; Hildebolt, Charles
2015-08-01
This article compares the technical factors-in particular, tube current and voltage-and the resultant exposure to radiation associated with CT examinations performed at a children's hospital and at more general community hospital emergency departments (EDs). CT scans obtained at community hospital EDs were retrospectively reviewed and compared with CT scans obtained at a children's hospital, to assess differences in kilovoltage, tube current, and volume CT dose index (CTDIvol) used. The number of scans obtained during the contrast-enhanced phase was also assessed. Parametric and nonparametric statistical analyses were used to test differences. A total of 233 body CT examinations were performed at community hospitals, and 287 were performed at a children's hospital. At both types of hospital, the median patient age was 12 years (p = 0.66). Of the body CT scans obtained at community hospitals that focused on the care of adult patients, 194 of 233 (83%) used a tube voltage of 120 kVp, 29 of 233 (12%) used 100 kVp, and two of 233 (< 1%) used 80 kVp. Of the body CT scans obtained at the children's hospital, 121 of 287 (42%) used a tube voltage of 120 kVp, 129 of 287 (45%) used 100 kVp, and 36 of 287 (13%) used 80 kVp. The median tube current was also lower at the children's hospital (110 vs 125 mA) (p < 0.001). At the community hospitals, 11 of 233 studies were multiphasic, whereas at the children's hospital, there were no multiphasic studies. For all CT types, the median CTDIvol was 4.9 mGy (range, 2.5-8.2 mGy) at the children's hospital and 8.6 mGy (range, 6.0-14.4 mGy) at the community hospitals (p < 0.001). The results of this study suggest that a large proportion of children who undergo CT at community hospitals receive relatively higher radiation doses than children who undergo CT at children's hospitals. This finding is related to the higher tube settings (in particular, kilovoltage) used at community hospitals.
Szanda, Istvan; Mackewn, Jane; Patay, Gergely; Major, Peter; Sunassee, Kavitha; Mullen, Gregory E; Nemeth, Gabor; Haemisch, York; Blower, Philip J; Marsden, Paul K
2011-11-01
The NanoPET/CT represents the latest generation of commercial preclinical PET/CT systems. This article presents a performance evaluation of the PET component of the system according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standard. The NanoPET/CT consists of 12 lutetium yttrium orthosilicate:cerium modular detectors forming 1 ring, with 9.5-cm axial coverage and a 16-cm animal port. Each detector crystal is 1.12 × 1.12 × 13 mm, and 1 module contains 81 × 39 of these crystals. An optical light guide transmits the scintillation light to the flat-panel multianode position-sensitive photomultiplier tubes. Analog-to-digital converter cards and a field-programmable gate array-based data-collecting card provide the readout. Spatial resolution, sensitivity, counting rate capabilities, and image quality were evaluated in accordance with the NEMA NU-4 standard. Energy and temporal resolution measurements and a mouse imaging study were performed in addition to the standard. Energy resolution was 19% at 511 keV. The spatial resolution, measured as full width at half maximum on single-slice rebinning/filtered backprojection-reconstructed images, approached 1 mm on the axis and remained below 2.5 mm in the central 5-cm transaxial region both in the axial center and at one-quarter field of view. The maximum absolute sensitivity for a point source at the center of the field of view was 7.7%. The maximum noise equivalent counting rates were 430 kcps at 36 MBq and 130 kcps at 27 MBq for the mouse- and rat-sized phantoms, respectively. The uniformity and recovery coefficients were measured with the image-quality phantom, giving good-quality images. In a mouse study with an (18)F-labeled thyroid-specific tracer, the 2 lobes of the thyroid were clearly distinguishable, despite the small size of this organ. The flexible readout system allowed experiments to be performed in an efficient manner, and the system remained stable throughout. The large number of detector crystals, arranged with a fine pitch, results in excellent spatial resolution, which is the best reported for currently available commercial systems. The absolute sensitivity is high over the field of view. Combined with the excellent image quality, these features make the NanoPET/CT a powerful tool for preclinical research.
Wang, Y; Lin, D; Fu, T
1997-03-01
Morphology of inorganic material powders before and after being treated by ultrafine crush was observed by transformite electron microscope. The length and diameter of granules were measured. Polymers inorganic material powders before and after being treated by ultrafine crush were used for preparing radiological equivalent materials. Blending compatibility of inorganic meterials with polymer materials was observed by scanning electron microscope. CT values of tissue equivalent materials were measured by X-ray CT. Distribution of inorganic materials was examined. The compactness of materials was determined by the water absorbed method. The elastic module of materials was measured by laser speckle interferementry method. The results showed that the inorganic material powders treated by the ultrafine crush blent well with polymer and the distribution of these powders in the polymer was homogeneous. The equivalent errors of linear attenuation coefficients and CT values of equivalent materials were small. Their elastic modules increased one order of magnitude from 6.028 x 10(2) kg/cm2 to 9.753 x 10(3) kg/cm2. In addition, the rod inorganic material powders having rod granule blent easily with polymer. The present study provides a theoretical guidance and experimental basis for the design and synthesis of radiological equivalent materials.
Emerin modulates spatial organization of chromosome territories in cells on softer matrices
Pradhan, Roopali; Ranade, Devika
2018-01-01
Abstract Cells perceive and relay external mechanical forces into the nucleus through the nuclear envelope. Here we examined the effect of lowering substrate stiffness as a paradigm to address the impact of altered mechanical forces on nuclear structure-function relationships. RNA sequencing of cells on softer matrices revealed significant transcriptional imbalances, predominantly in chromatin associated processes and transcriptional deregulation of human Chromosome 1. Furthermore, 3-Dimensional fluorescence in situ hybridization (3D-FISH) analyses showed a significant mislocalization of Chromosome 1 and 19 Territories (CT) into the nuclear interior, consistent with their transcriptional deregulation. However, CT18 with relatively lower transcriptional dysregulation, also mislocalized into the nuclear interior. Furthermore, nuclear Lamins that regulate chromosome positioning, were mislocalized into the nuclear interior in response to lowered matrix stiffness. Notably, Lamin B2 overexpression retained CT18 near the nuclear periphery in cells on softer matrices. While, cells on softer matrices also activated emerin phosphorylation at a novel Tyr99 residue, the inhibition of which in a phospho-deficient mutant (emerinY99F), selectively retained chromosome 18 and 19 but not chromosome 1 territories at their conserved nuclear locations. Taken together, emerin functions as a key mechanosensor, that modulates the spatial organization of chromosome territories in the interphase nucleus. PMID:29684168
NASA Astrophysics Data System (ADS)
Gang, Grace J.; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2017-06-01
Tube current modulation (TCM) is routinely adopted on diagnostic CT scanners for dose reduction. Conventional TCM strategies are generally designed for filtered-backprojection (FBP) reconstruction to satisfy simple image quality requirements based on noise. This work investigates TCM designs for model-based iterative reconstruction (MBIR) to achieve optimal imaging performance as determined by a task-based image quality metric. Additionally, regularization is an important aspect of MBIR that is jointly optimized with TCM, and includes both the regularization strength that controls overall smoothness as well as directional weights that permits control of the isotropy/anisotropy of the local noise and resolution properties. Initial investigations focus on a known imaging task at a single location in the image volume. The framework adopts Fourier and analytical approximations for fast estimation of the local noise power spectrum (NPS) and modulation transfer function (MTF)—each carrying dependencies on TCM and regularization. For the single location optimization, the local detectability index (d‧) of the specific task was directly adopted as the objective function. A covariance matrix adaptation evolution strategy (CMA-ES) algorithm was employed to identify the optimal combination of imaging parameters. Evaluations of both conventional and task-driven approaches were performed in an abdomen phantom for a mid-frequency discrimination task in the kidney. Among the conventional strategies, the TCM pattern optimal for FBP using a minimum variance criterion yielded a worse task-based performance compared to an unmodulated strategy when applied to MBIR. Moreover, task-driven TCM designs for MBIR were found to have the opposite behavior from conventional designs for FBP, with greater fluence assigned to the less attenuating views of the abdomen and less fluence to the more attenuating lateral views. Such TCM patterns exaggerate the intrinsic anisotropy of the MTF and NPS as a result of the data weighting in MBIR. Directional penalty design was found to reinforce the same trend. The task-driven approaches outperform conventional approaches, with the maximum improvement in d‧ of 13% given by the joint optimization of TCM and regularization. This work demonstrates that the TCM optimal for MBIR is distinct from conventional strategies proposed for FBP reconstruction and strategies optimal for FBP are suboptimal and may even reduce performance when applied to MBIR. The task-driven imaging framework offers a promising approach for optimizing acquisition and reconstruction for MBIR that can improve imaging performance and/or dose utilization beyond conventional imaging strategies.
Terahertz computed tomography of NASA thermal protection system materials
NASA Astrophysics Data System (ADS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2012-05-01
A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, Z.; Wang, C.; Li, J.; Gwiazda, R.; Paull, C. K.; Maier, K. L.
2016-12-01
Conductivity-Temperature (CT) sensors are one of the most common instruments in oceanographic research that record water conductivity and temperature, two most important parameters of ocean waters from which salinity is computed. When used in super-high turbid water or flows (e.g. turbidity currents or slurries), however, the working principle of CT sensors suggests possibility of bias in conductivity measurements. In this study, a series of lab experiments were conducted to investigate how the presence of high-concentrated sediment particles influences the conductivity readings from an inductive CT sensor. The results provided evidence to challenge a long-held notion that the reduced conductivity often seen inside turbidity currents is an indication of fresh water presence.
The Direct FuelCell™ stack engineering
NASA Astrophysics Data System (ADS)
Doyon, J.; Farooque, M.; Maru, H.
FuelCell Energy (FCE) has developed power plants in the size range of 300 kW to 3 MW for distributed power generation. Field-testing of the sub-megawatt plants is underway. The FCE power plants are based on its Direct FuelCell™ (DFC) technology. This is so named because of its ability to generate electricity directly from a hydrocarbon fuel, such as natural gas, by reforming it inside the fuel cell stack itself. All FCE products use identical 8000 cm 2 cell design, approximately 350-400 cells per stack, external gas manifolds, and similar stack compression systems. The difference lies in the packaging of the stacks inside the stack module. The sub-megawatt system stack module contains a single horizontal stack whereas the MW-class stack module houses four identical vertical stacks. The commonality of the design, internal reforming features, and atmospheric operation simplify the system design, reduce cost, improve efficiency, increase reliability and maintainability. The product building-block stack design has been advanced through three full-size stack operations at company's headquarters in Danbury, CT. The initial proof-of-concept of the full-size stack design was verified in 1999, followed by a 1.5 year of endurance verification in 2000-2001, and currently a value-engineered stack version is in operation. This paper discusses the design features, important engineering solutions implemented, and test results of FCE's full-size DFC stacks.
USDA-ARS?s Scientific Manuscript database
Depending on concentration, condensed tannins (CT) in forages have no effect, enhance, or impede protein utilization and performance of ruminants. Defining optimal forage CT levels has been elusive, partly because current methods for estimating total soluble plus insoluble CT are laborious or inaccu...
Rationale and Application of Tangential Scanning to Industrial Inspection of Hardwood Logs
Nand K. Gupta; Daniel L. Schmoldt; Bruce Isaacson
1998-01-01
Industrial computed tomography (CT) inspection of hardwood logs has some unique requirements not found in other CT applications. Sawmill operations demand that large volumes of wood be scanned quickly at high spatial resolution for extended duty cycles. Current CT scanning geometries and commercial systems have both technical and economic [imitations. Tangential...
Influence of FDG-PET on primary nodal target volume definition for head and neck carcinomas.
van Egmond, Sylvia L; Piscaer, Vera; Janssen, Luuk M; Stegeman, Inge; Hobbelink, Monique G; Grolman, Wilko; Terhaard, Chris H
The role of 2-[ 18 F]-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in routine diagnostic staging remains controversial. In case of discordance between FDG-PET and CT, a compromise has to be made between the risk of false positive FDG-PET and the risk of delaying appropriate salvage intervention. Second, with intensity modulated radiation therapy (IMRT), smaller radiation fields allow tissue sparing, but could also lead to more marginal failures. We retrospectively studied 283 patients with head and neck carcinoma scheduled for radiotherapy between 2002 and 2010. We analyzed the influence of FDG-PET/CT versus CT alone on defining nodal target volume definition and evaluated its long-term clinical results. Second, the location of nodal recurrences was related to the radiation regional dose distribution. In 92 patients, CT and FDG-PET, performed in mold, showed discordant results. In 33%, nodal staging was altered by FDG-PET. In 24%, FDG-PET also led to an alteration in nodal treatment, including a nodal upstage of 18% and downstage of 6%. In eight of these 92 patients, a regional recurrence occurred. Only two patients had a recurrence in the discordant node on FDG-PET and CT and both received a boost (high dose radiation). These results support the complementary value of FDG-PET/CT compared to CT alone in defining nodal target volume definition for radiotherapy of head and neck cancer.
Watanabe, Hiroshi; Nomura, Yoshikazu; Kuribayashi, Ami; Kurabayashi, Tohru
2018-02-01
We aimed to employ the Radia diagnostic software with the safety and efficacy of a new emerging dental X-ray modality (SEDENTEXCT) image quality (IQ) phantom in CT, and to evaluate its validity. The SEDENTEXCT IQ phantom and Radia diagnostic software were employed. The phantom was scanned using one medical full-body CT and two dentomaxillofacial cone beam CTs. The obtained images were imported to the Radia software, and the spatial resolution outputs were evaluated. The oversampling method was employed using our original wire phantom as a reference. The resultant modulation transfer function (MTF) curves were compared. The null hypothesis was that MTF curves generated using both methods would be in agreement. One-way analysis of variance tests were applied to the f50 and f10 values from the MTF curves. The f10 values were subjectively confirmed by observing the line pair modules. The Radia software reported the MTF curves on the xy-plane of the CT scans, but could not return f50 and f10 values on the z-axis. The null hypothesis concerning the reported MTF curves on the xy-plane was rejected. There were significant differences between the results of the Radia software and our reference method, except for f10 values in CS9300. These findings were consistent with our line pair observations. We evaluated the validity of the Radia software with the SEDENTEXCT IQ phantom. The data provided were semi-automatic, albeit with problems and statistically different from our reference. We hope the manufacturer will overcome these limitations.
Wang, Hesheng; Du, Kevin; Qu, Juliet; Chandarana, Hersh; Das, Indra J
2018-01-01
The purpose of this study was to assess the dosimetric equivalence of magnetic resonance (MR)-generated synthetic CT (synCT) and simulation CT for treatment planning in radiotherapy of rectal cancer. This study was conducted on eleven patients who underwent whole-body PET/MR and PET/CT examination in a prospective IRB-approved study. For each patient synCT was generated from Dixon MR using a model-based method. Standard treatment planning directives were used to create a four-field box (4F), an oblique four-field (O4F) and a volumetric modulated arc therapy (VMAT) plan on synCT for treatment of rectal cancer. The plans were recalculated on CT with the same monitor units (MUs) as that of synCT. Dose-volume metrics of planning target volume (PTV) and organs at risk (OARs) as well as gamma analysis of dose distributions were evaluated to quantify the difference between synCT and CT plans. All plans were calculated using the analytical anisotropic algorithm (AAA). The VMAT plans on synCT and CT were also calculated using the Acuros XB algorithm for comparison with the AAA calculation. Medians of absolute differences in PTV metrics between synCT and CT plans were 0.2%, 0.2% and 0.3% for 4F, O4F and VMAT respectively. No significant differences were observed in OAR dose metrics including bladder V40Gy, mean dose in bladder, bowel V45Gy and femoral head V30Gy in any techniques. Gamma analysis with 2%/2mm dose difference/distance to agreement criteria showed median passing rates of 99.8% (range: 98.5 to 100%), 99.9% (97.2 to 100%), and 99.9% (99.4 to 100%) for 4F, O4F and VMAT, respectively. Using Acuros XB dose calculation, 2%/2mm gamma analysis generated a passing rate of 99.2% (97.7 to 99.9%) for VMAT plans. SynCT enabled dose calculation equivalent to conventional CT for treatment planning of 3D conformal treatment as well as VMAT of rectal cancer. The dosimetric agreement between synCT and CT calculated doses demonstrated the potential of MR-only treatment planning for rectal cancer using MR generated synCT.
Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass
2012-05-02
Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is calculated by dividing the arterial SUV by the venous blood pool SUV. This method has shown to represent a stable, reproducible phenotype over time, has a high sensitivity for detection of vascular inflammation, and also has high inter-and intra-reader reliability. Here we present our methodology for patient preparation, image acquisition, and quantification of atherosclerotic plaque activity and vascular inflammation using SUV, TBR, and a global parameter called the metabolic volumetric product (MVP). These approaches may be applied to assess vascular inflammation in various study samples of interest in a consistent fashion as we have shown in several prior publications.
Bhattacharya, Shamik; Das, Tanaya; Biswas, Archita; Gomes, Aparna; Gomes, Antony; Dungdung, Sandhya Rekha
2013-11-01
BF-CT1, a 13 kDa protein isolated from Bungarus fasciatus snake venom through CM cellulose ion exchange chromatography at 0.02 M NaCl salt gradient showed cytotoxicity in in vitro and in vivo experimental models. In in vivo Ehrlich ascites carcinoma (EAC) induced BALB/c mice model, BF-CT1 treatment reduced EAC cell count significantly through apoptotic cell death pathway as evidenced by FACS analysis, increased caspase 3, 9 activity and altered pro, antiapoptotic protein expression. BF-CT1 treatment caused cell shrinkage, chromatin condensation and induced apoptosis through increased caspase 3, caspase 9 activity, PARP cleavage and down regulation of heat shock proteins in U937 leukemic cell line. Cytosolic cytochrome C production was increased after BF-CT1 treatment upon U937 cell line. BF-CT1 treated U937 cell showed cell cycle arrest at sub G1 phase through cyclin D and CDK down regulation with up regulation of p15 and p16. It also down regulated PI3K/AKT pathway and MAPkinase pathway and promoted apoptosis and regulated cell proliferation in U937 cells. BF-CT1 prevented angiogenesis in in vitro U937 cell line through decreased VEGF and TGF-β1 production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator
NASA Astrophysics Data System (ADS)
Niu, Ying; Betzel, Gregory T.; Yang, Xiaocheng; Gui, Minzhi; Parke, William C.; Yi, Byongyong; Yu, Cedric X.
2017-02-01
This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam’s eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Chen, S; Zhang, B
Purpose: This study compares the geometric-based setup (GBS) which is currently used in the clinic to a novel concept of dose-based setup (DBS) of head and neck (H&N) patients using cone beam CT (CBCT) of the day; and evaluates the clinical advantages. Methods: Ten H&N patients who underwent re-simulation and re-plan due to noticeable anatomic changes during the course of the treatments were retrospectively reviewed on dosimetric changes in the assumption of no plan modification was performed. RayStation planning system (RaySearch Laboratories AB, Sweden) was used to match (ROI fusion module) between prescribed isodoseline (IDL) in the CBCT imported alongmore » with ROIs from re-planned CT and the IDL of original plan (Dose-based setup: DBS). Then, the CBCT plan based on daily setup using the GBS (previously used for a patient) and the DBS CBCT plan recalculated in RayStation compared against the original CT-sim plan. Results: Most of patients’ tumor coverage and OAR doses got generally worsen when the CBCT plans were compared with original CT-sim plan with GBS. However, when DBS intervened, the OAR dose and tumor coverage was better than the GBS. For example, one of patients’ daily average doses of right parotid and oral cavity increased to 26% and 36%, respectively from the original plan to the GBS planning. However, it only increased by 13% and 24%, respectively with DBS. GTV D95 coverage also decreased by 16% with GBS, but only 2% decreased with DBS. Conclusion: DBS method is superior to GBS to prevent any abrupt dose changes to OARs as well as PTV/CTV or GTV at least for some H&N cases. Since it is not known when the DBS is beneficial to the GBS, a system which enables the on-line DBS may be helpful for better treatment of H&N.« less
Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus.
Mehedint, Mihai G; Craciunescu, Corneliu N; Zeisel, Steven H
2010-07-20
We examined whether maternal dietary choline modulates angiogenesis in fetal brain. Pregnant C57BL/6 mice were fed either a choline-deficient (CD), control (CT), or choline-supplemented diet (CS) from days 12 to 17 (E12-17) of pregnancy and then fetal brains were studied. In CD fetal hippocampus, proliferation of endothelial cells (EC) was decreased by 32% (p < 0.01 vs. CT or CS) while differentiated EC clusters (expressing factor VIII related antigen (RA)) increased by 25% (p < 0.01 vs. CT or CS). These changes were associated with > 25% decrease in the number of blood vessels in CD fetal hippocampus (p < 0.01 vs. CT and CS), with no change in total cross-sectional area of these blood vessels. Expression of genes for the angiogenic signals derived from both endothelial and neuronal progenitor cells (NPC) was increased in CD fetal hippocampus VEGF C (Vegfc), 2.0-fold, p < 0.01 vs. CT and angiopoietin 2 (Angpt2), 2.1-fold, (p < 0.01 vs. CT)). Similar increased expression was observed in NPC isolated from E14 fetal mouse brains and exposed to low (5 microM), CT (70 microM), or high choline (280 microM) media for 72 h (low choline caused a 9.7-fold increase in relative gene expression of Vegfc (p < 0.001 vs. CT and high) and a 3.4-fold increase in expression of Angpt2, (p < 0.05 vs. CT and high). ANGPT2 protein was increased 42.2% (p < 0.01). Cytosine-phosphate-guanine dinucleotide islands in the proximity of the promoter areas of Vegfc and Angpt2 were hypomethylated in low choline NPC compared to CT NPC (p < 0.01). We conclude that maternal dietary choline intake alters angiogenesis in the developing fetal hippocampus.
Furuya, Ken; Akiyama, Shinji; Nambu, Atushi; Suzuki, Yutaka; Hasebe, Yuusuke
2017-01-01
We aimed to apply the pediatric abdominal CT protocol of Donnelly et al. in the United States to the pediatric abdominal CT-AEC. Examining CT images of 100 children, we found that the sectional area of the hepatic portal region (y) was strongly correlated with the body weight (x) as follows: y=7.14x + 84.39 (correlation coefficient=0.9574). We scanned an elliptical cone phantom that simulates the human body using a pediatric abdominal CT scanning method of Donnelly et al. in, and measured SD values. We further scanned the same phantom under the settings for adult CT-AEC scan and obtained the relationship between the sectional areas (y) and the SD values. Using these results, we obtained the following preset noise factors for CT-AEC at each body weight range: 6.90 at 4.5-8.9 kg, 8.40 at 9.0-17.9 kg, 8.68 at 18.0-26.9 kg, 9.89 at 27.0-35.9 kg, 12.22 at 36.0-45.0 kg, 13.52 at 45.1-70.0 kg, 15.29 at more than 70 kg. From the relation between age, weight and the distance of liver and tuber ischiadicum of 500 children, we obtained the CTDI vol values and DLP values under the scanning protocol of Donnelly et al. Almost all of DRL from these values turned out to be smaller than the DRL data of IAEA and various countries. Thus, by setting the maximum current values of CT-AEC to be the Donnelly et al.'s age-wise current values, and using our weight-wise noise factors, we think we can perform pediatric abdominal CT-AEC scans that are consistent with the same radiation safety and the image quality as those proposed by Donnelly et al.
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.
CT Perfusion of the Liver: Principles and Applications in Oncology
Kim, Se Hyung; Kamaya, Aya
2014-01-01
With the introduction of molecularly targeted chemotherapeutics, there is an increasing need for defining new response criteria for therapeutic success because use of morphologic imaging alone may not fully assess tumor response. Computed tomographic (CT) perfusion imaging of the liver provides functional information about the microcirculation of normal parenchyma and focal liver lesions and is a promising technique for assessing the efficacy of various anticancer treatments. CT perfusion also shows promising results for diagnosing primary or metastatic tumors, for predicting early response to anticancer treatments, and for monitoring tumor recurrence after therapy. Many of the limitations of early CT perfusion studies performed in the liver, such as limited coverage, motion artifacts, and high radiation dose of CT, are being addressed by recent technical advances. These include a wide area detector with or without volumetric spiral or shuttle modes, motion correction algorithms, and new CT reconstruction technologies such as iterative algorithms. Although several issues related to perfusion imaging—such as paucity of large multicenter trials, limited accessibility of perfusion software, and lack of standardization in methods—remain unsolved, CT perfusion has now reached technical maturity, allowing for its use in assessing tumor vascularity in larger-scale prospective clinical trials. In this review, basic principles, current acquisition protocols, and pharmacokinetic models used for CT perfusion imaging of the liver are described. Various oncologic applications of CT perfusion of the liver are discussed and current challenges, as well as possible solutions, for CT perfusion are presented. © RSNA, 2014 Online supplemental material is available for this article. PMID:25058132
SU-G-206-08: How Should Focal Spot Be Chosen for Optimized CT Imaging with Dose Modulation?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bache, S; Liu, X; Rong, J
Purpose: To choose the preferred focal spot for achieving optimized CT image quality with balanced tube heating considerations. Methods: An anthropomorphic pelvic phantom was scanned using a GE Discovery CT750 HD at 120 and 140kVp, 0.8s rotation time, and pitch of 0.984. “Smart mA” was enabled to simulate a routine abdomen–pelvis CT scan. Permissible mA values at 120 and 140 kVp were obtained from the Serial Load Rating table (for mimicking a busy CT clinical operation) in the scanner Technical Reference Manual. At each kVp station and two Noise Index levels, the mA Upper Limit was set above/below the permissiblemore » mA values. Scanned mA values and focal spot (FS) used were obtained from the DICOM header of each image, and the FS-mA relationship was analyzed. For visual confirmation beyond recorded FS information, a CatPhan with a fat-ring attached for mimicking patient size/shape was scanned at 120kVp. A group of radiologists/physicists compared a pair of CatPhan images qualitatively. Lastly, a number of patient cases were evaluated to confirm the FS-mA relationship. Results: When preset Upper Limit values were above the permissible mA values, the Large FS (labeled 1.2) was used in scans, even if the maximum scanned mA values were much lower than the permissible values at both 120 and 140 kVp. Otherwise the Small FS (labeled 0.7) was used. Visual evaluation of the high contrast module of CatPhan and additional analysis of patient cases further confirmed that the preset Upper Limit determines which focal spot is to be used, not the actual maximum mA value to be scanned. Conclusion: Specific FS can be selected by setting up appropriate mA Upper Limit in a protocol. CT protocols could be optimized by selecting appropriate FS for improving patient image quality, especially benefiting the small size and pediatric patients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mei; Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu; Yang, Cungeng
2015-04-01
Purpose: To investigate CT number (CTN) changes in gross tumor volume (GTV) and organ at risk (OAR) according to daily diagnostic-quality CT acquired during CT-guided intensity modulated radiation therapy for head and neck cancer (HNC) patients. Methods and Materials: Computed tomography scans acquired using a CT-on-rails during daily CT-guided intensity modulated radiation therapy for 15 patients with stage II to IVa squamous cell carcinoma of the head and neck were analyzed. The GTV, parotid glands, spinal cord, and nonspecified tissue were generated on each selected daily CT. The changes in CTN distributions and the mean and mode values were collected.more » Pearson analysis was used to assess the correlation between the CTN change, organ volume reduction, and delivered radiation dose. Results: Volume and CTN changes for GTV and parotid glands can be observed during radiation therapy delivery for HNC. The mean (±SD) CTNs in GTV and ipsi- and contralateral parotid glands were reduced by 6 ± 10, 8 ± 7, and 11 ± 10 Hounsfield units, respectively, for all patients studied. The mean CTN changes in both spinal cord and nonspecified tissue were almost invisible (<2 Hounsfield units). For 2 patients studied, the absolute mean CTN changes in GTV and parotid glands were strongly correlated with the dose delivered (P<.001 and P<.05, respectively). For the correlation between CTN reductions and delivered isodose bins for parotid glands, the Pearson coefficient varied from −0.98 (P<.001) in regions with low-dose bins to 0.96 (P<.001) in high-dose bins and were patient specific. Conclusions: The CTN can be reduced in tumor and parotid glands during the course of radiation therapy for HNC. There was a fair correlation between CTN reduction and radiation doses for a subset of patients, whereas the correlation between CTN reductions and volume reductions in GTV and parotid glands were weak. More studies are needed to understand the mechanism for the radiation-induced CTN changes.« less
Performance evaluation of G8, a high sensitivity benchtop preclinical PET/CT tomograph.
Gu, Zheng; Taschereau, Richard; Vu, Nam; Prout, David L; Silverman, Robert W; Lee, Jason; Chatziioannou, Arion F
2018-06-14
G8 is a bench top integrated PET/CT scanner dedicated to high sensitivity and high resolution imaging of mice. This work characterizes its National Electrical Manufacturers Association (NEMA) NU4-2008 performance where applicable and also provides an assessment of the basic imaging performance of the CT subsystem. Methods: The PET subsystem in G8 consists of four flat-panel type detectors arranged in a box like geometry. Each panel consists of two modules of a 26 × 26 pixelated bismuth germanate (BGO) scintillator array with individual crystals measuring 1.75 × 1.75 × 7.2 mm. The crystal arrays are coupled to multichannel photomultiplier tubes via a tapered, pixelated glass lightguide. A cone-beam CT consisting of a micro focus X-ray source and a Complementary Metal Oxide Semiconductor (CMOS) detector provides anatomical information. Sensitivity, spatial resolution, energy resolution, scatter fraction, count-rate performance and the capability of phantom and mouse imaging were evaluated for the PET subsystem. Noise, dose level, contrast and resolution were evaluated for the CT subsystem. Results: With an energy window of 350-650 keV, the peak sensitivity was measured to be 9.0% near the center of the field of view (CFOV). The crystal energy resolution ranged from 15.0% to 69.6% full width at half maximum (FWHM), with a mean of 19.3 ± 3.7%. The average detector intrinsic spatial resolution was 1.30 mm and 1.38 mm FWHM in the transverse and axial directions. The maximum likelihood expectation maximization (ML-EM) reconstructed image of a point source in air, averaged 0.81 ± 0.11 mm FWHM. The peak noise equivalent count rate (NECR) for the mouse-sized phantom was 44 kcps for a total activity of 2.9 MBq (78 µCi) and the scatter fraction was 11%. For the CT subsystem, the value of the modulation transfer function (MTF) at 10% was 2.05 cycles/mm. Conclusion: The overall performance demonstrates that the G8 can produce high quality images for molecular imaging based biomedical research. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao Junsheng; Roeske, John C.; Chmura, Steve J.
2009-07-01
The standard treatment technique used for whole-breast irradiation can result in undesirable dose distributions in the treatment site, leading to skin reaction/fibrosis and pulmonary and cardiac toxicities. Hence, the technique has evolved from conventional wedged technique (CWT) to segment intensity-modulated radiation therapy (SIMRT) and beamlet IMRT (IMRT). However, these newer techniques feature more highly modulated dose distributions that may be affected by respiration. The purpose of this work was to conduct a simple study of the clinical impact of respiratory motion on breast radiotherapy dose distributions for the three treatment planning techniques. The ultimate goal was to determine which patientsmore » would benefit most from the use of motion management. Eight patients with early-stage breast cancer underwent a free-breathing (FB) computed tomography (CT) simulation, with medial and lateral markers placed on the skin. Two additional CT scans were obtained at the end of inspiration (EI) and the end of expiration (EE). The FB-CT scan was used to develop treatment plans using each technique. Each plan was then applied to EI and EE-CT scans. Compared with the FB CT scan, the medial markers moved up to 1.8 cm in the anterior-superior direction at the end of inspiration (EI-scan), and on average 8 mm. The CWT and SIMRT techniques were not 'sensitive' to respiratory motion, because the % clinical target volume (CTV) receiving 95% of the prescription dose (V{sub 95%}) remained constant for both techniques. For patients that had large respiratory motion indicated by marker movement >0.6 cm, differences in coverage of the CTV at the V100% between FB and EI for beamlet IMRT plans were on the order of >10% and up to 18%. A linear model was developed to relate the dosimetric coverage difference introduced by respiration with the motion information. With this model, the dosimetric coverage difference introduced by respiratory motion could be evaluated during patient CT simulation. An appropriate treatment method can be chosen after the simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nishibuchi, Ikuno; Murakami, Yuji
2012-03-15
Purpose: To investigate the incorporation of functional lung image-derived low attenuation area (LAA) based on four-dimensional computed tomography (4D-CT) into respiratory-gated intensity-modulated radiotherapy (IMRT) or volumetric modulated arc therapy (VMAT) in treatment planning for lung cancer patients with chronic obstructive pulmonary disease (COPD). Methods and Materials: Eight lung cancer patients with COPD were the subjects of this study. LAA was generated from 4D-CT data sets according to CT values of less than than -860 Hounsfield units (HU) as a threshold. The functional lung image was defined as the area where LAA was excluded from the image of the total lung.more » Two respiratory-gated radiotherapy plans (70 Gy/35 fractions) were designed and compared in each patient as follows: Plan A was an anatomical IMRT or VMAT plan based on the total lung; Plan F was a functional IMRT or VMAT plan based on the functional lung. Dosimetric parameters (percentage of total lung volume irradiated with {>=}20 Gy [V20], and mean dose of total lung [MLD]) of the two plans were compared. Results: V20 was lower in Plan F than in Plan A (mean 1.5%, p = 0.025 in IMRT, mean 1.6%, p = 0.044 in VMAT) achieved by a reduction in MLD (mean 0.23 Gy, p = 0.083 in IMRT, mean 0.5 Gy, p = 0.042 in VMAT). No differences were noted in target volume coverage and organ-at-risk doses. Conclusions: Functional IGRT planning based on LAA in respiratory-guided IMRT or VMAT appears to be effective in preserving a functional lung in lung cancer patients with COPD.« less
Fluence field modulated CT on a clinical TomoTherapy radiation therapy machine
NASA Astrophysics Data System (ADS)
Szczykutowicz, Timothy P.; Hermus, James
2015-03-01
Purpose: The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging. Methods: A clinical TomoTherapy machine was programmed to deliver 30% imaging dose outside predefined VOIs. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received "full dose" while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at "full" and 30% dose. The noise (pixel standard deviation) was measured inside the VOI region and compared between the three scans. Results: The VOI-FFMCT technique produced an image noise 1.09, 1.05, 1.05, and 1.21 times higher than the "full dose" scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. Conclusions: Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samei, Ehsan, E-mail: samei@duke.edu; Richard, Samuel
2015-01-15
Purpose: Different computed tomography (CT) reconstruction techniques offer different image quality attributes of resolution and noise, challenging the ability to compare their dose reduction potential against each other. The purpose of this study was to evaluate and compare the task-based imaging performance of CT systems to enable the assessment of the dose performance of a model-based iterative reconstruction (MBIR) to that of an adaptive statistical iterative reconstruction (ASIR) and a filtered back projection (FBP) technique. Methods: The ACR CT phantom (model 464) was imaged across a wide range of mA setting on a 64-slice CT scanner (GE Discovery CT750 HD,more » Waukesha, WI). Based on previous work, the resolution was evaluated in terms of a task-based modulation transfer function (MTF) using a circular-edge technique and images from the contrast inserts located in the ACR phantom. Noise performance was assessed in terms of the noise-power spectrum (NPS) measured from the uniform section of the phantom. The task-based MTF and NPS were combined with a task function to yield a task-based estimate of imaging performance, the detectability index (d′). The detectability index was computed as a function of dose for two imaging tasks corresponding to the detection of a relatively small and a relatively large feature (1.5 and 25 mm, respectively). The performance of MBIR in terms of the d′ was compared with that of ASIR and FBP to assess its dose reduction potential. Results: Results indicated that MBIR exhibits a variability spatial resolution with respect to object contrast and noise while significantly reducing image noise. The NPS measurements for MBIR indicated a noise texture with a low-pass quality compared to the typical midpass noise found in FBP-based CT images. At comparable dose, the d′ for MBIR was higher than those of FBP and ASIR by at least 61% and 19% for the small feature and the large feature tasks, respectively. Compared to FBP and ASIR, MBIR indicated a 46%–84% dose reduction potential, depending on task, without compromising the modeled detection performance. Conclusions: The presented methodology based on ACR phantom measurements extends current possibilities for the assessment of CT image quality under the complex resolution and noise characteristics exhibited with statistical and iterative reconstruction algorithms. The findings further suggest that MBIR can potentially make better use of the projections data to reduce CT dose by approximately a factor of 2. Alternatively, if the dose held unchanged, it can improve image quality by different levels for different tasks.« less
The Experiment of Modulated Toroidal Current on HT-7 and HT-6M Tokamak
NASA Astrophysics Data System (ADS)
Mao, Jian-shan; P, Phillips; Luo, Jia-rong; Xu, Yu-hong; Zhao, Jun-yu; Zhang, Xian-mei; Wan, Bao-nian; Zhang, Shou-yin; Jie, Yin-xian; Wu, Zhen-wei; Hu, Li-qun; Liu, Sheng-xia; Shi, Yue-jiang; Li, Jian-gang; HT-6M; HT-7 Group
2003-02-01
The Experiments of Modulated Toroidal Current were done on the HT-6M tokamak and HT-7 superconducting tokamak. The toroidal current was modulated by programming the Ohmic heating field. Modulation of the plasma current has been used successfully to suppress MHD activity in discharges near the density limit where large MHD m = 2 tearing modes were suppressed by sufficiently large plasma current oscillations. The improved Ohmic confinement phase was observed during modulating toroidal current (MTC) on the Hefei Tokamak-6M (HT-6M) and Hefei superconducting Tokamak-7 (HT-7). A toroidal frequency-modulated current, induced by a modulated loop voltage, was added on the plasma equilibrium current. The ratio of A.C. amplitude of plasma current to the main plasma current ΔIp/Ip is about 12%-30%. The different formats of the frequency-modulated toroidal current were compared.
PET-CT in the UK: current status and future directions.
Scarsbrook, A F; Barrington, S F
2016-07-01
Combined positron-emission tomography and computed tomography (PET-CT) has taken the oncological world by storm since being introduced into the clinical domain in the early 21(st) century and is firmly established in the management pathway of many different tumour types. Non-oncological applications of PET-CT represent a smaller but steadily growing area of interest. PET-CT continues to be the focus of a large number of research studies and keeping up-to-date with the literature is important but represents a challenge. Consequently guidelines recommending PET-CT usage need to be revised regularly to encompass new developments. The purpose of this article is twofold: first, it provides a detailed review of the evidence-base underpinning the major uses of PET-CT in clinical practice, which may be of value to a wide-range of individuals, including those directly involved with PET-CT and to a much larger group with limited exposure, but for whom a précis of the current state-of-play may help inform other radiology and multidisciplinary team (MDT) work; the second purpose is as a companion to revised guidelines on evidence-based indications for PET-CT in the UK (being published concurrently) providing a detailed commentary on new indications with a summary of emerging data supporting these additional clinical uses of the technique. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osman, N. D.; Shamsuri, S. B. M.; Tan, Y. W.; Razali, M. A. S. M.; Isa, S. M.
2017-05-01
Advancement of CT technology has led to an increase in CT scanning as it improves the diagnosis. However, it is important to assess health risk of patients associated with ionising radiation received from CT. This study evaluated current dose distributions at Advanced Medical and Dental Institute (AMDI), Malaysia and was used to establish Local Diagnostic Reference Level (LDRL). Dose indicators such as CT Dose Index (CTDIvol and CTDIw) and Dose-Length Product (DLP) were gathered for all routine CT examinations performed at the Imaging Unit, AMDI from January 2015 to June 2016. The first and third quartile values for each dose indicator were determined. A total of 364 CT studies were performed during that period with the highest number of cases being Thorax-Abdomen-Pelvis (TAP) study (57% of total study). The CTDIw ranged between 2.0 mGy to 23.4 mGy per procedure. DLP values were ranged between 94 mGy.cm to 1687 mGy.cm. The local dose data was compared with the national DRL to monitor the current CT practice at AMDI and LDRL will be established from the calculated third quartile values of dose distribution. From the results, some of the local dose values exceeded the Malaysian and further evaluation is important to ensure the dose optimisation for patients.
Tonolini, Massimo; Ierardi, Anna Maria; Bracchi, Elena; Magistrelli, Paolo; Vella, Adriana; Carrafiello, Gianpaolo
2017-10-01
Despite availability of effective therapies, peptic ulcer disease (PUD) remains a major global disease, resulting from a combination of persistent Helicobacter pylori infection and widespread use of nonsteroidal anti-inflammatory drugs. Albeit endoscopy definitely represents the mainstay diagnostic technique, patients presenting to emergency departments with unexplained abdominal pain generally undergo multidetector CT as an initial investigation. Although superficial ulcers generally remain inconspicuous, careful multiplanar CT interpretation may allow to detect deep ulcers, secondary mural and extraluminal signs of peptic gastroduodenitis, thereby allowing timely endoscopic verification and appropriate treatment. This pictorial essay aims to provide radiologists with an increased familiarity with CT diagnosis of non-perforated PUD, with emphasis on differential diagnosis. Following an overview of current disease epidemiology and complications, it explains the appropriate CT acquisition and interpretation techniques, and reviews with several examples the cross-sectional findings of uncomplicated PUD. Afterwards, the CT features of PUD complications such as ulcer haemorrhage, gastric outlet obstruction, biliary and pancreatic fistulisation are presented. • Gastric and duodenal peptic ulcers are increasingly caused by nonsteroidal anti-inflammatory drugs • Multiplanar CT interpretation allows detecting deep ulcers and secondary signs of gastroduodenitis • CT diagnosis of uncomplicated peptic disease relies on direct and indirect signs • Currently the commonest complication, haemorrhage may be treated with transarterial embolisation • Other uncommon complications include gastric outlet obstruction and biliopancreatic fistulisation.
Ning, Peigang; Zhu, Shaocheng; Shi, Dapeng; Guo, Ying; Sun, Minghua
2014-01-01
This work aims to explore the effects of adaptive statistical iterative reconstruction (ASiR) and model-based iterative reconstruction (MBIR) algorithms in reducing computed tomography (CT) radiation dosages in abdominal imaging. CT scans on a standard male phantom were performed at different tube currents. Images at the different tube currents were reconstructed with the filtered back-projection (FBP), 50% ASiR and MBIR algorithms and compared. The CT value, image noise and contrast-to-noise ratios (CNRs) of the reconstructed abdominal images were measured. Volumetric CT dose indexes (CTDIvol) were recorded. At different tube currents, 50% ASiR and MBIR significantly reduced image noise and increased the CNR when compared with FBP. The minimal tube current values required by FBP, 50% ASiR, and MBIR to achieve acceptable image quality using this phantom were 200, 140, and 80 mA, respectively. At the identical image quality, 50% ASiR and MBIR reduced the radiation dose by 35.9% and 59.9% respectively when compared with FBP. Advanced iterative reconstruction techniques are able to reduce image noise and increase image CNRs. Compared with FBP, 50% ASiR and MBIR reduced radiation doses by 35.9% and 59.9%, respectively.
SU-C-17A-01: MRI-Based Radiotherapy Treatment Planning In Pelvis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, S; Cao, Y; Jolly, S
2014-06-15
Purpose: To support radiotherapy dose calculation, synthetic CT (MRCT) image volumes need to represent the electron density of tissues with sufficient accuracy. This study compares CT and MRCT for pelvic radiotherapy. Methods: CT and multi-contrast MRI acquired using T1- based Dixon, T2 TSE, and PETRA sequences were acquired on an IRBapproved protocol patient. A previously published method was used to create a MRCT image volume by applying fuzzy classification on T1- weighted and calculated water image volumes (air and fluid voxels were excluded using thresholds applied to PETRA and T2-weighted images). The correlation of pelvic bone intensity between CT andmore » MRCT was investigated. Two treatment plans, based on CT and MRCT, were performed to mimic treatment for: (a) pelvic bone metastasis with a 16MV parallel beam arrangement, and (b) gynecological cancer with 6MV volumetric modulated arc therapy (VMAT) using two full arcs. The CT-calculated fluence maps were used to recalculate doses using the MRCT-derived density grid. The dose-volume histograms and dose distributions were compared. Results: Bone intensities in the MRCT volume correlated linearly with CT intensities up to 800 HU (containing 96% of the bone volume), and then decreased with CT intensity increase (4% volume). There was no significant difference in dose distributions between CT- and MRCTbased plans, except for the rectum and bladder, for which the V45 differed by 15% and 9%, respectively. These differences may be attributed to normal and visualized organ movement and volume variations between CT and MR scans. Conclusion: While MRCT had lower bone intensity in highly-dense bone, this did not cause significant dose deviations from CT due to its small percentage of volume. These results indicate that treatment planning using MRCT could generate comparable dose distributions to that using CT, and further demonstrate the feasibility of using MRI-alone to support Radiation Oncology workflow. NIH R01EB016079.« less
NASA Astrophysics Data System (ADS)
Maspero, Matteo; van den Berg, Cornelis A. T.; Landry, Guillaume; Belka, Claus; Parodi, Katia; Seevinck, Peter R.; Raaymakers, Bas W.; Kurz, Christopher
2017-12-01
A magnetic resonance (MR)-only radiotherapy workflow can reduce cost, radiation exposure and uncertainties introduced by CT-MRI registration. A crucial prerequisite is generating the so called pseudo-CT (pCT) images for accurate dose calculation and planning. Many pCT generation methods have been proposed in the scope of photon radiotherapy. This work aims at verifying for the first time whether a commercially available photon-oriented pCT generation method can be employed for accurate intensity-modulated proton therapy (IMPT) dose calculation. A retrospective study was conducted on ten prostate cancer patients. For pCT generation from MR images, a commercial solution for creating bulk-assigned pCTs, called MR for Attenuation Correction (MRCAT), was employed. The assigned pseudo-Hounsfield Unit (HU) values were adapted to yield an increased agreement to the reference CT in terms of proton range. Internal air cavities were copied from the CT to minimise inter-scan differences. CT- and MRCAT-based dose calculations for opposing beam IMPT plans were compared by gamma analysis and evaluation of clinically relevant target and organ at risk dose volume histogram (DVH) parameters. The proton range in beam’s eye view (BEV) was compared using single field uniform dose (SFUD) plans. On average, a (2%, 2 mm) gamma pass rate of 98.4% was obtained using a 10% dose threshold after adaptation of the pseudo-HU values. Mean differences between CT- and MRCAT-based dose in the DVH parameters were below 1 Gy (<1.5% ). The median proton range difference was 0.1 mm, with on average 96% of all BEV dose profiles showing a range agreement better than 3 mm. Results suggest that accurate MR-based proton dose calculation using an automatic commercial bulk-assignment pCT generation method, originally designed for photon radiotherapy, is feasible following adaptation of the assigned pseudo-HU values.
The Beck Initiative: Training School-Based Mental Health Staff in Cognitive Therapy
ERIC Educational Resources Information Center
Creed, Torrey A.; Jager-Hyman, Shari; Pontoski, Kristin; Feinberg, Betsy; Rosenberg, Zachary; Evans, Arthur; Hurford, Matthew O.; Beck, Aaron T.
2013-01-01
A growing literature supports cognitive therapy (CT) as an efficacious treatment for youth struggling with emotional or behavioral problems. Recently, work in this area has extended the dissemination of CT to school-based settings. The current study has two aims: 1) to examine the development of therapists' knowledge and skills in CT, an…
ERIC Educational Resources Information Center
Tiruneh, Dawit T.; Verburgh, An; Elen, Jan
2014-01-01
Promoting students' critical thinking (CT) has been an essential goal of higher education. However, despite the various attempts to make CT a primary focus of higher education, there is little agreement regarding the conditions under which instruction could result in greater CT outcomes. In this review, we systematically examined current empirical…
Grams, Michael P; Fong de Los Santos, Luis E; Antolak, John A; Brinkmann, Debra H; Clarke, Michelle J; Park, Sean S; Olivier, Kenneth R; Whitaker, Thomas J
2016-01-01
To assess the accuracy of the Eclipse Analytical Anisotropic Algorithm when calculating dose for spine stereotactic body radiation therapy treatments involving surgically implanted titanium hardware. A human spine was removed from a cadaver, cut sagittally along the midline, and then separated into thoracic and lumbar sections. The thoracic section was implanted with titanium stabilization hardware; the lumbar section was not implanted. Spine sections were secured in a water phantom and simulated for treatment planning using both standard and extended computed tomography (CT) scales. Target volumes were created on both spine sections. Dose calculations were performed using (1) the standard CT scale with relative electron density (RED) override of image artifacts and hardware, (2) the extended CT scale with RED override of image artifacts only, and (3) the standard CT scale with no RED overrides for hardware or artifacts. Plans were delivered with volumetric modulated arc therapy using a 6-MV beam with and without a flattening filter. A total of 3 measurements for each plan were made with Gafchromic film placed between the spine sections and compared with Eclipse dose calculations using gamma analysis with a 2%/2 mm passing criteria. A single measurement in a homogeneous phantom was made for each plan before actual delivery. Gamma passing rates for measurements in the homogeneous phantom were 99.6% or greater. Passing rates for measurements made in the lumbar spine section without hardware were 99.3% or greater; measurements made in the thoracic spine containing titanium were 98.6 to 99.5%. Eclipse Analytical Anisotropic Algorithm can adequately model the effects of titanium implants for spine stereotactic body radiation therapy treatments using volumetric modulated arc therapy. Calculations with standard or extended CT scales give similarly accurate results. Copyright © 2016 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
MO-E-18A-01: Imaging: Best Practices In Pediatric Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, C; Strauss, K; MacDougall, R
This imaging educational program will focus on solutions to common pediatric imaging challenges. The speakers will present collective knowledge on best practices in pediatric imaging from their experience at dedicated children's hospitals. Areas of focus will include general radiography, the use of manual and automatic dose management in computed tomography, and enterprise-wide radiation dose management in the pediatric practice. The educational program will begin with a discussion of the complexities of exposure factor control in pediatric projection radiography. Following this introduction will be two lectures addressing the challenges of computed tomography (CT) protocol optimization in the pediatric population. The firstmore » will address manual CT protocol design in order to establish a managed radiation dose for any pediatric exam on any CT scanner. The second CT lecture will focus on the intricacies of automatic dose modulation in pediatric imaging with an emphasis on getting reliable results in algorithmbased technique selection. The fourth and final lecture will address the key elements needed to developing a comprehensive radiation dose management program for the pediatric environment with particular attention paid to new regulations and obligations of practicing medical physicists. Learning Objectives: To understand how general radiographic techniques can be optimized using exposure indices in order to improve pediatric radiography. To learn how to establish diagnostic dose reference levels for pediatric patients as a function of the type of examination, patient size, and individual design characteristics of the CT scanner. To learn how to predict the patient's radiation dose prior to the exam and manually adjust technique factors if necessary to match the patient's dose to the department's established dose reference levels. To learn how to utilize manufacturer-provided automatic dose modulation technology to consistently achieve patient doses within the department's established size-based diagnostic reference range. To understand the key components of an enterprise-wide pediatric dose management program that integrates the expanding responsibilities of medial physicists in the new era of dose monitoring.« less
Samal, Sweety; Khattar, Sunil K.; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L.
2013-01-01
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis. PMID:23843643
Samal, Sweety; Khattar, Sunil K; Paldurai, Anandan; Palaniyandi, Senthilkumar; Zhu, Xiaoping; Collins, Peter L; Samal, Siba K
2013-09-01
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C W; Reisman, D B; McLean, H S
2007-05-30
A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less
Vachha, Behroze; Brodoefel, Harald; Wilcox, Carol; Hackney, David B; Moonis, Gul
2013-12-01
To compare objective and subjective image quality in neck CT images acquired at different tube current-time products (275 mAs and 340 mAs) and reconstructed with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction (ASIR). HIPAA-compliant study with IRB approval and waiver of informed consent. 66 consecutive patients were randomly assigned to undergo contrast-enhanced neck CT at a standard tube-current-time-product (340 mAs; n = 33) or reduced tube-current-time-product (275 mAs, n = 33). Data sets were reconstructed with FBP and 2 levels (30%, 40%) of ASIR-FBP blending at 340 mAs and 275 mAs. Two neuroradiologists assessed subjective image quality in a blinded and randomized manner. Volume CT dose index (CTDIvol), dose-length-product (DLP), effective dose, and objective image noise were recorded. Signal-to-noise ratio (SNR) was computed as mean attenuation in a region of interest in the sternocleidomastoid muscle divided by image noise. Compared with FBP, ASIR resulted in a reduction of image noise at both 340 mAs and 275 mAs. Reduction of tube current from 340 mAs to 275 mAs resulted in an increase in mean objective image noise (p=0.02) and a decrease in SNR (p = 0.03) when images were reconstructed with FBP. However, when the 275 mAs images were reconstructed using ASIR, the mean objective image noise and SNR were similar to those of the standard 340 mAs CT images reconstructed with FBP (p>0.05). Subjective image noise was ranked by both raters as either average or less-than-average irrespective of the tube current and iterative reconstruction technique. Adapting ASIR into neck CT protocols reduced effective dose by 17% without compromising image quality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com; Browning, Jim; Lin, Ming-Chieh
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versusmore » continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Robert L.; Boone, John M.
2013-11-15
Purpose: The scanner-reported CTDI{sub vol} for automatic tube current modulation (TCM) has a different physical meaning from the traditional CTDI{sub vol} at constant mA, resulting in the dichotomy “CTDI{sub vol} of the first and second kinds” for which a physical interpretation is sought in hopes of establishing some commonality between the two.Methods: Rigorous equations are derived to describe the accumulated dose distributions for TCM. A comparison with formulae for scanner-reported CTDI{sub vol} clearly identifies the source of their differences. Graphical dose simulations are also provided for a variety of TCM tube current distributions (including constant mA), all having the samemore » scanner-reported CTDI{sub vol}.Results: These convolution equations and simulations show that the local dose at z depends only weakly on the local tube current i(z) due to the strong influence of scatter from all other locations along z, and that the “local CTDI{sub vol}(z)” does not represent a local dose but rather only a relative i(z) ≡ mA(z). TCM is a shift-variant technique to which the CTDI-paradigm does not apply and its application to TCM leads to a CTDI{sub vol} of the second kind which lacks relevance.Conclusions: While the traditional CTDI{sub vol} at constant mA conveys useful information (the peak dose at the center of the scan length), CTDI{sub vol} of the second kind conveys no useful information about the associated TCM dose distribution it purportedly represents and its physical interpretation remains elusive. On the other hand, the total energy absorbed E (“integral dose”) as well as its surrogate DLP remain robust between variable i(z) TCM and constant current i{sub 0} techniques, both depending only on the total mAs = t{sub 0}=i{sub 0} t{sub 0} during the beam-on time t{sub 0}.« less
Solbakk, Anne-Kristin; Reinvang, Ivar; Svebak, Sven; Nielsen, Christopher S; Sundet, Kjetil
2005-02-01
We examined whether closed head injury patients show altered patterns of selective attention to stimulus categories that naturally evoke differential responses in healthy people. Self-reported rating and electrophysiological (event-related potentials [ERPs], heart rate [HR]) responses to affective pictures were studied in patients with mild head injury (n = 20; CT/MRI negative), in patients with predominantly frontal brain lesions (n = 12; CT/MRI confirmed), and in healthy controls (n = 20). Affective valence similarly modulated HR and ERP responses in all groups, but group differences occurred that were independent of picture valence. The attenuation of P3-slow wave amplitudes in the mild head injury group indicates a reduction in the engagement of attentional resources to the task. In contrast, the general enhancement of ERP amplitudes at occipital sites in the group with primarily frontal brain injury may reflect disinhibition of input at sensory receptive areas, possibly due to a deficit in top-down modulation performed by anterior control systems.
Yartsev, S; Kron, T; Van Dyk, J
2007-01-01
Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system. PMID:21614257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranallo, F; Szczykutowicz, T
2014-06-01
Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise andmore » dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.« less
Objective image characterization of a spectral CT scanner with dual-layer detector
NASA Astrophysics Data System (ADS)
Ozguner, Orhan; Dhanantwari, Amar; Halliburton, Sandra; Wen, Gezheng; Utrup, Steven; Jordan, David
2018-01-01
This work evaluated the performance of a detector-based spectral CT system by obtaining objective reference data, evaluating attenuation response of iodine and accuracy of iodine quantification, and comparing conventional CT and virtual monoenergetic images in three common phantoms. Scanning was performed using the hospital’s clinical adult body protocol. Modulation transfer function (MTF) was calculated for a tungsten wire and visual line pair targets were evaluated. Image noise power spectrum (NPS) and pixel standard deviation were calculated. MTF for monoenergetic images agreed with conventional images within 0.05 lp cm-1. NPS curves indicated that noise texture of 70 keV monoenergetic images is similar to conventional images. Standard deviation measurements showed monoenergetic images have lower noise except at 40 keV. Mean CT number and CNR agreed with conventional images at 75 keV. Measured iodine concentration agreed with true concentration within 6% for inserts at the center of the phantom. Performance of monoenergetic images at detector based spectral CT is the same as, or better than, that of conventional images. Spectral acquisition and reconstruction with a detector based platform represents the physical behaviour of iodine as expected and accurately quantifies the material concentration.
Radiation dose-reduction strategies in thoracic CT.
Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I
2017-05-01
Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.Raman
The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection inmore » NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.« less
PET/CT: underlying physics, instrumentation, and advances.
Torres Espallardo, I
Since it was first introduced, the main goal of PET/CT has been to provide both PET and CT images with high clinical quality and to present them to radiologists and specialists in nuclear medicine as a fused, perfectly aligned image. The use of fused PET and CT images quickly became routine in clinical practice, showing the great potential of these hybrid scanners. Thanks to this success, manufacturers have gone beyond considering CT as a mere attenuation corrector for PET, concentrating instead on design high performance PET and CT scanners with more interesting features. Since the first commercial PET/CT scanner became available in 2001, both the PET component and the CT component have improved immensely. In the case of PET, faster scintillation crystals with high stopping power such as LYSO crystals have enabled more sensitive devices to be built, making it possible to reduce the number of undesired coincidence events and to use time of flight (TOF) techniques. All these advances have improved lesion detection, especially in situations with very noisy backgrounds. Iterative reconstruction methods, together with the corrections carried out during the reconstruction and the use of the point-spread function, have improved image quality. In parallel, CT instrumentation has also improved significantly, and 64- and 128-row detectors have been incorporated into the most modern PET/CT scanners. This makes it possible to obtain high quality diagnostic anatomic images in a few seconds that both enable the correction of PET attenuation and provide information for diagnosis. Furthermore, nowadays nearly all PET/CT scanners have a system that modulates the dose of radiation that the patient is exposed to in the CT study in function of the region scanned. This article reviews the underlying physics of PET and CT imaging separately, describes the changes in the instrumentation and standard protocols in a combined PET/CT system, and finally points out the most important advances in this hybrid imaging modality. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.
Composite Aircraft Life Cycle Cost Estimating Model
2011-03-01
X. The masked fit of the lines are as follows: • Part Count Percentage Reduction for Design hours ( HRE %) = • Part Count Percentage Reduction...multiplied by the respective labor rate (LR). Currently, CT is a percentage of total non- recurring development cost. HRE corresponds to recurring...Empty Weight Velocity RENGR HRE CRE 46 Figure 14: Non-Recurring Engineering CER Currently, CT is a percentage of non-recurring development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Haipeng; Xu Beibei; Sheveleva, Elena
2008-10-01
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression.more » LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, V; Zhang, J; Bruner, A
Purpose: The AIRO Mobile CT system was recently introduced which overcomes the limitations from existing CT, CT fluoroscopy, and intraoperative O-arm. With an integrated table and a large diameter bore, the system is suitable for cranial, spine and trauma procedures, making it a highly versatile intraoperative imaging system. This study is to investigate radiation dose and image quality of the AIRO and compared with those from a routine CT scanner. Methods: Radiation dose was measured using a conventional 100mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatialmore » resolution, low contrast resolution (CNR), Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Results: Under identical technique conditions, radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. MTFs show that both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. With the Standard kernel, the spatial resolutions of the AIRO system are 3lp/cm and 4lp/cm for the body and head FOVs, respectively. NNPSs show low frequency noise due to ring-like artifacts. Due to a higher dose in terms of mGy/mAs at both head and body FOV, CNR of the AIRO system is higher than that of the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets. Conclusion: For image guided surgery applications, the AIRO has some advantages over a routine CT scanner due to its versatility, large bore size, and acceptable image quality. Our evaluation of the physical performance helps its future improvements.« less
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi
2017-02-01
We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Kong, L; Wang, J
2015-06-15
Purpose: To quantify the target volume and organ at risk of nasopharyngeal carcinoma (NPC) patients with preradiation chemotherapy based on CT scanned during intensity-modulated radiotherapy (IMRT), and recalculate the dose distribution. Methods: Seven patients with NPC and preradiation chemotherapy, treated with IMRT (35 to 37 fractions) were reviewed. Repeat CT scanning was required to all of the patients during the radiotherapy, and the number of repeat CTs varies from 2 to 6. The plan CT and repeat CT were generated by different CT scanner. To ensure crespectively on the same IMPT plan. The real dose distribution was calculated by deformablemore » registration and weighted method in Raystation (v 4.5.1). The fraction of each dose is based on radiotherapy record. The volumetric and dose differences among these images were calculated for nascIpharyngeal tumor and retro-pharyngeal lymph nodes (GTV-NX), neck lymph nodes(GTV-ND), and parotid glands. Results: The volume variation in GTV-NX from CT1 to CT2 was 1.15±3.79%, and in GTV-LN −0.23±4.93%. The volume variation in left parotid from CT1 to CT2 was −6.79±11.91%, and in right parotid −3.92±8.80%. In patient 2, the left parotid volume were decreased remarkably, as a Result, the V30 and V40 of it were increased as well. Conclusion: The target volume of patients with NPC varied lightly during IMRT. It shows that preradiation chemotherapy can control the target volume variation and perform a good dose repeatability. Also, the decreasing volume of parotid in some patient might increase the dose of it, which might course potential complications.« less
Abbasi-Maleki, Saeid; Mousavi, Zahra
2017-09-01
Studies indicate that major deficiency in the levels of monoaminergic transmitters is a reason for severe depression. On the other hand, it is shown that Carthamus tinctorius L. (CT) may improve neuropsychological injuries by regulation of the monoamine transporter action. Hence, the present study was undertaken to evaluate the involvement of monoaminergic systems in antidepressant-like effect of CT extract in the tail suspension test (TST) in mice. The mice were intraperitoneally (IP) treated with CT extract (100-400 mg/kg) 1 hr before the TST. To investigate the involvement of monoaminergic systems in antidepressant-like effect, the mice were treated with receptor antagonists 15 min before CT extract treatment (400 mg/kg, IP) and 1 hr before the TST. Findings showed that CT extract (100-400 mg/kg, IP), dose-dependently induced antidepressant-like effect ( P <0.001), but it was not accompanied by alterations in spontaneous locomotor activity in the open-field test. Pretreatment of mice with SCH23390, sulpiride, haloperidol, WAY100135, cyproheptadine, ketanserin and p-chlorophenylalanine (PCPA) inhibited the antidepressant-like effect of CT extract (400 mg/kg, IP), but not with prazosin and yohimbine. Co-administration of CT extract (100 mg/kg, IP) with sub-effective doses of fluoxetine (5 mg/kg, IP) or imipramine (5 mg/kg, IP) increased their antidepressant-like response. Our findings firstly showed that components (especially N-Hexadecanoic acid) of CT extract induce antidepressant-like effects by interaction with dopaminergic (D1 and D2) and serotonergic (5HT1A, 5-HT2A receptors) systems. These findings validate the folk use of CT extract for the management of depression.
Sumner, E T; Chawla, A T; Cororaton, A D; Koblinski, J E; Kovi, R C; Love, I M; Szomju, B B; Korwar, S; Ellis, K C; Grossman, S R
2017-08-17
Overexpression of the transcriptional coregulators C-terminal binding proteins 1 and 2 (CtBP1 and 2) occurs in many human solid tumors and is associated with poor prognosis. CtBP modulates oncogenic gene expression programs and is an emerging drug target, but its oncogenic role is unclear. Consistent with this oncogenic potential, exogenous CtBP2 transformed primary mouse and human cells to anchorage independence similarly to mutant H-Ras. To investigate CtBP's contribution to in vivo tumorigenesis, Apc min/+ mice, which succumb to massive intestinal polyposis, were bred to Ctbp2 +/- mice. CtBP interacts with adenomatous polyposis coli (APC) protein, and is stabilized in both APC-mutated human colon cancers and Apc min/+ intestinal polyps. Ctbp2 heterozygosity increased the median survival of Apc min/+ mice from 21 to 48 weeks, and reduced polyp formation by 90%, with Ctbp2 +/- polyps exhibiting reduced levels of β-catenin and its oncogenic transcriptional target, cyclin D1. CtBP's potential as a therapeutic target was studied by treating Apc min/+ mice with the CtBP small-molecule inhibitors 4-methylthio-2-oxobutyric acid and 2-hydroxy-imino phenylpyruvic acid, both of which reduced polyposis by more than half compared with vehicle treatment. Phenocopying Ctbp2 deletion, both Ctbp inhibitors caused substantial decreases in the protein level of Ctbp2, as well its oncogenic partner β-catenin, and the effects of the inhibitors on CtBP and β-catenin levels could be modeled in an APC-mutated human colon cancer cell line. CtBP2 is thus a druggable transforming oncoprotein critical for the evolution of neoplasia driven by Apc mutation.
Navarro, Arturo; del Hoyo, Olga; Gomez-Iturriaga, Alfonso; Alongi, Filippo; Medina, Jose A; Elicin, Olgun; Skanjeti, Andrea; Giammarile, Francesco; Bilbao, Pedro; Casquero, Francisco; de Bari, Berardino; Dal Pra, Alan
2016-01-01
Squamous cell carcinoma is the most common malignant tumour of the head and neck. The initial TNM staging, the evaluation of the tumour response during treatment, and the long-term surveillance are crucial moments in the approach to head and neck squamous cell carcinoma (HNSCC). Thus, at each of these moments, the choice of the best diagnostic tool providing the more precise and larger information is crucial. Positron emission tomography with fluorine-18 fludeoxyglucose integrated with CT (18F-FDG-PET/CT) rapidly gained clinical acceptance, and it has become an important imaging tool in routine clinical oncology. However, controversial data are currently available, for example, on the role of 18F-FDG-PET/CT imaging during radiotherapy planning, the prognostic value or its real clinical impact on treatment decisions. In this article, the role of 18F-FDG-PET/CT imaging in HNSCC during pre-treatment staging, radiotherapy planning, treatment response assessment, prognosis and follow-up is reviewed focusing on current evidence and controversial issues. A proposal on how to integrate 18F-FDG-PET/CT in daily clinical practice is also described. PMID:27416996
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
Genome-Wide Identification of Chlamydia trachomatis Antigens Associated with Trachomatous Trichiasis
Lu, Chunxue; Holland, Martin J.; Gong, Siqi; Peng, Bo; Bailey, Robin L.; Mabey, David W.; Wu, Yimou; Zhong, Guangming
2012-01-01
Purpose. Chlamydia trachomatis is the leading infectious cause of blindness. The goal of the current study was to search for biomarkers associated with C. trachomatis–induced ocular pathologies. Methods. We used a whole genome scale proteome array to systematically profile antigen specificities of antibody responses to C. trachomatis infection in individuals from trachoma-endemic communities with or without end-stage trachoma (trichiasis) in The Gambia. Results. When 61 trichiasis patients were compared with their control counterparts for overall antibody reactivity with organisms of different chlamydial species, no statistically significant difference was found. Both groups developed significantly higher titers of antibodies against C. trachomatis ocular serovars A and B than ocular serovar C, genital serovar D, or Chlamydia psittaci, whereas the titers of anti–Chlamydia pneumoniae antibodies were the highest. When antisera from 33 trichiasis and 26 control patients (with relatively high titers of antibodies to C. trachomatis ocular serovars) were reacted with 908 C. trachomatis proteins, 447 antigens were recognized by at least 1 of the 59 antisera, and 10 antigens by 50% or more antisera, the latter being designated as immunodominant antigens. More importantly, four antigens were preferentially recognized by the trichiasis group, with antigens CT414, CT667, and CT706 collectively reacting with 30% of trichiasis antisera but none from the normal group, and antigen CT695 reacting with 61% of trichiasis but only 31% of normal antisera. On the other hand, eight antigens were preferentially recognized by the control group, with antigens CT019, CT117, CT301, CT553, CT556, CT571, and CT709 together reacting with 46% of normal antisera and none from the trichiasis group, whereas antigen CT442 reacted with 35% of normal and 19% of trichiasis antisera respectively. Conclusions. The current study, by mapping immunodominant C. trachomatis antigens and identifying antigens associated with both ocular pathology and protection, has provided important information for further understanding chlamydial pathogenesis and the development of subunit vaccines. PMID:22427578
Resources in Technology: Problem-Solving.
ERIC Educational Resources Information Center
Technology Teacher, 1986
1986-01-01
This instructional module examines a key function of science and technology: problem solving. It studies the meaning of problem solving, looks at techniques for problem solving, examines case studies that exemplify the problem-solving approach, presents problems for the reader to solve, and provides a student self-quiz. (Author/CT)
García, J R; Cozar, M; Soler, M; Bassa, P; Riera, E; Ferrer, J
2016-01-01
To assess the prognostic value of the therapeutic response by (11)C-choline PET/CT in prostate cancer patients with biochemical recurrence in which (11)C-choline PET/CT indicated radio-guided radiotherapy. The study included 37 patients initially treated with prostatectomy, who were treated due to biochemical recurrence. (11)C-choline PE/CT detected infra-diaphragmatic lymph-node involvement. All were selected for intensity modulated radiation therapy, escalating the dose according to the PET findings. One year after treatment patients underwent PSA and (11)C-choline PET/CT categorizing response (complete/partial/progression). Clinical/biochemical/image monitoring was performed until appearance of second relapse or 36 months in disease-free patients. (11)C-choline PET/CT could detect lymph nodes in all 37 patients. They were 18 (48.6%) of more than a centimetre in size and 19 (51.3%) with no pathological CT morphology: 9 (24.3%) with positive lymph nodes of around one centimetre and 10 (27.0%) only less than a centimetre in size. The response by (11)C-choline PET/CT was categorised one year after radiotherapy: 16 patients (43.2%) complete response; 15 (40.5%) partial response, and 6 (16.2%) progression. The response was concordant between the PSA result and (11)C-choline PET/CT in 32 patients (86.5%), and discordant in five (13.5%). New recurrence was detected in 12 patients (80%) with partial response, and 5 (31.2%) with complete response. The mean time to recurrence was 9 months after partial response, and 18 months after complete response (significant difference, p<.0001). (11)C-choline PET/CT allows the selection of patients with recurrent prostate cancer candidates for radiotherapy and to plan the technique. The evaluation of therapeutic response by (11)C-choline PET/CT has prognostic significance. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Operating characteristics of tube-current-modulation techniques when scanning simple-shaped phantoms
NASA Astrophysics Data System (ADS)
Matsubara, Kosuke; Koshida, Kichiro; Lin, Pei-Jan Paul; Fukuda, Atsushi
2015-07-01
Our objective was to investigate the operating characteristics of tube current modulation (TCM) in computed tomography (CT) when scanning two types of simple-shaped phantoms. A tissueequivalent elliptical phantom and a homogeneous cylindrical step phantom comprising 16-, 24-, and 32-cm-diameter polymethyl methacrylate (PMMA) phantoms were scanned by using an automatic exposure control system with longitudinal (z-) and angular-longitudinal (xyz-) TCM and with a fixed tube current. The axial dose distribution throughout the elliptical phantom and the longitudinal dose distribution at the center of the cylindrical step phantom were measured by using a solid-state detector. Image noise was quantitatively measured at eight regions in the elliptical phantom and at 90 central regions in contiguous images over the full z extent of the cylindrical step phantom. The mean absorbed doses and the standard deviations in the elliptical phantom with z- and xyz-TCM were 12.3' 3.7 and 11.3' 3.5 mGy, respectively. When TCM was activated, some differences were observed in the absorbed doses of the left and the right measurement points. The average image noises in Hounsfield units (HU) and the standard deviations were 15.2' 2.4 and 15.9' 2.4 HU when using z- and xyz-TCM, respectively. With respect to the cylindrical step phantom under z-TCM, there were sudden decreases followed by increases in image noise at the interfaces with the 24- and 16-cm-diameter phantoms. The image noise of the 24-cm-diameter phantom was, relatively speaking, higher than those of the 16- and 32-cm-diameter phantoms. The simple-shaped phantoms used in this study can be employed to investigate the operating characteristics of automatic exposure control systems when specialized phantoms designed for that purpose are not available.
Communications and control for electric power systems
NASA Technical Reports Server (NTRS)
Kirkham, H.
1992-01-01
A long-term strategy for the integration of new control technologies for power generation and delivery is proposed: the industry would benefit from an evolutionary approach that would adapt to its needs future technologies as well as those that it has so far not heeded. The integrated operation of the entire system, including the distribution system, was proposed as a future goal. The AbNET communication protocols are reviewed, and additions that were made in 1991 are described. In the original network, traffic was controlled by polling at the master station, located at the substation, and routed by a flooding algorithm. In a revised version, the polling and flooding are modified. The question of interfacing low-energy measurement transducers or instrument transformers is considered. There is presently little or no agreement on what the output of optical current transducers (CT's) should be. Appendices deal with the calibration of current transducers; with Delta modulation, a simple means of serially encoding the output of an OCT; and with noise shaping, a method of digital signal processing that trades off the number of bits in a digital sample for a higher number of samples.
Sparse-view proton computed tomography using modulated proton beams.
Lee, Jiseoc; Kim, Changhwan; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong; Cho, Seungryong
2015-02-01
Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method-projection onto convex sets (SM-POCS), superiorization method-expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed within 1% error. EM-based algorithms produced an increased image noise and RMSE as the iteration reaches about 20, while the POCS-based algorithms showed a monotonic convergence with iterations. The ASD-POCS algorithm outperformed the others in terms of CNR, RMSE, and the accuracy of the reconstructed relative stopping power in the region of lung and soft tissues. The four iterative algorithms, i.e., ASD-POCS, SM-POCS, SM-EM, and EM-TV, have been developed and applied for proton CT image reconstruction. Although it still seems that the images need to be improved for practical applications to the treatment planning, proton CT imaging by use of the modulated beams in sparse-view sampling has demonstrated its feasibility.
Getting Ready for Arctic Operations
2008-09-01
District 17 1082 Shennecossett Road PO Box 25517 Groton, CT 06340 USA Juneau, AK 99802 Abstract: Currently...Coast Guard (USCG),R&D Center, 1082 Shennecossett Road,Groton,CT,06340 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY
May, Matthias S; Kramer, Manuel R; Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Saake, Marc; Schmidt, Bernhard; Uder, Michael; Lell, Michael M
2014-09-01
Low tube voltage allows for computed tomography (CT) imaging with increased iodine contrast at reduced radiation dose. We sought to evaluate the image quality and potential dose reduction using a combination of attenuation based tube current modulation (TCM) and automated tube voltage adaptation (TVA) between 100 and 120 kV in CT of the head and neck. One hundred thirty consecutive patients with indication for head and neck CT were examined with a 128-slice system capable of TCM and TVA. Reference protocol was set at 120 kV. Tube voltage was reduced to 100 kV whenever proposed by automated analysis of the localizer. An additional small scan aligned to the jaw was performed at a fixed 120 kV setting. Image quality was assessed by two radiologists on a standardized Likert-scale and measurements of signal- (SNR) and contrast-to-noise ratio (CNR). Radiation dose was assessed as CTDIvol. Diagnostic image quality was excellent in both groups and did not differ significantly (p = 0.34). Image noise in the 100 kV data was increased and SNR decreased (17.8/9.6) in the jugular veins and the sternocleidomastoid muscle when compared to 120 kV (SNR 24.4/10.3), but not in fatty tissue and air. However, CNR did not differ statistically significant between 100 (23.5/14.4/9.4) and 120 kV data (24.2/15.3/8.6) while radiation dose was decreased by 7-8%. TVA between 100 and 120 kV in combination with TCM led to a radiation dose reduction compared to TCM alone, while keeping CNR constant though maintaining diagnostic image quality.
Glorie, Lorenzo; Behets, Geert J; Baerts, Lesley; De Meester, Ingrid; D'Haese, Patrick C; Verhulst, Anja
2014-09-01
Dipeptidyl peptidase IV (DPP IV) modulates protein activity by removing dipeptides. DPP IV inhibitors are currently used to improve glucose tolerance in type 2 diabetes patients. DPP IV substrates not only increase insulin secretion but also affect bone metabolism. In this study, the effect of DPP IV inhibitor sitagliptin on bone was evaluated in normal and streptozotocin-induced diabetic rats. This study included 64 male Wistar rats divided into four groups (n = 16): two diabetic and two control groups. One diabetic and one control group received sitagliptin through drinking water. Tibiae were scanned every 3 wk using an in vivo μCT scanner. After 6 and 12 wk, rats were euthanized for histomorphometric analysis of bone parameters. The mechanical resistance of femora to fracture was assessed using a three-point bending test, and serum levels of bone metabolic markers were measured. Efficient DPP IV inhibition was achieved in sitagliptin-treated groups. Trabecular bone loss, the decrease in trabecular number, and the increase in trabecular spacing was attenuated through sitagliptin treatment in diabetic rats, as shown by in vivo μCT. Bone histomorphometry was in line with these results. μCT analysis furthermore showed that sitagliptin prevented cortical bone growth stagnation in diabetic rats, resulting in stronger femora during three-point bending. Finally, the serum levels of the resorption marker CTX-I were significantly lower in sitagliptin-treated diabetic animals compared with untreated diabetic animals. In conclusion, sitagliptin treatment attenuates bone loss and increases bone strength in diabetic rats probably through the reduction of bone resorption and independent of glycemic management. Copyright © 2014 the American Physiological Society.
State of the art: dual-energy CT of the abdomen.
Marin, Daniele; Boll, Daniel T; Mileto, Achille; Nelson, Rendon C
2014-05-01
Recent technologic advances in computed tomography (CT)--enabling the nearly simultaneous acquisition of clinical images using two different x-ray energy spectra--have sparked renewed interest in dual-energy CT. By interrogating the unique characteristics of different materials at different x-ray energies, dual-energy CT can be used to provide quantitative information about tissue composition, overcoming the limitations of attenuation-based conventional single-energy CT imaging. In the past few years, intensive research efforts have been devoted to exploiting the unique and powerful opportunities of dual-energy CT for a variety of clinical applications. This has led to CT protocol modifications for radiation dose reduction, improved diagnostic performance for detection and characterization of diseases, as well as image quality optimization. In this review, the authors discuss the basic principles, instrumentation and design, examples of current clinical applications in the abdomen and pelvis, and future opportunities of dual-energy CT.
Dynamic contrast enhanced CT in nodule characterization: How we review and report.
Qureshi, Nagmi R; Shah, Andrew; Eaton, Rosemary J; Miles, Ken; Gilbert, Fiona J
2016-07-18
Incidental indeterminate solitary pulmonary nodules (SPN) that measure less than 3 cm in size are an increasingly common finding on computed tomography (CT) worldwide. Once identified there are a number of imaging strategies that can be performed to help with nodule characterization. These include interval CT, dynamic contrast enhanced computed tomography (DCE-CT), (18)F-fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG-PET-CT). To date the most cost effective and efficient non-invasive test or combination of tests for optimal nodule characterization has yet to be determined.DCE-CT is a functional test that involves the acquisition of a dynamic series of images of a nodule before and following the administration of intravenous iodinated contrast medium. This article provides an overview of the current indications and limitations of DCE- CT in nodule characterization and a systematic approach to how to perform, analyse and interpret a DCE-CT scan.
Chalubinski, M; Grzegorczyk, J; Grzelak, A; Jarzebska, M; Kowalski, M L
2014-01-01
β2-adrenoreceptor (β2-AR) agonists and glucocorticoids (GCS) were shown to induce IgE synthesis in human PBMCs. Serum total IgE levels are associated with single nucleotide polymorphisms (SNPs) of the β2-AR gene. We aimed to assess the association of the effect of fenoterol (β2-AR agonist) on IL-4-driven and budesonide-induced IgE synthesis with genetic variants of β2-AR. The study included 25 individuals: 13 with allergic asthma and/or allergic rhinitis and 12 healthy volunteers. PBMCs were cultured with IL-4, fenoterol and/or budesonide, and IgE concentrations in supernatants were assessed. Five SNPs in positions: -47, -20, 46, 79 and 252 of β2-AR were determined by direct DNA sequencing. In -47 T/T and -20 T/T patients, incubation with fenoterol resulted in decreased IgE production, whereas in -47 C/T and -47 C/C as well as in -20 C/T and -20 C/C individuals, it was enhanced. In contrast to fenoterol, budesonide-induced IgE synthesis was significantly increased in -47 T/T and -20 T/T patients as compared to -47 C/T, -47 C/C, -20 C/T and -47 C/C individuals. Polymorphisms in positions 46, 79 and 252 were not associated with fenoterol- or budesonide-modulated IgE synthesis. No differences in the distribution of IgE synthesis was seen between atopic and non-atopic individuals carrying the same alleles. The differential effect of β2-agonists and GCS on IgE synthesis may be associated with genetic variants of promoter region of the β2-AR gene. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Wyatt, Jonathan J.; Dowling, Jason A.; Kelly, Charles G.; McKenna, Jill; Johnstone, Emily; Speight, Richard; Henry, Ann; Greer, Peter B.; McCallum, Hazel M.
2017-12-01
There is increasing interest in MR-only radiotherapy planning since it provides superb soft-tissue contrast without the registration uncertainties inherent in a CT-MR registration. However, MR images cannot readily provide the electron density information necessary for radiotherapy dose calculation. An algorithm which generates synthetic CTs for dose calculations from MR images of the prostate using an atlas of 3 T MR images has been previously reported by two of the authors. This paper aimed to evaluate this algorithm using MR data acquired at a different field strength and a different centre to the algorithm atlas. Twenty-one prostate patients received planning 1.5 T MR and CT scans with routine immobilisation devices on a flat-top couch set-up using external lasers. The MR receive coils were supported by a coil bridge. Synthetic CTs were generated from the planning MR images with (sCT1V ) and without (sCT) a one voxel body contour expansion included in the algorithm. This was to test whether this expansion was required for 1.5 T images. Both synthetic CTs were rigidly registered to the planning CT (pCT). A 6 MV volumetric modulated arc therapy plan was created on the pCT and recalculated on the sCT and sCT1V . The synthetic CTs’ dose distributions were compared to the dose distribution calculated on the pCT. The percentage dose difference at isocentre without the body contour expansion (sCT-pCT) was Δ D_sCT=(0.9 +/- 0.8) % and with (sCT1V -pCT) was Δ D_sCT1V=(-0.7 +/- 0.7) % (mean ± one standard deviation). The sCT1V result was within one standard deviation of zero and agreed with the result reported previously using 3 T MR data. The sCT dose difference only agreed within two standard deviations. The mean ± one standard deviation gamma pass rate was Γ_sCT = 96.1 +/- 2.9 % for the sCT and Γ_sCT1V = 98.8 +/- 0.5 % for the sCT1V (with 2% global dose difference and 2~mm distance to agreement gamma criteria). The one voxel body contour expansion improves the synthetic CT accuracy for MR images acquired at 1.5 T but requires the MR voxel size to be similar to the atlas MR voxel size. This study suggests that the atlas-based algorithm can be generalised to MR data acquired using a different field strength at a different centre.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
Alvarez, Jennifer; Pavao, Joanne; Mack, Katelyn P; Chow, Joan M; Baumrind, Nikki; Kimerling, Rachel
2009-01-01
To examine the relationship between cumulative exposure to various types of interpersonal violence throughout the life span and self-reported history of Chlamydia trachomatis (CT) diagnosis in a population-based sample of California women. This was a cross-sectional analysis of a population-based survey of California women aged 18-44 years (n = 3521). Participants reported their experience of multiple types of interpersonal violence: physical or sexual abuse in childhood or adulthood and intimate partner violence (IPV) in the past 12 months. Current posttraumatic stress disorder (PTSD) and depressive symptoms were also reported. Separate logistic regression models assessed the association between experiencing each type of interpersonal violence, as well as women's cumulative exposure to violence, and past CT diagnosis, adjusting for age, race/ethnicity, and poverty, as well as mental health problems. Six percent of women reported a past diagnosis of CT, and 40.8% reported experiencing at least one type of interpersonal violence in their lifetime. All types of violence were significantly associated with higher odds of having a past CT diagnosis even after controlling for sociodemographics. Women who reported experiencing four or more types of violence experiences had over five times the odds of reporting a lifetime CT diagnosis compared with women who never experienced interpersonal violence (adjusted odds ratio = 5.71, 95% CI 3.27-9.58). Current PTSD and depressive symptoms did not significantly affect the relationship between a woman's cumulative experience of violence and her risk of past CT diagnosis. There is a robust association between experiencing multiple forms of violence and having been diagnosed with CT. Women who seek treatment for sexually transmitted diseases (STDs), such as CT, should be assessed for their lifetime history of violence, especially violence in their current intimate relationships. Sexual risk reduction counseling may also be important for women who have a history of risky sexual behaviors and who are likely to be reinfected.
Systems and methods for commutating inductor current using a matrix converter
Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun
2012-10-16
Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L; Pi, Y; Chen, Z
2016-06-15
Purpose: To evaluate the ROI contours and accumulated dose difference using different deformable image registration (DIR) algorithms for head and neck (H&N) adaptive radiotherapy. Methods: Eight H&N cancer patients were randomly selected from the affiliated hospital. During the treatment, patients were rescanned every week with ROIs well delineated by radiation oncologist on each weekly CT. New weekly treatment plans were also re-designed with consistent dose prescription on the rescanned CT and executed for one week on Siemens CT-on-rails accelerator. At the end, we got six weekly CT scans from CT1 to CT6 including six weekly treatment plans for each patient.more » The primary CT1 was set as the reference CT for DIR proceeding with the left five weekly CTs using ANACONDA and MORFEUS algorithms separately in RayStation and the external skin ROI was set to be the controlling ROI both. The entire calculated weekly dose were deformed and accumulated on corresponding reference CT1 according to the deformation vector field (DVFs) generated by the two different DIR algorithms respectively. Thus we got both the ANACONDA-based and MORFEUS-based accumulated total dose on CT1 for each patient. At the same time, we mapped the ROIs on CT1 to generate the corresponding ROIs on CT6 using ANACONDA and MORFEUS DIR algorithms. DICE coefficients between the DIR deformed and radiation oncologist delineated ROIs on CT6 were calculated. Results: For DIR accumulated dose, PTV D95 and Left-Eyeball Dmax show significant differences with 67.13 cGy and 109.29 cGy respectively (Table1). For DIR mapped ROIs, PTV, Spinal cord and Left-Optic nerve show difference with −0.025, −0.127 and −0.124 (Table2). Conclusion: Even two excellent DIR algorithms can give divergent results for ROI deformation and dose accumulation. As more and more TPS get DIR module integrated, there is an urgent need to realize the potential risk using DIR in clinical.« less
CT artifact recognition for the nuclear technologist.
Popilock, Robert; Sandrasagaren, Kumar; Harris, Lowell; Kaser, Keith A
2008-06-01
The goal of this article is to make the PET/CT and SPECT/CT operator aware of common artifacts found in CT. In diagnostic imaging, the ability to render an accurate diagnosis requires the technologist to take steps to optimize image quality and recognize when image quality has been compromised-that is, when there is an image artifact. One way these artifacts occur is through the inability of the CT linear attenuation image to precisely represent the linear attenuation map of a 2-dimensional section through the body. The reasons for this inability are multifold. First, CT is subject to the laws of x-ray quantum physics resulting in noise in all CT images. Moreover, all current CT x-ray systems generate a spectrum of energies. Also, CT scanners use detectors of finite dimension, as are the x-ray focal spots; reconstruct images from a finite number of samples distributed over a finite number of views; and acquire the data for each reconstruction over a finite period.
ERIC Educational Resources Information Center
Dwyer, Christopher P.; Hogan, Michael J.; Stewart, Ian
2012-01-01
The current research examined the effects of a critical thinking (CT) e-learning course taught through argument mapping (AM) on measures of CT ability. Seventy-four undergraduate psychology students were allocated to either an AM-infused CT e-learning course or a no instruction control group and were tested both before and after an 8-week…
Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A
2007-06-01
The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung apex.
Doo, K W; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W
2014-01-01
Objective: The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Methods: Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: −630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current–time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). Results: The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p < 0.001). The effect of IR was more pronounced for smaller nodules (p < 0.001). IR showed a significantly lower APE than FBP in ground-glass nodules (p < 0.0001), and the difference was more pronounced at the lowest tube current (11.8 ± 5.9% compared with 21.3 ± 6.1%; p < 0.0001). The effect of IR was most pronounced for ground-glass nodules in the lowest CT tube current. Conclusion: Lung nodule volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. Advances in knowledge: IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (−630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT. PMID:25026866
Minor head injury in children.
Klig, Jean E; Kaplan, Carl P
2010-06-01
This review will examine mild closed head injury (CHI) and the current evidence on head computed tomography (CT) imaging risks in children, prediction rules to guide decisions on CT scan use, and issues of concussion after initial evaluation. The current literature offers preliminary evidence on the risks of radiation exposure from CT scans in children. A recent study introduces a validated prediction rule for use in mild CHI, to limit the number of CT scans performed. Concurrent with this progress, fast (or short sequence) MRI represents an emerging technology that may prove to be a viable alternative to CT scan use in certain cases of mild CHI where imaging is desired. The initial emergency department evaluation for mild CHI is the start point for a sequence of follow-up to assure that postconcussive symptoms fully resolve. The literature on sports-related concussion offers some information that may be used for patients with non-sports-related concussion. It is clear that CT scan use should be as safe and limited in scope as possible for children. Common decisions on the use of CT imaging for mild head injury can now be guided by a prediction rule for clinically important traumatic brain injury. Parameters for the follow-up care of patients with mild CHI after emergency department discharge are needed in the future to assure that postconcussive symptoms are adequately screened for full resolution.
Visualizing 3D Food Microstructure Using Tomographic Methods: Advantages and Disadvantages.
Wang, Zi; Herremans, Els; Janssen, Siem; Cantre, Dennis; Verboven, Pieter; Nicolaï, Bart
2018-03-25
X-ray micro-computed tomography (micro-CT) provides the unique ability to capture intact internal microstructure data without significant preparation of the sample. The fundamentals of micro-CT technology are briefly described along with a short introduction to basic image processing, quantitative analysis, and derivative computational modeling. The applications and limitations of micro-CT in industries such as meat, dairy, postharvest, and bread/confectionary are discussed to serve as a guideline to the plausibility of utilizing the technique for detecting features of interest. Component volume fractions, their respective size/shape distributions, and connectivity, for example, can be utilized for product development, manufacturing process tuning and/or troubleshooting. In addition to determining structure-function relations, micro-CT can be used for foreign material detection to further ensure product quality and safety. In most usage scenarios, micro-CT in its current form is perfectly adequate for determining microstructure in a wide variety of food products. However, in low-contrast and low-stability samples, emphasis is placed on the shortcomings of the current systems to set realistic expectations for the intended users.
1981-01-01
does not display a currently valid OMB control number. 1. REPORT DATE 1981 2. REPORT TYPE 3. DATES COVERED 00-00-1981 to 00-00-1981 4. TITLE AND...branched; 9-CT longer than 8-CT. Respiratory trumpet. Index 3.21-6.31. Metanotal plate. Seta ll-CT single, occasionally barbed, longer than 10, 12...figured and recorded (Table 1). Cephalothorax. Seta l-CT with 3-5 branches. Respiratory trumpet. Index 3.73-5.25, mean 4.53. Abdomen. Seta l-11 with 14
Role of 18F-FDG PET/CT in the Carcinoma of the Uterus: A Review of Literature
Musto, Alessandra; Grassetto, Gaia; Marzola, Maria Cristina; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Rampin, Lucia; Fuster, David; Giammarile, Francesco; Colletti, Patrick M.
2014-01-01
In the present review we reported the value of 18F-fluorodeoxyglucose (FDG) PET/CT in face of uterine cancer, in terms of sensitivity, specificity and accuracy. Moreover, we made a comparison with the other imaging techniques currently used to evacuate these tumors including contrast-enhanced CT, contrast enhanced-MRI and transvaginal ultrasonography. FDG PET/CT has been reported to be of particular value in detecting occult metastatic lesions, in prediction of response to treatment and as a pro-gnostic factor. PMID:25323881
The Beatles, the Nobel Prize, and CT scanning of the chest.
Goodman, Lawrence R
2010-01-01
From its first test scan on a mouse, in 1967, to current medical practice, the CT scanner has become a core imaging tool in thoracic diagnosis. Initially financed by money from Beatles' record sales, the first patient scan was performed in 1971. Only 8 years later, a Nobel Prize in Physics and Medicine was awarded to Hounsfield and Cormack for their discovery. This article traces the history of CT scanner development and how each technical advance expanded chest diagnostic frontiers. Chest imaging now accounts for 30% of all CT scanning.
Comparison of SNOMED CT versus Medcin Terminology Concept Coverage for Mild Traumatic Brain Injury
Montella, Diane; Brown, Steven H.; Elkin, Peter L.; Jackson, James C.; Rosenbloom, S. Trent; Wahner-Roedler, Dietlind; Welsh, Gail; Cotton, Bryan; Guillamondegui, Oscar D.; Lew, Henry; Taber, Katherine H.; Tupler, Larry A.; Vanderploeg, Rodney; Speroff, Theodore
2011-01-01
Background: Traumatic Brain Injury (TBI) is a “signature” injury of the current wars in Iraq and Afghanistan. Structured electronic data regarding TBI findings is important for research, population health and other secondary uses but requires appropriate underlying standard terminologies to ensure interoperability and reuse. Currently the U.S. Department of Veterans Affairs (VA) uses the terminology SNOMED CT and the Department of Defense (DOD) uses Medcin. Methods: We developed a comprehensive case definition of mild TBI composed of 68 clinical terms. Using automated and manual techniques, we evaluated how well the mild TBI case definition terms could be represented by SNOMED CT and Medcin, and compared the results. We performed additional analysis stratified by whether the concepts were rated by a TBI expert panel as having High, Medium, or Low importance to the definition of mild TBI. Results: SNOMED CT sensitivity (recall) was 90% overall for coverage of mild TBI concepts, and Medcin sensitivity was 49%, p < 0.001 (using McNemar’s chi square). Positive predictive value (precision) for each was 100%. SNOMED CT outperformed Medcin for concept coverage independent of import rating by our TBI experts. Discussion: SNOMED CT was significantly better able to represent mild TBI concepts than Medcin. This finding may inform data gathering, management and sharing, and data exchange strategies between the VA and DOD for active duty soldiers and veterans with mild TBI. Since mild TBI is an important condition in the civilian population as well, the current study results may be useful also for the general medical setting. PMID:22195156
Chen, Chun-Chi; Huang, Jian-Wen; Zhao, Puya; Ko, Tzu-Ping; Huang, Chun-Hsiang; Chan, Hsiu-Chien; Huang, Zhiyong; Liu, Wenting; Cheng, Ya-Shan; Liu, Je-Ruei; Guo, Rey-Ting
2015-04-01
A thermophilic glycoside hydrolase family 16 (GH16) β-1,3-1,4-glucanase from Clostridium thermocellum (CtLic16A) holds great potentials in industrial applications due to its high specific activity and outstanding thermostability. In order to understand its molecular machinery, the crystal structure of CtLic16A was determined to 1.95Å resolution. The enzyme folds into a classic GH16 β-jellyroll architecture which consists of two β-sheets atop each other, with the substrate-binding cleft lying on the concave side of the inner β-sheet. Two Bis-Tris propane molecules were found in the positive and negative substrate binding sites. Structural analysis suggests that the major differences between the CtLic16A and other GH16 β-1,3-1,4-glucanase structures occur at the protein exterior. Furthermore, the high catalytic efficacy and thermal profile of the CtLic16A are preserved in the enzyme produced in Pichia pastoris, encouraging its further commercial applications. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Leszczynski, K; Lee, Y
Purpose: To evaluate MR-only treatment planning for brain Stereotactic Ablative Radiotherapy (SABR) based on pseudo-CT (pCT) generation using one set of T1-weighted MRI. Methods: T1-weighted MR and CT images from 12 patients who were eligible for brain SABR were retrospectively acquired for this study. MR-based pCT was generated by using a newly in-house developed algorithm based on MR tissue segmentation and voxel-based electron density (ED) assignment (pCTv). pCTs using bulk density assignment (pCTb where bone and soft tissue were assigned 800HU and 0HU,respectively), and water density assignment (pCTw where all tissues were assigned 0HU) were generated for comparison of EDmore » assignment techniques. The pCTs were registered with CTs and contours of radiation targets and Organs-at-Risk (OARs) from clinical CT-based plans were copied to co-registered pCTs. Volumetric-Modulated-Arc-Therapy(VMAT) plans were independently created for pCTv and CT using the same optimization settings and a prescription (50Gy/10 fractions) to planning-target-volume (PTV) mean dose. pCTv-based plans and CT-based plans were compared with dosimetry parameters and monitor units (MUs). Beam fluence maps of CT-based plans were transferred to co-registered pCTs, and dose was recalculated on pCTs. Dose distribution agreement between pCTs and CT plans were quantified using Gamma analysis (2%/2mm, 1%/1mm with a 10% cut-off threshold) in axial, coronal and sagittal planes across PTV. Results: The average differences of PTV mean and maximum doses, and monitor units between independently created pCTv-based and CT-based plans were 0.5%, 1.5% and 1.1%, respectively. Gamma analysis of dose distributions of the pCTs and the CT calculated using the same fluence map resulted in average agreements of 92.6%/79.1%/52.6% with 1%/1mm criterion, and 98.7%/97.4%/71.5% with 2%/2mm criterion, for pCTv/CT, pCTb/CT and pCTw/CT, respectively. Conclusion: Plans produced on Voxel-based pCT is dosimetrically more similar to CT plans than bulk assignment-based pCTs. MR-only treatment planning using voxel-based pCT generated from T1-wieghted MRI may be feasible.« less
Li, Ke; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong
2013-02-01
Using a grating interferometer, a conventional x-ray cone beam computed tomography (CT) data acquisition system can be used to simultaneously generate both conventional absorption CT (ACT) and differential phase contrast CT (DPC-CT) images from a single data acquisition. Since the two CT images were extracted from the same set of x-ray projections, it is expected that intrinsic relationships exist between the noise properties of the two contrast mechanisms. The purpose of this paper is to investigate these relationships. First, a theoretical framework was developed using a cascaded system model analysis to investigate the relationship between the noise power spectra (NPS) of DPC-CT and ACT. Based on the derived analytical expressions of the NPS, the relationship between the spatial-frequency-dependent noise equivalent quanta (NEQ) of DPC-CT and ACT was derived. From these fundamental relationships, the NPS and NEQ of the DPC-CT system can be derived from the corresponding ACT system or vice versa. To validate these theoretical relationships, a benchtop cone beam DPC-CT/ACT system was used to experimentally measure the modulation transfer function (MTF) and NPS of both DPC-CT and ACT. The measured three-dimensional (3D) MTF and NPS were then combined to generate the corresponding 3D NEQ. Two fundamental relationships have been theoretically derived and experimentally validated for the NPS and NEQ of DPC-CT and ACT: (1) the 3D NPS of DPC-CT is quantitatively related to the corresponding 3D NPS of ACT by an inplane-only spatial-frequency-dependent factor 1∕f (2), the ratio of window functions applied to DPC-CT and ACT, and a numerical factor C(g) determined by the geometry and efficiency of the grating interferometer. Note that the frequency-dependent factor is independent of the frequency component f(z) perpendicular to the axial plane. (2) The 3D NEQ of DPC-CT is related to the corresponding 3D NEQ of ACT by an f (2) scaling factor and numerical factors that depend on both the attenuation and refraction properties of the image object, as well as C(g) and the MTF of the grating interferometer. The performance of a DPC-CT system is intrinsically related to the corresponding ACT system. As long as the NPS and NEQ of an ACT system is known, the corresponding NPS and NEQ of the DPC-CT system can be readily estimated using additional characteristics of the grating interferometer.
CT scanography for limb length determination.
O'Connor, K J; Grady, J F; Hollander, M
1988-04-01
The authors present an alternative to classic techniques used to measure limb length discrepancy radiographically. CT scanography seems to have advantages over currently-used Bell-Thompson roentgenography in that it uses less radiation and is of no increase in cost.
Structure and Activities of Nuclear Medicine in Kuwait.
Elgazzar, Abdelhamid H; Owunwanne, Azuwuike; Alenezi, Saud
2016-07-01
The practice of nuclear medicine in Kuwait began in 1965 as a clinic for treating thyroid diseases. The practice developed gradually and until 1981 when the Faculty of Medicine established the Division of Nuclear Medicine in the Department of Radiology, which later became a separate department responsible for establishing and managing the practice in all hospitals of Kuwait. In 1987, a nuclear medicine residency program was begun and it is administered by Kuwait Institute for Medical Specializations originally as a 4-year but currently as a 5-year program. Currently there are 11 departments in the ministry of health hospitals staffed by 49 qualified attending physicians, mostly the diplomats of the Kuwait Institute for Medical Specializations nuclear medicine residency program, 4 academic physicians, 2 radiopharmacists, 2 physicists, and 130 technologists. These departments are equipped with 33 dual-head gamma cameras, 10 SPET/CT, 5 PET/CT, 2 cyclotrons, 1 breast-specific gamma imaging, 1 positron-emitting mammography, 10 thyroid uptake units, 8 technegas machines, 7 PET infusion systems, and 8 treadmills. Activities of nuclear medicine in Kuwait include education and training, clinical service, and research. Education includes nuclear medicine technology program in the Faculty of Allied Health Sciences, the 5-year residency program, medical school teaching distributed among different modules of the integrated curriculum with 14 didactic lecture, and other teaching sessions in nuclear medicine MSc program, which run concurrently with the first part of the residency program. The team of Nuclear Medicine in Kuwait has been active in research and has published more than 300 paper, 11 review articles, 12 book chapters, and 17 books in addition to 36 grants and 2 patents. A PhD program approved by Kuwait University Council would begin in 2016. Copyright © 2016 Elsevier Inc. All rights reserved.
2013-01-01
Background Many young people at high risk for Chlamydia trachomatis (Ct) are not reached by current sexual health care systems, such as general practitioners and public sexual health care centres (sexually transmitted infection clinics).Ct is the most frequently diagnosed bacterial sexually transmitted infection (STI) among sexually active people and in particular young heterosexuals. Innovative screening strategies are needed to interrupt the transmission of Ct among young people and connect the hidden cases to care. Methods Intervention Mapping (IM), a systematic approach to develop theory- and evidence-based interventions, was used to develop a strategy to target Ct testing towards young people who are currently hidden to care in The Netherlands. Both clinical users (i.e. sexual health care nurses) and public users (i.e., young people at risk for Ct) were closely involved in the IM process. A needs assessment study was carried out using semi-structured interviews among users (N = 21), a literature search and by taking lessons learned from existing screening programmes. Theoretical methods and practical applications to reach high risk young people and influence testing were selected and translated into specific programme components. Results The IM approach resulted in the development of a secure and web-based outreach Ct screening strategy, named SafeFriend. It is developed to target groups of high-risk young people who are currently hidden to care. Key methods include web-based Respondent Driven Sampling, starting from young Ct positive sexual health care centre clients, to reach and motivate peers (i.e., sex partners and friends) to get tested for Ct. Testing and the motivation of peers were proposed as the desired behavioural outcomes and the Precaution Adoption Process Model was chosen as theoretical framework. End users, i.e., young people and sexual health care nurses were interviewed and included in the development process to increase the success of implementation. Conclusions IM proved useful to develop an intervention for targeted Ct testing among young people. We believe this to be the first web-based outreach screening strategy which combines chain referral sampling with the delivery of targeted Ct testing to high risk young people within their sexual and social networks. PMID:24148656
Theunissen, Kevin A T M; Hoebe, Christian J P A; Crutzen, Rik; Kara-Zaïtri, Chakib; de Vries, Nanne K; van Bergen, Jan E A M; van der Sande, Marianne A B; Dukers-Muijrers, Nicole H T M
2013-10-22
Many young people at high risk for Chlamydia trachomatis (Ct) are not reached by current sexual health care systems, such as general practitioners and public sexual health care centres (sexually transmitted infection clinics).Ct is the most frequently diagnosed bacterial sexually transmitted infection (STI) among sexually active people and in particular young heterosexuals. Innovative screening strategies are needed to interrupt the transmission of Ct among young people and connect the hidden cases to care. Intervention Mapping (IM), a systematic approach to develop theory- and evidence-based interventions, was used to develop a strategy to target Ct testing towards young people who are currently hidden to care in The Netherlands. Both clinical users (i.e. sexual health care nurses) and public users (i.e., young people at risk for Ct) were closely involved in the IM process. A needs assessment study was carried out using semi-structured interviews among users (N = 21), a literature search and by taking lessons learned from existing screening programmes. Theoretical methods and practical applications to reach high risk young people and influence testing were selected and translated into specific programme components. The IM approach resulted in the development of a secure and web-based outreach Ct screening strategy, named SafeFriend. It is developed to target groups of high-risk young people who are currently hidden to care. Key methods include web-based Respondent Driven Sampling, starting from young Ct positive sexual health care centre clients, to reach and motivate peers (i.e., sex partners and friends) to get tested for Ct. Testing and the motivation of peers were proposed as the desired behavioural outcomes and the Precaution Adoption Process Model was chosen as theoretical framework. End users, i.e., young people and sexual health care nurses were interviewed and included in the development process to increase the success of implementation. IM proved useful to develop an intervention for targeted Ct testing among young people. We believe this to be the first web-based outreach screening strategy which combines chain referral sampling with the delivery of targeted Ct testing to high risk young people within their sexual and social networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, R.; Giri, Shankar; VA Medical Center at Jackson, Mississippi
2014-06-01
Purpose: Target localization of prostate for Intensity Modulated Radiation Therapy (IMRT) in patients with bilateral hip replacements is difficult due to artifacts in Computed Tomography (CT) images generated from the prostheses high Z materials. In this study, Magnetic Resonance (MR) images fused with CT images are tested as a solution. Methods: CT images of 2.5 mm slice thickness were acquired on a GE Lightspeed scanner with a flat-topped couch for a prostate cancer patient with bilateral hip replacements. T2 weighted images of 5 mm separation were acquired on a MR Scanner. After the MR-CT registration on a radiotherapy treatment planningmore » system (Eclipse, Varian), the target volumes were defined by the radiation oncologists on MR images and then transferred to CT images for planning and dose calculation. The CT Hounsfield Units (HU) was reassigned to zero (as water) for artifacts. The Varian flat panel treatment couch was modeled for dose calculation accuracy with heterogeneity correction. A Volume Matrix Arc Therapy (VMAT) and a seven-field IMRT plans were generated, each avoiding any beam transversing the prostheses; the two plans were compared. The superior VMAT plan was used for treating the patient. In-vivo dosimetry was performed using MOSFET (Best Canada) placed in a surgical tube inserted into the patient rectum during therapy. The measured dose was compared with planned dose for MOSFET location. Results: The registration of MR-CT images and the agreement of target volumes were confirmed by three physicians. VMAT plan was deemed superior to IMRT based on dose to critical nearby structures and overall conformality of target dosing. In-vivo measured dose compared with calculated dose was -4.5% which was likely due to attenuation of the surgical tube surrounding MOSFET. Conclusion: When artifacts are present on planning CT due to bilateral hip prostheses, MR-CT image fusion is a feasible solution for target delineation.« less
Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.
2015-01-01
Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454
Gaudio, Carlo; Petriello, Gennaro; Pelliccia, Francesco; Tanzilli, Alessandra; Bandiera, Alberto; Tanzilli, Gaetano; Barillà, Francesco; Paravati, Vincenzo; Pellegrini, Massimo; Mangieri, Enrico; Barillari, Paolo
2018-05-08
Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease.
PET/CT scanners: a hardware approach to image fusion.
Townsend, David W; Beyer, Thomas; Blodgett, Todd M
2003-07-01
New technology that combines positron tomography with x-ray computed tomography (PET/CT) is available from all major vendors of PET imaging equipment: CTI, Siemens, GE, Philips. Although not all vendors have made the same design choices as those described in this review all have in common that their high performance design places a commercial CT scanner in tandem with a commercial PET scanner. The level of physical integration is actually less than that of the original prototype design where the CT and PET components were mounted on the same rotating support. There will undoubtedly be a demand for PET/CT technology with a greater level of integration, and at a reduced cost. This may be achieved through the design of a scanner specifically for combined anatomical and functional imaging, rather than a design combining separate CT and PET scanners, as in the current approaches. By avoiding the duplication of data acquisition and image reconstruction functions, for example, a more integrated design should also allow cost savings over current commercial PET/CT scanners. The goal is then to design and build a device specifically for imaging the function and anatomy of cancer in the most optimal and effective way, without conceptualizing it as combined PET and CT. The development of devices specifically for imaging a particular disease (eg, cancer) differs from the conventional approach of, for example, an all-purpose anatomical imaging device such as a CT scanner. This new concept targets more of a disease management approach rather than the usual division into the medical specialties of radiology (anatomical imaging) and nuclear medicine (functional imaging). Copyright 2003 Elsevier Inc. All rights reserved.
Kim, Chang Rae; Jeon, Ji Young
2018-05-01
The purpose of this article is to compare radiation doses and conspicuity of anatomic landmarks of the temporal bone between the CT technique using spectral beam shaping at 150 kVp with a dedicated tin filter (150 kVp-Sn) and the conventional protocol at 120 kVp. 25 patients (mean age, 46.8 ± 21.2 years) were examined using the 150-kVp Sn protocol (200 reference mAs using automated tube current modulation, 64 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8), whereas 30 patients (mean age, 54.5 ± 17.8 years) underwent the 120-kVp protocol (180 mAs, 128 × 0.6 mm collimation, 0.6 mm slice thickness, pitch 0.8). Radiation doses were compared between the two acquisition techniques, and dosimetric data from the literature were reviewed for comparison of radiation dose reduction. Subjective conspicuity of 23 anatomic landmarks of the temporal bone, expressed by 5-point rating scale and objective conspicuity by signal-to-noise ratio (SNR) which measured in 4 different regions of interest (ROI), were compared between 150-kVp Sn and 120-kVp acquisitions. The mean dose-length-product (DLP) and effective dose were significantly lower for the 150-kVp Sn scans (0.26 ± 0.26 mSv) compared with the 120-kVp scans (0.92 ± 0.10 mSv, p < 0.001). The lowest effective dose from the literature-based protocols was 0.31 ± 0.12 mSv, which proposed as a low-dose protocol in the setting of spiral multislice temporal bone CT. SNR was slightly superior for 120-kVp images, however analyzability of the 23 anatomic structures did not differ significantly between 150-kVp Sn and 120-kVp scans. Temporal bone CT performed at 150 kVp with an additional tin filter for spectral shaping markedly reduced radiation exposure when compared with conventional temporal bone CT at 120 kVp while maintaining anatomic conspicuity. The decreased radiation dose of the 150-kVp Sn was also lower in comparison to the previous literature-based low-dose temporal bone CT protocol. Copyright © 2018 Elsevier B.V. All rights reserved.
Evaluation of the effect of low tube voltage on radiation dose and image quality
NASA Astrophysics Data System (ADS)
Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, A. T. Abdul
2017-05-01
Number of Computed Tomography (CT) examinations performed worldwide is increasing. In 2010, the FDA issued an initiative to reduce unnecessary radiation exposure from CT imaging. The aim of this study is to evaluate the effect of low tube voltage on radiation dose and image quality using CTDI phantom. The CTDI phantom was scanned with dual energy CT at 80 kV and 120 kV with the tube current from 150 mAs to 350 mAs. Pitch was 1.0 while slice thickness was 1 mm and 5 mm. Results show if mAs was increased, the SNR values also will be increased. The 5 mm slice thickness shows higher SNR value compared to 1 mm slice thickness. As the voltage and tube current increased, the amount of dose absorbed is also increased because current is proportional to photon flux.
NASA Astrophysics Data System (ADS)
Tanaka, Osamu; Iida, Takayoshi; Komeda, Hisao; Tamaki, Masayoshi; Seike, Kensaku; Kato, Daiki; Yokoyama, Takamasa; Hirose, Shigeki; Kawaguchi, Daisuke
2016-12-01
Visualization of markers is critical for imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). However, the size of the marker varies according to the imaging technique. While a large-sized marker is more useful for visualization in MRI, it results in artifacts on CT and causes substantial pain on administration. In contrast, a small-sized marker reduces the artifacts on CT but hampers MRI detection. Herein, we report a new ironcontaining marker and compare its utility with that of non-iron-containing markers. Five patients underwent CT/MRI fusion-based intensity-modulated radiotherapy, and the markers were placed by urologists. A Gold Anchor™ (GA; diameter, 0.28 mm; length, 10 mm) was placed using a 22G needle on the right side of the prostate. A VISICOIL™ (VIS; diameter, 0.35 mm; length, 10 mm) was placed using a 19G needle on the left side. MRI was performed using T2*-weighted imaging. Three observers evaluated and scored the visual qualities of the acquired images. The mean score of visualization was almost identical between the GA and VIS in radiography and cone-beam CT (Novalis Tx). The artifacts in planning CT were slightly larger using the GA than using the VIS. The visualization of the marker on MRI using the GA was superior to that using the VIS. In conclusion, the visualization quality of radiography, conebeam CT, and planning CT was roughly equal between the GA and VIS. However, the GA was more strongly visualized than was the VIS on MRI due to iron containing.
Paradis, Eric; Cao, Yue; Lawrence, Theodore S; Tsien, Christina; Feng, Mary; Vineberg, Karen; Balter, James M
2015-12-01
The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dose metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: -0.1 to 0.2%) for D(95%); 0.0% (-0.7 to 0.6%) for D(5%); and -0.2% (-1.0 to 0.2%) for D(max). MRCT plans showed no significant changes in monitor units (-0.4%) compared to CT plans. Organs at risk (OARs) had average D(max) differences of 0.0 Gy (-2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions. Copyright © 2015 Elsevier Inc. All rights reserved.
Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans.
Tomita, Naofumi; Cheung, Yvonne Y; Hassanpour, Saeed
2018-07-01
Osteoporotic vertebral fractures (OVFs) are prevalent in older adults and are associated with substantial personal suffering and socio-economic burden. Early diagnosis and treatment of OVFs are critical to prevent further fractures and morbidity. However, OVFs are often under-diagnosed and under-reported in computed tomography (CT) exams as they can be asymptomatic at an early stage. In this paper, we present and evaluate an automatic system that can detect incidental OVFs in chest, abdomen, and pelvis CT examinations at the level of practicing radiologists. Our OVF detection system leverages a deep convolutional neural network (CNN) to extract radiological features from each slice in a CT scan. These extracted features are processed through a feature aggregation module to make the final diagnosis for the full CT scan. In this work, we explored different methods for this feature aggregation, including the use of a long short-term memory (LSTM) network. We trained and evaluated our system on 1432 CT scans, comprised of 10,546 two-dimensional (2D) images in sagittal view. Our system achieved an accuracy of 89.2% and an F1 score of 90.8% based on our evaluation on a held-out test set of 129 CT scans, which were established as reference standards through standard semiquantitative and quantitative methods. The results of our system matched the performance of practicing radiologists on this test set in real-world clinical circumstances. We expect the proposed system will assist and improve OVF diagnosis in clinical settings by pre-screening routine CT examinations and flagging suspicious cases prior to review by radiologists. Copyright © 2018 Elsevier Ltd. All rights reserved.
Brodin, N P; Björk-Eriksson, T; Birk Christensen, C; Kiil-Berthelsen, A; Aznar, M C; Hollensen, C; Markova, E; Munck af Rosenschöld, P
2015-01-01
Objective: To investigate the impact of including fluorine-18 fludeoxyglucose (18F-FDG) positron emission tomography (PET) scanning in the planning of paediatric radiotherapy (RT). Methods: Target volumes were first delineated without and subsequently re-delineated with access to 18F-FDG PET scan information, on duplicate CT sets. RT plans were generated for three-dimensional conformal photon RT (3DCRT) and intensity-modulated proton therapy (IMPT). The results were evaluated by comparison of target volumes, target dose coverage parameters, normal tissue complication probability (NTCP) and estimated risk of secondary cancer (SC). Results: Considerable deviations between CT- and PET/CT-guided target volumes were seen in 3 out of the 11 patients studied. However, averaging over the whole cohort, CT or PET/CT guidance introduced no significant difference in the shape or size of the target volumes, target dose coverage, irradiated volumes, estimated NTCP or SC risk, neither for IMPT nor 3DCRT. Conclusion: Our results imply that the inclusion of PET/CT scans in the RT planning process could have considerable impact for individual patients. There were no general trends of increasing or decreasing irradiated volumes, suggesting that the long-term morbidity of RT in childhood would on average remain largely unaffected. Advances in knowledge: 18F-FDG PET-based RT planning does not systematically change NTCP or SC risk for paediatric cancer patients compared with CT only. 3 out of 11 patients had a distinct change of target volumes when PET-guided planning was introduced. Dice and mismatch metrics are not sufficient to assess the consequences of target volume differences in the context of RT. PMID:25494657
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paradis, Eric, E-mail: eparadis@umich.edu; Cao, Yue; Department of Radiology, University of Michigan Hospital and Health Systems, Ann Arbor, Michigan
2015-12-01
Purpose: The purpose of this study was to assess the dosimetric accuracy of synthetic CT (MRCT) volumes generated from magnetic resonance imaging (MRI) data for focal brain radiation therapy. Methods and Materials: A study was conducted in 12 patients with gliomas who underwent both MR and CT imaging as part of their simulation for external beam treatment planning. MRCT volumes were generated from MR images. Patients' clinical treatment planning directives were used to create 12 individual volumetric modulated arc therapy (VMAT) plans, which were then optimized 10 times on each of their respective CT and MRCT-derived electron density maps. Dosemore » metrics derived from optimization criteria, as well as monitor units and gamma analyses, were evaluated to quantify differences between the imaging modalities. Results: Mean differences between planning target volume (PTV) doses on MRCT and CT plans across all patients were 0.0% (range: −0.1 to 0.2%) for D{sub 95%}; 0.0% (−0.7 to 0.6%) for D{sub 5%}; and −0.2% (−1.0 to 0.2%) for D{sub max}. MRCT plans showed no significant changes in monitor units (−0.4%) compared to CT plans. Organs at risk (OARs) had average D{sub max} differences of 0.0 Gy (−2.2 to 1.9 Gy) over 85 structures across all 12 patients, with no significant differences when calculated doses approached planning constraints. Conclusions: Focal brain VMAT plans optimized on MRCT images show excellent dosimetric agreement with standard CT-optimized plans. PTVs show equivalent coverage, and OARs do not show any overdose. These results indicate that MRI-derived synthetic CT volumes can be used to support treatment planning of most patients treated for intracranial lesions.« less
Benmocha Guggenheimer, Adva; Almagor, Lior; Tsemakhovich, Vladimir; Tripathy, Debi Ranjan; Hirsch, Joel A; Dascal, Nathan
2016-01-01
The modulation and regulation of voltage-gated Ca2+ channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca2+ channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca2+, presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca2+-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca2+ entry into the cell. PMID:26577286
Yang, Pei-Ming; Du, Jia-Ling; Wang, George Nian-Kae; Chia, Jean-San; Hsu, Wei-Bin; Pu, Pin-Ching; Sun, Andy; Chiang, Chun-Pin; Wang, Won-Bo
2016-01-01
Background. The Chinese herbal mixture, Tien-Hsien liquid (THL), has been used as an anticancer dietary supplement for more than 20 years. Our previous studies have shown that THL can modulate immune responseand inhibit tumor growth. In this study, we further evaluated the effect of THL on anticancer immune response in mice vaccinated with γ-ray-irradiated tumor cells. Methods. The antitumor effect of THL was determined in mice vaccinated with low-tumorigenic CT-26-low colon cancer cells or γ-ray-irradiated high-tumorigenic CT-26-high colon cancer cells. The number of natural killer (NK) cells and T lymphocytes in the spleen was analyzed by flow cytometry. The tumor-killing activities of NK cells and cytotoxic T lymphocytes (CTLs) were analyzed by flow cytometry using YAC-1 and CT-26-high cells, respectively, as target cells. The levels of IFN-γ, IL-2, and TNF-α were determined by ELISA. Results. THL suppressed the growth of CT-26-high tumor in mice previously vaccinated with low-tumorigenic CT-26-low cells or γ-irradiated CT-26-high cells. THL increased the populations of NK cells and CD4+ T lymphocytes in the spleen and enhanced the tumor-killing activities of NK cells and CTL in mice vaccinated with γ-irradiated CT-26-high cells. THL increased the production of IFN-γ, IL-2, and TNF-α in mice vaccinated with γ-irradiated CT-26-high cells. Conclusion. THL can enhance the antitumor immune responses in mice vaccinated with killed tumor cells. These results suggest that THL may be used as a complementary medicine for cancer patients previously treated with killed tumor cell vaccines, radiotherapy, or chemotherapy. PMID:27252074
Technical considerations for implementation of x-ray CT polymer gel dosimetry.
Hilts, M; Jirasek, A; Duzenli, C
2005-04-21
Gel dosimetry is the most promising 3D dosimetry technique in current radiation therapy practice. X-ray CT has been shown to be a feasible method of reading out polymer gel dosimeters and, with the high accessibility of CT scanners to cancer hospitals, presents an exciting possibility for clinical implementation of gel dosimetry. In this study we report on technical considerations for implementation of x-ray CT polymer gel dosimetry. Specifically phantom design, CT imaging methods, imaging time requirements and gel dose response are investigated. Where possible, recommendations are made for optimizing parameters to enhance system performance. The dose resolution achievable with an optimized system is calculated given voxel size and imaging time constraints. Results are compared with MRI and optical CT polymer gel dosimetry results available in the literature.
Strunk, Daniel R; Hollars, Shannon N; Adler, Abby D; Goldstein, Lizabeth A; Braun, Justin D
2014-10-01
In Cognitive Therapy (CT), therapists work to help patients develop skills to cope with negative affect. Most current methods of assessing patients' skills are cumbersome and impractical for clinical use. To address this issue, we developed and conducted an initial psychometric evaluation of self and therapist reported versions of a new measure of CT skills: the Competencies of Cognitive Therapy Scale (CCTS). We evaluated the CCTS at intake and post-treatment in a sample of 67 patients participating in CT. The CCTS correlated with a preexisting measure of CT skills (the Ways of Responding Questionnaire) and was also related to concurrent depressive symptoms. Across CT, self-reported improvements in CT competencies were associated with greater changes in depressive symptoms. These findings offer initial evidence for the validity of the CCTS. We discuss the CCTS in comparison with other measures of CT skills and suggest future research directions.
Strunk, Daniel R.; Hollars, Shannon N.; Adler, Abby D.; Goldstein, Lizabeth A.; Braun, Justin D.
2014-01-01
In Cognitive Therapy (CT), therapists work to help patients develop skills to cope with negative affect. Most current methods of assessing patients’ skills are cumbersome and impractical for clinical use. To address this issue, we developed and conducted an initial psychometric evaluation of self and therapist reported versions of a new measure of CT skills: the Competencies of Cognitive Therapy Scale (CCTS). We evaluated the CCTS at intake and post-treatment in a sample of 67 patients participating in CT. The CCTS correlated with a preexisting measure of CT skills (the Ways of Responding Questionnaire) and was also related to concurrent depressive symptoms. Across CT, self-reported improvements in CT competencies were associated with greater changes in depressive symptoms. These findings offer initial evidence for the validity of the CCTS. We discuss the CCTS in comparison with other measures of CT skills and suggest future research directions. PMID:25408560
A limited-angle CT reconstruction method based on anisotropic TV minimization.
Chen, Zhiqiang; Jin, Xin; Li, Liang; Wang, Ge
2013-04-07
This paper presents a compressed sensing (CS)-inspired reconstruction method for limited-angle computed tomography (CT). Currently, CS-inspired CT reconstructions are often performed by minimizing the total variation (TV) of a CT image subject to data consistency. A key to obtaining high image quality is to optimize the balance between TV-based smoothing and data fidelity. In the case of the limited-angle CT problem, the strength of data consistency is angularly varying. For example, given a parallel beam of x-rays, information extracted in the Fourier domain is mostly orthogonal to the direction of x-rays, while little is probed otherwise. However, the TV minimization process is isotropic, suggesting that it is unfit for limited-angle CT. Here we introduce an anisotropic TV minimization method to address this challenge. The advantage of our approach is demonstrated in numerical simulation with both phantom and real CT images, relative to the TV-based reconstruction.
Schwind, Julia; Neng, Julia M B; Weck, Florian
2016-09-01
Cognitive-behavioural therapy can change dysfunctional symptom attributions in patients with hypochondriasis. Past research has used forced-choice answer formats, such as questionnaires, to assess these misattributions; however, with this approach, idiosyncratic attributions cannot be assessed. Free associations are an important complement to existing approaches that assess symptom attributions. With this study, we contribute to the current literature by using an open-response instrument to investigate changes in freely associated attributions after exposure therapy (ET) and cognitive therapy (CT) compared with a wait list (WL). The current study is a re-examination of a formerly published randomized controlled trial (Weck, Neng, Richtberg, Jakob and Stangier, 2015) that investigated the effectiveness of CT and ET. Seventy-three patients with hypochondriasis were randomly assigned to CT, ET or a WL, and completed a 12-week treatment (or waiting period). Before and after the treatment or waiting period, patients completed an Attribution task in which they had to spontaneously attribute nine common bodily sensations to possible causes in an open-response format. Compared with the WL, both CT and ET reduced the frequency of somatic attributions regarding severe diseases (CT: Hedges's g = 1.12; ET: Hedges's g = 1.03) and increased the frequency of normalizing attributions (CT: Hedges's g = 1.17; ET: Hedges's g = 1.24). Only CT changed the attributions regarding moderate diseases (Hedges's g = 0.69). Changes in somatic attributions regarding mild diseases and psychological attributions were not observed. Both CT and ET are effective for treating freely associated misattributions in patients with hypochondriasis. This study supplements research that used a forced-choice assessment.
Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J
2014-01-01
To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.
Semelka, Richard C; Armao, Diane M; Elias, Jorge; Huda, Walter
2007-05-01
"When one admits that nothing is certain one must, I think, also admit that some things are much more nearly certain than others." Bertrand Russell (1872-1970) Computed tomography (CT) is one of the largest contributors to man-made radiation doses in medical populations. CT currently accounts for over 60 million examinations in the United States, and its use continues to grow rapidly. The principal concern regarding radiation exposure is that the subject may develop malignancies. For this systematic review we searched journal publications in MEDLINE (1966-2006) using the terms "CT," "ionizing radiation," "cancer risks," "MRI," and "patient safety." We also searched major reports issued from governmental U.S. and world health-related agencies. Many studies have shown that organ doses associated with routine diagnostic CT scans are similar to the low-dose range of radiation received by atomic-bomb survivors. The FDA estimates that a CT examination with an effective dose of 10 mSv may be associated with an increased chance of developing fatal cancer for approximately one patient in 2000, whereas the BEIR VII lifetime risk model predicts that with the same low-dose radiation, approximately one individual in 1000 will develop cancer. There are uncertainties in the current radiation risk estimates, especially at the lower dose levels encountered in CT. To address what should be done to ensure patient safety, in this review we discuss the "as low as reasonably achievable" (ALARA) principle, and the use of MRI as an alternative to CT. (c) 2007 Wiley-Liss, Inc.
Beeres, Martin; Bauer, Ralf W; Kerl, Josef M; Vogl, Thomas J; Lee, Clara
2015-01-01
Objectives: The aim of our study was to find out how much energy is applicable in second-generation dual source high-pitch computed tomography (CT) in imaging of the abdomen. Materials and Methods: We examined an upper abdominal phantom using a Somatom Definition Flash CT-Scanner (Siemens, Forchheim, Germany). The study protocol consisted of a scan-series at 100 kV and 120 kV. In each scan series we started with a pitch of 3.2 and reduced it in steps of 0.2, until a pitch of 1.6 was reached. The current was adjusted to the maximum the scanner could achieve. Energy values, image noise, image quality, and radiation exposure were evaluated. Results: For a pitch of 3.2 the maximum applicable current was 142 mAs at 120 kV and in 100 kV the maximum applicable current was 114 mAs. For conventional abdominal imaging, current levels of 200 to 260 mAs are generally used. To achieve similar current levels, we had to decrease the pitch to 1.8 at 100 kV — at this pitch we could perform our imaging at 204 mAs. At a pitch of 2.2 in 120 kV we could apply a current of 206 mAs. Conclusion: We conclude our study by stating that if there is a need for a higher current, we have to reduce the pitch. In a high-pitch dual source CT, we always have to remember where our main focus is, so we can adjust the pitch to the energy we need in the area of the body that has to be imaged, to find answers to the clinical question being raised. PMID:25806137
Kouno, Takuya; Kuga, Noriyuki; Enzaki, Masahiro; Yamashita, Yuuki; Kitazato, Yumiko; Shimotabira, Haruhiko; Jinnouchi, Takashi; Kusuhara, Kazuo; Kawamura, Shinji
2015-04-01
The aim of this study was to reduce the exposed dose of radiotherapy treatment planning computed tomography (CT) by using low tube voltage technique. We used tube voltages of 80 kV, 100 kV, and 120 kV, respectively. First, we evaluated exposure dose with CT dose index (CTDI) for each voltage. Second, we compared image quality indexes such as modulation transfer function (MTF), noise power spectrum (NPS), and contrast to noise ratio (CNR) of phantom images with each voltage. Third, CT to electron density tables were measured in three voltages and monitor unit value was calculated along with clinical cases. Finally, CT surface exposed dose of chest skin was measured by thermoluminescent dosimeter (TLD). In image evaluation MTF and NPS were approximately equal; CNR slightly decreased, 2.0% for 100 kV. We performed check radiation dose accuracy for each tube voltage with each model phantom. As a result, the difference of MU value was not accepted. Finally, compared with 120 kV, CTDIvol and TLD value showed markedly decreased radiation dose, 60% for 80 kV and 30% for 100 kV. Using a technique with low tube voltages, especially 100 kV, is useful in radiotherapy treatment planning to obtain 20% dose reduction without compromising 120 kV image quality.
Teh, V; Sim, K S; Wong, E K
2016-11-01
According to the statistic from World Health Organization (WHO), stroke is one of the major causes of death globally. Computed tomography (CT) scan is one of the main medical diagnosis system used for diagnosis of ischemic stroke. CT scan provides brain images in Digital Imaging and Communication in Medicine (DICOM) format. The presentation of CT brain images is mainly relied on the window setting (window center and window width), which converts an image from DICOM format into normal grayscale format. Nevertheless, the ordinary window parameter could not deliver a proper contrast on CT brain images for ischemic stroke detection. In this paper, a new proposed method namely gamma correction extreme-level eliminating with weighting distribution (GCELEWD) is implemented to improve the contrast on CT brain images. GCELEWD is capable of highlighting the hypodense region for diagnosis of ischemic stroke. The performance of this new proposed technique, GCELEWD, is compared with four of the existing contrast enhancement technique such as brightness preserving bi-histogram equalization (BBHE), dualistic sub-image histogram equalization (DSIHE), extreme-level eliminating histogram equalization (ELEHE), and adaptive gamma correction with weighting distribution (AGCWD). GCELEWD shows better visualization for ischemic stroke detection and higher values with image quality assessment (IQA) module. SCANNING 38:842-856, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Staton, Robert J.
Of the various types of imaging modalities used in pediatric radiology, fluoroscopy and computed tomography (CT) have the highest associated radiation dose. While these examinations are commonly used for pediatric patients, little data exists on the magnitude of the organ and effective dose values for these procedures. Calculation of these dose values is necessary because of children's increased sensitivity to radiation and their long life expectancy for which to express radiation's latent effects. In this study, a newborn tomographic phantom has been implemented in a radiation transport code to evaluate organ and effective doses for newborn patients in commonly performed fluoroscopy and CT examinations. Organ doses were evaluated for voiding cystourethrogram (VCUG) fluoroscopy studies of infant patients. Time-sequence analysis was performed for videotaped VCUG studies of five different patients. Organ dose values were then estimated for each patient through Monte Carlo (MC) simulations. The effective dose values of the VCUG examination for five patients ranged from 0.6 mSv to 3.2 mSv, with a mean of 1.8 +/- 0.9 mSv. Organ doses were also assessed for infant upper gastrointestinal (UGI) fluoroscopy exams. The effective dose values of the UGI examinations for five patients ranged from 1.05 mSv to 5.92 mSv, with a mean of 2.90 +/- 1.97 mSv. MC simulations of helical multislice CT (MSCT) exams were also completed using, the newborn tomographic phantom and a stylized newborn phantom. The helical path of the source, beam shaping filter, beam profile, patient table, were all included in the MC simulations of the helical MSCT scanner. Organ doses and effective doses and their dependence on scan parameters were evaluated for newborn patients. For all CT scans, the effective dose was found to range approximately 1-13 mSv, with the largest values occurring for CAP scans. Tube current modulation strategies to reduce patient dose were also evaluated for newborn patients. Overall, utilization of the newborn tomographic phantom in MC simulations has shown the need for and usefulness of pediatric tomographic phantoms. The newborn tomographic model has shown more versatility and realistic anatomical modeling when compared to the existing stylized newborn phantom. This work has provided important organ dose data for infant patients in common examinations in pediatric radiology.
Chatterson, Leslie C; Leswick, David A; Fladeland, Derek A; Hunt, Megan M; Webster, Stephen; Lim, Hyun
2014-07-01
Custom bismuth-antimony shields were previously shown to reduce fetal dose by 53% on an 8DR (detector row) CT scanner without dynamic adaptive section collimation (DASC), automatic tube current modulation (ATCM) or adaptive statistical iterative reconstruction (ASiR). The purpose of this study is to compare the effective maternal and average fetal organ dose reduction both with and without bismuth-antimony shields on a 64DR CT scanner using DASC, ATCM and ASiR during maternal CTPA. A phantom with gravid prosthesis and a bismuth-antimony shield were used. Thermoluminescent dosimeters (TLDs) measured fetal radiation dose. The average fetal organ dose and effective maternal dose were determined using 100 kVp, scanning from the lung apices to the diaphragm utilizing DASC, ATCM and ASiR on a 64DR CT scanner with and without shielding in the first and third trimester. Isolated assessment of DASC was done via comparing a new 8DR scan without DASC to a similar scan on the 64DR with DASC. Average third trimester unshielded fetal dose was reduced from 0.22 mGy ± 0.02 on the 8DR to 0.13 mGy ± 0.03 with the conservative 64DR protocol that included 30% ASiR, DASC and ATCM (42% reduction, P<0.01). Use of a shield further reduced average third trimester fetal dose to 0.04 mGy ± 0.01 (69% reduction, P<0.01). The average fetal organ dose reduction attributable to DASC alone was modest (6% reduction from 0.17 mGy ± 0.02 to 0.16 mGy ± 0.02, P=0.014). First trimester fetal organ dose on the 8DR protocol was 0.07 mGy ± 0.03. This was reduced to 0.05 mGy ± 0.03 on the 64DR protocol without shielding (30% reduction, P=0.009). Shields further reduced this dose to below accurately detectable levels. Effective maternal dose was reduced from 4.0 mSv on the 8DR to 2.5 mSv on the 64DR scanner using the conservative protocol (38% dose reduction). ASiR, ATCM and DASC combined significantly reduce effective maternal and fetal organ dose during CTPA. Shields continue to be an effective means of fetal dose reduction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Perfusion CT helps decision making for thrombolysis when there is no clear time of onset
Hellier, K D; Hampton, J L; Guadagno, J V; Higgins, N P; Antoun, N M; Day, D J; Gillard, J H; Warburton, E A; Baron, J‐C
2006-01-01
Current guidelines on thrombolysis post stroke with recombinant tissue plasminogen activator (rt‐PA) exclude its use where time of onset is unknown, thus denying some patients potentially beneficial treatment. Contrast enhanced perfusion computed tomography (pCT) imaging can be used together with plain CT and information on clinical deficits to decide whether or not thrombolysis should be initiated even though the exact time of stroke onset is unknown. Based on the results of pCT and CT, rt‐PA was administered to two patients with unknown time of stroke onset; one of the patients also underwent suction thrombectomy. Results in both cases were excellent. PMID:16484659
Katsumata, Tadayoshi; Nakakuki, Hiroko; Tokunaga, Chikara; Fujii, Noboru; Egi, Makoto; Phan, Tam-Hao T.; Mummalaneni, Shobha; DeSimone, John A.
2008-01-01
Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000–5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague–Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t. PMID:18603652
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Allen M., E-mail: allen.chen@ucdmc.ucdavis.edu; Farwell, D. Gregory; Luu, Quang
2011-07-01
Purpose: To report a single-institutional experience using intensity-modulated radiotherapy with daily image-guided radiotherapy for the reirradiation of recurrent and second cancers of the head and neck. Methods and Materials: Twenty-one consecutive patients were prospectively treated with intensity-modulated radiotherapy from February 2006 to March 2009 to a median dose of 66 Gy (range, 60-70 Gy). None of these patients received concurrent chemotherapy. Daily helical megavoltage CT scans were obtained before each fraction as part of an image-guided radiotherapy registration protocol for patient alignment. Results: The 1- and 2-year estimates of in-field control were 72% and 65%, respectively. A total of 651more » daily megavoltage CT scans were obtained. The mean systematic shift to account for interfraction motion was 1.38 {+-} 1.25 mm, 1.79 {+-} 1.45 mm, and 1.98 {+-} 1.75 mm for the medial-lateral, superior-inferior, and anterior-posterior directions, respectively. Pretreatment shifts of >3 mm occurred in 19% of setups in the medial-lateral, 27% in the superior-inferior, and 33% in the anterior-posterior directions, respectively. There were no treatment-related fatalities or hospitalizations. Complications included skin desquamation, odynophagia, otitis externa, keratitis, naso-lacrimal duct stenosis, and brachial plexopathy. Conclusions: Intensity-modulated radiotherapy with daily image guidance results in effective disease control with relatively low morbidity and should be considered for selected patients with recurrent and second primary cancers of the head and neck.« less
Genetic Polymorphisms of TLR4 and MICA are Associated with Severity of Trachoma Disease in Tanzania
Abbas, Muneer; Berka, Noureddine; Khraiwesh, Mozna; Ramadan, Ali; Apprey, Victor; Furbert-Harris, Paulette; Quinn, Thomas; Brim, Hassan; Dunston, Georgia
2016-01-01
Aim To examine the association of TLR4 Asp299Gly and MICA exon 5 microsatellites polymorphisms with severity of trachoma in a sub-Saharan East Africa population of Tanzanian villagers. Methods The samples were genotyped for MICA exon 5 microsatellites and the TLR4 299 A/G polymorphism by Restriction Fragment Length Polymorphism (RFLP), and GeneScan®, respectively. The association of TLR4 Asp299Gly and MICA exon 5 microsatellites with inflammatory trachoma (TI) and trichiasis (TI) were examined. Results The results showed an association between TLR4 and MICA polymorphisms and trachoma disease severity, as well as with protection. TLR4 an allele was significantly associated with inflammatory trachoma (p=0.0410), while the G allele (p=0.0410) was associated with protection. Conclusion TLR4 and MICA may modulate the risk of severity to trachoma disease by modulating the immune response to Ct. In addition; the increased frequency of MICA-A9 heterozygote in controls may suggest a positive selection of these alleles in adaptation to environments where Ct is endemic. PMID:27559544
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Kapanen, Mika; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korhonen, Juha, E-mail: juha.p.korhonen@hus.fi; Department of Oncology, Helsinki University Central Hospital, POB-180, 00029 HUS; Kapanen, Mika
2014-01-15
Purpose: The lack of electron density information in magnetic resonance images (MRI) poses a major challenge for MRI-based radiotherapy treatment planning (RTP). In this study the authors convert MRI intensity values into Hounsfield units (HUs) in the male pelvis and thus enable accurate MRI-based RTP for prostate cancer patients with varying tissue anatomy and body fat contents. Methods: T{sub 1}/T{sub 2}*-weighted MRI intensity values and standard computed tomography (CT) image HUs in the male pelvis were analyzed using image data of 10 prostate cancer patients. The collected data were utilized to generate a dual model HU conversion technique from MRImore » intensity values of the single image set separately within and outside of contoured pelvic bones. Within the bone segment local MRI intensity values were converted to HUs by applying a second-order polynomial model. This model was tuned for each patient by two patient-specific adjustments: MR signal normalization to correct shifts in absolute intensity level and application of a cutoff value to accurately represent low density bony tissue HUs. For soft tissues, such as fat and muscle, located outside of the bone contours, a threshold-based segmentation method without requirements for any patient-specific adjustments was introduced to convert MRI intensity values into HUs. The dual model HU conversion technique was implemented by constructing pseudo-CT images for 10 other prostate cancer patients. The feasibility of these images for RTP was evaluated by comparing HUs in the generated pseudo-CT images with those in standard CT images, and by determining deviations in MRI-based dose distributions compared to those in CT images with 7-field intensity modulated radiation therapy (IMRT) with the anisotropic analytical algorithm and 360° volumetric-modulated arc therapy (VMAT) with the Voxel Monte Carlo algorithm. Results: The average HU differences between the constructed pseudo-CT images and standard CT images of each test patient ranged from −2 to 5 HUs and from 22 to 78 HUs in soft and bony tissues, respectively. The average local absolute value differences were 11 HUs in soft tissues and 99 HUs in bones. The planning target volume doses (volumes 95%, 50%, 5%) in the pseudo-CT images were within 0.8% compared to those in CT images in all of the 20 treatment plans. The average deviation was 0.3%. With all the test patients over 94% (IMRT) and 92% (VMAT) of dose points within body (lower than 10% of maximum dose suppressed) passed the 1 mm and 1% 2D gamma index criterion. The statistical tests (t- and F-tests) showed significantly improved (p ≤ 0.05) HU and dose calculation accuracies with the soft tissue conversion method instead of homogeneous representation of these tissues in MRI-based RTP images. Conclusions: This study indicates that it is possible to construct high quality pseudo-CT images by converting the intensity values of a single MRI series into HUs in the male pelvis, and to use these images for accurate MRI-based prostate RTP dose calculations.« less
Pulmonary CT and MRI Phenotypes that help explain COPD Pathophysiology and Outcomes
Hoffman, Eric A.; Lynch, David A.; Barr, R. Graham; van Beek, Edwin J.R.; Parraga, Grace
2016-01-01
Pulmonary X-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to sub-phenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically-important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs as well as the mortality and morbidity associated with COPD. PMID:26199216
Etchebehere, Elba C.; Hobbs, Brian P.; R.Milton, Denái; Malawi, Osama; Patel, Shreyaskumar; Benjamin, Robert S.; Macapinlac, Homer A.
2016-01-01
Purpose Twelve years ago a meta-analysis evaluated the diagnostic performance of 18F-FDG PET in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging however there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of 18F-FDG PET/CT and determine if there is added value when compared to PET. Patients and Methods A systematic review of English articles using MEDLINE PubMed, the Cochrane Library and EMBASE were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of 18F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Results Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60%) malignant tumors and 306 benign lesions. The 18F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive and negative predictive values for diagnosing MsSTL was 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94) and 0.91 (0.83, 0.99), respectively. The posterior mean (95% HPD interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy and positive predictive value when compared to a dedicated PET (0.85, 0.89 and 0.91 vs 0.71, 0.85 and 0.82, respectively). Conclusions 18F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate, specific and has a higher positive predictive value than PET. PMID:26631240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S. L.; Yee, B. S.; Kaufman, R. A.
Purpose: This study demonstrates a means of implementing an adaptive statistical iterative reconstruction (ASiR Trade-Mark-Sign ) technique for dose reduction in computed tomography (CT) while maintaining similar noise levels in the reconstructed image. The effects of image quality and noise texture were assessed at all implementation levels of ASiR Trade-Mark-Sign . Empirically derived dose reduction limits were established for ASiR Trade-Mark-Sign for imaging of the trunk for a pediatric oncology population ranging from 1 yr old through adolescence/adulthood. Methods: Image quality was assessed using metrics established by the American College of Radiology (ACR) CT accreditation program. Each image quality metricmore » was tested using the ACR CT phantom with 0%-100% ASiR Trade-Mark-Sign blended with filtered back projection (FBP) reconstructed images. Additionally, the noise power spectrum (NPS) was calculated for three common reconstruction filters of the trunk. The empirically derived limitations on ASiR Trade-Mark-Sign implementation for dose reduction were assessed using (1, 5, 10) yr old and adolescent/adult anthropomorphic phantoms. To assess dose reduction limits, the phantoms were scanned in increments of increased noise index (decrementing mA using automatic tube current modulation) balanced with ASiR Trade-Mark-Sign reconstruction to maintain noise equivalence of the 0% ASiR Trade-Mark-Sign image. Results: The ASiR Trade-Mark-Sign algorithm did not produce any unfavorable effects on image quality as assessed by ACR criteria. Conversely, low-contrast resolution was found to improve due to the reduction of noise in the reconstructed images. NPS calculations demonstrated that images with lower frequency noise had lower noise variance and coarser graininess at progressively higher percentages of ASiR Trade-Mark-Sign reconstruction; and in spite of the similar magnitudes of noise, the image reconstructed with 50% or more ASiR Trade-Mark-Sign presented a more smoothed appearance than the pre-ASiR Trade-Mark-Sign 100% FBP image. Finally, relative to non-ASiR Trade-Mark-Sign images with 100% of standard dose across the pediatric phantom age spectrum, similar noise levels were obtained in the images at a dose reduction of 48% with 40% ASIR Trade-Mark-Sign and a dose reduction of 82% with 100% ASIR Trade-Mark-Sign . Conclusions: The authors' work was conducted to identify the dose reduction limits of ASiR Trade-Mark-Sign for a pediatric oncology population using automatic tube current modulation. Improvements in noise levels from ASiR Trade-Mark-Sign reconstruction were adapted to provide lower radiation exposure (i.e., lower mA) instead of improved image quality. We have demonstrated for the image quality standards required at our institution, a maximum dose reduction of 82% can be achieved using 100% ASiR Trade-Mark-Sign ; however, to negate changes in the appearance of reconstructed images using ASiR Trade-Mark-Sign with a medium to low frequency noise preserving reconstruction filter (i.e., standard), 40% ASiR Trade-Mark-Sign was implemented in our clinic for 42%-48% dose reduction at all pediatric ages without a visually perceptible change in image quality or image noise.« less
NASA Astrophysics Data System (ADS)
Yang, Paul; Kim, Hyung Jun; Zheng, Hong; Beom, Geon Won; Park, Jong-Sung; Kang, Chi Jung; Yoon, Tae-Sik
2017-06-01
A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.
Yang, Paul; Jun Kim, Hyung; Zheng, Hong; Won Beom, Geon; Park, Jong-Sung; Jung Kang, Chi; Yoon, Tae-Sik
2017-06-02
A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.
Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki
2016-01-01
To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.
CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW)
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K.; Orozco, David S.; Byrne, D. J.; Allen, Steven J.; Sahasrabudhe, Adit; Lang, Minh
2012-01-01
This software provides essential startup and initialization routines for the CoNNeCT baseband processor module (BPM) hardware upon power-up. A command and data handling (C&DH) interface is provided via 1553 and diagnostic serial interfaces to invoke operational, reconfiguration, and test commands within the code. The BCSW has features unique to the hardware it is responsible for managing. In this case, the CoNNeCT BPM is configured with an updated CPU (Atmel AT697 SPARC processor) and a unique set of memory and I/O peripherals that require customized software to operate. These features include configuration of new AT697 registers, interfacing to a new HouseKeeper with a flash controller interface, a new dual Xilinx configuration/scrub interface, and an updated 1553 remote terminal (RT) core. The BCSW is intended to provide a "safe" mode for the BPM when initially powered on or when an unexpected trap occurs, causing the processor to reset. The BCSW allows the 1553 bus controller in the spacecraft or payload controller to operate the BPM over 1553 to upload code; upload Xilinx bit files; perform rudimentary tests; read, write, and copy the non-volatile flash memory; and configure the Xilinx interface. Commands also exist over 1553 to cause the CPU to jump or call a specified address to begin execution of user-supplied code. This may be in the form of a real-time operating system, test routine, or specific application code to run on the BPM.
Dewi, Vitri; Kwok, Alister; Lee, Stella; Lee, Ming Min; Tan, Yee Mun; Nicholas, Hannah R; Isono, Kyo-ichi; Wienert, Beeke; Mak, Ka Sin; Knights, Alexander J; Quinlan, Kate G R; Cordwell, Stuart J; Funnell, Alister P W; Pearson, Richard C M; Crossley, Merlin
2015-03-27
Krüppel-like factor 3 (KLF3/BKLF), a member of the Krüppel-like factor (KLF) family of transcription factors, is a widely expressed transcriptional repressor with diverse biological roles. Although there is considerable understanding of the molecular mechanisms that allow KLF3 to silence the activity of its target genes, less is known about the signal transduction pathways and post-translational modifications that modulate KLF3 activity in response to physiological stimuli. We observed that KLF3 is modified in a range of different tissues and found that the serine/threonine kinase homeodomain-interacting protein kinase 2 (HIPK2) can both bind and phosphorylate KLF3. Mass spectrometry identified serine 249 as the primary phosphorylation site. Mutation of this site reduces the ability of KLF3 to bind DNA and repress transcription. Furthermore, we also determined that HIPK2 can phosphorylate the KLF3 co-repressor C-terminal binding protein 2 (CtBP2) at serine 428. Finally, we found that phosphorylation of KLF3 and CtBP2 by HIPK2 strengthens the interaction between these two factors and increases transcriptional repression by KLF3. Taken together, our results indicate that HIPK2 potentiates the activity of KLF3. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J
2015-08-01
The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.
Yu, Ganjun; Wu, Yanfeng; Wang, Wenying; Xu, Jia; Lv, Xiaoping; Cao, Xuetao; Wan, Tao
2018-04-05
PD-1 blockade has demonstrated impressive clinical outcomes in colorectal cancers that have high microsatellite instability. However, the therapeutic efficacy for patients with tumors with low microsatellite instability or stable microsatellites needs further improvement. Here, we have demonstrated that low-dose decitabine could increase the expression of immune-related genes such as major histocompatibility complex genes and cytokine-related genes as well as the number of lymphocytes at the tumor site in CT26 colorectal cancer-bearing mice. A more significant inhibition of tumor growth and a prolongation of survival were observed in the CT26 mouse model after treatment with a combination of PD-1 blockade and decitabine than in mice treated with decitabine or PD-1 blockade alone. The anti-tumor effect of the PD-1 blockade was enhanced by low-dose decitabine. The results of RNA sequencing and whole-genome bisulfite sequencing of decitabine-treated CT26 cells and tumor samples with microsatellite stability from the patient tumor-derived xenograft model have shown that many immune-related genes, including antigen-processing and antigen-presenting genes, were upregulated, whereas the promoter demethylation was downregulated after decitabine exposure. Therefore, decitabine-based tumor microenvironment re-modulation could improve the effect of the PD-1 blockade. The application of decitabine in PD-1 blockade-based immunotherapy may elicit more potent immune responses, which can provide clinical benefits to the colorectal cancer patients with low microsatellite instability or stable microsatellites.
Test Waveform Applications for JPL STRS Operating Environment
NASA Technical Reports Server (NTRS)
Lux, James P.; Peters, Kenneth J.; Taylor, Gregory H.; Lang, Minh; Stern, Ryan A.; Duncan, Courtney B.
2013-01-01
This software demonstrates use of the JPL Space Telecommunications Radio System (STRS) Operating Environment (OE), tests APIs (application programming interfaces) presented by JPL STRS OE, and allows for basic testing of the underlying hardware platform. This software uses the JPL STRS Operating Environment ["JPL Space Tele com - munications Rad io System Operating Environment,"(NPO-4776) NASA Tech Briefs, commercial edition, Vol. 37, No. 1 (January 2013), p. 47] to interact with the JPL-SDR Software Defined Radio developed for the CoNNeCT (COmmunications, Navigation, and Networking rEconfigurable Testbed) Project as part of the SCaN Testbed installed on the International Space Station (ISS). These are the first applications that are compliant with the new NASA STRS Architecture Standard. Several example waveform applications are provided to demonstrate use of the JPL STRS OE for the JPL-SDR platform used for the CoNNeCT Project. The waveforms provide a simple digitizer and playback capability for the SBand RF slice, and a simple digitizer for the GPS slice [CoNNeCT Global Positioning System RF Module, (NPO-47764) NASA Tech Briefs, commercial edition, Vol. 36, No. 3 (March 2012), p. 36]. These waveforms may be used for hardware test, as well as for on-orbit or laboratory checkout. Additional example waveforms implement SpaceWire and timer modules, which can be used for time transfer and demonstration of communication between the two Xilinx FPGAs in the JPLSDR. The waveforms are also compatible with ground-based use of the JPL STRS OE on radio breadboards and Linux.
Aternating current photovoltaic building block
Bower, Ward Issac; Thomas, Michael G.; Ruby, Douglas S.
2004-06-15
A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, G; Guo, Y; Yin, Y
Purpose: To study the contour and dosimetric feature of organs at risk (OARs) applying magnetic resonance imaging (MRI) images in intensity modulated radiation therapy (IMRT) of nasopharyngeal carcinoma (NPC) compared to computed tomography (CT) images. Methods: 35 NPC patients was selected into this trail. CT simulation with non-contrast and contrast enhanced scan, MRI simulation with non-contrast and contrast enhanced T1, T2 and diffusion weighted imaging were achieved sequentially. And the OARs were contoured on the CT and MRI images after rigid registration respectively. 9 beams IMRT plan with equal division angle were designed for every patients, and the prescription dosemore » for tumor target was set as 72Gy (2.4Gy/ fration). The boundary display, volume and dose-volume indices of each organ were compared between on MRI and CT images. Results: Compared to CT, MRI showed clearer boundary of brainstem, spinal cord, the deep lobe of Parotid gland and the optical nerve in canal. MRI images increase the volume of lens, optical nerve, while reducing the volume of eye slightly, and the maximum dose of lens, the mean dose of eyes and optical raised in different percentage, while there was no statistical differences were found. The left and right parotid volume on MRI increased by 7.07%, 8.13%, and the mean dose raised by 14.95% (4.01Gy), 18.76% (4.95Gy) with statistical significant difference (p<0.05). The brainstem volume reduced by 9.33% (p<0.05), and the dose of 0.1cm3 volume (D0.1cm3) reduced by mean 8.46% (4.32Gy), and D0.1cm3 of spinal cord increased by 1.5Gy on MRI. Conclusion: It is credible to evaluate the radiation dose of lens, eye and the spinal cord, while it should be necessary to evaluate the dose of brainstem, parotid and the optical nerve applying MRI images sometime, it will be more meaningful for these organs with high risk of radiation injury.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, X; Zhang, J; Qin, A
2016-06-15
Purpose: To evaluate the potential benefits of robust optimization in intensity modulated proton therapy(IMPT) treatment planning to account for inter-fractional variation for Head Neck Cancer(HNC). Methods: One patient with bilateral HNC previous treated at our institution was used in this study. Ten daily CBCTs were selected. The CT numbers of the CBCTs were corrected by mapping the CT numbers from simulation CT via Deformable Image Registration. The planning target volumes(PTVs) were defined by a 3mm expansion from clinical target volumes(CTVs). The prescription was 70Gy, 54Gy to CTV1, CTV2, and PTV1, PTV2 for robust optimized(RO) and conventionally optimized(CO) plans respectively. Bothmore » techniques were generated by RayStation with the same beam angles: two anterior oblique and two posterior oblique angles. The similar dose constraints were used to achieve 99% of CTV1 received 100% prescription dose while kept the hotspots less than 110% of the prescription. In order to evaluate the dosimetric result through the course of treatment, the contours were deformed from simulation CT to daily CBCTs, modified, and approved by a radiation oncologist. The initial plan on the simulation CT was re-replayed on the daily CBCTs followed the bony alignment. The target coverage was evaluated using the daily doses and the cumulative dose. Results: Eight of 10 daily deliveries with using RO plan achieved at least 95% prescription dose to CTV1 and CTV2, while still kept maximum hotspot less than 112% of prescription compared with only one of 10 for the CO plan to achieve the same standards. For the cumulative doses, the target coverage for both RO and CO plans was quite similar, which was due to the compensation of cold and hot spots. Conclusion: Robust optimization can be effectively applied to compensate for target dose deficit caused by inter-fractional target geometric variation in IMPT treatment planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S; Lo, P; Hoffman, J
Purpose: To evaluate the robustness of CAD or Quantitative Imaging methods, they should be tested on a variety of cases and under a variety of image acquisition and reconstruction conditions that represent the heterogeneity encountered in clinical practice. The purpose of this work was to develop a fully-automated pipeline for generating CT images that represent a wide range of dose and reconstruction conditions. Methods: The pipeline consists of three main modules: reduced-dose simulation, image reconstruction, and quantitative analysis. The first two modules of the pipeline can be operated in a completely automated fashion, using configuration files and running the modulesmore » in a batch queue. The input to the pipeline is raw projection CT data; this data is used to simulate different levels of dose reduction using a previously-published algorithm. Filtered-backprojection reconstructions are then performed using FreeCT-wFBP, a freely-available reconstruction software for helical CT. We also added support for an in-house, model-based iterative reconstruction algorithm using iterative coordinate-descent optimization, which may be run in tandem with the more conventional recon methods. The reduced-dose simulations and image reconstructions are controlled automatically by a single script, and they can be run in parallel on our research cluster. The pipeline was tested on phantom and lung screening datasets from a clinical scanner (Definition AS, Siemens Healthcare). Results: The images generated from our test datasets appeared to represent a realistic range of acquisition and reconstruction conditions that we would expect to find clinically. The time to generate images was approximately 30 minutes per dose/reconstruction combination on a hybrid CPU/GPU architecture. Conclusion: The automated research pipeline promises to be a useful tool for either training or evaluating performance of quantitative imaging software such as classifiers and CAD algorithms across the range of acquisition and reconstruction parameters present in the clinical environment. Funding support: NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kam, S; Youn, H; Kim, H
2014-06-01
Purpose: To compare and analyze two novel algorithms for the assessment of modulation transfer functions (MTFs) of computed tomography (CT) systems using a simple acrylic cylindrical phantom Method and Materials: Images of the acrylic cylindrical phantom were acquired by a GE LightSpeed 16 RT (GE Healthcare, Milwaukee, WI) using 120 kVp, 330 mA, 2.5 mm slice thickness, 10 cm field-of view (FOV), four reconstruction kernels (e.g. standard, soft, detail, bone, and lung). Two different algorithms were used to analyze images for MTF assessment. First, Richard et al. suggested a task-based MTF assessment method through an edge spread function (ESF) whichmore » described pixel intensities as a function of distance from the center. The MTF was obtained as the absolute value of Fourier transform of the differentiated ESF. Second, Ohkubo et al. devised an effective method to determine the point spread function (PSF) of CT system accompanied with verification. The line spread function (LSF), which was the one-dimensional integration of the PSF, was used to obtain the MTF. We validated the reliability of two above-mentioned methods through the comparison with a conventional method using a thin tungsten wire phantom. Results: The measured MTFs by two methods were mostly similar each other for standard, soft, and detail kernels. In 0.6 lp/mm, the MTF difference between two methods were 0.012(standard), 0.004(soft), and 0.037(detail). They also coincided with the MTF by the conventional method well. However, there were considerable distinctions for bone and lung kernels containing edge enhancement that might cause undershoots near the peak of the LSF. Conclusions: We compared two novel methods to assess task-based MTFs for clinical CT systems especially using a simple acrylic cylindrical phantom with high-convenience and low-cost, and validated them against a conventional method. This work can provide a practical solution to users for the quality assurance of CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elzibak, A; Safigholi, H; Soliman, A
2015-06-15
Purpose: To examine CT metal image artifact from a novel direction-modulated brachytherapy (DMBT) tandem applicator (95% tungsten) for cervical cancer using a commercially available orthopedic metal artifact reduction (O-MAR) algorithm. Comparison to a conventional stainless steel applicator is also performed. Methods: Each applicator was placed in a water-filled phantom resembling the female pelvis and scanned in a Philips Brilliance 16-slice CT scanner using two pelvis protocols: a typical clinical protocol (120kVp, 16×0.75mm collimation, 0.692 pitch, 1.0s rotation, 350mm field of view (FOV), 600mAs, 1.5mm slices) and a protocol with a higher kVp and mAs setting useful for larger patients (140kVp,more » 16×0.75mm collimation, 0.688 pitch, 1.5s rotation, 350mm FOV, 870mAs, 1.5mm slices). Images of each tandem were acquired with and without the application of the O-MAR algorithm. Baseline scans of the phantom (no applicator) were also collected. CT numbers were quantified at distances from 5 to 30 mm away from the applicator’s edge (in increments of 5mm) using measurements at eight angles around the applicator, on three consecutive slices. Results: While the presence of both applicators degraded image quality, the DMBT applicator resulted in larger streaking artifacts and dark areas in the image compared to the stainless steel applicator. Application of the O-MAR algorithm improved all acquired images, both visually and quantitatively. The use of low and high kVp and mAs settings (120 kVp/600mAs and 140 kVp/870mAs) in conjunction with the O-MAR algorithm lead to similar CT numbers in the vicinity of the applicator and a similar reduction of the induced metal artifact. Conclusion: This work indicated that metal artifacts induced by the DMBT and the stainless steel applicator are greatly reduced when using the O-MAR algorithm, leading to better quality phantom images. The use of a high dose protocol provided similar improvements in metal artifacts compared to the clinical protocol.« less
Green, Chad E; Liu, Tiffany; Montel, Valerie; Hsiao, Gene; Lester, Robin D; Subramaniam, Shankar; Gonias, Steven L; Klemke, Richard L
2009-08-21
Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plautz, Tia E.; Johnson, R. P.; Sadrozinski, H. F.-W.
Purpose: To characterize the modulation transfer function (MTF) of the pre-clinical (phase II) head scanner developed for proton computed tomography (pCT) by the pCT collaboration. To evaluate the spatial resolution achievable by this system. Methods: Our phase II proton CT scanner prototype consists of two silicon telescopes that track individual protons upstream and downstream from a phantom, and a 5-stage scintillation detector that measures a combination of the residual energy and range of the proton. Residual energy is converted to water equivalent path length (WEPL) of the protons in the scanned object. The set of WEPL values and associated pathsmore » of protons passing through the object over a 360° angular scan is processed by an iterative parallelizable reconstruction algorithm that runs on GP-GPU hardware. A custom edge phantom composed of water-equivalent polymer and tissue-equivalent material inserts was constructed. The phantom was first simulated in Geant4 and then built to perform experimental beam tests with 200 MeV protons at the Northwestern Medicine Chicago Proton Center. The oversampling method was used to construct radial and azimuthal edge spread functions and modulation transfer functions. The spatial resolution was defined by the 10% point of the modulation transfer function in units of lp/cm. Results: The spatial resolution of the image was found to be strongly correlated with the radial position of the insert but independent of the relative stopping power of the insert. The spatial resolution varies between roughly 4 and 6 lp/cm in both the the radial and azimuthal directions depending on the radial displacement of the edge. Conclusion: The amount of image degradation due to our detector system is small compared with the effects of multiple Coulomb scattering, pixelation of the image and the reconstruction algorithm. Improvements in reconstruction will be made in order to achieve the theoretical limits of spatial resolution.« less
Large scale validation of the M5L lung CAD on heterogeneous CT datasets.
Torres, E Lopez; Fiorina, E; Pennazio, F; Peroni, C; Saletta, M; Camarlinghi, N; Fantacci, M E; Cerello, P
2015-04-01
M5L, a fully automated computer-aided detection (CAD) system for the detection and segmentation of lung nodules in thoracic computed tomography (CT), is presented and validated on several image datasets. M5L is the combination of two independent subsystems, based on the Channeler Ant Model as a segmentation tool [lung channeler ant model (lungCAM)] and on the voxel-based neural approach. The lungCAM was upgraded with a scan equalization module and a new procedure to recover the nodules connected to other lung structures; its classification module, which makes use of a feed-forward neural network, is based of a small number of features (13), so as to minimize the risk of lacking generalization, which could be possible given the large difference between the size of the training and testing datasets, which contain 94 and 1019 CTs, respectively. The lungCAM (standalone) and M5L (combined) performance was extensively tested on 1043 CT scans from three independent datasets, including a detailed analysis of the full Lung Image Database Consortium/Image Database Resource Initiative database, which is not yet found in literature. The lungCAM and M5L performance is consistent across the databases, with a sensitivity of about 70% and 80%, respectively, at eight false positive findings per scan, despite the variable annotation criteria and acquisition and reconstruction conditions. A reduced sensitivity is found for subtle nodules and ground glass opacities (GGO) structures. A comparison with other CAD systems is also presented. The M5L performance on a large and heterogeneous dataset is stable and satisfactory, although the development of a dedicated module for GGOs detection could further improve it, as well as an iterative optimization of the training procedure. The main aim of the present study was accomplished: M5L results do not deteriorate when increasing the dataset size, making it a candidate for supporting radiologists on large scale screenings and clinical programs.
NASA Astrophysics Data System (ADS)
Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.
2017-03-01
Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.