System and method for motor fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.
2010-12-07
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
System and method for bearing fault detection using stator current noise cancellation
Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.
2010-08-17
A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.
Neural network based automatic limit prediction and avoidance system and method
NASA Technical Reports Server (NTRS)
Calise, Anthony J. (Inventor); Prasad, Jonnalagadda V. R. (Inventor); Horn, Joseph F. (Inventor)
2001-01-01
A method for performance envelope boundary cueing for a vehicle control system comprises the steps of formulating a prediction system for a neural network and training the neural network to predict values of limited parameters as a function of current control positions and current vehicle operating conditions. The method further comprises the steps of applying the neural network to the control system of the vehicle, where the vehicle has capability for measuring current control positions and current vehicle operating conditions. The neural network generates a map of current control positions and vehicle operating conditions versus the limited parameters in a pre-determined vehicle operating condition. The method estimates critical control deflections from the current control positions required to drive the vehicle to a performance envelope boundary. Finally, the method comprises the steps of communicating the critical control deflection to the vehicle control system; and driving the vehicle control system to provide a tactile cue to an operator of the vehicle as the control positions approach the critical control deflections.
System and method for quench and over-current protection of superconductor
Huang, Xianrui; Laskaris, Evangelos Trifon; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas; Fogarty, James Michael; Steinbach, Albert Eugene
2005-05-31
A system and method for protecting a superconductor. The system may comprise a current sensor operable to detect a current flowing through the superconductor. The system may comprise a coolant temperature sensor operable to detect the temperature of a cryogenic coolant used to cool the superconductor to a superconductive state. The control circuit is operable to estimate the superconductor temperature based on the current flow and the coolant temperature. The system may also be operable to compare the estimated superconductor temperature to at least one threshold temperature and to initiate a corrective action when the superconductor temperature exceeds the at least one threshold temperature.
Systems and methods for commutating inductor current using a matrix converter
Ransom, Ray M; Kajouke, Lateef A; Perisic, Milun
2012-10-16
Systems and methods are provided for delivering current using a matrix converter in a vehicle. An electrical system comprises an AC interface, a first conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the first conversion module, and a control module coupled to the first conversion module. The control module is configured to operate the first conversion module in a bidirectional operating mode to commutate current bidirectionally. When a magnitude of the current through the inductive element is greater than a first threshold value, the control module operates the conversion module in a unidirectional operating mode, wherein current is commutated unidirectionally.
Performance of Superconducting Current Feeder System for SST-1
NASA Astrophysics Data System (ADS)
Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.
2017-02-01
Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.
Current and Future Flight Operating Systems
NASA Technical Reports Server (NTRS)
Cudmore, Alan
2007-01-01
This viewgraph presentation reviews the current real time operating system (RTOS) type in use with current flight systems. A new RTOS model is described, i.e. the process model. Included is a review of the challenges of migrating from the classic RTOS to the Process Model type.
47 CFR 15.207 - Conducted limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu... current system containing their fundamental emission within the frequency band 535-1705 kHz and intended.../50 ohms LISN. (3) Carrier current systems operating below 30 MHz are also subject to the radiated...
47 CFR 15.107 - Conducted limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... not apply to carrier current systems operating as unintentional radiators on frequencies below 30 MHz... carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and... 50 μH/50 ohms LISN. (3) Carrier current systems operating below 30 MHz are also subject to the...
Monitoring circuit accurately measures movement of solenoid valve
NASA Technical Reports Server (NTRS)
Gillett, J. D.
1966-01-01
Solenoid operated valve in a control system powered by direct current issued to accurately measure the valve travel. This system is currently in operation with a 28-vdc power system used for control of fluids in liquid rocket motor test facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... practice operating system in accordance with paragraph (b) of this section, the following requirements..., and the current good manufacturing practice operating system has been shown to comply with the drug... operating system has been shown to comply with the QS regulation, the following provisions of the drug CGMPs...
Code of Federal Regulations, 2013 CFR
2013-04-01
... practice operating system in accordance with paragraph (b) of this section, the following requirements..., and the current good manufacturing practice operating system has been shown to comply with the drug... operating system has been shown to comply with the QS regulation, the following provisions of the drug CGMPs...
Analysis of spacecraft battery charger systems
NASA Astrophysics Data System (ADS)
Kim, Seong J.; Cho, Bo H.
In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.
Supporting Operational Data Assimilation Capabilities to the Research Community
NASA Astrophysics Data System (ADS)
Shao, H.; Hu, M.; Stark, D. R.; Zhou, C.; Beck, J.; Ge, G.
2017-12-01
The Developmental Testbed Center (DTC), in partnership with the National Centers for Environmental Prediction (NCEP) and other operational and research institutions, provides operational data assimilation capabilities to the research community and helps transition research advances to operations. The primary data assimilation system supported currently by the DTC is the Gridpoint Statistical Interpolation (GSI) system and the National Oceanic and Atmospheric Administration (NOAA) Ensemble Kalman Filter (EnKF) system. GSI is a variational based system being used for daily operations at NOAA, NCEP, the National Aeronautics and Space Administration, and other operational agencies. Recently, GSI has evolved into a four-dimensional EnVar system. Since 2009, the DTC has been releasing the GSI code to the research community annually and providing user support. In addition to GSI, the DTC, in 2015, began supporting the ensemble based EnKF data assimilation system. EnKF shares the observation operator with GSI and therefore, just as GSI, can assimilate both conventional and non-conventional data (e.g., satellite radiance). Currently, EnKF is being implemented as part of the GSI based hybrid EnVar system for NCEP Global Forecast System operations. This paper will summarize the current code management and support framework for these two systems. Following that is a description of available community services and facilities. Also presented is the pathway for researchers to contribute their development to the daily operations of these data assimilation systems.
NASA Astrophysics Data System (ADS)
Yim, S.-W.; Park, B.-C.; Jeong, Y.-T.; Kim, Y.-J.; Yang, S.-E.; Kim, W.-S.; Kim, H.-R.; Du, H.-I.
2013-01-01
A 22.9 kV class hybrid fault current limiter (FCL) developed by Korea Electric Power Corporation and LS Industrial Systems in 2006 operates using the line commutation mechanism and begins to limit the fault current after the first half-cycle. The first peak of the fault current is available for protective coordination in the power system. However, it also produces a large electromagnetic force and imposes a huge stress on power facilities such as the main transformer and gas-insulated switchgear. In this study, we improved the operational characteristics of the hybrid FCL in order to reduce the first peak of the fault current. While maintaining the structure of the hybrid FCL system, we developed a superconducting module that detects and limits the fault current during the first half-cycle. To maintain the protective coordination capacity, the hybrid FCL was designed to reduce the first peak value of the fault current by up to approximately 30%. The superconducting module was also designed to produce a minimum AC loss, generating a small, uniform magnetic field distribution during normal operation. Performance tests confirmed that when applied to the hybrid FCL, the superconducting module showed successful current limiting operation without any damage.
A Comprehensive Comparison of Current Operating Reserve Methodologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krad, Ibrahim; Ibanez, Eduardo; Gao, Wenzhong
Electric power systems are currently experiencing a paradigm shift from a traditionally static system to a system that is becoming increasingly more dynamic and variable. Emerging technologies are forcing power system operators to adapt to their performance characteristics. These technologies, such as distributed generation and energy storage systems, have changed the traditional idea of a distribution system with power flowing in one direction into a distribution system with bidirectional flows. Variable generation, in the form of wind and solar generation, also increases the variability and uncertainty in the system. As such, power system operators are revisiting the ways in whichmore » they treat this evolving power system, namely by modifying their operating reserve methodologies. This paper intends to show an in-depth analysis on different operating reserve methodologies and investigate their impacts on power system reliability and economic efficiency.« less
NASA Technical Reports Server (NTRS)
Byrd, Raymond J.
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advance Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. This volume presents ground processing data for a generic LOX/LH2 booster and core propulsion system based on current STS experience. The data presented includes: top logic diagram, process flow, activities bar-chart, loaded timelines, manpower requirements in terms of duration, headcount and skill mix per operations and maintenance instruction (OMI), and critical path tasks and durations.
Clearing a Path: The 16-Bit Operating System Jungle Offers Confusion, Not Standardization.
ERIC Educational Resources Information Center
Pournelle, Jerry
1984-01-01
Discusses the design and limited uses of the Pascal, MS-DOS, CP/M, and PC-DOS operating systems as standard operating systems for 16-bit microprocessors, especially with the more sophisticated microcomputers currently being developed. Advantages and disadvantages of Unix--a multitasking, multiuser operating system--as a standard operating system…
Control and protection system for paralleled modular static inverter-converter systems
NASA Technical Reports Server (NTRS)
Birchenough, A. G.; Gourash, F.
1973-01-01
A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.
A network for continuous monitoring of water quality in the Sabine River basin, Texas and Louisiana
Blakey, J.F.; Skinner, P.W.
1973-01-01
Level I operations at a proposed site would monitor current and potential problems, water-quality changes in subreaches of streams, and water-quality trends in time and place. Level II operations would monitor current or potential problems only. An optimum system would require Level I operations at all nine stations. A minimum system would require Level II operations at most of the stations.
NASA Technical Reports Server (NTRS)
Waldrop, Glen S.
1990-01-01
Operations problems and cost drivers were identified for current propulsion systems and design and technology approaches were identified to increase the operational efficiency and to reduce operations costs for future propulsion systems. To provide readily usable data for the ALS program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume presents a detailed description of 25 major problems encountered during launch processing of current expendable and reusable launch vehicles. A concise description of each problem and its operational impact on launch processing is presented, along with potential solutions and technology recommendation.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)
2001-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Data Flow System operations: from the NTT to the VLT
NASA Astrophysics Data System (ADS)
Silva, David R.; Leibundgut, Bruno; Quinn, Peter J.; Spyromilio, Jason; Tarenghi, Massimo
1998-07-01
Science operations at the ESO very large telescope is scheduled to begin in April 1999. ESO is currently finalizing the VLT science operations plan. This plan describes the operations tasks and staffing needed to support both visitor and service mode operations. The Data Flow Systems (DFS) currently being developed by ESO will provide the infrastructure necessary for VLT science operations. This paper describes the current VLT science operations plan, first by discussing the tasks involved and then by describing the operations teams that have responsibility for those tasks. Prototypes of many of these operational concepts and tools have been in use at the ESO New Technology Telescope (NTT) since February 1997. This paper briefly summarizes the status of these prototypes and then discusses what operation lessons have been learned from the NTT experience and how they can be applied to the VLT.
32 CFR 310.33 - New and altered record systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...
32 CFR 310.33 - New and altered record systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...
32 CFR 310.33 - New and altered record systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...
32 CFR 310.33 - New and altered record systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...
32 CFR 310.33 - New and altered record systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system will be reinstated or reused, the system may not be operated (i.e., information collected or used... direct access is an alteration. (ii) Software applications, such as operating systems and system... capacity of the current operating system and existing security is preserved. (vi) The connecting of two or...
Using task analysis to understand the Data System Operations Team
NASA Technical Reports Server (NTRS)
Holder, Barbara E.
1994-01-01
The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.
Low-cost wireless voltage & current grid monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Jacqueline
This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less
NASA Astrophysics Data System (ADS)
Khayamy, Mehdy; Ojo, Olorunfemi
2015-04-01
A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.
Operationally Efficient Propulsion System Study (OEPSS): OEPSS Video Script
NASA Technical Reports Server (NTRS)
Wong, George S.; Waldrop, Glen S.; Trent, Donnie (Editor)
1992-01-01
The OEPSS video film, along with the OEPSS Databooks, provides a data base of current launch experience that will be useful for design of future expendable and reusable launch systems. The focus is on the launch processing of propulsion systems. A brief 15-minute overview of the OEPSS study results is found at the beginning of the film. The remainder of the film discusses in more detail: current ground operations at the Kennedy Space Center; typical operations issues and problems; critical operations technologies; and efficiency of booster and space propulsion systems. The impact of system architecture on the launch site and its facility infrastucture is emphasized. Finally, a particularly valuable analytical tool, developed during the OEPSS study, that will provide for the "first time" a quantitative measure of operations efficiency for a propulsion system is described.
NASA Technical Reports Server (NTRS)
Darroy, Jean Michel
1993-01-01
Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.
NASA Astrophysics Data System (ADS)
Patel, R.; Panchal, P.; Panchal, R.; Tank, J.; Mahesuriya, G.; Sonara, D.; Srikanth, G. L. N.; Garg, A.; Bairagi, N.; Christian, D.; Patel, K.; Shah, P.; Nimavat, H.; Sharma, R.; Patel, J. C.; Gupta, N. C.; Prasad, U.; Sharma, A. N.; Tanna, V. L.; Pradhan, S.
The SST-1 machine comprises a superconducting magnet system (SCMS), which includes TF and PF magnets. In order to charge the SCMS, we need superconducting current feeders consisting of SC feeders and vapor cooled current leads (VCCLs). We have installed all 10 (+/-) pairs of VCCLs for the TF and PF systems. While conducting initial engineering validation of the SST-1 machine, our prime objective was to produce circular plasma using only the TF system. During the SST-1 campaign I to VI, we have to stop the PF magnets cooling in order to get the cryo- stable conditions for current charging of the TF magnets system. In that case, the cooling of the PF current leads is not essential. It has been also observed that after aborting the PF system cooling, there was a limited experimental window of TF operation. Therefore, in the recent SST-1 campaign-VII, we removed the PF current leads (9 pairs) and kept only single (+/-) pair of the 10,000 A rated VCCLs to realize the charging of the TF system for the extended window of operation. We have observed a better cryogenic stability in the TF magnets after modifications in the CFS. In this paper, we report the comparison of the cool down performance for the SST-1 machine operation before and after modifications of the current feeders system.
ERIC Educational Resources Information Center
Wankat, Phillip C.
1984-01-01
Discusses a simple method for following the movement of a solute in an adsorption or ion exchange system. This movement is used to study a variety of operational methods, including continuous flow and pulsed flow counter-current operations and simulated counter-current systems. Effect of changing thermodynamic variables is also considered. (JM)
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, J.M.; Clifft, B.E.; Bollinger, L.M.
1995-08-08
A beam current limiter is disclosed for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity. 6 figs.
Indirectly sensing accelerator beam currents for limiting maximum beam current magnitude
Bogaty, John M.; Clifft, Benny E.; Bollinger, Lowell M.
1995-01-01
A beam current limiter for sensing and limiting the beam current in a particle accelerator, such as a cyclotron or linear accelerator, used in scientific research and medical treatment. A pair of independently operable capacitive electrodes sense the passage of charged particle bunches to develop an RF signal indicative of the beam current magnitude produced at the output of a bunched beam accelerator. The RF signal produced by each sensing electrode is converted to a variable DC voltage indicative of the beam current magnitude. The variable DC voltages thus developed are compared to each other to verify proper system function and are further compared to known references to detect beam currents in excess of pre-established limits. In the event of a system malfunction, or if the detected beam current exceeds pre-established limits, the beam current limiter automatically inhibits further accelerator operation. A high Q tank circuit associated with each sensing electrode provides a narrow system bandwidth to reduce noise and enhance dynamic range. System linearity is provided by injecting, into each sensing electrode, an RF signal that is offset from the bunching frequency by a pre-determined beat frequency to ensure that subsequent rectifying diodes operate in a linear response region. The system thus provides a large dynamic range in combination with good linearity.
NASA Astrophysics Data System (ADS)
Sembiring, L.; Van Ormondt, M.; Van Dongeren, A. R.; Roelvink, J. A.
2017-07-01
Rip currents are one of the most dangerous coastal hazards for swimmers. In order to minimize the risk, a coastal operational-process based-model system can be utilized in order to provide forecast of nearshore waves and currents that may endanger beach goers. In this paper, an operational model for rip current prediction by utilizing nearshore bathymetry obtained from video image technique is demonstrated. For the nearshore scale model, XBeach1 is used with which tidal currents, wave induced currents (including the effect of the wave groups) can be simulated simultaneously. Up-to-date bathymetry will be obtained using video images technique, cBathy 2. The system will be tested for the Egmond aan Zee beach, located in the northern part of the Dutch coastline. This paper will test the applicability of bathymetry obtained from video technique to be used as input for the numerical modelling system by comparing simulation results using surveyed bathymetry and model results using video bathymetry. Results show that the video technique is able to produce bathymetry converging towards the ground truth observations. This bathymetry validation will be followed by an example of operational forecasting type of simulation on predicting rip currents. Rip currents flow fields simulated over measured and modeled bathymetries are compared in order to assess the performance of the proposed forecast system.
NASA Technical Reports Server (NTRS)
Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)
1998-01-01
The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.
NASA Technical Reports Server (NTRS)
Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.
2015-01-01
The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-19
... operator experienced a multi-power system loss in-flight of 1, 2, and 3 alternating current (AC) electrical... an operator experienced a multi-power system loss in-flight of 1, 2, and 3 AC electrical power... alternating current electrical power systems located in the main equipment center (MEC). The Federal Aviation...
DSN system performance test software
NASA Technical Reports Server (NTRS)
Martin, M.
1978-01-01
The system performance test software is currently being modified to include additional capabilities and enhancements. Additional software programs are currently being developed for the Command Store and Forward System and the Automatic Total Recall System. The test executive is the main program. It controls the input and output of the individual test programs by routing data blocks and operator directives to those programs. It also processes data block dump requests from the operator.
32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems
Code of Federal Regulations, 2010 CFR
2010-07-01
... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...
32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems
Code of Federal Regulations, 2012 CFR
2012-07-01
... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...
32 CFR Appendix B to Part 323 - Criteria for New and Altered Record Systems
Code of Federal Regulations, 2011 CFR
2011-07-01
... as operating systems and system utilities that provide for easier access are considered alterations... terminals does not extend the capacity of the current operating system and existing security is preserved. f... not operate a system of records until the waiting periods have expired. E. Outside review of new and...
NASA Technical Reports Server (NTRS)
Potter, William J.; Mitchell, Christine M.
1993-01-01
Historically, command management systems (CMS) have been large and expensive spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as to develop a more generic CMS system. New technologies, in addition to a core CMS common to a range of spacecraft, may facilitate the training and enhance the efficiency of CMS operations. Current mission operations center (MOC) hardware and software include Unix workstations, the C/C++ programming languages, and an X window interface. This configuration provides the power and flexibility to support sophisticated and intelligent user interfaces that exploit state-of-the-art technologies in human-machine interaction, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of these issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, human-machine systems design and analysis tools (e.g., operator and designer models), and human-computer interaction tools (e.g., graphics, visualization, and animation) may provide significant savings in the design, operation, and maintenance of the CMS for a specific spacecraft as well as continuity for CMS design and development across spacecraft. The first six months of this research saw a broad investigation by Georgia Tech researchers into the function, design, and operation of current and planned command management systems at Goddard Space Flight Center. As the first step, the researchers attempted to understand the current and anticipated horizons of command management systems at Goddard. Preliminary results are given on CMS commonalities and causes of low re-use, and methods are proposed to facilitate increased re-use.
Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Zakrajsek, James J.
2006-01-01
Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.
NASA Astrophysics Data System (ADS)
Dachyar, M.; Risky, S. A.
2014-06-01
Telecommunications company have to improve their business performance despite of the increase customers every year. In Indonesia, the telecommunication company have provided best services, improving operational systems by designing a framework for operational systems of the Internet of Things (IoT) other name of Machine to Machine (M2M). This study was conducted with expert opinion which further processed by the Analytic Hierarchy Process (AHP) to obtain important factor for organizations operational systems, and the Interpretive Structural Modeling (ISM) to determine factors of organization which found drives the biggest power. This study resulted, the greatest weight of SLA & KPI handling problems. The M2M current dashboard and current M2M connectivity have power to affect other factors and has important function for M2M operations roomates system which can be effectively carried out.
Smith, D N
1992-01-01
Multiple applied current impedance measurement systems require numbers of current sources which operate simultaneously at the same frequency and within the same phase but at variable amplitudes. Investigations into the performance of some integrated operational transconductance amplifiers as variable current sources are described. Measurements of breakthrough, non-linearity and common-mode output levels for LM13600, NE5517 and CA3280 were carried out. The effects of such errors on the overall performance and stability of multiple current systems when driving floating loads are considered.
A 10 Kelvin 3 Tesla Magnet for Space Flight ADR Systems
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara; Pourrahimi, Shahin
2003-01-01
Many future space flight missions are expected to use adiabatic demagnetization refrigerators (ADRs) to reach detector operating temperatures well below one Kelvin. The goal is to operate each ADR with a mechanical cooler as its heat sink, thus avoiding the use of liquid cryogens. Although mechanical coolers are being developed to operate at temperatures of 6 Kelvin and below, there is a large efficiency cost associated with operating them at the bottom of their temperature range. For the multi-stage ADR system being developed at Goddard Space Flight Center, the goal is to operate with a 10 Kelvin mechanical cooler heat sink. With currently available paramagnetic materials, the highest temperature ADR stage in such a system will require a magnetic field of approximately three Tesla. Thus the goal is to develop a small, lightweight three Tesla superconducting magnet for operation at 10 Kelvin. It is important that this magnet have a low current/field ratio. Because traditional NbTi magnets do not operate safely above about six Kelvin, a magnet with a higher Tc is required. The primary focus has been on Nb3Sn magnets. Since standard Nb3Sn wire must be coated with thick insulation, wound on a magnet mandrel and then reacted, standard Nb,Sn magnets are quite heavy and require high currents Superconducting Systems developed a Nb3Sn wire which can be drawn down to small diameter, reacted, coated with thin insulation and then wound on a small diameter coil form. By using this smaller wire and operating closer to the wire s critical current, it should be possible to reduce the mass and operating current of 10 Kelvin magnets. Using this "react-then-wind" technology, Superconducting Systems has produced prototype 10 Kelvin magnets. This paper describes the development and testing of these magnets and discusses the outlook for including 10 Kelvin magnets on space-flight missions.
Surveillance system and method having parameter estimation and operating mode partitioning
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2003-01-01
A system and method for monitoring an apparatus or process asset including partitioning an unpartitioned training data set into a plurality of training data subsets each having an operating mode associated thereto; creating a process model comprised of a plurality of process submodels each trained as a function of at least one of the training data subsets; acquiring a current set of observed signal data values from the asset; determining an operating mode of the asset for the current set of observed signal data values; selecting a process submodel from the process model as a function of the determined operating mode of the asset; calculating a current set of estimated signal data values from the selected process submodel for the determined operating mode; and outputting the calculated current set of estimated signal data values for providing asset surveillance and/or control.
Process for testing a xenon gas feed system of a hollow cathode assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2004-01-01
The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.
Light-front Ward-Takahashi identity for two-fermion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinho, J. A. O.; Frederico, T.; Pace, E.
We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litzenberger, Wayne; Lava, Val
1994-08-01
References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).
The Transition from VMS to Unix Operations for STScI's Science Planning and Scheduling Team
NASA Astrophysics Data System (ADS)
Adler, D. S.; Taylor, D. K.
The Science Planning and Scheduling Team of the Space Telescope Science Institute currently uses the VMS operating system. SPST began a transition to Unix-based operations in the summer of 1999. The main tasks for SPST to address in the Unix transition are: (1) converting the current SPST operational tools from DCL to Python; (2) converting our database report scripts from SQL; (3) adopting a Unix-based code management system; and (4) training the SPST staff. The goal is to fully transition the team to Unix operations by the end of 2001.
The medium is NOT the message or Indefinitely long-term file storage at Leeds University
NASA Technical Reports Server (NTRS)
Holdsworth, David
1996-01-01
Approximately 3 years ago we implemented an archive file storage system which embodies experiences gained over more than 25 years of using and writing file storage systems. It is the third in-house system that we have written, and all three systems have been adopted by other institutions. This paper discusses the requirements for long-term data storage in a university environment, and describes how our present system is designed to meet these requirements indefinitely. Particular emphasis is laid on experiences from past systems, and their influence on current system design. We also look at the influence of the IEEE-MSS standard. We currently have the system operating in five UK universities. The system operates in a multi-server environment, and is currently operational with UNIX (SunOS4, Solaris2, SGI-IRIX, HP-UX), NetWare3 and NetWare4. PCs logged on to NetWare can also archive and recover files that live on their hard disks.
Reclosing operation characteristics of the flux-coupling type SFCL in a single-line-to ground fault
NASA Astrophysics Data System (ADS)
Jung, B. I.; Cho, Y. S.; Choi, H. S.; Ha, K. H.; Choi, S. G.; Chul, D. C.; Sung, T. H.
2011-11-01
The recloser that is used in distribution systems is a relay system that behaves sequentially to protect power systems from transient and continuous faults. This reclosing operation of the recloser can improve the reliability and stability of the power supply. For cooperation with this recloser, the superconducting fault current limiter (SFCL) must properly perform the reclosing operation. This paper analyzed the reclosing operation characteristics of the three-phase flux-coupling type SFCL in the event of a ground fault. The fault current limiting characteristics according to the changing number of turns of the primary and secondary coils were examined. As the number of turns of the first coil increased, the first maximum fault current decreased. Furthermore, the voltage of the quenched superconducting element also decreased. This means that the power burden of the superconducting element decreases based on the increasing number of turns of the primary coil. The fault current limiting characteristic of the SFCL according to the reclosing time limited the fault current within a 0.5 cycles (8 ms), which is shorter than the closing time of the recloser. In other words, the superconducting element returned to the superconducting state before the second fault and normally performed the fault current limiting operation. If the SFCL did not recover before the recloser reclosing time, the normal current that was flowing in the transmission line after the recovery of the SFCL from the fault would have been limited and would have caused losses. Therefore, the fast recovery time of a SFCL is critical to its cooperation with the protection system.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
Transit satellite system timing capabilities
NASA Technical Reports Server (NTRS)
Finsod, T. D.
1978-01-01
Current time transfer capabilities of the Transit Satellite System are reviewed. Potential improvements in the changes in equipment and operational procedures using operational satellites are discussed.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 3: Operations technology
NASA Technical Reports Server (NTRS)
Vilja, John O.
1990-01-01
The study was initiated to identify operational problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study were organized into a series of OEPSS Data Books. This volume describes operations technologies that will enhance operational efficiency of propulsion systems. A total of 15 operations technologies were identified that will eliminate or mitigate operations problems described in Volume 2. A recommended development plan is presented for eight promising technologies that will simplify the propulsion system and reduce operational requirements.
47 CFR 32.4100 - Net current deferred operating income taxes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.4100 Net current deferred operating income taxes. (a) This account shall include the balance...
Database Tool for Master Console Operators
NASA Technical Reports Server (NTRS)
Ferrell, Sean
2018-01-01
The Spaceport Command and Control System (SCCS) is the National Aeronautics and Space Administration's (NASA) launch control system for the Orion capsule and Space Launch System, the next generation manned rocket currently in development. This large system requires highly trained and knowledgeable personnel. Master Console Operators (MCO) are currently working on familiarizing themselves with any possible scenario that they may encounter. An intern was recruited to help assist them with creating a tool to use for the process.
Multicore Architectures for Multiple Independent Levels of Security Applications
2012-09-01
to bolster the MILS effort. However, current MILS operating systems are not designed for multi-core platforms. They do not have the hardware support...current MILS operating systems are not designed for multi‐core platforms. They do not have the hardware support to ensure that the separation...the availability of information at different security classification levels while increasing the overall security of the computing system . Due to the
NASA Technical Reports Server (NTRS)
Havens, Glen G.
2007-01-01
MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Making adaptable systems work for mission operations: A case study
NASA Technical Reports Server (NTRS)
Holder, Barbara E.; Levesque, Michael E.
1993-01-01
The Advanced Multimission Operations System (AMMOS) at NASA's Jet Propulsion Laboratory is based on a highly adaptable multimission ground data system (MGDS) for mission operations. The goal for MGDS is to support current flight project science and engineering personnel and to meet the demands of future missions while reducing associated operations and software development costs. MGDS has become a powerful and flexible mission operations system by using a network of heterogeneous workstations, emerging open system standards, and selecting an adaptable tools-based architecture. Challenges in developing adaptable systems for mission operations and the benefits of this approach are described.
Descriptions of Transit Maintenance Management Information Systems
DOT National Transportation Integrated Search
1984-10-01
This 289-page report presents an overview of ten maintenance management information systems that are currently operational or near-operational on minicomputers or microcomputers. The systems described address one or more of the following concerns: co...
Tang, Cui; Yin, Xianggen; Qi, Xuanwei; Zhang, Zhe
2014-01-01
The series capacitor compensation is one of the key technologies in the EHV and UHV long distance power transmission lines. This paper analyzes the operation characteristics of the main protection combined with the engineering practice when the transmission line overcompensation due to the series compensation system is modified and analyzes the influence of the transition resistance and the system operation mode on the current differential protection. According to the simulation results, it presents countermeasure on improving the sensitivity of differential current protection. PMID:25247206
NASA Astrophysics Data System (ADS)
Giuliani, M.; Herman, J. D.; Castelletti, A.; Reed, P. M.
2013-12-01
Institutional inertia strongly limits our ability to adapt water reservoir operations to better manage growing water demands as well as their associated uncertainties in a changing climate. Although it has long been recognized that these systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, our broader understanding of the multiobjective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification and many-objective optimization under uncertainty to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. Initially our proposed framework uses available streamflow observations to implicitly identify the Conowingo Dam's current but unknown operating policy. This baseline policy is identified by fitting radial basis functions to existing system dynamics. Our assumption in the baseline policy is that the dam operator is represented as a rational agent seeking to maximize primary operational objectives (i.e., guaranteeing the public water supply and maximizing the hydropower revenue). The quality of the identified baseline policy is evaluated by its ability to replicate historical release dynamics. Once identified, the historical baseline policy then provides a means of representing the decision preferences guiding current operations. Our results show that the estimated policy closely captures the dynamics of current releases and flows for the Lower Susquehanna. After identifying the historical baseline policy, our proposed decision analytic framework then combines evolutionary many-objective optimization with visual analytics to discover improved operating policies. Our Lower Susquehanna results confirm that the system's current history-based operations are negatively biased to overestimate the reliability of the reservoir's multi-sector services. Moreover, our proposed framework has successfully identified alternative reservoir policies that are more robust to hydroclimatic uncertainties while being capable of better addressing the tradeoffs across the Conowingo Dam's multi-sector services.
Improving Human/Autonomous System Teaming Through Linguistic Analysis
NASA Technical Reports Server (NTRS)
Meszaros, Erica L.
2016-01-01
An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.
The Multiple Gyrotron System on the DIII-D Tokamak
Lohr, J.; Anderson, J.; Brambila, R.; ...
2015-08-28
A major component of the versatile heating systems on the DIII-D tokamak is the gyrotron complex. This system routinely operates at 110 GHz with 4.7 MW generated rf power for electron cyclotron heating and current drive. The complex is being upgraded with the addition of new depressed collector potential gyrotrons operating at 117.5 GHz and generating rf power in excess of 1.0 MW each. The long term upgrade plan calls for 10 gyrotrons at the higher frequency being phased in as resources permit, for an injected power near 10 MW. This article presents a summary of the current status ofmore » the DIII-D gyrotron complex, its performance, individual components, testing procedures, operational parameters, plans, and a brief summary of the experiments for which the system is currently being used.« less
Towards The Operational Oceanographic Model System In Estonian Coastal Sea, Baltic Sea
NASA Astrophysics Data System (ADS)
Kõuts, T.; Elken, J.; Raudsepp, U.
An integrated system of nested 2D and 3D hydrodynamic models together with real time forcing data asquisition is designed and set up in pre-operational mode in the Gulf of Finland and Gulf of Riga, the Baltic Sea. Along the Estonian coast, implicit time-stepping 3D models are used in the deep bays and 2D models in the shallow bays with ca 200 m horizontal grid step. Specific model setups have been verified by in situ current measurements. Optimum configuration of initial parameters has been found for certain critical locations, usually ports, oil terminals, etc. Operational system in- tegrates also section of historical database of most important hydrologic parameters in the region, allowing use of certain statistical analysis and proper setup of initial conditions for oceanographic models. There is large variety of applications for such model system, ranging from environmental impact assessment at local coastal sea pol- lution problems to forecast of offshore blue algal blooms. Most probable risk factor in the coastal sea engineering is oil pollution, therefore current operational model sys- tem has direct custom oriented output the oil spill forecast for critical locations. Oil spill module of the operational system consist the automatic weather and hydromet- ric station (distributed in real time to internet) and prognostic model of sea surface currents. System is run using last 48 hour wind data and wind forecast and estimates probable oil deposition areas on the shoreline under certain weather conditions. Cal- culated evolution of oil pollution has been compared with some real accidents in the past and there was found good agreement between model and measurements. Graphi- cal user interface of oil spill model is currently installed at location of port authorities (eg. Muuga port), so in case of accidents it could be used in real time supporting the rescue operations. In 2000 current pre-operational oceanographic model system has been sucessfully used to evaluate environmental impacts of three different deep-port construction options in Saaremaa, NW the Baltic Sea. Intensive campaign of field measurements, consisting the high-resolution surveys of thermohaline properties of water masses (CTD) and timeseries as well horisontal structure of currents were in good agreement with model calculations. Model system well simulated the transport of pollution by surface currents originating from potential port locations at NW coast of the Saaremaa. It allowed to choose the optimum location for port and give also some hindcasts for port construction and exploitation.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Nichols, Kelvin; Bradford, Robert
2003-01-01
This viewgraph presentation provides an overview of a proposed voice communication system for use in remote payload operations performed on the International Space Station. The system, Internet Voice Distribution System (IVoDS), would make use of existing Internet protocols, and offer a number of advantages over the system currently in use. Topics covered include: system description and operation, system software and hardware, system architecture, project status, and technology transfer applications.
Simulation of Flywheel Energy Storage System Controls
NASA Technical Reports Server (NTRS)
Truong, Long V.; Wolff, Frederick J.; Dravid, Narayan
2001-01-01
This paper presents the progress made in the controller design and operation of a flywheel energy storage system. The switching logic for the converter bridge circuit has been redefined to reduce line current harmonics, even at the highest operating speed of the permanent magnet motor-generator. An electromechanical machine model is utilized to simulate charge and discharge operation of the inertial energy in the flywheel. Controlling the magnitude of phase currents regulates the rate of charge and discharge. The resulting improvements are demonstrated by simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappers, Peter; MacDonald, Jason; Page, Janie
2016-01-01
This scoping study focuses on identifying the ability for current and future demand response opportunities to contribute to distribution system management. To do so, this scoping study will identify the needs of a distribution system to operate efficiently, safely and reliably; summarize both benefits and challenges for the operation of the distribution system with high penetration levels of distributed energy resources; define a suite of services based on those changing operational needs that could be provided by resources; identify existing demand response opportunities sponsored by distribution utilities and/or aggregators of retail customers; assess the extent to which distribution system servicesmore » can be provided via DR opportunities both in their current form and with alterations to their design; and provide a qualitative assessment of coordination issues that bulk power and distribution system providers of DR opportunities will need to address.« less
Safety and fitness electronic records system (SAFER) : user and system requirements document
DOT National Transportation Integrated Search
1996-10-28
The Federal Highway Administration (FHWA) is currently testing and evaluating Intelligent : Transportation Systems (ITS) technologies to enhance the safety and efficiency of interstate and : intrastate commercial vehicle operations. The current focus...
Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E
2016-01-01
As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user’s daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy. PMID:27556461
Guo, Hansong; Huang, He; Huang, Liusheng; Sun, Yu-E
2016-08-20
As the size of smartphone touchscreens has become larger and larger in recent years, operability with a single hand is getting worse, especially for female users. We envision that user experience can be significantly improved if smartphones are able to recognize the current operating hand, detect the hand-changing process and then adjust the user interfaces subsequently. In this paper, we proposed, implemented and evaluated two novel systems. The first one leverages the user-generated touchscreen traces to recognize the current operating hand, and the second one utilizes the accelerometer and gyroscope data of all kinds of activities in the user's daily life to detect the hand-changing process. These two systems are based on two supervised classifiers constructed from a series of refined touchscreen trace, accelerometer and gyroscope features. As opposed to existing solutions that all require users to select the current operating hand or confirm the hand-changing process manually, our systems follow much more convenient and practical methods and allow users to change the operating hand frequently without any harm to the user experience. We conduct extensive experiments on Samsung Galaxy S4 smartphones, and the evaluation results demonstrate that our proposed systems can recognize the current operating hand and detect the hand-changing process with 94.1% and 93.9% precision and 94.1% and 93.7% True Positive Rates (TPR) respectively, when deciding with a single touchscreen trace or accelerometer-gyroscope data segment, and the False Positive Rates (FPR) are as low as 2.6% and 0.7% accordingly. These two systems can either work completely independently and achieve pretty high accuracies or work jointly to further improve the recognition accuracy.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
ERIC Educational Resources Information Center
ManTech Technical Services Corp., Fairfax, VA.
This report presents the results of a management study of audio playback equipment operations conducted by the National Library Service, Library of Congress, its associated network of state and local machine lending agencies (MLA), and other parties that play a role in current operations. The objectives were to document current operations,…
Eye Safe, Visible Wavelength Lidar Systems: Design and Operational Advances, Results and Potential
NASA Technical Reports Server (NTRS)
Spinhirne, James; Welton, Ellsworth J.; Berkoff, Timothy; Campbell, James
2007-01-01
In the early nineties the first of the eye safe visible wavelength lidar systems known now as Micro Pulse Lidar (MPL) became operational. The important advance of the design was a system that, unlike most existing lidar, operated at eye safe energy densities and could thus operate unattended for full time monitoring. Since that time there have been many dozens of these systems produced and applied for full time profiling of atmospheric cloud and aerosol structure. There is currently an observational network of MPL sites to support global climate research. In thc course of application of these instruments there have been significant improvements in the, design and performance of the systems. In the last half decade particularly there has been significant application and technical development of MPL systems. In this paper we review progress. The current MPL systems in use are all single wavelength systems designed for cloud and aerosol applications. For the cloud and aerosol applications, both lidar depolarization and multi wavelength measurements have significant applications. These can be accomplished with the MPL, approach. The main current challenge for the lidar network activity are in the area of the reliability, repeatability and efficiency of data processing. The network makes use of internet data downloads and automated processing. The heights of all cloud and aerosol layers are needed. The recent emphasis has been in operationally deriving aerosol extinction cross section. Future emphasis will include adding cirrus optical parameters. For operational effectiveness, improvements to simplify routine data signal calibration are being researched. Overall the MPL systems have proven very effective. A large data base of results from globally distributed sites can be easily accessed through the internet. Applications have included atmospheric model development. Validation of current global satellite observations of aerosol and clouds, including now orbital lidar observations, was a primary goal for NASA. Although sampling issues require careful consideration, results have proven useful.
Expert system for analyzing eddy current measurements
Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.
1994-01-01
A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, C.; Hodge, B. M.
2014-09-01
This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).
NASA Technical Reports Server (NTRS)
Jacobs, Irwin M.; Salmasi, Allen; Gilhousen, Klein S.; Weaver, Lindsay A., Jr.; Bernard, Thomas J.
1990-01-01
A novel two-way mobile satellite communications and vehicle position reporting system that is currently operational in the United States and Europe is described. The system characteristics and service operations are described in detail. Technical descriptions of the equipment and signal processing techniques are provided.
A white paper: Operational efficiency. New approaches to future propulsion systems
NASA Technical Reports Server (NTRS)
Rhodes, Russel; Wong, George
1991-01-01
Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.
A CPS Based Optimal Operational Control System for Fused Magnesium Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Tian-you; Wu, Zhi-wei; Wang, Hong
Fused magnesia smelting for fused magnesium furnace (FMF) is an energy intensive process with high temperature and comprehensive complexities. Its operational index namely energy consumption per ton (ECPT) is defined as the consumed electrical energy per ton of acceptable quality and is difficult to measure online. Moreover, the dynamics of ECPT cannot be precisely modelled mathematically. The model parameters of the three-phase currents of the electrodes such as the molten pool level, its variation rate and resistance are uncertain and nonlinear functions of the changes in both the smelting process and the raw materials composition. In this paper, an integratedmore » optimal operational control algorithm proposed is composed of a current set-point control, a current switching control and a self-optimized tuning mechanism. The tight conjoining of and coordination between the computational resources including the integrated optimal operational control, embedded software, industrial cloud, wireless communication and the physical resources of FMF constitutes a cyber-physical system (CPS) based embedded optimal operational control system. Successful application of this system has been made for a production line with ten fused magnesium furnaces in a factory in China, leading to a significant reduced ECPT.« less
A Further Look at Technologies and Capabilities for Stabilization and Reconstruction Operations
2007-09-01
in current S&R operations in Iraq and Afghanistan due to the infrequency of major combat operations. However, other ABCS sub- systems are vital to S&R...complex environments. In terms of the need for an integrated S&R operational planning and execution C2 system , there continues to be a challenge in ... systems (which speaks to the over-reliance on cell phones as a means of
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
Operating experience with the southwire 30-meter high-temperature superconducting power cable
NASA Astrophysics Data System (ADS)
Stovall, J. P.; Lue, J. W.; Demko, J. A.; Fisher, P. W.; Gouge, M. J.; Hawsey, R. A.; Armstrong, J. W.; Hughey, R. L.; Lindsay, D. T.; Roden, M. L.; Sinha, U. K.; Tolbert, J. C.
2002-05-01
Southwire Company is operating a high-temperature superconducting (HTS) cable system at its corporate headquarters. The 30-m long, 3-phase cable system is powering three Southwire manufacturing plants and is rated at 12.4-kV, 1250-A, 60-Hz. Cooling is provided by a pressurized liquid nitrogen system operating at 70-80 K. The cables were energized on January 5, 2000 for on-line testing and operation and in April 2000 were placed into extended service. As of June 1, 2001, the HTS cables have provided 100% of the customer load for 8000 hours. The cryogenic system has been in continuous operation since November 1999. The HTS cable system has not been the cause of any power outages to the average 20 MW industrial load served by the cable. The cable has been exposed to short-circuit currents caused by load-side faults without damage. Based upon field measurements described herein, the cable critical current-a key performance parameter-remains the same and has not been affected by the hours of real-world operation, further proving the viability of this promising technology.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
NASA Astrophysics Data System (ADS)
Lyon, P. E.; Arnone, R.
2006-12-01
The Naval Research Laboratory at Stennis Space Center (NRLSSC) is preparing to produce optical products for Naval operations support from the National Polar-orbiting Operational Environmental Satellite System (NPOESS). This effort will leverage existing hardware and software systems in place at NRLSSC which are currently used to produce optical products from current sensors SeaWiFS and MODIS Aqua/Terra. This effort is part of an inter agency collaboration between NASA, NOAA, IPO, NRL and the prime contractor for NPOESS, Northrop Grumman / Raytheon. This poster presents an outline of the NRLSSC's plan for achieving the best possible optical products from NPOESS.
An operations management system for the Space Station
NASA Astrophysics Data System (ADS)
Savage, Terry R.
A description is provided of an Operations Management System (OMS) for the planned NASA Space Station. The OMS would be distributed both in space and on the ground, and provide a transparent interface to the communications and data processing facilities of the Space Station Program. The allocation of OMS responsibilities has, in the most current Space Station design, been fragmented among the Communications and Tracking Subsystem (CTS), the Data Management System (DMS), and a redefined OMS. In this current view, OMS is less of a participant in the real-time processing, and more an overseer of the health and management of the Space Station operations.
Design and realization of high voltage disconnector condition monitoring system
NASA Astrophysics Data System (ADS)
Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang
2017-08-01
The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.
Operational Analysis in the Launch Environment
NASA Technical Reports Server (NTRS)
James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David;
2012-01-01
The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.
Karimi, Leila; Ghassemi, Abbas
2016-07-01
Among the different technologies developed for desalination, the electrodialysis/electrodialysis reversal (ED/EDR) process is one of the most promising for treating brackish water with low salinity when there is high risk of scaling. Multiple researchers have investigated ED/EDR to optimize the process, determine the effects of operating parameters, and develop theoretical/empirical models. Previously published empirical/theoretical models have evaluated the effect of the hydraulic conditions of the ED/EDR on the limiting current density using dimensionless numbers. The reason for previous studies' emphasis on limiting current density is twofold: 1) to maximize ion removal, most ED/EDR systems are operated close to limiting current conditions if there is not a scaling potential in the concentrate chamber due to a high concentration of less-soluble salts; and 2) for modeling the ED/EDR system with dimensionless numbers, it is more accurate and convenient to use limiting current density, where the boundary layer's characteristics are known at constant electrical conditions. To improve knowledge of ED/EDR systems, ED/EDR models should be also developed for the Ohmic region, where operation reduces energy consumption, facilitates targeted ion removal, and prolongs membrane life compared to limiting current conditions. In this paper, theoretical/empirical models were developed for ED/EDR performance in a wide range of operating conditions. The presented ion removal and selectivity models were developed for the removal of monovalent ions and divalent ions utilizing the dominant dimensionless numbers obtained from laboratory scale electrodialysis experiments. At any system scale, these models can predict ED/EDR performance in terms of monovalent and divalent ion removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dilday, Joshua; Sirkin, Maxwell R; Wertin, Thomas; Bradley, Frances; Hiles, Jason
The current forward surgical team (FST) operating table is heavy and burdensome and hinders essential movement flexibility. A novel attachable rail system, the Shrail, has been developed to overcome these obstacles. The Shrail turns a North Atlantic Treaty Organization litter into a functional operating table. A local FST compared the assembly of the FST operating table with assembling the Shrail. Device weight, storage space, and assembly space were directly measured and compared. The mean assembly time required for the Shrail was significantly less compared with the operating table (23.36 versus 151.6 seconds; p ≤ .01). The Shrail weighs less (6.80kg versus 73.03kg) and requires less storage space (0.019m3 versus 0.323m3) compared with the current FST operating table. The Shrail provides an FST with a faster, lighter surgical table assembly. For these reasons, it is better suited for the demands of an FST and the implementation of prolonged field care. 2018.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
Spaceflight Operations Services Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Mehrotra, Piyush; Lisotta, Anthony
2004-01-01
NASA over the years has developed many types of technologies and conducted various types of science resulting in numerous variations of operations, data and applications. For example, operations range from deep space projects managed by JPL, Saturn and Shuttle operations managed from JSC and KSC, ISS science operations managed from MSFC and numerous low earth orbit satellites managed from GSFC that are varied and intrinsically different but require many of the same types of services to fulfill their missions. Also, large data sets (databases) of Shuttle flight data, solar system projects and earth observing data exist which because of their varied and sometimes outdated technologies are not and have not been fully examined for additional information and knowledge. Many of the applications/systems supporting operational services e.g. voice, video, telemetry and commanding, are outdated and obsolete. The vast amounts of data are located in various formats, at various locations and range over many years. The ability to conduct unified space operations, access disparate data sets and to develop systems and services that can provide operational services does not currently exist in any useful form. In addition, adding new services to existing operations is generally expensive and with the current budget constraints not feasible on any broad level of implementation. To understand these services a discussion of each one follows. The Spaceflight User-based Services are those services required to conduct space flight operations. Grid Services are those Grid services that will be used to overcome, through middleware software, some or all the problems that currently exists. In addition, Network Services will be discussed briefly. Network Services are crucial to any type of remedy and are evolving adequately to support any technology currently in development.
40 CFR 280.74 - Closure records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...
40 CFR 280.74 - Closure records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...
40 CFR 280.74 - Closure records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...
40 CFR 280.74 - Closure records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...
40 CFR 280.74 - Closure records.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following ways: (a) By the owners and operators who took the UST system out of service; (b) By the current... STANDARDS AND CORRECTIVE ACTION REQUIREMENTS FOR OWNERS AND OPERATORS OF UNDERGROUND STORAGE TANKS (UST) Out-of-Service UST Systems and Closure § 280.74 Closure records. Owners and operators must maintain...
Workshop on Instructional Features and Instructor/Operator Station Design for Training Systems.
ERIC Educational Resources Information Center
Ricard, G. L., Ed.; And Others
These 19 papers review current research and development work related to the operation of the instructor's station of training systems, with emphasis on developing functional station specifications applicable to a variety of simulation-based training situations. Topics include (1) instructional features; (2) instructor/operator station research and…
The Real Time Display Builder (RTDB)
NASA Technical Reports Server (NTRS)
Kindred, Erick D.; Bailey, Samuel A., Jr.
1989-01-01
The Real Time Display Builder (RTDB) is a prototype interactive graphics tool that builds logic-driven displays. These displays reflect current system status, implement fault detection algorithms in real time, and incorporate the operational knowledge of experienced flight controllers. RTDB utilizes an object-oriented approach that integrates the display symbols with the underlying operational logic. This approach allows the user to specify the screen layout and the driving logic as the display is being built. RTDB is being developed under UNIX in C utilizing the MASSCOMP graphics environment with appropriate functional separation to ease portability to other graphics environments. RTDB grew from the need to develop customized real-time data-driven Space Shuttle systems displays. One display, using initial functionality of the tool, was operational during the orbit phase of STS-26 Discovery. RTDB is being used to produce subsequent displays for the Real Time Data System project currently under development within the Mission Operations Directorate at NASA/JSC. The features of the tool, its current state of development, and its applications are discussed.
Incorporation of operator knowledge for improved HMDS GPR classification
NASA Astrophysics Data System (ADS)
Kennedy, Levi; McClelland, Jessee R.; Walters, Joshua R.
2012-06-01
The Husky Mine Detection System (HMDS) detects and alerts operators to potential threats observed in groundpenetrating RADAR (GPR) data. In the current system architecture, the classifiers have been trained using available data from multiple training sites. Changes in target types, clutter types, and operational conditions may result in statistical differences between the training data and the testing data for the underlying features used by the classifier, potentially resulting in an increased false alarm rate or a lower probability of detection for the system. In the current mode of operation, the automated detection system alerts the human operator when a target-like object is detected. The operator then uses data visualization software, contextual information, and human intuition to decide whether the alarm presented is an actual target or a false alarm. When the statistics of the training data and the testing data are mismatched, the automated detection system can overwhelm the analyst with an excessive number of false alarms. This is evident in the performance of and the data collected from deployed systems. This work demonstrates that analyst feedback can be successfully used to re-train a classifier to account for variable testing data statistics not originally captured in the initial training data.
Applying Early Systems Engineering: Injecting Knowledge into the Capability Development Process
2012-10-01
involves early use of systems engi- neering and technical analyses to supplement the existing operational analysis techniques currently used in...complexity, and costs of systems now being developed require tight coupling between operational requirements stated in the CDD, system requirements...Fleischer » Keywords: Capability Development, Competitive Prototyping, Knowledge Points, Early Systems Engineering Applying Early Systems
Operationally Efficient Propulsion System Study (OEPSS) data book. Executive summary
NASA Technical Reports Server (NTRS)
Wong, George S.
1990-01-01
The study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the Operationally Efficient Propulsion System Study (OEPSS) were organized into a series of OEPSS Data Books as follows: Volume 1, Generic Ground Operations Data; Volume 2, Ground Operations Problems; Volume 3, Operations Technology; Volume 4, OEPSS Design Concepts; and Volume 5, OEPSS Final Review Briefing, which summarizes the activities and results of the study. Summarized here are the salient results of the first year. A synopsis of each volume listed above is presented.
Criminal history systems: new technology and new directions
NASA Astrophysics Data System (ADS)
Threatte, James
1997-02-01
Many forces are driving states to improve their current Criminal History and On-Line Criminal Justice Information Systems. The predominate factors compelling this movement are (1) the deterioration and cost of supporting older legacy systems, (2) current generation high performance, low cost hardware and system software, and (3) funding programs, such as the National Criminal History Improvement Program, which are targeted specifically at improving these important systems. In early 1996, SAIC established an Internal Research and Development project devoted to Computerized Criminal History Systems (CCH). This project began with an assessment of current hardware, operating system, and relational database technology. Application software design and development approaches were then reviewed with a focus on object-oriented approaches, three tier client server architectures, and tools that enable the `right sizing' of systems. An operational prototype of a State CCH system was established based on the results of these investigations.
The Taxiway Navigation and Situation Awareness (T-NASA) System
NASA Technical Reports Server (NTRS)
Foyle, David C.; Sridhar, Banavar (Technical Monitor)
1997-01-01
The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.
Design of Launch Abort System Thrust Profile and Concept of Operations
NASA Technical Reports Server (NTRS)
Litton, Daniel; O'Keefe, Stephen A.; Winski, Richard G.; Davidson, John B.
2008-01-01
This paper describes how the Abort Motor thrust profile has been tailored and how optimizing the Concept of Operations on the Launch Abort System (LAS) of the Orion Crew Exploration Vehicle (CEV) aides in getting the crew safely away from a failed Crew Launch Vehicle (CLV). Unlike the passive nature of the Apollo system, the Orion Launch Abort Vehicle will be actively controlled, giving the program a more robust abort system with a higher probability of crew survival for an abort at all points throughout the CLV trajectory. By optimizing the concept of operations and thrust profile the Orion program will be able to take full advantage of the active Orion LAS. Discussion will involve an overview of the development of the abort motor thrust profile and the current abort concept of operations as well as their effects on the performance of LAS aborts. Pad Abort (for performance) and Maximum Drag (for separation from the Launch Vehicle) are the two points that dictate the required thrust and shape of the thrust profile. The results in this paper show that 95% success of all performance requirements is not currently met for Pad Abort. Future improvements to the current parachute sequence and other potential changes will mitigate the current problems, and meet abort performance requirements.
Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan
2011-05-17
A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.
Abascal, Ana J; Sanchez, Jorge; Chiri, Helios; Ferrer, María I; Cárdenas, Mar; Gallego, Alejandro; Castanedo, Sonia; Medina, Raúl; Alonso-Martirena, Andrés; Berx, Barbara; Turrell, William R; Hughes, Sarah L
2017-06-15
This paper presents a novel operational oil spill modelling system based on HF radar currents, implemented in a northwest European shelf sea. The system integrates Open Modal Analysis (OMA), Short Term Prediction algorithms (STPS) and an oil spill model to simulate oil spill trajectories. A set of 18 buoys was used to assess the accuracy of the system for trajectory forecast and to evaluate the benefits of HF radar data compared to the use of currents from a hydrodynamic model (HDM). The results showed that simulated trajectories using OMA currents were more accurate than those obtained using a HDM. After 48h the mean error was reduced by 40%. The forecast skill of the STPS method was valid up to 6h ahead. The analysis performed shows the benefits of HF radar data for operational oil spill modelling, which could be easily implemented in other regions with HF radar coverage. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
7 CFR 1470.6 - Eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... operator in the Farm Service Agency (FSA) farm records management system for the agricultural operation... management system must establish records with FSA prior to application. Potential applicants whose records are not current in the FSA farm records management system must update those records with FSA prior to...
U-View: Student Access to Information Using ATMs.
ERIC Educational Resources Information Center
Springfield, John J.
1990-01-01
A discussion of Boston College's system allowing students to display and print their campus records at automated teller machines (ATMs) around the institution looks at the system's evolution, current operations, human factors affecting system design and operation, shared responsibility, campus acceptance, future enhancements, and cost…
A survey of current operational problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, W.R.; Nielsen, E.K.; McNair, H.D.
1989-11-01
This paper is prepared for use in the Working Group on Current Operational Problems (COPS) forums with the goal of focusing attention of the industry on problems faced by those who are involved in actual power system operation. The results of a survey on operational problems are presented in this paper. Statistical information compiled for various categories of operational problems is given with some general observations about the results. A rough comparison is made from the results of this survey and the first COPS problem list of 1976.
MIRIADS: miniature infrared imaging applications development system description and operation
NASA Astrophysics Data System (ADS)
Baxter, Christopher R.; Massie, Mark A.; McCarley, Paul L.; Couture, Michael E.
2001-10-01
A cooperative effort between the U.S. Air Force Research Laboratory, Nova Research, Inc., the Raytheon Infrared Operations (RIO) and Optics 1, Inc. has successfully produced a miniature infrared camera system that offers significant real-time signal and image processing capabilities by virtue of its modular design. This paper will present an operational overview of the system as well as results from initial testing of the 'Modular Infrared Imaging Applications Development System' (MIRIADS) configured as a missile early-warning detection system. The MIRIADS device can operate virtually any infrared focal plane array (FPA) that currently exists. Programmable on-board logic applies user-defined processing functions to the real-time digital image data for a variety of functions. Daughterboards may be plugged onto the system to expand the digital and analog processing capabilities of the system. A unique full hemispherical infrared fisheye optical system designed and produced by Optics 1, Inc. is utilized by the MIRIADS in a missile warning application to demonstrate the flexibility of the overall system to be applied to a variety of current and future AFRL missions.
Expert operator's associate: A knowledge based system for spacecraft control
NASA Technical Reports Server (NTRS)
Nielsen, Mogens; Grue, Klaus; Lecouat, Francois
1991-01-01
The Expert Operator's Associate (EOA) project is presented which studies the applicability of expert systems for day-to-day space operations. A prototype expert system is developed, which operates on-line with an existing spacecraft control system at the European Space Operations Centre, and functions as an 'operator's assistant' in controlling satellites. The prototype is demonstrated using an existing real-time simulation model of the MARECS-B2 telecommunication satellite. By developing a prototype system, the extent to which reliability and effectivens of operations can be enhanced by AI based support is examined. In addition the study examines the questions of acquisition and representation of the 'knowledge' for such systems, and the feasibility of 'migration' of some (currently) ground-based functions into future spaceborne autonomous systems.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-02-17
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.
Stray Current Corrosion in Electrified Rail Systems - Final Report
DOT National Transportation Integrated Search
1995-05-01
The objectives of this study were (1)to assess the scope of stray-current corrosion on electrified rail systems based upon information in the literature and from interviews with selected transit system operators, and (2)to determine whether new or ad...
Tactical lighting in special operations medicine: survey of current preferences.
Calvano, Christopher J; Enzenauer, Robert W; Eisnor, Derek L; Laporta, Anthony J
2013-01-01
Success in Special Operations Forces medicine (SOFMED) is dependent on maximizing visual capability without compromising the provider or casualty position when under fire. There is no single ideal light source suitable for varied SOFMED environments. We present the results of an online survey of Special Operations Medical Operators in an attempt to determine strengths and weaknesses of current systems. There was no consensus ideal hue for tactical illumination. Most Operators own three or more lights, and most lights were not night vision compatible. Most importantly, nearly 25% of respondents reported that lighting issues contributed to a poor casualty outcome; conversely, a majority (50 of 74) stated their system helped prevent a poor outcome. Based on the results of this initial survey, we can affirm that the design and choice of lighting is critical to SOFMED success. We are conducting ongoing studies to further define ideal systems for tactical applications including field, aviation, and marine settings. 2013.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to analyze the impact of Remotely Operated Aircraft (ROA) operations on current and planned Air Traffic Control (ATC) automation systems in the En Route, Terminal, and Traffic Flow Management domains. The operational aspects of ROA flight, while similar, are not entirely identical to their manned counterparts and may not have been considered within the time-horizons of the automation tools. This analysis was performed to determine if flight characteristics of ROAs would be compatible with current and future NAS automation tools. Improvements to existing systems / processes are recommended that would give Air Traffic Controllers an indication that a particular aircraft is an ROA and modifications to IFR flight plan processing algorithms and / or designation of airspace where an ROA will be operating for long periods of time.
Intelligent transportation systems (ITS) operational support contracts : final report.
DOT National Transportation Integrated Search
2005-01-31
The New Jersey Department of Transportation (NJDOT) is currently facing a significant challenge : in keeping Intelligent Transportation Systems (ITS) at a high level of availability at the : Transportation Operation Center North (TOC North) and Trans...
Identification and Analysis of National Airspace System Resource Constraints
NASA Technical Reports Server (NTRS)
Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.
2015-01-01
This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described.
Gallegos-Lopez, Gabriel
2012-10-02
Methods, system and apparatus are provided for increasing voltage utilization in a five-phase vector controlled machine drive system that employs third harmonic current injection to increase torque and power output by a five-phase machine. To do so, a fundamental current angle of a fundamental current vector is optimized for each particular torque-speed of operating point of the five-phase machine.
Implementation of Geostar's RDSS system
NASA Technical Reports Server (NTRS)
Lepkowski, Ronald J.
1990-01-01
The Geostar (Trademark) system began its initial operations in 1988 and was the first domestic satellite system to provide regular service to mobile users within the United States. Here, an overview is given of Geostar's radiodetermination satellite system (RDSS) concept and its development by Geostar, with a focus on the current operational status of Geostar's interim RDSS system and services.
Operation of Direct Drive Systems: Experiments in Peak Power Tracking and Multi-Thruster Control
NASA Technical Reports Server (NTRS)
Snyder, John Steven; Brophy, John R.
2013-01-01
Direct-drive power and propulsion systems have the potential to significantly reduce the mass of high-power solar electric propulsion spacecraft, among other advantages. Recent experimental direct-drive work has significantly mitigated or retired the technical risks associated with single-thruster operation, so attention is now moving toward systems-level areas of interest. One of those areas is the use of a Hall thruster system as a peak power tracker to fully use the available power from a solar array. A simple and elegant control based on the incremental conductance method, enhanced by combining it with the unique properties of Hall thruster systems, is derived here and it is shown to track peak solar array power very well. Another area of interest is multi-thruster operation and control. Dualthruster operation was investigated in a parallel electrical configuration, with both thrusters operating from discharge power provided by a single solar array. Startup and shutdown sequences are discussed, and it is shown that multi-thruster operation and control is as simple as for a single thruster. Some system architectures require operation of multiple cathodes while they are electrically connected together. Four different methods to control the discharge current emitted by individual cathodes in this configuration are investigated, with cathode flow rate control appearing to be advantageous. Dual-parallel thruster operation with equal cathode current sharing at total powers up to 10 kW is presented.
A Multiprocessor Operating System Simulator
NASA Technical Reports Server (NTRS)
Johnston, Gary M.; Campbell, Roy H.
1988-01-01
This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall semester of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT&T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows that of the 'Choices' family of operating systems for loosely- and tightly-coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.
Quench monitoring and control system and method of operating same
Ryan, David Thomas; Laskaris, Evangelos Trifon; Huang, Xianrui
2006-05-30
A rotating machine comprising a superconductive coil and a temperature sensor operable to provide a signal representative of superconductive coil temperature. The rotating machine may comprise a control system communicatively coupled to the temperature sensor. The control system may be operable to reduce electric current in the superconductive coil when a signal representative of a defined superconducting coil temperature is received from the temperature sensor.
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Dubin, A. P.
1976-01-01
A study has been performed to evaluate the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of the fuel-conserving alternatives has been investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000.
Control system for 5 MW neutral beam ion source for SST1
NASA Astrophysics Data System (ADS)
Patel, G. B.; Onali, Raja; Sharma, Vivek; Suresh, S.; Tripathi, V.; Bandyopadhyay, M.; Singh, N. P.; Thakkar, Dipal; Gupta, L. N.; Singh, M. J.; Patel, P. J.; Chakraborty, A. K.; Baruah, U. K.; Mattoo, S. K.
2006-01-01
This article describes the control system for a 5MW ion source of the NBI (neutral beam injector) for steady-state superconducting tokamak-1 (SST-1). The system uses both hardware and software solutions. It comprises a DAS (data acquisition system) and a control system. The DAS is used to read the voltage and current signals from eight filament heater power supplies and 24 discharge power supplies. The control system is used to adjust the filament heater current in order to achieve an effective control on the discharge current in the plasma box. The system consists of a VME (Verse Module Eurocard) system and C application program running on a VxWorks™ real-time operating system. A PID (proportional, integral, and differential) algorithm is used to control the filament heater current. Experiments using this system have shown that the discharge current can be controlled within 1% accuracy for a PID loop time of 20ms. Response of the control system to the pressure variation of the gas in the chamber has also been studied and compared with the results obtained from those of an uncontrolled system. The present approach increases the flexibility of the control system. It not only eases the control of the plasma but also allows an easy changeover to various operation scenarios.
A simulation system for Space Station extravehicular activity
NASA Technical Reports Server (NTRS)
Marmolejo, Jose A.; Shepherd, Chip
1993-01-01
America's next major step into space will be the construction of a permanently manned Space Station which is currently under development and scheduled for full operation in the mid-1990's. Most of the construction of the Space Station will be performed over several flights by suited crew members during an extravehicular activity (EVA) from the Space Shuttle. Once fully operational, EVA's will be performed from the Space Station on a routine basis to provide, among other services, maintenance and repair operations of satellites currently in Earth orbit. Both voice recognition and helmet-mounted display technologies can improve the productivity of workers in space by potentially reducing the time, risk, and cost involved in performing EVA. NASA has recognized this potential and is currently developing a voice-controlled information system for Space Station EVA. Two bench-model helmet-mounted displays and an EVA simulation program have been developed to demonstrate the functionality and practicality of the system.
NASA Technical Reports Server (NTRS)
Romero, Raylund; Summers, Harold; Cronkhite, James
1996-01-01
The objective was to evaluate the feasibility of a state-of-the-art health and usage monitoring system (HUMS) to provide monitoring of critical mechanical systems on the helicopter, including motors, drive train, engines, and life-limited components. The implementation of HUMS and cost integration with current maintenance procedures was assessed from the operator's viewpoint in order to achieve expected benefits from these systems, such as enhanced safety, reduced maintenance cost, and increased availability. An operational HUMS that was installed and operated under an independent flight trial program was used as a basis for this study. The HUMS equipment and software were commercially available. Based on the results of the feasibility study, the HUMS used in the flight trial program generally demonstrated a high level of reliability in monitoring the rotor system, engines, drive train, and life-limited components. The system acted as a sentinel to warn of impending failures. A worn tail rotor pitch bearing was detected by HUMS, which had the capability for self testing to diagnose system and sensor faults. Examples of potential payback to the operator with HUMS were identified, including reduced insurance cost through enhanced safety, lower operating costs derived from maintenance credits, increased aircraft availability, and improved operating efficiency. The interfacing of HUMS with current operational procedures was assessed to require only minimal revisions to the operator's maintenance manuals. Finally the success in realizing the potential benefits from HUMS technology was found to depend on the operator, helicopter manufacturer, regulator (FAA), and HUMS supplier working together.
Onboard power line conditioning system for an electric or hybrid vehicle
Kajouke, Lateef A.; Perisic, Milun
2016-06-14
A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.
NASA Astrophysics Data System (ADS)
Monfort, Samuel S.; Sibley, Ciara M.; Coyne, Joseph T.
2016-05-01
Future unmanned vehicle operations will see more responsibilities distributed among fewer pilots. Current systems typically involve a small team of operators maintaining control over a single aerial platform, but this arrangement results in a suboptimal configuration of operator resources to system demands. Rather than devoting the full-time attention of several operators to a single UAV, the goal should be to distribute the attention of several operators across several UAVs as needed. Under a distributed-responsibility system, operator task load would be continuously monitored, with new tasks assigned based on system needs and operator capabilities. The current paper sought to identify a set of metrics that could be used to assess workload unobtrusively and in near real-time to inform a dynamic tasking algorithm. To this end, we put 20 participants through a variable-difficulty multiple UAV management simulation. We identified a subset of candidate metrics from a larger pool of pupillary and behavioral measures. We then used these metrics as features in a machine learning algorithm to predict workload condition every 60 seconds. This procedure produced an overall classification accuracy of 78%. An automated tasker sensitive to fluctuations in operator workload could be used to efficiently delegate tasks for teams of UAV operators.
Multi-modal cockpit interface for improved airport surface operations
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J. (Inventor); Bailey, Randall E. (Inventor); Prinzel, III, Lawrence J. (Inventor); Kramer, Lynda J. (Inventor); Williams, Steven P. (Inventor)
2010-01-01
A system for multi-modal cockpit interface during surface operation of an aircraft comprises a head tracking device, a processing element, and a full-color head worn display. The processing element is configured to receive head position information from the head tracking device, to receive current location information of the aircraft, and to render a virtual airport scene corresponding to the head position information and the current aircraft location. The full-color head worn display is configured to receive the virtual airport scene from the processing element and to display the virtual airport scene. The current location information may be received from one of a global positioning system or an inertial navigation system.
NASA Technical Reports Server (NTRS)
Hardison, David; Medina, Johnny; Dell, Greg
2016-01-01
The Earth Observer System (EOS) was officially established in 1990 and went operational in December 1999 with the launch of its flagship spacecraft Terra. Aqua followed in 2002 and Aura in 2004. All three spacecraft are still operational and producing valuable scientific data. While all are beyond their original design lifetime, they are expected to remain viable well into the 2020s. The EOS Ground System is a multi-mission system based at NASA Goddard Space Flight Center that supports science and spacecraft operations for these three missions. Over its operational lifetime to date, the EOS Ground System has evolved as needed to accommodate mission requirements. With an eye towards the future, several updates are currently being deployed. Subsystem interconnects are being upgraded to reduce data latency and improve system performance. End-of-life hardware and operating systems are being replaced to mitigate security concerns and eliminate vendor support gaps. Subsystem hardware is being consolidated through the migration to Virtual Machine based platforms. While mission operations autonomy was not a design goal of the original system concept, there is an active effort to apply state-of-the-art products from the Goddard Mission Services Evolution Center (GMSEC) to facilitate automation where possible within the existing heritage architecture. This presentation will provide background information on the EOS ground system architecture and evolution, discuss latest improvements, and conclude with the results of a recent effort that investigated how the current system could accommodate a proposed new earth science mission.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
... Ventilation System Surveillance Requirements To Operate for 10 Hours per Month,'' Using the Consolidated Line... currently require operating the ventilation system for at least 10 continuous hours with the heaters... Technical Specifications (TSs) Task Force (TSTF) Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-22
... Ventilation System Surveillance Requirements to Operate for 10 hours per Month.'' DATES: Comment period....1, which currently require operating the heaters in the respective systems for at least 10... Adoption of Technical Specifications Task Force Traveler TSTF-522, Revision 0, ``Revise Ventilation System...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-30
.../diminished. There are no design changes associated with this TS amendment. The DC power system/batteries will... changes restructure the Technical Specifications (TS) for the direct current (DC) electrical power system... battery and battery charger operability requirements. The DC electrical power system, including associated...
Obstacles to Industrial Implementation of Scanning Systems
Anders Astrom; Olog Broman; John Graffman; Anders Gronlund; Armas Jappinene; Jari Luostarinen; Jan Nystrom; Daniel L. Schmoldt
1998-01-01
Initially the group discussed what is meant by scanning systems. An operational definition was adopted to consider scanning system in the current context to be nontraditional scanning. Where, traditional scanning is defined as scanning that has been industrially operational and relatively common for several years-a mature technology. For example,...
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1992-01-01
This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.
Wavelet Based Protection Scheme for Multi Terminal Transmission System with PV and Wind Generation
NASA Astrophysics Data System (ADS)
Manju Sree, Y.; Goli, Ravi kumar; Ramaiah, V.
2017-08-01
A hybrid generation is a part of large power system in which number of sources usually attached to a power electronic converter and loads are clustered can operate independent of the main power system. The protection scheme is crucial against faults based on traditional over current protection since there are adequate problems due to fault currents in the mode of operation. This paper adopts a new approach for detection, discrimination of the faults for multi terminal transmission line protection in presence of hybrid generation. Transient current based protection scheme is developed with discrete wavelet transform. Fault indices of all phase currents at all terminals are obtained by analyzing the detail coefficients of current signals using bior 1.5 mother wavelet. This scheme is tested for different types of faults and is found effective for detection and discrimination of fault with various fault inception angle and fault impedance.
NASA Astrophysics Data System (ADS)
Aarons, J.; Grossi, M. D.
1982-08-01
To develop and operate an adaptive system, propagation factors of the ionospheric medium must be given to the designer. The operation of the system must change as a function of multipath spread, Doppler spread, path losses, channel correlation functions, etc. In addition, NATO mid-latitude HF transmission and transauroral paths require varying system operation, which must fully utilize automatic path diversity across transauroral paths. Current research and literature are reviewed to estimate the extent of the available technical information. Additional investigations to allow designers to orient new systems on realistic models of these parameters are suggested.
Development of a prototype real-time automated filter for operational deep space navigation
NASA Technical Reports Server (NTRS)
Masters, W. C.; Pollmeier, V. M.
1994-01-01
Operational deep space navigation has been in the past, and is currently, performed using systems whose architecture requires constant human supervision and intervention. A prototype for a system which allows relatively automated processing of radio metric data received in near real-time from NASA's Deep Space Network (DSN) without any redesign of the existing operational data flow has been developed. This system can allow for more rapid response as well as much reduced staffing to support mission navigation operations.
Progress of long pulse operation with high performance plasma in KSTAR
NASA Astrophysics Data System (ADS)
Bae, Young; Kstar Team
2015-11-01
Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.
Characterization of advanced electric propulsion systems
NASA Technical Reports Server (NTRS)
Ray, P. K.
1982-01-01
Characteristics of several advanced electric propulsion systems are evaluated and compared. The propulsion systems studied are mass driver, rail gun, MPD thruster, hydrogen free radical thruster and mercury electron bombardment ion engine. These are characterized by specific impulse, overall efficiency, input power, average thrust, power to average thrust ratio and average thrust to dry weight ratio. Several important physical characteristics such as dry system mass, accelerator length, bore size and current pulse requirement are also evaluated in appropriate cases. Only the ion engine can operate at a specific impulse beyond 2000 sec. Rail gun, MPD thruster and free radical thruster are currently characterized by low efficiencies. Mass drivers have the best performance characteristics in terms of overall efficiency, power to average thrust ratio and average thrust to dry weight ratio. But, they can only operate at low specific impulses due to large power requirements and are extremely long due to limitations of driving current. Mercury ion engines have the next best performance characteristics while operating at higher specific impulses. It is concluded that, overall, ion engines have somewhat better characteristics as compared to the other electric propulsion systems.
NASA Customer Data and Operations System
NASA Technical Reports Server (NTRS)
Butler, Madeline J.; Stallings, William H.
1991-01-01
In addition to the currently provided NASA services such as Communications and Tracking and Data Relay Satellite System services, the NASA's Customer Data and Operations System (CDOS) will provide the following services to the user: Data Delivery Service, Data Archive Service, and CDOS Operations Management Service. This paper describes these services in detail and presents respective block diagrams. The CDOS services will support a variety of multipurpose missions simultaneously with centralized and common hardware and software data-driven systems.
Distributed expert systems for ground and space applications
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Presented here is the Spacecraft Command Language (SCL) concept of the unification of ground and space operations using a distributed approach. SCL is a hybrid software environment borrowing from expert system technology, fifth generation language development, and multitasking operating system environments. Examples of potential uses for the system and current distributed applications of SCL are given.
[Development of operation patient security detection system].
Geng, Shu-Qin; Tao, Ren-Hai; Zhao, Chao; Wei, Qun
2008-11-01
This paper describes a patient security detection system developed with two dimensional bar codes, wireless communication and removal storage technique. Based on the system, nurses and correlative personnel check code wait operation patient to prevent the defaults. The tests show the system is effective. Its objectivity and currency are more scientific and sophisticated than current traditional method in domestic hospital.
NASA Technical Reports Server (NTRS)
Bielozer, M.; VanLear, Benjamin S.; Kindred, N.; Monien, G.; Schulte, U.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
NASA Technical Reports Server (NTRS)
Bielozer, Matthew C.
2014-01-01
A concept of operations for the Assembly, Integration and Testing (AIT) and the Ground Systems Development Operations (GSDO) of the European Service Module (ESM) propulsion system has been developed. The AIT concept of operations covers all fabrication, integration and testing activities in both Europe and in the United States. The GSDO Program develops the facilities, equipment, and procedures for the loading of hypergolic propellants, the filling of high-pressure gases, and contingency de-servicing operations for the ESM. NASA and ESA along with the Lockheed Martin and Airbus Space and Defense are currently working together for the EM-1 and EM-2 missions in which the ESM will be flown as part of the Orion Multi-Purpose Crew Vehicle (MPCV). The NASA/ESA SM propulsion team is collaborating with the AIT personnel from ESA/Airbus and NASA/Lockheed Martin to ensure successful integration of the European designed Service Module propulsion system, the Lockheed Martin designed Crew Module Adapter and the heritage Space Shuttle Orbital Maneuvering System Engines (OMS-E) being provided as Government Furnished Equipment (GFE). This paper will provide an overview of the current AIT and GSDO concept of operations for the ESM propulsion system.
Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan
2017-08-01
In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.
Methods for locating ground faults and insulation degradation condition in energy conversion systems
Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja
2015-08-11
Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.
MacNeille, S.M.
1958-12-01
Control systems for automatic positioning of an electric motor operated vapor valve are described which is operable under the severe conditions existing in apparatus for electro-magnetlcally separating isotopes. In general, the system includes a rotor for turning the valve comprising two colls mounted mutually perpendicular to each other and also perpendicular to the magnetic field of the isotope separating apparatus. The coils are furnished with both a-c and d- c current by assoclate control circuitry and a position control is provided for varying the ratlo of the a-c currents in the coils and at the same time, but in an inverse manner, the ratio between the d-c currents in the coils is varied. With the present system the magnitude of the motor torque is constant for all valves of the rotor orientatlon angle.
Discharge measurements using a broad-band acoustic Doppler current profiler
Simpson, Michael R.
2002-01-01
The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.
NASA Technical Reports Server (NTRS)
Green, David F.; Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.
2009-01-01
The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. In this report, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS). CAAT research is conducted jointly under NASA's Airspace Systems Program, Airportal Project and the Aviation Safety Program, Integrated Intelligent Flight Deck Project.
Nakasuji, Masato; Tanaka, Masuji; Imanaka, Norie; Kawashima, Hiroko; Asada, Akira
2007-09-01
Drug addiction of doctors has become social problems recently due to inappropriate drug management system in the operating theater. It goes without saying that we must behave ourselves as doctors. In addition, current drug management system should be improved and all drugs stocked in the operating theater should be counted by pharmacists after surgery. Kansai Denryoku Hospital with four hundred beds started new drug management system in December 2005. Drug sets for each surgical patient in the cart are delivered from the pharmacy every morning. A drug set is carried to the each operating room by an anesthesiologist or a nurse and they write down administered drugs in the document after surgery. Pharmacists collect the drug cart the following morning and check each drug set and document in the pharmacy. All drugs can not be carried out from the operating theater without permission, and anesthesiologists and nurses do not have to spend too much time on drug management. Extra one hour is needed for pharmacists to check the drug set in the pharmacy. We consider that our new drug management system can substitute a satellite pharmacy, which is recognized currently as ideal drug management system in the operating theater, in the middle scale hospitals without enough pharmacists assigned exclusively to the operating theater.
The Slow Controls System of the New Muon g-2 Experiment at Fermilab
NASA Astrophysics Data System (ADS)
Eads, Michael; New Muon g-2 Collaboration
2015-04-01
The goal of the new muon g-2 experiment (E-989), currently under construction at Fermi National Accelerator Laboratory, is to measure the anomalous gyromagnetic ratio of the muon with unprecedented precision. The uncertainty goal of the experiment, 0.14ppm, represents a four-fold improvement over the current best measurement of this value and has the potential to increase the current three standard deviation disagreement with the predicted standard model value to five standard deviations. Measuring the operating conditions of the experiment will be essential to achieving these uncertainty goals. This talk will describe the design and the current status of E-989's slow controls system. This system, based on the MIDAS Slow Control Bus, will be used to measure and record currents, voltages, temperatures, humidities, pressures, flows, and other data which is collected asynchronously with the injection of the muon beam. The system consists of a variety of sensors and front-end electronics which interface to back-end data acquisition, data storage, and data monitoring systems. Parts of the system are all already operational and the full system will be completed before beam commissioning begins in 2017.
Intrinsic operators for the electromagnetic nuclear current
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Adam, Jr.; H. Arenhovel
1996-09-01
The intrinsic electromagnetic nuclear meson exchange charge and current operators arising from a separation of the center-of-mass motion are derived for a one-boson-exchange model for the nuclear interaction with scalar, pseudoscalar and vector meson exchange including leading order relativistic terms. Explicit expressions for the meson exchange operators corresponding to the different meson types are given in detail for a two-nucleon system. These intrinsic operators are to be evaluated between intrinsic wave functions in their center-of-mass frame.
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
Development of a current collection loss management system for SDI homopolar power supplies
NASA Astrophysics Data System (ADS)
Brown, D. W.
1991-04-01
High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/sq cm, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To date, no system has achieved these conditions simultaneously. This is the final report covering the three year period of performance on DOE contract AC03-86SF-16518. Major areas covered include design, construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80 kW/kg generator power density.
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
The Application of Architecture Frameworks to Modelling Exploration Operations Costs
NASA Technical Reports Server (NTRS)
Shishko, Robert
2006-01-01
Developments in architectural frameworks and system-of-systems thinking have provided useful constructs for systems engineering. DoDAF concepts, language, and formalisms, in particular, provide a natural way of conceptualizing an operations cost model applicable to NASA's space exploration vision. Not all DoDAF products have meaning or apply to a DoDAF inspired operations cost model, but this paper describes how such DoDAF concepts as nodes, systems, and operational activities relate to the development of a model to estimate exploration operations costs. The paper discusses the specific implementation to the Mission Operations Directorate (MOD) operational functions/activities currently being developed and presents an overview of how this powerful representation can apply to robotic space missions as well.
The Design and Implementation of INGRES.
ERIC Educational Resources Information Center
Stonebraker, Michael; And Others
The currently operational version of the INGRES data base management system gives a relational view of data, supports two high level, non-procedural data sublanguages, and runs as a collection of user processes on top of a UNIX operating system. The authors stress the design decisions and tradeoffs in relation to (1) structuring the system into…
The Equity of School Facilities Funding: Examples from Kentucky
ERIC Educational Resources Information Center
Glenn, William J.; Picus, Lawrence O.; Odden, Allan; Aportela, Anabel
2009-01-01
While there is an extensive literature analyzing the relative equity of state funding systems for current operating revenues, there is a dearth of research on capital funding systems. This article presents an analysis of the school capital funding system in Kentucky since 1990, using the operating-revenue analysis concepts of horizontal equity,…
Automatic Generation of Customized, Model Based Information Systems for Operations Management.
The paper discusses the need for developing a customized, model based system to support management decision making in the field of operations ... management . It provides a critique of the current approaches available, formulates a framework to classify logistics decisions, and suggests an approach for the automatic development of logistics systems. (Author)
Upgrading NASA/DOSE laser ranging system control computers
NASA Technical Reports Server (NTRS)
Ricklefs, Randall L.; Cheek, Jack; Seery, Paul J.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mcgarry, Jan F.
1993-01-01
Laser ranging systems now managed by the NASA Dynamics of the Solid Earth (DOSE) and operated by the Bendix Field Engineering Corporation, the University of Hawaii, and the University of Texas have produced a wealth on interdisciplinary scientific data over the last three decades. Despite upgrades to the most of the ranging station subsystems, the control computers remain a mix of 1970's vintage minicomputers. These encompass a wide range of vendors, operating systems, and languages, making hardware and software support increasingly difficult. Current technology allows replacement of controller computers at a relatively low cost while maintaining excellent processing power and a friendly operating environment. The new controller systems are now being designed using IBM-PC-compatible 80486-based microcomputers, a real-time Unix operating system (LynxOS), and X-windows/Motif IB, and serial interfaces have been chosen. This design supports minimizing short and long term costs by relying on proven standards for both hardware and software components. Currently, the project is in the design and prototyping stage with the first systems targeted for production in mid-1993.
Jha, Kamal N.
1999-01-01
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.
Enabling technologies for transition to utilization of space-based resources and operations
NASA Technical Reports Server (NTRS)
Sadin, S. R.; Litty, J. D.
1985-01-01
This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.
Simulation of Trolleybus Traction Induction Drive With Supercapacitor Energy Storage System
NASA Astrophysics Data System (ADS)
Brazis, V.; Latkovskis, L.; Grigans, L.
2010-01-01
The article considers the possibilities of saving the regenerative braking energy in Škoda 24Tr type trolleybuses by installing the onboard supercapacitor energy storage system (ESS) and improving its performance with automated switching to the autonomous traction mode. Proposed is an ESS control system with constant DC bus voltage in the supercapacitor charging mode and supercapacitor current proportional to the AC drive current in the discharging mode. The authors investigate stability of the trolleybus ESS control system operating together with AC traction drive in various overhead voltage failure modes. The co-simulation of ESS operation was done by Matlab/Simulink AC drive and PSIM ESS continuous models.
Nonlinear Control of Large Disturbances in Magnetic Bearing Systems
NASA Technical Reports Server (NTRS)
Jiang, Yuhong; Zmood, R. B.
1996-01-01
In this paper, the nonlinear operation of magnetic bearing control methods is reviewed. For large disturbances, the effects of displacement constraints and power amplifier current and di/dt limits on bearing control system performance are analyzed. The operation of magnetic bearings exhibiting self-excited large scale oscillations have been studied both experimentally and by simulation. The simulation of the bearing system has been extended to include the effects of eddy currents in the actuators, so as to improve the accuracy of the simulation results. The results of these experiments and simulations are compared, and some useful conclusions are drawn for improving bearing system robustness.
NASA Astrophysics Data System (ADS)
Mayerle, R.; Al-Subhi, A.; Fernández Jaramillo, J.; Salama, A.; Bruss, G.; Zubier, K.; Runte, K.; Turki, A.; Hesse, K.; Jastania, H.; Ladwig, N.; Mudarris, M.
2016-04-01
This paper presents results of the development and application of a web-based information system, Jeddah CIS, for assisting decision makers in the management of Jeddah coastal waters, in Saudi Arabia. The system will support coastal planning, management of navigation and tackle pollution due to accidents. The system was developed primarily to nowcast in quasi-real time and to deliver short-term forecasts of water levels, current velocities and waves with high spatial and temporal resolution for the area near Jeddah. Therefor it will hasten response when adverse weather conditions prevail. The Jeddah-CIS integrates sensors transmitting in real time, meteorological, oceanographic and water quality parameters and operational models for flow and waves. It also provides interactive tools using advanced visualization techniques to facilitate dissemination of information. The system relies on open source software and has been designed to facilitate the integration of additional components for enhanced information processing, data evaluation and generation of higher water level, current velocity and wave for the general public. Jeddah-CIS has been operational since 2013. Extensions of the system to speed operations and improving the accuracy of the predictions to the public are currently underway.
Harmonic voltage excess problem test and analysis in UHV and EHV grid particular operation mode
NASA Astrophysics Data System (ADS)
Lv, Zhenhua; Shi, Mingming; Fei, Juntao
2018-02-01
The test and analysis of the power quality of some 1000kV UHV transmission lines and 500kV EHV transmission lines is carried out. It is found that there is harmonic voltage excess problems when the power supply of the UHV and EHV voltage line is single-ended or single-loop, the problem basically disappeared after the operation mode change, different operating conditions, the harmonic current has not been greatly affected, indicating that the harmonic voltage changes mainly caused by the system harmonic impedance. With the analysis of MATLAB Simulink system model, it can be seen that there are specific harmonic voltage excess in the system under the specific operating mode, which results in serious distortion of the specific harmonic voltage. Since such phenomena are found in 500kV and 1000kV systems, it is suggested that the test evaluation work should be done under the typical mode of operation in 500kV, 1000kV Planning and construction process to prevent the occurrence of serious distortion and the regional harmonic current monitoring and suppression work should be done.
Telescience operations with the solar array module plasma interaction experiment
NASA Technical Reports Server (NTRS)
Wald, Lawrence W.; Bibyk, Irene K.
1995-01-01
The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).
A multiprocessor operating system simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, G.M.; Campbell, R.H.
1988-01-01
This paper describes a multiprocessor operating system simulator that was developed by the authors in the Fall of 1987. The simulator was built in response to the need to provide students with an environment in which to build and test operating system concepts as part of the coursework of a third-year undergraduate operating systems course. Written in C++, the simulator uses the co-routine style task package that is distributed with the AT and T C++ Translator to provide a hierarchy of classes that represents a broad range of operating system software and hardware components. The class hierarchy closely follows thatmore » of the Choices family of operating systems for loosely and tightly coupled multiprocessors. During an operating system course, these classes are refined and specialized by students in homework assignments to facilitate experimentation with different aspects of operating system design and policy decisions. The current implementation runs on the IBM RT PC under 4.3bsd UNIX.« less
Architectures for mission control at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Davidson, Reger A.; Murphy, Susan C.
1992-01-01
JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
NASA Technical Reports Server (NTRS)
Otero, Sharon D.; Barker, Glover D.; Jones, Denise R.
2013-01-01
The Next Generation Air Transportation System (NextGen) concept for 2025 envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner. The NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and deliver an overall system capacity up to 3 times that of current operating levels. In order to achieve the NextGen vision, research is necessary in the areas of surface traffic optimization, maximum runway capacity, reduced runway occupancy time, simultaneous single runway operations, and terminal area conflict prevention, among others. The National Aeronautics and Space Administration (NASA) is conducting Collision Avoidance for Airport Traffic (CAAT) research to develop technologies, data, and guidelines to enable Conflict Detection and Resolution (CD&R) in the Airport Terminal Maneuvering Area (ATMA) under current and emerging NextGen operating concepts. The term ATMA was created to reflect the fact that the CD&R concept area of operation is focused near the airport within the terminal maneuvering area. In the following, an initial concept for an aircraft-based method for CD&R in the ATMA is presented. This method is based upon previous NASA work in CD&R for runway incursion prevention, the Runway Incursion Prevention System (RIPS).
Evaluation of the Trajectory Operations Applications Software Task (TOAST)
NASA Technical Reports Server (NTRS)
Perkins, Sharon; Martin, Andrea; Bavinger, Bill
1990-01-01
The Trajectory Operations Applications Software Task (TOAST) is a software development project under the auspices of the Mission Operations Directorate. Its purpose is to provide trajectory operation pre-mission and real-time support for the Space Shuttle program. As an Application Manager, TOAST provides an isolation layer between the underlying Unix operating system and the series of user programs. It provides two main services: a common interface to operating system functions with semantics appropriate for C or FORTRAN, and a structured input and output package that can be utilized by user application programs. In order to evaluate TOAST as an Application Manager, the task was to assess current and planned capabilities, compare capabilities to functions available in commercially-available off the shelf (COTS) and Flight Analysis Design System (FADS) users for TOAST implementation. As a result of the investigation, it was found that the current version of TOAST is well implemented and meets the needs of the real-time users. The plans for migrating TOAST to the X Window System are essentially sound; the Executive will port with minor changes, while Menu Handler will require a total rewrite. A series of recommendations for future TOAST directions are included.
Practicing for Mars: The International Space Station (ISS) as a Testbed
NASA Technical Reports Server (NTRS)
Korth, David H.
2014-01-01
Allows demonstration and development of exploration capabilities to help accomplish future missions sooner with less risk to crew and mission Characteristics of ISS as a testbed High fidelity human operations platform in LEO: Continuously operating habitat and active laboratory. High fidelity systems. Astronauts as test subjects. Highly experienced ground operations teams. Offers a controlled test environment.: Consequences to systems performance and decision making not offered in ground analogs International participation. Continuously improving system looking for new technology and ideas to improve operations. Technology Demos & Critical Systems Maturation. Human Health and Performance. Operations Simulations and Techniques. Exploration prep testing on ISS has been ongoing since 2012. Number of tests increasing with each ISS expedition. One Year Crew Expedition starting in Spring 2015. ROSCOSMOS and NASA are partnering on the Participating Crew are Mikhail Kornienko and Scott Kelly Majority of testing is an extension of current Human Biomedical Research investigations Plan for extending & expanding upon current operations techniques and tech demo studies ESA 10 Day Mission in Fall 2015 ESA astronaut focus on testing exploration technologies Many more opportunities throughout the life of ISS! 4/24/2014 david.h.korth@nasa.gov 4 Exploration testing
Interactive digital signal processor
NASA Technical Reports Server (NTRS)
Mish, W. H.; Wenger, R. M.; Behannon, K. W.; Byrnes, J. B.
1982-01-01
The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information.
DOT National Transportation Integrated Search
2018-01-01
This study was conducted to explore the current state-of-the-practice of Transportation Systems Management and Operations (TSM&O) in the Florida Department of Transportation (FDOT) and determine what would be required to mainstream TSM&O throughout t...
Toward Head-Worn Displays for Equivalent Visual Operations
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence (Lance) J., III; Arthur, Jarvis J. (Trey); Bailey, Randall E.; Jones, Denise R.; Williams, Steven P.; Harrison, Stephanie J.
2015-01-01
The Next Generation Air Transportation System represents an envisioned transformation to the U.S. air transportation system that includes an "equivalent visual operations" (EVO) concept, intended to achieve the safety and operational tempos of Visual Flight Rules (VFR) operations independent of visibility conditions. Today, Federal Aviation Administration regulations provide for the use of an Enhanced Flight Visual System (EFVS) as "operational credit" to conduct approach operations below traditional minima otherwise prohibited. An essential element of an EFVS is the Head-Up Display (HUD). NASA has conducted a substantial amount of research investigating the use of HUDs for operational landing "credit", and current efforts are underway to enable manually flown operations as low as 1000 feet Runway Visual Range (RVR). Title 14 CFR 91.175 describes the use of EFVS and the operational credit that may be obtained with airplane equipage of a HUD combined with Enhanced Vision (EV) while also offering the potential use of an “equivalent” display in lieu of the HUD. A Head-Worn Display (HWD) is postulated to provide the same, or better, safety and operational benefits as current HUD-equipped aircraft but for potentially more aircraft and for lower cost. A high-fidelity simulation was conducted that examined the efficacy of HWDs as "equivalent" displays. Twelve airline flight crews conducted 1000 feet RVR approach and 300 feet RVR departure operations using either a HUD or HWD, both with simulated Forward Looking Infra-Red cameras. The paper shall describe (a) quantitative and qualitative results, (b) a comparative evaluation of these findings with prior NASA HUD studies, and (c) describe current research efforts for EFVS to provide for a comprehensive EVO capability.
Arrester Resistive Current Measuring System Based on Heterogeneous Network
NASA Astrophysics Data System (ADS)
Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue
2018-03-01
Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.
An approach to operating system testing
NASA Technical Reports Server (NTRS)
Sum, R. N., Jr.; Campbell, R. H.; Kubitz, W. J.
1984-01-01
To ensure the reliability and performance of a new system, it must be verified or validated in some manner. Currently, testing is the only resonable technique available for doing this. Part of this testing process is the high level system test. System testing is considered with respect to operating systems and in particular UNIX. This consideration results in the development and presentation of a good method for performing the system test. The method includes derivations from the system specifications and ideas for management of the system testing project. Results of applying the method to the IBM System/9000 XENIX operating system test and the development of a UNIX test suite are presented.
Verification of an IGBT Fusing Switch for Over-current Protection of the SNS HVCM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benwell, Andrew; Kemp, Mark; Burkhart, Craig
2010-06-11
An IGBT based over-current protection system has been developed to detect faults and limit the damage caused by faults in high voltage converter modulators. During normal operation, an IGBT enables energy to be transferred from storage capacitors to a H-bridge. When a fault occurs, the over-current protection system detects the fault, limits the fault current and opens the IGBT to isolate the remaining stored energy from the fault. This paper presents an experimental verification of the over-current protection system under applicable conditions.
Miyazawa, Yasumasa; Guo, Xinyu; Varlamov, Sergey M.; Miyama, Toru; Yoda, Ken; Sato, Katsufumi; Kano, Toshiyuki; Sato, Keiji
2015-01-01
At the present time, ocean current is being operationally monitored mainly by combined use of numerical ocean nowcast/forecast models and satellite remote sensing data. Improvement in the accuracy of the ocean current nowcast/forecast requires additional measurements with higher spatial and temporal resolution as expected from the current observation network. Here we show feasibility of assimilating high-resolution seabird and ship drift data into an operational ocean forecast system. Data assimilation of geostrophic current contained in the observed drift leads to refinement in the gyre mode events of the Tsugaru warm current in the north-eastern sea of Japan represented by the model. Fitting the observed drift to the model depends on ability of the drift representing geostrophic current compared to that representing directly wind driven components. A preferable horizontal scale of 50 km indicated for the seabird drift data assimilation implies their capability of capturing eddies with smaller horizontal scale than the minimum scale of 100 km resolved by the satellite altimetry. The present study actually demonstrates that transdisciplinary approaches combining bio-/ship- logging and numerical modeling could be effective for enhancement in monitoring the ocean current. PMID:26633309
Training and Tactical Operationally Responsive Space Operations
NASA Astrophysics Data System (ADS)
Sorensen, B.; Strunce, R., Jr.
Current space assets managed by traditional space system control resources provide communication, navigation, intelligence, surveillance, and reconnaissance (ISR) capabilities using satellites that are designed for long life and high reliability. The next generation Operationally Responsive Space (ORS) systems are aimed at providing operational space capabilities which will provide flexibility and responsiveness to the tactical battlefield commander. These capabilities do not exist today. The ORS communication, navigation, and ISR satellites are being designed to replace or supplement existing systems in order to enhance the current space force. These systems are expected to rapidly meet near term space needs of the tactical forces. The ORS concept includes new tactical satellites specifically designed to support contingency operations such as increased communication bandwidth and ISR imagery over the theater for a limited period to support air, ground, and naval force mission. The Concept of Operations (CONOPS) that exists today specifies that in addition to operational control of the satellite, the tasking and scheduling of the ORS tactical satellite for mission data collection in support of the tactical warfighter will be accomplished within the Virtual Mission Operations Center (VMOC). This is very similar to what is currently being accomplished in a fixed Mission Operations Center on existing traditional ISR satellites. The VMOC is merely a distributed environment and the CONOPS remain virtually the same. As a result, there is a significant drawback to the current ORS CONOPS that does not account for the full potential of the ORS paradigm for supporting tactical forces. Although the CONOPS approach may be appropriate for experimental Tactical Satellites (TacSat), it ignores the issues associated with the In-Theater Commander's need to own and operate his dedicated TacSat for most effective warfighting as well as the Warfighter specific CONOPS. What is needed to realize the full potential of the ORS approach to the support of in-theater tactical forces is the development of satellite tasking, interface, and data retrieval capabilities and mission operations approaches from a warfighter centered perspective, and the development of realistic training and simulation capabilities that will allow development, demonstration, and assessment of ORS tactical CONOPS. A system for Training and Tactical ORS Operations (TATOO) is currently being developed. This system will support development and evaluation of ORS specific CONOPS approaches, and training and evaluation of those CONOPS implementations through dedicated training capabilities, facilities, and exercises. TATOO will support the operational side of ORS and will merge with the revolutionary ORS spacecraft development and deployment processes to make the ORS paradigm a reality. TATOO's primary objective is to support the In-Theater Commander and Warfighter by developing, training, and assessing ORS mission CONOPS for In-Theater tasking, scheduling, interface, and data retrieval for TacSats owned by In-Theater Commanders. TATOO provides a laboratory/classroom environment for the development, test and evaluation of ORS Tactical Mission CONOPS for In-Theater ORS operations. The TATOO laboratory will also be used to develop, evaluate, and document ORS Mission CONOPS for tactical ISR and other ORS missions. Within this framework, the laboratory/classroom can be used to develop the necessary training materials and procedures, as well as conduct training exercises that emphasize the training of In-Theater personal with regard to: Tactical Ground Station Mission Operations; Tactical Operations for Mission Tasking and Scheduling; Tactical Mission Data Retrieval; and, Support for Warfighter Operations.
Current interruption in inductive storage systems with inertial current source
NASA Astrophysics Data System (ADS)
Vitkovitsky, I. M.; Conte, D.; Ford, R. D.; Lupton, W. H.
1980-03-01
Utilization of inertial current source inductive storage with high power output requires a switch with short opening time. This switch must operate as a circuit breaker, i.e., be capable to carry the current for a time period characteristic of inertial systems, such as homopolar generators. For reasonable efficiency, its opening time must be fast to minimize the energy dissipated in downstream fuse stages required for any additional pulse compression. A switch that satisfies these criteria, as well as other requirements such as that for high voltage operation associated with high power output, is an explosively driven switch consisting of large number of gaps arranged in series. The performance of this switch in limiting and/or interrupting currents produced by large generators has been studied. Single switch modules were designed and tested for limiting the commutating current output of 1 MW, 60 Hz, generator and 500 KJ capacitor banks. Current limiting and commutation were evaluated, using these sources, for currents ranging up to 0.4 MA. The explosive opening of the switch was found to provide an effective first stage for further pulse compression. It opens in tens of microseconds, commutates current at high efficiency ( = 905) recovers very rapidly over a wide range of operating conditions.
Cargo Logistics Airlift Systems Study (CLASS). Volume 1: Analysis of current air cargo system
NASA Technical Reports Server (NTRS)
Burby, R. J.; Kuhlman, W. H.
1978-01-01
The material presented in this volume is classified into the following sections; (1) analysis of current routes; (2) air eligibility criteria; (3) current direct support infrastructure; (4) comparative mode analysis; (5) political and economic factors; and (6) future potential market areas. An effort was made to keep the observations and findings relating to the current systems as objective as possible in order not to bias the analysis of future air cargo operations reported in Volume 3 of the CLASS final report.
Methods, systems and apparatus for synchronous current regulation of a five-phase machine
Gallegos-Lopez, Gabriel; Perisic, Milun
2012-10-09
Methods, systems and apparatus are provided for controlling operation of and regulating current provided to a five-phase machine when one or more phases has experienced a fault or has failed. In one implementation, the disclosed embodiments can be used to synchronously regulate current in a vector controlled motor drive system that includes a five-phase AC machine, a five-phase inverter module coupled to the five-phase AC machine, and a synchronous current regulator.
Current conserving theory at the operator level
NASA Astrophysics Data System (ADS)
Yuan, Jiangtao; Wang, Yin; Wang, Jian
The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.
Current-induced changes of migration energy barriers in graphene and carbon nanotubes
NASA Astrophysics Data System (ADS)
Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.
2016-05-01
An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patton, A.D.; Ayoub, A.K.; Singh, C.
1982-07-01
Existing methods for generating capacity reliability evaluation do not explicitly recognize a number of operating considerations which may have important effects in system reliability performance. Thus, current methods may yield estimates of system reliability which differ appreciably from actual observed reliability. Further, current methods offer no means of accurately studying or evaluating alternatives which may differ in one or more operating considerations. Operating considerations which are considered to be important in generating capacity reliability evaluation include: unit duty cycles as influenced by load cycle shape, reliability performance of other units, unit commitment policy, and operating reserve policy; unit start-up failuresmore » distinct from unit running failures; unit start-up times; and unit outage postponability and the management of postponable outages. A detailed Monte Carlo simulation computer model called GENESIS and two analytical models called OPCON and OPPLAN have been developed which are capable of incorporating the effects of many operating considerations including those noted above. These computer models have been used to study a variety of actual and synthetic systems and are available from EPRI. The new models are shown to produce system reliability indices which differ appreciably from index values computed using traditional models which do not recognize operating considerations.« less
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Base driver with common-load-current feedback protects paralleled inverter systems from open or short circuits. Circuit eliminates total system oscillation that can occur in conventional inverters because of open circuit in primary transformer winding. Common feedback signal produced by functioning modules forces operating frequency of failed module to coincide with clock drive so module resumes normal operating frequency in spite of open circuit.
NASA Astrophysics Data System (ADS)
Bachche, Shivaji; Oka, Koichi
2013-03-01
This paper proposes design of end-effector and prototype of thermal cutting system for harvesting sweet peppers. The design consists of two parallel gripper bars mounted on a frame connected by specially designed notch plate and operated by servo motor. Based on voltage and current, two different types of thermal cutting system prototypes; electric arc and temperature arc respectively were developed and tested for performance. In electric arc, a special electric device was developed to obtain high voltage to perform cutting operation. At higher voltage, electrodes generate thermal arc which helps to cut stem of sweet pepper. In temperature arc, nichrome wire was mounted between two electrodes and current was provided directly to electrodes which results in generation of high temperature arc between two electrodes that help to perform cutting operation. In both prototypes, diameters of basic elements were varied and the effect of this variation on cutting operation was investigated. The temperature arc thermal system was found significantly suitable for cutting operation than electric arc thermal system. In temperature arc thermal cutting system, 0.5 mm nichrome wire shows significant results by accomplishing harvesting operation in 1.5 seconds. Also, thermal cutting system found suitable to increase shelf life of fruits by avoiding virus and fungal transformation during cutting process and sealing the fruit stem. The harvested sweet peppers by thermal cutting system can be preserved at normal room temperature for more than 15 days without any contamination.
An Approach to Establishing System Benefits for Technology in NASA's Hypersonics Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Cook, Stephen (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program (ASTP) Office at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Hypersonics Investment Area, third generation technologies are being pursued. The Hypersonics Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Hypersonics Investment Area.
Digital control of highly augmented combat rotorcraft
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1987-01-01
Proposed concepts for the next generation of combat helicopters are to be embodied in a complex, highly maneuverable, multiroled vehicle with avionics systems. Single pilot and nap-of-the-Earth operations require handling qualities which minimize the involvement of the pilot in basic stabilization tasks. To meet these requirements will demand a full authority, high-gain, multimode, multiply-redundant, digital flight-control system. The gap between these requirements and current low-authority, low-bandwidth operational rotorcraft flight-control technology is considerable. This research aims at smoothing the transition between current technology and advanced concept requirements. The state of the art of high-bandwidth digital flight-control systems are reviewed; areas of specific concern for flight-control systems of modern combat are exposed; and the important concepts are illustrated in design and analysis of high-gain, digital systems with a detailed case study involving a current rotorcraft system. Approximate and exact methods are explained and illustrated for treating the important concerns which are unique to digital systems.
National High Frequency Radar Network (hfrnet) and Pacific Research Efforts
NASA Astrophysics Data System (ADS)
Hazard, L.; Terrill, E. J.; Cook, T.; de Paolo, T.; Otero, M. P.; Rogowski, P.; Schramek, T. A.
2016-12-01
The U.S. High Frequency Radar Network (HFRNet) has been in operation for over ten years with representation from 31 organizations spanning academic institutions, state and local government agencies, and private organizations. HFRNet currently holds a collection from over 130 radar installations totaling over 10 million records of surface ocean velocity measurements. HFRNet is a primary example of inter-agency and inter-institutional partnerships for improving oceanographic research and operations. HF radar derived surface currents have been used in several societal applications including coastal search and rescue, oil spill response, water quality monitoring and marine navigation. Central to the operational success of the large scale network is an efficient data management, storage, access, and delivery system. The networking of surface current mapping systems is characterized by a tiered structure that extends from the individual field installations to local regional operations maintaining multiple sites and on to centralized locations aggregating data from all regions. The data system development effort focuses on building robust data communications from remote field locations (sites) for ingestion into the data system via data on-ramps (Portals or Site Aggregators) to centralized data repositories (Nodes). Centralized surface current data enables the aggregation of national surface current grids and allows for ingestion into displays, management tools, and models. The Coastal Observing Research and Development Center has been involved in international relationships and research in the Philippines, Palau, and Vietnam. CORDC extends this IT architecture of surface current mapping data systems leveraging existing developments and furthering standardization of data services for seamless integration of higher level applications. Collaborations include the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA), The Coral Reef Research Foundation (CRRF), and the Center for Oceanography/Vietnamese Administration of Seas and Islands (CFO/VASI). These collaborations and data sharing improve our abilities to respond to regional, national, and global environmental and management issues.
An intelligent automated command and control system for spacecraft mission operations
NASA Technical Reports Server (NTRS)
Stoffel, A. William
1994-01-01
The Intelligent Command and Control (ICC) System research project is intended to provide the technology base necessary for producing an intelligent automated command and control (C&C) system capable of performing all the ground control C&C functions currently performed by Mission Operations Center (MOC) project Flight Operations Team (FOT). The ICC research accomplishments to date, details of the ICC, and the planned outcome of the ICC research, mentioned above, are discussed in detail.
Commissioning and Early Operation for the NSLS-II Booster RF System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques, C.; Cupolo, J.; Davila, P.
2015-05-03
The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.
Intent inferencing with a model-based operator's associate
NASA Technical Reports Server (NTRS)
Jones, Patricia M.; Mitchell, Christine M.; Rubin, Kenneth S.
1989-01-01
A portion of the Operator Function Model Expert System (OFMspert) research project is described. OFMspert is an architecture for an intelligent operator's associate or assistant that can aid the human operator of a complex, dynamic system. Intelligent aiding requires both understanding and control. The understanding (i.e., intent inferencing) ability of the operator's associate is discussed. Understanding or intent inferencing requires a model of the human operator; the usefulness of an intelligent aid depends directly on the fidelity and completeness of its underlying model. The model chosen for this research is the operator function model (OFM). The OFM represents operator functions, subfunctions, tasks, and actions as a heterarchic-hierarchic network of finite state automata, where the arcs in the network are system triggering events. The OFM provides the structure for intent inferencing in that operator functions and subfunctions correspond to likely operator goals and plans. A blackboard system similar to that of Human Associative Processor (HASP) is proposed as the implementation of intent inferencing function. This system postulates operator intentions based on current system state and attempts to interpret observed operator actions in light of these hypothesized intentions.
Donnelly, Lane F; Basta, Kathryne C; Dykes, Anne M; Zhang, Wei; Shook, Joan E
2018-01-01
At a pediatric health system, the Daily Operational Brief (DOB) was updated in 2015 after three years of operation. Quality and safety metrics, the patient volume and staffing assessment, and the readiness assessment are all presented. In addition, in the problem-solving accountability system, problematic issues are categorized as Quick Hits or Complex Issues. Walk-the-Wall, a biweekly meeting attended by hospital senior administrative leadership and quality and safety leaders, is conducted to chart current progress on Complex Issues. The DOB provides a daily standardized approach to evaluate readiness to provide care to current patients and improvement in the care to be provided for future patients. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Herman, Jonathan D.; Castelletti, Andrea; Reed, Patrick M.
2014-05-01
Current water reservoir operating policies are facing growing water demands as well as increasing uncertainties associated with a changing climate. However, policy inertia and myopia strongly limit the possibility of adapting current water reservoir operations to the undergoing change. Historical agreements and regulatory constraints limit the rate that reservoir operations are innovated and creates policy inertia, where water institutions are unlikely to change their current practices in absence of dramatic failures. Yet, no guarantee exists that historical management policies will not fail in coming years. In reference to policy myopia, although it has long been recognized that water reservoir systems are generally framed in heterogeneous socio-economic contexts involving a myriad of conflicting, non-commensurable operating objectives, the broader understanding of the multi-objective consequences of current operating rules as well as their vulnerability to hydroclimatic uncertainties is severely limited. This study proposes a decision analytic framework to overcome both policy inertia and myopia in complex river basin management contexts. The framework combines reservoir policy identification, many-objective optimization under uncertainty, and visual analytics to characterize current operations and discover key tradeoffs between alternative policies for balancing evolving demands and system uncertainties. The approach is demonstrated on the Conowingo Dam, located within the Lower Susquehanna River, USA. The Lower Susquehanna River is an interstate water body that has been subject to intensive water management efforts due to the system's competing demands from urban water supply, atomic power plant cooling, hydropower production, and federally regulated environmental flows. The proposed framework initially uses available streamflow observations to implicitly identify the current but unknown operating policy of Conowingo Dam. The quality of the identified baseline policy was validated by its ability to replicate historical release dynamics. Starting from this baseline policy, we then combine evolutionary many-objective optimization with visual analytics to discover new operating policies that better balance the tradeoffs within the Lower Susquehanna. Results confirm that the baseline operating policy, which only considers deterministic historical inflows, significantly overestimates the reliability of the reservoir's competing demands. The proposed framework removes this bias by successfully identifying alternative reservoir policies that are more robust to hydroclimatic uncertainties, while also better addressing the tradeoffs across the Conowingo Dam's multi-sector services.
NASA Technical Reports Server (NTRS)
Tow, David
2010-01-01
This paper discusses the methodology, requirements, tests, and results of the implementation of the current operating capability for the Enhanced Flight Termination System (EFTS) at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC). The implementation involves the development of the EFTS at NASA DFRC starting from the requirements to system safety review to full end to end system testing, and concluding with the acceptance of the system as an operational system. The paper discusses the first operational usage and subsequent flight utilizing EFTS successfully.
Investigation of alternate power source for Space Shuttle Orbiter hydraulic system
NASA Technical Reports Server (NTRS)
Simon, William E.; Young, Fred M.
1993-01-01
This investigation consists of a short-term feasibility study to determine whether or not an alternate electrical power source would trade favorably from a performance, reliability, safety, operation, and weight standpoint in replacing the current auxiliary power unit subsystems with its attendant components (water spray boiler, hydrazine fuel and tanks, feed and vent lines, controls, etc.), operating under current flight rules. Results of this feasibility study are used to develop recommendations for the next step (e.g., to determine if such an alternate electrical power source would show an advantage given that the current operational flight mode of the system could be modified in such a way as not to constrain the operational capability and safety of the vehicle). However, this next step is not within the scope of this investigation. This study does not include a cost analysis, nor does it include investigation of the integration aspects involved in such a trade, except in a qualitative sense for the determination of concept feasibility.
NASA Astrophysics Data System (ADS)
Kipervasser, M. V.; Gerasimuk, A. V.; Simakov, V. P.
2018-05-01
In the present paper a new registration method of such inadmissible phenomenon as cavitation in the operating mode of centrifugal pump is offered. Influence of cavitation and extent of its development on the value of mechanical power consumed by the pump from the electric motor is studied. On the basis of design formulas the joint mathematical model of centrifugal pumping unit with the synchronous motor is created. In the model the phenomena accompanying the work of a pumping installation in the cavitation mode are considered. Mathematical modeling of the pump operation in the considered emergency operation is carried out. The chart of stator current of the electric motor, depending on the degree of cavitation development of is received. On the basis of the analysis of the obtained data the conclusion on the possibility of registration of cavitation by the current of drive electric motor is made and the functional diagram of the developed protection system is offered, its operation principle is described.
An Approach to Establishing System Benefits for Technologies In NASA's Spaceliner Investment Area
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Pannell, Bill; Lyles, Garry M. (Technical Monitor)
2001-01-01
NASA's has established long term goals for access-to-space. The third generation launch systems are to be fully reusable and operational around 2025. The goals for the third generation launch system are to significantly reduce cost and improve safety over current systems. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop space transportation technologies. Within ASTP, under the Spaceliner Investment Area, third generation technologies are being pursued. The Spaceliner Investment Area's primary objective is to mature vehicle technologies to enable substantial increases in the design and operating margins of third generation RLVs (current Space Shuttle is considered the first generation RLV) by incorporating advanced propulsion systems, materials, structures, thermal protection systems, power, and avionics technologies. Advancements in design tools and better characterization of the operational environment will result in reduced design and operational variabilities leading to improvements in margins. Improvements in operational efficiencies will be obtained through the introduction of integrated vehicle health management, operations and range technologies. Investments in these technologies will enable the reduction in the high operational costs associated with today's vehicles by allowing components to operate well below their design points resulting in improved component operating life, reliability, and safety which in turn reduces both maintenance and refurbishment costs. The introduction of advanced technologies may enable horizontal takeoff by significantly reducing the takeoff weight and allowing use of existing infrastructure. This would be a major step toward the goal of airline-like operation. These factors in conjunction with increased flight rates, resulting from reductions in transportation costs, will result in significant improvements of future vehicles. The real-world problem is that resources are limited and technologies need to be prioritized to assure the resources are spent on technologies that provide the highest system level benefits. Toward that end, a systems approach is being taken to determine the benefits of technologies for the Spaceliner Investment Area. Technologies identified to be enabling will be funded. However, the other technologies will be funded based on their system's benefits. Since the final launch system concept will not be decided for many years, several vehicle concepts are being evaluated to determine technology benefits. Not only performance, but also cost and operability are being assessed. This will become an annual process to assess these technologies against their goals and the benefits to various launch systems concepts. The paper describes the system process, tools and concepts used to determine the technology benefits. Preliminary results will be presented along with the current technology investments that are being made by ASTP's Spaceliner Investment Area.
Jha, K.N.
1999-05-18
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.
Modeling the interaction of a heavily beam loaded SRF cavity with its low-level RF feedback loops
NASA Astrophysics Data System (ADS)
Liu, Zong-Kai; Wang, Chaoen; Chang, Lung-Hai; Yeh, Meng-Shu; Chang, Fu-Yu; Chang, Mei-Hsia; Chang, Shian-Wen; Chen, Ling-Jhen; Chung, Fu-Tsai; Lin, Ming-Chyuan; Lo, Chih-Hung; Yu, Tsung-Chi
2018-06-01
A superconducting radio frequency (SRF) cavity provides superior stability to power high intensity light sources and can suppress coupled-bunch instabilities due to its smaller impedance for higher order modes. Because of these features, SRF cavities are commonly used for modern light sources, such as the TLS, CLS, DLS, SSRF, PLS-II, TPS, and NSLS-II, with an aggressive approach to operate the light sources at high beam currents. However, operating a SRF cavity at high beam currents may result with unacceptable stability problems of the low level RF (LLRF) system, due to drifts of the cavity resonant frequency caused by unexpected perturbations from the environment. As the feedback loop gets out of control, the cavity voltage may start to oscillate with a current-dependent characteristic frequency. Such situations can cause beam abort due to the activation of the interlock protection system, i.e. false alarm of quench detection. This malfunction of the light source reduces the reliability of SRF operation. Understanding this unstable mechanism to prevent its appearance becomes a primary task in the pursuit of highly reliable SRF operation. In this paper, a Pedersen model, including the response of the LLRF system, was used to simulate the beam-cavity interaction of a SRF cavity under heavy beam loading. Causes for the onset of instability at high beam current will be discussed as well as remedies to assure the design of a stable LLRF system.
Process for Ignition of Gaseous Electrical Discharge Between Electrodes of a Hollow Cathode Assembly
NASA Technical Reports Server (NTRS)
Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)
2000-01-01
The design and manufacturing processes for Hollow Cathode Assemblies (HCA's) that operate over a broad range of emission currents up to 30 Amperes, at low potentials, with lifetimes in excess of 17,500 hours. The processes include contamination control procedures which cover hollow cathode component cleaning procedures, gas feed system designs and specifications, and hollow cathode activation and operating procedures to thereby produce cathode assemblies that have demonstrated stable and repeatable operating conditions, for both the discharge current and voltage. The HCA of this invention provides lifetimes of greater than 10,000 hours, and expected lifetimes of greater than 17,500 hours, whereas the present state-of-the-art is less than 500 hours at emission currents in excess of 1 Ampere. Stable operation is provided over a large range of operating emission currents, up to a 6:1 ratio, and this HCA can emit electron currents of up to 30 Amperes in magnitude to an external anode that simulates the current drawn to a space plasma, at voltages of less than 20 Volts.
A Fiber-Optic Current Sensor for Lightning Measurement Applications
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-01-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
A fiber-optic current sensor for lightning measurement applications
NASA Astrophysics Data System (ADS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.
2015-05-01
An optical-fiber sensor based on Faraday Effect is developed for measuring total lightning electric current. It has many unique capabilities not possible with traditional current sensors. Designed for aircraft installation, the sensor is lightweight, non-conducting, structure-conforming, and is immune to electromagnetic interference, hysteresis and saturation. It can also be used on windmills, lightning towers, and can help validate lightning detection network measurements. Faraday Effect causes light polarization to rotate when the fiber is exposed to a magnetic field in the direction of light propagation. Thus, the magnetic field strength can be determined from the light polarization change. By forming closed fiber loops and applying Ampere's law, measuring the total light rotation yields the total current enclosed. The broadband, dual-detector, reflective polarimetric scheme allows measurement of both DC component and AC waveforms with about 60 dB dynamic range. Three sensor systems were built with different sensitivities from different laser wavelengths. Operating at 850nm, the first system uses twisted single-mode fiber and has a 150 A - 150 KA range. The second system operates at 1550nm, uses spun polarization maintaining fiber, and can measure 400 A - 400 KA. Both systems were validated with rocket-triggered lightning measurements and achieved excellent results when compared to a resistive shunt. The third system operates at 1310nm, uses spun polarization maintaining fiber, and can measure approximately 300 A - 300 KA. High current measurements up to 200 KA were demonstrated at a commercial lightning test facility. The system was recently installed on an aircraft and flown near icing weather conditions.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
New generation lidar systems for eye safe full time observations
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1995-01-01
The traditional lidar over the last thirty years has typically been a big pulse low repetition rate system. Pulse energies are in the 0.1 to 1.0 J range and repetition rates from 0.1 to 10 Hz. While such systems have proven to be good research tools, they have a number of limitations that prevent them from moving beyond lidar research to operational, application oriented instruments. These problems include a lack of eye safety, very low efficiency, poor reliability, lack of ruggedness and high development and operating costs. Recent advances in solid state laser, detectors and data systems have enabled the development of a new generation of lidar technology that meets the need for routine, application oriented instruments. In this paper the new approaches to operational lidar systems will be discussed. Micro pulse lidar (MPL) systems are currently in use, and their technology is highlighted. The basis and current development of continuous wave (CW) lidar and potential of other technical approaches is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
NASA Astrophysics Data System (ADS)
Roggenstein, E. B.; Gray, G.
2013-12-01
The National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (COOPS) manages three national observing system programs. These are the National Water level Observation Network (NWLON) (210 stations), the 23 NOAA/Physical Oceanographic Real-Time Systems (PORTS), and National Currents Observing Program (NCOP) (approximately 70 deployments/year). In support of its mission COOPS operates and maintains a number of small boats. During vessel operations, side-scan sonar data are at times needed to provide information about bottom structure for future work in the area. For example, potential hazards, obstructions, or bottom morphology features that have not been identified on localized charts for a given area could be used to inform decisions on planned installations. Side-scan sonar capability is also important when attempting to reacquire bottom mounts that fail to surface at the conclusion of a current meter survey. Structure mapping and side-scan capabilities have been added to recent consumer-level, commercial, off-the-shelf fathometers, generally intended for recreational, commercial fishing, and diving applications. We are proposing to investigate these systems' viability for meeting survey requirements. We assess their ability to provide a flexible alternative to research/commercial oceanographic level side-scan system at a significant cost savings. Such systems could provide important information to support scientific missions that require qualitative seafloor imagery.
Decision Support System for Reservoir Management and Operation in Africa
NASA Astrophysics Data System (ADS)
Navar, D. A.
2016-12-01
Africa is currently experiencing a surge in dam construction for flood control, water supply and hydropower production, but ineffective reservoir management has caused problems in the region, such as water shortages, flooding and loss of potential hydropower generation. Our research aims to remedy ineffective reservoir management by developing a novel Decision Support System(DSS) to equip water managers with a technical planning tool based on the state of the art in hydrological sciences. The DSS incorporates a climate forecast model, a hydraulic model of the watershed, and an optimization model to effectively plan for the operation of a system of cascade large-scale reservoirs for hydropower production, while treating water supply and flood control as constraints. Our team will use the newly constructed hydropower plants in the Omo Gibe basin of Ethiopia as the test case. Using the basic HIDROTERM software developed in Brazil, the General Algebraic Modeling System (GAMS) utilizes a combination of linear programing (LP) and non-linear programming (NLP) in conjunction with real time hydrologic and energy demand data to optimize the monthly and daily operations of the reservoir system. We compare the DSS model results with the current reservoir operating policy used by the water managers of that region. We also hope the DSS will eliminate the current dangers associated with the mismanagement of large scale water resources projects in Africa.
Project Plan 7930 Cell G PaR Remote Handling System Replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, Kathryn A
2009-10-01
For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulatorsmore » and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.« less
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
Environmentally-induced voltage limitations in large space power systems
NASA Technical Reports Server (NTRS)
Stevens, N. J.
1984-01-01
Large power systems proposed for future space missions imply higher operating voltage requirements which, in turn, will interact with the space plasma environment. The effects of these interactions can only be inferred because of the limited data base of ground simulations, small test samples, and two space flight experiments. This report evaluates floating potentials for a 100 kW power system operating at 300, 500, 750, and 1000 volts in relation to this data base. Of primary concern is the possibility of discharging to space. The implications of such discharges were studied at the 500 volt operational setting. It was found that discharging can shut down the power system if the discharge current exceeds the array short circuit current. Otherwise, a power oscillation can result that ranges from 2 to 20 percent, depending upon the solar array area involved in the discharge. Means of reducing the effect are discussed.
DOT National Transportation Integrated Search
2009-06-01
This product updates the prior users manual for Pave-IR to reflect changes in hardware and software made : to accommodate collection of GPS data simultaneously during the collection of thermal profiles. The current : Pave-IR system described in th...
47 CFR 90.355 - LMS operations below 512 MHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.355 LMS... LMS station and the nearest co-channel base station of another licensee operating a voice system is 75... MHz, 150-170 MHz, and 450-512 MHz bands may use either base-mobile frequencies currently assigned the...
Private sector involvement in civil space remote sensing. Volume 1: Report
NASA Technical Reports Server (NTRS)
1979-01-01
A survey of private sector developers, users, and interpreters of Earth resources data was conducted in an effort to encourage private investment and participation in remote sensing systems. Results indicate positive interest in participation beyond the current hardware contracting level, however, there is a substantial gap between current market levels and system costs. Issues identified include the selection process for an operating entity, the public/private interface, data collection and access policies, price and profit regulation in a subsidized system, international participation, and the responsibility for research and development. It was agreed that the cost, complexity, and security implications of integrated systems need not be an absolute bar to their private operation.
Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia
2011-08-01
A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Basedmore » on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.« less
Operational experience with intermediate flat-plate photovoltaic systems
NASA Astrophysics Data System (ADS)
Risser, V. V.; Zwibel, H. S.
Operating features, data acquisition, and fault isolation and maintenance procedures at 20 kWp and 100 kWp photovoltaic (PV) installations in Texas and New Mexico are discussed. Weather and system performance are sensed each minute, averages are calculated for each ten readings, and data is stored on magnetic tape. A total of 84 parameters, including 64 string currents, are recorded at the 20 kWp array and 84 parameters, with 42 string currents, are traced in New Mexico. The 20 kW array is coupled to a 197 MW utility power plant, which determines the voltage of the array. It produced 12 MWh in one yr of operation, functioning at 24 pct overall efficiency. The 100 kWp system is coupled to a 60 kW power conditioning unit and feeds a shopping center, producing 8 pct of the annual load with a cap factor of 25 pct and 192 MWh of dc current produced in one year. It was found that under normal conditions washing the panels is not economically justified in terms of the small power lost if washing does not occur. It is concluded that the PV arrays can be successfully used in an automated operation mode.
Human factor engineering based design and modernization of control rooms with new I and C systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraz, J.; Rejas, L.; Ortega, F.
2012-07-01
Instrumentation and Control (I and C) systems of the latest nuclear power plants are based on the use of digital technology, distributed control systems and the integration of information in data networks (Distributed Control and Instrumentation Systems). This has a repercussion on Control Rooms (CRs), where the operations and monitoring interfaces correspond to these systems. These technologies are also used in modernizing I and C systems in currently operative nuclear power plants. The new interfaces provide additional capabilities for operation and supervision, as well as a high degree of flexibility, versatility and reliability. An example of this is the implementationmore » of solutions such as compact stations, high level supervision screens, overview displays, computerized procedures, new operational support systems or intelligent alarms processing systems in the modernized Man-Machine Interface (MMI). These changes in the MMI are accompanied by newly added Software (SW) controls and new solutions in automation. Tecnatom has been leading various projects in this area for several years, both in Asian countries and in the United States, using in all cases international standards from which Tecnatom own methodologies have been developed and optimized. The experience acquired in applying this methodology to the design of new control rooms is to a large extent applicable also to the modernization of current control rooms. An adequate design of the interface between the operator and the systems will facilitate safe operation, contribute to the prompt identification of problems and help in the distribution of tasks and communications between the different members of the operating shift. Based on Tecnatom experience in the field, this article presents the methodological approach used as well as the most relevant aspects of this kind of project. (authors)« less
Data analytics and optimization of an ice-based energy storage system for commercial buildings
Luo, Na; Hong, Tianzhen; Li, Hui; ...
2017-07-25
Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less
Data analytics and optimization of an ice-based energy storage system for commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Na; Hong, Tianzhen; Li, Hui
Ice-based thermal energy storage (TES) systems can shift peak cooling demand and reduce operational energy costs (with time-of-use rates) in commercial buildings. The accurate prediction of the cooling load, and the optimal control strategy for managing the charging and discharging of a TES system, are two critical elements to improving system performance and achieving energy cost savings. This study utilizes data-driven analytics and modeling to holistically understand the operation of an ice–based TES system in a shopping mall, calculating the system’s performance using actual measured data from installed meters and sensors. Results show that there is significant savings potential whenmore » the current operating strategy is improved by appropriately scheduling the operation of each piece of equipment of the TES system, as well as by determining the amount of charging and discharging for each day. A novel optimal control strategy, determined by an optimization algorithm of Sequential Quadratic Programming, was developed to minimize the TES system’s operating costs. Three heuristic strategies were also investigated for comparison with our proposed strategy, and the results demonstrate the superiority of our method to the heuristic strategies in terms of total energy cost savings. Specifically, the optimal strategy yields energy costs of up to 11.3% per day and 9.3% per month compared with current operational strategies. A one-day-ahead hourly load prediction was also developed using machine learning algorithms, which facilitates the adoption of the developed data analytics and optimization of the control strategy in a real TES system operation.« less
New design and operating techniques and requirements for improved aircraft terminal area operations
NASA Technical Reports Server (NTRS)
Reeder, J. P.; Taylor, R. T.; Walsh, T. M.
1974-01-01
Current aircraft operating problems that must be alleviated for future high-density terminal areas are safety, dependence on weather, congestion, energy conservation, noise, and atmospheric pollution. The Microwave Landing System (MLS) under development by FAA provides increased capabilities over the current ILS. The development of the airborne system's capability to take maximum advantage of the MLS capabilities in order to solve terminal area problems are discussed. A major limiting factor in longitudinal spacing for capacity increase is the trailing vortex hazard. Promising methods for causing early dissipation of the vortices were explored. Flight procedures for avoiding the hazard were investigated. Terminal configured vehicles and their flight test development are discussed.
Graphic overlays in high-precision teleoperation: Current and future work at JPL
NASA Technical Reports Server (NTRS)
Diner, Daniel B.; Venema, Steven C.
1989-01-01
In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated.
Strickland, N M; Hoffmann, C; Wimbush, S C
2014-11-01
A cryogenic electrical transport measurement system is described that is particularly designed to meet the requirements for routine and effective characterization of commercial second generation high-temperature superconducting (HTS) wires in the form of coated conductors based on YBa2Cu3O7. Specific design parameters include a base temperature of 20 K, an applied magnetic field capability of 8 T (provided by a HTS split-coil magnet), and a measurement current capacity approaching 1 kA. The system accommodates samples up to 12 mm in width (the widest conductor size presently commercially available) and 40 mm long, although this is not a limiting size. The sample is able to be rotated freely with respect to the magnetic field direction about an axis parallel to the current flow, producing field angle variations in the standard maximum Lorentz force configuration. The system is completely free of liquid cryogens for both sample cooling and magnet cool-down and operation. Software enables the system to conduct a full characterization of the temperature, magnetic field, and field angle dependence of the critical current of a sample without any user interaction. The system has successfully been used to measure a wide range of experimental and commercially-available superconducting wire samples sourced from different manufacturers across the full range of operating conditions. The system encapsulates significant advances in HTS magnet design and efficient cryogen-free cooling technologies together with the capability for routine and automated high-current electrical transport measurements at cryogenic temperatures. It will be of interest to both research scientists investigating superconductor behavior and commercial wire manufacturers seeking to accurately characterize the performance of their product under all desired operating conditions.
DOT National Transportation Integrated Search
2014-12-01
Linking Planning and Operations is vital to improving transportation decision-making and overall : efficiency of transportation systems management. This synthesis summarizes current state of : knowledge and practices in Planning and Operations Integr...
Highly automated on-orbit operations of the NuSTAR telescope
NASA Astrophysics Data System (ADS)
Roberts, Bryce; Bester, Manfred; Dumlao, Renee; Eckert, Marty; Johnson, Sam; Lewis, Mark; McDonald, John; Pease, Deron; Picard, Greg; Thorsness, Jeremy
2014-08-01
UC Berkeley's Space Sciences Laboratory (SSL) currently operates a fleet of seven NASA satellites, which conduct research in the fields of space physics and astronomy. The newest addition to this fleet is a high-energy X-ray telescope called the Nuclear Spectroscopic Telescope Array (NuSTAR). Since 2012, SSL has conducted on-orbit operations for NuSTAR on behalf of the lead institution, principle investigator, and Science Operations Center at the California Institute of Technology. NuSTAR operations benefit from a truly multi-mission ground system architecture design focused on automation and autonomy that has been honed by over a decade of continual improvement and ground network expansion. This architecture has made flight operations possible with nominal 40 hours per week staffing, while not compromising mission safety. The remote NuSTAR Science Operation Center (SOC) and Mission Operations Center (MOC) are joined by a two-way electronic interface that allows the SOC to submit automatically validated telescope pointing requests, and also to receive raw data products that are automatically produced after downlink. Command loads are built and uploaded weekly, and a web-based timeline allows both the SOC and MOC to monitor the state of currently scheduled spacecraft activities. Network routing and the command and control system are fully automated by MOC's central scheduling system. A closed-loop data accounting system automatically detects and retransmits data gaps. All passes are monitored by two independent paging systems, which alert staff of pass support problems or anomalous telemetry. NuSTAR mission operations now require less than one attended pass support per workday.
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1998-01-01
Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.
Development of a current collection loss management system for SDI homopolar power supplies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, D.W.
1989-01-01
High speed, high power density current collection systems have been identified as an enabling technology required to construct homopolar power supplies to meet SDI missions. This work is part of a three-year effort directed towards the analysis, experimental verification, and prototype construction of a current collection system designed to operate continuously at 2 kA/cm{sup 2}, at a rubbing speed of 200 m/s, and with acceptable losses in a space environment. To data, no system has achieved these conditions simultaneously. This is the annual report covering the second year period of performance on DOE contract DE-AC03-86SF16518. Major areas covered include design,more » construction and operation of a cryogenically cooled brush test rig, design and construction of a high speed brush test rig, optimization study for homopolar machines, loss analysis of the current collection system, and an application study which defines the air-core homopolar construction necessary to achieve the goal of 80--90 kW/kg generator power density. 17 figs., 2 tabs.« less
Expert system verification concerns in an operations environment
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Robertson, Charles C.
1987-01-01
The Space Shuttle community is currently developing a number of knowledge-based tools, primarily expert systems, to support Space Shuttle operations. It is proposed that anticipating and responding to the requirements of the operations environment will contribute to a rapid and smooth transition of expert systems from development to operations, and that the requirements for verification are critical to this transition. The paper identifies the requirements of expert systems to be used for flight planning and support and compares them to those of existing procedural software used for flight planning and support. It then explores software engineering concepts and methodology that can be used to satisfy these requirements, to aid the transition from development to operations and to support the operations environment during the lifetime of expert systems. Many of these are similar to those used for procedural hardware.
RTEMS CENTRE- Support and Maintenance CENTRE to RTEMS Operating System
NASA Astrophysics Data System (ADS)
Silva, H.; Constantino, A.; Coutunho, M.; Freitas, D.; Faustino, S.; Mota, M.; Colaço, P.; Zulianello, M.
2008-08-01
RTEMS stands for Real-Time Operating System for Multiprocessor Systems. It is a full featured Real Time Operating System that supports a variety of open APIs and interface standards. It provides a high performance environment for embedded applications, including a fixed-priority preemptive/non-preemptive scheduler, a comprehensive set of multitasking operations and a large range of supported architectures. Support and maintenance CENTRE to RTEMS operating system (RTEMS CENTRE) is a joint initiative of ESA-Portugal Task force, aiming to build a strong technical competence in the space flight (on- board) software, to offer support, maintenance and improvements to RTEMS. This paper provides a high level description of the current and future activities of the RTEMS CENTRE. It presents a brief description of the RTEMS operating system, a description of the tools developed and distributed to the community [1] and the improvements to be made to the operating system, including facilitation for the qualification of RTEMS (4.8.0) [2] for the space missions.
Numerical modelling for real-time forecasting of marine oil pollution and hazard assessment
NASA Astrophysics Data System (ADS)
De Dominicis, Michela; Pinardi, Nadia; Bruciaferri, Diego; Liubartseva, Svitlana
2015-04-01
Many factors affect the motion and transformation of oil at sea. The most relevant of these are the meteorological and marine conditions at the air-sea interface; the chemical characteristics of the oil; its initial volume and release rates; and, finally, the marine currents at different space scales and timescales. All these factors are interrelated and must be considered together to arrive at an accurate numerical representation of oil evolution and movement in seawater. The oil spill model code MEDSLIK-II is a freely available community model. By using a Lagrangian approach, MEDSLIK-II predicts the transport and diffusion of a surface oil slick governed by water currents, winds and waves, which are provided by operational oceanographic and meteorological models. In addition, the model simulates the oil transformations at sea: evaporation, spreading, dispersion, adhesion to coast and emulsification. The model results have been validated using surface drifters and oil slicks observed by satellite in different regions of the Mediterranean Sea. It is found that the forecast skill largely depends on the accuracy of the Eulerian ocean currents: the operational models give useful estimates of currents, but high-frequency (hourly) and high spatial resolution is required, and the Stokes drift velocity has to be often added, especially in coastal areas. MEDSLIK-II is today available at the Mediterranean scale allowing a possible support to oil spill emergencies. The model has been used during the Costa Concordia disaster, the partial sinking of the Italian cruise ship Costa Concordia when it ran aground at Isola del Giglio, Italy. MEDSLIK-II system was run to produce forecast scenarios of the possible oil spill from the Costa Concordia, to be delivered to the competent authorities, by using the currents provided every day by the operational ocean models available in the area. Moreover, MEDSLIK-II is part of the Mediterranean Decision Support System for Marine Safety (MEDESS4MS) system, which is an integrated operational multi-model oil spill prediction service, that can be used by different users to run simulations of oil spills at sea, even in real time, through a web portal. The MEDESS4MS system gathers different oil spill modelling systems and data from meteorological and ocean forecasting systems, as well as operational information on response equipment, together with environmental and socio-economic sensitivity maps. MEDSLIK-II has been also used to provide an assessment of hazard stemming from operational oil ship discharges in the Southern Adriatic and Northern Ionian (SANI) Seas. Operational pollution resulting from ships consists of a movable hazard with a magnitude that changes dynamically as a result of a number of external parameters varying in space and time (temperature, wind, sea currents). Simulations of oil releases have been performed with realistic oceanographic currents and the results show that the oil pollution hazard distribution has an inherent spatial and temporal variability related to the specific flow field variability.
Current limiting remote power control module
NASA Technical Reports Server (NTRS)
Hopkins, Douglas C.
1990-01-01
The power source for the Space Station Freedom will be fully utilized nearly all of the time. As such, any loads on the system will need to operate within expected limits. Should any load draw an inordinate amount of power, the bus voltage for the system may sag and disrupt the operation of other loads. To protect the bus and loads some type of power interface between the bus and each load must be provided. This interface is most crucial when load faults occur. A possible system configuration is presented. The proposed interface is the Current Limiting Remote Power Controller (CL-RPC). Such an interface should provide the following power functions: limit overloading and resulting undervoltage; prevent catastrophic failure and still provide for redundancy management within the load; minimize cable heating; and provide accurate current measurement. A functional block diagram of the power processing stage of a CL-RPC is included. There are four functions that drive the circuit design: rate control of current; current sensing; the variable conductance switch (VCS) technology; and the algorithm used for current limiting. Each function is discussed separately.
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher
2014-01-01
The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results indicate improved capacity, low operator workload, good situation awareness and acceptability for controllers teaming with autonomous air traffic systems. While much research and development needs to be conducted to make such concepts a reality, these approaches have the potential to truly transform the airspace system towards increased mobility, safe and efficient growth in global operations and enabling many of the new vehicles and operations that are expected over the next decades. This paper describes how the AOL currently contributes to the ongoing air transportation transformation.
Eddy current X-Y scanner system
NASA Technical Reports Server (NTRS)
Kurtz, G. W.
1983-01-01
The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Trefny, Charles J.; Pack, William D.
1995-01-01
The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.
Re-Engineering of the Hubble Space Telescope (HST) to Reduce Operational Costs
NASA Technical Reports Server (NTRS)
Garvis, Michael; Dougherty, Andrew; Whittier, Wallace
1996-01-01
Satellite telemetry processing onboard the Hubble Space Telescope (HST) is carried out using dedicated software and hardware. The current ground system is expensive to operate and maintain. The mandate to reduce satellite ground system operations and maintenance costs by the year 2000 led NASA to upgrade the command and control systems in order to improve the data processing capabilities, reduce operator experience levels and increase system standardization. As a result, a command and control system product development team was formed to redesign and develop the HST ground system. The command and control system ground system development consists of six elements. The results of the prototyping phase carried out for the following of these elements are presented: the front end processor; middleware, and the graphical user interface.
Evaluation of the Tropical Pacific Observing System from the Data Assimilation Perspective
2014-01-01
hereafter, SIDA systems) have the capacity to assimilate salinity profiles imposing a multivariate (mainly T-S) balance relationship (summarized in...Fujii et al., 2011). Current SIDA systems in operational centers generally use Ocean General Circulation Models (OGCM) with resolution typically 1...long-term (typically 20-30 years) ocean DA runs are often performed with SIDA systems in operational centers for validation and calibration of SI
Intelligent resources for satellite ground control operations
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1994-01-01
This paper describes a cooperative approach to the design of intelligent automation and describes the Mission Operations Cooperative Assistant for NASA Goddard flight operations. The cooperative problem solving approach is being explored currently in the context of providing support for human operator teams and also in the definition of future advanced automation in ground control systems.
Asset surveillance system: apparatus and method
NASA Technical Reports Server (NTRS)
Bickford, Randall L. (Inventor)
2007-01-01
System and method for providing surveillance of an asset comprised of numerically fitting at least one mathematical model to obtained residual data correlative to asset operation; storing at least one mathematical model in a memory; obtaining a current set of signal data from the asset; retrieving at least one mathematical model from the memory, using the retrieved mathematical model in a sequential hypothesis test for determining if the current set of signal data is indicative of a fault condition; determining an asset fault cause correlative to a determined indication of a fault condition; providing an indication correlative to a determined fault cause, and an action when warranted. The residual data can be mode partitioned, a current mode of operation can be determined from the asset, and at least one mathematical model can be retrieved from the memory as a function of the determined mode of operation.
NASA Technical Reports Server (NTRS)
Hopkins, J. P.
1976-01-01
Practical means were assessed for achieving reduced fuel consumption in commercial air transportation. Five areas were investigated: current aircraft types, revised operational procedures, modifications to current aircraft, derivatives of current aircraft and new near-term fuel conservative aircraft. As part of a multiparticipant coordinated effort, detailed performance and operating cost data in each of these areas were supplied to the contractor responsible for the overall analysis of the cost/benefit tradeoffs for reducing the energy consumption of the domestic commercial air transportation system. A follow-on study was performed to assess the potential of an advanced turboprop transport aircraft concept. To provide a valid basis for comparison, an equivalent turbofan transport aircraft concept incorporating equal technology levels was also derived. The aircraft as compared on the basis of weight, size, fuel utilization, operational characteristics and costs.
NASA Astrophysics Data System (ADS)
Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol
2016-09-01
The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.
MUOS: Application in Naval Helicopter Operations
2015-03-01
increase in voice and data. capacity over legacy UFO systelllS. Leveraging current WCDMA technology used by cormnercial cellular companies, the MUOS...and data capacity over legacy UFO systems. Leveraging current WCDMA technology used by commercial cellular companies, the MUOS system will allow...17 1. FLTSAT ..............................................................................................18 2. UFO
Aircraft Capability Management
NASA Technical Reports Server (NTRS)
Mumaw, Randy; Feary, Mike
2018-01-01
This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.
Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.
Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong
2015-09-15
We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.
NASA Astrophysics Data System (ADS)
Jolanta Walery, Maria
2017-12-01
The article describes optimization studies aimed at analysing the impact of capital and current costs changes of medical waste incineration on the cost of the system management and its structure. The study was conducted on the example of an analysis of the system of medical waste management in the Podlaskie Province, in north-eastern Poland. The scope of operational research carried out under the optimization study was divided into two stages of optimization calculations with assumed technical and economic parameters of the system. In the first stage, the lowest cost of functioning of the analysed system was generated, whereas in the second one the influence of the input parameter of the system, i.e. capital and current costs of medical waste incineration on economic efficiency index (E) and the spatial structure of the system was determined. Optimization studies were conducted for the following cases: with a 25% increase in capital and current costs of incineration process, followed by 50%, 75% and 100% increase. As a result of the calculations, the highest cost of system operation was achieved at the level of 3143.70 PLN/t with the assumption of 100% increase in capital and current costs of incineration process. There was an increase in the economic efficiency index (E) by about 97% in relation to run 1.
NALNET book system: Cost benefit study
NASA Technical Reports Server (NTRS)
Dewath, N. V.; Palmour, V. E.; Foley, J. R.; Henderson, M. M.; Shockley, C. W.
1981-01-01
The goals of the NASA's library network system, NALNET, the functions of the current book system, the products and services of a book system required by NASA Center libraries, and the characteristics of a system that would best supply those products and services were assessed. Emphasis was placed on determining the most cost effective means of meeting NASA's requirements for an automated book system. Various operating modes were examined including the current STIMS file, the PUBFILE, developing software improvements for products as appropriate to the Center needs, and obtaining cataloging and products from the bibliographic utilities including at least OCLC, RLIN, BNA, and STIF. It is recommended that NALNET operate under the STIMS file mode and obtain cataloging and products from the bibliographic utilities. The recommendations are based on the premise that given the current state of the art in library automation it is not cost effective for NASA to maintain a full range of cataloging services on its own system. The bibliographic utilities can support higher quality systems with a greater range of services at a lower total cost.
Impact of Internet on Cytology Information Management.
Luić, Ljerka; Molnar, Livia
2016-01-01
Internet technologies and services impose global information standards in the sphere of healthcare as a whole, which are then implied and applied in the domain of cytology laboratories. Web-based operations form a significant operating segment of any contemporary cytology laboratory as they enable operations by the use of technology, which is usually free of the restrictions imposed by the traditional way of business (geographic area and narrow localisation of activities). In their operations, almost all healthcare organisations currently create and use electronic data anddocuments, which can originate both inside and outside the organisation. An enormous amount of information thus used and exchanged may be processed timely and in a high-quality way only by integrated information systems, given three basic safety requirements: data confidentiality, integrity and availability. In the Republic of Croatia, integration of private and public healthcare information systems has been ongoing for several years but the private healthcare does not yet operate as an integrated system. Instead, each office operates using its own separate information system, i.e. This paper elaborates the argument that the sample private cytology laboratory possesses an IT system that meets current market and stakeholder needs of the healthcare sector in Croatia, given that private doctors' offices/polyclinics use IT technologies in their operations but make only partial use of Internet capacities in the segment of communication with their business associates and patients, implying the need to continue the research on a statistically relevant sample of EU countries.
New Directions in Space Operations Services in Support of Interplanetary Exploration
NASA Technical Reports Server (NTRS)
Bradford, Robert N.
2005-01-01
To gain access to the necessary operational processes and data in support of NASA's Lunar/Mars Exploration Initiative, new services, adequate levels of computing cycles and access to myriad forms of data must be provided to onboard spacecraft and ground based personnel/systems (earth, lunar and Martian) to enable interplanetary exploration by humans. These systems, cycles and access to vast amounts of development, test and operational data will be required to provide a new level of services not currently available to existing spacecraft, on board crews and other operational personnel. Although current voice, video and data systems in support of current space based operations has been adequate, new highly reliable and autonomous processes and services will be necessary for future space exploration activities. These services will range from the more mundane voice in LEO to voice in interplanetary travel which because of the high latencies will require new voice processes and standards. New services, like component failure predictions based on data mining of significant quantities of data, located at disparate locations, will be required. 3D or holographic representation of onboard components, systems or family members will greatly improve maintenance, operations and service restoration not to mention crew morale. Current operational systems and standards, like the Internet Protocol, will not able to provide the level of service required end to end from an end point on the Martian surface like a scientific instrument to a researcher at a university. Ground operations whether earth, lunar or Martian and in flight operations to the moon and especially to Mars will require significant autonomy that will require access to highly reliable processing capabilities, data storage based on network storage technologies. Significant processing cycles will be needed onboard but could be borrowed from other locations either ground based or onboard other spacecraft. Reliability will be a key factor with onboard and distributed backup processing an absolutely necessary requirement. Current cluster processing/Grid technologies may provide the basis for providing these services. An overview of existing services, future services that will be required and the technologies and standards required to be developed will be presented. The purpose of this paper will be to initiate a technological roadmap, albeit at a high level, of current voice, video, data and network technologies and standards (which show promise for adaptation or evolution) to what technologies and standards need to be redefined, adjusted or areas where new ones require development. The roadmap should begin the differentiation between non manned and manned processes/services where applicable. The paper will be based in part on the activities of the CCSDS Monitor and Control working group which is beginning the process of standardization of the these processes. Another element of the paper will be based on an analysis of current technologies supporting space flight processes and services at JSC, MSFC, GSFC and to a lesser extent at KSC. Work being accomplished in areas such as Grid computing, data mining and network storage at ARC, IBM and the University of Alabama at Huntsville will be researched and analyzed.
Airport Traffic Conflict Detection and Resolution Algorithm Evaluation
NASA Technical Reports Server (NTRS)
Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Otero, Sharon D.; Barker, Glover D.
2012-01-01
A conflict detection and resolution (CD&R) concept for the terminal maneuvering area (TMA) was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. The CD&R concept is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the performance of aircraft-based CD&R algorithms in the TMA, as a function of surveillance accuracy. This paper gives an overview of the CD&R concept, simulation study, and results. The Next Generation Air Transportation System (NextGen) concept for the year 2025 and beyond envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner [1]. NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and provide an overall system capacity up to three times that of current operating levels. Emerging NextGen operational concepts [2], such as four-dimensional trajectory based airborne and surface operations, equivalent visual operations, and super density arrival and departure operations, require a different approach to air traffic management and as a result, a dramatic shift in the tasks, roles, and responsibilities for the flight deck and air traffic control (ATC) to ensure a safe, sustainable air transportation system.
Earth's external magnetic fields at low orbital altitudes
NASA Technical Reports Server (NTRS)
Klumpar, D. M.
1990-01-01
Under our Jun. 1987 proposal, Magnetic Signatures of Near-Earth Distributed Currents, we proposed to render operational a modeling procedure that had been previously developed to compute the magnetic effects of distributed currents flowing in the magnetosphere-ionosphere system. After adaptation of the software to our computing environment we would apply the model to low altitude satellite orbits and would utilize the MAGSAT data suite to guide the analysis. During the first year, basic computer codes to run model systems of Birkeland and ionospheric currents and several graphical output routines were made operational on a VAX 780 in our research facility. Software performance was evaluated using an input matchstick ionospheric current array, field aligned currents were calculated and magnetic perturbations along hypothetical satellite orbits were calculated. The basic operation of the model was verified. Software routines to analyze and display MAGSAT satellite data in terms of deviations with respect to the earth's internal field were also made operational during the first year effort. The complete set of MAGSAT data to be used for evaluation of the models was received at the end of the first year. A detailed annual report in May 1989 described these first year activities completely. That first annual report is included by reference in this final report. This document summarizes our additional activities during the second year of effort and describes the modeling software, its operation, and includes as an attachment the deliverable computer software specified under the contract.
Highly accurate and fast optical penetration-based silkworm gender separation system
NASA Astrophysics Data System (ADS)
Kamtongdee, Chakkrit; Sumriddetchkajorn, Sarun; Chanhorm, Sataporn
2015-07-01
Based on our research work in the last five years, this paper highlights our innovative optical sensing system that can identify and separate silkworm gender highly suitable for sericulture industry. The key idea relies on our proposed optical penetration concepts and once combined with simple image processing operations leads to high accuracy in identifying of silkworm gender. Inside the system, there are electronic and mechanical parts that assist in controlling the overall system operation, processing the optical signal, and separating the female from male silkworm pupae. With current system performance, we achieve a very highly accurate more than 95% in identifying gender of silkworm pupae with an average system operational speed of 30 silkworm pupae/minute. Three of our systems are already in operation at Thailand's Queen Sirikit Sericulture Centers.
Quasi-multi-pulse voltage source converter design with two control degrees of freedom
NASA Astrophysics Data System (ADS)
Vural, A. M.; Bayindir, K. C.
2015-05-01
In this article, the design details of a quasi-multi-pulse voltage source converter (VSC) switched at line frequency of 50 Hz are given in a step-by-step process. The proposed converter is comprised of four 12-pulse converter units, which is suitable for the simulation of single-/multi-converter flexible alternating current transmission system devices as well as high voltage direct current systems operating at the transmission level. The magnetic interface of the converter is originally designed with given all parameters for 100 MVA operation. The so-called two-angle control method is adopted to control the voltage magnitude and the phase angle of the converter independently. PSCAD simulation results verify both four-quadrant converter operation and closed-loop control of the converter operated as static synchronous compensator (STATCOM).
NASA Technical Reports Server (NTRS)
Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.
2012-01-01
Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into shopping mall or transportation hub parking areas could provide additional capacity and convenience.
2008-01-01
execution, a summary of results, a list of presentations and publications and a current status. Additional information is provided on the senior...Cadets learn best when they are challenged and when they are interested. The introduction of current issues facing the military into their...faculty, officers conduct research on relevant projects to remain current in their operational branch or in the Functional Areas 49, 51, 53 and 57. The
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1993-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. Models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision aids. Currently, there several candidate modeling methodologies. They include the Rasmussen abstraction/aggregation hierarchy and decision ladder, the goal-means network, the problem behavior graph, and the operator function model. The research conducted under the sponsorship of this grant focuses on the extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications. The initial portion of this research consists of two parts. The first is a series of technical exchanges between NASA Johnson and Georgia Tech researchers. The purpose is to identify candidate applications for the current operator function model; prospects include mission operations and the Data Management System Testbed. The second portion will address extensions of the operator function model to tailor it to the specific needs of Johnson applications. At this point, we have accomplished two things. During a series of conversations with JSC researchers, we have defined the technical goal of the research supported by this grant to be the structural definition of the operator function model and its computer implementation, OFMspert. Both the OFM and OFMspert have matured to the point that they require infrastructure to facilitate use by researchers not involved in the evolution of the tools. The second accomplishment this year was the identification of the Payload Deployment and Retrieval System (PDRS) as a candidate system for the case study. In conjunction with government and contractor personnel in the Human-Computer Interaction Lab, the PDRS was identified as the most accessible system for the demonstration. Pursuant to this a PDRS simulation was obtained from the HCIL and an initial knowledge engineering effort was conducted to understand the operator's tasks in the PDRS application. The preliminary results of the knowledge engineering effort and an initial formulation of an operator function model (OFM) are contained in the appendices.
International Space Station Alpha user payload operations concept
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.; Crysel, William B.; Duncan, Elaine F.; Rider, James W.
1994-01-01
International Space Station Alpha (ISSA) will accommodate a variety of user payloads investigating diverse scientific and technology disciplines on behalf of five international partners: Canada, Europe, Japan, Russia, and the United States. A combination of crew, automated systems, and ground operations teams will control payload operations that require complementary on-board and ground systems. This paper presents the current planning for the ISSA U.S. user payload operations concept and the functional architecture supporting the concept. It describes various NASA payload operations facilities, their interfaces, user facility flight support, the payload planning system, the onboard and ground data management system, and payload operations crew and ground personnel training. This paper summarizes the payload operations infrastructure and architecture developed at the Marshall Space Flight Center (MSFC) to prepare and conduct ISSA on-orbit payload operations from the Payload Operations Integration Center (POIC), and from various user operations locations. The authors pay particular attention to user data management, which includes interfaces with both the onboard data management system and the ground data system. Discussion covers the functional disciplines that define and support POIC payload operations: Planning, Operations Control, Data Management, and Training. The paper describes potential interfaces between users and the POIC disciplines, from the U.S. user perspective.
Utilization of artificial intelligence techniques for the Space Station power system
NASA Technical Reports Server (NTRS)
Evatt, Thomas C.; Gholdston, Edward W.
1988-01-01
Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.
Electrically heated particulate filter regeneration methods and systems for hybrid vehicles
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-10-12
A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.
NASA Astrophysics Data System (ADS)
Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott
2011-06-01
The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.
NASA Astrophysics Data System (ADS)
Ram Prabhakar, J.; Ragavan, K.
2013-07-01
This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
Lessons Learned From Developing Three Generations of Remote Sensing Science Data Processing Systems
NASA Technical Reports Server (NTRS)
Tilmes, Curt; Fleig, Albert J.
2005-01-01
The Biospheric Information Systems Branch at NASA s Goddard Space Flight Center has developed three generations of Science Investigator-led Processing Systems for use with various remote sensing instruments. The first system is used for data from the MODIS instruments flown on NASA s Earth Observing Systems @OS) Terra and Aqua Spacecraft launched in 1999 and 2002 respectively. The second generation is for the Ozone Measuring Instrument flying on the EOS Aura spacecraft launched in 2004. We are now developing a third generation of the system for evaluation science data processing for the Ozone Mapping and Profiler Suite (OMPS) to be flown by the NPOESS Preparatory Project (NPP) in 2006. The initial system was based on large scale proprietary hardware, operating and database systems. The current OMI system and the OMPS system being developed are based on commodity hardware, the LINUX Operating System and on PostgreSQL, an Open Source RDBMS. The new system distributes its data archive across multiple server hosts and processes jobs on multiple processor boxes. We have created several instances of this system, including one for operational processing, one for testing and reprocessing and one for applications development and scientific analysis. Prior to receiving the first data from OMI we applied the system to reprocessing information from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments flown from 1978 until now. The system was able to process 25 years (108,000 orbits) of data and produce 800,000 files (400 GiB) of level 2 and level 3 products in less than a week. We will describe the lessons we have learned and tradeoffs between system design, hardware, operating systems, operational staffing, user support and operational procedures. During each generational phase, the system has become more generic and reusable. While the system is not currently shrink wrapped we believe it is to the point where it could be readily adopted, with substantial cost savings, for other similar tasks.
Costing for the Future: Exploring Cost Estimation With Unmanned Autonomous Systems
2016-04-30
account for how cost estimating for autonomy is different than current methodologies and to suggest ways it can be addressed through the integration and...The Development stage involves refining the system requirements, creating a solution description , and building a system. 3. The Operational Test...parameter describes the extent to which efficient fabrication methodologies and processes are used, and the automation of labor-intensive operations
GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale
NASA Astrophysics Data System (ADS)
Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter
2017-04-01
Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.
Hybrid inverter for HVDC/weak AC system interconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tam, K.S.
1985-01-01
The concept of the hybrid converter is introduced. By independently controlling a naturally commutated converter (NCC) and an artificially commutated converter (ACC), real power and reactive power can be controlled independently. Alternatively, the ac bus voltage can be regulated without affecting the real power transfer. Independent control is feasible only within certain operating boundaries. Twelve pulse operation, sequential control, and complementary circuits may be viewed as variations of the hybrid converter. The concept of the hybrid converter is demonstrated by digital simulation. At the current state of technology, the NCC is best implemented by a 6-pulse bridge using thyristors asmore » the switching elements. A survey of power electronics applicable to HVDC applications reveals that the capacitively commutated current-sourced converters are either technically or economically better than the other alternatives for the implementation of the ACC. The digital simulation results show that the problems of operating an HVDC system into a weak ac system can be solved by using a hybrid inverter. A new control scheme, the zero Q control, is developed. With no reactive power interaction between the dc system and the ac system, the stability of the HVDC/weak ac system operation is significantly improved. System start-up and fault recovery is fast and stable.« less
Physics-of-Failure Approach to Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2017-01-01
As more and more electric vehicles emerge in our daily operation progressively, a very critical challenge lies in accurate prediction of the electrical components present in the system. In case of electric vehicles, computing remaining battery charge is safety-critical. In order to tackle and solve the prediction problem, it is essential to have awareness of the current state and health of the system, especially since it is necessary to perform condition-based predictions. To be able to predict the future state of the system, it is also required to possess knowledge of the current and future operations of the vehicle. In this presentation our approach to develop a system level health monitoring safety indicator for different electronic components is presented which runs estimation and prediction algorithms to determine state-of-charge and estimate remaining useful life of respective components. Given models of the current and future system behavior, the general approach of model-based prognostics can be employed as a solution to the prediction problem and further for decision making.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Castelletti, A.; Burlando, P.
2015-12-01
The recent spreading of renewable energy across Europe and the associated production variability and uncertainty are emerging challenges for hydropower system operation. Widely distributed and highly intermittent solar and wind power generation systems, along with feed-in-tariffs, at which they are remunerated, are threating the operation of traditional hydropower systems. For instance, in countries where the transition to a larger production by means of renewable power systems is a novel process, e.g. Switzerland, many hydropower companies are operating their reservoirs with low or no profits, claiming for a revision of the entire energy market system. This situation goes along with the problem of ensuring energy supply both nowadays and in the future, with changing energy demand and available water resources. In this work, we focus on a hydropower system in the Swiss Alps to explore how different operating policies can cope with both adequate energy supply and profitable operation under current and future climate and socio-economic conditions. We investigate the operation of the Mattmark reservoir in South-West Switzerland. Mattmark is a pumped reservoir of 98 106 m3 fed by a natural catchment of 37 km2 and contributing catchments, summing up to 51 km2, connected by several diversion channels. The hydrological regime, snow- and ice-melt dominated, has already experienced changes in the last decades due to glacier retreat and is expected to be strongly impacted by climate change in the future. We use Multi-Objective optimization techniques to explore current tradeoffs between profitability and secure supply. We then investigate how tradeoffs may evolve in time under different climate change projections and energy market scenarios. Results inform on the co-evolution of climate- and socio-economic induced variations, thus unveiling potential co-benefit situations to hydropower generation and providing insights to future energy market design.
System-wide versus component-specific trust using multiple aids.
Keller, David; Rice, Stephen
2010-01-01
Previous research in operator trust toward automated aids has focused primarily on single aids. The current study focuses on how operator trust is affected by the presence of multiple aids. Two competing theories of multiple-trust are presented. A component-specific trust theory predicts that operators will differentially place their trust in automated aids that vary in reliability. A system-wide trust theory predicts that operators will treat multiple imperfect aids as one "system" and merge their trust across aids despite differences in the aids' reliability. A simulated flight task was used to test these theories, whereby operators performed a pursuit tracking task while concurrently monitoring multiple system gauges that were augmented with perfect or imperfect automated aids. The data revealed that a system-wide trust theory best predicted the data; operators merged their trust across both aids, behaving toward a perfectly reliable aid in the same manner as they did towards unreliable aids.
Automated Guideway Transit System Passenger Security Guidebook
DOT National Transportation Integrated Search
1980-03-01
This uidebook provides AGT system planners, designers and operators with information on available crime countermeasures and their relative effectiveness against transit crime. : Crime countermeasures on current transit systems have been reviewed and ...
NASA Astrophysics Data System (ADS)
Guida, R.; Capeans, M.; Mandelli, B.
2016-07-01
The large muon trigger systems based on Resistive Plate Chambers (RPC) at the LHC experiments are currently operated with R134a based mixture. Unfortunately R134a is considered a greenhouse gas with high impact on the enviroment and therefore will be subject to regulations aiming in strongly reducing the available quantity on the market. The immediat effects might be instability on the price and incertitude in the product availability. Alternative gases (HFO-1234yf and HFO-1234ze) have been already identified by industry for specific applications as replacement of R134a. Moreover, HFCs similar to the R134a but with lower global warming potential (GWP) are already available (HFC-245fa, HFC-32, HFC-152a). The present contribution describes the results obtained with RPCs operated with new enviromemtal friendly gases. A particular attention has been addressed to the possibility of maintening the current operation conditions (i.e. currently used applied voltage and front-end electronics) in order to be able to use a new mixture for RPC systems even where the common infrastructure (i.e. high voltage and detector components) cannot be replaced for operation at higher applied voltages.
Operation Results of the Kstar Helium Refrigeration System
NASA Astrophysics Data System (ADS)
Chang, H.-S.; Fauve, E.; Park, D.-S.; Joo, J.-J.; Moon, K.-M.; Cho, K.-W.; Na, H. K.; Kwon, M.; Yang, S.-H.; Gistau-Baguer, G.
2010-04-01
The "first plasma" (100 kA of controllable plasma current for 100 ms) of KSTAR has been successfully generated in July 2008. The major outstanding feature of KSTAR compared to most other Tokamaks is that all the magnet coils are superconducting (SC), which enables higher plasma current values for a longer time duration when the nominal operation status has been reached. However, to establish the operating condition for the SC coils, other cold components, such as thermal shields, coil-supporting structures, SC buslines, and current leads also must be maintained at proper cryogenic temperature levels. A helium refrigeration system (HRS) with an exergetic equivalent cooling power of 9 kW at 4.5 K has been installed for such purposes and successfully commissioned. In this proceeding, we will report on the operation results of the HRS during the first plasma campaign of KSTAR. Using the HRS, the 300-ton cold mass of KSTAR was cooled down from ambient to the operating temperature levels of each cold component. Stable and steady cryogenic conditions, proper for the generation of the "first plasma" have been maintained for three months, after which, all of the cold mass was warmed up again to ambient temperature.
Precision control of multiple quantum cascade lasers for calibration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taubman, Matthew S., E-mail: Matthew.Taubman@pnnl.gov; Myers, Tanya L.; Pratt, Richard M.
We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby,more » and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.« less
2008-12-20
operational concepts. The adaptation or translations of these systems can provide an effective means of addressing many current and emerging challenges . The...providing stealth, cloaking, mimicry and other capabilities such as EM windowing to these platforms presents many challenges as their operational role...physical insight into a complex system or emerging technological challenges . A bio-system that shares synergistic goals with this complex system
Jan, Shau-Shiun; Kao, Yu-Chun
2013-05-17
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods.
Jan, Shau-Shiun; Kao, Yu-Chun
2013-01-01
The current trend of the civil aviation technology is to modernize the legacy air traffic control (ATC) system that is mainly supported by many ground based navigation aids to be the new air traffic management (ATM) system that is enabled by global positioning system (GPS) technology. Due to the low receiving power of GPS signal, it is a major concern to aviation authorities that the operation of the ATM system might experience service interruption when the GPS signal is jammed by either intentional or unintentional radio-frequency interference. To maintain the normal operation of the ATM system during the period of GPS outage, the use of the current radar system is proposed in this paper. However, the tracking performance of the current radar system could not meet the required performance of the ATM system, and an enhanced tracking algorithm, the interacting multiple model and probabilistic data association filter (IMMPDAF), is therefore developed to support the navigation and surveillance services of the ATM system. The conventional radar tracking algorithm, the nearest neighbor Kalman filter (NNKF), is used as the baseline to evaluate the proposed radar tracking algorithm, and the real flight data is used to validate the IMMPDAF algorithm. As shown in the results, the proposed IMMPDAF algorithm could enhance the tracking performance of the current aviation radar system and meets the required performance of the new ATM system. Thus, the current radar system with the IMMPDAF algorithm could be used as an alternative system to continue aviation navigation and surveillance services of the ATM system during GPS outage periods. PMID:23686142
Top-Off Injection and Higher Currents at the Stanford Synchrotron Radiation Lightsource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Johannes M.; Liu, James C.; Prinz, Alyssa A.
2011-04-05
The Stanford Synchrotron Radiation Lightsource (SSRL) at the SLAC National Accelerator Laboratory is a 234 m circumference storage ring for 3 GeV electrons with its synchrotron radiation serving currently 13 beamlines with about 27 experimental stations. It operated for long time with 100 mA peak current provided by usually three injections per day. In July 2009, the maximum beam current was raised to 200 mA. Over the period from June 2009 to March 2010, Top-Off operation started at every beamline. Top-Off, i.e., the injection of electrons into the storage ring with injection stoppers open, is necessary for SSRL to reachmore » its design current of 500 mA. In the future, the maximal power of the injection current will also soon be raised from currently 1.5 W to 5 W. The Radiation Protection Department at SLAC worked with SSRL on the specifications for the safety systems for operation with Top-Off injection and higher beam currents.« less
REopt Improves the Operations of Alcatraz's Solar PV-Battery-Diesel Hybrid System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olis, Daniel R; Walker, H. A; Van Geet, Otto D
This poster identifies operations improvement strategies for a photovoltaic (PV)-battery-diesel hybrid system at the National Park Service's Alcatraz Island using NREL's REopt analysis tool. The current 'cycle charging' strategy results in significant curtailing of energy production from the PV array, requiring excessive diesel use, while also incurring high wear on batteries without benefit of improved efficiency. A simple 'load following' strategy results in near optimal operating cost reduction.
Distributed, cooperating knowledge-based systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt
1991-01-01
Some current research in the development and application of distributed, cooperating knowledge-based systems technology is addressed. The focus of the current research is the spacecraft ground operations environment. The underlying hypothesis is that, because of the increasing size, complexity, and cost of planned systems, conventional procedural approaches to the architecture of automated systems will give way to a more comprehensive knowledge-based approach. A hallmark of these future systems will be the integration of multiple knowledge-based agents which understand the operational goals of the system and cooperate with each other and the humans in the loop to attain the goals. The current work includes the development of a reference model for knowledge-base management, the development of a formal model of cooperating knowledge-based agents, the use of testbed for prototyping and evaluating various knowledge-based concepts, and beginning work on the establishment of an object-oriented model of an intelligent end-to-end (spacecraft to user) system. An introductory discussion of these activities is presented, the major concepts and principles being investigated are highlighted, and their potential use in other application domains is indicated.
Defense Acquisitions: Assessments of Selected Weapon Programs
2011-03-01
Frequency (UHF) Follow-On ( UFO ) satellite system currently in operation and provide interoperability with legacy terminals. MUOS consists of a...delivery of MUOS capabilities is time-critical due to the operational failures of two UFO satellites. The MUOS program has taken several steps to...launch increased due to the unexpected failures of two UFO satellites. Based on the current health of on-orbit satellites, UHF communication
Marshall Space Flight Center Ground Systems Development and Integration
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.
A Parylene MEMS Electrothermal Valve
Li, Po-Ying; Givrad, Tina K.; Holschneider, Daniel P.; Maarek, Jean-Michel I.; Meng, Ellis
2011-01-01
The first microelectromechanical-system normally closed electrothermal valve constructed using Parylene C is described, which enables both low power (in milliwatts) and rapid operation (in milliseconds). This low-power valve is well suited for applications in wirelessly controlled implantable drug-delivery systems. The simple design was analyzed using both theory and modeling and then characterized in benchtop experiments. Operation in air (constant current) and water (current ramping) was demonstrated. Valve-opening powers of 22 mW in air and 33 mW in water were obtained. Following integration of the valve with catheters, our valve was applied in a wirelessly operated microbolus infusion pump, and the in vivo functionality for the appropriateness of use of this pump for future brain mapping applications in small animals was demonstrated. PMID:21350679
Candidate Materials Evaluated for a High-Temperature Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Bowman, Randy R.; Ritzert, Frank J.
2005-01-01
The Department of Energy and NASA have identified Stirling Radioisotope Generators (SRGs) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel-base superalloy 718. The current operating temperature is at the limit of alloy 718 s capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, personnel at the NASA Glenn Research Center are evaluating advanced materials for a high-temperature heater head to allow a higher convertor temperature ratio and, thus, increase the system efficiency. A generic list of properties that were used to screen the candidate materials follows: (1) creep, (2) fabricability, (3) helium gas containment, (4) long-term stability and compatibility, (5) ability to form a hermetical closeout seal, and (6) ductility and toughness.
Extravehicular activity space suit interoperability.
Skoog, A I; McBarron JW 2nd; Severin, G I
1995-10-01
The European Agency (ESA) and the Russian Space Agency (RKA) are jointly developing a new space suit system for improved extravehicular activity (EVA) capabilities in support of the MIR Space Station Programme, the EVA Suit 2000. Recent national policy agreements between the U.S. and Russia on planned cooperations in manned space also include joint extravehicular activity (EVA). With an increased number of space suit systems and a higher operational frequency towards the end of this century an improved interoperability for both routine and emergency operations is of eminent importance. It is thus timely to report the current status of ongoing work on international EVA interoperability being conducted by the Committee on EVA Protocols and Operations of the International Academy of Astronauts initiated in 1991. This paper summarises the current EVA interoperability issues to be harmonised and presents quantified vehicle interface requirements for the current U.S. Shuttle EMU and Russian MIR Orlan DMA and the new European/Russian EVA Suit 2000 extravehicular systems. Major critical/incompatible interfaces for suits/mother-craft of different combinations are discussed, and recommendations for standardisations given.
NASA Astrophysics Data System (ADS)
Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub
2012-07-01
The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.
A novel electron accelerator for MRI-Linac radiotherapy.
Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca
2016-03-01
MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility.
A novel electron accelerator for MRI-Linac radiotherapy
Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca
2016-01-01
Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713
Computerized procedures system
Lipner, Melvin H.; Mundy, Roger A.; Franusich, Michael D.
2010-10-12
An online data driven computerized procedures system that guides an operator through a complex process facility's operating procedures. The system monitors plant data, processes the data and then, based upon this processing, presents the status of the current procedure step and/or substep to the operator. The system supports multiple users and a single procedure definition supports several interface formats that can be tailored to the individual user. Layered security controls access privileges and revisions are version controlled. The procedures run on a server that is platform independent of the user workstations that the server interfaces with and the user interface supports diverse procedural views.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)
2000-01-01
A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.
NASA Astrophysics Data System (ADS)
Shawwash, Ziad Khaled Elias
2000-10-01
The electricity supply market is rapidly changing from a monopolistic to a competitive environment. Being able to operate their system of reservoirs and generating facilities to get maximum benefits out of existing assets and resources is important to the British Columbia Hydro Authority (B.C. Hydro). A decision support system has been developed to help B.C. Hydro operate their system in an optimal way. The system is operational and is one of the tools that are currently used by the B.C. Hydro system operations engineers to determine optimal schedules that meet the hourly domestic load and also maximize the value B.C. Hydro obtains from spot transactions in the Western U.S. and Alberta electricity markets. This dissertation describes the development and implementation of the decision support system in production mode. The decision support system consists of six components: the input data preparation routines, the graphical user interface (GUI), the communication protocols, the hydraulic simulation model, the optimization model, and the results display software. A major part of this work involved the development and implementation of a practical and detailed large-scale optimization model that determines the optimal tradeoff between the long-term value of water and the returns from spot trading transactions in real-time operations. The postmortem-testing phase showed that the gains in value from using the model accounted for 0.25% to 1.0% of the revenues obtained. The financial returns from using the decision support system greatly outweigh the costs of building it. Other benefits are the savings in the time needed to prepare the generation and trading schedules. The system operations engineers now can use the time saved to focus on other important aspects of their job. The operators are currently experimenting with the system in production mode, and are gradually gaining confidence that the advice it provides is accurate, reliable and sensible. The main lesson learned from developing and implementing the system was that there is no alternative to working very closely with the intended end-users of the system, and with the people who have deep knowledge, experience and understanding of how the system is and should be operated.
Lightning Current Measurement with Fiber-Optic Sensor
NASA Technical Reports Server (NTRS)
Nguyen, Truong X.; Ely, Jay J.; Szatkowski, George N.; Mata, Carlos T.; Mata, Angel G.; Snyder, Gary P.
2014-01-01
A fiber-optic current sensor is successfully developed with many potential applications for electric current measurement. Originally developed for in-flight lightning measurement, the sensor utilizes Faraday Effect in an optical fiber. The Faraday Effect causes linear light polarization in a fiber to rotate when the fiber is exposed to a magnetic field. The polarization change is detected using a reflective polarimetric scheme. Forming fiber loops and applying Ampere's law, measuring the total light rotation results in the determination of the total current enclosed. The sensor is conformable to complex structure geometry. It is also non-conductive and immune to electromagnetic interference, saturation or hysteresis. Installation is non-intrusive, and the sensor can be safely routed through flammable areas. Two similar sensor systems are described in this paper. The first system operates at 1310nm laser wavelength and is capable of measuring approximately 300 A - 300 kA, a 60 dB range. Laboratory validation results of aircraft lighting direct and in-direct effect current amplitudes are reported for this sensor. The second system operates at 1550nm wavelength and can measure about 400 A - 400 kA. Triggered-lightning measurement data are presented for this system. Good results are achieved in all cases.
Integrated Modeling for Road Condition Prediction (IMRCP)
DOT National Transportation Integrated Search
2018-01-17
Intelligent transportation system deployments have enabled great advances in operational awareness and response based on the data they gather on the current state of the roadways. Operators have better access to traffic and weather condition informat...
Model Based Autonomy for Robust Mars Operations
NASA Technical Reports Server (NTRS)
Kurien, James A.; Nayak, P. Pandurang; Williams, Brian C.; Lau, Sonie (Technical Monitor)
1998-01-01
Space missions have historically relied upon a large ground staff, numbering in the hundreds for complex missions, to maintain routine operations. When an anomaly occurs, this small army of engineers attempts to identify and work around the problem. A piloted Mars mission, with its multiyear duration, cost pressures, half-hour communication delays and two-week blackouts cannot be closely controlled by a battalion of engineers on Earth. Flight crew involvement in routine system operations must also be minimized to maximize science return. It also may be unrealistic to require the crew have the expertise in each mission subsystem needed to diagnose a system failure and effect a timely repair, as engineers did for Apollo 13. Enter model-based autonomy, which allows complex systems to autonomously maintain operation despite failures or anomalous conditions, contributing to safe, robust, and minimally supervised operation of spacecraft, life support, In Situ Resource Utilization (ISRU) and power systems. Autonomous reasoning is central to the approach. A reasoning algorithm uses a logical or mathematical model of a system to infer how to operate the system, diagnose failures and generate appropriate behavior to repair or reconfigure the system in response. The 'plug and play' nature of the models enables low cost development of autonomy for multiple platforms. Declarative, reusable models capture relevant aspects of the behavior of simple devices (e.g. valves or thrusters). Reasoning algorithms combine device models to create a model of the system-wide interactions and behavior of a complex, unique artifact such as a spacecraft. Rather than requiring engineers to all possible interactions and failures at design time or perform analysis during the mission, the reasoning engine generates the appropriate response to the current situation, taking into account its system-wide knowledge, the current state, and even sensor failures or unexpected behavior.
Current Strategic Business Plan for the Implementation of Digital Systems.
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.
This document presents a current strategic business plan for the implementation of digital systems and services for the free national library program operated by the National Library Service for the Blind and Physically Handicapped, Library of Congress, its network of cooperating regional and local libraries, and the United States Postal Service.…
NASA Technical Reports Server (NTRS)
Stuchlik, David William
2017-01-01
WASP is a NASA developed Fine Pointing System adaptable to a variety of Science Instruments. Standardized System with Reusable Parts to Minimize the Cost to Users and NASA. Supports Multiple Science Disciplines and a wide range of Masses and Inertias. Currently Operational and Available for Science Collaborations.
21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...
21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...
21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...
21 CFR 821.25 - Device tracking system and content requirements: manufacturer requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... manufacturer of a tracked device shall keep current records in accordance with its standard operating procedure... this section. A manufacturer shall make this standard operating procedure available to FDA upon request. A manufacturer shall incorporate the following into the standard operating procedure: (1) Data...
3D-additive manufactured optical mount
NASA Astrophysics Data System (ADS)
Mammini, Paul V.; Ciscel, David; Wooten, John
2015-09-01
The Area Defense Anti-Munitions (ADAM) is a low cost and effective high power laser weapon system. It's designed to address and negate important threats such as short-range rockets, UAVs, and small boats. Many critical optical components operate in the system. The optics and mounts must accommodate thermal and mechanical stresses, plus maintain an exceptional wave front during operation. Lockheed Martin Space Systems Company (LMSSC) developed, designed, and currently operates ADAM. This paper covers the design and development of a key monolithic, flexured, titanium mirror mount that was manufactured by CalRAM using additive processes.
Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms
Gallegos-Lopez, Gabriel; Kinoshita, Michael H; Ransom, Ray M; Perisic, Milun
2013-05-21
Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Eischeid, Todd M.; Palmer, Michael T.; Wing, David J.
2003-01-01
NASA is currently investigating a new concept of operations for the National Airspace System, designed to improve capacity while maintaining or improving current levels of safety. This concept, known as Distributed Air/Ground Traffic Management (DAGTM), allows appropriately equipped autonomous aircraft to maneuver freely for flight optimization while resolving conflicts with other traffic and staying out of special use airspace and hazardous weather. In order to perform these tasks, pilots use prototype conflict detection, prevention, and resolution tools, collectively known as an Airborne Separation Assurance System (ASAS). While ASAS would normally allow pilots to resolve conflicts before they become hazardous, evaluation of system performance in sudden, near-term conflicts is needed in order to determine concept feasibility. An experiment was conducted in NASA Langley's Air Traffic Operations Lab to evaluate the prototype ASAS for enabling pilots to resolve near-term conflicts and examine possible operational effects associated with the use of lower separation minimums. Sixteen commercial airline pilots flew a total of 32 traffic scenarios that required them to use prototype ASAS tools to resolve close range pop-up conflicts. Required separation standards were set at either 3 or 5 NM lateral spacing, with 1000 ft vertical separation being used for both cases. Reducing the lateral separation from 5 to 3 NM did not appear to increase operational risk, as indicated by the proximity to the intruder aircraft. Pilots performed better when they followed tactical guidance cues provided by ASAS than when they didn't follow the guidance. In an effort to improve compliance rate, ASAS design changes are currently under consideration. Further studies will of evaluate these design changes and consider integration issues between ASAS and existing Airborne Collision Avoidance Systems (ACAS).
A Soft-Start Circuit for Arcjet Ignition
NASA Technical Reports Server (NTRS)
Hamley, John A.; Sankovic, John M.
1993-01-01
The reduced propellant flow rates associated with high performance arcjets have placed new emphasis on electrode erosion, especially at startup. A soft-start current profile was defined which limited current overshoot during the initial 30 to 50 ms of operation, and maintained significantly lower than the nominal arc current for the first eight seconds of operation. A 2-5 kW arcjet PPU was modified to provide this current profile, and a 500 cycle test using simulated fully decomposed hydrazine was conducted to determine the electrode erosion during startup. Electrode geometry and mass flow rates were selected based on requirements for a 600 second specific impulse mission average arcjet system. The flow rate was varied throughout the test to simulate the blow down of a flight propellant system. Electrode damage was negligible at flow rates above 33 mg/s, and minor chamfering of the constrictor occurred at flow rates of 33 to 30 mg/s, corresponding to flow rates expected in the last 40 percent of the mission. Constrictor diameter remained unchanged and the thruster remained operable at the completion of the test. The soft-start current profile significantly reduced electrode damage when compared to state of the art starting techniques.
Anomalous event diagnosis for environmental satellite systems
NASA Technical Reports Server (NTRS)
Ramsay, Bruce H.
1993-01-01
The National Oceanic and Atmospheric Administration's (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS) is responsible for the operation of the NOAA geostationary and polar orbiting satellites. NESDIS provides a wide array of operational meteorological and oceanographic products and services and operates various computer and communication systems on a 24-hour, seven days per week schedule. The Anomaly Reporting System contains a database of anomalous events regarding the operations of the Geostationary Operational Environmental Satellite (GOES), communication, or computer systems that have degraded or caused the loss of GOES imagery. Data is currently entered manually via an automated query user interface. There are 21 possible symptoms (e.g., No Data), and 73 possible causes (e.g., Sectorizer - World Weather Building) of an anomalous event. The determination of an event's cause(s) is made by the on-duty computer operator, who enters the event in a paper based daily log, and by the analyst entering the data into the reporting system. The determination of the event's cause(s) impacts both the operational status of these systems, and the performance evaluation of the on-site computer and communication operations contractor.
An Operations Management System for the Space Station
NASA Astrophysics Data System (ADS)
Rosenthal, H. G.
1986-09-01
This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.
A Distributed Data Base Version of INGRES.
ERIC Educational Resources Information Center
Stonebraker, Michael; Neuhold, Eric
Extensions are required to the currently operational INGRES data base system for it to manage a data base distributed over multiple machines in a computer network running the UNIX operating system. Three possible user views include: (1) each relation in a unique machine, (2) a user interaction with the data base which can only span relations at a…
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Proposed Array-based Deep Space Network for NASA
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.
2007-01-01
The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.
TCMS operations and maintenance philosophy
NASA Technical Reports Server (NTRS)
Buehler, David P.; Griffin, Rock E.
1992-01-01
The purpose is to describe the basic philosophies of operating and maintaining the Test, Control, and Monitor System (TCMS) equipment. TCMS is a complex and sophisticated checkout system. Operations and maintenance processes developed to support it will be based upon current experience, but will be focused on the specific needs of TCMS in support of Space Station Freedom Program (SSFP) and related activities. An overview of the operations and maintenance goals and philosophies are presented. The assumptions, roles and responsibilities, concepts and interfaces for operation, on-line maintenance, off-line support, and Operations and Maintenance (O&M) personnel training on all TCMS equipment located at KSC are described.
Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1984-01-01
An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.
Analysis of NASA communications (Nascom) II network protocols and performance
NASA Technical Reports Server (NTRS)
Omidyar, Guy C.; Butler, Thomas E.
1991-01-01
The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.
Wake Vortex Advisory System (WakeVAS) Concept of Operations
NASA Technical Reports Server (NTRS)
Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward
2003-01-01
NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.
Process control systems at Homer City coal preparation plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shell, W.P.
1983-03-01
An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greiner, B.F.; Caswell, D.J.; Slater, W.R.
1992-04-01
This paper discusses the control system of the Tandem Accelerator Superconducting Cyclotron (TASCC) of AECL Research at its Chalk River Laboratories which is presently based on a PDP-11 computer and the IAS operating system. The estimated expense of a custom conversion of the system to a current, equivalent operating system is prohibitive. The authors have evaluated a commercial control package from VISTA Control Systems based on VAX microcomputers and the VMS operating system. Vsystem offers a modern, graphical operator interface, an extensive software toolkit for configuration of the system and a multi-feature data-logging capability, all of which far surpass themore » functionality of the present control system. However, the implementation of some familiar, practical features that TASCC operators find to be essential has proven to be challenging. The assessment of Vsystem, which is described in terms of presently perceived strengths and weaknesses, is, on balance, very positive.« less
1981-11-01
evaluate and test these ideas in the Internet research context. 4. Field third-generation gateways. At this point in time, we purposely avoid selecting a...plan to cover the period from now until the time when a gateway system can be fielded which implements the results of the current work in the Internet ... research community. The current gateway system is inadequate from both a functionality and a• performance standpoint, and therefore the transition
NASA Technical Reports Server (NTRS)
Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.
2012-01-01
The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.
Tower-Related Major System Development Programs
DOT National Transportation Integrated Search
1978-03-01
This report is devoted to the present and near future states of the tower cab environment, addresses those MSDP systems which may have an impact on the current tower cab environment, systems and/or operations. The systems included are: Discrete Addre...
A Solid-State Fault Current Limiting Device for VSC-HVDC Systems
NASA Astrophysics Data System (ADS)
Larruskain, D. Marene; Zamora, Inmaculada; Abarrategui, , Oihane; Iturregi, Araitz
2013-08-01
Faults in the DC circuit constitute one of the main limitations of voltage source converter VSC-HVDC systems, as the high fault currents can damage seriously the converters. In this article, a new design for a fault current limiter (FCL) is proposed, which is capable of limiting the fault current as well as interrupting it, isolating the DC grid. The operation of the proposed FCL is analysed and verified with the most usual faults that can occur in overhead lines.
Modeling of switching regulator power stages with and without zero-inductor-current dwell time
NASA Technical Reports Server (NTRS)
Lee, F. C.; Yu, Y.; Triner, J. E.
1976-01-01
State space techniques are employed to derive accurate models for buck, boost, and buck/boost converter power stages operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without the dwell time as a special case of the discontinuous-current mode, when the dwell time vanishes. An abrupt change of system behavior including a reduction of the system order when the dwell time appears is shown both analytically and experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fregosi, Daniel; Ravula, Sharmila; Brhlik, Dusan
2015-06-07
Bosch has developed and demonstrated a novel direct current (DC) microgrid system that maximizes the efficiency of locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent alternating current (AC) systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This paper gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locationsmore » across the United States for several commercial building types and operating profiles. It found that the Bosch DC microgrid uses generated PV energy 6%-8% more efficiently than traditional AC systems.« less
Aircraft Engine-Monitoring System And Display
NASA Technical Reports Server (NTRS)
Abbott, Terence S.; Person, Lee H., Jr.
1992-01-01
Proposed Engine Health Monitoring System and Display (EHMSD) provides enhanced means for pilot to control and monitor performances of engines. Processes raw sensor data into information meaningful to pilot. Provides graphical information about performance capabilities, current performance, and operational conditions in components or subsystems of engines. Provides means to control engine thrust directly and innovative means to monitor performance of engine system rapidly and reliably. Features reduce pilot workload and increase operational safety.
Advanced Technologies in Safe and Efficient Operating Rooms
2007-02-01
facilities that deal with trauma. The resulting chaos can be overwhelming, even with some form of electronic health record ( EHR ) system (currently...computers which process this data to deliver more efficient health -related services. The EMR is an essential part of systems like the Traumapod [24...perioperative situational awareness system that captures and records data from various medical devices and provides an integrated display to allow the operating
Online Analysis of Wind and Solar Part I: Ramping Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etingov, Pavel V.; Ma, Jian; Makarov, Yuri V.
2012-01-31
To facilitate wider penetration of renewable resources without compromising system reliability concerns arising from the lack of predictability of intermittent renewable resources, a tool for use by California Independent System Operator (CAISO) power grid operators was developed by Pacific Northwest National Laboratory (PNNL) in conjunction with CAISO with funding from California Energy Commission. This tool predicts and displays additional capacity and ramping requirements caused by uncertainties in forecasts of loads and renewable generation. The tool is currently operational in the CAISO operations center. This is one of two final reports on the project.
NASA Technical Reports Server (NTRS)
Glasgow, J. C.; Birchenough, A. G.
1978-01-01
The experimental wind turbine was designed and fabricated to assess technology requirements and engineering problems of large wind turbines. The machine has demonstrated successful operation in all of its design modes and served as a prototype developmental test bed for the Mod-0A operational wind turbines which are currently used on utility networks. The mechanical and control system are described as they evolved in operational tests and some of the experience with various systems in the downwind rotor configurations are elaborated.
NASA Astrophysics Data System (ADS)
Song, Linze; Shi, Qiang
2017-02-01
We present a theoretical approach to study nonequilibrium quantum heat transport in molecular junctions described by a spin-boson type model. Based on the Feynman-Vernon path integral influence functional formalism, expressions for the average value and high-order moments of the heat current operators are derived, which are further obtained directly from the auxiliary density operators (ADOs) in the hierarchical equations of motion (HEOM) method. Distribution of the heat current is then derived from the high-order moments. As the HEOM method is nonperturbative and capable of treating non-Markovian system-environment interactions, the method can be applied to various problems of nonequilibrium quantum heat transport beyond the weak coupling regime.
Cost/benefit trade-offs for reducing the energy consumption of commercial air transportation (RECAT)
NASA Technical Reports Server (NTRS)
Gobetz, F. W.; Leshane, A. A.
1976-01-01
The RECAT study evaluated the opportunities for reducing the energy requirements of the U.S. domestic air passenger transport system through improved operational techniques, modified in-service aircraft, derivatives of current production models, or new aircraft using either current or advanced technology. Each of these fuel-conserving alternatives was investigated individually to test its potential for fuel conservation relative to a hypothetical baseline case in which current, in-production aircraft types are assumed to operate, without modification and with current operational techniques, into the future out to the year 2000. Consequently, while the RECAT results lend insight into the directions in which technology can best be pursued for improved air transport fuel economy, no single option studied in the RECAT program is indicative of a realistic future scenario.
Telerobotic on-orbit remote fluid resupply system
NASA Technical Reports Server (NTRS)
1990-01-01
The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.
Operational Experience from Solar Thermal Energy Projects
NASA Technical Reports Server (NTRS)
Cameron, C. P.
1984-01-01
Over the past few years, Sandia National Laboratories were involved in the design, construction, and operation of a number of DOE-sponsored solar thermal energy systems. Among the systems currently in operation are several industrial process heat projects and the Modular Industrial Solar Retrofit qualification test systems, all of which use parabolic troughs, and the Shenandoah Total Energy Project, which uses parabolic dishes. Operational experience has provided insight to both desirable and undesirable features of the designs of these systems. Features of these systems which are also relevant to the design of parabolic concentrator thermal electric systems are discussed. Other design features discussed are system control functions which were found to be especially convenient or effective, such as local concentrator controls, rainwash controls, and system response to changing isolation. Drive systems are also discussed with particular emphasis of the need for reliability and the usefulness of a manual drive capability.
Technology in School Foodservice Operations.
ERIC Educational Resources Information Center
Callahan, Tom; Sharma, Vijay K.
2002-01-01
Describes the current state of technology to manage school food-service operations, including, for example, the use of automation to identify and feed needy students and the use of the Internet. Describes challenges of implementing an automated system. (PKP)
Multimission image processing and science data visualization
NASA Technical Reports Server (NTRS)
Green, William B.
1993-01-01
The Operational Science Analysis (OSA) Functional area supports science instrument data display, analysis, visualization and photo processing in support of flight operations of planetary spacecraft managed by the Jet Propulsion Laboratory (JPL). This paper describes the data products generated by the OSA functional area, and the current computer system used to generate these data products. The objectives on a system upgrade now in process are described. The design approach to development of the new system are reviewed, including use of the Unix operating system and X-Window display standards to provide platform independence, portability, and modularity within the new system, is reviewed. The new system should provide a modular and scaleable capability supporting a variety of future missions at JPL.
Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar
NASA Astrophysics Data System (ADS)
Schroevers, Marinus
2015-04-01
The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christoph, G.G; Jackson, K.A.; Neuman, M.C.
An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in the system audit record, by changes in the vulnerability posture of the system configuration, and in other evidence found through active testing of the system. In 1989 we started developing an automatic misuse detection system for the Integrated Computing Network (ICN) at Los Alamos National Laboratory. Since 1990 this system has been operational, monitoring a variety of network systems and services. We call it the Network Anomaly Detection and Intrusion Reporter, or NADIR. During the last year andmore » a half, we expanded NADIR to include processing of audit and activity records for the Cray UNICOS operating system. This new component is called the UNICOS Real-time NADIR, or UNICORN. UNICORN summarizes user activity and system configuration information in statistical profiles. In near real-time, it can compare current activity to historical profiles and test activity against expert rules that express our security policy and define improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations. UNICORN is currently operational on four Crays in Los Alamos` main computing network, the ICN.« less
[Comprehensive system integration and networking in operating rooms].
Feußner, H; Ostler, D; Kohn, N; Vogel, T; Wilhelm, D; Koller, S; Kranzfelder, M
2016-12-01
A comprehensive surveillance and control system integrating all devices and functions is a precondition for realization of the operating room of the future. Multiple proprietary integrated operation room systems are currently available with a central user interface; however, they only cover a relatively small part of all functionalities. Internationally, there are at least three different initiatives to promote a comprehensive systems integration and networking in the operating room: the Japanese smart cyber operating theater (SCOT), the American medical device plug-and-play interoperability program (MDPnP) and the German secure and dynamic networking in operating room and hospital (OR.NET) project supported by the Federal Ministry of Education and Research. Within the framework of the internationally advanced OR.NET project, prototype solution approaches were realized, which make short-term and mid-term comprehensive data retrieval systems probable. An active and even autonomous control of the medical devices by the surveillance and control system (closed loop) is expected only in the long run due to strict regulatory barriers.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
Human Infrastructure Detection and Exploitation (HIDE)
2009-11-01
Finding human infrastructure elements such as machinery, chemicals, radiofrequency emissions, electrical currents, or other evidence of human ... activity in confined enclosed spaces is a deficiency in current intelligence, surveillance, and reconnaissance (ISR) systems. In addition, operations in
Incorporation of quality updates for JPSS CGS Products
NASA Astrophysics Data System (ADS)
Cochran, S.; Grant, K. D.; Ibrahim, W.; Brueske, K. F.; Smit, P.
2016-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Methods and Tools for Product Quality Maintenance in JPSS CGS
NASA Astrophysics Data System (ADS)
Cochran, S.; Smit, P.; Grant, K. D.; Jamilkowski, M. L.
2015-12-01
NOAA's next-generation environmental satellite, the Joint Polar Satellite System (JPSS) replaces the current Polar-orbiting Operational Environmental Satellites (POES). JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite was launched in 2011 and is currently NOAA's primary operational polar satellite. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). A multi-mission system, CGS provides combinations of C3/DP for numerous NASA, NOAA, DoD, and international missions. In preparation for the next JPSS satellite, CGS improved its multi-mission capabilities to enhance mission operations for larger constellations of earth observing satellites with the added benefit of streamlining mission operations for other NOAA missions. This paper will discuss both the theoretical basis and the actual practices used to date to identify, test and incorporate algorithm updates into the CGS processing baseline. To provide a basis for this support, Raytheon developed a theoretical analysis framework, and the application of derived engineering processes, for the maintenance of consistency and integrity of remote sensing operational algorithm outputs. The framework is an abstraction of the operationalization of the science-grade algorithm (Sci2Ops) process used throughout the JPSS program. By combining software and systems engineering controls, manufacturing disciplines to detect and reduce defects, and a standard process to control analysis, an environment to maintain operational algorithm maturity is achieved. Results of the use of this approach to implement algorithm changes into operations will also be detailed.
Defense Acquisitions: Assessments of Selected Weapon Programs
2010-03-01
improved availability for small terminals. It is to replace the Ultra High Frequency (UHF) Follow-On ( UFO ) satellite system currently in operation...of MUOS capabilities is time-critical due to the operational failures of two UFO satellites. The MUOS program has taken several steps to address...failures of two UFO satellites. Based on the current health of on-orbit satellites, UHF communication capabilities are predicted to fall below the
Man-machine interface requirements - advanced technology
NASA Technical Reports Server (NTRS)
Remington, R. W.; Wiener, E. L.
1984-01-01
Research issues and areas are identified where increased understanding of the human operator and the interaction between the operator and the avionics could lead to improvements in the performance of current and proposed helicopters. Both current and advanced helicopter systems and avionics are considered. Areas critical to man-machine interface requirements include: (1) artificial intelligence; (2) visual displays; (3) voice technology; (4) cockpit integration; and (5) pilot work loads and performance.
Patriot Advanced Capability-3 Missile Segment Enhancement (PAC-3 MSE)
2015-12-01
Threshold Demonstrated Performance Current Estimate System Training Proficiency Level Soldiers (Operators, Maintainers, and Leaders) are able to...constructive training environments by using TADSS to conduct multi- level training for both operators and maintenance personnel. With the addition...0.0 Total 6037.0 6037.0 N/A 6276.9 6722.3 6722.3 6900.3 Current APB Cost Estimate Reference Army Cost Position dated February 28, 2014 Confidence Level
Weather forecasting expert system study
NASA Technical Reports Server (NTRS)
1985-01-01
Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.
Operation and biasing for single device equivalent to CMOS
Welch, James D.
2001-01-01
Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of field induced carriers. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents. Operation of the gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems under typical bias schemes is described, and simple demonstrative five mask fabrication procedures for the inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.
NASA Astrophysics Data System (ADS)
Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou
2018-06-01
In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.
Electronics Demonstrated for Low- Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammond, Ahmad; Gerber, Scott S.
2000-01-01
The operation of electronic systems at cryogenic temperatures is anticipated for many NASA spacecraft, such as planetary explorers and deep space probes. For example, an unheated interplanetary probe launched to explore the rings of Saturn would experience an average temperature near Saturn of about 183 C. Electronics capable of low-temperature operation in the harsh deep space environment also would help improve circuit performance, increase system efficiency, and reduce payload development and launch costs. An ongoing research and development program on low-temperature electronics at the NASA Glenn Research Center at Lewis Field is focusing on the design of efficient power systems that can survive and exploit the advantages of low-temperature environments. The targeted systems, which are mission driven, include converters, inverters, controls, digital circuits, and special-purpose circuits. Initial development efforts successfully demonstrated the low-temperature operation and cold-restart of several direct-current/direct-current (dc/dc) converters based on different types of circuit design, some with superconducting inductors. The table lists some of these dc/dc converters with their properties, and the photograph shows a high-voltage, high-power dc/dc converter designed for an ion propulsion system for low-temperature operation. The development efforts of advanced electronic systems and the supporting technologies for low-temperature operation are being carried out in-house and through collaboration with other Government agencies, industry, and academia. The Low Temperature Electronics Program supports missions and development programs at NASA s Jet Propulsion Laboratory and Goddard Space Flight Center. The developed technologies will be transferred to commercial end users for applications such as satellite infrared sensors and medical diagnostic equipment.
Technique for temperature compensation of eddy-current proximity probes
NASA Technical Reports Server (NTRS)
Masters, Robert M.
1989-01-01
Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.
Internet Voice Distribution System (IVoDS) Utilization in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Bradford, Bob; Chamberlain, Jim; Nichols, Kelvin; Bailey, Darrell (Technical Monitor)
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to perform scientific experiments on-board ISS. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing HVoDS mission voice communications system used by researchers. The Internet Voice Distribution System (IVoDS) connects researchers to mission support "loops" or conferences via Internet Protocol networks such as the high-speed Internet 2. Researchers use IVoDS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors A2 Technology, Inc. FVC, Lockheed- Martin, and VoIP Group. IVoDS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is currently being performed to take full advantage of the digital world - the Personal Computer and Internet Protocol networks - to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data-sharing capabilities are being investigated. Major obstacles being addressed include network bandwidth capacity and strict security requirements. Techniques being investigated to reduce and overcome these obstacles include emerging audio-video protocols and network technology including multicast and quality-of-service.
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge
2015-01-01
Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.
Robotics for Nuclear Material Handling at LANL:Capabilities and Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Troy A; Lloyd, Jane A; Turner, Cameron J
Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less
Launch processing system transition from development to operation
NASA Technical Reports Server (NTRS)
Paul, H. C.
1977-01-01
The Launch Processing System has been under development at Kennedy Space Center since 1973. A prototype system was developed and delivered to Marshall Space Flight Center for Solid Rocket Booster checkout in July 1976. The first production hardware arrived in late 1976. The System uses a distributed computer network for command and monitoring and is supported by a dual large scale computer system for 'off line' processing. A high level of automation is anticipated for Shuttle and Payload testing and launch operations to gain the advantages of short turnaround capability, repeatability of operations, and minimization of operations and maintenance (O&M) manpower. Learning how to efficiently apply the system is our current problem. We are searching for more effective ways to convey LPS system performance characteristics from the designer to a large number of users. Once we have done this, we can realize the advantages of LPS system design.
Network performance analysis and management for cyber-physical systems and their applications
NASA Astrophysics Data System (ADS)
Emfinger, William A.
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Characteristics of Operational Space Weather Forecasting: Observations and Models
NASA Astrophysics Data System (ADS)
Berger, Thomas; Viereck, Rodney; Singer, Howard; Onsager, Terry; Biesecker, Doug; Rutledge, Robert; Hill, Steven; Akmaev, Rashid; Milward, George; Fuller-Rowell, Tim
2015-04-01
In contrast to research observations, models and ground support systems, operational systems are characterized by real-time data streams and run schedules, with redundant backup systems for most elements of the system. We review the characteristics of operational space weather forecasting, concentrating on the key aspects of ground- and space-based observations that feed models of the coupled Sun-Earth system at the NOAA/Space Weather Prediction Center (SWPC). Building on the infrastructure of the National Weather Service, SWPC is working toward a fully operational system based on the GOES weather satellite system (constant real-time operation with back-up satellites), the newly launched DSCOVR satellite at L1 (constant real-time data network with AFSCN backup), and operational models of the heliosphere, magnetosphere, and ionosphere/thermosphere/mesophere systems run on the Weather and Climate Operational Super-computing System (WCOSS), one of the worlds largest and fastest operational computer systems that will be upgraded to a dual 2.5 Pflop system in 2016. We review plans for further operational space weather observing platforms being developed in the context of the Space Weather Operations Research and Mitigation (SWORM) task force in the Office of Science and Technology Policy (OSTP) at the White House. We also review the current operational model developments at SWPC, concentrating on the differences between the research codes and the modified real-time versions that must run with zero fault tolerance on the WCOSS systems. Understanding the characteristics and needs of the operational forecasting community is key to producing research into the coupled Sun-Earth system with maximal societal benefit.
Cycling firing method for bypass operation of bridge converters
Zabar, Zivan
1982-01-01
The bridge converter comprises a number of switching elements and an electronic logic system which regulated the electric power levels by controlling the firing, i.e., the initiation of the conduction period of the switching elements. Cyclic firing of said elements allows the direct current to bypass the alternating current system with high power factor and negligible losses.
Magnetic susceptibility well-logging unit with single power supply thermoregulation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeley, R. L.
1985-11-05
The magnetic susceptibility well-logging unit with single power supply thermoregulation system provides power from a single surface power supply over a well-logging cable to an integrated circuit voltage regulator system downhole. This voltage regulator system supplies regulated voltages to a temperature control system and also to a Maxwell bridge sensing unit which includes the solenoid of a magnetic susceptibility probe. The temperature control system is provided with power from the voltage regulator system and operates to permit one of several predetermined temperatures to be chosen, and then operates to maintain the solenoid of a magnetic susceptibility probe at this chosenmore » temperature. The temperature control system responds to a temperature sensor mounted upon the probe solenoid to cause resistance heaters concentrically spaced from the probe solenoid to maintain the chosen temperature. A second temperature sensor on the probe solenoid provides a temperature signal to a temperature transmitting unit, which initially converts the sensed temperature to a representative voltage. This voltage is then converted to a representative current signal which is transmitted by current telemetry over the well logging cable to a surface electronic unit which then reconverts the current signal to a voltage signal.« less
Producing Quality Water for Industrial Use.
ERIC Educational Resources Information Center
Schaezler, Donald J.
1978-01-01
This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)
Improving the current system for supplying organs for transplantation.
Horton, R L; Horton, P J
1993-01-01
The United States currently relies on a voluntary, altruistic system for supplying organs for transplantation. It is now generally recognized that this system, as currently operated, produces a seriously inadequate supply of organs. A number of scholars have argued that some type of (generally unspecified) market system is necessary. Two articles appearing in the Journal of Health Politics, Policy and Law have proposed relatively specific market systems for increasing the supply of organs. In this paper we argue that market systems are at best premature. In particular, there is little to suggest that any type of market system for organs will be permitted in the United States in the foreseeable future. We present data that strongly suggest that the current voluntary, altruistic system has not been developed to its full potential and offer a number of specific suggestions for improving the system.
Sustaining Software-Intensive Systems
2006-05-01
2.2 Multi- Service Operational Test and Evaluation .......................................4 2.3 Stable Software Baseline...or equivalent document • completed Multi- Service Operational Test and Evaluation (MOT&E) for the potential production software package (or OT&E if...not multi- service ) • stable software production baseline • complete and current software documentation • Authority to Operate (ATO) for an
Current use of carbonate rocks and lime for controlling emissions from coal-fired plants in Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dever, G.R. Jr.
1993-03-01
Seven coal-fired power plants in Kentucky currently are operating wet-scrubbing systems for flue-gas desulfurization. Atmospheric fluidized-bed combustion (AFBC) units are being used for SO[sub 2] emission control at a petroleum refinery, and a 160-MW utility-scale AFBC demonstration plant is being operated by the Tennessee Valley Authority. A lime-based spray-dryer reactor system has been installed on an industrial boiler, and a spray-dryer system is being tested at a utility pilot-plant facility. Four of the seven power plants operate limestone-based wet-scrubbing systems and require about 885,000 tons of stone per year. Stone is obtained from Mississippian limestones, principally the Ste. Genevieve Limestone,more » produced at four quarries in Kentucky, Indiana, and Illinois. Scrubber limestone specifications include CaCO[sub 3] content (minimum 88--90%), MgCO[sub 3] content (maximum 4--6%), and grindability (maximum Bond Work Index of 11--12). Three power plants operate lime-based scrubbers, requiring about 250,000 tons of lime per year. The scrubbers currently use (1) lime manufactured from an Ordovician dolomitic limestone, mined in north-central Kentucky, and (2) carbide lime, a chemical-industry byproduct. Fluidized-bed units at the petroleum refinery require about 100,000 tons of sorbent stone per year. The sorbent consists of about equal amounts of Silurian dolomite from Ohio and Ordovician dolomitic limestone from Kentucky. The utility-scale AFBC demonstration plant uses a limestone sorbent and currently requires about 200,000 tons of stone per year. Limestone is obtained from the Ste. Genevieve in western Kentucky.« less
Mars Surface Systems Common Capabilities and Challenges for Human Missions
NASA Technical Reports Server (NTRS)
Toups, Larry; Hoffman, Stephen J.; Watts, Kevin
2016-01-01
This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC.
Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services
NASA Astrophysics Data System (ADS)
Parkinson, Simon Christopher
Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.
NASA Astrophysics Data System (ADS)
Ueda, Keisuke; Matsuki, Yoh; Fujiwara, Toshimichi; Tatematsu, Yoshinori; Ogawa, Isamu; Idehara, Toshitaka
2016-09-01
A 394-GHz gyrotron, FU CW GII, has been designed at the University of Fukui, Japan, for dynamic nuclear polarization (DNP)-enhanced solid-state nuclear magnetic resonance (SSNMR) experiments at 600-MHz 1H resonant frequency. After installation at the Institute for Protein Research (IPR), Osaka University, Japan, a PID feedback control system was equipped to regulate the electron gun heater current for stabilization of the electron beam current, which ultimately achieved stabilization of output power when operating in continuous wave (CW) mode. During exploration to further optimize operating conditions, a continuous tuning bandwidth of approximately 1 GHz was observed by varying the operating voltage at a fixed magnetic field. In the frequency range required for positive DNP enhancement, the output power was improved by increasing the magnetic field and the operating voltage from their initial operational settings. In addition, fine tuning of output frequency by varying the cavity cooling water temperature was demonstrated. These operating conditions and ancillary enhancements are expected to contribute to further enhancement of SSNMR signal.
DOE LeRC photovoltaic systems test facility
NASA Technical Reports Server (NTRS)
Cull, R. C.; Forestieri, A. F.
1978-01-01
The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.
Material Analysis and System Design for Exploration Life Support Systems 2017
NASA Technical Reports Server (NTRS)
Knox, Jim; Cmarik, Gregory E.
2017-01-01
Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.
NASA Astrophysics Data System (ADS)
Michael, P. C.; Bromberg, L.; van der Laan, D. C.; Noyes, P.; Weijers, H. W.
2016-04-01
High temperature superconducting (HTS) conductor-on-round-core (CORC®) cables have been developed for use in power transmission systems and large high-field magnets. The use of high-current conductors for large-scale magnets reduces system inductance and limits the peak voltage needed for ramped field operation. A CORC® cable contains a large number of RE-Ba2Cu3O7-δ (RE = rare earth) (REBCO) coated conductors, helically wound in multiple layers on a thin, round former. Large-scale applications, such as fusion and accelerator magnets, require current ramp rates of several kilo-Amperes per second during pulsed operation. This paper presents results that demonstrate the electromagnetic stability of a CORC® cable during transient conditions. Measurements were performed at 4.2 K using a 1.55 m long CORC® cable in background fields of up to 19 T. Repeated current pulses in a background field of 19 T at current ramp rates of up to 67.8 kA s-1 to approximately 90% of the cable’s quench current at that field, did not show any sign of degradation in cable performance due to excessive ac loss or electromagnetic instability. The very high current ramp rates applied during these tests were used to compensate, to the extent possible, the limited cable length accommodated by the test facility, assuming that the measured results could be extrapolated to longer length cables operated at proportionally lower current ramp rates. No shift of the superconducting transition to lower current was measured when the current ramp rate was increased from 25 A s-1 to 67.8 kA s-1. These results demonstrate the viability of CORC® cables for use in low-inductance magnets that operate at moderate to high current ramp rates.
High beta plasma operation in a toroidal plasma producing device
Clarke, John F.
1978-01-01
A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.
Dual-lasing channel quantum cascade laser based on scattering-assisted injection design.
Wen, Boyu; Xu, Chao; Wang, Siyi; Wang, Kaixi; Tam, Man Chun; Wasilewski, Zbig; Ban, Dayan
2018-04-02
A dual lasing channel Terahertz Quantum Cascade laser (THz QCL) based on GaAs/Al 0.17 Ga 0.83 As material system is demonstrated. The device shows the lowest reported threshold current density (550A/cm 2 at 50K) of GaAs/Al x Ga 1-x As material system based scattering-assisted (SA) structures and operates up to a maximum lasing temperature of 144K. Dual lasing channel operation is investigated theoretically and experimentally. The combination of low frequency emission, dual lasing channel operation, low lasing threshold current density and high temperature performance make such devices ideal candidates for low frequency applications, and initiates the design strategy for achieving high-temperature performance terahertz quantum cascade laser with wide frequency coverage at low frequency.
The Thirty Meter Telescope Site Testing Robotic Computer System
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, M.; Skidmore, W.; Els, S.; Travouillon, T.
2008-03-01
The Thirty Meter Telescope (TMT) project is currently testing five remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote, they require a control system that can automatically manage the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This is a discussion of the TMT site testing robotic computer system as implemented.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
NASA Astrophysics Data System (ADS)
Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo
This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.; Duffy, J. W.
1982-01-01
Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.
Autonomous satellite command and control: A comparison with other military systems
NASA Technical Reports Server (NTRS)
Kruchten, Robert J.; Todd, Wayne
1988-01-01
Existing satellite concepts of operation depend on readily available experts and are extremely manpower intensive. Areas of expertise required include mission planning, mission data interpretation, telemetry monitoring, and anomaly resolution. The concepts of operation have envolved to their current state in part because space systems have tended to be treated more as research and development assets rather than as operational assets. These methods of satellite command and control will be inadequate in the future because of the availability, survivability, and capability of human experts. Because space systems have extremely high reliability and limited access, they offer challenges not found in other military systems. Thus, automation techniques used elsewhere are not necessarily applicable to space systems. A program to make satellites much more autonomous has been developed, using a variety of advanced software techniques. The problem the program is addressing, some possible solutions, the goals of the Rome Air Development Center (RADC) program, the rationale as to why the goals are reasonable, and the current program status are discussed. Also presented are some of the concepts used in the program and how they differ from more traditional approaches.
Solid cryogen: a cooling system for future MgB2 MRI magnet.
Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho
2017-03-02
An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN 2 ) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB 2 ) superconducting magnet. The rationally designed MgB 2 /SN 2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN 2 cooling system design, a wide temperature distribution on the SN 2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN 2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN 2 cooled MgB 2 superconducting coils for MRI applications.
Solid cryogen: a cooling system for future MgB2 MRI magnet
NASA Astrophysics Data System (ADS)
Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho
2017-03-01
An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications.
Verification System: First System-Wide Performance Test
NASA Astrophysics Data System (ADS)
Chernobay, I.; Zerbo, L.
2006-05-01
System-wide performance tests are essential for the development, testing and evaluation of individual components of the verification system. In addition to evaluating global readiness it helps establishing the practical and financial requirements for eventual operations. The first system-wide performance test (SPT1) was conducted in three phases: - A preparatory phase in May-June 2004 - A performance testing phase in April-June 2005 - An evaluation phase in the last half of 2005. The preparatory phase was developmental in nature. The main objectives for the performance testing phase included establishment of performance baseline under current provisional mode of operation (CTBT/PC- 19/1/Annex II, CTBT/WGB-21/1), examination of established requirements and procedures for operation and maintenance. To establish a system-wide performance baseline the system configuration was fixed for April-May 2005. The third month (June 2005) was used for implementation of 21 test case scenarios to examine either particular operational procedures or the response of the system components to the failures simulated under controlled conditions. A total of 163 stations and 5 certified radionuclide laboratories of International Monitoring System (IMS) participated in the performance testing phase - about 50% of the eventual IMS network. 156 IMS facilities and 40 National Data Centres (NDCs) were connected to the International Data Centre (IDC) via Global Communication Infrastructure (GCI) communication links. In addition, 12 legacy stations in the auxiliary seismic network sent data to the IDC over the Internet. During the performance testing phase, the IDC produced all required products, analysed more than 6100 seismic events and 1700 radionuclide spectra. Performance of all system elements was documented and analysed. IDC products were compared with results of data processing at the NDCs. On the basis of statistics and information collected during the SPT1 a system-wide performance baseline under current guidelines for provisional Operation and Maintenance was established. The test provided feedback for further development of the draft IMS and IDC Operational Manuals and identified priority areas for further system development.
Assessing water reservoir management and development in Northern Vietnam
NASA Astrophysics Data System (ADS)
Pianosi, F.; Quach, X.; Castelletti, A.; Soncini-Sessa, R.
2012-04-01
In many developing countries water is a key renewable resource to complement carbon-emitting energy production and support food security in the face of demand pressure from fast-growing industrial production and urbanization. To cope with undergoing changes, water resources development and management have to be reconsidered by enlarging their scope across sectors and adopting effective tools to analyze current and projected infrastructure potential and operation strategies. In this work we use multi-objective deterministic and stochastic optimization to assess the current reservoir operation and planned capacity expansion in the Red River Basin (Northern Vietnam), focusing on the major controllable infrastructure in the basin, the HoaBinh reservoir on the Da River. We first provide a general and mathematical description of the socio economic and physical system of the Red River Basin, including the three main objectives of hydropower production, flood control, and water supply, and using conceptual and data-driven modeling tools. Then, we analyze the historical operation of the HoaBinh reservoir and explore re-operation options corresponding to different tradeoffs among the three main objectives, using Multi-Objective Genetic Algorithm. Results show that there exist several operating policies that prove Pareto-dominant over the historical one, that is, they can improve all three management objectives simultaneously. However, while the improvement is rather significant with respect to hydropower production and water supply, it is much more limited in terms of flood control. To understand whether this is due to structural constraints (insufficient storing capacity) or to the imperfect information system (uncertainty in forecasting future flows and thus anticipate floods), we assessed the infrastructural system potential by application of Deterministic Dynamic Programming. Results show that the current operation can only be relatively improved by advanced optimization techniques, while investment should be put into enlarging the system storage capacity and exploiting additional information to inform the operation.
Stormwater quality management in rail transportation--past, present and future.
Vo, Phuong Tram; Ngo, Huu Hao; Guo, Wenshan; Zhou, John L; Listowski, Andrzej; Du, Bin; Wei, Qin; Bui, Xuan Thanh
2015-04-15
Railways currently play an important role in sustainable transportation systems, owing to their substantial carrying capacity, environmental friendliness and land-saving advantages. Although total pollutant emissions from railway systems are far less than that of automobile vehicles, the pollution from railway operations should not be underestimated. To date, both scientific and practical papers dealing with stormwater management for rail tracks have solely focused on its drainage function. Unlike roadway transport, the potential of stormwater pollution from railway operations is currently mishandled. There have been very few studies into the impact of its operations on water quality. Hence, upon the realisation on the significance of nonpoint source pollution, stormwater management priorities should have been re-evaluated. This paper provides an examination of past and current practices of stormwater management in the railway industry, potential sources of stormwater pollution, obstacles faced in stormwater management and concludes with strategies for future management directions. Copyright © 2015 Elsevier B.V. All rights reserved.
PointCom: semi-autonomous UGV control with intuitive interface
NASA Astrophysics Data System (ADS)
Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham
2008-04-01
Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).
Export growth, energy costs, and sustainable supply chains
DOT National Transportation Integrated Search
2010-11-01
The report examines sustainable supply chains in North America and the role played by rail intermodal : operations in lowering ten-mile fuel and emission costs. It examines whether current systems favor imports : over exports a current complaint ...
Method and system for reducing device performance degradation of organic devices
Teague, Lucile C.
2014-09-02
Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.
Effect of load transients on SOFC operation—current reversal on loss of load
NASA Astrophysics Data System (ADS)
Gemmen, Randall S.; Johnson, Christopher D.
The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.
System and method for damping vibration in a drill string using a magnetorheological damper
Wassell, Mark Ellsworth; Burgess, Daniel E.; Barbely, Jason R.; Thompson, Fred Lamar
2018-05-22
A system for damping vibration in a drill string can include a magnetorheological fluid valve assembly having a supply of a magnetorheological fluid. A remanent magnetic field is induced in the valve during operation that can be used to provide the magnetic field for operating the valve so as to eliminate the need to energize the coils except temporarily when changing the amount of damping required. The current to be supplied to the coil for inducing a desired magnetic field in the valve is determined based on the limiting hysteresis curve of the valve and the history of the magnetization of the value using a binary search methodology. The history of the magnetization of the valve is expressed as a series of sets of current and it resulting magnetization at which the current experienced a reversal compared to prior values of the current.
Evaluation of Digital Checklists for Command and Control Operations
2016-01-01
EVALUATION OF DIGITAL CHECKLISTS FOR COMMAND AND CONTROL OPERATIONS Christopher K. McClernon 1 , Victor S. Finomore 2 , Terence S. Andre 3...the potential effectiveness of a digital system that could take the place of the paper system that is currently being used. A between groups...assessments of each system were analyzed and compared. The data showed that a linear digital checklist takes a longer amount of time than both a paper
A comparative analysis of the dissemination of best practice measures for key populations.
Lundy, Jennifer; Santangelo, Jennifer; Rogers, Patrick; Kuehn, Lynn; Christensen, Sharon; Bournique, Judy; Mekhjian, Hagop; Kamal, Jyoti
2008-11-06
In collaboration with the department of Quality and Operations Improvement, Clinical Applications and the Information Warehouse, we have leveraged available Information Warehouse data to build a Best Practice Compliance Measurement Dashboard. This tool combines information from our operating room charting system, our order entry system and coding information from the patient billing and management system to provide 'previous day', data on a patients current course of treatment.
An Overview of ANN Application in the Power Industry
NASA Technical Reports Server (NTRS)
Niebur, D.
1995-01-01
The paper presents a survey on the development and experience with artificial neural net (ANN) applications for electric power systems, with emphasis on operational systems. The organization and constraints of electric utilities are reviewed, motivations for investigating ANN are identified, and a current assessment is given from the experience of 2400 projects using ANN for load forecasting, alarm processing, fault detection, component fault diagnosis, static and dynamic security analysis, system planning, and operation planning.
WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Gierman, S
Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modellingmore » (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise painstaking optimisation of the MRI fringe field. This work was supported by US (NIH) and Australian (NHMRC & Cancer Institute NSW) government research funding. In addition, I would like to thank cancer institute NSW and the Ingham Institute for scholarship support.« less
Drift chamber readout system of the DIRAC experiment
NASA Astrophysics Data System (ADS)
Afanasyev, L.; Karpukhin, V.
2002-10-01
A drift chamber readout system of the DIRAC experiment at CERN is presented. The system is intended to read out the signals from planar chambers operating in a high current mode. The sense wire signals are digitized in the 16-channel time-to-digital converter boards which are plugged in the signal plane connectors. This design results in a reduced number of modules, a small number of cables and high noise immunity. The system has been successfully operating in the experiment since 1999.
Refurbishment of durban fixed ukzn lidar for atmospheric studies - current status
NASA Astrophysics Data System (ADS)
Sivakumar, Venkataraman
2018-04-01
The fixed LIDAR system at University of KwaZulu-Natal (UKZN) in Durban was installed in 1999 and operated until 2004. In 2004, the system was relocated and operation closed due to various technical and instrument problems. The restructuring of the LIDAR system was initiated in 2013 and it is now used to measure vertical aerosol profiles in the height range 03-25 km. Here, we describe the present system in detail, including technical specifications and results obtained from a recent LIDAR calibration campaign.
NASA Technical Reports Server (NTRS)
Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.;
2007-01-01
This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.
Design and analysis of an automatic method of measuring silicon-controlled-rectifier holding current
NASA Technical Reports Server (NTRS)
Maslowski, E. A.
1971-01-01
The design of an automated SCR holding-current measurement system is described. The circuits used in the measurement system were designed to meet the major requirements of automatic data acquisition, reliability, and repeatability. Performance data are presented and compared with calibration data. The data verified the accuracy of the measurement system. Data taken over a 48-hr period showed that the measurement system operated satisfactorily and met all the design requirements.
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.
2004-01-01
Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer chemistry.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Cascaded resonant bridge converters
NASA Technical Reports Server (NTRS)
Stuart, Thomas A. (Inventor)
1989-01-01
A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.
Status quo and current trends of operating room management in Germany.
Baumgart, André; Schüpfer, Guido; Welker, Andreas; Bender, Hans-Joachim; Schleppers, Alexander
2010-04-01
Ongoing healthcare reforms in Germany have required strenuous efforts to adapt hospital and operating room organizations to the needs of patients, new technological developments, and social and economic demands. This review addresses the major developments in German operating room management research and current practice. The introduction of the diagnosis-related group system in 2003 has changed the incentive structure of German hospitals to redesign their operating room units. The role of operating room managers has been gradually changing in hospitals in response to the change in the reimbursement system. Operating room managers are today specifically qualified and increasingly externally hired staff. They are more and more empowered with authority to plan and control operating rooms as profit centers. For measuring performance, common perioperative performance indicators are still scarcely implemented in German hospitals. In 2008, a concerted time glossary was established to enable consistent monitoring of operating room performance with generally accepted process indicators. These key performance indicators are a consistent way to make a procedure or case - and also the effectiveness of the operating room management - more transparent. In the presence of increasing financial pressure, a hospital's executives need to empower an independent operating room management function to achieve the hospital's economic goals. Operating room managers need to adopt evidence-based methods also from other scientific fields, for example management science and information technology, to further sustain operating room performance.
NASA Astrophysics Data System (ADS)
Naito, Yuji; Shimizu, Iwao; Yamaguchi, Iwao; Kaiho, Katsuyuki; Yanabu, Satoru
Using high temperature superconductor, a Superconducting Fault Current Limiter (SFCL) was made and tested. Superconductor and vacuum interrupter as commutation switch are connected in parallel with bypass coil. When a fault occurs and the excessive current flows, superconductor is first quenched and the current is transferred to bypass coil because on voltage drop of superconductor. At the same time, since magnetic field is generated by current which flows in bypass coil, commutation switch is immediately driven by electromagnetic repulsion plate connected to driving rod of vacuum interrupter, and superconductor is separated from this circuit. Using the testing model, we could separate the superconductor from a circuit due to movement of vacuum interrupter within half-cycle current and transfer all current to bypass coil. Since operation of a commutation switch is included in current limiting operation of this testing model, it is one of helpful circuit of development of SFCL in the future. Moreover, since it can make the consumed energy of superconductor small during fault state due to realization of high-speed switch with simple composition, the burden of superconductor is reduced compared with conventional resistive type SFCL and it is considered that the flexibility of a SFCL design increases. Cooperation with a circuit breaker was also considered, the trial calculation of a parameter and energy of operation is conducted and discussion in the case of installing the SFCL to electric power system is made.
Direct current H- source for the medicine accelerator (invited)
NASA Astrophysics Data System (ADS)
Belchenko, Yu.; Savkin, V.
2004-05-01
A compact cw hydrogen negative ion source having reliable operation and a simplified maintenance is developed at Budker Institute of Nuclear Physics for a tandem accelerator of boron capture neutron therapy installation. The source uses a Penning discharge with a hydrogen and cesium feed through the hollows in the cathodes. Discharge voltage is about 60-80 V, current 9 A, hydrogen pressure 4-5 Pa, magnetic field 0.05-0.1 T, and cesium seed <1 mg/h. Negative ions are mainly produced on the cesiated anode surface due to conversion of hydrogen atoms. An optimal anode temperature is 250-350 °C. Negative ion beam current is directly proportional to the discharge current and to the emission hole area. A triode system for the beam extraction and acceleration system is used. The flux of accompanying extracted electrons was decreased by filtering in the transverse magnetic field. This electron flux was intercepted to the special electrode, biased at 4 kV potential with respect to the anode. Source stable cw operation for several hour runs was multiply tested. A H- ion beam with current up to 8 mA, beam energy 23 keV was produced regularly. Negative ion current of heavy impurities had a value of about 3% of the total beam current. Beam normalized emittance is about 0.3 π mm mrad and emission current density -0.1 A/cm2. A built-in cathode heater provides the operation quick start.
Allocating SMART Reliability and Maintainability Goals to NASA Ground Systems
NASA Technical Reports Server (NTRS)
Gillespie, Amanda; Monaghan, Mark
2013-01-01
This paper will describe the methodology used to allocate Reliability and Maintainability (R&M) goals to Ground Systems Development and Operations (GSDO) subsystems currently being designed or upgraded.
GOC-TX: A Reliable Ticket Synchronization Application for the Open Science Grid
NASA Astrophysics Data System (ADS)
Hayashi, Soichi; Gopu, Arvind; Quick, Robert
2011-12-01
One of the major operational issues faced by large multi-institutional collaborations is permitting its users and support staff to use their native ticket tracking environment while also exchanging these tickets with collaborators. After several failed attempts at email-parser based ticket exchanges, the OSG Operations Group has designed a comprehensive ticket synchronizing application. The GOC-TX application uses web-service interfaces offered by various commercial, open source and other homegrown ticketing systems, to synchronize tickets between two or more of these systems. GOC-TX operates independently from any ticketing system. It can be triggered by one ticketing system via email, active messaging, or a web-services call to check for current sync-status, pull applicable recent updates since prior synchronizations to the source ticket, and apply the updates to a destination ticket. The currently deployed production version of GOC-TX is able to synchronize tickets between the Numara Footprints ticketing system used by the OSG and the following systems: European Grid Initiative's system Global Grid User Support (GGUS) and the Request Tracker (RT) system used by Brookhaven. Additional interfaces to the BMC Remedy system used by Fermilab, and to other instances of RT used by other OSG partners, are expected to be completed in summer 2010. A fully configurable open source version is expected to be made available by early autumn 2010. This paper will cover the structure of the GOC-TX application, its evolution, and the problems encountered by OSG Operations group with ticket exchange within the OSG Collaboration.
NASA Astrophysics Data System (ADS)
Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie
The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
Operational Concept for the Smart Landing Facility (SLF)
NASA Technical Reports Server (NTRS)
Thompson, S. D.; Bussolari, S. R.
2001-01-01
The purpose of this document is to describe an operational concept for the Smart Landing Facility (SLF). The SLF is proposed as a component of the Small Aircraft Transportation System (SATS) and is envisioned to utilize Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) technologies to support higher-volume air traffic operations in a wider variety of weather conditions than are currently possible at airports without an Air Traffic Control Tower (ATCT) or Terminal Radar Approach Control (TRACON). In order to accomplish this, the SLF will provide aircraft sequencing and separation within its terminal airspace (the SLF traffic area) and on the airport surface. The approach taken in this report is to first define and describe the SLF environment and the type of operations and aircraft that must be supported. Services currently provided by an ATCT and TRACON are reviewed and assembled into a set of high-level operational functions. A description of the applicable CNS/ATM technologies that have been deployed in the NAS (National Airspace System) or have been demonstrated to be operationally feasible is presented. A candidate SLF system concept that employs the CNS/ATM technologies is described. This is followed by SLF operational scenarios for minimally-equipped aircraft and for aircraft fully-equipped to make full use of SLF services. An assessment is made of the SLF technology and key research issues are identified.
Role of automation in the ACRV operations
NASA Technical Reports Server (NTRS)
Sepahban, S. F.
1992-01-01
The Assured Crew Return Vehicle (ACRV) will provide the Space Station Freedom with contingency means of return to earth (1) of one disabled crew member during medical emergencies, (2) of all crew members in case of accidents or failures of SSF systems, and (3) in case of interruption of the Space Shuttle flights. A wide range of vehicle configurations and system approaches are currently under study. The Program requirements focus on minimizing life cycle costs by ensuring simple operations, built-in reliability and maintainability. The ACRV philosophy of embedded operations is based on maximum use of existing facilities, resources and processes, while minimizing the interfaces and impacts to the Space Shuttle and Freedom programs. A preliminary integrated operations concept based on this philosophy and covering the ground, flight, mission support, and landing and recovery operations has been produced. To implement the ACRV operations concept, the underlying approach has been to rely on vehicle autonomy and automation, to the extent possible. Candidate functions and processes which may benefit from current or near-term automation and robotics technologies are identified. These include, but are not limited to, built-in automated ground tests and checkouts; use of the Freedom and the Orbiter remote manipulator systems, for ACRV berthing; automated passive monitoring and performance trend analysis, and periodic active checkouts during dormant periods. The major ACRV operations concept issues as they relate to the use of automation are discussed.
High flexible Hydropower Generation concepts for future grids
NASA Astrophysics Data System (ADS)
Hell, Johann
2017-04-01
The ongoing changes in electric power generation are resulting in new requirements for the classical generating units. In consequence a paradigm change in operation of power systems is necessary and a new approach in finding solutions is needed. The presented paper is dealing with the new requirements on current and future energy systems with the focus on hydro power generation. A power generation landscape for some European regions is shown and generation and operational flexibility is explained. Based on the requirements from the Transmission System Operator in UK, the transient performance of a Pumped Storage installation is discussed.
Divertor Coil Design and Implementation on Pegasus
NASA Astrophysics Data System (ADS)
Shriwise, P. C.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Kujak-Ford, B. A.; Lewicki, B. T.; Winz, G. R.
2012-10-01
An upgraded divertor coil system is being commissioned on the Pegasus Toroidal Experiment in conjunction with power system upgrades in order to achieve higher β plasmas, reduce impurities, and possibly achieve H-mode operation. Design points for the divertor coil locations and estimates of their necessary current ratings were found using predictive equilibrium modeling based upon a 300 kA target plasma. This modeling represented existing Pegasus coil locations and current drive limits. The resultant design calls for 125 kA-turns from the divertor system to support the creation of a double null magnetic topology in plasmas with Ip<=300 kA. Initial experiments using this system will employ 900 V IGBT power supply modules to provide IDIV<=4 kA. The resulting 20 kA-turn capability of the existing divertor coil will be augmented by a new coil providing additional A-turns in series. Induced vessel wall current modeling indicates the time response of a 28 turn augmentation coil remains fast compared to the poloidal field penetration rate through the vessel. First results operating the augmented system are shown.
2014-06-01
19th floor of a Hotel to overlook the entire event. Page 12 of 17 Figure 6: The SPF Operations Centre overlooking the Event Lessons...have a cheap system to help them solve their immediate operational needs. b. Medium enterprises, that need to have quick customization of the...Optimize” tools to help them advance their current operations to a higher service satisfaction level seen by the public. 32. Common across all
Simple constant-current-regulated power supply
NASA Technical Reports Server (NTRS)
Priebe, D. H. E.; Sturman, J. C.
1977-01-01
Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.
Tuisawana, Viliame
2009-11-01
A good infection control manager understands the need to prevent a complete cycle of infection. The Infection Control Working Group Manual of Fiji, emphasised that the Cycle of Infection is the series of stage in which infection is spread. Operating theatres have infection control protocols. Most equipments and instruments used in operating theatre circulate within the theatre. The theatre trolleys are a main component in managing an operating theatre but the least recognised. This paper reviews the effectiveness and efficiency of the current two-trolley system as an infection control mechanism in theatre. The paper will discuss infection control using the current trolley system in relation to the layout of Labasa Hospital operating theatre, human resource, equipment standard and random swab results. The following are random swab results of theatre equipments taken by the Infection Control Nurse from 2006 to 2008. The Labasa Hospital Infection Committee have discouraged random swab sample from mid 2008 based on new guidelines on infection control. The two trolley system, in which an allocated outside trolley transports patients from the ward to a semi-sterile area in theatre. The inside trolley which transports the patient to the operating table. The two trolley system means more trolleys, extra staffs for lifting, additional handling of very sick patients, congestion and delay in taking patients to operating table in theatres should be considered. The one-trolley system in theatre greatly reduces the chances of manually lifting patients, thus reducing the risk of patient injury from fall and risk of back injuries to nurses. There are other evident based practices which can compliment the one trolley system for an effective infection control mechanism in theatres. The Fiji Infection Control Manual (2002) emphases the importance of regularly cleaning the environment and equipments in theatre but there is never a mention about using a two trolley system as an infection control mechanism for theatre.
Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy
NASA Astrophysics Data System (ADS)
Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki
It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
NASA Astrophysics Data System (ADS)
Piggott, Alfred J., III
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.
Lyons, Rhonda
2012-01-01
According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.
A new topology of fuel cell hybrid power source for efficient operation and high reliability
NASA Astrophysics Data System (ADS)
Bizon, Nicu
2011-03-01
This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.
1982-11-01
Avionic Systems Integration Facilities, Mark van den Broek 1113 and Paul M. Vicen, AFLC/LOE Planning of Operational Software Implementation Tool...classified as software tools, including: * o" Operating System " Language Processors (compilers, assem’blers, link editors) o Source Editors " Debug Systems ...o Data Base Systems o Utilities o Etc . This talk addresses itself to the current set of tools provided JOVIAL iJ73 1750A application programmners by
Initial performance of the COSINE-100 experiment
NASA Astrophysics Data System (ADS)
Adhikari, G.; Adhikari, P.; de Souza, E. Barbosa; Carlin, N.; Choi, S.; Choi, W. Q.; Djamal, M.; Ezeribe, A. C.; Ha, C.; Hahn, I. S.; Hubbard, A. J. F.; Jeon, E. J.; Jo, J. H.; Joo, H. W.; Kang, W. G.; Kang, W.; Kauer, M.; Kim, B. H.; Kim, H.; Kim, H. J.; Kim, K. W.; Kim, M. C.; Kim, N. Y.; Kim, S. K.; Kim, Y. D.; Kim, Y. H.; Kudryavtsev, V. A.; Lee, H. S.; Lee, J.; Lee, J. Y.; Lee, M. H.; Leonard, D. S.; Lim, K. E.; Lynch, W. A.; Maruyama, R. H.; Mouton, F.; Olsen, S. L.; Park, H. K.; Park, H. S.; Park, J. S.; Park, K. S.; Pettus, W.; Pierpoint, Z. P.; Prihtiadi, H.; Ra, S.; Rogers, F. R.; Rott, C.; Scarff, A.; Spooner, N. J. C.; Thompson, W. G.; Yang, L.; Yong, S. H.
2018-02-01
COSINE is a dark matter search experiment based on an array of low background NaI(Tl) crystals located at the Yangyang underground laboratory. The assembly of COSINE-100 was completed in the summer of 2016 and the detector is currently collecting physics quality data aimed at reproducing the DAMA/LIBRA experiment that reported an annual modulation signal. Stable operation has been achieved and will continue for at least 2 years. Here, we describe the design of COSINE-100, including the shielding arrangement, the configuration of the NaI(Tl) crystal detection elements, the veto systems, and the associated operational systems, and we show the current performance of the experiment.
Evaluating the Emergency Notification Systems of the NASA White Sands Test
NASA Technical Reports Server (NTRS)
Chavez, Alfred Paul
2004-01-01
The problem was that the NASA Fire and Emergency Services did not know if the current emergency notification systems on the NASA White Sands Test Facility were appropriate for alerting the employees of an emergency. The purpose of this Applied Research Project was to determine if the current emergency notification systems of the White Sands Test Facility are appropriate for alerting the employees of an emergency. This was a descriptive research project. The research questions were: 1) What are similar facilities using to alert the employees of an emergency?; 2) Are the current emergency notification systems suitable for the community hazards on the NASA White Sands Test Facility?; 3) What is the NASA Fire and Emergency Services currently using to measure the effectiveness of the emergency notification systems?; and 4) What are the current training methods used to train personnel to the emergency notification systems at the NASA White Sands Test Facility? The procedures involved were to research other established facilities, research published material from credible sources, survey the facility to determine the facility perception of the emergency notification systems, and evaluate the operating elements of the established emergency notification systems for the facility. The results were that the current systems are suitable for the type of hazards the facility may endure. The emergency notification systems are tested frequently to ensure effectiveness in the event of an emergency. Personnel are trained and participate in a yearly drill to make certain personnel are educated on the established systems. The recommendations based on the results were to operationally improve the existing systems by developing and implementing one system that can overall notify the facility of a hazard. Existing procedures and training should also be improved to ensure that all personnel are educated on what to do when the emergency notification systems are activated.
A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts
NASA Technical Reports Server (NTRS)
Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.
2002-01-01
This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.
Demonstration of Four Operating Capabilities to Enable a Small Aircraft Transportation System
NASA Technical Reports Server (NTRS)
Viken, Sally A.; Brooks, Frederick M.
2005-01-01
The Small Aircraft Transportation System (SATS) project has been a five-year effort fostering research and development that could lead to the transformation of our country s air transportation system. It has become evident that our commercial air transportation system is reaching its peak in terms of capacity, with numerous delays in the system and the demand keeps steadily increasing. The SATS vision is to increase mobility in our nation s transportation system by expanding access to more than 3400 small community airports that are currently under-utilized. The SATS project has focused its efforts on four key operating capabilities that have addressed new emerging technologies and procedures to pave the way for a new way of air travel. The four key operating capabilities are: Higher Volume Operations at Non-Towered/Non-Radar Airports, En Route Procedures and Systems for Integrated Fleet Operations, Lower Landing Minimums at Minimally Equipped Landing Facilities, and Increased Single Pilot Performance. These four capabilities are key to enabling low-cost, on-demand, point-to-point transportation of goods and passengers utilizing small aircraft operating from small airports. The focus of this paper is to discuss the technical and operational feasibility of the four operating capabilities and demonstrate how they can enable a small aircraft transportation system.
NASA Astrophysics Data System (ADS)
Harmanpreet, Singh, Sukhwinder; Kumar, Ashok; Kaur, Parneet
2010-11-01
Stability & security are main aspects in electrical power systems. Transformer protection is major issue of concern to system operation. There are many mall-trip cases of transformer protection are caused by inrush current problems. The phenomenon of transformer inrush current has been discussed in many papers since 1958. In this paper analytical analysis of inrush current in a transformer switched on dc and ac supply has been done. This analysis will help in design aspects of circuit breakers for better performance.
A Homeowner's Guide to Septic Systems.
ERIC Educational Resources Information Center
Sponenberg, Torsten D.; And Others
This booklet provides basic information on septic system use and maintenance. Written for current and prospective homeowners, it offers guidelines for proper operation of household septic systems. In addition, (1) components of individual systems are diagrammatically explained; (2) suggestions for maintenance are outlined; (3) problem areas and…
Continuing Professional Education Delivery Systems.
ERIC Educational Resources Information Center
Weeks, James P.
This investigation of delivery systems for continuing professional education provides an overview of current operational delivery systems in continuing professional education, drawing on experience as found in the literature. Learning theories and conclusions are woven into the descriptive text. Delivery systems profiled in the paper include the…
Transient analysis of an HTS DC power cable with an HVDC system
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations
NASA Technical Reports Server (NTRS)
Swanger, A. M.; Notardonato, W. U.; Johnson, W. L.; Tomsik, T. M.
2016-01-01
NASA has used liquefied hydrogen (LH2) on a large scale since the beginning of the space program as fuel for the Centaur and Apollo upper stages, and more recently to feed the three space shuttle main engines. The LH2 systems currently in place at the Kennedy Space Center (KSC) launch pads are aging and inefficient compared to the state-of-the-art. Therefore, the need exists to explore advanced technologies and operations that can drive commodity costs down, and provide increased capabilities. The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) was developed at KSC to pursue these goals by demonstrating active thermal control of the propellant state by direct removal of heat using a cryocooler. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The key technology challenge was efficiently integrating the cryogenic refrigerator into the LH2 storage tank. A Linde LR1620 Brayton cycle refrigerator is used to produce up to 900W cooling at 20K, circulating approximately 22 g/s gaseous helium through the hydrogen via approximately 300 m of heat exchanger tubing. The GODU-LH2 system is fully operational, and is currently under test. This paper will discuss the design features of the refrigerator and storage system, as well as the current test results.
Southcott, Mark; MacVittie, Kevin; Halámek, Jan; Halámková, Lenka; Jemison, William D; Lobel, Robert; Katz, Evgeny
2013-05-07
Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, Voc, of ca. 470 mV and a short circuitry current, Isc, of ca. 5 mA (a current density of 0.83 mA cm(-2)). The power generated by the implantable biofuel cell was used to activate a pacemaker connected to the cell via a charge pump and a DC-DC converter interface circuit to adjust the voltage produced by the biofuel cell to the value required by the pacemaker. The voltage-current dependencies were analyzed for the biofuel cell connected to an Ohmic load and to the electronic loads composed of the interface circuit, or the power converter, and the pacemaker to study their operation. The correct pacemaker operation was confirmed using a medical device - an implantable loop recorder. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions using a single biofuel cell. This first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
NASA Astrophysics Data System (ADS)
Hamilton, Marvin J.; Sutton, Stewart A.
A prototype integrated environment, the Advanced Satellite Workstation (ASW), which was developed and delivered for evaluation and operator feedback in an operational satellite control center, is described. The current ASW hardware consists of a Sun Workstation and Macintosh II Workstation connected via an ethernet Network Hardware and Software, Laser Disk System, Optical Storage System, and Telemetry Data File Interface. The central objective of ASW is to provide an intelligent decision support and training environment for operator/analysis of complex systems such as satellites. Compared to the many recent workstation implementations that incorporate graphical telemetry displays and expert systems, ASW provides a considerably broader look at intelligent, integrated environments for decision support, based on the premise that the central features of such an environment are intelligent data access and integrated toolsets.
47 CFR 15.221 - Operation in the band 525-1705 kHz.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...
47 CFR 15.221 - Operation in the band 525-1705 kHz.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...
47 CFR 15.221 - Operation in the band 525-1705 kHz.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...
47 CFR 15.221 - Operation in the band 525-1705 kHz.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...
47 CFR 15.221 - Operation in the band 525-1705 kHz.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...
Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2016-2017
NASA Technical Reports Server (NTRS)
Knox, Jim; Cmarik, Gregory E.
2017-01-01
Advanced Environmental Control and Life Support System (ECLSS) design is critical for manned space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and recycling of onboard atmosphere is required. Current systems utilize space vacuum to fully regenerate CO2 sorbent beds, but this is not sustainable. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods and by assessing new air revitalization systems.
Hybrid energy storage systems utilizing redox active organic compounds
Wang, Wei; Xu, Wu; Li, Liyu; Yang, Zhenguo
2015-09-08
Redox flow batteries (RFB) have attracted considerable interest due to their ability to store large amounts of power and energy. Non-aqueous energy storage systems that utilize at least some aspects of RFB systems are attractive because they can offer an expansion of the operating potential window, which can improve on the system energy and power densities. One example of such systems has a separator separating first and second electrodes. The first electrode includes a first current collector and volume containing a first active material. The second electrode includes a second current collector and volume containing a second active material. During operation, the first source provides a flow of first active material to the first volume. The first active material includes a redox active organic compound dissolved in a non-aqueous, liquid electrolyte and the second active material includes a redox active metal.
Space station operating system study
NASA Technical Reports Server (NTRS)
Horn, Albert E.; Harwell, Morris C.
1988-01-01
The current phase of the Space Station Operating System study is based on the analysis, evaluation, and comparison of the operating systems implemented on the computer systems and workstations in the software development laboratory. Primary emphasis has been placed on the DEC MicroVMS operating system as implemented on the MicroVax II computer, with comparative analysis of the SUN UNIX system on the SUN 3/260 workstation computer, and to a limited extent, the IBM PC/AT microcomputer running PC-DOS. Some benchmark development and testing was also done for the Motorola MC68010 (VM03 system) before the system was taken from the laboratory. These systems were studied with the objective of determining their capability to support Space Station software development requirements, specifically for multi-tasking and real-time applications. The methodology utilized consisted of development, execution, and analysis of benchmark programs and test software, and the experimentation and analysis of specific features of the system or compilers in the study.
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
WTG Energy Systems' Rotor: Steel at 80 Feet
NASA Technical Reports Server (NTRS)
Barrows, R. E.
1979-01-01
The design, specifications, and performance of the 80 foot diameter fixed pitch rotor operating on the MP1-200 wind turbine generator installed as part of the Island of Cuttyhunk's electric power utility grid system are described. This synchronous generating system rated 200 kilowatts at 28 mph wind velocity, and produces constant 60 Hz, 480 VAC current at +/- 1 percent accuracy throughout the machine's operating range. Future R & D requirements and suggestions are included with cost data.
Space Station fluid management logistics
NASA Technical Reports Server (NTRS)
Dominick, Sam M.
1990-01-01
Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.
NASA Technical Reports Server (NTRS)
Butler, C.; Kindle, E. C.
1984-01-01
The capabilities of the DIAL data acquisition system (DAS) for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms were extended through the purchase and integration of other hardware and the implementation of improved software. An operational manual for the current system is presented. Hardware and peripheral device registers are outlined only as an aid in debugging any DAS problems which may arise.
Precise time technology for selected Air Force systems: Present status and future requirements
NASA Technical Reports Server (NTRS)
Yannoni, N. F.
1981-01-01
Precise time and time interval (PTTI) technology is becoming increasingly significant to Air Force operations as digital techniques find expanded utility in military missions. Timing has a key role in the function as well as in navigation. A survey of the PTTI needs of several Air Force systems is presented. Current technology supporting these needs was reviewed and new requirements are emphasized for systems as they transfer from initial development to final operational deployment.
Mission Operations and Navigation Toolkit Environment
NASA Technical Reports Server (NTRS)
Sunseri, Richard F.; Wu, Hsi-Cheng; Hanna, Robert A.; Mossey, Michael P.; Duncan, Courtney B.; Evans, Scott E.; Evans, James R.; Drain, Theodore R.; Guevara, Michelle M.; Martin Mur, Tomas J.;
2009-01-01
MONTE (Mission Operations and Navigation Toolkit Environment) Release 7.3 is an extensible software system designed to support trajectory and navigation analysis/design for space missions. MONTE is intended to replace the current navigation and trajectory analysis software systems, which, at the time of this reporting, are used by JPL's Navigation and Mission Design section. The software provides an integrated, simplified, and flexible system that can be easily maintained to serve the needs of future missions in need of navigation services.
Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine
NASA Astrophysics Data System (ADS)
D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre
2013-06-01
SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.
NASA Astrophysics Data System (ADS)
Ardanuy, Philip; Bergen, Bill; Huang, Allen; Kratz, Gene; Puschell, Jeff; Schueler, Carl; Walker, Joe
2006-08-01
The US operates a diverse, evolving constellation of research and operational environmental satellites, principally in polar and geosynchronous orbits. Our current and enhanced future domestic remote sensing capability is complemented by the significant capabilities of our current and potential future international partners. In this analysis, we define "success" through the data customers' "eyes": participating in the sufficient and continuously improving satisfaction of their mission responsibilities. To successfully fuse together observations from multiple simultaneous platforms and sensors into a common, self-consistent, operational environment requires that there exist a unified calibration and validation approach. Here, we consider develop a concept for an integrating framework for absolute accuracy; long-term stability; self-consistency among sensors, platforms, techniques, and observing systems; and validation and characterization of performance. Across all systems, this is a non-trivial problem. Simultaneous Nadir Overpasses, or SNO's, provide a proven intercomparison technique: simultaneous, collocated, co-angular measurements. Many systems have off-nadir elements, or effects, that must be calibrated. For these systems, the nadir technique constrains the process. We define the term "SOON," for simultaneous overpass off nadir. We present a target architecture and sensitivity analysis for the affordable, sustainable implementation of a global SOON calibration/validation network that can deliver the much-needed comprehensive, common, self-consistent operational picture in near-real time, at an affordable cost.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
2011 Congressional Report on Defense Business Operations
2011-04-30
of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 30 APR 2011 2 . REPORT TYPE 3. DATES COVERED 00-00...amended CongressionalReport 1 DefenseBusinessOperations 2 CongressionalReport Chapter 2 : Process Improvements Chapter 2 highlights enterprise...systems are developed through the construct of the Department’s five core business areas: 1 . Human Resources Management (HRM) 2 . Weapons Systems
New Human-Computer Interface Concepts for Mission Operations
NASA Technical Reports Server (NTRS)
Fox, Jeffrey A.; Hoxie, Mary Sue; Gillen, Dave; Parkinson, Christopher; Breed, Julie; Nickens, Stephanie; Baitinger, Mick
2000-01-01
The current climate of budget cuts has forced the space mission operations community to reconsider how it does business. Gone are the days of building one-of-kind control centers with teams of controllers working in shifts 24 hours per day, 7 days per week. Increasingly, automation is used to significantly reduce staffing needs. In some cases, missions are moving towards lights-out operations where the ground system is run semi-autonomously. On-call operators are brought in only to resolve anomalies. Some operations concepts also call for smaller operations teams to manage an entire family of spacecraft. In the not too distant future, a skeleton crew of full-time general knowledge operators will oversee the operations of large constellations of small spacecraft, while geographically distributed specialists will be assigned to emergency response teams based on their expertise. As the operations paradigms change, so too must the tools to support the mission operations team's tasks. Tools need to be built not only to automate routine tasks, but also to communicate varying types of information to the part-time, generalist, or on-call operators and specialists more effectively. Thus, the proper design of a system's user-system interface (USI) becomes even more importance than before. Also, because the users will be accessing these systems from various locations (e.g., control center, home, on the road) via different devices with varying display capabilities (e.g., workstations, home PCs, PDAS, pagers) over connections with various bandwidths (e.g., dial-up 56k, wireless 9.6k), the same software must have different USIs to support the different types of users, their equipment, and their environments. In other words, the software must now adapt to the needs of the users! This paper will focus on the needs and the challenges of designing USIs for mission operations. After providing a general discussion of these challenges, the paper will focus on the current efforts of creatin(y an effective USI for one specific suite of tools, SERS (The Spacecraft Emergency Response System), which has been built to enable lights-out operations. SERS is a Web-based collaborative environment that enables secure distributed fault management.
Exploration Medical Capability System Engineering Overview
NASA Technical Reports Server (NTRS)
Mindock, J.; McGuire, K.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
Exploration Medical Cap Ability System Engineering Overview
NASA Technical Reports Server (NTRS)
McGuire, K.; Mindock, J.
2018-01-01
Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and developing tools to support trade studies.
2007-12-01
Pinhero and others, 1998). The Air Force is currently developing the Electric Chemical Oxygen Iodine Laser (ElectriCOIL) system to replace the liquid...chemistry generator currently used in the Air Borne Laser (ABL) system (Zimmerman and others, 2003). The ElectriCOIL system produces in a radio...convected downstream is critical to improving the performance of the ABL system . The use of a second non-self sustained discharge operating at a lower
Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines
NASA Technical Reports Server (NTRS)
Cikanek, H. A., III
1986-01-01
Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.
Materials challenges for nuclear systems
Allen, Todd; Busby, Jeremy; Meyer, Mitch; ...
2010-11-26
The safe and economical operation of any nuclear power system relies to a great extent, on the success of the fuel and the materials of construction. During the lifetime of a nuclear power system which currently can be as long as 60 years, the materials are subject to high temperature, a corrosive environment, and damage from high-energy particles released during fission. The fuel which provides the power for the reactor has a much shorter life but is subject to the same types of harsh environments. This article reviews the environments in which fuels and materials from current and proposed nuclearmore » systems operate and then describes how the creation of the Advanced Test Reactor National Scientific User Facility is allowing researchers from across the U.S. to test their ideas for improved fuels and materials.« less
Power consumption analysis of operating systems for wireless sensor networks.
Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J
2010-01-01
In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.
The Joint Distribution Process Analysis Center (JDPAC): Background and Current Capability
2007-06-12
Systems Integration and Data Management JDDE Analysis/Global Distribution Performance Assessment Futures/Transformation Analysis Balancing Operational Art ... Science JDPAC “101” USTRANSCOM Future Operations Center SDDC – TEA Army SES (Dual Hat) • Transportability Engineering • Other Title 10
Harmonics analysis of the ITER poloidal field converter based on a piecewise method
NASA Astrophysics Data System (ADS)
Xudong, WANG; Liuwei, XU; Peng, FU; Ji, LI; Yanan, WU
2017-12-01
Poloidal field (PF) converters provide controlled DC voltage and current to PF coils. The many harmonics generated by the PF converter flow into the power grid and seriously affect power systems and electric equipment. Due to the complexity of the system, the traditional integral operation in Fourier analysis is complicated and inaccurate. This paper presents a piecewise method to calculate the harmonics of the ITER PF converter. The relationship between the grid input current and the DC output current of the ITER PF converter is deduced. The grid current is decomposed into the sum of some simple functions. By calculating simple function harmonics based on the piecewise method, the harmonics of the PF converter under different operation modes are obtained. In order to examine the validity of the method, a simulation model is established based on Matlab/Simulink and a relevant experiment is implemented in the ITER PF integration test platform. Comparative results are given. The calculated results are found to be consistent with simulation and experiment. The piecewise method is proved correct and valid for calculating the system harmonics.
Computer-Aided Acquisition and Logistic Support Gateway Development
1989-09-01
The initial step integrates the current vendor interfaces (Paperless Order Processing System (POPS) and SAMXIMS Procurement by Electronic Data Exchange...Paperless Order Processing System POSIX = Portable Operating System for UNIX RFQ = Request for Quotation RS-232C = The Electronics Industries
The Thirty Meter Telescope site testing robotic computer system
NASA Astrophysics Data System (ADS)
Riddle, Reed L.; Schöck, Matthias; Skidmore, Warren
2006-06-01
The Thirty Meter Telescope (TMT) project is currently testing six remote sites as candidates for the final location of the telescope. Each site has several instruments, including seeing monitors, weather stations, and turbulence profile measuring systems, each of which is computer controlled. As the sites are remote (usually hours from the nearest town), they requires a system that can control the operations of all the varied subsystems, keep the systems safe from damage and recover from errors during operation. The robotic system must also be robust enough to operate without human intervention and when internet connections are lost. It is also critical that a data archiving system diligently records all data as gathered. This paper is a discussion of the TMT site testing robotic computer system as implemented.
Design Guidance for Computer-Based Procedures for Field Workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna; Le Blanc, Katya; Bly, Aaron
Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, themore » U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, and Naser, 2009; Le Blanc, Oxstrand, and Waicosky, 2012). This report provides design guidance to be used when designing the human-system interaction and the design of the graphical user interface for a CBP system. The guidance is based on human factors research related to the design and usability of CBPs conducted by Idaho National Laboratory, 2012 - 2016.« less
Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-01-01
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276
Deuterium results at the negative ion source test facility ELISE
NASA Astrophysics Data System (ADS)
Kraus, W.; Wünderlich, D.; Fantz, U.; Heinemann, B.; Bonomo, F.; Riedl, R.
2018-05-01
The ITER neutral beam system will be equipped with large radio frequency (RF) driven negative ion sources, with a cross section of 0.9 m × 1.9 m, which have to deliver extracted D- ion beams of 57 A at 1 MeV for 1 h. On the extraction from a large ion source experiment test facility, a source of half of this size is being operational since 2013. The goal of this experiment is to demonstrate a high operational reliability and to achieve the extracted current densities and beam properties required for ITER. Technical improvements of the source design and the RF system were necessary to provide reliable operation in steady state with an RF power of up to 300 kW. While in short pulses the required D- current density has almost been reached, the performance in long pulses is determined in particular in Deuterium by inhomogeneous and unstable currents of co-extracted electrons. By application of refined caesium evaporation and distribution procedures, and reduction and symmetrization of the electron currents, considerable progress has been made and up to 190 A/m2 D-, corresponding to 66% of the value required for ITER, have been extracted for 45 min.
Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.
Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy
2012-12-14
Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Chamberlain, jim; Bradford, Bob; Best, Susan; Nichols, Kelvin
2002-01-01
Due to limited crew availability to support science and the large number of experiments to be operated simultaneously, telescience is key to a successful International Space Station (ISS) science program. Crew, operations personnel at NASA centers, and researchers at universities and companies around the world must work closely together to per orm scientific experiments on-board ISS. The deployment of reliable high-speed Internet Protocol (IP)-based networks promises to greatly enhance telescience capabilities. These networks are now being used to cost-effectively extend the reach of remote mission support systems. They reduce the need for dedicated leased lines and travel while improving distributed workgroup collaboration capabilities. NASA has initiated use of Voice over Internet Protocol (VoIP) to supplement the existing mission voice communications system used by researchers at their remote sites. The Internet Voice Distribution System (IVoDS) connects remote researchers to mission support "loopsll or conferences via NASA networks and Internet 2. Researchers use NODS software on personal computers to talk with operations personnel at NASA centers. IVoDS also has the ;capability, if authorized, to allow researchers to communicate with the ISS crew during experiment operations. NODS was developed by Marshall Space Flight Center with contractors & Technology, First Virtual Communications, Lockheed-Martin, and VoIP Group. NODS is currently undergoing field-testing with full deployment for up to 50 simultaneous users expected in 2002. Research is being performed in parallel with IVoDS deployment for a next-generation system to qualitatively enhance communications among ISS operations personnel. In addition to the current voice capability, video and data/application-sharing capabilities are being investigated. IVoDS technology is also being considered for mission support systems for programs such as Space Launch Initiative and Homeland Defense.
Refinement of the Hybrid Neuroendovascular Operating Suite: Current and Future Applications.
Ashour, Ramsey; See, Alfred P; Dasenbrock, Hormuzdiyar H; Khandelwal, Priyank; Patel, Nirav J; Belcher, Bianca; Aziz-Sultan, Mohammad Ali
2016-07-01
In early-generation hybrid biplane endovascular operating rooms, switching from surgical to angiographic position is cumbersome. In this report, we highlight the unique design of a new hybrid neuroendovascular operating suite that allows surgical access to the head while keeping the biplane system over the lower body of the patient. Current and future hybrid neuroendovascular operating suite applications are discussed. We collaborated with engineers to implement the following modifications to the design of the angiographic system: translation of the bed toward the feet to allow biplane cerebral imaging in the head-side position and the biplane left-side position; translation of the base of the A-plane C-arm away from the feet to allow increased operator space at the head of the bed and to allow cerebral imaging in both the head-side and left-side positions; use of a specialized boom mount for the display panel to increase mobility; and use of a radiolucent tabletop with attachments for the headrest or radiolucent head clamp system. The modified hybrid neuroendovascular operating suite allows for seamless transition between surgical and angiographic positions within seconds, improving workflow efficiency and decreasing procedure time as compared with early-generation hybrid rooms. Combined endovascular and surgical applications are facilitated by co-locating their respective technologies and refining the ergonomics of the system to ease transition between both sets of technologies. In so doing, hybrid neuroendovascular operating suites can be anticipated to improve patient outcomes, generate novel treatment paradigms, and improve time and cost efficiency. Copyright © 2016. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.
This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less
Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls
NASA Astrophysics Data System (ADS)
Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra
2017-08-01
The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.
NASCAP modelling of high-voltage power system interactions with space charged-particle environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1979-01-01
A simple space power system operating in geosynchronous orbit was analyzed. This system consisted of two solar array wings and a central body. Each solar array wing was considered to be divided into three regions operating at 2000 volts. The center body was considered to be an electrical ground with the array voltages both positive and negative relative to ground. The system was analyzed for both a normal environment and a moderate geomagnetic substorm environment. Initial results indicate a high probability of arcing at the interconnects on the negative operating voltage wing. The dielectric strength of the substrate may be exceeded giving rise to breakdown in the bulk of the material. The geomagnetic substorm did not seem to increase the electrical gradients at the interconnects on the negative operating voltage wing but did increase the gradients on the positive operating voltage wing which could result in increased coupling current losses.
An operations and command systems for the extreme ultraviolet explorer
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Korsmeyer, David J.; Olson, Eric C.; Wong, Gary
1994-01-01
About 40% of the budget of a scientific spacecraft mission is usually consumed by Mission Operations & Data Analysis (MO&DA) with MO driving these costs. In the current practice, MO is separated from spacecraft design and comes in focus relatively late in the mission life cycle. As a result, spacecraft may be designed that are very difficult to operate. NASA centers have extensive MO expertise but often lessons learned in one mission are not exploited for other parallel or future missions. A significant reduction of MO costs is essential to ensure a continuing and growing access to space for the scientific community. We are addressing some of these issues with a highly automated payload operations and command system for an existing mission, the Extreme Ultraviolet Explorer (EUVE). EUVE is currently operated jointly by the Goddard Space Flight Center (GSFC), responsible for spacecraft operations, and the Center for Extreme Ultraviolet Astrophysics (CEA) of the University of California, Berkeley, which controls the telescopes and scientific instruments aboard the satellite. The new automated system is being developed by a team including personnel from the NASA Ames Research Center (ARC), the Jet Propulsion Laboratory (JPL) and the Center for EUV Astrophysics (CEA). An important goal of the project is to provide AI-based technology that can be easily operated by nonspecialists in AI. Another important goal is the reusability of the techniques for other missions. Models of the EUVE spacecraft need to be built both for planning/scheduling and for monitoring. In both cases, our modeling tools allow the assembly of a spacecraft model from separate sub-models of the various spacecraft subsystems. These sub-models are reusable; therefore, building mission operations systems for another small satellite mission will require choosing pre-existing modules, reparametrizing them with respect to the actual satellite telemetry information, and reassembling them in a new model. We briefly describe the EUVE mission and indicate why it is particularly suitable for the task. Then we briefly outline our current work in mission planning/scheduling and spacecraft and instrument health monitoring.
Exact joint density-current probability function for the asymmetric exclusion process.
Depken, Martin; Stinchcombe, Robin
2004-07-23
We study the asymmetric simple exclusion process with open boundaries and derive the exact form of the joint probability function for the occupation number and the current through the system. We further consider the thermodynamic limit, showing that the resulting distribution is non-Gaussian and that the density fluctuations have a discontinuity at the continuous phase transition, while the current fluctuations are continuous. The derivations are performed by using the standard operator algebraic approach and by the introduction of new operators satisfying a modified version of the original algebra. Copyright 2004 The American Physical Society
Solenoid-free plasma start-up in spherical tokamaks
NASA Astrophysics Data System (ADS)
Raman, R.; Shevchenko, V. F.
2014-10-01
The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.
Implementation and Initial Validation of a 100-Kilowatt Class Nested-Channel Hall Thruster
NASA Technical Reports Server (NTRS)
Hall, Scott J.; Florenz, Roland E.; Gallimore, Alec D.; Kamhawi, Hani; Brown, Daniel L.; Polk, James E.; Goebel, Dan; Hofer, Richard R.
2014-01-01
The X3 is a 100-kilowatt class nested-channel Hall thruster developed by the Plasmadynamics and Electric Propulsion Laboratory at the University of Michigan in collaboration with the Air Force Research Laboratory and NASA. The cathode, magnetic circuit, boron nitride channel rings, and anodes all required specific design considerations during thruster development, and thermal modeling was used to properly account for thermal growth in material selection and component design. A number of facility upgrades were required at the University of Michigan to facilitate operation of the X3. These upgrades included a re-worked propellant feed system, a completely redesigned power and telemetry break-out box, and numerous updates to thruster handling equipment. The X3 was tested on xenon propellant at two current densities, 37% and 73% of the nominal design value. It was operated to a maximum steady-state discharge power of 60.8 kilowatts. The tests presented here served as an initial validation of thruster operation. Thruster behavior was monitored with telemetry, photography and high-speed current probes. The photography showed a uniform plume throughout testing. At constant current density, reductions in mass flow rate of 18% and 26% were observed in the three-channel operating configuration as compared to the superposition of each channel running individually. The high-speed current probes showed that the thruster was stable at all operating points and that the channels influence each other when more than one is operating simultaneously. Additionally, the ratio of peak-to-peak AC-coupled discharge current oscillations to mean discharge current did not exceed 51% for any operating points reported here, and did not exceed 17% at the higher current density.
Information System for Educational Policy and Administration.
ERIC Educational Resources Information Center
Clayton, J. C., Jr.
Educational Information System (EIS) is a proposed computer-based data processing system to help schools solve current educational problems more efficiently. The system would allow for more effective administrative operations in student scheduling, financial accounting, and long range planning. It would also assist school trustees and others in…
HVAC SYSTEMS IN THE CURRENT STOCK OF US K-12 SCHOOLS
The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...
HVAC SYSTEMS IN THE CURRENT STOCK OF U.S. K-12 SCHOOLS
The report summarizes information on heating, ventilating, an air- conditioning (HVAC) systems commonly found in U. S. school buildings and the effect that operating these systems has on indoor radon levels. The report describes the ability of various HVAC systems to pressurize a...
Comparative analysis for various redox flow batteries chemistries using a cost performance model
NASA Astrophysics Data System (ADS)
Crawford, Alasdair; Viswanathan, Vilayanur; Stephenson, David; Wang, Wei; Thomsen, Edwin; Reed, David; Li, Bin; Balducci, Patrick; Kintner-Meyer, Michael; Sprenkle, Vincent
2015-10-01
The total energy storage system cost is determined by means of a robust performance-based cost model for multiple flow battery chemistries. Systems aspects such as shunt current losses, pumping losses and various flow patterns through electrodes are accounted for. The system cost minimizing objective function determines stack design by optimizing the state of charge operating range, along with current density and current-normalized flow. The model cost estimates are validated using 2-kW stack performance data for the same size electrodes and operating conditions. Using our validated tool, it has been demonstrated that an optimized all-vanadium system has an estimated system cost of < 350 kWh-1 for 4-h application. With an anticipated decrease in component costs facilitated by economies of scale from larger production volumes, coupled with performance improvements enabled by technology development, the system cost is expected to decrease to 160 kWh-1 for a 4-h application, and to 100 kWh-1 for a 10-h application. This tool has been shared with the redox flow battery community to enable cost estimation using their stack data and guide future direction.
Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System
NASA Astrophysics Data System (ADS)
Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.
2008-03-01
Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design
Sensor Buoy System for Monitoring Renewable Marine Energy Resources.
García, Emilio; Quiles, Eduardo; Correcher, Antonio; Morant, Francisco
2018-03-22
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions.
Sensor Buoy System for Monitoring Renewable Marine Energy Resources
García, Emilio; Morant, Francisco
2018-01-01
In this paper we present a multi-sensor floating system designed to monitor marine energy parameters, in order to sample wind, wave, and marine current energy resources. For this purpose, a set of dedicated sensors to measure the height and period of the waves, wind, and marine current intensity and direction have been selected and installed in the system. The floating device incorporates wind and marine current turbines for renewable energy self-consumption and to carry out complementary studies on the stability of such a system. The feasibility, safety, sensor communications, and buoy stability of the floating device have been successfully checked in real operating conditions. PMID:29565823
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: future prospect
NASA Astrophysics Data System (ADS)
Rogalski, A.
2017-10-01
InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cutoff wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in Shockley-Read lifetimes. It is predicted that since the future IR systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long Shockley-Read lifetime will be required. Since T2SLs are much resisted in attempts to improve its SR lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages.
Wireless data transmission for high energy physics applications
NASA Astrophysics Data System (ADS)
Dittmeier, Sebastian; Brenner, Richard; Dancila, Dragos; Dehos, Cedric; De Lurgio, Patrick; Djurcic, Zelimir; Drake, Gary; Gonzalez Gimenez, Jose Luis; Gustafsson, Leif; Kim, Do-Won; Locci, Elizabeth; Pfeiffer, Ullrich; Röhrich, Dieter; Rydberg, Anders; Schöning, André; Siligaris, Alexandre; Soltveit, Hans Kristian; Ullaland, Kjetil; Vincent, Pierre; Rodriguez Vazquez, Pedro; Wiedner, Dirk; Yang, Shiming
2017-08-01
Silicon tracking detectors operated at high luminosity collider experiments pose a challenge for current and future readout systems regarding bandwidth, radiation, space and power constraints. With the latest developments in wireless communications, wireless readout systems might be an attractive alternative to commonly used wired optical and copper based readout architectures. The WADAPT group (Wireless Allowing Data and Power Transmission) has been formed to study the feasibility of wireless data transmission for future tracking detectors. These proceedings cover current developments focused on communication in the 60 GHz band. This frequency band offers a high bandwidth, a small form factor and an already mature technology. Motivation for wireless data transmission for high energy physics application and the developments towards a demonstrator prototype are summarized. Feasibility studies concerning the construction and operation of a wireless transceiver system have been performed. Data transmission tests with a transceiver prototype operating at even higher frequencies in the 240 GHz band are described. Data transmission at rates up to 10 Gb/s have been obtained successfully using binary phase shift keying.
Evaluation of Candidate Materials for a High-Temperature Stirling Convertor Heater Head
NASA Technical Reports Server (NTRS)
Bowman, Randy; Ritzert, Frank; Freedman, Marc
2003-01-01
The Department of Energy (DOE) and NASA have identified Stirling Radioisotope Generators (SRG) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel base superalloy 718. This temperature is at the limit of Alloy 718's capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, an assessment of material candidates was performed assuming a range of heater head temperatures. The chosen alternative material candidates will be discussed, along with the development efforts needed to ensure that these materials can meet the demanding system requirements of long-duration operation in hostile environments.
Hsu, Guoo-Shyng Wang; Hsu, Shun-Yao
2018-04-01
Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmental friendly. A two-factor central composite design was adopted for studying the effects of electrode gap and electric current on chlorine generation efficiency of electrolyzed deep ocean water. Deep ocean water was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode in a constant-current operation mode. Results showed that current density, chlorine concentration, and electrolyte temperature increased with electric current, while electric efficiency decreased with electric current and electrode gap. An electrode gap of less than 11.7 mm, and a low electric current appeared to be a more energy efficient design and operation condition for the electrolysis system. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Plasma reactor waste management systems
NASA Technical Reports Server (NTRS)
Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.
1992-01-01
The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.
System and method for generating current by selective electron heating
Fisch, Nathaniel J.; Boozer, Allen H.
1984-01-01
A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.
NASA Astrophysics Data System (ADS)
Godoi Rezende Costa, C.; Castro, B. M.; Blumberg, A. F.; Leite, J. R. B., Sr.
2017-12-01
Santos City is subject to an average of 12 storm tide events per year. Such events bring coastal flooding able to threat human life and damage coastal infrastructure. Severe events have forced the interruption of ferry boat services and ship traffic through Santos Harbor, causing great impacts to Santos Port, the largest in South America, activities. Several studies have focused on the hydrodynamics of storm tide events but only a few of those studies have pursued an operational initiative to predict short term (< 3 days) sea level variability. The goals of this study are (i) to describe the design of an operational forecasting system built to predict sea surface elevation and currents in the Santos Estuarine System and (ii) to evaluate model performance in simulating observed sea surface elevation. The Santos Operational Forecasting System (SOFS) hydrodynamic module is based on the Stevens Institute Estuarine and Coastal Ocean Model (sECOM). The fully automated SOFS is designed to provide up to 71 h forecast of sea surface elevations and currents every day. The system automatically collects results from global models to run the SOFS nested into another sECOM based model for the South Brazil Bight (SBB). Global forecasting results used to force both models come from Mercator Ocean, released by Copernicus Marine Service, and from the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) stablished by the Center for Weather Forecasts and Climate Studies (with Portuguese acronym CPTEC). The complete routines task take about 8 hours of run time to finish. SOFS was able to hindcast a severe storm tide event that took place in Santos on August 21-22, 2016. Comparisons with observed sea level provided skills of 0.92 and maximum root mean square errors of 25 cm. The good agreement with observed data shows the potential of the designed system to predict storm tides and to support both human and assets protection.
Operational present status and reliability analysis of the upgraded EAST cryogenic system
NASA Astrophysics Data System (ADS)
Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.
2017-12-01
Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.
Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rovang, D. C.; Wilbur, P. J.
1984-01-01
An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.