Sample records for current phenomenological models

  1. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurlov, S. S.; Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028; Flores, Y. V.

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that dependsmore » only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.« less

  2. School Counselors' Roles in RAMP and PBIS: A Phenomenological Investigation (Part Two)

    ERIC Educational Resources Information Center

    Goodman-Scott, Emily; Grothaus, Tim

    2018-01-01

    Researchers conducted a qualitative, phenomenological investigation of the lived experiences of a sample of 10 school counselors in current or recent RAMP (Recognized ASCA [American School Counselor Association] Model Program) schools that also implemented positive behavioral interventions and supports (PBIS) with high fidelity. Researchers found…

  3. Alexander Meets Michotte: A Simulation Tool Based on Pattern Programming and Phenomenology

    ERIC Educational Resources Information Center

    Basawapatna, Ashok

    2016-01-01

    Simulation and modeling activities, a key point of computational thinking, are currently not being integrated into the science classroom. This paper describes a new visual programming tool entitled the Simulation Creation Toolkit. The Simulation Creation Toolkit is a high level pattern-based phenomenological approach to bringing rapid simulation…

  4. Phenomenological Modeling of Infrared Sources: Recent Advances

    NASA Technical Reports Server (NTRS)

    Leung, Chun Ming; Kwok, Sun (Editor)

    1993-01-01

    Infrared observations from planned space facilities (e.g., ISO (Infrared Space Observatory), SIRTF (Space Infrared Telescope Facility)) will yield a large and uniform sample of high-quality data from both photometric and spectroscopic measurements. To maximize the scientific returns of these space missions, complementary theoretical studies must be undertaken to interpret these observations. A crucial step in such studies is the construction of phenomenological models in which we parameterize the observed radiation characteristics in terms of the physical source properties. In the last decade, models with increasing degree of physical realism (in terms of grain properties, physical processes, and source geometry) have been constructed for infrared sources. Here we review current capabilities available in the phenomenological modeling of infrared sources and discuss briefly directions for future research in this area.

  5. The Classification of Hysteria and Related Disorders: Historical and Phenomenological Considerations

    PubMed Central

    North, Carol S.

    2015-01-01

    This article examines the history of the conceptualization of dissociative, conversion, and somatoform syndromes in relation to one another, chronicles efforts to classify these and other phenomenologically-related psychopathology in the American diagnostic system for mental disorders, and traces the subsequent divergence in opinions of dissenting sectors on classification of these disorders. This article then considers the extensive phenomenological overlap across these disorders in empirical research, and from this foundation presents a new model for the conceptualization of these disorders. The classification of disorders formerly known as hysteria and phenomenologically-related syndromes has long been contentious and unsettled. Examination of the long history of the conceptual difficulties, which remain inherent in existing classification schemes for these disorders, can help to address the continuing controversy. This review clarifies the need for a major conceptual revision of the current classification of these disorders. A new phenomenologically-based classification scheme for these disorders is proposed that is more compatible with the agnostic and atheoretical approach to diagnosis of mental disorders used by the current classification system. PMID:26561836

  6. A phenomenological model for orificed hollow cathodes. Ph.D. Thesis, 1 Dec. 1981 - 1 Dec. 1982; [electrostatic thruster

    NASA Technical Reports Server (NTRS)

    Siegfried, D. E.

    1982-01-01

    A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.

  7. Phenomenological aspects of the cognitive rumination construct.

    PubMed

    Meyer, Leonardo Fernandez; Taborda, José Geraldo Vernet; da Costa, Fábio Antônio; Soares, Ana Luiza Alfaya Galego; Mecler, Kátia; Valença, Alexandre Martins

    2015-01-01

    To evaluate the importance of phenomenological aspects of the cognitive rumination (CR) construct in current empirical psychiatric research. We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE), SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology. Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models. Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.

  8. High scale flavor alignment in two-Higgs doublet models and its phenomenology

    DOE PAGES

    Gori, Stefania; Haber, Howard E.; Santos, Edward

    2017-06-21

    The most general two-Higgs doublet model (2HDM) includes potentially large sources of flavor changing neutral currents (FCNCs) that must be suppressed in order to achieve a phenomenologically viable model. The flavor alignment ansatz postulates that all Yukawa coupling matrices are diagonal when expressed in the basis of mass-eigenstate fermion fields, in which case tree-level Higgs-mediated FCNCs are eliminated. In this work, we explore models with the flavor alignment condition imposed at a very high energy scale, which results in the generation of Higgs-mediated FCNCs via renormalization group running from the high energy scale to the electroweak scale. Using the currentmore » experimental bounds on flavor changing observables, constraints are derived on the aligned 2HDM parameter space. In the favored parameter region, we analyze the implications for Higgs boson phenomenology.« less

  9. Pathological Gambling: A Review of Phenomenological Models and Treatment Modalities for an Underrecognized Psychiatric Disorder

    PubMed Central

    Dannon, Pinhas N.; Lowengrub, Katherine; Gonopolski, Yehudit; Musin, Ernest; Kotler, Moshe

    2006-01-01

    Pathological gambling (PG) is a prevalent and highly disabling impulse-control disorder. Two dominant phenomenological models for PG have been presented in the literature. According to one model, PG is included as an obsessive-compulsive spectrum disorder, while according to the second model, PG represents a form of nonpharmacologic addiction. In this article, we present an expanded conceptualization of the phenomenology of PG. On the basis of our clinical research experience and a review of data in the field, we propose 3 subtypes of pathological gamblers: the “impulsive” subtype, the “obsessive-compulsive” subtype, and the “addictive” subtype. We also review the current pharmacologic and nonpharmacologic treatment strategies for PG. A further aim of this article is to encourage awareness of the importance of improved screening procedures for the early detection of PG. PMID:17245454

  10. Photochemical Phenomenology Model for the New Millennium

    NASA Technical Reports Server (NTRS)

    Bishop, James; Evans, J. Scott

    2001-01-01

    The "Photochemical Phenomenology Model for the New Millennium" project tackles the issue of reengineering and extension of validated physics-based modeling capabilities ("legacy" computer codes) to application-oriented software for use in science and science-support activities. While the design and architecture layouts are in terms of general particle distributions involved in scattering, impact, and reactive interactions, initial Photochemical Phenomenology Modeling Tool (PPMT) implementations are aimed at construction and evaluation of photochemical transport models with rapid execution for use in remote sensing data analysis activities in distributed systems. Current focus is on the Composite Infrared Spectrometer (CIRS) data acquired during the CASSINI flyby of Jupiter. Overall, the project has stayed on the development track outlined in the Year 1 annual report and most Year 2 goals have been met. The issues that have required the most attention are: implementation of the core photochemistry algorithms; implementation of a functional Java Graphical User Interface; completion of a functional CORBA Component Model framework; and assessment of performance issues. Specific accomplishments and the difficulties encountered are summarized in this report. Work to be carried out in the next year center on: completion of testing of the initial operational implementation; its application to analysis of the CASSINI/CIRS Jovian flyby data; extension of the PPMT to incorporate additional phenomenology algorithms; and delivery of a mature operational implementation.

  11. Phenomenological and neurocognitive perspectives on delusions: A critical overview.

    PubMed

    Sass, Louis; Byrom, Greg

    2015-06-01

    There is considerable overlap between phenomenological and neurocognitive perspectives on delusions. In this paper, we first review major phenomenological accounts of delusions, beginning with Jaspers' ideas regarding incomprehensibility, delusional mood, and disturbed "cogito" (basic, minimal, or core self-experience) in what he termed "delusion proper" in schizophrenia. Then we discuss later studies of decontextualization and delusional mood by Matussek, changes in self and world in delusion formation according to Conrad's notions of "apophany" and "anastrophe", and the implications of ontological transformations in the felt sense of reality in some delusions. Next we consider consistencies between: a) phenomenological models stressing minimal-self (ipseity) disturbance and hyperreflexivity in schizophrenia, and b) recent neurocognitive models of delusions emphasizing salience dysregulation and prediction error. We voice reservations about homogenizing tendencies in neurocognitive explanations of delusions (the "paranoia paradigm"), given experiential variations in states of delusion. In particular we consider shortcomings of assuming that delusions necessarily or always involve "mistaken beliefs" concerning objective facts about the world. Finally, we offer some suggestions regarding possible neurocognitive factors. Current models that stress hypersalience (banal stimuli experienced as strange) might benefit from considering the potential role of hyposalience in delusion formation. Hyposalience - associated with experiencing the strange as if it were banal, and perhaps with activation of the default mode network - may underlie a kind of delusional derealization and an "anything goes" attitude. Such an attitude would be conducive to delusion formation, yet differs significantly from the hypersalience emphasized in current neurocognitive theories. © 2015 World Psychiatric Association.

  12. Development of Large-Eddy Interaction Model for inhomogeneous turbulent flows

    NASA Technical Reports Server (NTRS)

    Hong, S. K.; Payne, F. R.

    1987-01-01

    The objective of this paper is to demonstrate the applicability of a currently proposed model, with minimum empiricism, for calculation of the Reynolds stresses and other turbulence structural quantities in a channel. The current Large-Eddy Interaction Model not only yields Reynolds stresses but also presents an opportunity to illuminate typical characteristic motions of large-scale turbulence and the phenomenological aspects of engineering models for two Reynolds numbers.

  13. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  14. From model conception to verification and validation, a global approach to multiphase Navier-Stoke models with an emphasis on volcanic explosive phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dartevelle, Sebastian

    2007-10-01

    Large-scale volcanic eruptions are hazardous events that cannot be described by detailed and accurate in situ measurement: hence, little to no real-time data exists to rigorously validate current computer models of these events. In addition, such phenomenology involves highly complex, nonlinear, and unsteady physical behaviors upon many spatial and time scales. As a result, volcanic explosive phenomenology is poorly understood in terms of its physics, and inadequately constrained in terms of initial, boundary, and inflow conditions. Nevertheless, code verification and validation become even more critical because more and more volcanologists use numerical data for assessment and mitigation of volcanic hazards.more » In this report, we evaluate the process of model and code development in the context of geophysical multiphase flows. We describe: (1) the conception of a theoretical, multiphase, Navier-Stokes model, (2) its implementation into a numerical code, (3) the verification of the code, and (4) the validation of such a model within the context of turbulent and underexpanded jet physics. Within the validation framework, we suggest focusing on the key physics that control the volcanic clouds—namely, momentum-driven supersonic jet and buoyancy-driven turbulent plume. For instance, we propose to compare numerical results against a set of simple and well-constrained analog experiments, which uniquely and unambiguously represent each of the key-phenomenology. Key« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon andmore » the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly.« less

  16. Phenomenological and neurocognitive perspectives on delusions: A critical overview

    PubMed Central

    Sass, Louis; Byrom, Greg

    2015-01-01

    There is considerable overlap between phenomenological and neurocognitive perspectives on delusions. In this paper, we first review major phenomenological accounts of delusions, beginning with Jaspers’ ideas regarding incomprehensibility, delusional mood, and disturbed “cogito” (basic, minimal, or core self-experience) in what he termed “delusion proper” in schizophrenia. Then we discuss later studies of decontextualization and delusional mood by Matussek, changes in self and world in delusion formation according to Conrad's notions of “apophany” and “anastrophe”, and the implications of ontological transformations in the felt sense of reality in some delusions. Next we consider consistencies between: a) phenomenological models stressing minimal-self (ipseity) disturbance and hyperreflexivity in schizophrenia, and b) recent neurocognitive models of delusions emphasizing salience dysregulation and prediction error. We voice reservations about homogenizing tendencies in neurocognitive explanations of delusions (the “paranoia paradigm”), given experiential variations in states of delusion. In particular we consider shortcomings of assuming that delusions necessarily or always involve “mistaken beliefs” concerning objective facts about the world. Finally, we offer some suggestions regarding possible neurocognitive factors. Current models that stress hypersalience (banal stimuli experienced as strange) might benefit from considering the potential role of hyposalience in delusion formation. Hyposalience – associated with experiencing the strange as if it were banal, and perhaps with activation of the default mode network – may underlie a kind of delusional derealization and an “anything goes” attitude. Such an attitude would be conducive to delusion formation, yet differs significantly from the hypersalience emphasized in current neurocognitive theories. PMID:26043327

  17. CP4 miracle: shaping Yukawa sector with CP symmetry of order four

    NASA Astrophysics Data System (ADS)

    Ferreira, P. M.; Ivanov, Igor P.; Jiménez, Enrique; Pasechnik, Roman; Serôdio, Hugo

    2018-01-01

    We explore the phenomenology of a unique three-Higgs-doublet model based on the single CP symmetry of order 4 (CP4) without any accidental symmetries. The CP4 symmetry is imposed on the scalar potential and Yukawa interactions, strongly shaping both sectors of the model and leading to a very characteristic phenomenology. The scalar sector is analyzed in detail, and in the Yukawa sector we list all possible CP4-symmetric structures which do not run into immediate conflict with experiment, namely, do not lead to massless or mass-degenerate quarks nor to insufficient mixing or CP -violation in the CKM matrix. We show that the parameter space of the model, although very constrained by CP4, is large enough to comply with the electroweak precision data and the LHC results for the 125 GeV Higgs boson phenomenology, as well as to perfectly reproduce all fermion masses, mixing, and CP violation. Despite the presence of flavor changing neutral currents mediated by heavy Higgs scalars, we find through a parameter space scan many points which accurately reproduce the kaon CP -violating parameter ɛ K as well as oscillation parameters in K and B ( s) mesons. Thus, CP4 offers a novel minimalistic framework for building models with very few assumptions, sufficient predictive power, and rich phenomenology yet to be explored.

  18. Modified Johnson-Cook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.

  19. Testing averaged cosmology with type Ia supernovae and BAO data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, B.; Alcaniz, J.S.; Coley, A.A.

    An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO datamore » is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.« less

  20. Phenomenological Nusselt-Rayleigh Scaling of Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia

    2017-12-01

    Natural convection between the hot floor and the cool ceiling, so called Rayleigh-Bénard convection, is pervasive and of both fundamental and industrial interests. One key issue is how heat transfer varies with increasing thermal potential, or equivalently how the Nusselt number (Nu) scales with the Rayleigh number (Ra). The overview of experimental findings remains to show the need of extra explanation complemental to the current theories. Here we present a model based on the phenomenological theory of turbulence, where the power-law spectral exponent of the energy spectrum is the only input parameter required. The goal aims to elucidate the unexplained aspect in the Nu-Ra scaling. We find that Kolmogorov turbulence in the current model leads to Nu ˜ Ra0.3, in good agreement with the modern experimental results. We hope that this model could stimulate the discussion as to the effects of the spectral phenomena on the Nu-Ra scaling, and thus augment our understanding of buoyancy-driven thermal convection.

  1. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  2. The Audience Performs: A Phenomenological Model for Criticism of Oral Interpretation Performance.

    ERIC Educational Resources Information Center

    Langellier, Kristin M.

    Richard Lanigan's phenomenology of human communication is applicable to the development of a model for critiquing oral interpretation performance. This phenomenological model takes conscious experience of the relationship of a person and the lived-world as its data base, and assumes a phenomenology of performance which creates text in the triadic…

  3. Sense of place and place identity: review of neuroscientific evidence.

    PubMed

    Lengen, Charis; Kistemann, Thomas

    2012-09-01

    The aim of this review is to bring the phenomenological sense of place approach together with current results from neuroscience. We searched in neuroscientific literature for ten dimensions which were beforehand identified to be important in a phenomenological sense of place/place identity model: behaviour, body, emotion, attention, perception, memory, orientation, spirituality, meaning/value and culture/sociality. Neuroscience has identified many neurobiological correlates of phenomenological observations concerning sense of place. The human brain comprises specific and specialised structures and processes to perceive, memorise, link, assess and use spatial information. Specific parts (hippocampus, entorhinal, parahippocampal and parietal cortex), subregions (parahippocampal place area, lingual landmark area), and cells (place cells, grid cells, border cells, head direction cells) have been identified, their specific function could be understood and their interaction traced. Neuroscience has provided evidence that place constitutes a distinct dimension in neuronal processing. This reinforces the phenomenological argumentation of human geography and environmental psychology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Josephson A/D Converter Development.

    DTIC Science & Technology

    1981-10-01

    by Zappe and A Landman [20]. They conclude that the simple model of the Josephson effect is applicable up to frequencies at least as high (a) as 300...GHz. B. Time-Domain Experiments 4ooF so The early high - frequency experiments with Josephson devices I .O suggested their use as very fast logic switches...exactly as for the phenomenological model . The tunneling pacitive current paths dominate the circuit at high frequencies . current is the sum of two

  5. Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models

    DOE PAGES

    Allanach, B. C.; Badziak, Marcin; Cottin, Giovanna; ...

    2016-09-01

    Here, we study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2 \\sigma excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potentialmore » of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb -1, whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We also show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study.« less

  6. Probabilistic risk assessment for a loss of coolant accident in McMaster Nuclear Reactor and application of reliability physics model for modeling human reliability

    NASA Astrophysics Data System (ADS)

    Ha, Taesung

    A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.

  7. On the Kubo-Greenwood model for electron conductivity

    NASA Astrophysics Data System (ADS)

    Dufty, James; Wrighton, Jeffrey; Luo, Kai; Trickey, S. B.

    2018-02-01

    Currently, the most common method to calculate transport properties for materials under extreme conditions is based on the phenomenological Kubo-Greenwood method. The results of an inquiry into the justification and context of that model are summarized here. Specifically, the basis for its connection to equilibrium DFT and the assumption of static ions are discussed briefly.

  8. Automated Systematic Generation and Exploration of Flat Direction Phenomenology in Free Fermionic Heterotic String Theory

    NASA Astrophysics Data System (ADS)

    Greenwald, Jared

    Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.

  9. Gauged lepton flavour

    DOE PAGES

    Alonso, Rodrigo; Fernandez Martinez, Enrique; Gavela, M. B.; ...

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; in addition, it requires a phenomenologically viable setup which leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplingsmore » are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavour Violation. In every case, the μ - τ flavour sector exhibits rich and promising phenomenological signals.« less

  10. Sour Fruits on the Trail: Renewing Phenomenological Practice

    PubMed Central

    De Monticelli, Roberta; Simionescu-Panait, Andrei

    2015-01-01

    This summer, Europe’s Journal of Psychology hosts a fruitful discussion about phenomenology, its method, the possibilities of application in today's context and its current troubled waters stemming from recent historical-ideological debates. Prof. Roberta De Monticelli offers lush and informative answers to provocative issues like overdriving the epoché, Heidegger's dark undertones, the relation between pedagogy and authorship in phenomenology and the idea of filtering politics through Husserlian phenomenology. PMID:27247664

  11. The phenomenological-existential comprehension of chronic pain: going beyond the standing healthcare models

    PubMed Central

    2014-01-01

    A distinguishing characteristic of the biomedical model is its compartmentalized view of man. This way of seeing human beings has its origin in Greek thought; it was stated by Descartes and to this day it still considers humans as beings composed of distinct entities combined into a certain form. Because of this observation, one began to believe that the focus of a health treatment could be exclusively on the affected area of the body, without the need to pay attention to patient’s subjectivity. By seeing pain as a merely sensory response, this model was not capable of encompassing chronic pain, since the latter is a complex process that can occur independently of tissue damage. As of the second half of the twentieth century, when it became impossible to deny the relationship between psyche and soma, the current understanding of chronic pain emerges: that of chronic pain as an individual experience, the result of a sum of physical, psychological, and social factors that, for this reason, cannot be approached separately from the individual who expresses pain. This understanding has allowed a significant improvement in perspective, emphasizing the characteristic of pain as an individual experience. However, the understanding of chronic pain as a sum of factors corresponds to the current way of seeing the process of falling ill, for its conception holds a Cartesian duality and the positivist premise of a single reality. For phenomenology, on the other hand, the individual in his/her unity is more than a simple sum of parts. Phenomenology sees a human being as an intending entity, in which body, mind, and the world are intertwined and constitute each other mutually, thus establishing the human being’s integral functioning. Therefore, a real understanding of the chronic pain process would only be possible from a phenomenological point of view at the experience lived by the individual who expresses and communicates pain. PMID:24410937

  12. Signals from flavor changing scalar currents at the future colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwood, D.; Reina, L.; Soni, A.

    1996-11-22

    We present a general phenomenological analysis of a class of Two Higgs Doublet Models with Flavor Changing Neutral Currents arising at the tree level. The existing constraints mainly affect the couplings of the first two generations of quarks, leaving the possibility for non negligible Flavor Changing couplings of the top quark open. The next generation of lepton and hadron colliders will offer the right environment to study the physics of the top quark and to unravel the presence of new physics beyond the Standard Model. In this context we discuss some interesting signals from Flavor Changing Scalar Neutral Currents.

  13. Redefining the Axion Window

    NASA Astrophysics Data System (ADS)

    Di Luzio, Luca; Mescia, Federico; Nardi, Enrico

    2017-01-01

    A major goal of axion searches is to reach inside the parameter space region of realistic axion models. Currently, the boundaries of this region depend on somewhat arbitrary criteria, and it would be desirable to specify them in terms of precise phenomenological requirements. We consider hadronic axion models and classify the representations RQ of the new heavy quarks Q . By requiring that (i) the Q 's are sufficiently short lived to avoid issues with long-lived strongly interacting relics, (ii) no Landau poles are induced below the Planck scale; 15 cases are selected which define a phenomenologically preferred axion window bounded by a maximum (minimum) value of the axion-photon coupling about 2 times (4 times) larger than is commonly assumed. Allowing for more than one RQ, larger couplings, as well as complete axion-photon decoupling, become possible.

  14. Health care provider experiences in primary care memory clinics: a phenomenological study.

    PubMed

    Sheiban, Linda; Stolee, Paul; McAiney, Carrie; Boscart, Veronique

    2018-05-19

    There is a growing need for community-based services for persons with Alzheimer's disease and related dementias (ADRD). Memory clinic (MC) teams in primary care settings have been established to provide care to people with ADRD. To consider wider adoption of these MC teams, insight is needed into the experiences of practitioners working in these models. The purpose of the current study is to explore the experiences of health care providers (HCPs) who work in primary care Memory Clinic (MC) teams to provide care to persons with Alzheimer's disease and related dementias (ADRD). This study utilized a phenomenological methodology to explore experiences of 12 HCPs in two primary care MCs. Semi-structured interviews were completed with each HCP. Interviews were recorded and transcribed verbatim. Colaizzi's steps for analyzing phenomenological data was utilized by the authors. Three themes emerged from the analysis to describe HCP experiences: supporting patients and family members during ADRD diagnosis and treatment, working in a team setting, and personal and professional rewards of caring for people with ADRD and their family members. Findings provide insight into current practices in primary care MCs and on the motivation of HCPs working with persons with ADRD.

  15. Challenges in the global QCD analysis of parton structure of nucleons

    NASA Astrophysics Data System (ADS)

    Tung, Wu-Ki

    2000-12-01

    We briefly summarize the current status of global QCD analysis of the parton structure of the nucleon and then highlight the open questions and challenges which confront this endeavor on which much of the phenomenology of the Standard Model and the search of New Physics depend.

  16. The effect of capturing the correct turbulence dissipation rate in BHR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, John Dennis; Ristorcelli, Raymond

    In this manuscript, we discuss the shortcoming of a quasi-equilibrium assumption made in the BHR closure model. Turbulence closure models generally assume fully developed turbulence, which is not applicable to 1) non-equilibrium turbulence (e.g. change in mean pressure gradient) or 2) laminar-turbulence transition flows. Based on DNS data, we show that the current BHR dissipation equation [modeled based on the fully developed turbulence phenomenology] does not capture important features of nonequilibrium flows. To demonstrate our thesis, we use the BHR equations to predict a non-equilibrium flow both with the BHR dissipation and the dissipation from DNS. We find that themore » prediction can be substantially improved, both qualitatively and quantitatively, with the correct dissipation rate. We conclude that a new set of nonequilibrium phenomenological assumptions must be used to develop a new model equation for the dissipation to accurately predict the turbulence time scale used by other models.« less

  17. A Phenomenological Study: A Phenomenological Exploration of the Lived Experience of Practicing Physical Education Teachers on the Integration of Technology in Physical Education

    ERIC Educational Resources Information Center

    Armijo, Erica Anne

    2016-01-01

    The purpose of this study is to explore the lived experiences of practicing physical education teachers on the integration of technology in a physical education. This study arose from my current experiences as a physical educator and the current inculcation of technology in education and more specifically physical education. As a current physical…

  18. Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach

    NASA Astrophysics Data System (ADS)

    Karami, Farzad; Tadesse, Yonas

    2017-12-01

    Twisted and coiled polymers (TCP) muscles are linear actuators that respond to change in temperature. Exploiting high negative coefficient of thermal expansion (CTE) and helical geometry give them a significant ability to change length in a limited temperature range. Several applications and experimental data of these materials have been demonstrated in the last few years. To use these actuators in robotics and control system applications, a mathematical model for predicting their behavior is essential. In this work, a practical and accurate phenomenological model for estimating the displacement of TCP muscles, as a function of the load as well as input electrical current, is proposed. The problem is broken down into two parts, i.e. modeling of the electro-thermal and then the thermo-elastic behavior of the muscles. For the first part, a differential equation, with changing electrical resistance term, is derived. Next, by using a temperature-dependent modulus of elasticity and CTE as well as taking the geometry of the muscles into account, an expression for displacement is derived. Experimental data for different loads and actuation current levels are used for verifying the model and investigating its accuracy. The result shows a good agreement between the simulation and experimental results for all loads.

  19. Students’ mental model in electric current

    NASA Astrophysics Data System (ADS)

    Pramesti, Y. S.; Setyowidodo, I.

    2018-05-01

    Electricity is one of essential topic in learning physics. This topic was studied in elementary until university level. Although electricity was related to our daily activities, but it doesn’t ensure that students have the correct concept. The aim of this research was to investigate and then categorized the students’ mental model. Subject consisted of 59 students of mechanical engineering that studied Physics for Engineering. This study was used a qualitative approach that used in this research is phenomenology. Data were analyzed qualitatively by using pre-test, post-test, and investigation for discovering further information. Three models were reported, showing a pattern which related to individual way of thinking about electric current. The mental model that was discovered in this research are: 1) electric current as a flow; 2) electric current as a source of energy, 3) electric current as a moving charge.

  20. Off-Road Mobility Research

    DTIC Science & Technology

    1967-09-01

    Lewandowski, Thomas R. Magorian, H. T. McAdams, James N. Naylor, Walter F. Wood -ii- VJ-2330-G-2 Section 6 Stephen C. Cowin, Vito De Palma, Patrick M. Miller...providing detailed inputs to a)). 2. The establishing of the general framework for the Phenomenological Model. 3. A prelim.na ry methodology study using the...of current practice in mathematical modeling of vehicle-terrain systems. 2) The establishing of the framework for a vehicle-terrain dynamics model as

  1. Axial current generation by P-odd domains in QCD matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iatrakis, Ioannis; Yin, Yi; Lin, Shu

    2015-06-23

    The dynamics of topological domains which break parity (P) and charge-parity (CP) symmetry of QCD are studied. We derive in a general setting that those local domains will generate an axial current and quantify the strength of the induced axial current. Thus, our findings are verified in a top-down holographic model. The relation between the real time dynamics of those local domains and the chiral magnetic field is also elucidated. We finally argue that such an induced axial current would be phenomenologically important in a heavy-ion collisions experiment.

  2. From Thought to Action: How the Interplay Between Neuroscience and Phenomenology Changed Our Understanding of Obsessive-Compulsive Disorder

    PubMed Central

    Barahona-Corrêa, J. Bernardo; Camacho, Marta; Castro-Rodrigues, Pedro; Costa, Rui; Oliveira-Maia, Albino J.

    2015-01-01

    The understanding of obsessive-compulsive disorder (OCD) has evolved with the knowledge of behavior, the brain, and their relationship. Modern views of OCD as a neuropsychiatric disorder originated from early lesion studies, with more recent models incorporating detailed neuropsychological findings, such as perseveration in set-shifting tasks, and findings of altered brain structure and function, namely of orbitofrontal corticostriatal circuits and their limbic connections. Interestingly, as neurobiological models of OCD evolved from cortical and cognitive to sub-cortical and behavioral, the focus of OCD phenomenology also moved from thought control and contents to new concepts rooted in animal models of action control. Most recently, the proposed analogy between habitual action control and compulsive behavior has led to the hypothesis that individuals suffering from OCD may be predisposed to rely excessively on habitual rather than on goal-directed behavioral strategies. Alternatively, compulsions have been proposed to result either from hyper-valuation of certain actions and/or their outcomes, or from excessive uncertainty in the monitoring of action performance, both leading to perseveration in prepotent actions such as washing or checking. In short, the last decades have witnessed a formidable renovation in the pathophysiology, phenomenology, and even semantics, of OCD. Nevertheless, such progress is challenged by several caveats, not least psychopathological oversimplification and overgeneralization of animal to human extrapolations. Here we present an historical overview of the understanding of OCD, highlighting converging studies and trends in neuroscience, psychiatry and neuropsychology, and how they influenced current perspectives on the nosology and phenomenology of this disorder. PMID:26635696

  3. Micromechanics based phenomenological damage modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muju, S.; Anderson, P.M.; Popelar, C.H.

    A model is developed for the study of process zone effects on dominant cracks. The model proposed here is intended to bridge the gap between the micromechanics based and the phenomenological models for the class of problems involving microcracking, transforming inclusions etc. It is based on representation of localized eigenstrains using dislocation dipoles. The eigenstrain (fitting strain) is represented as the strength (Burgers vector) of the dipole which obeys a certain phenomenological constitutive relation.

  4. The moral experience of the patient with chronic pain: bridging the gap between first and third person ethics.

    PubMed

    Edwards, Ian; Jones, Mark; Thacker, Michael; Swisher, Laura Lee

    2014-03-01

    There has been a widespread call for an ethics in the management of patients with chronic pain which is patient centered and takes into account the lived experience of the patient. It has been argued in literature that current "duty" or principlist-based models of ethics (so-called 3rd person ethics) have not adequately addressed the needs of either patients or practitioners in this area. Two strands of literature within phenomenology were reviewed: the literature of interpretative phenomenological analysis and the study of the lived experience of the person with chronic pain; and the contribution of phenomenology in neo-Aristotelian virtue ethics (1st person ethics). Patients experience chronic pain in existential and moral terms in addition to their biomedical issues, facing dilemmas in understanding their own self-identity and in attempting to recover a sense of moral worth and agency. We outline a patient-centered ethics to underpin contemporary collaborative, multimodal approaches in the management of chronic pain. We firstly describe an agency-oriented, neo-Aristotelian 1st person ethics and then outline a hermeneutic relationship with extant "duty-based," 3rd person bioethics. The utility of the ethics model we propose (the ethical reasoning bridge) lies in its capacity for developing a sense of moral agency for both practitioner and patient, resonating with the current emphasis of seeking active engagement of patients in management. Wiley Periodicals, Inc.

  5. Interpretive and Critical Phenomenological Crime Studies: A Model Design

    ERIC Educational Resources Information Center

    Miner-Romanoff, Karen

    2012-01-01

    The critical and interpretive phenomenological approach is underutilized in the study of crime. This commentary describes this approach, guided by the question, "Why are interpretive phenomenological methods appropriate for qualitative research in criminology?" Therefore, the purpose of this paper is to describe a model of the interpretive…

  6. Opinion Dynamics with Confirmation Bias

    PubMed Central

    Allahverdyan, Armen E.; Galstyan, Aram

    2014-01-01

    Background Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect–when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) –and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. Conclusions The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development. PMID:25007078

  7. High Stakes Testing in Lower-Performing High Schools: Mathematics Teachers' Perceptions of Burnout and Retention

    ERIC Educational Resources Information Center

    Kirtley, Karmen

    2012-01-01

    This dissertation grows from a concern that the current public school accountability model, designed ostensibly to increase achievement in lower-performing schools, may be creating unidentified negative consequences for teachers and students within those schools. This hermeneutical phenomenological study features the perceptions of seventeen…

  8. Factors Influencing Psychological Help Seeking in Adults: A Qualitative Study

    ERIC Educational Resources Information Center

    Topkaya, Nursel

    2015-01-01

    The aim of the current research is to identify which factors, and in what direction these factors influence adults' decisions to seek psychological help for their personal problems. The research was designed as a phenomenology model; the data was gathered through the semi-structured interview technique, which is mostly used in qualitative research…

  9. Neutrino Phenomenology: Highlights of Oscillation Results and Future Prospects

    NASA Astrophysics Data System (ADS)

    Goswami, Srubabati

    2016-04-01

    In this talk the current status of neutrino oscillation parameters are presented. The prospects of determination of neutrino mass hierarchy, octant of θ23 and the CP phase δCP in future long-baseline and atmospheric experiments are reviewed. The impact of precision measurement of oscillation parameters on neutrino mass models are also discussed.

  10. Phosphate Reactions as Mechanisms of High-Temperature Lubrication

    NASA Technical Reports Server (NTRS)

    Nagarajan, Anitha; Garrido, Carolina; Gatica, Jorge E.; Morales, Wilfredo

    2006-01-01

    One of the major problems preventing the operation of advanced gas turbine engines at higher temperatures is the inability of currently used liquid lubricants to survive at these higher temperatures under friction and wear conditions. Current state-of-the-art organic liquid lubricants rapidly degrade at temperatures above 300 C; hence some other form of lubrication is necessary. Vapor-phase lubrication is a promising new technology for high-temperature lubrication. This lubrication method employs a liquid phosphate ester that is vaporized and delivered to bearings or gears; the vapor reacts with the metal surfaces, generating a solid lubricious film that has proven very stable at high temperatures. In this study, solid lubricious films were grown on cast-iron foils in order to obtain reaction and diffusion rate data to help characterize the growth mechanism. A phenomenological mathematical model of the film deposition process was derived incorporating transport and kinetic parameters that were coupled to the experimental data. This phenomenological model can now be reliably used as a predictive and scale-up tool for future vapor-phase lubrication studies.

  11. Dark forces coupled to nonconserved currents

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Lasenby, Robert; Pospelov, Maxim

    2017-10-01

    New light vectors with dimension-4 couplings to Standard Model states have (energy/vectormass)2-enhanced production rates unless the current they couple to is conserved. These processes allow us to derive new constraints on the couplings of such vectors, that are significantly stronger than the previous literature for a wide variety of models. Examples include vectors with axial couplings to quarks and vectors coupled to currents (such as baryon number) that are only broken by the chiral anomaly. Our new limits arise from a range of processes, including rare Z decays and flavor-changing meson decays, and rule out a number of phenomenologically motivated proposals.

  12. Vector and Axial-Vector Current Correlators Within the Instanton Model of QCD Vacuum

    NASA Astrophysics Data System (ADS)

    Dorokhov, A. E.

    2005-08-01

    The pion electric polarizability, α {π ^ ± }E , the leading order hadronic contribution to the muon anomalous magnetic moment, aμ hvp(1) , and the ratio of the V - A and V + A correlators are found within the instanton model of QCD vacuum. The results are compared with phenomenological estimates of these quantities from the ALEPH and OPAL data on vector and axial-vector spectral densities.

  13. Controlling Decoherence in Superconducting Qubits: Phenomenological Model and Microscopic Origin of 1/f Noise

    DTIC Science & Technology

    2011-04-28

    quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux noise which...and quasiparticle poisoning which include a completely novel physical origin of these noises. We also proposed a model for excess low frequency flux...metallic nanomechanical resonators, Phys. Rev. B 81, 184112 (2010). 3) L. Faoro, A. Kitaev and L. B. Ioffe, Quasiparticle poisoning and Josephson current

  14. Style as a Symptom: A Phenomenological Perspective.

    ERIC Educational Resources Information Center

    Gregorc, Anthony F.

    1984-01-01

    Findings from early and current phenomenological studies indicate that stylistic characteristics are indicators of psychological forces that guide interactions with the world. Implications of how this theory relates to learning and teaching styles are discussed. (DF)

  15. A phenomenological model for simulating the chemo-responsive shape memory effect in polymers undergoing a permeation transition

    NASA Astrophysics Data System (ADS)

    Lu, Haibao; Huang, Wei Min; Leng, Jinsong

    2014-04-01

    We present a phenomenological model for studying the constitutive relations and working mechanism of the chemo-responsive shape memory effect (SME) in shape memory polymers (SMPs). On the basis of the solubility parameter equation, diffusion model and permeation transition model, a phenomenological model is derived for quantitatively identifying the influential factors in the chemically induced SME in SMPs. After this, a permeability parallel model and series model are implemented in order to couple the constitutive relations of the permeability coefficient, stress and relaxation time as a function of stretch, separately. The inductive effect of the permeability transition on the transition temperature is confirmed as the driving force for the chemo-responsive SME. Furthermore, the analytical result from the phenomenological model is compared with the available experimental results and the simulation of a semi-empirical model reported in the literature for verification.

  16. Limitation of Current Hardening Models in Predicting Anisotropy by Twinning in HCP Metals: Application to a Rod-Textured AM30 Magnesium Alloy

    DTIC Science & Technology

    2011-03-01

    model and a phenomenological Voce hard- ening model. The HCP material is exemplified by an extruded AM30 magnesium alloy with a 〈101̄0〉-fiber...effect accounted for by a sort of slip-twin latent hardening in the Voce type hardening model was not able to inflect the simulated curves with loading... Voce model is unable to cap- ture this effect, but the dislocation model [2] is. A pragmatic factor distinctly increasing the stored dis- locations in

  17. Nanopore Current Oscillations: Nonlinear Dynamics on the Nanoscale.

    PubMed

    Hyland, Brittany; Siwy, Zuzanna S; Martens, Craig C

    2015-05-21

    In this Letter, we describe theoretical modeling of an experimentally realized nanoscale system that exhibits the general universal behavior of a nonlinear dynamical system. In particular, we consider the description of voltage-induced current fluctuations through a single nanopore from the perspective of nonlinear dynamics. We briefly review the experimental system and its behavior observed and then present a simple phenomenological nonlinear model that reproduces the qualitative behavior of the experimental data. The model consists of a two-dimensional deterministic nonlinear bistable oscillator experiencing both dissipation and random noise. The multidimensionality of the model and the interplay between deterministic and stochastic forces are both required to obtain a qualitatively accurate description of the physical system.

  18. Information Technologies Pre-Service Teachers' Acceptance of Tablet PCs as an Innovative Learning Tool

    ERIC Educational Resources Information Center

    Cuhadar, Cem

    2014-01-01

    The current study is aimed to determine if Turkish IT pre-service teachers' acceptance of tablet PCs is within the framework of the Technology Acceptance Model. The research was patterned as a phenomenological study which is among the qualitative research methods. Participants were eight pre-service teachers studying in Trakya University, Faculty…

  19. Microscopic cascading of second-order molecular nonlinearity: New design principles for enhancing third-order nonlinearity.

    PubMed

    Baev, Alexander; Autschbach, Jochen; Boyd, Robert W; Prasad, Paras N

    2010-04-12

    Herein, we develop a phenomenological model for microscopic cascading and substantiate it with ab initio calculations. It is shown that the concept of local microscopic cascading of a second-order nonlinearity can lead to a third-order nonlinearity, without introducing any new loss mechanisms that could limit the usefulness of our approach. This approach provides a new molecular design protocol, in which the current great successes achieved in producing molecules with extremely large second-order nonlinearity can be used in a supra molecular organization in a preferred orientation to generate very large third-order response magnitudes. The results of density functional calculations for a well-known second-order molecule, (para)nitroaniline, show that a head-to-tail dimer configuration exhibits enhanced third-order nonlinearity, in agreement with the phenomenological model which suggests that such an arrangement will produce cascading due to local field effects.

  20. Statistical mechanics of simple models of protein folding and design.

    PubMed Central

    Pande, V S; Grosberg, A Y; Tanaka, T

    1997-01-01

    It is now believed that the primary equilibrium aspects of simple models of protein folding are understood theoretically. However, current theories often resort to rather heavy mathematics to overcome some technical difficulties inherent in the problem or start from a phenomenological model. To this end, we take a new approach in this pedagogical review of the statistical mechanics of protein folding. The benefit of our approach is a drastic mathematical simplification of the theory, without resort to any new approximations or phenomenological prescriptions. Indeed, the results we obtain agree precisely with previous calculations. Because of this simplification, we are able to present here a thorough and self contained treatment of the problem. Topics discussed include the statistical mechanics of the random energy model (REM), tests of the validity of REM as a model for heteropolymer freezing, freezing transition of random sequences, phase diagram of designed ("minimally frustrated") sequences, and the degree to which errors in the interactions employed in simulations of either folding and design can still lead to correct folding behavior. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:9414231

  1. Optimisation of a Generic Ionic Model of Cardiac Myocyte Electrical Activity

    PubMed Central

    Guo, Tianruo; Al Abed, Amr; Lovell, Nigel H.; Dokos, Socrates

    2013-01-01

    A generic cardiomyocyte ionic model, whose complexity lies between a simple phenomenological formulation and a biophysically detailed ionic membrane current description, is presented. The model provides a user-defined number of ionic currents, employing two-gate Hodgkin-Huxley type kinetics. Its generic nature allows accurate reconstruction of action potential waveforms recorded experimentally from a range of cardiac myocytes. Using a multiobjective optimisation approach, the generic ionic model was optimised to accurately reproduce multiple action potential waveforms recorded from central and peripheral sinoatrial nodes and right atrial and left atrial myocytes from rabbit cardiac tissue preparations, under different electrical stimulus protocols and pharmacological conditions. When fitted simultaneously to multiple datasets, the time course of several physiologically realistic ionic currents could be reconstructed. Model behaviours tend to be well identified when extra experimental information is incorporated into the optimisation. PMID:23710254

  2. A phenomenological study of photon production in low energy neutrino nucleon scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, James P; Goldman, Terry J

    2009-01-01

    Low energy photon production is an important background to many current and future precision neutrino experiments. We present a phenomenological study of t-channel radiative corrections to neutral current neutrino nucleus scattering. After introducing the relevant processes and phenomenological coupling constants, we will explore the derived energy and angular distributions as well as total cross-section predictions along with their estimated uncertainties. This is supplemented throughout with comments on possible experimental signatures and implications. We conclude with a general discussion of the analysis in the context of complimentary methodologies. This is based on a talk presented at the DPF 2009 meeting inmore » Detroit MI.« less

  3. Stop, look, listen: the need for philosophical phenomenological perspectives on auditory verbal hallucinations

    PubMed Central

    McCarthy-Jones, Simon; Krueger, Joel; Larøi, Frank; Broome, Matthew; Fernyhough, Charles

    2013-01-01

    One of the leading cognitive models of auditory verbal hallucinations (AVHs) proposes such experiences result from a disturbance in the process by which inner speech is attributed to the self. Research in this area has, however, proceeded in the absence of thorough cognitive and phenomenological investigations of the nature of inner speech, against which AVHs are implicitly or explicitly defined. In this paper we begin by introducing philosophical phenomenology and highlighting its relevance to AVHs, before briefly examining the evolving literature on the relation between inner experiences and AVHs. We then argue for the need for philosophical phenomenology (Phenomenology) and the traditional empirical methods of psychology for studying inner experience (phenomenology) to mutually inform each other to provide a richer and more nuanced picture of both inner experience and AVHs than either could on its own. A critical examination is undertaken of the leading model of AVHs derived from phenomenological philosophy, the ipseity disturbance model. From this we suggest issues that future work in this vein will need to consider, and examine how interdisciplinary methodologies may contribute to advances in our understanding of AVHs. Detailed suggestions are made for the direction and methodology of future work into AVHs, which we suggest should be undertaken in a context where phenomenology and physiology are both necessary, but neither sufficient. PMID:23576974

  4. The Pedagogical Influences of a Value-Added Model Evaluation System from the Perspectives of Elementary School Teachers in North Georgia: A Phenomenological Study

    ERIC Educational Resources Information Center

    Shugart, Kyle Keller

    2017-01-01

    The purpose of this phenomenological study was to describe the pedagogical influences of the value-added model of evaluation as experienced by elementary school teachers in a North Georgia suburban school district. A transcendental phenomenological design was used to provide a voice to (N = 12) elementary school teachers evaluated with a…

  5. Right-handed charged currents in the era of the Large Hadron Collider

    DOE PAGES

    Alioli, Simone; Cirigliano, Vincenzo; Dekens, Wouter Gerard; ...

    2017-05-16

    We discuss the phenomenology of right-handed charged currents in the frame-work of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the W to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. Here, we subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments,more » that would uniquely point to right-handed charged currents.« less

  6. Pragmatic phenomenological types.

    PubMed

    Goranson, Ted; Cardier, Beth; Devlin, Keith

    2015-12-01

    We approach a well-known problem: how to relate component physical processes in biological systems to governing imperatives in multiple system levels. The intent is to further practical tools that can be used in the clinical context. An example proposes a formal type system that would support this kind of reasoning, including in machines. Our example is based on a model of the connection between a quality of mind associated with creativity and neuropsychiatric dynamics: constructing narrative as a form of conscious introspection, which allows the manipulation of one's own driving imperatives. In this context, general creativity is indicated by an ability to manage multiple heterogeneous worldviews simultaneously in a developing narrative. 'Narrative' in this context is framed as the organizing concept behind rational linearization that can be applied to metaphysics as well as modeling perceptive dynamics. Introspection is framed as the phenomenological 'tip' that allows a perceiver to be within experience or outside it, reflecting on and modifying it. What distinguishes the approach is the rooting in well founded but disparate disciplines: phenomenology, ontic virtuality, two-sorted geometric logics, functional reactive programming, multi-level ontologies and narrative cognition. This paper advances the work by proposing a type strategy within a two-sorted reasoning system that supports cross-ontology structure. The paper describes influences on this approach, and presents an example that involves phenotype classes and monitored creativity enhanced by both soft methods and transcranial direct-current stimulation. The proposed solution integrates pragmatic phenomenology, situation theory, narratology and functional programming in one framework. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A phenomenological intra-laminar plasticity model for FRP composite materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yinhua; Hou, Chi; Wang, Wenzhi; Zhao, Meiying; Wan, Xiaopeng

    2015-07-01

    The nonlinearity of fibre-reinforced polymer (FRP) composites have significant effects on the analysis of composite structures. This article proposes a phenomenological intralaminar plasticity model to represent the nonlinearity of FRP composite materials. Based on the model presented by Ladeveze et al., the plastic potential and hardening functions are improved to give a more rational description of phenomenological nonlinearity behavior. A four-parameter hardening model is built to capture important features of the hardening curve and consequently gives the good matching of the experiments. Within the frame of plasticity theory, the detailed constitutive model, the numerical algorithm and the derivation of the tangent stiffness matrix are presented in this study to improve model robustness. This phenomenological model achieved excellent agreement between the experimental and simulation results in element scale respectively for glass fibre-reinforced polymer (GFRP) and carbon fibre-reinforced polymer (CFRP). Moreover, the model is capable of simulating the nonlinear phenomenon of laminates, and good agreement is achieved in nearly all cases.

  8. Signals of two universal extra dimensions at the LHC

    NASA Astrophysics Data System (ADS)

    Burdman, G.; Éboli, O. J. P.; Spehler, D.

    2016-11-01

    Extensions of the standard model with universal extra dimensions are interesting both as phenomenological templates as well as model-building fertile ground. For instance, they are one of the prototypes for theories exhibiting compressed spectra, leading to difficult searches at the LHC since the decay products of new states are soft and immersed in a large standard model background. Here we study the phenomenology at the LHC of theories with two universal extra dimensions. We obtain the current bound by using the production of second level excitations of electroweak gauge bosons decaying to a pair of leptons and study the reach of the LHC Run II in this channel. We also introduce a new channel originating in higher dimensional operators and resulting in the single production of a second level quark excitation. Its subsequent decay into a hard jet and lepton pair resonance would allow the identification of a more model-specific process, unlike the more generic vector resonance signal. We show that the sensitivity of this channel to the compactification scale is very similar to the one obtained using the vector resonance.

  9. A note on the discrete approach for generalized continuum models

    NASA Astrophysics Data System (ADS)

    Kalampakas, Antonios; Aifantis, Elias C.

    2014-12-01

    Generalized continuum theories for materials and processes have been introduced in order to account in a phenomenological manner for microstructural effects. Their drawback mainly rests in the determination of the extra phenomenological coefficients through experiments and simulations. It is shown here that a graphical representation of the local topology describing deformation models can be used to deduce restrictions on the phenomenological coefficients of the gradient elasticity continuum theories.

  10. A phenomenological calculus of Wiener description space.

    PubMed

    Richardson, I W; Louie, A H

    2007-10-01

    The phenomenological calculus is a categorical example of Robert Rosen's modeling relation. This paper is an alligation of the phenomenological calculus and generalized harmonic analysis, another categorical example. Our epistemological exploration continues into the realm of Wiener description space, in which constitutive parameters are extended from vectors to vector-valued functions of a real variable. Inherent in the phenomenology are fundamental representations of time and nearness to equilibrium.

  11. Evaluation of Mesoscale Model Phenomenological Verification Techniques

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred

    2006-01-01

    Forecasters at the Spaceflight Meteorology Group, 45th Weather Squadron, and National Weather Service in Melbourne, FL use mesoscale numerical weather prediction model output in creating their operational forecasts. These models aid in forecasting weather phenomena that could compromise the safety of launch, landing, and daily ground operations and must produce reasonable weather forecasts in order for their output to be useful in operations. Considering the importance of model forecasts to operations, their accuracy in forecasting critical weather phenomena must be verified to determine their usefulness. The currently-used traditional verification techniques involve an objective point-by-point comparison of model output and observations valid at the same time and location. The resulting statistics can unfairly penalize high-resolution models that make realistic forecasts of a certain phenomena, but are offset from the observations in small time and/or space increments. Manual subjective verification can provide a more valid representation of model performance, but is time-consuming and prone to personal biases. An objective technique that verifies specific meteorological phenomena, much in the way a human would in a subjective evaluation, would likely produce a more realistic assessment of model performance. Such techniques are being developed in the research community. The Applied Meteorology Unit (AMU) was tasked to conduct a literature search to identify phenomenological verification techniques being developed, determine if any are ready to use operationally, and outline the steps needed to implement any operationally-ready techniques into the Advanced Weather Information Processing System (AWIPS). The AMU conducted a search of all literature on the topic of phenomenological-based mesoscale model verification techniques and found 10 different techniques in various stages of development. Six of the techniques were developed to verify precipitation forecasts, one to verify sea breeze forecasts, and three were capable of verifying several phenomena. The AMU also determined the feasibility of transitioning each technique into operations and rated the operational capability of each technique on a subjective 1-10 scale: (1) 1 indicates that the technique is only in the initial stages of development, (2) 2-5 indicates that the technique is still undergoing modifications and is not ready for operations, (3) 6-8 indicates a higher probability of integrating the technique into AWIPS with code modifications, and (4) 9-10 indicates that the technique was created for AWIPS and is ready for implementation. Eight of the techniques were assigned a rating of 5 or below. The other two received ratings of 6 and 7, and none of the techniques a rating of 9-10. At the current time, there are no phenomenological model verification techniques ready for operational use. However, several of the techniques described in this report may become viable techniques in the future and should be monitored for updates in the literature. The desire to use a phenomenological verification technique is widespread in the modeling community, and it is likely that other techniques besides those described herein are being developed, but the work has not yet been published. Therefore, the AMIU recommends that the literature continue to be monitored for updates to the techniques described in this report and for new techniques being developed whose results have not yet been published. 111

  12. Epistemological Grounds for Cybernetic Models.

    ERIC Educational Resources Information Center

    Khawam, Yves J.

    1991-01-01

    Addresses philosophical grounds for artificial intelligence (AI) and cybernetic models by investigating three epistemological views--realism, a priorism, and phenomenology--to determine the problems in information transfer between a model and the real world. It is suggested that phenomenology demonstrates the most promise for opening up…

  13. Phenomenological Study: How Organizational Structures and Change Processes Influence Student Learning

    ERIC Educational Resources Information Center

    Johnson, Charlotte Clay

    2013-01-01

    Educational institutions create organizational structures for younger students with limited work experience. New generations of adult students require different organizational structures to improve success. The current phenomenological qualitative study addressed the lack of consensus of what types of organizational structures in higher education…

  14. Testing the validity of the phenomenological gravitational waveform models for nonspinning binary black hole searches at low masses

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-11-01

    The phenomenological gravitational waveform models, which we refer to as PhenomA, PhenomB, and PhenomC, generate full inspiral, merger, and ringdown (IMR) waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain, thus can be used for fast matched filtering in the gravitational wave search. PhenomA has been developed for nonspinning BBH waveforms, while PhenomB and PhenomC were designed to model the waveforms of BBH systems with nonprecessing (aligned) spins, but can also be used for nonspinning systems. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, {m}{1,2}≥slant 4{M}⊙ and {m}1+{m}2\\equiv M≤slant 30{M}⊙ , with Advanced LIGO. As our complete signal waveform model, we adopt EOBNRv2, which is a time-domain IMR waveform model. To investigate the search efficiency of the phenomenological template models, we calculate fitting factors (FFs) by exploring overlap surfaces. We find that only PhenomC is valid to obtain FFs better than 0.97 in the mass range of M\\lt 15{M}⊙ . Above 15{M}⊙ , PhenomA is most efficient in symmetric mass region, PhenomB is most efficient in highly asymmetric mass region, and PhenomC is most efficient in the intermediate region. Specifically, we propose an effective phenomenological template family that can be constructed by employing the phenomenological models in four subregions individually. We find that FFs of the effective templates are better than 0.97 in our entire mass region and mostly greater than 0.99.

  15. Modeling and Simulation of the Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Wohr, M.; Narayanan, S. R.; Halpert, G.

    1996-01-01

    From intro.: The direct methanol liquid feed fuel cell uses aqueous solutions of methanol as fuel and oxygen or air as the oxidant and uses an ionically conducting polymer membrane such as Nafion(sup r)117 and the electrolyte. This type of direct oxidation cell is fuel versatile and offers significant advantages in terms of simplicity of design and operation...The present study focuses on the results of a phenomenological model based on current understanding of the various processed operating in these cells.

  16. A Phenomenological Study of College Students Subjected to Cyberbullying

    ERIC Educational Resources Information Center

    McKennie, Stephanie Williams

    2017-01-01

    Currently cyberbullying is a behavior that is discussed worldwide. Within the discussion, there is a need to know about the lived experiences of college students subjected to cyberbullying. The purpose of this hermeneutic (interpretive) phenomenological study was to explore the lived experiences of ten college students subjected to bullying in…

  17. Professor Ninian Smart, Phenomenology and Religious Education

    ERIC Educational Resources Information Center

    O'Grady, Kevin

    2005-01-01

    I reply to L. Philip Barnes' assessment of the contributions of Ninian Smart and phenomenology to religious education. My argument is that Barnes first misconceives and then underestimates Smart's legacy. I sketch Smart's relevance to some current issues in religious education, suggesting that his thought helps us to avoid potentially damaging…

  18. Mediating Meaning for Individuals with Down Syndrome: A Phenomenological Case Study

    ERIC Educational Resources Information Center

    McCullough, Michelle J.

    2012-01-01

    The current phenomenological case study, based in part on Vygotsky's sociocultural theory, set out to examine the lived experiences of individuals sharing and mediating meaningful communication with individuals who have Down syndrome. To accomplish this, the researcher interviewed several categories of caregivers who regularly interact with…

  19. The Impact of Anglican Liturgy for African Distance Learners: A Phenomenological Study of Academic Persistence

    ERIC Educational Resources Information Center

    Parker, Abe

    2017-01-01

    This phenomenological study explored student value perceptions of religious participation among nontraditional South African distance learners who persisted in theological distance education. Nontraditional students were defined as age 25 or older. Thirteen current or prospective Anglican church leaders, whom identified themselves as Black South…

  20. Motivation for Academically Gifted Students in Germany and the United States: A Phenomenological Study

    ERIC Educational Resources Information Center

    Bourgeois, Steven James

    2012-01-01

    Recent trends toward globalization have engendered interest in comparative educational systems, pointing toward more fundamental change beyond the current focus upon accountability measures. This phenomenological study considered the effect of extrinsic motivators on the intrinsic motivation of academically gifted students in Germany and the…

  1. Mathematical and information-geometrical entropy for phenomenological Fourier and non-Fourier heat conduction

    NASA Astrophysics Data System (ADS)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-09-01

    The second law of thermodynamics governs the direction of heat transport, which provides the foundational definition of thermodynamic Clausius entropy. The definitions of entropy are further generalized for the phenomenological heat transport models in the frameworks of classical irreversible thermodynamics and extended irreversible thermodynamics (EIT). In this work, entropic functions from mathematics are combined with phenomenological heat conduction models and connected to several information-geometrical conceptions. The long-time behaviors of these mathematical entropies exhibit a wide diversity and physical pictures in phenomenological heat conductions, including the tendency to thermal equilibrium, and exponential decay of nonequilibrium and asymptotics, which build a bridge between the macroscopic and microscopic modelings. In contrast with the EIT entropies, the mathematical entropies expressed in terms of the internal energy function can avoid singularity paired with nonpositive local absolute temperature caused by non-Fourier heat conduction models.

  2. Quasielastic charged-current neutrino scattering in the scaling model with relativistic effective mass

    NASA Astrophysics Data System (ADS)

    Ruiz Simo, I.; Martinez-Consentino, V. L.; Amaro, J. E.; Ruiz Arriola, E.

    2018-06-01

    We use a recent scaling analysis of the quasielastic electron scattering data from C 12 to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selection of the (e ,e') cross section data, and an effective nucleon mass inspired by the relativistic mean-field model of nuclear matter. The corresponding superscaling analysis with relativistic effective mass (SuSAM*) describes a large amount of the electron data lying inside a phenomenological quasielastic band. The effective mass incorporates the enhancement of the transverse current produced by the relativistic mean field. The scaling function incorporates nuclear effects beyond the impulse approximation, in particular meson-exchange currents and short-range correlations producing tails in the scaling function. Besides its simplicity, this model describes the neutrino data as reasonably well as other more sophisticated nuclear models.

  3. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  4. Current-voltage characteristics of carbon nanostructured field emitters in different power supply modes

    NASA Astrophysics Data System (ADS)

    Popov, E. O.; Kolosko, A. G.; Filippov, S. V.; Romanov, P. A.; Terukov, E. I.; Shchegolkov, A. V.; Tkachev, A. G.

    2017-12-01

    We received and compared the current-voltage characteristics of large-area field emitters based on nanocomposites with graphene and nanotubes. The characteristics were measured in two high voltage scanning modes: the "slow" and the "fast". Correlation between two types of hysteresis observed in these regimes was determined. Conditions for transition from "reverse" hysteresis to the "direct" one were experimentally defined. Analysis of the eight-shaped hysteresis was provided with calculation of the effective emission parameters. The phenomenological model of adsorption-desorption processes in the field emission system was proposed.

  5. Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hee; Salazar, Erik; Mittal, Rajat

    2017-11-01

    Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.

  6. A phenomenological approach to modeling chemical dynamics in nonlinear and two-dimensional spectroscopy.

    PubMed

    Ramasesha, Krupa; De Marco, Luigi; Horning, Andrew D; Mandal, Aritra; Tokmakoff, Andrei

    2012-04-07

    We present an approach for calculating nonlinear spectroscopic observables, which overcomes the approximations inherent to current phenomenological models without requiring the computational cost of performing molecular dynamics simulations. The trajectory mapping method uses the semi-classical approximation to linear and nonlinear response functions, and calculates spectra from trajectories of the system's transition frequencies and transition dipole moments. It rests on identifying dynamical variables important to the problem, treating the dynamics of these variables stochastically, and then generating correlated trajectories of spectroscopic quantities by mapping from the dynamical variables. This approach allows one to describe non-Gaussian dynamics, correlated dynamics between variables of the system, and nonlinear relationships between spectroscopic variables of the system and the bath such as non-Condon effects. We illustrate the approach by applying it to three examples that are often not adequately treated by existing analytical models--the non-Condon effect in the nonlinear infrared spectra of water, non-Gaussian dynamics inherent to strongly hydrogen bonded systems, and chemical exchange processes in barrier crossing reactions. The methods described are generally applicable to nonlinear spectroscopy throughout the optical, infrared and terahertz regions.

  7. Analysis of electric current flow through the HTc multilayered superconductors

    NASA Astrophysics Data System (ADS)

    Sosnowski, J.

    2016-02-01

    Issue of the flow of the transport current through multilayered high-temperature superconductors is considered, depending on the direction of the electric current towards the surface of the superconducting CuO2 layers. For configuration of the current flow inside of the layers and for perpendicular magnetic field, it will be considered the current limitations connected with interaction of pancake type vortices with nano-sized defects, created among other during fast neutrons irradiation. So it makes this issue associated with work of nuclear energy devices, like tokamak ITER, LHC and actually developed accelerator Nuclotron-NICA, as well as cryocables. Phenomenological analysis of the pinning potential barrier formation will be in the paper given, which determines critical current flow inside the plane. Comparison of theoretical model with experimental data will be presented too as well as influence of fast neutrons irradiation dose on critical current calculated. For current direction perpendicular to superconducting planes the current-voltage characteristics are calculated basing on model assuming formation of long intrinsic Josephson's junctions in layered HTc superconductors.

  8. Climate change and Ixodes tick-borne diseases of humans

    PubMed Central

    Ostfeld, Richard S.; Brunner, Jesse L.

    2015-01-01

    The evidence that climate warming is changing the distribution of Ixodes ticks and the pathogens they transmit is reviewed and evaluated. The primary approaches are either phenomenological, which typically assume that climate alone limits current and future distributions, or mechanistic, asking which tick-demographic parameters are affected by specific abiotic conditions. Both approaches have promise but are severely limited when applied separately. For instance, phenomenological approaches (e.g. climate envelope models) often select abiotic variables arbitrarily and produce results that can be hard to interpret biologically. On the other hand, although laboratory studies demonstrate strict temperature and humidity thresholds for tick survival, these limits rarely apply to field situations. Similarly, no studies address the influence of abiotic conditions on more than a few life stages, transitions or demographic processes, preventing comprehensive assessments. Nevertheless, despite their divergent approaches, both mechanistic and phenomenological models suggest dramatic range expansions of Ixodes ticks and tick-borne disease as the climate warms. The predicted distributions, however, vary strongly with the models' assumptions, which are rarely tested against reasonable alternatives. These inconsistencies, limited data about key tick-demographic and climatic processes and only limited incorporation of non-climatic processes have weakened the application of this rich area of research to public health policy or actions. We urge further investigation of the influence of climate on vertebrate hosts and tick-borne pathogen dynamics. In addition, testing model assumptions and mechanisms in a range of natural contexts and comparing their relative importance as competing models in a rigorous statistical framework will significantly advance our understanding of how climate change will alter the distribution, dynamics and risk of tick-borne disease. PMID:25688022

  9. Classroom Teachers' Feelings and Experiences in Teaching Early Reading and Writing: A Phenomenological Study

    ERIC Educational Resources Information Center

    Bastug, Muhammet

    2016-01-01

    The current study aimed to reveal classroom teachers' feelings and experiences in teaching early reading and writing. Phenomenological research design was applied in the qualitative research methodology of the study. The participants of the study were 15 classroom teachers working in different cities. The data were collected through…

  10. A Phenomenological Case Study: Teacher Bias Effects on Early Education Assessments

    ERIC Educational Resources Information Center

    Reynolds, Rebecca Jeannine

    2012-01-01

    This qualitative phenomenological case study explored the lived experiences of a purposive sample of 20 current and past early education teachers who have experience in assessing children through observational assessment. The purpose of this study was to determine if bias affects the documentation of observational assessment and the implementation…

  11. A New Phenomenological Survey of Auditory Hallucinations: Evidence for Subtypes and Implications for Theory and Practice

    PubMed Central

    McCarthy-Jones, Simon

    2014-01-01

    A comprehensive understanding of the phenomenology of auditory hallucinations (AHs) is essential for developing accurate models of their causes. Yet, only 1 detailed study of the phenomenology of AHs with a sample size of N ≥ 100 has been published. The potential for overreliance on these findings, coupled with a lack of phenomenological research into many aspects of AHs relevant to contemporary neurocognitive models and the proposed (but largely untested) existence of AH subtypes, necessitates further research in this area. We undertook the most comprehensive phenomenological study of AHs to date in a psychiatric population (N = 199; 81% people diagnosed with schizophrenia), using a structured interview schedule. Previous phenomenological findings were only partially replicated. New findings included that 39% of participants reported that their voices seemed in some way to be replays of memories of previous conversations they had experienced; 45% reported that the general theme or content of what the voices said was always the same; and 55% said new voices had the same content/theme as previous voices. Cluster analysis, by variable, suggested the existence of 4 AH subtypes. We propose that there are likely to be different neurocognitive processes underpinning these experiences, necessitating revised AH models. PMID:23267192

  12. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology

    NASA Astrophysics Data System (ADS)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration

    2017-08-01

    The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  13. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology.

    PubMed

    Shanahan, Phiala E; Tiburzi, Brian C; Wagman, Michael L; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J

    2017-08-11

    The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.

  14. On the coverage of the pMSSM by simplified model results

    NASA Astrophysics Data System (ADS)

    Ambrogi, Federico; Kraml, Sabine; Kulkarni, Suchita; Laa, Ursula; Lessa, Andre; Waltenberger, Wolfgang

    2018-03-01

    We investigate to which extent the SUSY search results published by ATLAS and CMS in the context of simplified models actually cover the more realistic scenarios of a full model. Concretely, we work within the phenomenological MSSM (pMSSM) with 19 free parameters and compare the constraints obtained from SModelS v1.1.1 with those from the ATLAS pMSSM study in arXiv:1508.06608. We find that about 40-45% of the points excluded by ATLAS escape the currently available simplified model constraints. For these points we identify the most relevant topologies which are not tested by the current simplified model results. In particular, we find that topologies with asymmetric branches, including 3-jet signatures from gluino-squark associated production, could be important for improving the current constraining power of simplified models results. Furthermore, for a better coverage of light stops and sbottoms, constraints for decays via heavier neutralinos and charginos, which subsequently decay visibly to the lightest neutralino are also needed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calva-Tellez, E.; Zepeda, A.

    We discuss how weak neutral currents of popular gauge models manifest themselves in the process e/sup +/e/sup -/ ..-->.. ..pi../sup +/..pi../sup -/..pi../sup 0/ for an unpolarized initial state. We define three asymmetry parameters, A/sub c1/, A/sub c2/, and A/sub p/, which provide information about the presence of the neutral current. The former two give account of charge asymmetries in the ..pi../sup +/..pi../sup -/ final state, while A/sub p/ is nonzero when parity-violating effects occur. Using a phenomenological model for the hadronic vertices, we obtain that the maximum value of these parameters is approx. 3 to 4%, and that this valuemore » is reached at a beam energy approx. = 20 GeV. (AIP)« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, Valerio; Kolb, Edward W.; Matarrese, Sabino

    We analyze a toy Swiss-cheese cosmological model to study the averaging problem. In our Swiss-cheese model, the cheese is a spatially flat, matter only, Friedmann-Robertson-Walker solution (i.e., the Einstein-de Sitter model), and the holes are constructed from a Lemaitre-Tolman-Bondi solution of Einstein's equations. We study the propagation of photons in the Swiss-cheese model, and find a phenomenological homogeneous model to describe observables. Following a fitting procedure based on light-cone averages, we find that the expansion scalar is unaffected by the inhomogeneities (i.e., the phenomenological homogeneous model is the cheese model). This is because of the spherical symmetry of the model;more » it is unclear whether the expansion scalar will be affected by nonspherical voids. However, the light-cone average of the density as a function of redshift is affected by inhomogeneities. The effect arises because, as the universe evolves, a photon spends more and more time in the (large) voids than in the (thin) high-density structures. The phenomenological homogeneous model describing the light-cone average of the density is similar to the {lambda}CDM concordance model. It is interesting that, although the sole source in the Swiss-cheese model is matter, the phenomenological homogeneous model behaves as if it has a dark-energy component. Finally, we study how the equation of state of the phenomenological homogeneous model depends on the size of the inhomogeneities, and find that the equation-of-state parameters w{sub 0} and w{sub a} follow a power-law dependence with a scaling exponent equal to unity. That is, the equation of state depends linearly on the distance the photon travels through voids. We conclude that, within our toy model, the holes must have a present size of about 250 Mpc to be able to mimic the concordance model.« less

  17. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  18. Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua

    NASA Astrophysics Data System (ADS)

    Rizos, J.

    2014-06-01

    The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.

  19. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    NASA Astrophysics Data System (ADS)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  20. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons

    NASA Astrophysics Data System (ADS)

    Angelescu, Andrei; Arcadi, Giorgio

    2017-07-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  1. Dark matter phenomenology of SM and enlarged Higgs sectors extended with vector-like leptons.

    PubMed

    Angelescu, Andrei; Arcadi, Giorgio

    2017-01-01

    We will investigate the scenario in which the Standard Model (SM) Higgs sector and its two-doublet extension (called the Two Higgs Doublet Model or 2HDM) are the "portal" for the interactions between the Standard Model and a fermionic Dark Matter (DM) candidate. The latter is the lightest stable neutral particle of a family of vector-like leptons (VLLs). We will provide an extensive overview of this scenario combining the constraints coming purely from DM phenomenology with more general constraints like Electroweak Precision Test (EWPT) as well as with collider searches. In the case that the new fermionic sector interacts with the SM Higgs sector, constraints from DM phenomenology force the new states to lie above the TeV scale. This requirement is relaxed in the case of 2HDM. Nevertheless, strong constraints coming from EWPTs and the Renormalization Group Equations (RGEs) limit the impact of VLFs on collider phenomenology.

  2. A Phenomenological Exploration of Mandatory Parental or Guardian Involvement with an At-Risk Student Intervention Program

    ERIC Educational Resources Information Center

    Mason, Julia Christina

    2010-01-01

    The purpose of the qualitative phenomenological study was to explore the perception of parent or guardian involvement from a constructivist viewpoint during intervention programs located in Hampton 2 and Pickens counties. The current study involved 15 interviews via three sets of participants, six parents, five teachers and four administrators.…

  3. Graphic Novels in Advanced English/Language Arts Classrooms: A Phenomenological Case Study

    ERIC Educational Resources Information Center

    Gillenwater, Cary

    2012-01-01

    This dissertation is a phenomenological case study of two 12th grade English/language arts (ELA) classrooms where teachers used graphic novels with their advanced students. The primary purpose of this case study was to gain insight into the phenomenon of using graphic novels with these students--a research area that is currently limited.…

  4. Exploring the Impact of the Clinger-Cohen Act on Information Technology Governance: A Phenomenological Study

    ERIC Educational Resources Information Center

    Gillam, Mary M.

    2010-01-01

    Passage of the Clinger-Cohen Act (CCA) of 1996 was in direct response to Congressional inquiry into the perceived lack of proper management and oversight of information technology (IT) in the federal agencies. This current qualitative phenomenological study explored the lived experiences and perceptions of 20 IT professionals to determine if the…

  5. The Experiences of Multiple Deployments on Military Families: A Phenomenological Study

    ERIC Educational Resources Information Center

    Threatts, Shanida Ann

    2013-01-01

    The focus of the current qualitative phenomenological research study was to gain a deeper understanding of military families with young children from preschool to elementary school-age during deployments of a family member. The purpose of the study was to explore the lived experiences and perceptions of 20 military parents concerning multiple or…

  6. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, S.R.; Kamm, J.R.

    1993-11-01

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reachedmore » many of its goals. Individual papers submitted at the conference are indexed separately on the data base.« less

  7. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model

    NASA Astrophysics Data System (ADS)

    Jiang, Dongdong; Du, Jinmei; Gu, Yan; Feng, Yujun

    2012-05-01

    By assuming a relaxation process for depolarization associated with the ferroelectric (FE) to antiferroelectric (AFE) phase transition in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression, we build a new model for the depoling current, which is different from both the traditional constant current source (CCS) model and the phase transition kinetics (PTK) model. The characteristic relaxation time and new-equilibrated polarization are dependent on both the shock pressure and electric field. After incorporating a Maxwell s equation, the relaxation model developed applies to all the depoling currents under short-circuit condition and high-impedance condition. Influences of shock pressure, load resistance, dielectric property, and electrical conductivity on the depoling current are also discussed. The relaxation model gives a good description about the suppressing effect of the self-generated electric field on the FE-to-AFE phase transition at low shock pressures, which cannot be described by the traditional models. After incorporating a time- and electric-field-dependent repolarization, this model predicts that the high-impedance current eventually becomes higher than the short-circuit current, which is consistent with the experimental results in the literature. Finally, we make the comparison between our relaxation model and the traditional CCS model and PTK model.

  8. Probing light nonthermal dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2014-05-01

    This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz Cruz, J. Lorenzo

    This paper intends to review the subject of Higgs Physics. I start from the early stages, including its phenomenology and the current expectations for the possible Higgs discovery at the coming LHC. Then, I discuss the proposals for new physics that attempt to solve the hierarchy problem, where the Higgs boson can be either a fundamental or composite field. Finally, I also comment on the hardest questions, namely on the possible connection between the Higgs mechanism, the Standard Model parameters and gravity.

  10. Reconnecting: A Phenomenological Study of Transition within a Shared Model of Academic Advising

    ERIC Educational Resources Information Center

    Barker, Shane; Mamiseishvili, Ketevan

    2014-01-01

    This study explored students' experiences of transition from centralized, professional advising to decentralized, faculty-based advising within a shared advising model at a public research university. Data were collected via focus groups and interviews from 17 participants and examined using phenomenological analysis. Four fundamental themes were…

  11. A Phenomenological Study of Undergraduate Instructors Using the Inverted or Flipped Classroom Model

    ERIC Educational Resources Information Center

    Brown, Anna F.

    2012-01-01

    The changing educational needs of undergraduate students have not been addressed with a corresponding development of instructional methods in higher education classrooms. This study used a phenomenological approach to investigate a classroom-based instructional model called the "inverted" or "flipped" classroom. The flipped…

  12. Ballistically Initiated Fire Ball Generation Using M&S: Innovation Grant (Briefing Charts)

    DTIC Science & Technology

    2012-01-26

    isotropic in nature Phenomenological models for explosives initiation. – HVRB, forest fire etc. Equation of state – Ideal gas, Mie-Gruneisen, JWL ...perfectly plastic description • EOS • Mie Gruneisen • JWL for explosive • Phenomenological Model for EFP • High Explosive input for programmed burn

  13. Analytical investigation of the faster-is-slower effect with a simplified phenomenological model

    NASA Astrophysics Data System (ADS)

    Suzuno, K.; Tomoeda, A.; Ueyama, D.

    2013-11-01

    We investigate the mechanism of the phenomenon called the “faster-is-slower”effect in pedestrian flow studies analytically with a simplified phenomenological model. It is well known that the flow rate is maximized at a certain strength of the driving force in simulations using the social force model when we consider the discharge of self-driven particles through a bottleneck. In this study, we propose a phenomenological and analytical model based on a mechanics-based modeling to reveal the mechanism of the phenomenon. We show that our reduced system, with only a few degrees of freedom, still has similar properties to the original many-particle system and that the effect comes from the competition between the driving force and the nonlinear friction from the model. Moreover, we predict the parameter dependences on the effect from our model qualitatively, and they are confirmed numerically by using the social force model.

  14. Interpreting Experiences of Students Using Online Technologies to Interact with Content in Blended Tertiary Environments: A Phenomenological Study

    ERIC Educational Resources Information Center

    Tuapawa, Kimberley

    2017-01-01

    Through a phenomenological approach, this research aimed to make an interpretation of key stakeholders' [educational online technology] EOT experiences, to establish their current EOT needs and challenges, and provide a basis from which to recommend methods for effective EOT support. It analysed a range of students' and teachers' EOT experiences,…

  15. Identifying the Criteria for Planning the Selection and Succession of a CIO: A Phenomenological Study

    ERIC Educational Resources Information Center

    Williamson, Charles E.

    2010-01-01

    Many challenges face CIOs in their management of IT systems; yet, very little research is available regarding the issues and constraints associated with their role. CIO leadership is still a subject of inquiry for those with aspirations to pursue such a position. The specific problem of the current qualitative phenomenological study concerned the…

  16. A Phenomenological Study of the Lived Experiences of Non-Traditional Students in Higher Level Mathematics at a Midwest University

    ERIC Educational Resources Information Center

    Wood, Brian B.

    2017-01-01

    The current literature suggests that the use of Husserl's and Heidegger's approaches to phenomenology is still practiced. However, a clear gap exists on how these approaches are viewed in the context of constructivism, particularly with non-traditional female students' study of mathematics. The dissertation attempts to clarify the constructivist…

  17. Inferring phenomenological models of Markov processes from data

    NASA Astrophysics Data System (ADS)

    Rivera, Catalina; Nemenman, Ilya

    Microscopically accurate modeling of stochastic dynamics of biochemical networks is hard due to the extremely high dimensionality of the state space of such networks. Here we propose an algorithm for inference of phenomenological, coarse-grained models of Markov processes describing the network dynamics directly from data, without the intermediate step of microscopically accurate modeling. The approach relies on the linear nature of the Chemical Master Equation and uses Bayesian Model Selection for identification of parsimonious models that fit the data. When applied to synthetic data from the Kinetic Proofreading process (KPR), a common mechanism used by cells for increasing specificity of molecular assembly, the algorithm successfully uncovers the known coarse-grained description of the process. This phenomenological description has been notice previously, but this time it is derived in an automated manner by the algorithm. James S. McDonnell Foundation Grant No. 220020321.

  18. Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double- β Decay Phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.

    The potential importance of short-distance nuclear effects in double-more » $$\\beta$$ decay is assessed using a lattice QCD calculation of the $$nn\\rightarrow pp$$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$$\\beta$$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$$\\beta$$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.« less

  19. Inner Speech: Development, Cognitive Functions, Phenomenology, and Neurobiology

    PubMed Central

    2015-01-01

    Inner speech—also known as covert speech or verbal thinking—has been implicated in theories of cognitive development, speech monitoring, executive function, and psychopathology. Despite a growing body of knowledge on its phenomenology, development, and function, approaches to the scientific study of inner speech have remained diffuse and largely unintegrated. This review examines prominent theoretical approaches to inner speech and methodological challenges in its study, before reviewing current evidence on inner speech in children and adults from both typical and atypical populations. We conclude by considering prospects for an integrated cognitive science of inner speech, and present a multicomponent model of the phenomenon informed by developmental, cognitive, and psycholinguistic considerations. Despite its variability among individuals and across the life span, inner speech appears to perform significant functions in human cognition, which in some cases reflect its developmental origins and its sharing of resources with other cognitive processes. PMID:26011789

  20. Simulation investigation of multipactor in metal components for space application with an improved secondary emission model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yun, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Cui, Wan-Zhao, E-mail: genliyun@126.com, E-mail: cuiwanzhao@126.com; Wang, Hong-Guang

    2015-05-15

    Effects of the secondary electron emission (SEE) phenomenon of metal surface on the multipactor analysis of microwave components are investigated numerically and experimentally in this paper. Both the secondary electron yield (SEY) and the emitted energy spectrum measurements are performed on silver plated samples for accurate description of the SEE phenomenon. A phenomenological probabilistic model based on SEE physics is utilized and fitted accurately to the measured SEY and emitted energy spectrum of the conditioned surface material of microwave components. Specially, the phenomenological probabilistic model is extended to the low primary energy end lower than 20 eV mathematically, since no accuratemore » measurement data can be obtained. Embedding the phenomenological probabilistic model into the Electromagnetic Particle-In-Cell (EM-PIC) method, the electronic resonant multipacting in microwave components can be tracked and hence the multipactor threshold can be predicted. The threshold prediction error of the transformer and the coaxial filter is 0.12 dB and 1.5 dB, respectively. Simulation results demonstrate that the discharge threshold is strongly dependent on the SEYs and its energy spectrum in the low energy end (lower than 50 eV). Multipacting simulation results agree quite well with experiments in practical components, while the phenomenological probabilistic model fit both the SEY and the emission energy spectrum better than the traditionally used model and distribution. The EM-PIC simulation method with the phenomenological probabilistic model for the surface collision simulation has been demonstrated for predicting the multipactor threshold in metal components for space application.« less

  1. Unconventional Liquid Flow in Low-Permeability Media: Theory and Revisiting Darcy's Law

    NASA Astrophysics Data System (ADS)

    Liu, H. H.; Chen, J.

    2017-12-01

    About 80% of fracturing fluid remains in shale formations after hydraulic fracturing and the flow back process. It is critical to understand and accurately model the flow process of fracturing fluids in a shale formation, because the flow has many practical applications for shale gas recovery. Owing to the strong solid-liquid interaction in low-permeability media, Darcy's law is not always adequate for describing liquid flow process in a shale formation. This non-Darcy flow behavior (characterized by nonlinearity of the relationship between liquid flux and hydraulic gradient), however, has not been given enough attention in the shale gas community. The current study develops a systematic methodology to address this important issue. We developed a phenomenological model for liquid flow in shale (in which liquid flux is a power function of pressure gradient), an extension of the conventional Darcy's law, and also a methodology to estimate parameters for the phenomenological model from spontaneous imbibition tests. The validity of our new developments is verified by satisfactory comparisons of theoretical results and observations from our and other research groups. The relative importance of this non-Darcy liquid flow for hydrocarbon production in unconventional reservoirs remains an issue that needs to be further investigated.

  2. Research in Theoretical High Energy Physics- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika

    PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less

  3. Differentiating between descriptive and interpretive phenomenological research approaches.

    PubMed

    Matua, Gerald Amandu; Van Der Wal, Dirk Mostert

    2015-07-01

    To provide insight into how descriptive and interpretive phenomenological research approaches can guide nurse researchers during the generation and application of knowledge. Phenomenology is a discipline that investigates people's experiences to reveal what lies 'hidden' in them. It has become a major philosophy and research method in the humanities, human sciences and arts. Phenomenology has transitioned from descriptive phenomenology, which emphasises the 'pure' description of people's experiences, to the 'interpretation' of such experiences, as in hermeneutic phenomenology. However, nurse researchers are still challenged by the epistemological and methodological tenets of these two methods. The data came from relevant online databases and research books. A review of selected peer-reviewed research and discussion papers published between January 1990 and December 2013 was conducted using CINAHL, Science Direct, PubMed and Google Scholar databases. In addition, selected textbooks that addressed phenomenology as a philosophy and as a research methodology were used. Evidence from the literature indicates that most studies following the 'descriptive approach' to research are used to illuminate poorly understood aspects of experiences. In contrast, the 'interpretive/hermeneutic approach' is used to examine contextual features of an experience in relation to other influences such as culture, gender, employment or wellbeing of people or groups experiencing the phenomenon. This allows investigators to arrive at a deeper understanding of the experience, so that caregivers can derive requisite knowledge needed to address such clients' needs. Novice nurse researchers should endeavour to understand phenomenology both as a philosophy and research method. This is vitally important because in-depth understanding of phenomenology ensures that the most appropriate method is chosen to implement a study and to generate knowledge for nursing practice. This paper adds to the current debate on why it is important for nurse researchers to clearly understand phenomenology as a philosophy and research method before embarking on a study. The paper guides novice researchers on key methodological decisions they need to make when using descriptive or interpretive phenomenological research approaches.

  4. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  5. A Phenomenological Synapse Model for Asynchronous Neurotransmitter Release

    PubMed Central

    Wang, Tao; Yin, Luping; Zou, Xiaolong; Shu, Yousheng; Rasch, Malte J.; Wu, Si

    2016-01-01

    Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release. PMID:26834617

  6. "But I'm Not a Racist!" Phenomenology, Racism, and the Body Schema in White, Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Lewis, Tyson E.

    2018-01-01

    In this article, I call for a phenomenological turn in educating white, pre-service teachers. As opposed to dominant pedagogical models which focus on changing one's beliefs about race, phenomenology points toward the importance of pre-conceptual, pre-critical forms of racial embodiment. Here I draw upon recent work on the different between body…

  7. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  8. Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing

    DTIC Science & Technology

    2016-07-15

    AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study

  9. Effective interaction of electroweak-interacting dark matter with Higgs boson and its phenomenology

    NASA Astrophysics Data System (ADS)

    Hisano, Junji; Kobayashi, Daiki; Mori, Naoya; Senaha, Eibun

    2015-03-01

    We study phenomenology of electroweak-interacting fermionic dark matter (DM) with a mass of O (100) GeV. Constructing the effective Lagrangian that describes the interactions between the Higgs boson and the SU (2)L isospin multiplet fermion, we evaluate the electric dipole moment (EDM) of electron, the signal strength of Higgs boson decay to two photons and the spin-independent elastic-scattering cross section with proton. As representative cases, we consider the SU (2)L triplet fermions with zero/nonzero hypercharges and SU (2)L doublet fermion. It is found that the electron EDM gives stringent constraints on those model parameter spaces. In the cases of the triplet fermion with zero hypercharge and the doublet fermion, the Higgs signal strength does not deviate from the standard model prediction by more than a few % once the current DM direct detection constraint is taken into account, even if the CP violation is suppressed. On the contrary, O (10- 20)% deviation may occur in the case of the triplet fermion with nonzero hypercharge. Our representative scenarios may be tested by the future experiments.

  10. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  11. The Lived Experiences of Leading Edge Certified Elementary School Teachers Who Use Instructional Technology to Foster Critical Thinking, Collaboration, Creativity, and Communication in Their Classrooms: A Phenomenological Study

    ERIC Educational Resources Information Center

    Ruddell, Natalie

    2017-01-01

    Purpose: The purpose of this phenomenological study was to describe the perceptions of current and former Leading Edge Certified (LEC) elementary school teachers regarding instructional technology practices that facilitate students' development of critical thinking, collaboration, communication, and creativity (4Cs) in one-to-one computer…

  12. Phenomenology of TMDs

    NASA Astrophysics Data System (ADS)

    Melis, Stefano

    2015-01-01

    We present a review of current Transverse Momentum Dependent (TMD) phenomenology focusing our attention on the unpolarized TMD parton distribution function and the Sivers function. The paper introduces and comments about the new Collins-Soper-Sterman (CSS) TMD evolution formalism [1]. We make use of a selection of results obtained by several groups to illustrate the achievements and the failures of the simple Gaussian approach and the TMD CSS evolution formalism.

  13. New Models and Methods for the Electroweak Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Linda

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less

  14. General squark flavour mixing: constraints, phenomenology and benchmarks

    DOE PAGES

    De Causmaecker, Karen; Fuks, Benjamin; Herrmann, Bjorn; ...

    2015-11-19

    Here, we present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matrices by means of a Markov Chain Monte Carlo scanning technique and identify parameter combinations that are favoured by both current data and theoretical constraints. We then detail the resulting distributions of the flavour-conserving and flavour-violating model parameters. Based on this analysis, we propose a set of benchmark scenarios relevant for future studies of non-minimal flavour violation in the Minimal Supersymmetric Standard Model.

  15. Phenomenology of COMPASS data: Multiplicities and phenomenology - part II

    DOE PAGES

    Anselmino, M.; Boglione, M.; Gonzalez H., J. O.; ...

    2015-01-23

    In this study, we present some of the main features of the multidimensional COMPASS multiplicities, via our analysis using the simple Gaussian model. We briefly discuss these results in connection with azimuthal asymmetries.

  16. Understanding the Friendship Processes of Individuals with Asperger's Syndrome: A Phenomenological Study of Reflective College Experiences

    ERIC Educational Resources Information Center

    Lee, Kammie Bohlken

    2010-01-01

    This phenomenological study shed light on the reflective college experiences of 11 individuals with Asperger's Syndrome and High Functioning Autism from a competence rather than a deficit model of disability (Biklen, 2005). Using Goleman's model of Social Intelligence (2006) as a theoretical framework, the cognitive, behavioral, and affective…

  17. Self-disturbances in Schizophrenia: History, Phenomenology, and Relevant Findings From Research on Metacognition

    PubMed Central

    Mishara, Aaron L.

    2014-01-01

    With a tradition of examining self-disturbances (Ichstörungen) in schizophrenia, phenomenological psychiatry studies the person’s subjective experience without imposing theoretical agenda on what is reported. Although this tradition offers promising interface with current neurobiological models of schizophrenia, both the concept of Ichstörung and its history are not well understood. In this article, we discuss the meaning of Ichstörung, the role it played in the development of the concept of schizophrenia, and recent research on metacognition that allows for the quantitative study of the link between self-disturbance and outcome in schizophrenia. Phenomenological psychiatrists such as Blankenburg, Binswanger, and Conrad interpreted the Ichstörung as disturbed relationship to self and others, thus challenging recent efforts to interpret self-disturbance as diminished pure passive self-affection, which putatively “explains” schizophrenia and its various symptoms. Narrative is a reflective, embodied process, which requires a dynamic shifting of perspectives which, when compromised, may reflect disrupted binding of the components of self-experience. The Metacognition Assessment Scale—abbreviated as MAS-A—suggests that persons with schizophrenia tend to produce narratives with reductions in the binding processes required to produce an integrated, embodied self within narrated life stories, and in interactive relationships with others. PMID:24319117

  18. First Measurement of Several β-Delayed Neutron Emitting Isotopes Beyond N=126.

    PubMed

    Caballero-Folch, R; Domingo-Pardo, C; Agramunt, J; Algora, A; Ameil, F; Arcones, A; Ayyad, Y; Benlliure, J; Borzov, I N; Bowry, M; Calviño, F; Cano-Ott, D; Cortés, G; Davinson, T; Dillmann, I; Estrade, A; Evdokimov, A; Faestermann, T; Farinon, F; Galaviz, D; García, A R; Geissel, H; Gelletly, W; Gernhäuser, R; Gómez-Hornillos, M B; Guerrero, C; Heil, M; Hinke, C; Knöbel, R; Kojouharov, I; Kurcewicz, J; Kurz, N; Litvinov, Yu A; Maier, L; Marganiec, J; Marketin, T; Marta, M; Martínez, T; Martínez-Pinedo, G; Montes, F; Mukha, I; Napoli, D R; Nociforo, C; Paradela, C; Pietri, S; Podolyák, Zs; Prochazka, A; Rice, S; Riego, A; Rubio, B; Schaffner, H; Scheidenberger, Ch; Smith, K; Sokol, E; Steiger, K; Sun, B; Taín, J L; Takechi, M; Testov, D; Weick, H; Wilson, E; Winfield, J S; Wood, R; Woods, P; Yeremin, A

    2016-07-01

    The β-delayed neutron emission probabilities of neutron rich Hg and Tl nuclei have been measured together with β-decay half-lives for 20 isotopes of Au, Hg, Tl, Pb, and Bi in the mass region N≳126. These are the heaviest species where neutron emission has been observed so far. These measurements provide key information to evaluate the performance of nuclear microscopic and phenomenological models in reproducing the high-energy part of the β-decay strength distribution. This provides important constraints on global theoretical models currently used in r-process nucleosynthesis.

  19. Lepton masses and mixings in orbifold models with three Higgs families

    NASA Astrophysics Data System (ADS)

    Escudero, N.; Muñoz, C.; Teixeira, A. M.

    2007-12-01

    We analyse the phenomenological viability of heterotic Z3 orbifolds with two Wilson lines, which naturally predict three supersymmetric families of matter and Higgs fields. Given that these models can accommodate realistic scenarios for the quark sector avoiding potentially dangerous flavour-changing neutral currents, we now address the leptonic sector, finding that viable orbifold configurations can in principle be obtained. In particular, it is possible to accomodate present data on charged lepton masses, while avoiding conflict with lepton flavour-violating decays. Concerning the generation of neutrino masses and mixings, we find that Z3 orbifolds offer several interesting possibilities.

  20. Time variation of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Evenson, Paul

    1988-01-01

    Time variations in the flux of galactic cosmic rays are the result of changing conditions in the solar wind. Maximum cosmic ray fluxes, which occur when solar activity is at a minimum, are well defined. Reductions from this maximum level are typically systematic and predictable but on occasion are rapid and unexpected. Models relating the flux level at lower energy to that at neutron monitor energy are typically accurate to 20 percent of the total excursion at that energy. Other models, relating flux to observables such as sunspot number, flare frequency, and current sheet tilt are phenomenological but nevertheless can be quite accurate.

  1. Phenomenology of Ξb→Ξcτ ν decays

    NASA Astrophysics Data System (ADS)

    Dutta, Rupak

    2018-04-01

    Deviations from the standard model prediction have been reported in various semileptonic B decays mediated via b →c charged-current interactions. In this context, we analyze corresponding semileptonic baryon decays Ξb→Ξcτ ν using the helicity formalism. We report numerical results on various observables such as the decay rate, ratio of branching ratios, lepton-side forward-backward asymmetry, longitudinal polarization fraction of the charged lepton, and the convexity parameter for this decay mode using results from the relativistic quark model. We also provide an estimate of the new physics effect on these observables under various new physics scenarios.

  2. Designing across ages: Multi-agent-based models and learning electricity

    NASA Astrophysics Data System (ADS)

    Sengupta, Pratim

    Electricity is regarded as one of the most challenging topics for students at all levels -- middle school -- college (Cohen, Eylon, & Ganiel, 1983; Belcher & Olbert, 2003; Eylon & Ganiel, 1990; Steinberg et al., 1985). Several researchers have suggested that naive misconceptions about electricity stem from a deep incommensurability (Slotta & Chi, 2006; Chi, 2005) or incompatibility (Chi, Slotta & Leauw, 1994; Reiner, Slotta, Chi, & Resnick, 2000) between naive and expert knowledge structures. I first present an alternative theoretical framework that adopts an emergent levels-based perspective as proposed by Wilensky & Resnick (1999). From this perspective, macro-level phenomena such as electric current and resistance, as well as behavior of linear electric circuits, can be conceived of as emergent from simple, body-syntonic interactions between electrons and ions in a circuit. I argue that adopting such a perspective enables us to reconceive commonly noted misconceptions in electricity as behavioral evidences of "slippage between levels" -- i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes inappropriately activated due to certain macro-level phenomenological cues only -- and, that the same knowledge elements when activated due to phenomenological cues at both micro- and macro-levels, can engender a deeper, expert-like understanding. I will then introduce NIELS (NetLogo Investigations In Electromagnetism, Sengupta & Wilensky, 2006, 2008, 2009), a low-threshold high-ceiling (LTHC) learning environment of multi-agent-based computational models that represent phenomena such as electric current and resistance, as well as the behavior of linear electric circuits, as emergent. I also present results from implementations of NIELS in 5th, 7th and 12th grade classrooms that show the following: (a) how leveraging certain "design elements" over others in NIELS models can create new phenomenological cues, which in turn can be appropriated for learners in different grades; (b) how learners' existing knowledge structures can be bootstrapped to generate deep understanding; (c) how these knowledge structures evolve as the learners progress through the implemented curriculum; (d) improvement of learners' understanding in the post-test compared to the pre-test; and (e) how NIELS students compare with a comparison group of 12th grade students who underwent traditional classroom instruction.

  3. Dangerous "spin": the probability myth of evidence-based prescribing - a Merleau-Pontyian approach.

    PubMed

    Morstyn, Ron

    2011-08-01

    The aim of this study was to examine logical positivist statistical probability statements used to support and justify "evidence-based" prescribing rules in psychiatry when viewed from the major philosophical theories of probability, and to propose "phenomenological probability" based on Maurice Merleau-Ponty's philosophy of "phenomenological positivism" as a better clinical and ethical basis for psychiatric prescribing. The logical positivist statistical probability statements which are currently used to support "evidence-based" prescribing rules in psychiatry have little clinical or ethical justification when subjected to critical analysis from any of the major theories of probability and represent dangerous "spin" because they necessarily exclude the individual , intersubjective and ambiguous meaning of mental illness. A concept of "phenomenological probability" founded on Merleau-Ponty's philosophy of "phenomenological positivism" overcomes the clinically destructive "objectivist" and "subjectivist" consequences of logical positivist statistical probability and allows psychopharmacological treatments to be appropriately integrated into psychiatric treatment.

  4. The phenomenology of the psychotic break and Huxley's trip: substance use and the onset of psychosis.

    PubMed

    Nelson, Barnaby; Sass, Louis A

    2008-01-01

    While considerable research attention has been devoted to the causal relationship between substance use and psychosis, the phenomenology of the association between the two has largely been ignored. This is a significant shortcoming, because it blinds researchers to the possibility that there may be elements of the subjective experience of substance use and psychosis that contribute to their apparent relationship in empirical studies. The current paper examines the phenomenology of the onset of psychosis and the phenomenology of substance intoxication through consideration of two texts: Sass's account of the phenomenology of psychosis onset and Huxley's account of the experience of hallucinogenic intoxication. Sass's account of psychosis onset includes four components: Unreality, Fragmentation, Mere Being, and Apophany. The analysis reveals significant parallels - and also some differences - between this account and the phenomenology of substance intoxication. We discuss the implications of this for the causal relationship between psychosis and substance use and suggest several ways of understanding the overlapping phenomenologies. This includes the suggestion of a shared factor, perhaps best described as psychotic-like experience, which seems to involve a breakdown of the sign-referent relationship and relationship with the common-sense, practical world. However, in the onset of psychosis, this breakdown is primarily experienced as a sense of alienation from self and world, whereas in the hallucinogenic state a sense of mystical union and revelation seems predominant. Further research may extend this analysis by looking at experiences with other drugs, particularly cannabis, and by examining the phenomenology of psychotic disorder beyond the first episode. (c) 2008 S. Karger AG, Basel.

  5. Toward a Phenomenological Account of Embodied Subjectivity in Autism.

    PubMed

    Boldsen, Sofie

    2018-06-18

    Sensorimotor research is currently challenging the dominant understanding of autism as a deficit in the cognitive ability to 'mindread'. This marks an emerging shift in autism research from a focus on the structure and processes of the mind to a focus on autistic behavior as grounded in the body. Contemporary researchers in sensorimotor differences in autism call for a reconciliation between the scientific understanding of autism and the first-person experience of autistic individuals. I argue that fulfilling this ambition requires a phenomenological understanding of the body as it presents itself in ordinary experience, namely as the subject of experience rather than a physical object. On this basis, I investigate how the phenomenology of Maurice Merleau-Ponty can be employed as a frame of understanding for bodily experience in autism. Through a phenomenological analysis of Tito Mukhopadhyay's autobiographical work, How can I talk if my lips don't move (2009), I illustrate the relevance and potential of phenomenological philosophy in autism research, arguing that this approach enables a deeper understanding of bodily and subjective experiences related to autism.

  6. Phenomenological model of visual acuity

    NASA Astrophysics Data System (ADS)

    Gómez-Pedrero, José A.; Alonso, José

    2016-12-01

    We propose in this work a model for describing visual acuity (V) as a function of defocus and pupil diameter. Although the model is mainly based on geometrical optics, it also incorporates nongeometrical effects phenomenologically. Compared to similar visual acuity models, the proposed one considers the effect of astigmatism and the variability of best corrected V among individuals; it also takes into account the accommodation and the "tolerance to defocus," the latter through a phenomenological parameter. We have fitted the model to the V data provided in the works of Holladay et al. and Peters, showing the ability of this model to accurately describe the variation of V against blur and pupil diameter. We have also performed a comparison between the proposed model and others previously published in the literature. The model is mainly intended for use in the design of ophthalmic compensations, but it can also be useful in other fields such as visual ergonomics, design of visual tests, and optical instrumentation.

  7. [The history and phenomenology of the concept of psychosis. A perspective of the Heidelberg school (1913-2008)].

    PubMed

    Bürgy, M

    2009-05-01

    The accomplishments of Heidelberg psychopathology and their continued development are illustrated using the example of the concept of psychosis. Jaspers founded the Heidelberg school by methodologically collating the psychiatric knowledge of his time in a structured fashion and in doing so laid the foundation for modern nosology. While, however, ICD and DSM classifications tend to be modelled on symptoms of expression and behaviour, the phenomenological models which Jaspers introduced into the field of psychiatry rather focused on symptoms of subjective experience. The phenomenological developments of psychopathology which originated in this context are, in the case of the schizophrenic psychoses, presented in a kaleidoscope-like manner. It becomes evident that a legacy-oriented, phenomenological search for specific symptoms is of continued relevance. This historical wealth of knowledge and the clinical exploration of phenomena continue to represent sources of impetus and momentum for the field of psychopathology.

  8. The use of phenomenology in mental health nursing research.

    PubMed

    Picton, Caroline Jane; Moxham, Lorna; Patterson, Christopher

    2017-12-18

    Historically, mental health research has been strongly influenced by the underlying positivism of the quantitative paradigm. Quantitative research dominates scientific enquiry and contributes significantly to understanding our natural world. It has also greatly benefitted the medical model of healthcare. However, the more literary, silent, qualitative approach is gaining prominence in human sciences research, particularly mental healthcare research. To examine the qualitative methodological assumptions of phenomenology to illustrate the benefits to mental health research of studying the experiences of people with mental illness. Phenomenology is well positioned to ask how people with mental illness reflect on their experiences. Phenomenological research is congruent with the principles of contemporary mental healthcare, as person-centred care is favoured at all levels of mental healthcare, treatment, service and research. Phenomenology is a highly appropriate and suitable methodology for mental health research, given it includes people's experiences and enables silent voices to be heard. This overview of the development of phenomenology informs researchers new to phenomenological enquiry. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  9. We Shall Overcome: A Phenomenological Study of the Role Academic, Social and Family Factors Have on English Learners' Decision to Pursue Higher Education

    ERIC Educational Resources Information Center

    Huang, Jennifer L.

    2017-01-01

    The attainment of a college degree has long been a part of the American dream. For the English learner, however, reaching this goal is a task fraught with difficulty. Yet, as the participants in this study demonstrate, it is possible. In this qualitative, phenomenological study of seven current community college students who graduated from a…

  10. Optogalvanic effect and laser-induced current oscillations in hollow-cathode lamps

    NASA Astrophysics Data System (ADS)

    Eldakli, Mohsan S. A.; Ivković, Saša S.; Obradović, Bratislav M.

    2017-03-01

    This paper presents a study of two commercial hollow-cathode lamps (HCLs) with the intention of demonstrating different phenomena in gas discharges. The optogalvanic effect in both HCLs is produced by a laser diode radiated at the wavelength that corresponds to neon transition 1s2-2p2 at 659.89 nm. The voltage-current characteristics of the lamps are explained using a classical theory of hollow-cathode discharge, while the optogalvanic signal is treated as a small perturbation of the discharge current. For certain values of voltage self-sustained current oscillations are observed in one of the HCLs. In the same HCL laser-induced optogalvanic dumped oscillations are detected. A phenomenological model that includes the effective circuit parameters of the discharge is used to explain the oscillation characteristics.

  11. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. H., E-mail: zhaohui@physics.umanitoba.ca; Bai, Lihui; Hu, C.-M.

    2015-03-15

    The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, itsmore » angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.« less

  12. Josephson flux-flow oscillator: The microscopic tunneling approach

    NASA Astrophysics Data System (ADS)

    Gulevich, D. R.; Koshelets, V. P.; Kusmartsev, F. V.

    2017-07-01

    We elaborate a theoretical description of large Josephson junctions which is based on Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux-flow oscillator. The proposed microscopic model of flux-flow oscillator does not involve the phenomenological damping parameter, rather the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux-flow oscillators of different lengths.

  13. Towards more accurate and reliable predictions for nuclear applications

    NASA Astrophysics Data System (ADS)

    Goriely, Stephane; Hilaire, Stephane; Dubray, Noel; Lemaître, Jean-François

    2017-09-01

    The need for nuclear data far from the valley of stability, for applications such as nuclear astrophysics or future nuclear facilities, challenges the robustness as well as the predictive power of present nuclear models. Most of the nuclear data evaluation and prediction are still performed on the basis of phenomenological nuclear models. For the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. Nowadays mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenological inputs in the evaluation of nuclear data. The latest achievements to determine nuclear masses within the non-relativistic HFB approach, including the related uncertainties in the model predictions, are discussed. Similarly, recent efforts to determine fission observables within the mean-field approach are described and compared with more traditional existing models.

  14. Motor Complications of Dopaminergic Medications in Parkinson’s Disease

    PubMed Central

    Freitas, Maria Eliza; Hess, Christopher W.; Fox, Susan H.

    2018-01-01

    Motor complications are a consequence of chronic treatment of Parkinson’s disease (PD) and include motor fluctuations (wearing-off phenomenon) and levodopa-induced dyskinesia. Both can have a significant impact on functionality and quality of life and thus proper recognition and management is essential. The phenomenology and temporal relationship of motor complications to the schedule of levodopa dosing can be helpful in characterizing them. There are several therapeutic approaches to motor complications, including pharmacological and surgical options. The current review summarizes the different types of motor complications according to phenomenology and the currently available medical treatments, including ongoing trials for management of this condition. PMID:28511255

  15. Immigrant Arab adolescents in ethnic enclaves: physical and phenomenological contexts of identity negotiation.

    PubMed

    Kumar, Revathy; Seay, Nancy; Karabenick, Stuart A

    2015-04-01

    Ecologically embedded social identity theories were used to examine the risk and protective factors associated with the identity negotiation and adjustment of recent immigrant Arab (IA) adolescents to the United States residing in ethnic enclaves. Yemeni, Lebanese, and Iraqi 8th-graders (n = 45) from 4 ethnic enclave schools participated in focus-group interviews. In-depth analyses of interviews revealed that living in an ethnic enclave enhanced IA adolescents' feelings of belonging to the community. However, the new immigrant status coupled with country of origin determined the permeability of intergroup boundaries with well-established Arab and Arab American peers. Their identity negotiations and social identity salience (national, religious, and pan-Arab) were informed by transitional experiences from home to host country and the prevailing political and cultural tensions between the two, recognition of national hierarchy within the Arab community, perceptions of discrimination by the larger society, changed educational aspirations consequent to immigration, and current physical (school and community) and phenomenological contexts. Findings suggest that current theoretical perspectives should be extended to incorporate phenomenological representations of past spaces and places not currently occupied to understand adolescents' multifaceted identity. (c) 2015 APA, all rights reserved).

  16. Phenomenological Study of Business Models Used to Scale Online Enrollment at Institutions of Higher Education

    ERIC Educational Resources Information Center

    Williams, Dana E.

    2012-01-01

    The purpose of this qualitative phenomenological study was to explore factors for selecting a business model for scaling online enrollment by institutions of higher education. The goal was to explore the lived experiences of academic industry experts involved in the selection process. The research question for this study was: What were the lived…

  17. Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite

    NASA Astrophysics Data System (ADS)

    Mechi, Nesrine; Alzahrani, Bandar; Hcini, Sobhi; Bouazizi, Mohamed Lamjed; Dhahri, Abdessalem

    2018-06-01

    We have investigated the correlation between magnetocaloric and electrical properties of La0.47Pr0.2Pb0.33MnO3 perovskite prepared using the sol-gel method. Rietveld analysis of X-ray diffraction (XRD) pattern shows pure crystalline phase with rhombohedral ? structure. Magnetic entropy change, relative cooling power (RCP) and specific heat were predicted from M(T, μ0H) data at different magnetic fields with the help of the phenomenological model. The magnetic entropy change reaches a maximum value ? of about 3.96 J kg-1 K-1 for μ0H = 5 T corresponding to RCP of 183 J kg-1. These values are relatively higher, making our sample a promising candidate for the magnetic refrigeration. Electrical-resistivity measurements were well fitted with the phenomenological percolation model, which is based on the phase segregation of ferromagnetic-metallic clusters and paramagnetic-semiconductor regions. The temperature and magnetic field dependences of resistivity data, ρ(T, μ0H), allowed us to determine the magnetic entropy change ?. Results show that the as-obtained magnetic entropy change values are similar to those determined from the phenomenological model.

  18. New phenomenology of gas breakdown in DC and RF fields

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran Lj; Sivoš, Jelena; Savić, Marija; Škoro, Nikola; Radmilović Radenović, Marija; Malović, Gordana; Gocić, Saša; Marić, Dragana

    2014-05-01

    This paper follows a review lecture on the new developments in the field of gas breakdown and low current discharges, usually covered by a form of Townsend's theory and phenomenology. It gives an overview of a new approach to identifying which feedback agents provide breakdown, how to model gas discharge conditions and reconcile the results with binary experiments and how to employ that knowledge in modelling gas discharges. The next step is an illustration on how to record volt-ampere characteristics and use them on one hand to obtain the breakdown voltage and, on the other, to identify the regime of operation and model the secondary electron yields. The second aspect of this section concerns understanding the different regimes, their anatomy, how those are generated and how free running oscillations occur. While temporal development is the most useful and interesting part of the new developments, the difficulty of presenting the data in a written form precludes an easy publication and discussion. Thus, we shall only mention some of the results that stem from these measurements. Most micro discharges operate in DC albeit with complex geometries. Thus, parallel plate micro discharge measurements were needed to establish that Townsend's theory, with all its recent extensions, is still valid until some very small gaps. We have shown, for example, how a long-path breakdown puts in jeopardy many experimental observations and why a flat left-hand side of the Paschen curve often does not represent good physics. We will also summarize a kinetic representation of the RF breakdown revealing a somewhat more complex picture than the standard model. Finally, we will address briefly the breakdown in radially inhomogeneous conditions and how that affects the measured properties of the discharge. This review has the goal of summarizing (rather than developing details of) the current status of the low-current DC discharges formation and operation as a discipline which, in spite of its very long history, is developing rapidly.

  19. Universality of Non-Ohmic Shunt Leakage in Thin-Film Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongaonkar, S.; Servaites, J.D.; Ford, G.M.

    2010-01-01

    We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In,Ga)Se 2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V<~0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I sh) , across all three solar cell types considered, is characterized by the following commonmore » phenomenological features: (a) voltage symmetry about V=0 , (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism.« less

  20. An exploration of role model influence on adult nursing students' professional development: A phenomenological research study.

    PubMed

    Felstead, Ian S; Springett, Kate

    2016-02-01

    Patients' expectations of being cared for by a nurse who is caring, competent, and professional are particularly pertinent in current health and social care practice. The current drive for NHS values-based recruitment serves to strengthen this. How nursing students' development of professionalism is shaped is not fully known, though it is acknowledged that their practice experience strongly shapes behaviour. This study (in 2013-14) explored twelve adult nursing students' lived experiences of role modelling through an interpretive phenomenological analysis approach, aiming to understand the impact on their development as professional practitioners. Clinical nurses influenced student development consistently. Some students reported that their experiences allowed them to learn how not to behave in practice; a productive learning experience despite content. Students also felt senior staff influence on their development to be strong, citing 'leading by example.' The impact of patients on student professional development was also a key finding. Through analysing information gained, identifying and educating practice-based mentors who are ready, willing, and able to role model professional attributes appear crucial to developing professionalism in nursing students. Those involved in nurse education, whether service providers or universities, may wish to acknowledge the influence of clinical nurse behaviour observed by students both independent of and in direct relation to care delivery and the impact on student nurse professional development. A corollary relates to how students should be guided and briefed/debriefed to work with a staff to ensure their exposure to a variety of practice behaviours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances

    PubMed Central

    Jelić, Andrea; Tieri, Gaetano; De Matteis, Federico; Babiloni, Fabio; Vecchiato, Giovanni

    2016-01-01

    Over the last few years, the efforts to reveal through neuroscientific lens the relations between the mind, body, and built environment have set a promising direction of using neuroscience for architecture. However, little has been achieved thus far in developing a systematic account that could be employed for interpreting current results and providing a consistent framework for subsequent scientific experimentation. In this context, the enactive perspective is proposed as a guide to studying architectural experience for two key reasons. Firstly, the enactive approach is specifically selected for its capacity to account for the profound connectedness of the organism and the world in an active and dynamic relationship, which is primarily shaped by the features of the body. Thus, particular emphasis is placed on the issues of embodiment and motivational factors as underlying constituents of the body-architecture interactions. Moreover, enactive understanding of the relational coupling between body schema and affordances of architectural spaces singles out the two-way bodily communication between architecture and its inhabitants, which can be also explored in immersive virtual reality settings. Secondly, enactivism has a strong foothold in phenomenological thinking that corresponds to the existing phenomenological discourse in architectural theory and qualitative design approaches. In this way, the enactive approach acknowledges the available common ground between neuroscience and architecture and thus allows a more accurate definition of investigative goals. Accordingly, the outlined model of architectural subject in enactive terms—that is, a model of a human being as embodied, enactive, and situated agent, is proposed as a basis of neuroscientific and phenomenological interpretation of architectural experience. PMID:27065937

  2. The Enactive Approach to Architectural Experience: A Neurophysiological Perspective on Embodiment, Motivation, and Affordances.

    PubMed

    Jelić, Andrea; Tieri, Gaetano; De Matteis, Federico; Babiloni, Fabio; Vecchiato, Giovanni

    2016-01-01

    Over the last few years, the efforts to reveal through neuroscientific lens the relations between the mind, body, and built environment have set a promising direction of using neuroscience for architecture. However, little has been achieved thus far in developing a systematic account that could be employed for interpreting current results and providing a consistent framework for subsequent scientific experimentation. In this context, the enactive perspective is proposed as a guide to studying architectural experience for two key reasons. Firstly, the enactive approach is specifically selected for its capacity to account for the profound connectedness of the organism and the world in an active and dynamic relationship, which is primarily shaped by the features of the body. Thus, particular emphasis is placed on the issues of embodiment and motivational factors as underlying constituents of the body-architecture interactions. Moreover, enactive understanding of the relational coupling between body schema and affordances of architectural spaces singles out the two-way bodily communication between architecture and its inhabitants, which can be also explored in immersive virtual reality settings. Secondly, enactivism has a strong foothold in phenomenological thinking that corresponds to the existing phenomenological discourse in architectural theory and qualitative design approaches. In this way, the enactive approach acknowledges the available common ground between neuroscience and architecture and thus allows a more accurate definition of investigative goals. Accordingly, the outlined model of architectural subject in enactive terms-that is, a model of a human being as embodied, enactive, and situated agent, is proposed as a basis of neuroscientific and phenomenological interpretation of architectural experience.

  3. A semi-phenomenological model to predict the acoustic behavior of fully and partially reticulated polyurethane foams

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Atalla, Noureddine; Dong, Kevin

    2013-02-01

    This paper proposes simple semi-phenomenological models to predict the sound absorption efficiency of highly porous polyurethane foams from microstructure characterization. In a previous paper [J. Appl. Phys. 110, 064901 (2011)], the authors presented a 3-parameter semi-phenomenological model linking the microstructure properties of fully and partially reticulated isotropic polyurethane foams (i.e., strut length l, strut thickness t, and reticulation rate Rw) to the macroscopic non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity ϕ, airflow resistivity σ, tortuosity α∝, viscous Λ, and thermal Λ' characteristic lengths). The model was based on existing scaling laws, validated for fully reticulated polyurethane foams, and improved using both geometrical and empirical approaches to account for the presence of membrane closing the pores. This 3-parameter model is applied to six polyurethane foams in this paper and is found highly sensitive to the microstructure characterization; particularly to strut's dimensions. A simplified micro-/macro model is then presented. It is based on the cell size Cs and reticulation rate Rw only, assuming that the geometric ratio between strut length l and strut thickness t is known. This simplified model, called the 2-parameter model, considerably simplifies the microstructure characterization procedure. A comparison of the two proposed semi-phenomenological models is presented using six polyurethane foams being either fully or partially reticulated, isotropic or anisotropic. It is shown that the 2-parameter model is less sensitive to measurement uncertainties compared to the original model and allows a better estimation of polyurethane foams sound absorption behavior.

  4. HZE reactions and data-base development

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.

    1993-01-01

    The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.

  5. A phenomenological model of solar flares

    NASA Technical Reports Server (NTRS)

    Colgate, S. A.

    1978-01-01

    The energy of solar flares is derived from the magnetic energy of fields convected to the sun's surface and subsequently converted to heat and energetic particles within the chromosphere. The circumstances of this conversion in most current models is magnetic flux annihilation at a neutral sheet. An analysis is conducted of the constraints of flux annihilation. It is shown that the present evidence of solar cosmic rays, X-rays, gamma-rays, and total energy suggests a choice of annihilation not at a neutral point, but by an enhanced dissipation of a field-aligned current. The field configuration is related both to its origin and to the extensive theory and laboratory experiments concerned with this configuration in magnetic fusion. The magnetic field model is applied to the August 4 flare. It is shown how the plasma heating in the annihilation region balanced by thermal conduction leads to a plasma temperature of about 20 million deg K.

  6. A strain-mediated corrosion model for bioabsorbable metallic stents.

    PubMed

    Galvin, E; O'Brien, D; Cummins, C; Mac Donald, B J; Lally, C

    2017-06-01

    This paper presents a strain-mediated phenomenological corrosion model, based on the discrete finite element modelling method which was developed for use with the ANSYS Implicit finite element code. The corrosion model was calibrated from experimental data and used to simulate the corrosion performance of a WE43 magnesium alloy stent. The model was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile. The non-linear plastic strain model, extrapolated from the experimental data, was also found to adequately capture the corrosion-induced reduction in the radial stiffness of the stent over time. The model developed will help direct future design efforts towards the minimisation of plastic strain during device manufacture, deployment and in-service, in order to reduce corrosion rates and prolong the mechanical integrity of magnesium devices. The need for corrosion models that explore the interaction of strain with corrosion damage has been recognised as one of the current challenges in degradable material modelling (Gastaldi et al., 2011). A finite element based plastic strain-mediated phenomenological corrosion model was developed in this work and was calibrated based on the results of the corrosion experiments. It was found to be capable of predicting the experimentally observed plastic strain-mediated mass loss profile and the corrosion-induced reduction in the radial stiffness of the stent over time. To the author's knowledge, the results presented here represent the first experimental calibration of a plastic strain-mediated corrosion model of a corroding magnesium stent. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Grand unification and low scale implications: D2 parity for unification and neutrino masses

    NASA Astrophysics Data System (ADS)

    Tavartkiladze, Zurab

    2014-06-01

    The Grand Unified SU(5)-SU(5)' model, augmented with D2 Parity, is considered. The latter play crucial role for phenomenology. The model has several novel properties and gives interesting phenomenological implications. The charged leptons together with right handed (or sterile) neutrinos emerge es composite states. Within considered scenario, we study the charged fermion and neutrino mass generation. Moreover, we show that the model gives successful gauge coupling unification.

  8. Do future thoughts reflect personal goals? Current concerns and mental time travel into the past and future.

    PubMed

    Cole, Scott N; Berntsen, Dorthe

    2016-01-01

    Our overriding hypothesis was that future thinking would be linked with goals to a greater extent than memories; conceptualizing goals as current concerns (i.e., uncompleted personal goals). We also hypothesized that current-concern-related events would differ from non-current-concern-related events on a set of phenomenological characteristics. We report novel data from a study examining involuntary and voluntary mental time travel using an adapted laboratory paradigm. Specifically, after autobiographical memories or future thoughts were elicited (between participants) in an involuntary and voluntary retrieval mode (within participants), participants self-generated five current concerns and decided whether each event was relevant or not to their current concerns. Consistent with our hypothesis, compared with memories, a larger percentage of involuntary and voluntary future thoughts reflected current concerns. Furthermore, events related to current concerns differed from non-concern-related events on a range of cognitive, representational, and affective phenomenological measures. These effects were consistent across temporal direction. In general, our results agree with the proposition that involuntary and voluntary future thinking is important for goal-directed cognition and behaviour.

  9. Interaction in the dark sector

    NASA Astrophysics Data System (ADS)

    del Campo, Sergio; Herrera, Ramón; Pavón, Diego

    2015-06-01

    It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.

  10. How Monte Carlo heuristics aid to identify the physical processes of drug release kinetics.

    PubMed

    Lecca, Paola

    2018-01-01

    We implement a Monte Carlo heuristic algorithm to model drug release from a solid dosage form. We show that with Monte Carlo simulations it is possible to identify and explain the causes of the unsatisfactory predictive power of current drug release models. It is well known that the power-law, the exponential models, as well as those derived from or inspired by them accurately reproduce only the first 60% of the release curve of a drug from a dosage form. In this study, by using Monte Carlo simulation approaches, we show that these models fit quite accurately almost the entire release profile when the release kinetics is not governed by the coexistence of different physico-chemical mechanisms. We show that the accuracy of the traditional models are comparable with those of Monte Carlo heuristics when these heuristics approximate and oversimply the phenomenology of drug release. This observation suggests to develop and use novel Monte Carlo simulation heuristics able to describe the complexity of the release kinetics, and consequently to generate data more similar to those observed in real experiments. Implementing Monte Carlo simulation heuristics of the drug release phenomenology may be much straightforward and efficient than hypothesizing and implementing from scratch complex mathematical models of the physical processes involved in drug release. Identifying and understanding through simulation heuristics what processes of this phenomenology reproduce the observed data and then formalize them in mathematics may allow avoiding time-consuming, trial-error based regression procedures. Three bullet points, highlighting the customization of the procedure. •An efficient heuristics based on Monte Carlo methods for simulating drug release from solid dosage form encodes is presented. It specifies the model of the physical process in a simple but accurate way in the formula of the Monte Carlo Micro Step (MCS) time interval.•Given the experimentally observed curve of drug release, we point out how Monte Carlo heuristics can be integrated in an evolutionary algorithmic approach to infer the mode of MCS best fitting the observed data, and thus the observed release kinetics.•The software implementing the method is written in R language, the free most used language in the bioinformaticians community.

  11. The consciousness state space (CSS)—a unifying model for consciousness and self

    PubMed Central

    Berkovich-Ohana, Aviva; Glicksohn, Joseph

    2014-01-01

    Every experience, those we are aware of and those we are not, is embedded in a subjective timeline, is tinged with emotion, and inevitably evokes a certain sense of self. Here, we present a phenomenological model for consciousness and selfhood which relates time, awareness, and emotion within one framework. The consciousness state space (CSS) model is a theoretical one. It relies on a broad range of literature, hence has high explanatory and integrative strength, and helps in visualizing the relationship between different aspects of experience. Briefly, it is suggested that all phenomenological states fall into two categories of consciousness, core and extended (CC and EC, respectively). CC supports minimal selfhood that is short of temporal extension, its scope being the here and now. EC supports narrative selfhood, which involves personal identity and continuity across time, as well as memory, imagination and conceptual thought. The CSS is a phenomenological space, created by three dimensions: time, awareness and emotion. Each of the three dimensions is shown to have a dual phenomenological composition, falling within CC and EC. The neural spaces supporting each of these dimensions, as well as CC and EC, are laid out based on the neuroscientific literature. The CSS dynamics include two simultaneous trajectories, one in CC and one in EC, typically antagonistic in normal experiences. However, this characteristic behavior is altered in states in which a person experiences an altered sense of self. Two examples are laid out, flow and meditation. The CSS model creates a broad theoretical framework with explanatory and unificatory power. It constructs a detailed map of the consciousness and selfhood phenomenology, which offers constraints for the science of consciousness. We conclude by outlining several testable predictions raised by the CSS model. PMID:24808870

  12. Laser welding of polymers: phenomenological model for a quick and reliable process quality estimation considering beam shape influences

    NASA Astrophysics Data System (ADS)

    Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.

    2016-03-01

    This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.

  13. The process of recovery from bipolar I disorder: a qualitative analysis of personal accounts in relation to an integrative cognitive model.

    PubMed

    Mansell, Warren; Powell, Seth; Pedley, Rebecca; Thomas, Nia; Jones, Sarah Amelia

    2010-06-01

    This study explored the process of recovery from bipolar I disorder from a phenomenological and cognitive perspective. A semi-structured interview was coded and analysed using interpretative phenomenological analysis. Eleven individuals over the age of 30 with a history of bipolar disorder were selected on the basis of having remained free from relapse, and without hospitalization for at least 2 years, as confirmed by a diagnostic interview (Standardised Interview for DSM-IV; SCID-I). This arbitrary and equivocal criterion for 'recovery' provided an objective method of defining the sample for the study. The analysis revealed two overarching themes formed from four themes each. Ambivalent approaches referred to approaches that participants felt had both positive and negative consequences: avoidance of mania, taking medication, prior illness versus current wellness, and sense of identity following diagnosis. Helpful approaches referred to approaches that were seen as universally helpful: understanding, life-style fundamentals, social support and companionship, and social change. These themes were then interpreted in the light of the existing literature and an integrative cognitive model of bipolar disorder. Limitations and future research directions are discussed.

  14. Perceptual Anomalies in Schizophrenia: Integrating Phenomenology and Cognitive Neuroscience

    PubMed Central

    Uhlhaas, Peter J.; Mishara, Aaron L.

    2007-01-01

    From phenomenological and experimental perspectives, research in schizophrenia has emphasized deficits in “higher” cognitive functions, including attention, executive function, as well as memory. In contrast, general consensus has viewed dysfunctions in basic perceptual processes to be relatively unimportant in the explanation of more complex aspects of the disorder, including changes in self-experience and the development of symptoms such as delusions. We present evidence from phenomenology and cognitive neuroscience that changes in the perceptual field in schizophrenia may represent a core impairment. After introducing the phenomenological approach to perception (Husserl, the Gestalt School), we discuss the views of Paul Matussek, Klaus Conrad, Ludwig Binswanger, and Wolfgang Blankenburg on perception in schizophrenia. These 4 psychiatrists describe changes in perception and automatic processes that are related to the altered experience of self. The altered self-experience, in turn, may be responsible for the emergence of delusions. The phenomenological data are compatible with current research that conceptualizes dysfunctions in perceptual processing as a deficit in the ability to combine stimulus elements into coherent object representations. Relationships of deficits in perceptual organization to cognitive and social dysfunction as well as the possible neurobiological mechanisms are discussed. PMID:17118973

  15. Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann

    2016-03-01

    We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.

  16. [The Philosophical Relevance of the Study of Schizophrenia. Methodological and Conceptual Issues].

    PubMed

    López-Silva, Pablo

    2014-01-01

    The study of mental illness involves profound methodological and philosophical debates. This article explores the disciplinary complementarity, particularly, between philosophy of mind, phenomenology, and empirical studies in psychiatry and psychopathology in the context of the understanding of schizophrenia. After clarifying the possible role of these disciplines, it is explored the way in which a certain symptom of schizophrenia (thought insertion) challenges the current phenomenological approach to the relationship between consciousness and self-awareness. Finally, it is concluded that philosophy of mind, phenomenology, and empirical studies in psychiatry and psychopathology should, necessarily, regulate their progress jointly in order to reach plausible conclusions about what we call 'schizophrenia'. Crown Copyright © 2014. Publicado por Elsevier España. All rights reserved.

  17. No departure to "Pandora"? Using critical phenomenology to differentiate "naive" from "reflective" experience in psychiatry and psychosomatic medicine (A comment on Schwartz and Wiggins, 2010)

    PubMed Central

    2010-01-01

    The mind-body problem lies at the heart of the clinical practice of both psychiatry and psychosomatic medicine. In their recent publication, Schwartz and Wiggins address the question of how to understand life as central to the mind-body problem. Drawing on their own use of the phenomenological method, we propose that the mind-body problem is not resolved by a general, evocative appeal to an all encompassing life-concept, but rather falters precisely at the insurmountable difference between "natural" and a "reflective" experience built into phenomenological method itself. Drawing on the works of phenomenologically oriented thinkers, we describe life as inherently "teleological" without collapsing life with our subjective perspective, or stepping over our epistemological limits. From the phenomenology it can be demonstrated that the hypothetical teleological qualities are a reflective reconstruction modelled on human behavioural structure. PMID:21040525

  18. Personalized medicine in psychiatry.

    PubMed

    Wium-Andersen, Ida Kim; Vinberg, Maj; Kessing, Lars Vedel; McIntyre, Roger S

    2017-01-01

    Personalized medicine is a model in which a patient's unique clinical, genetic, and environmental characteristics are the basis for treatment and prevention. Aim, method, and results: This review aims to describe the current tools, phenomenological features, clinical risk factors, and biomarkers used to provide personalized medicine. Furthermore, this study describes the target areas in which they can be applied including diagnostics, treatment selection and response, assessment of risk of side-effects, and prevention. Personalized medicine in psychiatry is challenged by the current taxonomy, where the diagnostic categories are broad and great biological heterogeneity exists within each category. There is, thus, a gap between the current advanced research prospects and clinical practice, and the current taxonomy is, thus, a poor basis for biological research. The discussion proposes possible solutions to narrow this gap and to move psychiatric research forward towards personalized medicine.

  19. Simplified phenomenology for colored dark sectors

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose

    2017-04-01

    We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

  20. Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    2001-01-01

    A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.

  1. Current challenges in fundamental physics

    NASA Astrophysics Data System (ADS)

    Egana Ugrinovic, Daniel

    The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.

  2. Minimal but non-minimal inflation and electroweak symmetry breaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzola, Luca; Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu; Racioppi, Antonio

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  3. Anisotropic inflation with derivative couplings

    NASA Astrophysics Data System (ADS)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  4. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnowitt, R.; Nath, P.

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) {times} U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field.

  6. A narrative method for consciousness research.

    PubMed

    Díaz, José-Luis

    2013-01-01

    Some types of first-person narrations of mental processes that constitute phenomenological accounts and texts, such as internal monolog statements, epitomize the best expressions and representations of human consciousness available and therefore may be used to model phenomenological streams of consciousness. The type of autonomous monolog in which an author or narrator declares actual mental processes in a think aloud manner seems particularly suitable for modeling streams of consciousness. A narrative method to extract and depict conscious processes, operations, contents, and states from an acceptable phenomenological text would require three subsequent steps: operational criteria for producing and/or selecting a phenomenological text, a system for detecting text items that are indicative of conscious contents and processes, and a procedure for representing such items in formal dynamic system devices such as Petri nets. The requirements and restrictions of each of these steps are presented, analyzed, and applied to phenomenological texts in the following manner: (1) the relevance of introspective language and narrative analyses to consciousness research and the idea that specific narratives are of paramount interest for such investigation is justified; (2) some of the obstacles and constraints to attain plausible consciousness inferences from narrative texts and the methodological requirements to extract and depict items relevant to consciousness contents and operations from a suitable phenomenological text are examined; (3) a preliminary exercise of the proposed method is used to analyze and chart a classical interior monolog excerpted from James Joyce's Ulysses, a masterpiece of the stream-of-consciousness literary technique and, finally, (4) an inter-subjective evaluation for inter-observer agreement of mental attributions of another phenomenological text (an excerpt from the Intimate Journal of Miguel de Unamuno) is presented using some mathematical tools.

  7. A narrative method for consciousness research

    PubMed Central

    Díaz, José-Luis

    2013-01-01

    Some types of first-person narrations of mental processes that constitute phenomenological accounts and texts, such as internal monolog statements, epitomize the best expressions and representations of human consciousness available and therefore may be used to model phenomenological streams of consciousness. The type of autonomous monolog in which an author or narrator declares actual mental processes in a think aloud manner seems particularly suitable for modeling streams of consciousness. A narrative method to extract and depict conscious processes, operations, contents, and states from an acceptable phenomenological text would require three subsequent steps: operational criteria for producing and/or selecting a phenomenological text, a system for detecting text items that are indicative of conscious contents and processes, and a procedure for representing such items in formal dynamic system devices such as Petri nets. The requirements and restrictions of each of these steps are presented, analyzed, and applied to phenomenological texts in the following manner: (1) the relevance of introspective language and narrative analyses to consciousness research and the idea that specific narratives are of paramount interest for such investigation is justified; (2) some of the obstacles and constraints to attain plausible consciousness inferences from narrative texts and the methodological requirements to extract and depict items relevant to consciousness contents and operations from a suitable phenomenological text are examined; (3) a preliminary exercise of the proposed method is used to analyze and chart a classical interior monolog excerpted from James Joyce’s Ulysses, a masterpiece of the stream-of-consciousness literary technique and, finally, (4) an inter-subjective evaluation for inter-observer agreement of mental attributions of another phenomenological text (an excerpt from the Intimate Journal of Miguel de Unamuno) is presented using some mathematical tools. PMID:24265610

  8. Developing the Model of "Pedagogical Art Communication" Using Social Phenomenological Analysis: An Introduction to a Research Method and an Example for Its Outcome

    ERIC Educational Resources Information Center

    Hofmann, Fabian

    2016-01-01

    Social phenomenological analysis is presented as a research method for museum and art education. After explaining its methodological background, it is shown how this method has been applied in a study of gallery talks or guided tours in art museums: Analyzing the situation by description and interpretation, a model for understanding gallery talks…

  9. An "unreasonable effectiveness" of Hilbert transform for the transition phase behavior in an Aharonov-Bohm two-path interferometer

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-08-01

    The recent phase shift data of Takada et al. (Phys. Rev. Lett. 113 (2014) 126601) for a two level system are reconstructed from their current intensity curves by the method of Hilbert transform, for which the underlying Physics is the principle of causality. An introductory algebraic model illustrates pedagogically the working of the method and leads to newly derived relationships involving phenomenological parameters, in particular for the sign of the phase slope between the resonance peaks. While the parametrization of the experimental current intensity data in terms of a few model parameters shows only a qualitative agreement for the phase shift, due to the strong impact of small, detailed variations in the experimental intensity curve on the phase behavior, the numerical Hilbert transform yields a satisfactory reproduction of the phase.

  10. Same-sex partner bereavement in older women: an interpretative phenomenological analysis.

    PubMed

    Ingham, Charlotte F A; Eccles, Fiona J R; Armitage, Jocelyn R; Murray, Craig D

    2017-09-01

    Due to the lack of existing literature, the current research explored experiences of same-sex partner bereavement in women over the age of 60. Semi-structured interviews were conducted with eight women. Transcripts were analysed using interpretative phenomenological analysis. Three themes were identified which elaborated the experiences of older women who had lost a same-sex partner: (1) being left alone encapsulated feelings of isolation and exclusion; (2) navigating visibility centred on how homophobia led to a lack of recognition of the women's grief; and (3) finding new places to be authentic related women's need for new relationships in which they could be themselves. The findings indicate that existing models of partner bereavement may provide useful frameworks when seeking to understand the experiences of older women who have lost their same-sex partners. The findings indicate that in addition to the experiences of partner bereavement noted in research with heterosexual widows, older women who lose same-sex partners may face particular challenges, which can impact upon psychological well-being and adjustment to loss. These challenges appear to result from past and current homophobic and heterosexist attitudes within the UK culture. A range of interventions at individual, group, health service, and societal levels may be beneficial in improving the psychological well-being of older women who lose a same-sex partner.

  11. USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yun; Zhu Zonghong; Alcaniz, J. S.

    2010-03-01

    By assuming a phenomenological form for the ratio of the dark energy and matter densities rho{sub X} {proportional_to} rho{sub m} a {sup x}i, we discuss the cosmic coincidence problem in light of current observational data. Here, xi is a key parameter to denote the severity of the coincidence problem. In this scenario, xi = 3 and xi = 0 correspond to LAMBDACDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 < xi < 3 makes the coincidence problem less severe. In addition, the standard cosmology without interaction between dark energy andmore » dark matter is characterized by xi + 3omega{sub X} = 0, where omega{sub X} is the equation of state of the dark energy component, whereas the inequality xi + 3omega{sub X} {ne} 0 represents non-standard cosmology. We place observational constraints on the parameters (OMEGA{sub X,0}, omega{sub X}, xi) of this model, where OMEGA{sub X,0} is the present value of density parameter of dark energy OMEGA{sub X}, by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get OMEGA{sub X,0} = 0.72 +- 0.02, omega{sub X} = -0.98 +- 0.07, and xi = 3.06 +- 0.35 at 68.3% confidence level. The result shows that the LAMBDACDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.« less

  12. Phenomenology and treatment of behavioural addictions.

    PubMed

    Grant, Jon E; Schreiber, Liana R N; Odlaug, Brian L

    2013-05-01

    Behavioural addictions are characterized by an inability to resist an urge or drive resulting in actions that are harmful to oneself or others. Behavioural addictions share characteristics with substance and alcohol abuse, and in areas such as natural history, phenomenology, and adverse consequences. Behavioural addictions include pathological gambling, kleptomania, pyromania, compulsive buying, compulsive sexual behaviour, Internet addiction, and binge eating disorder. Few studies have examined the efficacy of pharmacological and psychological treatment for the various behavioural addictions, and therefore, currently, no treatment recommendations can be made.

  13. A Phenomenological Study with Youth Gang Members: Results and Implications for School Counselors.

    ERIC Educational Resources Information Center

    Omizo, Michael M.; Omizo, Sharon A.; Honda, Marianne R.

    1997-01-01

    Using a phenomenological model, examines eight male adolescents' perceptions of their gang membership. Interviews revealed such themes as self-esteem, a sense of belonging, and protection. Outlines implications for school counselors when working with gang members individually, in groups, with families, or during school interventions. (RJM)

  14. Islamic and Indonesianic Characters Perspective of Higher Education of Muhammadiyah

    ERIC Educational Resources Information Center

    Tobroni; Purwojuwono, Ribut

    2016-01-01

    The study aims to describe the educational model of Islamic and Indonesianic character in Muhammadiyah, perspective of phenomenological studies at School of Higher Education Teaching (STKIP) of Muhammadiyah Sorong of Papua Province Indonesia. The study is done by using qualitative approach with phenomenological paradigm. The main data was obtained…

  15. Toward a Phenomenological-Longitudinal Model of Media Gratification Processes.

    ERIC Educational Resources Information Center

    Kielwasser, Alfred P.; And Others

    While not dismissing the "uses and gratifications" approach to research, this paper attempts to increase the theoretical and practical utility of gratifications measures by approaching them through a more phenomenological and longitudinal tack. The paper suggests that any "gratification unit" is given a unique meaning by the…

  16. Particle Dark Matter constraints: the effect of Galactic uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less

  17. Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.

    PubMed

    Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta

    2015-10-16

    We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.

  18. Clinical features distinguishing grief from depressive episodes: A qualitative analysis.

    PubMed

    Parker, Gordon; McCraw, Stacey; Paterson, Amelia

    2015-05-01

    The independence or interdependence of grief and major depression has been keenly argued in relation to recent DSM definitions and encouraged the current study. We report a phenomenological study seeking to identify the experiential and phenomenological differences between depression and grief as judged qualitatively by those who had experienced clinical (n=125) or non-clinical depressive states (n=28). Analyses involving the whole sample indicated that, in contrast to grief, depression involved feelings of hopelessness and helplessness, being endless and was associated with a lack of control, having an internal self-focus impacting on self-esteem, being more severe and stressful, being marked by physical symptoms and often lacking a justifiable cause. Grief was distinguished from depression by the individual viewing their experience as natural and to be expected, a consequence of a loss, and with an external focus (i.e. the loss of the other). Some identified differences may have reflected the impact of depressive "type" (e.g. melancholia) rather than depression per se, and argue for a two-tiered model differentiating normative depressive and grief states at their base level and then "clinical" depressive and 'pathological' grief states by their associated clinical features. Comparative analyses between the clinical and non-clinical groups were limited by the latter sub-set being few in number. The provision of definitions may have shaped subjects׳ nominated differentiating features. The study identified a distinct number of phenomenological and clinical differences between grief and depression and few shared features, but more importantly, argued for the development of a two-tiered model defining both base states and clinical expressions. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Extending the Standard Model with Confining and Conformal Dynamics

    NASA Astrophysics Data System (ADS)

    McRaven, John Emory

    This dissertation will provide a survey of models that involve extending the standard model with confining and conformal dynamics. We will study a series of models, describe them in detail, outline their phenomenology, and provide some search strategies for finding them. The Gaugephobic Higgs model provides an interpolation between three different models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum models, and the Standard Model. At parameter points between the extremes, Standard Model Higgs signals are present at reduced rates, and Higgsless Kaluza-Klein excitations are present with shifted masses and couplings, as well as signals from exotic quarks necessary to protect the Zbb coupling. Using a new implementation of the model in SHERPA, we show the LHC signals which differentiate the generic Gaugephobic Higgs model from its limiting cases. These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson or quark. We identify the clean signal pp → W (i) → WH mediated by a Kaluza-Klein W, which can be present at large rates and is enhanced for even Kaluza-Klein numbers. Due to the very hard lepton coming from the W+/- decay, this signature has little background, and provides a better discovery channel for the Higgs than any of the Standard Model modes, over its entire mass range. A Higgs radiated from new heavy quarks also has large rates, but is much less promising due to very high multiplicity final states. The AdS/CFT conjectures a relation between Extra Dimensional models in AdS5 space, such as the Gaugephobic Higgs Model, and 4D Conformal Field theories. The notion of conformality has found its way into several phenomenological models for TeV-scale physics extending the standard model. We proceed to explore the phenomenology of a new heavy quark that transforms under a hidden strongly coupled conformal gauge group in addition to transforming under QCD. This object would form states similar to R-Hadrons. The heavy state would leave very little of its energy in the calorimeter, so while detecting the presence of a heavy stable state would be easy, measuring the strength of the detecting it would require accurate measurements of missing energy, or the ability to identify it in the muon tracker. We then study the phenomenology of a 4D model of electroweak symmetry breaking through the condensation of magnetic monopoles. A new generation of fermions with magnetic charges in addition to electric charges is introduced. The dyons condense and break the electroweak symmetry. The magnetic coupling is inversely proportional to the electric coupling, causing it to be strong. The processes involving magnetic couplings thus provide interesting phenomenology to study. We primarily study the processes involving di-photon production and compare it to early LHC results. Finally, we calculate triangle anomalies for fermions with non-canonical scaling dimensions. The most well known example of such fermions (aka unfermions) occurs in Seiberg duality where the matching of anomalies (including mesinos with scaling dimensions between 3/2 and 5/2) is a crucial test of duality. By weakly gauging the non-local action for an unfermion, we calculate the one-loop three-current amplitude. Despite the fact that there are more graphs with more complicated propagators and vertices, we find that the calculation can be completed in a way that nearly parallels the usual case. We show that the anomaly factor for fermionic unparticles is independent of the scaling dimension and identical to that for ordinary fermions. This can be viewed as a confirmation that unparticle actions correctly capture the physics of conformal fixed point theories like Banks-Zaks or SUSY QCD.

  20. Experience of Time Passage:. Phenomenology, Psychophysics, and Biophysical Modelling

    NASA Astrophysics Data System (ADS)

    Wackermann, Jiří

    2005-10-01

    The experience of time's passing appears, from the 1st person perspective, to be a primordial subjective experience, seemingly inaccessible to the 3rd person accounts of time perception (psychophysics, cognitive psychology). In our analysis of the `dual klepsydra' model of reproduction of temporal durations, time passage occurs as a cognitive construct, based upon more elementary (`proto-cognitive') function of the psychophysical organism. This conclusion contradicts the common concepts of `subjective' or `psychological' time as readings of an `internal clock'. Our study shows how phenomenological, experimental and modelling approaches can be fruitfully combined.

  1. On the structures and mapping of auroral electrostatic potentials

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Newman, A. L.; Cornwall, J. M.

    1981-01-01

    The mapping of magnetospheric and ionospheric electric fields in a kinetic model of magnetospheric-ionospheric electrodynamic coupling proposed for the aurora is examined. One feature is the generalization of the kinetic current-potential relationship to the return current region (identified as a region where the parallel drop from magnetosphere to ionosphere is positive); such a return current always exists unless the ionosphere is electrically charged to grossly unphysical values. A coherent phenomenological picture of both the low energy return current and the high energy precipitation of an inverted-V is given. The mapping between magnetospheric and ionospheric electric fields is phrased in terms of a Green's function which acts as a filter, emphasizing magnetospheric latitudinal spatial scales of order (when mapped to the ionosphere) 50 to 150 km. This same length, when multiplied by electric fields just above the ionosphere, sets the scale for potential drops between the ionosphere and equatorial magnetosphere.

  2. RF Noise Generation in High-Pressure Short-Arc DC Xenon Lamps

    NASA Astrophysics Data System (ADS)

    Minayeva, Olga; Doughty, Douglas

    2007-10-01

    Continuous direct current xenon arcs will generate RF noise under certain circumstance, which can lead to excessive electro- magnetic interference in systems that use these arcs as light sources. Phenomenological observations are presented for xenon arcs having arc gaps ˜1 mm, cold fill pressures of ˜2.5 MPa, and currents up to 30 amps. Using a loop antenna in the vicinity of an operating lamp, it is observed that as the current to the arc is lowered there is a reproducible threshold at which the RF noise generation begins. This threshold is accompanied by a small abrupt drop in voltage (˜0.2 volts). The RF emission appears in pulses ˜150 nsec wide separated by ˜300 nec - the pulse interval decreases with decreasing current. The properties of the RF emission as a function of arc parameters (such as pressure, arc gap, electrode design) will be discussed and a semi-quantitative model presented.

  3. Three-Dimensional High Fidelity Progressive Failure Damage Modeling of NCF Composites

    NASA Technical Reports Server (NTRS)

    Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid G.; Satyanarayana, Arunkumar; Bogert, Philip B.

    2017-01-01

    Performance prediction of off-axis laminates is of significant interest in designing composite structures for energy absorption. Phenomenological models available in most of the commercial programs, where the fiber and resin properties are smeared, are very efficient for large scale structural analysis, but lack the ability to model the complex nonlinear behavior of the resin and fail to capture the complex load transfer mechanisms between the fiber and the resin matrix. On the other hand, high fidelity mesoscale models, where the fiber tows and matrix regions are explicitly modeled, have the ability to account for the complex behavior in each of the constituents of the composite. However, creating a finite element model of a larger scale composite component could be very time consuming and computationally very expensive. In the present study, a three-dimensional mesoscale model of non-crimp composite laminates was developed for various laminate schemes. The resin material was modeled as an elastic-plastic material with nonlinear hardening. The fiber tows were modeled with an orthotropic material model with brittle failure. In parallel, new stress based failure criteria combined with several damage evolution laws for matrix stresses were proposed for a phenomenological model. The results from both the mesoscale and phenomenological models were compared with the experiments for a variety of off-axis laminates.

  4. Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Mikhail

    2005-11-15

    In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.

  5. Reflection on Lived Experience in Educational Research

    ERIC Educational Resources Information Center

    Barnacle, Robyn

    2004-01-01

    While debate about the meaning of hermeneutics and phenomenology for educational research continues, the notion of lived experience, and its application to reflective practice, has become a feature of much that goes by the name of phenomenological within this area. The prevalence of the lived experience model can be attributed in large part to the…

  6. Being the Bridge: The Lived Experience of Educating with Online Courseware in the High School Blended Learning Setting

    ERIC Educational Resources Information Center

    Rambo, Anna Lynn

    2011-01-01

    This dissertation explores the lived experiences of educators who teach in flex model blended learning settings using online, vendor-provided courseware. The tradition of hermeneutic phenomenology grounds this inquiry (Heidegger, 1927/2008). Phenomenological research activities designed by van Manen (1990, 2002) provide the methodological…

  7. The Impact of Powerful Teaching and Learning on Teachers' Sense of Efficacy: A Phenomenological Study

    ERIC Educational Resources Information Center

    Allinger, Jodell Schara

    2011-01-01

    This qualitative phenomenological study explored the impact of the professional development model, "Powerful Teaching and Learning" (PTL) on teachers' sense of efficacy of 17 secondary teachers at a single high school in Washington State. Qualitative data was collected through in-depth interviews and analyzed using the methodical…

  8. High Schools Implementing Bring Your Own Technology: A Phenomenological Study of Classroom Teachers' Perspectives

    ERIC Educational Resources Information Center

    Hurston, Allison Leigh

    2017-01-01

    Despite the increased unfolding of new Bring Your Own Technology (BYOT) initiatives, confusion exists regarding the defining characteristics of a BYOT classroom. Using the Technology Acceptance Model (TAM), the purpose of this qualitative transcendental phenomenological study was to investigate how teachers at three different high schools in a…

  9. Phenomenological Behavior-Exchange Models of Marital Success.

    ERIC Educational Resources Information Center

    Gottman, John; And Others

    The objective of two studies was to devise an assessment procedure for the evaluation of therapy with distressed marriages. An extension of behavior exchange theory was proposed to include phenomenological ratings by the couple of the intent of messages sent and the impact of messages received. Convergent criteria were used to select 14…

  10. A Phenomenological Exploration of Self-Directed Learning among Successful Minority Entrepreneurs

    ERIC Educational Resources Information Center

    Alexander, Nancy Hope

    2013-01-01

    This transcendental, phenomenological study explored the Self-directed learning (SDL) of 10 successful minority entrepreneurs. Two SDL theories serve as lenses for the study, Spear and Mocker's (1984) Organizing Circumstance and Brockett and Heimstra's (1991) Personal Responsibility Orientation model. Five themes emerged from the data:…

  11. What happens in Josephson junctions at high critical current densities

    NASA Astrophysics Data System (ADS)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  12. Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP

    NASA Astrophysics Data System (ADS)

    McEwen, J. D.; Josset, T.; Feeney, S. M.; Peiris, H. V.; Lasenby, A. N.

    2013-12-01

    We perform a definitive analysis of Bianchi VIIh cosmologies with Wilkinson Microwave Anisotropy Probe (WMAP) observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky masked W-band map of WMAP 9 yr observations. In addition to the physically motivated Bianchi VIIh model, we examine phenomenological models considered in previous studies, in which the Bianchi VIIh parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fitting Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evidence for a phenomenological Bianchi component is found in the partial-sky W-band data. In the physical Bianchi VIIh model, we find no evidence for a Bianchi component: WMAP data thus do not favour Bianchi VIIh cosmologies over the standard Λ cold dark matter (ΛCDM) cosmology. It is not possible to discount Bianchi VIIh cosmologies in favour of ΛCDM completely, but we are able to constrain the vorticity of physical Bianchi VIIh cosmologies at (ω/H)0 < 8.6 × 10-10 with 95 per cent confidence.

  13. Higgs boson as a top-mode pseudo-Nambu-Goldstone boson

    NASA Astrophysics Data System (ADS)

    Fukano, Hidenori S.; Kurachi, Masafumi; Matsuzaki, Shinya; Yamawaki, Koichi

    2014-09-01

    In the spirit of the top-quark condensation, we propose a model which has a naturally light composite Higgs boson, "tHiggs" (ht0), to be identified with the 126 GeV Higgs discovered at the LHC. The tHiggs, a bound state of the top quark and its flavor (vectorlike) partner, emerges as a pseudo-Nambu-Goldstone boson (NGB), "top-mode pseudo-Nambu-Goldstone boson," together with the exact NGBs to be absorbed into the W and Z bosons as well as another (heavier) top-mode pseudo-Nambu-Goldstone bosons (CP-odd composite scalar, At0). Those five composite (exact/pseudo-) NGBs are dynamically produced simultaneously by a single supercritical four-fermion interaction having U(3)×U(1) symmetry which includes the electroweak symmetry, where the vacuum is aligned by a small explicit breaking term so as to break the symmetry down to a subgroup, U(2)×U(1)', in a way not to retain the electroweak symmetry, in sharp contrast to the little Higgs models. The explicit breaking term for the vacuum alignment gives rise to a mass of the tHiggs, which is protected by the symmetry and hence naturally controlled against radiative corrections. Realistic top-quark mass is easily realized similarly to the top-seesaw mechanism by introducing an extra (subcritical) four-fermion coupling which explicitly breaks the residual U(2)'×U(1)' symmetry with U(2)' being an extra symmetry besides the above U(3)L×U(1). We present a phenomenological Lagrangian of the top-mode pseudo-Nambu-Goldstone bosons along with the Standard Model particles, which will be useful for the study of the collider phenomenology. The coupling property of the tHiggs is shown to be consistent with the currently available data reported from the LHC. Several phenomenological consequences and constraints from experiments are also addressed.

  14. The phenomenology of deep brain stimulation-induced changes in OCD: an enactive affordance-based model

    PubMed Central

    de Haan, Sanneke; Rietveld, Erik; Stokhof, Martin; Denys, Damiaan

    2013-01-01

    People suffering from Obsessive-Compulsive Disorder (OCD) do things they do not want to do, and/or they think things they do not want to think. In about 10% of OCD patients, none of the available treatment options is effective. A small group of these patients is currently being treated with deep brain stimulation (DBS). DBS involves the implantation of electrodes in the brain. These electrodes give a continuous electrical pulse to the brain area in which they are implanted. It turns out that patients may experience profound changes as a result of DBS treatment. It is not just the symptoms that change; patients rather seem to experience a different way of being in the world. These global effects are insufficiently captured by traditional psychiatric scales, which mainly consist of behavioral measures of the severity of the symptoms. In this article we aim to capture the changes in the patients' phenomenology and make sense of the broad range of changes they report. For that we introduce an enactive, affordance-based model that fleshes out the dynamic interactions between person and world in four aspects. The first aspect is the patients' experience of the world. We propose to specify the patients' world in terms of a field of affordances, with the three dimensions of broadness of scope (“width” of the field), temporal horizon (“depth”), and relevance of the perceived affordances (“height”). The second aspect is the person-side of the interaction, that is, the patients' self-experience, notably their moods and feelings. Thirdly, we point to the different characteristics of the way in which patients relate to the world. And lastly, the existential stance refers to the stance that patients take toward the changes they experience: the second-order evaluative relation to their interactions and themselves. With our model we intend to specify the notion of being in the world in order to do justice to the phenomenological effects of DBS treatment. PMID:24133438

  15. Phenomenology of pure-gauge hidden valleys at hadron colliders

    NASA Astrophysics Data System (ADS)

    Juknevich, Jose E.

    Expectations for new physics at the LHC have been greatly influenced by the Hierarchy problem of electroweak symmetry breaking. However, there are reasons to believe that the LHC may still discover new physics, but not directly related to the resolution of the Hierarchy problem. To ensure that such a physics does not go undiscovered requires precise understanding of how new phenomena will reveal themselves in the current and future generation of particle-physics experiments. Given this fact it seems sensible to explore other approaches to this problem; we study three alternatives here. In this thesis I argue for the plausibility that the standard model is coupled, through new massive charged or colored particles, to a hidden sector whose low energy dynamics is controlled by a pure Yang-Mills theory, with no light matter. Such a sector would have numerous metastable "hidden glueballs" built from the hidden gluons. These states would decay to particles of the standard model. I consider the phenomenology of this scenario, and find formulas for the lifetimes and branching ratios of the most important of these states. The dominant decays are to two standard model gauge bosons or to fermion-antifermion pairs, or by radiative decays with photon or Higgs emission, leading to jet- and photon-rich signals, and some occasional leptons. The presence of effective operators of different mass dimensions, often competing with each other, together with a great diversity of states, leads to a great variability in the lifetimes and decay modes of the hidden glueballs. I find that most of the operators considered in this work are not heavily constrained by precision electroweak physics, therefore leaving plenty of room in the parameter space to be explored by the future experiments at the LHC. Finally, I discuss several issues on the phenomenology of the new massive particles as well as an outlook for experimental searches.

  16. Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.

    PubMed

    Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu

    2009-02-06

    We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.

  17. Feeling and Time: The Phenomenology of Mood Disorders, Depressive Realism, and Existential Psychotherapy

    PubMed Central

    Ghaemi, S. Nassir

    2007-01-01

    Phenomenological research suggests that pure manic and depressive states are less common than mixtures of the two and that the two poles of mood are characterized by opposite ways of experiencing time. In mania, the subjective experience of time is sped up and in depression it is slowed down, perhaps reflecting differences in circadian pathophysiology. The two classic mood states are also quite different in their effect on subjective awareness: manic patients lack insight into their excitation, while depressed patients are quite insightful into their unhappiness. Consequently, insight plays a major role in overdiagnosis of unipolar depression and misdiagnosis of bipolar disorder. The phenomenology of depression also is relevant to types of psychotherapies used to treat it. The depressive realism (DR) model, in contrast to the cognitive distortion model, appears to better apply to many persons with mild to moderate depressive syndromes. I suggest that existential psychotherapy is the necessary corollary of the DR model in those cases. Further, some depressive morbidities may in fact prove, after phenomenological study, to involve other mental states instead of depression. The chronic subsyndromal depression that is often the long-term consequence of treated bipolar disorder may in fact represent existential despair, rather than depression proper, again suggesting intervention with existential psychotherapeutic methods. PMID:17122410

  18. Statistical turbulence theory and turbulence phenomenology

    NASA Technical Reports Server (NTRS)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  19. Nuclear effects in (anti)neutrino charge-current quasielastic scattering at MINER νA kinematics

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Antonov, A. N.; Megias, G. D.; González-Jiménez, R.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udías, J. M.

    2018-05-01

    We compare the characteristics of the charged-current quasielastic (anti)neutrino scattering obtained in two different nuclear models, the phenomenological SuperScaling Approximation and the model using a realistic spectral function S(p, ɛ) that gives a scaling function in accordance with the (e, e‧ ) scattering data, with the recent data published by the MiniBooNE, MINER νA, and NOMAD collaborations. The spectral function accounts for the nucleon-nucleon (NN) correlations by using natural orbitals from the Jastrow correlation method and has a realistic energy dependence. Both models provide a good description of the MINER νA and NOMAD data without the need of an ad hoc increase of the value of the mass parameter in the axial-vector dipole form factor. The models considered in this work, based on the the impulse approximation (IA), underpredict the MiniBooNE data for the flux-averaged charged-current quasielastic {ν }μ ({\\bar{ν }}μ ){+}12\\text{C} differential cross section per nucleon and the total cross sections, although the shape of the cross sections is represented by the approaches. The discrepancy is most likely due to missing of the effects beyond the IA, e.g., those of the 2p–2h meson exchange currents that have contribution in the transverse responses.

  20. Contribution of nonprimate animal models in understanding the etiology of schizophrenia

    PubMed Central

    Lazar, Noah L.; Neufeld, Richard W.J.; Cain, Donald P.

    2011-01-01

    Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelopmental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neurotransmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans. PMID:21247514

  1. A coupled ductile fracture phase-field model for crystal plasticity

    NASA Astrophysics Data System (ADS)

    Hernandez Padilla, Carlos Alberto; Markert, Bernd

    2017-07-01

    Nowadays crack initiation and evolution play a key role in the design of mechanical components. In the past few decades, several numerical approaches have been developed with the objective to predict these phenomena. The objective of this work is to present a simplified, nonetheless representative phenomenological model to predict the crack evolution of ductile fracture in single crystals. The proposed numerical approach is carried out by merging a conventional elasto-plastic crystal plasticity model and a phase-field model modified to predict ductile fracture. A two-dimensional initial boundary value problem of ductile fracture is introduced considering a single-crystal setup and Nickel-base superalloy material properties. The model is implemented into the finite element context subjected to a quasi-static uniaxial tension test. The results are then qualitatively analyzed and briefly compared to current benchmark results in the literature.

  2. MELCOR computer code manuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  3. K →π matrix elements of the chromomagnetic operator on the lattice

    NASA Astrophysics Data System (ADS)

    Constantinou, M.; Costa, M.; Frezzotti, R.; Lubicz, V.; Martinelli, G.; Meloni, D.; Panagopoulos, H.; Simula, S.; ETM Collaboration

    2018-04-01

    We present the results of the first lattice QCD calculation of the K →π matrix elements of the chromomagnetic operator OCM=g s ¯ σμ νGμ νd , which appears in the effective Hamiltonian describing Δ S =1 transitions in and beyond the standard model. Having dimension five, the chromomagnetic operator is characterized by a rich pattern of mixing with operators of equal and lower dimensionality. The multiplicative renormalization factor as well as the mixing coefficients with the operators of equal dimension have been computed at one loop in perturbation theory. The power divergent coefficients controlling the mixing with operators of lower dimension have been determined nonperturbatively, by imposing suitable subtraction conditions. The numerical simulations have been carried out using the gauge field configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical quarks at three values of the lattice spacing. Our result for the B parameter of the chromomagnetic operator at the physical pion and kaon point is BCMOK π=0.273 (69 ) , while in the SU(3) chiral limit we obtain BCMO=0.076 (23 ) . Our findings are significantly smaller than the model-dependent estimate BCMO˜1 - 4 , currently used in phenomenological analyses, and improve the uncertainty on this important phenomenological quantity.

  4. LHC phenomenology of natural MSSM with non-universal gaugino masses at the unification scale

    NASA Astrophysics Data System (ADS)

    Abe, Hiroyuki; Kawamura, Junichiro; Omura, Yuji

    2015-08-01

    In this letter, we study collider phenomenology in the supersymmetric Standard Model with a certain type of non-universal gaugino masses at the gauge coupling unification scale, motivated by the little hierarchy problem. In this scenario, especially the wino mass is relatively large compared to the gluino mass at the unification scale, and the heavy wino can relax the fine-tuning of the higgsino mass parameter, so-called μ-parameter. Besides, it will enhance the lightest Higgs boson mass due to the relatively large left-right mixing of top squarks through the renormalization group (RG) effect. Then 125 GeV Higgs boson could be accomplished, even if the top squarks are lighter than 1 TeV and the μ parameter is within a few hundreds GeV. The right-handed top squark tends to be lighter than the other sfermions due to the RG runnings, then we focus on the top squark search at the LHC. Since the top squark is almost right-handed and the higgsinos are nearly degenerate, 2 b + E T miss channel is the most sensitive to this scenario. We figure out current and expected experimental bounds on the lightest top squark mass and model parameters at the gauge coupling unification scale.

  5. The Lifeworld Earth and a Modelled Earth

    ERIC Educational Resources Information Center

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  6. Resonant enhancement in leptogenesis

    NASA Astrophysics Data System (ADS)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  7. A primary health care curriculum in action: the lived experience of primary health care nurses in a school of nursing in the Philippines: a phenomenological study.

    PubMed

    Arthur, David; Drury, John; Sy-Sinda, Maria Teresita; Nakao, Ramonita; Lopez, Arsenia; Gloria, Grace; Turtal, Rowena; Luna, Evelyn

    2006-01-01

    Primary health care (PHC) nursing is widely practiced in the Philippines yet little is published about the nurses working in this field nor by these nurses. This paper describes a PHC nursing curriculum conducted in an island in the south of the Philippines and examines the experience of nurses working as faculty and simultaneously providing service to the local community. Data were collected from a convenience sample of faculty by interview and analysed using Huserrlian (descriptive) phenomenology and Colaizzi's method of data analysis. From 102 formulated meanings emerged four theme clusters: teaching PHC; external influences; the working reality and practicing PHC, and these are presented with exemplars from the interviews. The data gives a clear impression of the experience of implementing PHC and working with small communities and highlights the educational and clinical issues inherent in this unique model. The insights gained from the analysis of the interviews are contrasted with current literature and recommendations for future research are made.

  8. Gamma-Ray Emission in Dissipative Pulsar Magnetospheres: from Theory to Fermi Observations

    NASA Technical Reports Server (NTRS)

    Kalapotharakos, Konstantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-01-01

    We compute the patterns of gamma-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed gamma-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model gamma-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and gamma-ray emission on the gamma-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the gamma-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  9. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  10. Control of superconductivity by means of electric-field-induced strain in superconductor/piezoelectric hybrids

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Zeibekis, M.; Zhang, S. J.

    2018-01-01

    The controlled modification of superconductivity by any means, specifically in hybrid systems, has attracted much interest in the recent decades. Here, we present experimental data and phenomenological modeling on the control of TC of superconducting (SC) Nb thin films, with thickness 3 nm ≤ dN b≤50 nm, under the application of in-plane strain, S(Eex) induced by an external out-of-plane electric field, Eex to piezoelectric (PE) single crystals, namely, ( 1 -x )Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT), with x = 0.27 and 0.31. We report experimental modification of TC of Nb by Eex, accurately described by a phenomenological model that incorporates the constitutive relation S(Eex) of PMN-xPT. The systematic experimental-phenomenological modeling approach introduced here is generic and paves the way for an understanding of the underlying physical mechanisms in any SC/PE hybrid.

  11. Mapping the demise of collective motion in nuclei at high excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Maiolino, C.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Hongmei, F.; Migneco, E.; Piattelli, P.; Sapienza, P.; Auditore, L.; Cardella, G.; De Filippo, E.; La Guidara, E.; Monrozeau, C.; Papa, M.; Pirrone, S.; Rizzo, F.; Trifiró, A.; Trimarchi, M.; Huang, H. X.; Wieland, O.

    2018-07-01

    High energy gamma-rays from the 116Sn + 24Mg reaction at 23A MeV were measured using the MEDEA detector at LNS - INFN Catania. Combining this new data with previous measurements yields a detailed view of the quenching of the Giant Dipole Resonance as a function of excitation energy in nuclei of mass A in the range 120 ÷ 132. The transition towards the disappearance of the dipole strength, which occurs around 230 MeV excitation energy, appears to be remarkably sharp. Current phenomenological models give qualitative explanations for the quenching but cannot reproduce its detailed features.

  12. Growth rate of plasma-synthesized vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Lowndes, D. H.; Simpson, M. L.

    2002-08-01

    Vertically aligned carbon nanofibers (VACNFs) were synthesized by direct-current plasma enhanced chemical vapor deposition using acetylene and ammonia as the gas source. The mechanisms responsible for changing the nanofiber growth rate were studied and phenomenological models are proposed. The feedstock for VACNF growth is suggested to consist mainly of radicals formed in the plasma and not the unexcited acetylene gas molecules. The growth rate is shown to increase dramatically by changing the radical transport mechanism from diffusive to forced flow, which was accomplished by increasing the gas flow in the direction perpendicular to the substrate.

  13. CASTEAUR: a simple tool to assess the transfer of radionuclides in waterways.

    PubMed

    Beaugelin-Seiller, K; Boyer, P; Garnier-Laplace, J; Adam, C

    2002-10-01

    The CASTEAUR project proposes a simplified tool to assess the transfer of radionuclides between and in the main biotic and abiotic components of the freshwater ecosystem. Applied to phenomenological modeling, various hypotheses simplify the transfer equations, which, when programmed under Excel, can be readily dispatched and used. CASTEAUR can be used as an assessment tool for impact studies of accidental release as well as "routine" release. This code is currently being tested on the Rhone River, downstream from a nuclear reprocessing plant. The first results are reported to illustrate the possibilities offered by CASTEAUR.

  14. TMDs and SSAs in hadronic interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aschenauer, E. C.; D’Alesio, U.; Murgia, F.

    2016-06-17

    Here we present an overview on the current experimental and phenomenological status of transverse single spin asymmetries (tSSAs) in proton-proton collisions. In particular, we focus on large- pT inclusive pion, photon, jet, pion-jet production and Drell-Yan processes. For all of them theoretical estimates are given in terms of a generalised parton model (GPM) based on a transverse momentum dependent (TMD) factorisation scheme. We also make comparisons with the corresponding results in a collinear twist-3 formalism and in a modified GPM approach. On the experimental side, a selection of the most interesting and recent results from RHIC is presented.

  15. Phenomenological Modeling of Newly Discovered Eclipsing Binary 2MASS J18024395 + 4003309 = VSX J180243.9+400331

    NASA Astrophysics Data System (ADS)

    Andronov, Ivan L.; Kim, Yonggi; Kim, Young-Hee; Yoon, Joh-Na; Chinarova, Lidia L.; Tkachenko, Mariia G.

    2015-06-01

    We present a by-product of our long term photometric monitoring of cataclysmic variables. 2MASS J18024395 +4003309 = VSX J180243.9 +400331 was discovered in the field of the intermediate polar V1323 Her observed using the Korean 1-m telescope located at Mt. Lemmon, USA. An analysis of the two-color VR CCD observations of this variable covers all the phase intervals for the first time. The light curves show this object can be classified as an Algol-type variable with tidally distorted components, and an asymmetry of the maxima (the O'Connell effect). The periodogram analysis confirms the cycle numbering of Andronov et al. (2012) and for the initial approximation, the ephemeris is used as follows: Min I. BJD = 2456074.4904+0.3348837E . For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" ("New Algol Variable") using local specific shapes for the eclipse. Methodological aspects and estimates of the physical parameters based on analysis of phenomenological parameters are presented. As results of our phenomenological model, we obtained for the inclination i=90°, M1=0.745M⊙, M2=0.854M⊙, M=M1+M2=1.599M⊙, the orbital separation a=1.65°109m=2.37R⊙ and relative radii r1=R1/a=0.314 and r2=R2/a=0.360. These estimates may be used as preliminary starting values for further modeling using extended physical models based on the Wilson & Devinney (1971) code and it's extensions

  16. The Shock and Vibration Digest. Volume 1, Number 12, December 1969.

    DTIC Science & Technology

    Contents: Reviews of meetings; Short courses; Abstracts from the current literature (analysis and design methods, excitation, phenomenology, experimentation, components, systems); Book reviews; Calendar; Author index ; Subject index.

  17. Social Phenomenological Analysis as a Research Method in Art Education: Developing an Empirical Model for Understanding Gallery Talks

    ERIC Educational Resources Information Center

    Hofmann, Fabian

    2016-01-01

    Social phenomenological analysis is presented as a research method to study gallery talks or guided tours in art museums. The research method is based on the philosophical considerations of Edmund Husserl and sociological/social science concepts put forward by Max Weber and Alfred Schuetz. Its starting point is the everyday lifeworld; the…

  18. The Phenomenon of Collaboration: A Phenomenologic Study of Collaboration between Family Medicine and Obstetrics and Gynecology Departments at an Academic Medical Center

    ERIC Educational Resources Information Center

    Brown, David R.; Brewster, Cheryl D.; Karides, Marina; Lukas, Lou A.

    2011-01-01

    Collaboration is essential to manage complex real world problems. We used phenomenologic methods to elaborate a description of collaboration between two departments at an academic medical center who considered their relationship to represent a model of effective collaboration. Key collaborative structures included a shared vision and commitment by…

  19. Phenomenological investigation of despair in depression.

    PubMed

    Bürgy, Martin

    2008-01-01

    In current psychopathological literature, the concept of despair is almost redundant. At most, the term is applied in a behavioral biological context as a synonym for helplessness and hopelessness. In light of the fact that the subjective experience of despair is neglected, the present paper adopts a phenomenological approach. The selection and hermeneutic investigation of philosophical concepts serve as tools for an initial delineation of the core structure of despair. On the basis of a growing deviation between desire and reality, target and actual status, an alternating development is initiated which increasingly constricts and leads to hopelessness and suicide. This phenomenological core structure is identified from a number of integral characteristics of depression and further developed. Despair, thus, becomes a psychopathological key term through which access can be gained to the subjective experience of the depressive individual and which can provide the basis for promoting understanding and communication as well as developing successful therapeutic interventions.

  20. GUT models at current and future hadron colliders and implications to dark matter searches

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Lindner, Manfred; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-08-01

    Grand Unified Theories (GUT) offer an elegant and unified description of electromagnetic, weak and strong interactions at high energy scales. A phenomenological and exciting possibility to grasp GUT is to search for TeV scale observables arising from Abelian groups embedded in GUT constructions. That said, we use dilepton data (ee and μμ) that has been proven to be a golden channel for a wide variety of new phenomena expected in theories beyond the Standard Model to probe GUT-inspired models. Since heavy dilepton resonances feature high signal selection efficiencies and relatively well-understood backgrounds, stringent and reliable bounds can be placed on the mass of the Z‧ gauge boson arising in such theories. In this work, we obtain 95% C.L. limits on the Z‧ mass for several GUT-models using current and future proton-proton colliders with √{ s} = 13 TeV , 33 TeV ,and 100 TeV, and put them into perspective with dark matter searches in light of the next generation of direct detection experiments.

  1. Transport model of controlled molecular rectifier showing unusual negative differential resistance effect.

    PubMed

    Granhen, Ewerton Ramos; Reis, Marcos Allan Leite; Souza, Fabrício M; Del Nero, Jordan

    2010-12-01

    We investigate theoretically the charge accumulated Q in a three-terminal molecular device in the presence of an external electric field. Our approach is based on ab initio Hartree-Fock and density functional theory methodology contained in Gaussian package. Our main finding is a negative differential resistance (NDR) in the charge Q as a function of an external electric field. To explain this NDR effect we apply a phenomenological capacitive model based on a quite general system composed of many localized levels (that can be LUMOs of a molecule) coupled to source and drain. The capacitance accounts for charging effects that can result in Coulomb blockade (CB) in the transport. We show that this CB effect gives rise to a NDR for a suitable set of phenomenological parameters, like tunneling rates and charging energies. The NDR profile obtained in both ab initio and phenomenological methodologies are in close agreement.

  2. Origin of switching current transients in TIPS-pentacene based organic thin-film transistor with polymer dielectric

    NASA Astrophysics Data System (ADS)

    Singh, Subhash; Mohapatra, Y. N.

    2017-06-01

    We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.

  3. Predicting the Effects of Test Media in Ground-Based Propulsion Testing

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Parker, Peter A.; Chelliah, Harsha K.; Cutler, Andrew D.; Givi, Peyman; Hassan, Hassan, A.

    2006-01-01

    This paper discusses the progress of work which began in mid-2004 sponsored by the Office of the Secretary of Defense (OSD) Test & Evaluation/Science & Technology (T&E/S&T) Program. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the effects of the test media on the flameholding characteristics in scramjet engines. The program has several components including the development of advance algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work involving the development of phenomenological models for Reynolds averaged Navier-Stokes codes, large-eddy simulation techniques and reduced-kinetics models. Experiments that will provide data for the modeling efforts will also be described, along with with the associated nonintrusive diagnostics used to collect the data.

  4. A hybrid phenomenological model for ferroelectroelastic ceramics. Part II: Morphotropic PZT ceramics

    NASA Astrophysics Data System (ADS)

    Stark, S.; Neumeister, P.; Balke, H.

    2016-10-01

    In this part II of a two part series, the rate-independent hybrid phenomenological constitutive model introduced in part I is modified to account for the material behavior of morphotropic lead zirconate titanate ceramics (PZT ceramics). The modifications are based on a discussion of the available literature results regarding the micro-structure of these materials. In particular, a monoclinic phase and a highly simplified representation of the hierarchical structure of micro-domains and nano-domains observed experimentally are incorporated into the model. It is shown that experimental data for the commercially available morphotropic PZT material PIC151 (PI Ceramic GmbH, Lederhose, Germany) can be reproduced and predicted based on the modified hybrid model.

  5. Teaching Electrical Energy, Voltage and Current: An Alternative Approach.

    ERIC Educational Resources Information Center

    Licht, Pieter

    1991-01-01

    A program for teaching the concepts of electric energy, voltage, and current is proposed. The ideas and concepts are introduced in a sequence that places more emphasis on some aspects that are normally treated very briefly. A phenomenological orientation, qualitative and quantitative micro- and macroscopic treatments, and the inclusion of the…

  6. Relative relationships of general shame and body shame with body dysmorphic phenomenology and psychosocial outcomes.

    PubMed

    Weingarden, Hilary; Renshaw, Keith D; Davidson, Eliza; Wilhelm, Sabine

    2017-07-01

    Body Dysmorphic Disorder (BDD) is characterized by a preoccupation with a perceived flaw in appearance and repetitive avoidance behaviors. BDD involves severe psychosocial outcomes (e.g., depression, suicidality, functional impairment). Identifying correlates of BDD symptoms and outcomes can inform treatment. Shame, a painful emotion felt in response to critical self-judgment, may be one key correlate. However, research on shame in BDD is scarce and previous studies have not distinguished general shame from body shame. This study examines the relative relationships between body shame and general shame with body dysmorphic phenomenology and psychosocial outcomes. Participants ( N = 184) were recruited online via BDD organizations and completed a survey. Path analysis was used to examine associations between body and general shame with 1) body dysmorphic phenomenology and 2) depression severity, suicide risk, and functional impairment. Both types of shame were differentially related to outcomes. Body shame was more strongly related to phenomenology, whereas general shame was more strongly related to psychosocial outcomes. Thus, it may be important for BDD treatment to focus on reducing both general and body shame. Further research should evaluate whether current treatments adequately address and reduce general and body shame, and whether addressing shame promotes better treatment outcomes.

  7. Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Berman, B. L.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bennhold, C.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; de Sanctis, E.; Deur, A.; Devita, R.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Fix, A.; Forest, T. A.; Funsten, H.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Roberts, W.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strakovsky, I. I.; Suleiman, R.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2005-10-01

    Beam-helicity asymmetries for the two-pion-photoproduction reaction γ→p→pπ+π- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not provide an adequate description for the behavior of this new observable.

  8. Extra dimensions hypothesis in high energy physics

    NASA Astrophysics Data System (ADS)

    Volobuev, Igor; Boos, Eduard; Bunichev, Viacheslav; Perfilov, Maxim; Smolyakov, Mikhail

    2017-10-01

    We discuss the history of the extra dimensions hypothesis and the physics and phenomenology of models with large extra dimensions with an emphasis on the Randall- Sundrum (RS) model with two branes. We argue that the Standard Model extension based on the RS model with two branes is phenomenologically acceptable only if the inter-brane distance is stabilized. Within such an extension of the Standard Model, we study the influence of the infinite Kaluza-Klein (KK) towers of the bulk fields on collider processes. In particular, we discuss the modification of the scalar sector of the theory, the Higgs-radion mixing due to the coupling of the Higgs boson to the radion and its KK tower, and the experimental restrictions on the mass of the radion-dominated states.

  9. SIMP model at NNLO in chiral perturbation theory

    NASA Astrophysics Data System (ADS)

    Hansen, Martin; Langæble, Kasper; Sannino, Francesco

    2015-10-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.

  10. Comparison between phenomenological and ab-initio reaction and relaxation models in DSMC

    NASA Astrophysics Data System (ADS)

    Sebastião, Israel B.; Kulakhmetov, Marat; Alexeenko, Alina

    2016-11-01

    New state-specific vibrational-translational energy exchange and dissociation models, based on ab-initio data, are implemented in direct simulation Monte Carlo (DSMC) method and compared to the established Larsen-Borgnakke (LB) and total collision energy (TCE) phenomenological models. For consistency, both the LB and TCE models are calibrated with QCT-calculated O2+O data. The model comparison test cases include 0-D thermochemical relaxation under adiabatic conditions and 1-D normal shockwave calculations. The results show that both the ME-QCT-VT and LB models can reproduce vibrational relaxation accurately but the TCE model is unable to reproduce nonequilibrium rates even when it is calibrated to accurate equilibrium rates. The new reaction model does capture QCT-calculated nonequilibrium rates. For all investigated cases, we discuss the prediction differences based on the new model features.

  11. The XXth International Workshop High Energy Physics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    The Workshop continues a series of workshops started by the Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University (SINP MSU) in 1985 and conceived with the purpose of presenting topics of current interest and providing a stimulating environment for scientific discussion on new developments in theoretical and experimental high energy physics and physical programs for future colliders. Traditionally the list of workshop attendees includes a great number of active young scientists and students from Russia and other countries. This year Workshop is organized jointly by the SINP MSU and the Southern Federal University (SFedU) and will take place in the holiday hotel "Luchezarniy" (Effulgent) situated on the Black Sea shore in a picturesque natural park in the suburb of the largest Russian resort city Sochi - the host city of the XXII Olympic Winter Games to be held in 2014. The main topics to be covered are: Experimental results from the LHC. Tevatron summary: the status of the Standard Model and the boundaries on BSM physics. Future physics at Linear Colliders and super B-factories. Extensions of the Standard Model and their phenomenological consequences at the LHC and Linear Colliders: SUSY extensions of the Standard Model; particle interactions in space-time with extra dimensions; strings, quantum groups and new ideas from modern algebra and geometry. Higher order corrections and resummations for collider phenomenology. Automatic calculations of Feynman diagrams and Monte Carlo simulations. LHC/LC and astroparticle/cosmology connections. Modern nuclear physics and relativistic nucleous-nucleous collisions.

  12. A theoretical perspective on the accuracy of rotational resonance (R 2)-based distance measurements in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj Kumar; Ramachandran, Ramesh

    2010-03-01

    The application of solid-state NMR methodology for bio-molecular structure determination requires the measurement of constraints in the form of 13C-13C and 13C-15N distances, torsion angles and, in some cases, correlation of the anisotropic interactions. Since the availability of structurally important constraints in the solid state is limited due to lack of sufficient spectral resolution, the accuracy of the measured constraints become vital in studies relating the three-dimensional structure of proteins to its biological functions. Consequently, the theoretical methods employed to quantify the experimental data become important. To accentuate this aspect, we re-examine analytical two-spin models currently employed in the estimation of 13C-13C distances based on the rotational resonance (R 2) phenomenon. Although the error bars for the estimated distances tend to be in the range 0.5-1.0 Å, R 2 experiments are routinely employed in a variety of systems ranging from simple peptides to more complex amyloidogenic proteins. In this article we address this aspect by highlighting the systematic errors introduced by analytical models employing phenomenological damping terms to describe multi-spin effects. Specifically, the spin dynamics in R 2 experiments is described using Floquet theory employing two different operator formalisms. The systematic errors introduced by the phenomenological damping terms and their limitations are elucidated in two analytical models and analysed by comparing the results with rigorous numerical simulations.

  13. Mesoscopic fluctuations in biharmonically driven flux qubits

    NASA Astrophysics Data System (ADS)

    Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José

    2017-01-01

    We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], 10.1103/PhysRevLett.110.016603 and its sensitivity with both the phase lag and the dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for accessible but longer time scales than the current experimental times.

  14. A Phenomenological Exploration of Black Male Law Enforcement Officers' Perspectives of Racial Profiling and Their Law Enforcement Career Exploration and Commitment

    ERIC Educational Resources Information Center

    Salters, Gregory A.

    2013-01-01

    This phenomenological study explored Black male law enforcement officers' perspectives of how racial profiling shaped their decisions to explore and commit to a law enforcement career. Criterion and snow ball sampling was used to obtain the 17 participants for this study. Super's (1990) archway model was used as the theoretical…

  15. A Ball Lightning Model as a Possible Explanation of Recently Reported Cavity Lights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fryberger, David; /SLAC

    The salient features of cavity lights, in particular, mobile luminous objects (MLO's), as have been experimentally observed in superconducting accelerator cavities, are summarized. A model based upon standard electromagnetic interactions between a small particle and the 1.5 GHz cavity excitation field is described. This model can explain some features of these data, in particular, the existence of particle orbits without wall contact. While this result is an important success for the model, it is detailed why the model as it stands is incomplete. It is argued that no avenues for a suitable extension of the model through established physics appearmore » evident, which motivates an investigation of a model based upon a more exotic object, ball lightning. As discussed, further motivation derives from the fact that there are significant similarities in many of the qualitative features of ball lightning and MLO's, even though they appear in quite different circumstances and differ in scale by orders of magnitude. The ball lightning model, which incorporates electromagnetic charges and currents, is based on a symmetrized set of Maxwell's equations in which the electromagnetic sources and fields are characterized by a process called dyality rotation. It is shown that a consistent mathematical description of dyality rotation as a physical process can be achieved by adding suitable (phenomenological) current terms to supplement the usual current terms in the symmetrized Maxwell's equations. These currents, which enable the conservation of electric and magnetic charge, are called vacuum currents. It is shown that the proposed ball lightning model offers a good qualitative explanation of the perplexing aspects of the MLO data. Avenues for further study are indicated.« less

  16. Rational F-theory GUTs without exotics

    NASA Astrophysics Data System (ADS)

    Krippendorf, Sven; Peña, Damián Kaloni Mayorga; Oehlmann, Paul-Konstantin; Ruehle, Fabian

    2014-07-01

    We construct F-theory GUT models without exotic matter, leading to the MSSM matter spectrum with potential singlet extensions. The interplay of engineering explicit geometric setups, absence of four-dimensional anomalies, and realistic phenomenology of the couplings places severe constraints on the allowed local models in a given geometry. In constructions based on the spectral cover we find no model satisfying all these requirements. We then provide a survey of models with additional U(1) symmetries arising from rational sections of the elliptic fibration in toric constructions and obtain phenomenologically appealing models based on SU(5) tops. Furthermore we perform a bottom-up exploration beyond the toric section constructions discussed in the literature so far and identify benchmark models passing all our criteria, which can serve as a guideline for future geometric engineering.

  17. Forays in flavor

    NASA Astrophysics Data System (ADS)

    Perez, M. Jay

    This dissertation is a summary of four works investigating questions of flavor in the Standard Model and Beyond. Drawing from the ideas of Grand Unification to unify quarks and leptons, the Seesaw Mechanism to explain the generation of neutrino masses, as well as the current data available from flavor observables, a framework called the "Flavor Ring" is introduced. Its aim is to bring as many theoretical tools to bear on the flavor puzzle of the Standard Model, providing additional constraints on Supersymmetric models of flavor which employ family symmetries. It is first applied to the Delta IW = 1/2 mass matrices of the quarks and charged leptons, where we use the additional constraints provided by the flavor ring and the family group Z7 x Z3 to perform a numerical search for phenomenologically allowed down-quark and charged lepton Yukawa matrices. Using the Seesaw Mechanism and relations from SO(10), we then consider the implications of the flavor ring framework on the DeltaIW = 0 Majorana mass M of right-handed neutrinos, and the Supersymmetric mu-mass matrix of a family of Higgs. We find a special form for M which predicts a normal hierarchy and the values of the light neutrino masses, and a mu-matrix with an incredible hierarchy of thirteen orders of magnitude. They are produced naturally by a simple underlying theory invariant under the family symmetry PSL2(7). We close with an examination of what role the additional heavy Higgs flavors may play in phenomenology, exploring a toy model where they serve as the messengers of Supersymmetry breaking.

  18. A systematic review on definitions and assessments of psychotic-like experiences.

    PubMed

    Lee, Kit-Wai; Chan, Kit-Wa; Chang, Wing-Chung; Lee, Edwin Ho-Ming; Hui, Christy Lai-Ming; Chen, Eric Yu-Hai

    2016-02-01

    Psychotic-like experiences (PLEs) or subclinical psychotic experiences have received increased attention as some studies have suggested continuity between PLEs and psychotic disorders. However, epidemiological and correlational studies of PLEs showed mixed findings - it is observed that different studies use a wide variety of definitions of PLEs, as well as different assessment tools that are designed to capture such described experiences. The differences in definitions and assessment tools adopted could contribute to the discrepancy of findings. The current review aims to examine the definitions and assessment tools adopted in the studies of PLEs. Literature search was conducted between October 2013 and February 2014 using three search engines: Medline, Web of Science and PubMed. A total of 76 papers met the selection criteria and were included in the current review. It is found that the majority of papers reviewed defined PLEs quantitatively using assessment tools and do not have a specific phenomenological definition, whereas assessment tools adopted have a wide variety. Furthermore, phenomenological studies of PLEs were rare. The variations in definitions and assessment tools of PLEs might contribute to mixed findings in researches. Reaching to a consensus through the study of phenomenology of PLEs is essential to further advancement of the research in this area. © 2015 Wiley Publishing Asia Pty Ltd.

  19. Chronic fatigue syndrome: an update focusing on phenomenology and pathophysiology.

    PubMed

    Cho, Hyong Jin; Skowera, Anna; Cleare, Anthony; Wessely, Simon

    2006-01-01

    Chronic fatigue syndrome is a controversial condition especially concerning its clinical definition and aetiopathogenesis. Most recent research progress has been made in phenomenology and pathophysiology and we focused our review on these two areas. The phenomenology research supports the notion of a discrete fatigue syndrome which can be distinguished from depression and anxiety. The current case definition, however, may need an improvement based on empirical data. Recent advances in understanding the pathophysiology of chronic fatigue syndrome continue to demonstrate the involvement of the central nervous system. Hyperserotonergic state and hypoactivity of the hypothalamic-pituitary-adrenal axis constitute other findings, but the question of whether these alterations are a cause or consequence of chronic fatigue syndrome still remains unanswered. Immune system involvement in the pathogenesis seems certain but the findings on the specific mechanisms are still inconsistent. Genetic studies provide some evidence of the syndrome being a partly genetic condition, but environmental effects seem to be still predominant and identification of specific genes is still at a very early stage. The recent findings suggest that further research is needed in improving the current case definition; investigating overlaps and boundaries among various functional somatic syndromes; answering the question of whether the pathophysiologic findings are a cause or consequence; and elucidating the involvement of the central nervous system, immune system and genetic factors.

  20. Dirac gauginos in low scale supersymmetry breaking

    NASA Astrophysics Data System (ADS)

    Goodsell, Mark D.; Tziveloglou, Pantelis

    2014-12-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy - with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.

  1. The Shock and Vibration Digest. Volume 7, Number 5, May 1975.

    DTIC Science & Technology

    Contents: Dynamic response of fluid-filled shells; News briefs; Short courses; Abstracts from the current literature -- (Analysis and design, computer programs, environments, phenomenology, experimentation, components, systems); Author index ; Literature review; Book reviews.

  2. Stochastic E2F activation and reconciliation of phenomenological cell-cycle models.

    PubMed

    Lee, Tae J; Yao, Guang; Bennett, Dorothy C; Nevins, Joseph R; You, Lingchong

    2010-09-21

    The transition of the mammalian cell from quiescence to proliferation is a highly variable process. Over the last four decades, two lines of apparently contradictory, phenomenological models have been proposed to account for such temporal variability. These include various forms of the transition probability (TP) model and the growth control (GC) model, which lack mechanistic details. The GC model was further proposed as an alternative explanation for the concept of the restriction point, which we recently demonstrated as being controlled by a bistable Rb-E2F switch. Here, through a combination of modeling and experiments, we show that these different lines of models in essence reflect different aspects of stochastic dynamics in cell cycle entry. In particular, we show that the variable activation of E2F can be described by stochastic activation of the bistable Rb-E2F switch, which in turn may account for the temporal variability in cell cycle entry. Moreover, we show that temporal dynamics of E2F activation can be recast into the frameworks of both the TP model and the GC model via parameter mapping. This mapping suggests that the two lines of phenomenological models can be reconciled through the stochastic dynamics of the Rb-E2F switch. It also suggests a potential utility of the TP or GC models in defining concise, quantitative phenotypes of cell physiology. This may have implications in classifying cell types or states.

  3. Disordered Self in the Schizophrenia Spectrum: A Clinical and Research Perspective

    PubMed Central

    Parnas, Josef; Henriksen, Mads Gram

    2014-01-01

    Learning Objectives After participating in this activity, learners should be better able to: 1. Assess anomalous self-experience as a core feature of schizophrenia spectrum disorders. 2. Evaluate current and historical research regarding disorders of self-experience in schizophrenia. Abstract This article explores the phenomenological and empirical rediscovery of anomalous self-experience as a core feature of the schizophrenia spectrum disorders and presents the current status of research in this field. Historically, a disordered self was considered to be a constitutive phenotype of schizophrenia. Although the notion of a disordered self has continued to appear occasionally over the years—mainly in the phenomenologically or psychodynamically oriented literature—this notion was usually considered as a theoretical construct rather than as referring to concretely lived anomalous experiences. Empirical research on the disorders of self-experience in schizophrenia can be traced back to the US-Denmark psychopathological collaboration in the well-known adoption and high-risk studies, which aimed at identifying trait or phenotypic vulnerability features. This research was later followed by clinical work with first-admission schizophrenia patients. We offer clinical descriptions of anomalous self-experience and outline the phenomenological structures of subjectivity that are needed for grasping the nature of these anomalous experiential phenomena. What appears to underlie these experiences is an instability of the first-person perspective that threatens the basic experience of being a self-coinciding, embodied, demarcated, and persisting subject of awareness. We summarize a series of empirical studies targeting self-experience in schizophrenia performed prior to and after the construction of a phenomenologically oriented psychometric instrument for assessing anomalies of self-experience, the Examination of Anomalous Self-Experience (EASE). These empirical studies support the classic clinical intuition that anomalous self-experiences form a central phenotype of schizophrenia. Implications for diagnosis and research are briefly discussed. PMID:25126763

  4. Constraining dynamical neutrino mass generation with cosmological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk

    We study models in which neutrino masses are generated dynamically at cosmologically late times. Our study is purely phenomenological and parameterized in terms of three effective parameters characterizing the redshift of mass generation, the width of the transition region, and the present day neutrino mass. We also study the possibility that neutrinos become strongly self-interacting at the time where the mass is generated. We find that in a number of cases, models with large present day neutrino masses are allowed by current CMB, BAO and supernova data. The increase in the allowed mass range makes it possible that a non-zeromore » neutrino mass could be measured in direct detection experiments such as KATRIN. Intriguingly we also find that there are allowed models in which neutrinos become strongly self-interacting around the epoch of recombination.« less

  5. Folded supersymmetry with a twist

    DOE PAGES

    Cohen, Timothy; Craig, Nathaniel; Lou, Hou Keong; ...

    2016-03-30

    Folded supersymmetry (f-SUSY) stabilizes the weak scale against radiative corrections from the top sector via scalar partners whose gauge quantum numbers differ from their Standard Model counterparts. This non-trivial pairing of states can be realized in extra-dimensional theories with appropriate supersymmetry-breaking boundary conditions. We present a class of calculable f-SUSY models that are parametrized by a non-trivial twist in 5D boundary conditions and can accommodate the observed Higgs mass and couplings. Although the distinctive phenomenology associated with the novel folded states should provide strong evidence for this mechanism, the most stringent constraints are currently placed by conventional supersymmetry searches. Asmore » a result, these models remain minimally fine-tuned in light of LHC8 data and provide a range of both standard and exotic signatures accessible at LHC13.« less

  6. Novel dark matter phenomenology at colliders

    NASA Astrophysics Data System (ADS)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  7. Reconnection in NIMROD: Model, Predictions, Remedies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Bulmer, R H; Cohen, B I

    It is shown that in NIMROD the formation of closed current configurations, occurring only after the voltage is turned off, is due to the faster resistive decay of nonsymmetric modes compared to the symmetric projection of the 3D steady state achieved by gun injection. Implementing Spitzer resistivity is required to make a definitive comparison with experiment, using two experimental signatures of the model discussed in the paper. If there are serious disagreements, it is suggested that a phenomenological hyper-resistivity be added to the n = 0 component of Ohm's law, similar to hyper-resistive Corsica models that appear to fit experiments.more » Hyper-resistivity might capture physics at small scale missed by NIMROD. Encouraging results would motivate coupling NIMROD to SPICE with edge physics inspired by UEDGE, as a tool for experimental data analysis.« less

  8. MELCOR computer code manuals: Primer and user`s guides, Version 1.8.3 September 1994. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.

    1995-03-01

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the US Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, andmore » combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users` Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.« less

  9. Varieties of grapheme-colour synaesthesia: a new theory of phenomenological and behavioural differences.

    PubMed

    Ward, Jamie; Li, Ryan; Salih, Shireen; Sagiv, Noam

    2007-12-01

    Recent research has suggested that not all grapheme-colour synaesthetes are alike. One suggestion is that they can be divided, phenomenologically, in terms of whether the colours are experienced in external or internal space (projector-associator distinction). Another suggestion is that they can be divided according to whether it is the perceptual or conceptual attributes of a stimulus that is critical (higher-lower distinction). This study compares the behavioural performance of 7 projector and 7 associator synaesthetes. We demonstrate that this distinction does not map on to behavioural traits expected from the higher-lower distinction. We replicate previous research showing that projectors are faster at naming their synaesthetic colours than veridical colours, and that associators show the reverse profile. Synaesthetes who project colours into external space but not on to the surface of the grapheme behave like associators on this task. In a second task, graphemes presented briefly in the periphery are more likely to elicit reports of colour in projectors than associators, but the colours only tend to be accurate when the grapheme itself is also accurately identified. We propose an alternative model of individual differences in grapheme-colour synaesthesia that emphasises the role of different spatial reference frames in synaesthetic perception. In doing so, we attempt to bring the synaesthesia literature closer to current models of non-synaesthetic perception, attention and binding.

  10. In-plane nuclear field formation investigated in single self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Matsusaki, R.; Kaji, R.; Adachi, S.

    2018-02-01

    We studied the formation mechanism of the in-plane nuclear field in single self-assembled In0.75Al0.25As /Al0.3Ga0.7As quantum dots. The Hanle curves with an anomalously large width and hysteretic behavior at the critical transverse magnetic field were observed in many single quantum dots grown in the same sample. In order to explain the anomalies in the Hanle curve indicating the formation of a large nuclear field perpendicular to the photo-injected electron spin polarization, we propose a new model based on the current phenomenological model for dynamic nuclear spin polarization. The model includes the effects of the nuclear quadrupole interaction and the sign inversion between in-plane and out-of-plane components of nuclear g factors, and the model calculations reproduce successfully the characteristics of the observed anomalies in the Hanle curves.

  11. Partially composite particle physics with and without supersymmetry

    NASA Astrophysics Data System (ADS)

    Kramer, Thomas A.

    Theories in which the Standard Model fields are partially compositeness provide elegant and phenomenologically viable solutions to the Hierarchy Problem. In this thesis we will study types of models from two different perspectives. We first derive an effective field theory describing the interactions of the Standard Models fields with their lightest composite partners based on two weakly coupled sectors. Technically, via the AdS/CFT correspondence, our model is dual to a highly deconstructed theory with a single warped extra-dimension. This two sector theory provides a simplified approach to the phenomenology of this important class of theories. We then use this effective field theoretic approach to study models with weak scale accidental supersymmetry. Particularly, we will investigate the possibility that the Standard Model Higgs field is a member of a composite supersymmetric sector interacting weakly with the known Standard Model fields.

  12. Assessment of research and development (R and D) needs in LPG safety and environmental control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSteese, J.G.

    1982-05-01

    The report characterizes the LPG industry covering all operations from production to end use, reviews current knowledge of LPG release phenomenology, summarizes the status of current LPG release prevention and control methodology, and identifies any remaining safety and environmental problems and recommends R and D strategies that may mitigate these problems. (ACR)

  13. A phenomenological model for systematization and prediction of doping limits in II{endash}VI and I{endash}III{endash}VI{sub 2} compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, S.B.; Wei, S.; Zunger, A.

    1998-03-01

    Semiconductors differ widely in their ability to be doped. As their band gap increases, it is usually possible to dope them either n or p type, but not both. This asymmetry is documented here, and explained phenomenologically in terms of the {open_quotes}doping pinning rule.{close_quotes} {copyright} {ital 1998 American Institute of Physics.}

  14. Phenomenological model for coupled multi-axial piezoelectricity

    NASA Astrophysics Data System (ADS)

    Wei, Yuchen; Pellegrino, Sergio

    2018-03-01

    A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.

  15. Exploring corrections to the Optomechanical Hamiltonian.

    PubMed

    Sala, Kamila; Tufarelli, Tommaso

    2018-06-14

    We compare two approaches for deriving corrections to the "linear model" of cavity optomechanics, in order to describe effects that are beyond first order in the radiation pressure coupling. In the regime where the mechanical frequency is much lower than the cavity one, we compare: (I) a widely used phenomenological Hamiltonian conserving the photon number; (II) a two-mode truncation of C. K. Law's microscopic model, which we take as the "true" system Hamiltonian. While these approaches agree at first order, the latter model does not conserve the photon number, resulting in challenging computations. We find that approach (I) allows for several analytical predictions, and significantly outperforms the linear model in our numerical examples. Yet, we also find that the phenomenological Hamiltonian cannot fully capture all high-order corrections arising from the C. K. Law model.

  16. Surface interactions and high-voltage current collection

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Katz, I.

    1985-01-01

    Spacecraft of the future will be larger and have higher power requirements than any flown to date. For several reasons, it is desirable to operate a high power system at high voltage. While the optimal voltages for many future missions are in the range 500 to 5000 volts, the highest voltage yet flown is approximately 100 volts. The NASCAP/LEO code is being developed to embody the phenomenology needed to model the environmental interactions of high voltage spacecraft. Some plasma environment are discussed. The treatment of the surface conductivity associated with emitted electrons and some simulations by NASCAP/LEO of ground based high voltage interaction experiments are described.

  17. Dark gauge bosons: LHC signatures of non-abelian kinetic mixing

    DOE PAGES

    Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...

    2017-04-20

    We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less

  18. Constraints on the production of primordial magnetic seeds in pre-big bang cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, M., E-mail: gasperini@ba.infn.it

    We study the amplification of the electromagnetic fluctuations, and the production of 'seeds' for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.

  19. Constraints on the production of primordial magnetic seeds in pre-big bang cosmology

    NASA Astrophysics Data System (ADS)

    Gasperini, M.

    2017-06-01

    We study the amplification of the electromagnetic fluctuations, and the production of "seeds" for the cosmic magnetic fields, in a class of string cosmology models whose scalar and tensor perturbations reproduce current observations and satisfy known phenomenological constraints. We find that the condition of efficient seeds production can be satisfied and compatible with all constraints only in a restricted region of parameter space, but we show that such a region has significant intersections with the portions of parameter space where the produced background of relic gravitational waves is strong enough to be detectable by aLIGO/Virgo and/or by eLISA.

  20. Influence of broadening and high-injection effects on GaAs-AlGaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Colak, S.; Kucharska, A.I.

    1988-08-01

    The authors have calculated gain spectra and gain-current relations for GaAs-AlGaAs quantum well lasers using a model which incorporates a phenomenological description of bandgap narrowing due to many-body effects at high injection, transmission broadening by a carrier-density-dependent intraband scattering process, and broadening of the density of states function by fluctuations in the well width. The justification for including all these phenomena is made by examining spontaneous emission spectra observed through contact windows on quantum well layers. Using reasonable values of the parameters describing these effects, the model predicts correctly the observed lengthening of the laser emission wavelength with respect tomore » the absorption edge and correctly describes the variation of this wavelength, which they have observed for a set of devices with different numbers of quantum wells and the same well width. For a single GaAs quantum well laser 25 A wide, with the same parameters, the model predicts an increase in threshold current by a factor of 2.5 compared to an ideal quantum well without these effects.« less

  1. Obsessionality & compulsivity: a phenomenology of obsessive-compulsive disorder.

    PubMed

    Denys, Damiaan

    2011-02-01

    Progress in psychiatry depends on accurate definitions of disorders. As long as there are no known biologic markers available that are highly specific for a particular psychiatric disorder, clinical practice as well as scientific research is forced to appeal to clinical symptoms. Currently, the nosology of obsessive-compulsive disorder is being reconsidered in view of the publication of DSM-V. Since our diagnostic entities are often simplifications of the complicated clinical profile of patients, definitions of psychiatric disorders are imprecise and always indeterminate. This urges researchers and clinicians to constantly think and rethink well-established definitions that in psychiatry are at risk of being fossilised. In this paper, we offer an alternative view to the current definition of obsessive-compulsive disorder from a phenomenological perspective. TRANSLATION: This article is translated from Dutch, originally published in [Handbook Obsessive-compulsive disorders, Damiaan Denys, Femke de Geus (Eds.), (2007). De Tijdstroom uitgeverij BV, Utrecht. ISBN13: 9789058980878.].

  2. Λc→N form factors from lattice QCD and phenomenology of Λc→n ℓ+νℓ and Λc→p μ+μ- decays

    NASA Astrophysics Data System (ADS)

    Meinel, Stefan

    2018-02-01

    A lattice QCD determination of the Λc→N vector, axial vector, and tensor form factors is reported. The calculation was performed with 2 +1 flavors of domain-wall fermions at lattice spacings of a ≈0.11 and 0.085 fm and pion masses in the range 230 MeV ≲mπ≲350 MeV . The form factors are extrapolated to the continuum limit and the physical pion mass using modified z expansions. The rates of the charged-current decays Λc→n e+νe and Λc→n μ+νμ are predicted to be (0.405 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 and (0.396 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 , respectively. The phenomenology of the rare charm decay Λc→p μ+μ- is also studied. The differential branching fraction, the fraction of longitudinally polarized dimuons, and the forward-backward asymmetry are calculated in the standard model and in an illustrative new-physics scenario.

  3. Current and anticipated use of thermal-hydraulic codes for BWR transient and accident analyses in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Kenji; Ebata, Shigeo

    1997-07-01

    This paper summarizes the current and anticipated use of the thermal-hydraulic and neutronic codes for the BWR transient and accident analyses in Japan. The codes may be categorized into the licensing codes and the best estimate codes for the BWR transient and accident analyses. Most of the licensing codes have been originally developed by General Electric. Some codes have been updated based on the technical knowledge obtained in the thermal hydraulic study in Japan, and according to the BWR design changes. The best estimates codes have been used to support the licensing calculations and to obtain the phenomenological understanding ofmore » the thermal hydraulic phenomena during a BWR transient or accident. The best estimate codes can be also applied to a design study for a next generation BWR to which the current licensing model may not be directly applied. In order to rationalize the margin included in the current BWR design and develop a next generation reactor with appropriate design margin, it will be required to improve the accuracy of the thermal-hydraulic and neutronic model. In addition, regarding the current best estimate codes, the improvement in the user interface and the numerics will be needed.« less

  4. A novel phenomenological model for dynamic behavior of magnetorheological elastomers in tension-compression mode

    NASA Astrophysics Data System (ADS)

    Vatandoost, Hossein; Norouzi, Mahmood; Masoud Sajjadi Alehashem, Seyed; Smoukov, Stoyan K.

    2017-06-01

    Tension-compression operation in MR elastomers (MREs) offers both the most compact design and superior stiffness in many vertical load-bearing applications, such as MRE bearing isolators in bridges and buildings, suspension systems and engine mounts in cars, and vibration control equipment. It suffers, however, from lack of good computational models to predict device performance, and as a result shear-mode MREs are widely used in the industry, despite their low stiffness and load-bearing capacity. We start with a comprehensive review of modeling of MREs and their dynamic characteristics, showing previous studies have mostly focused on dynamic behavior of MREs in shear mode, though the MRE strength and MR effect are greatly decreased at high strain amplitudes, due to increasing distance between the magnetic particles. Moreover, the characteristic parameters of the current models assume either frequency, or strain, or magnetic field are constant; hence, new model parameters must be recalculated for new loading conditions. This is an experimentally time consuming and computationally expensive task, and no models capture the full dynamic behavior of the MREs at all loading conditions. In this study, we present an experimental setup to test MREs in a coupled tension-compression mode, as well as a novel phenomenological model which fully predicts the stress-strain material behavior as a function of magnetic flux density, loading frequency and strain. We use a training set of experiments to find the experimentally derived model parameters, from which can predict by interpolation the MRE behavior in a relatively large continuous range of frequency, strain and magnetic field. We also challenge the model to make extrapolating predictions and compare to additional experiments outside the training experimental data set with good agreement. Further development of this model would allow design and control of engineering structures equipped with tension-compression MREs and all the advantages they offer.

  5. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  6. A phenomenological memristor model for short-term/long-term memory

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran

    2014-08-01

    Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett-Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network.

  7. Simplified models for Higgs physics: singlet scalar and vector-like quark phenomenology

    DOE PAGES

    Dolan, Matthew J.; Hewett, J. L.; Krämer, M.; ...

    2016-07-08

    Simplified models provide a useful tool to conduct the search and exploration of physics beyond the Standard Model in a model-independent fashion. In this study, we consider the complementarity of indirect searches for new physics in Higgs couplings and distributions with direct searches for new particles, using a simplified model which includes a new singlet scalar resonance and vector-like fermions that can mix with the SM top-quark. We fit this model to the combined ATLAS and CMS 125 GeV Higgs production and coupling measurements and other precision electroweak constraints, and explore in detail the effects of the new matter contentmore » upon Higgs production and kinematics. Finally, we highlight some novel features and decay modes of the top partner phenomenology, and discuss prospects for Run II.« less

  8. "Phenomenology" and qualitative research methods.

    PubMed

    Nakayama, Y

    1994-01-01

    Phenomenology is generally based on phenomenological tradition from Husserl to Heidegger and Merleau-Ponty. As philosophical stances provide the assumptions in research methods, different philosophical stances produce different methods. However, the term "phenomenology" is used in various ways without the definition being given, such as phenomenological approach, phenomenological method, phenomenological research, etc. The term "phenomenology" is sometimes used as a paradigm and it is sometimes even viewed as synonymous with qualitative methods. As a result, the term "phenomenology" leads to conceptual confusions in qualitative research methods. The purpose of this paper is to examine the term "phenomenology" and explore philosophical assumptions, and discuss the relationship between philosophical stance and phenomenology as a qualitative research method in nursing.

  9. On the temporality of creative insight: a psychological and phenomenological perspective

    PubMed Central

    Cosmelli, Diego; Preiss, David D.

    2014-01-01

    Research into creative insight has had a strong emphasis on the psychological processes underlying problem-solving situations as a standard model for the empirical study of this phenomenon. Although this model has produced significant advances in our scientific understanding of the nature of insight, we believe that a full comprehension of insight requires complementing cognitive and neuroscientific studies with a descriptive, first-person, phenomenological approach into how creative insight is experienced. Here we propose to take such first-person perspective while paying special attention to the temporal aspects of this experience. When this first-person perspective is taken into account, a dynamic past–future interplay can be identified at the core of the experience of creative insight, a structure that is compatible with both biological and biographical evidences. We believe this approach could complement and help bring together biological and psychological perspectives. Furthermore, we argue that because of its spontaneous but recurrent nature, creative insight could represent a relevant target for the phenomenological investigation of the flow of experience itself. PMID:25368595

  10. Variable N-type negative resistance in an injection-gated double-injection diode

    NASA Technical Reports Server (NTRS)

    Kapoor, A. K.; Henderson, H. T.

    1981-01-01

    Double-injection (DI) switching devices consist of p+ and n+ contacts (for hole and electron injection, respectively), separated by a near intrinsic semiconductor region containing deep traps. Under proper conditions, these devices exhibit S-type differential negative resistance (DNR) similar to silicon-controlled rectifiers. With the added influence of a p+ gate appropriately placed between the anode (p+) and cathode (n+), the current-voltage characteristic of the device has been manipulated for the first time to exhibit a variable N-type DNR. The anode current and the anode-to-cathode voltage levels at which this N-type DNR is observed can be varied by changing the gate-to-cathode bias. In essence, the classical S-type DI diode can be electronically transformed into an N-type diode. A first-order phenomenological model is proposed for the N-type DNR.

  11. Targeted numerical simulations of binary black holes for GW170104

    NASA Astrophysics Data System (ADS)

    Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.

    2018-03-01

    In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.

  12. Endoreversible quantum heat engines in the linear response regime.

    PubMed

    Wang, Honghui; He, Jizhou; Wang, Jianhui

    2017-07-01

    We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.

  13. Power enhancement of piezoelectric transformers by adding heat transfer equipment.

    PubMed

    Su, Yu-Hao; Liu, Yuan-Ping; Vasic, Dejan; Wu, Wen-Jong; Costa, François; Lee, Chih-Kung

    2012-10-01

    It is known that piezoelectric transformers have several inherent advantages compared with conventional electromagnetic transformers. However, the maximum power capacity of piezoelectric transformers is not as large as electromagnetic transformers in practice, especially in the case of high output current. The theoretical power density of piezoelectric transformers calculated by stress boundary can reach 330 W/cm(3), but no piezoelectric transformer has ever reached such a high power density in practice. The power density of piezoelectric transformers is limited to 33 W/cm(3) in practical applications. The underlying reason is that the maximum passing current of the piezoelectric material (mechanical current) is limited by the temperature rise caused by heat generation. To increase this current and the power capacity, we proposed to add a thermal pad to the piezoelectric transformer to dissipate heat. The experimental results showed that the proposed techniques can increase by 3 times the output current of the piezoelectric transformer. A theoretical-phenomenological model which explains the relationship between vibration velocity and generated heat is also established to verify the experimental results.

  14. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  15. Gauge invariance of phenomenological models of the interaction of quantum dissipative systems with electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Tokman, M. D.

    2009-05-01

    We discuss specific features of the electrodynamic characteristics of quantum systems within the framework of models that include a phenomenological description of the relaxation processes. As is shown by W. E. Lamb, Jr., R. R. Schlicher, and M. O. Scully [Phys. Rev. A 36, 2763 (1987)], the use of phenomenological relaxation operators, which adequately describe the attenuation of eigenvibrations of a quantum system, may lead to incorrect solutions in the presence of external electromagnetic fields determined by the vector potential for different resonance processes. This incorrectness can be eliminated by giving a gauge-invariant form to the relaxation operator. Lamb, Jr., proposed the corresponding gauge-invariant modification for the Weisskopf-Wigner relaxation operator, which is introduced directly into the Schrödinger equation within the framework of the two-level approximation. In the present paper, this problem is studied for the von Neumann equation supplemented by a relaxation operator. First, we show that the solution of the equation for the density matrix with the relaxation operator correctly obtained “from the first principles” has properties that ensure gauge invariance for the observables. Second, we propose a common recipe for transformation of the phenomenological relaxation operator into the correct (gauge-invariant) form in the density-matrix equations for a multilevel system. Also, we discuss the methods of elimination of other inaccuracies (not related to the gauge-invariance problem) which arise if the electrodynamic response of a dissipative quantum system is calculated within the framework of simplified relaxation models (first of all, the model corresponding to constant relaxation rates of coherences in quantum transitions). Examples illustrating the correctness of the results obtained within the framework of the proposed methods in contrast to inaccuracy of the results of the standard calculation techniques are given.

  16. A Phenomenological Reinterpretation of Horner's Fear of Success in Terms of Social Class

    ERIC Educational Resources Information Center

    Ivers, Jo-Hanna; Downes, P.

    2012-01-01

    The current study developed the concept of fear of success that was originally examined by Martina Horner (1970; "Journal of Social Issues", 28(2), 157-175, 1972). The key dimension in Horner's (1970; "Journal of Social Issues", 28(2), 157-175, 1972) studies was gender. The key dimension in the current study was social class. It was hypothesised…

  17. [Are the current concepts of obsessive disorders a novelty? From Westphal (1877) and Thomsen (1895) to ICD-10 and DSM-5].

    PubMed

    Oberbeck, A; Steinberg, H

    2015-09-01

    In German-speaking countries it was Carl Westphal who in 1877 offered the first precise definition of obsessive ideas and distinguished obsessive compulsive disorder (OCD) as an independent disorder in its own right. The criteria mentioned by him for establishing OCD gave rise to a debate on the character and classification of OCD but were not fully acknowledged by his colleagues at the time. In 1895 Westphal's student Robert Thomsen tried to substantiate all points in his teacher's theory that had raised criticism. Thus the works by Westphal and Thomsen are most relevant for the current conceptualization and definition of OCD, for they laid the basis for the present phenomenology, definition and classification of OCD according to ICD-10 and DSM-5. Apart from phenomenologically differentiating between obsessions (i.e. obsessive thoughts and impulses) and compulsions (i.e. compulsive actions and inhibitions), Westphal and Thomsen also laid the basis for most of the current diagnostic criteria. Thomsen led the way to current classifications by subdifferentiating OCD as an illness on its own on the one hand and obsessions and compulsions as symptoms accompanying other conditions on the other.

  18. Relating Schizotypy and Personality to the Phenomenology of Creativity

    PubMed Central

    Nelson, B.; Rawlings, D.

    2010-01-01

    Introduction: Although a considerable amount of research has addressed psychopathological and personality correlates of creativity, the relationship between these characteristics and the phenomenology of creativity has been neglected. Relating these characteristics to the phenomenology of creativity may assist in clarifying the precise nature of the relationship between psychopathology and creativity. The current article reports on an empirical study of the relationship between the phenomenology of the creative process and psychopathological and personality characteristics in a sample of artists. Method: A total of 100 artists (43 males, 57 females, mean age = 34.69 years) from a range of disciplines completed the Experience of Creativity Questionnaire and measures of “positive” schizotypy, affective disturbance, mental boundaries, and normal personality. Results: The sample of artists was found to be elevated on “positive” schizotypy, unipolar affective disturbance, thin boundaries, and the personality dimensions of Openness to Experience and Neuroticism, compared with norm data. Schizotypy was found to be the strongest predictor of a range of creative experience scales (Distinct Experience, Anxiety, Absorption, Power/Pleasure), suggesting a strong overlap of schizotypal and creative experience. Discussion: These findings indicate that “positive” schizotypy is associated with central features of “flow”-type experience, including distinct shift in phenomenological experience, deep absorption, focus on present experience, and sense of pleasure. The neurologically based construct of latent inhibition may be a mechanism that facilitates entry into flow-type states for schizotypal individuals. This may occur by reduced latent inhibition providing a “fresh” awareness and therefore a greater absorption in present experience, thus leading to flow-type states. PMID:18682376

  19. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    NASA Astrophysics Data System (ADS)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronov, V.A.; Zhidov, I.G.; Meskov, E.E.

    The report presents the basic results of some calculations, theoretical and experimental efforts in the study of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov instabilities and the turbulent mixing which is caused by their evolution. Since the late forties the VNIIEF has been conducting these investigations. This report is based on the data which were published in different times in Russian and foreign journals. The first part of the report deals with calculations an theoretical techniques for the description of hydrodynamic instabilities applied currently, as well as with the results of several individual problems and their comparison with the experiment. These methods can bemore » divided into two types: direct numerical simulation methods and phenomenological methods. The first type includes the regular 2D and 3D gasdynamical techniques as well as the techniques based on small perturbation approximation and on incompressible liquid approximation. The second type comprises the techniques based on various phenomenological turbulence models. The second part of the report describes the experimental methods and cites the experimental results of Rayleigh-Taylor and Richtmyer-Meskov instability studies as well as of turbulent mixing. The applied methods were based on thin-film gaseous models, on jelly models and liquid layer models. The research was done for plane and cylindrical geometries. As drivers, the shock tubes of different designs were used as well as gaseous explosive mixtures, compressed air and electric wire explosions. The experimental results were applied in calculational-theoretical technique calibrations. The authors did not aim at covering all VNIIEF research done in this field of science. To a great extent the choice of the material depended on the personal contribution of the author in these studies.« less

  1. LHC collider phenomenology of minimal universal extra dimensions

    NASA Astrophysics Data System (ADS)

    Beuria, Jyotiranjan; Datta, AseshKrishna; Debnath, Dipsikha; Matchev, Konstantin T.

    2018-05-01

    We discuss the collider phenomenology of the model of Minimal Universal Extra Dimensions (MUED) at the Large hadron Collider (LHC). We derive analytical results for all relevant strong pair-production processes of two level 1 Kaluza-Klein partners and use them to validate and correct the existing MUED implementation in the fortran version of the PYTHIA event generator. We also develop a new implementation of the model in the C++ version of PYTHIA. We use our implementations in conjunction with the CHECKMATE package to derive the LHC bounds on MUED from a large number of published experimental analyses from Run 1 at the LHC.

  2. Phenomenological Model Describing the Formation of Peeling Defects on Hot-Rolled Duplex Stainless Steel 2205

    NASA Astrophysics Data System (ADS)

    Yong-jun, Zhang; Hui, Zhang; Jing-tao, Han

    2017-05-01

    The chemical composition, morphology, and microstructure of peeling defects formed on the surface of sheets from steel 2205 under hot rolling are studied. The microstructure of the surface is analyzed using scanning electron and light microscopy. The zones affected are shown to contain nonmetallic inclusions of types Al2O3 and CaO - SiO2 - Al2O3 - MgO in the form of streak precipitates and to have an unfavorable content of austenite, which causes decrease in the ductility of the area. The results obtained are used to derive a five-stage phenomenological model of formation of such defects.

  3. Phenomenological Models and Animations of Welding and their Impact

    NASA Astrophysics Data System (ADS)

    DebRoy, Tarasankar

    Professor Robertson's recognized research on metallurgical thermodynamics and kinetics for over 40 years facilitated the emergence of rigorous quantitative understanding of many complex metallurgical processes. The author had the opportunity to work with Professor Robertson on liquid metals in the 1970s. This paper is intended to review the advances in the quantitative understanding of welding processes and weld metal attributes in recent decades. Over this period, phenomenological models have been developed to better understand and control various welding processes and the structure and properties of welded materials. Numerical models and animations of melting, solidification and the evolution of micro and macro-structural features will be presented to critically examine their impact on the practice of welding and the underlying science.

  4. Estimating Phenomenological Parameters in Multi-Assets Markets

    NASA Astrophysics Data System (ADS)

    Raffaelli, Giacomo; Marsili, Matteo

    Financial correlations exhibit a non-trivial dynamic behavior. This is reproduced by a simple phenomenological model of a multi-asset financial market, which takes into account the impact of portfolio investment on price dynamics. This captures the fact that correlations determine the optimal portfolio but are affected by investment based on it. Such a feedback on correlations gives rise to an instability when the volume of investment exceeds a critical value. Close to the critical point the model exhibits dynamical correlations very similar to those observed in real markets. We discuss how the model's parameter can be estimated in real market data with a maximum likelihood principle. This confirms the main conclusion that real markets operate close to a dynamically unstable point.

  5. Phenomenological theories of the low-temperature pseudogap: Hall number, specific heat, and Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Verret, S.; Simard, O.; Charlebois, M.; Sénéchal, D.; Tremblay, A.-M. S.

    2017-09-01

    Since its experimental discovery, many phenomenological theories successfully reproduced the rapid rise of the Hall number nH, going from p at low doping to 1 +p at the critical doping p* of the pseudogap in superconducting cuprates. Further comparison with experiments is now needed in order to narrow down candidates. In this paper, we consider three previously successful phenomenological theories in a unified formalism—an antiferromagnetic mean field (AF), a spiral incommensurate antiferromagnetic mean field (sAF), and the Yang-Rice-Zhang (YRZ) theory. We find a rapid rise in the specific heat and a rapid drop in the Seebeck coefficient for increasing doping across the transition in each of those models. The predicted rises and drops are locked, not to p*, but to the doping where antinodal electron pockets, characteristic of each model, appear at the Fermi surface shortly before p*. While such electron pockets are still to be found in experiments, we discuss how they could provide distinctive signatures for each model. We also show that the range of doping where those electron pockets would be found is strongly affected by the position of the van Hove singularity.

  6. Patchy screening of the cosmic microwave background by inhomogeneous reionization

    NASA Astrophysics Data System (ADS)

    Gluscevic, Vera; Kamionkowski, Marc; Hanson, Duncan

    2013-02-01

    We derive a constraint on patchy screening of the cosmic microwave background from inhomogeneous reionization using off-diagonal TB and TT correlations in WMAP-7 temperature/polarization data. We interpret this as a constraint on the rms optical-depth fluctuation Δτ as a function of a coherence multipole LC. We relate these parameters to a comoving coherence scale, of bubble size RC, in a phenomenological model where reionization is instantaneous but occurs on a crinkly surface, and also to the bubble size in a model of “Swiss cheese” reionization where bubbles of fixed size are spread over some range of redshifts. The current WMAP data are still too weak, by several orders of magnitude, to constrain reasonable models, but forthcoming Planck and future EPIC data should begin to approach interesting regimes of parameter space. We also present constraints on the parameter space imposed by the recent results from the EDGES experiment.

  7. Thermal Properties Measurement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U 3Si 2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling andmore » simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).« less

  8. Decision-Making Uncertainty and the Use of Force in Cyberspace: A Phenomenological Study of Military Officers

    DTIC Science & Technology

    2010-10-01

    theory becomes a more comprehensive and persuasive model for describing and predicting behavioral decision-making factors ( Bell , 1982). Böhm and...inductively analyzing the rich data collected in their natural setting ( Bryman , 1984; Leedy & Ormrod, 2010; Neuman, 2005). A phenomenological...qualitative methods, the “sine qua non is a commitment to see the world from the point of view of the actor” ( Bryman , 1984, p. 77). Therefore, the

  9. Quantum gravity and taoist cosmology: Exploring the ancient origins of phenomenological string theory.

    PubMed

    Rosen, Steven M

    2017-12-01

    This paper carries forward the author's contribution to PBMP's previous special issue on Integral Biomathics (Rosen 2015). In the earlier paper, the crisis in contemporary theoretical physics was described and it was demonstrated that the problem can be addressed effectively only by shifting the foundations of physics from objectivist Cartesian philosophy to phenomenological philosophy. To that end, a phenomenological string theory was proposed based on qualitative topology and hypercomplex numbers. The current presentation takes this further by delving into the ancient Chinese origin of phenomenological string theory. First, we discover a deep connection between the Klein bottle, which is crucial to the theory, and the Ho-t'u, an old Chinese number archetype central to Taoist cosmology. The two structures are seen to mirror each other in expressing the curious psychophysical (phenomenological) action pattern at the heart of microphysics. But tackling the question of quantum gravity requires that a whole family of topological dimensions be brought into play. What we find in engaging with these structures is a closely related family of Taoist forebears that, in concert with their successors, provide a blueprint for cosmic evolution. Whereas conventional string theory accounts for the generation of nature's fundamental forces via a notion of symmetry breaking that is essentially static and thus unable to explain cosmogony successfully, phenomenological/Taoist string theory is guided by the dialectical interplay between symmetry and asymmetry inherent in the principle of synsymmetry. This dynamic concept of cosmic change is elaborated on in the three concluding sections of the paper. Here, a detailed analysis of cosmogony is offered, first in terms of the theory of dimensional development and its Taoist (yin-yang) counterpart, then in terms of the evolution of the elemental force particles through cycles of expansion and contraction in a spiraling universe. The paper closes by considering the role of the analyst per se in the further evolution of the cosmos. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Physiologically Based, Multi-Scale Model of Skeletal Muscle Structure and Function

    PubMed Central

    Röhrle, O.; Davidson, J. B.; Pullan, A. J.

    2012-01-01

    Models of skeletal muscle can be classified as phenomenological or biophysical. Phenomenological models predict the muscle’s response to a specified input based on experimental measurements. Prominent phenomenological models are the Hill-type muscle models, which have been incorporated into rigid-body modeling frameworks, and three-dimensional continuum-mechanical models. Biophysically based models attempt to predict the muscle’s response as emerging from the underlying physiology of the system. In this contribution, the conventional biophysically based modeling methodology is extended to include several structural and functional characteristics of skeletal muscle. The result is a physiologically based, multi-scale skeletal muscle finite element model that is capable of representing detailed, geometrical descriptions of skeletal muscle fibers and their grouping. Together with a well-established model of motor-unit recruitment, the electro-physiological behavior of single muscle fibers within motor units is computed and linked to a continuum-mechanical constitutive law. The bridging between the cellular level and the organ level has been achieved via a multi-scale constitutive law and homogenization. The effect of homogenization has been investigated by varying the number of embedded skeletal muscle fibers and/or motor units and computing the resulting exerted muscle forces while applying the same excitatory input. All simulations were conducted using an anatomically realistic finite element model of the tibialis anterior muscle. Given the fact that the underlying electro-physiological cellular muscle model is capable of modeling metabolic fatigue effects such as potassium accumulation in the T-tubular space and inorganic phosphate build-up, the proposed framework provides a novel simulation-based way to investigate muscle behavior ranging from motor-unit recruitment to force generation and fatigue. PMID:22993509

  11. Latent constructs model explaining the attachment-linked variation in autobiographical remembering.

    PubMed

    Öner, Sezin; Gülgöz, Sami

    2016-01-01

    In the current study, we proposed a latent constructs model to characterise the qualitative aspects of autobiographical remembering and investigated the structural relations in the model that may vary across individuals. Primarily, we focused on the memories of romantic relationships and argued that attachment anxiety and avoidance would be reflected in the ways that individuals encode, rehearse, or remember autobiographical memories in close relationships. Participants reported two positive and two negative relationship-specific memories and rated the characteristics for each memory. As predicted, the basic memory model yielded appropriate fit, indicating that event characteristics (EC) predicted the frequency of rehearsal (RC) and phenomenology at retrieval (PC). When attachment variables were integrated, the model showed that rehearsal mediated the link between anxiety and PC, especially for negative memories. On the other hand, for avoidance EC was the key factor mediating the link between avoidance and RC, as well as PC. Findings were discussed with respect to autobiographical memory functions emphasising a systematically, integrated framework.

  12. [Social actors and phenomenologic modelling].

    PubMed

    Laflamme, Simon

    2012-05-01

    The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.

  13. Catastrophic event modeling. [lithium thionyl chloride batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1981-01-01

    A mathematical model for the catastrophic failures (venting or explosion of the cell) in lithium thionyl chloride batteries is presented. The phenomenology of the various processes leading to cell failure is reviewed.

  14. From Husserl to van Manen. A review of different phenomenological approaches.

    PubMed

    Dowling, Maura

    2007-01-01

    This paper traces the development of phenomenology as a philosophy originating from the writings of Husserl to its use in phenomenological research and theory development in nursing. The key issues of phenomenological reduction and bracketing are also discussed as they play a pivotal role in the how phenomenological research studies are approached. What has become to be known as "new" phenomenology is also explored and the key differences between it and "traditional" phenomenology are discussed. van Manen's phenomenology is also considered in light of its contemporary popularity among nurse researchers.

  15. Hypernuclei and the hyperon problem in neutron stars

    DOE PAGES

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-17

    The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less

  16. “Just one animal among many?” Existential phenomenology, ethics, and stem cell research

    PubMed Central

    2010-01-01

    Stem cell research and associated or derivative biotechnologies are proceeding at a pace that has left bioethics behind as a discipline that is more or less reactionary to their developments. Further, much of the available ethical deliberation remains determined by the conceptual framework of late modern metaphysics and the correlative ethical theories of utilitarianism and deontology. Lacking, to any meaningful extent, is a sustained engagement with ontological and epistemological critiques, such as with “postmodern” thinking like that of Heidegger’s existential phenomenology. Some basic “Heideggerian” conceptual strategies are reviewed here as a way of remedying this deficiency and adding to ethical deliberation about current stem cell research practices. PMID:20521117

  17. The Shock and Vibration Digest. Volume 7, Number 7, July 1975.

    DTIC Science & Technology

    Contents: News briefs; Feature article: The application of skeleton curves and limit envelopes to analysis of nonlinear vibration; Abstracts from the current literature--analysis and design, computer programs, environments, phenomenology, experimentation, components, systems; Author index ; Literature review; Book reviews.

  18. Surface self-organization: From wear to self-healing in biological and technical surfaces

    NASA Astrophysics Data System (ADS)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-04-01

    Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.

  19. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less

  20. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Pouya, Ahmad; Arson, Chloé

    2015-11-01

    This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

  1. Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry [Higgs boson physics and broken flavor symmetry - LHC phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Edmond L.; Giddings, Steven B.; Wang, Haichen

    2014-10-10

    Here, the LHC phenomenology of a low-scale gauged flavor symmetry model with inverted hierarchy is studied, through introduction of a simplified model of broken flavor symmetry. A new scalar (a flavon) and a new neutral top-philic massive gauge boson emerge with mass in the TeV range, along with a new heavy fermion associated with the standard model top quark. After checking constraints from electroweak precision observables, we investigate the influence of the model on Higgs boson physics, notably on its production cross section and decay branching fractions. Limits on the flavon φ from heavy Higgs boson searches at the LHCmore » at 7 and 8 TeV are presented. The branching fractions of the flavon are computed as a function of the flavon mass and the Higgs-flavon mixing angle. We also explore possible discovery of the flavon at 14 TeV, particularly via the φ → Z 0Z 0 decay channel in the 2ℓ2ℓ' final state, and through standard model Higgs boson pair production φ → hh in the b¯bγγ final state. We conclude that the flavon mass range up to 500 GeV could be probed down to quite small values of the Higgs-flavon mixing angle with 100 fb –1 of integrated luminosity at 14 TeV.« less

  2. Automated adaptive inference of phenomenological dynamical models.

    PubMed

    Daniels, Bryan C; Nemenman, Ilya

    2015-08-21

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved.

  3. Phenomenological modelling of self-healing polymers based on integrated healing agents

    NASA Astrophysics Data System (ADS)

    Mergheim, Julia; Steinmann, Paul

    2013-09-01

    The present contribution introduces a phenomenological model for self-healing polymers. Self-healing polymers are a promising class of materials which mimic nature by their capability to autonomously heal micro-cracks. This self-healing is accomplished by the integration of microcapsules containing a healing agent and a dispersed catalyst into the matrix material. Propagating microcracks may then break the capsules which releases the healing agent into the microcracks where it polymerizes with the catalyst, closes the crack and 'heals' the material. The present modelling approach treats these processes at the macroscopic scale, the microscopic details of crack propagation and healing are thus described by means of continuous damage and healing variables. The formulation of the healing model accounts for the fact that healing is directly associated with the curing process of healing agent and catalyst. The model is implemented and its capabilities are studied by means of numerical examples.

  4. Relativistic Quark Model Based Description of Low Energy NN Scattering

    NASA Astrophysics Data System (ADS)

    Antalik, R.; Lyubovitskij, V. E.

    A model describing the NN scattering phase shifts is developed. Two nucleon interactions induced by meson exchange forces are constructed starting from π, η, η‧ pseudoscalar-, the ρ, ϕ, ω vector-, and the ɛ(600), a0, f0(1400) scalar — meson-nucleon coupling constants, which we obtained within a relativistic quantum field theory based quark model. Working within the Blankenbecler-Sugar-Logunov-Tavkhelidze quasipotential dynamics, we describe the NN phase shifts in a relativistically invariant way. In this procedure we use phenomenological form factor cutoff masses and effective ɛ and ω meson-nucleon coupling constants, only. Resulting NN phase shifts are in a good agreement with both, the empirical data, and the entirely phenomenological Bonn OBEP model fit. While the quality of our description, evaluated as a ratio of our results to the Bonn OBEP model χ2 ones is about 1.2, other existing (semi)microscopic results gave qualitative results only.

  5. A phenomenological retention tank model using settling velocity distributions.

    PubMed

    Maruejouls, T; Vanrolleghem, P A; Pelletier, G; Lessard, P

    2012-12-15

    Many authors have observed the influence of the settling velocity distribution on the sedimentation process in retention tanks. However, the pollutants' behaviour in such tanks is not well characterized, especially with respect to their settling velocity distribution. This paper presents a phenomenological modelling study dealing with the way by which the settling velocity distribution of particles in combined sewage changes between entering and leaving an off-line retention tank. The work starts from a previously published model (Lessard and Beck, 1991) which is first implemented in a wastewater management modelling software, to be then tested with full-scale field data for the first time. Next, its performance is improved by integrating the particle settling velocity distribution and adding a description of the resuspension due to pumping for emptying the tank. Finally, the potential of the improved model is demonstrated by comparing the results for one more rain event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Automated adaptive inference of phenomenological dynamical models

    PubMed Central

    Daniels, Bryan C.; Nemenman, Ilya

    2015-01-01

    Dynamics of complex systems is often driven by large and intricate networks of microscopic interactions, whose sheer size obfuscates understanding. With limited experimental data, many parameters of such dynamics are unknown, and thus detailed, mechanistic models risk overfitting and making faulty predictions. At the other extreme, simple ad hoc models often miss defining features of the underlying systems. Here we develop an approach that instead constructs phenomenological, coarse-grained models of network dynamics that automatically adapt their complexity to the available data. Such adaptive models produce accurate predictions even when microscopic details are unknown. The approach is computationally tractable, even for a relatively large number of dynamical variables. Using simulated data, it correctly infers the phase space structure for planetary motion, avoids overfitting in a biological signalling system and produces accurate predictions for yeast glycolysis with tens of data points and over half of the interacting species unobserved. PMID:26293508

  7. Classification scheme for phenomenological universalities in growth problems in physics and other sciences.

    PubMed

    Castorina, P; Delsanto, P P; Guiot, C

    2006-05-12

    A classification in universality classes of broad categories of phenomenologies, belonging to physics and other disciplines, may be very useful for a cross fertilization among them and for the purpose of pattern recognition and interpretation of experimental data. We present here a simple scheme for the classification of nonlinear growth problems. The success of the scheme in predicting and characterizing the well known Gompertz, West, and logistic models, suggests to us the study of a hitherto unexplored class of nonlinear growth problems.

  8. The Racial and Ethnic Identity Formation Process of Second-Generation Asian Indian Americans: A Phenomenological Study.

    PubMed

    Iwamoto, Derek Kenji; Negi, Nalini Junko; Partiali, Rachel Negar; Creswell, John W

    2013-10-01

    This phenomenological study elucidates the identity development processes of 12 second-generation adult Asian Indian Americans. The results identify salient sociocultural factors and multidimensional processes of racial and ethnic identity development. Discrimination, parental, and community factors seemed to play a salient role in influencing participants' racial and ethnic identity development. The emergent Asian Indian American racial and ethnic identity model provides a contextualized overview of key developmental periods and turning points within the process of identity development.

  9. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  10. The Racial and Ethnic Identity Formation Process of Second-Generation Asian Indian Americans: A Phenomenological Study

    PubMed Central

    Iwamoto, Derek Kenji; Negi, Nalini Junko; Partiali, Rachel Negar; Creswell, John W.

    2014-01-01

    This phenomenological study elucidates the identity development processes of 12 second-generation adult Asian Indian Americans. The results identify salient sociocultural factors and multidimensional processes of racial and ethnic identity development. Discrimination, parental, and community factors seemed to play a salient role in influencing participants’ racial and ethnic identity development. The emergent Asian Indian American racial and ethnic identity model provides a contextualized overview of key developmental periods and turning points within the process of identity development. PMID:25298617

  11. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  12. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals

    PubMed Central

    Poznanski, R. R.; Cacha, L. A.; Ali, J.; Rizvi, Z. H.; Yupapin, P.; Salleh, S. H.; Bandyopadhyay, A.

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge ‘soakage’ is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell’s equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current. PMID:28880876

  13. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    PubMed

    Poznanski, R R; Cacha, L A; Ali, J; Rizvi, Z H; Yupapin, P; Salleh, S H; Bandyopadhyay, A

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization-induced capacitive current in microstructure and nonohmic mitochondrial membrane current.

  14. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  15. Musical hallucinosis: case reports and possible neurobiological models.

    PubMed

    Mocellin, Ramon; Walterfang, Mark; Velakoulis, Dennis

    2008-04-01

    The perception of music without a stimulus, or musical hallucination, is reported in both organic and psychiatric disorders. It is most frequently described in the elderly with associated hearing loss and accompanied by some degree of insight. In this setting it is often referred to as 'musical hallucinosis'. The aim of the authors was to present examples of this syndrome and review the current understanding of its neurobiological basis. We describe three cases of persons experiencing musical hallucinosis in the context of hearing deficits with varying degrees of associated central nervous system abnormalities. Putative neurobiological mechanisms, in particular those involving de-afferentation of a complex auditory recognition system by complete or partial deafness, are discussed in the light of current information from the literature. Musical hallucinosis can be experienced in those patients with hearing impairment and is phenomenologically distinct for hallucinations described in psychiatric disorders.

  16. Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

    NASA Astrophysics Data System (ADS)

    Akosa, Collins Ashu; Kim, Won-Seok; Bisig, André; Kläui, Mathias; Lee, Kyung-Jin; Manchon, Aurélien

    2015-03-01

    Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spin-conserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ˜∇2[m ×(u .∇ ) m ] +ξ ∇2[(u .∇ ) m ] , where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dynamics (precession, dephasing, and spin-flip). This torque, which scales as the inverse square of the domain wall width, only weakly enhances the longitudinal velocity of a transverse domain wall but significantly enhances the transverse velocity of vortex walls. The spatial-dependent spin transfer torque uncovered in this study is expected to have significant impact on the current-driven motion of abrupt two-dimensional textures such as vortices, skyrmions, and merons.

  17. Energy Current Cumulants in One-Dimensional Systems in Equilibrium

    NASA Astrophysics Data System (ADS)

    Dhar, Abhishek; Saito, Keiji; Roy, Anjan

    2018-06-01

    A recent theory based on fluctuating hydrodynamics predicts that one-dimensional interacting systems with particle, momentum, and energy conservation exhibit anomalous transport that falls into two main universality classes. The classification is based on behavior of equilibrium dynamical correlations of the conserved quantities. One class is characterized by sound modes with Kardar-Parisi-Zhang scaling, while the second class has diffusive sound modes. The heat mode follows Lévy statistics, with different exponents for the two classes. Here we consider heat current fluctuations in two specific systems, which are expected to be in the above two universality classes, namely, a hard particle gas with Hamiltonian dynamics and a harmonic chain with momentum conserving stochastic dynamics. Numerical simulations show completely different system-size dependence of current cumulants in these two systems. We explain this numerical observation using a phenomenological model of Lévy walkers with inputs from fluctuating hydrodynamics. This consistently explains the system-size dependence of heat current fluctuations. For the latter system, we derive the cumulant-generating function from a more microscopic theory, which also gives the same system-size dependence of cumulants.

  18. Phenomenological implications of a predictive formulation of the Nambu-Jona-Lasinio model having tensor couplings and isospin symmetry breaking terms

    NASA Astrophysics Data System (ADS)

    Battistel, O. A.; Pimenta, T. H.; Dallabona, G.

    2016-10-01

    In the present work we consider the phenomenological consequences of a predictive formulation of the Nambu-Jona-Lasinio (NJL) model at the one loop level of perturbative calculations. The investigation reported here can be considered as an extension of previously made ones on the same issue. In the study made in this work we have included vector and tensor couplings, simultaneously, as well as S U (2 ) isospin symmetry breaking terms. As a consequence of the last ingredient mentioned, there are different masses in the model amplitudes. In spite of this, within the context of the adopted procedure, we verify that it is possible to eliminate unphysical dependencies on the arbitrary choices for the routing of internal lines momenta as well as Ward identities violating contributions and scale ambiguous terms, from the corresponding one loop amplitudes, through the simple and universal Consistency Relations. The total content of divergence of the amplitudes is reduced to only two basic divergent objects. They are related to two inputs of the model in a way that, due to their scale properties, an unique arbitrariness remains. However, due to the critical condition found in the mechanism which generates the constituent quark mass, within our approach, this arbitrariness is also removed turning the model predictive in the sense that its phenomenological consequences is not dependent in possible choices made in intermediary steps of the calculations, as occurs in usual treatments. In this scenario, we investigate the most typical static properties of the scalar, pseudoscalar, vector and axial-vector mesons at low-energy. Special attention is given to the consequences of the S U (2 ) isospin symmetry breaking for the phenomenological predictions. The implications of the tensor couplings for the model observables, which can be considered an original contribution of the present work, at the level of the content and not only in the form, is analyzed in a detailed way. The found values are in good accordance with the expectations and are globally consistent, having the obvious advantage that the predictions are not dependent in parameters aliens to the model Lagrangian as occurs in traditional approaches based in regularizations.

  19. Teacher Evaluation Models: Compliance or Growth Oriented?

    ERIC Educational Resources Information Center

    Clenchy, Kelly R.

    2017-01-01

    This research study reviewed literature specific to the evolution of teacher evaluation models and explored the effectiveness of standards-based evaluation models' potential to facilitate professional growth. The researcher employed descriptive phenomenology to conduct a study of teachers' perceptions of a standard-based evaluation model's…

  20. Scalar hairy black holes and scalarons in the isolated horizons formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corichi, Alejandro; Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, A. Postal 61-3, Morelia, Michoacan, 58090; Nucamendi, Ulises

    The Isolated Horizons (IH) formalism, together with a simple phenomenological model for colored black holes has been used to predict nontrivial formulas that relate the ADM mass of the solitons and hairy Black Holes of Gravity-Matter system on the one hand, and several horizon properties of the black holes in the other. In this article, the IH formalism is tested numerically for spherically symmetric solutions to an Einstein-Higgs system where hairy black holes were recently found to exist. It is shown that the mass formulas still hold and that, by appropriately extending the current model, one can account for themore » behavior of the horizon properties of these new solutions. An empirical formula that approximates the ADM mass of hairy solutions is put forward, and some of its properties are analyzed.« less

  1. Sneutrino Higgs models explain lepton non-universality in eejj, eνjj excesses

    DOE PAGES

    Berger, Joshua; Dror, Jeff Asaf; Ng, Wee Hao

    2015-09-23

    Recent searches for first-generation leptoquarks and heavy right-handed W R bosons have seen excesses in final states with electrons and jets. A bizarre property of these excesses is that they appear to violate lepton universality. With these results in mind, we study the phenomenology of supersymmetric models in which the Higgs arises as the sneutrino in an electron supermultiplet. Since the electron is singled out in this approach, one can naturally account for the lepton flavor structure of the excesses. In this work, we show that in such a framework, one can significantly alleviate the tension between the Standard Modelmore » and the data and yet evade current constraints from other searches. Finally we point out that correlated excesses are expected to be seen in future multilepton searches.« less

  2. Plasma contactor research, 1989

    NASA Technical Reports Server (NTRS)

    Williams, John D.

    1990-01-01

    The characteristics of double layers observed by researchers investigating magnetospheric phenomena are contrasted to those observed in plasma contacting experiments. Experiments in the electron collection mode of the plasma contacting process were performed and the results confirm a simple model of this process for current levels ranging to 3 A. Experimental results were also obtained in a study of the process of electron emission from a hollow cathode plasma contactor. High energy ions are observed coming from the cathode in addition to the electrons and a phenomenological model that suggests a mechanism by which this could occur is presented. Experimental results showing the effects of the design parameters of the ambient plasma simulator on the plasma potential, electron temperature, electron density and plasma noise levels induced in plasma contacting experiments are presented. A preferred simulator design is selected on the basis of these results.

  3. Self-consistent quantum kinetic theory of diatomic molecule formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrey, Robert C.

    2015-07-14

    A quantum kinetic theory of molecule formation is presented which includes three-body recombination and radiative association for a thermodynamically closed system which may or may not exchange energy with its surrounding at a constant temperature. The theory uses a Sturmian representation of a two-body continuum to achieve a steady-state solution of a governing master equation which is self-consistent in the sense that detailed balance between all bound and unbound states is rigorously enforced. The role of quasibound states in catalyzing the molecule formation is analyzed in complete detail. The theory is used to make three predictions which differ from conventionalmore » kinetic models. These predictions suggest significant modifications may be needed to phenomenological rate constants which are currently in wide use. Implications for models of low and high density systems are discussed.« less

  4. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  5. What makes a phenomenological study phenomenological? An analysis of peer-reviewed empirical nursing studies.

    PubMed

    Norlyk, Annelise; Harder, Ingegerd

    2010-03-01

    This article contributes to the debate about phenomenology as a research approach in nursing by providing a systematic review of what nurse researchers hold as phenomenology in published empirical studies. Based on the assumption that presentations of phenomenological approaches in peer-reviewed journals have consequences for the quality of future research, the aim was to analyze articles presenting phenomenological studies and, in light of the findings, raise a discussion about addressing scientific criteria. The analysis revealed considerable variations, ranging from brief to detailed descriptions of the stated phenomenological approach, and from inconsistencies to methodological clarity and rigor. Variations, apparent inconsistencies, and omissions made it unclear what makes a phenomenological study phenomenological. There is a need for clarifying how the principles of the phenomenological philosophy are implemented in a particular study before publishing. This should include an articulation of methodological keywords of the investigated phenomenon, and how an open attitude was adopted.

  6. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    NASA Astrophysics Data System (ADS)

    Savage, M.; Beane, S.; Chang, E.; Davoudi, Z.; Detmold, W.; Orginos, K.; Shanahan, P.; Tiburzi, B.; Wagman, M.; Winter, F.; Nplqcd Collaboration

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.

  7. Dynamic model based on voltage transfer curve for pattern formation in dielectric barrier glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ben; He, Feng; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn

    2015-12-15

    Simulation work is very important for understanding the formation of self-organized discharge patterns. Previous works have witnessed different models derived from other systems for simulation of discharge pattern, but most of these models are complicated and time-consuming. In this paper, we introduce a convenient phenomenological dynamic model based on the basic dynamic process of glow discharge and the voltage transfer curve (VTC) to study the dielectric barrier glow discharge (DBGD) pattern. VTC is an important characteristic of DBGD, which plots the change of wall voltage after a discharge as a function of the initial total gap voltage. In the modeling,more » the combined effect of the discharge conditions is included in VTC, and the activation-inhibition effect is expressed by a spatial interaction term. Besides, the model reduces the dimensionality of the system by just considering the integration effect of current flow. All these greatly facilitate the construction of this model. Numerical simulations turn out to be in good accordance with our previous fluid modeling and experimental result.« less

  8. A 750 GeV portal: LHC phenomenology and dark matter candidates

    DOE PAGES

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    2016-05-16

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less

  9. A 750 GeV portal: LHC phenomenology and dark matter candidates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Eramo, Francesco; de Vries, Jordy; Panci, Paolo

    We study the effective field theory obtained by extending the Standard Model field content with two singlets: a 750 GeV (pseudo-)scalar and a stable fermion. Accounting for collider productions initiated by both gluon and photon fusion, we investigate where the theory is consistent with both the LHC diphoton excess and bounds from Run 1. We analyze dark matter phenomenology in such regions, including relic density constraints as well as collider, direct, and indirect bounds. Scalar portal dark matter models are very close to limits from direct detection and mono-jet searches if gluon fusion dominates, and not constrained at all otherwise.more » In conclusion, pseudo-scalar models are challenged by photon line limits and mono-jet searches in most of the parameter space.« less

  10. Psychobiology of Altered States of Consciousness

    ERIC Educational Resources Information Center

    Vaitl, Dieter; Birbaumer, Niels; Gruzelier, John; Jamieson, Graham A.; Kotchoubey, Boris; Kubler, Andrea; Lehmann, Dietrich; Miltner, Wolfgang H. R.; Ott, Ulrich; Sammer, Gebhard; Strauch, Inge; Strehl, Ute; Wackermann, Jiri; Weiss, Thomas

    2005-01-01

    The article reviews the current knowledge regarding altered states of consciousness (ASC) (a) occurring spontaneously, (b) evoked by physical and physiological stimulation, (c) induced by psychological means, and (d) caused by diseases. The emphasis is laid on psychological and neurobiological approaches. The phenomenological analysis of the…

  11. Diagnosis, Evaluation, and Management of Trichotillomania

    PubMed Central

    Woods, Douglas W.; Houghton, David C.

    2014-01-01

    Synopsis Trichotillomania, or chronic hairpulling, is a common condition that affects primarily women. The disorder can cause significant psychosocial impairment and is associated with elevated rates of psychiatric comorbidity. In the current paper, the phenomenology, etiology, assessment and treatment of the disorder is discussed. PMID:25150564

  12. A New Normal: Young Men of Color, Trauma, and Engagement in Learning

    ERIC Educational Resources Information Center

    Van Thompson, Carlyle; Schwartz, Paul J.

    2014-01-01

    This chapter will center on the continuing impact of systemic and persistent educational trauma experienced by Black and Latino males and how trauma affects their current learning. The young men's counterstories from a phenomenological study and documentary are included.

  13. The experience of living with adult-onset epilepsy.

    PubMed

    Kılınç, Stephanie; van Wersch, Anna; Campbell, Carol; Guy, Alison

    2017-08-01

    The incidence and prevalence of adults diagnosed with epilepsy is higher compared to those diagnosed in childhood, yet the experience of living with adult-onset epilepsy has rarely been examined. Hence, the current study took a phenomenological approach to examining the experience of living with epilepsy following diagnosis in adulthood. Semi-structured interviews were conducted with 39 people from across the UK, diagnosed with epilepsy between the ages of eighteen and sixty, at two points in time, six months apart. Phenomenological analysis identified three central themes: the unpredictability of seizure occurrence; the ripple effect; and re-evaluating the future. Despite the accepted consensus in the epilepsy literature that living and coping with epilepsy becomes more difficult the older a person is diagnosed, the current findings indicated that this is inadequate. Rather, it is more suitable to consider that those living with adult-onset epilepsy have a specific experience of the condition and particular support needs, given that they once lived their lives as people without epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Investigation of the Phenomenological and Psychopathological Features of Trichotillomania in an Italian Sample

    PubMed Central

    Bottesi, Gioia; Cerea, Silvia; Razzetti, Enrico; Sica, Claudio; Frost, Randy O.; Ghisi, Marta

    2016-01-01

    Trichotillomania (TTM) is still a scarcely known and often inadequately treated disorder in Italian clinical settings, despite growing evidence about its severe and disabling consequences. The current study investigated the phenomenology of TTM in Italian individuals; in addition, we sought to examine patterns of self-esteem, anxiety, depression, and OCD-related symptoms in individuals with TTM compared to healthy participants. The current study represents the first attempt to investigate the phenomenological and psychopathological features of TTM in Italian hair pullers. One hundred and twenty-two individuals with TTM were enrolled: 24 were assessed face-to-face (face-to-face group) and 98 were recruited online (online group). An additional group of 22 face-to-face assessed healthy controls (HC group) was included in the study. The overall female to male ratio was 14:1, which is slightly higher favoring female than findings reported in literature. Main results revealed that a higher percentage of individuals in the online group reported pulling from the pubic region than did face-to-face participants; furthermore, the former engaged in examining the bulb and running the hair across the lips and reported pulling while lying in bed at higher frequencies than the latter. Interestingly, the online TTM group showed greater functional and psychological impairment, as well as more severe psychopathological characteristics (self-esteem, physiological and social anxiety, perfectionism, overestimation of threat, and control of thoughts), than the face-to-face one. Differences between the two TTM groups may be explained by the anonymity nature of the online group, which may have led to successful recruitment of more serious TTM cases, or fostered more open answers to questions. Overall, results revealed that many of the phenomenological features of Italian TTM participants matched those found in U.S. clinical settings, even though some notable differences were observed; therefore, cross-cultural invariance might represent a characteristic of OCD-related disorders. PMID:26941700

  15. Renyi Entropies in Particle Cascades

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.; Ostruszka, A.

    2003-01-01

    Renyi entropies for particle distributions following from the general cascade models are discussed. The p-model and the β distribution introduced in earlier studies of cascades are discussed in some detail. Some phenomenological consequences are pointed out.

  16. a New Phenomenological Formula for Ground-State Binding Energies

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, G.

    A phenomenological formula based on liquid drop model has been proposed for ground-state binding energies of nuclei. The effect due to bunching of single particle levels has been incorporated through a term resembling the one-body Hamiltonian. The effect of n-p interaction has been included through a function of valence nucleons. A total of 50 parameters has been used in the present calculation. The root mean square (r.m.s.) deviation for the binding energy values for 2140 nuclei comes out to be 0.376 MeV, and that for 1091 alpha decay energies is 0.284 MeV. The correspondence with the conventional liquid drop model is discussed.

  17. Determination of shift in energy of band edges and band gap of ZnSe spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Siboh, Dutem; Kalita, Pradip Kumar; Sarma, Jayanta Kumar; Nath, Nayan Mani

    2018-04-01

    We have determined the quantum confinement induced shifts in energy of band edges and band gap with respect to size of ZnSe spherical quantum dot employing an effective confinement potential model developed in our earlier communication "arXiv:1705.10343". We have also performed phenomenological analysis of our theoretical results in comparison with available experimental data and observe a very good agreement in this regard. Phenomenological success achieved in this regard confirms validity of the confining potential model as well as signifies the capability and applicability of the ansatz for the effective confining potential to have reasonable information in the study of real nano-structured spherical systems.

  18. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, X.; Liang, J. H.; Chen, B. L.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  19. A Physical Interpretation of the Phenomenological Coefficients of Membrane Permeability

    PubMed Central

    Kedem, O.; Katchalsky, A.

    1961-01-01

    A "translation" of the phenomenological permeability coefficients into friction and distribution coefficients amenable to physical interpretation is presented. Expressions are obtained for the solute permeability coefficient ω and the reflection coefficient σ for both non-electrolytic and electrolytic permeants. An analysis of the coefficients is given for loose membranes as well as for dense natural membranes where transport may go through capillaries or by solution in the lipoid parts of the membrane. Water diffusion and filtration and the relation between these and capillary pore radius of the membrane are discussed. For the permeation of ions through the charged membranes equations are developed for the case of zero electrical current in the membrane. The correlation of σ with ω and Lp for electrolytes resembles that for non-electrolytes. In this case ω and σ depend markedly on ion concentration and on the charge density of the membrane. The reflection coefficient may assume negative values indicating anomalous osmosis. An analysis of the phenomena of anomalous osmosis was carried out for the model of Teorell and Meyer and Sievers and the results agree with the experimental data of Loeb and of Grim and Sollner. A set of equations and reference curves are presented for the evaluation of ω and σ in the transport of polyvalent ions through charged membranes. PMID:13752127

  20. Unconscious Imagination and the Mental Imagery Debate

    PubMed Central

    Brogaard, Berit; Gatzia, Dimitria Electra

    2017-01-01

    Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn’s model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience. PMID:28588527

  1. A novel phenomenological multi-physics model of Li-ion battery cells

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Samad, Nassim A.; Kim, Youngki; Siegel, Jason B.; Stefanopoulou, Anna G.; Epureanu, Bogdan I.

    2016-09-01

    A novel phenomenological multi-physics model of Lithium-ion battery cells is developed for control and state estimation purposes. The model can capture electrical, thermal, and mechanical behaviors of battery cells under constrained conditions, e.g., battery pack conditions. Specifically, the proposed model predicts the core and surface temperatures and reaction force induced from the volume change of battery cells because of electrochemically- and thermally-induced swelling. Moreover, the model incorporates the influences of changes in preload and ambient temperature on the force considering severe environmental conditions electrified vehicles face. Intensive experimental validation demonstrates that the proposed multi-physics model accurately predicts the surface temperature and reaction force for a wide operational range of preload and ambient temperature. This high fidelity model can be useful for more accurate and robust state of charge estimation considering the complex dynamic behaviors of the battery cell. Furthermore, the inherent simplicity of the mechanical measurements offers distinct advantages to improve the existing power and thermal management strategies for battery management.

  2. Monotop signature from a fermionic top partner

    NASA Astrophysics Data System (ADS)

    Gonçalves, Dorival; Kong, Kyoungchul; Sakurai, Kazuki; Takeuchi, Michihisa

    2018-01-01

    We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t t ¯ + missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.

  3. Generalized uncertainty principle and quantum gravity phenomenology

    NASA Astrophysics Data System (ADS)

    Bosso, Pasquale

    The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.

  4. Photonically enabled Ka-band radar and infrared sensor subscale testbed

    NASA Astrophysics Data System (ADS)

    Lohr, Michele B.; Sova, Raymond M.; Funk, Kevin B.; Airola, Marc B.; Dennis, Michael L.; Pavek, Richard E.; Hollenbeck, Jennifer S.; Garrison, Sean K.; Conard, Steven J.; Terry, David H.

    2014-10-01

    A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to study target scenarios in a laboratory setting. The linearity of Maxwell's equations allows the use of millimeter wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.

  5. Exponential inflation with F (R ) gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2018-03-01

    In this paper, we shall consider an exponential inflationary model in the context of vacuum F (R ) gravity. By using well-known reconstruction techniques, we shall investigate which F (R ) gravity can realize the exponential inflation scenario at leading order in terms of the scalar curvature, and we shall calculate the slow-roll indices and the corresponding observational indices, in the context of slow-roll inflation. We also provide some general formulas of the slow-roll and the corresponding observational indices in terms of the e -foldings number. In addition, for the calculation of the slow-roll and of the observational indices, we shall consider quite general formulas, for which it is not necessary for the assumption that all the slow-roll indices are much smaller than unity to hold true. Finally, we investigate the phenomenological viability of the model by comparing it with the latest Planck and BICEP2/Keck-Array observational data. As we demonstrate, the model is compatible with the current observational data for a wide range of the free parameters of the model.

  6. How Soft Gamma Repeaters Might Make Fast Radio Bursts

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2016-08-01

    There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGRs, can meet the energy requirements of FRBs, but requires both the presence of magnetospheric plasma, in order for dissipation to occur in a transparent region, and a mechanism for releasing much of that energy quickly. FRB sources and SGRs are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from the formation of the young neutron star, and their decay ends the phase of SGR/AXP/FRB activity even though “magnetar” fields may persist. Runaway increases in resistance when the current density exceeds a threshold, releases magnetostatic energy in a sudden burst, and produces high brightness GHz emission of FRB by a coherent process. SGRs are produced when released energy thermalizes as an equlibrium pair plasma. The failures of some alternative FRB models and the non-detection of SGR 1806-20 at radio frequencies are discussed in the appendices.

  7. HOW SOFT GAMMA REPEATERS MIGHT MAKE FAST RADIO BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J. I., E-mail: katz@wuphys.wustl.edu

    2016-08-01

    There are several phenomenological similarities between soft gamma repeaters (SGRs) and fast radio bursts (FRBs), including duty factors, timescales, and repetition. The sudden release of magnetic energy in a neutron star magnetosphere, as in popular models of SGRs, can meet the energy requirements of FRBs, but requires both the presence of magnetospheric plasma, in order for dissipation to occur in a transparent region, and a mechanism for releasing much of that energy quickly. FRB sources and SGRs are distinguished by long-lived (up to thousands of years) current-carrying coronal arches remaining from the formation of the young neutron star, and theirmore » decay ends the phase of SGR/AXP/FRB activity even though “magnetar” fields may persist. Runaway increases in resistance when the current density exceeds a threshold, releases magnetostatic energy in a sudden burst, and produces high brightness GHz emission of FRB by a coherent process. SGRs are produced when released energy thermalizes as an equlibrium pair plasma. The failures of some alternative FRB models and the non-detection of SGR 1806-20 at radio frequencies are discussed in the appendices.« less

  8. Narcissism, self-esteem, and the phenomenology of autobiographical memories.

    PubMed

    Jones, Lara L; Norville, Gregory A; Wright, A Michelle

    2017-07-01

    Across two studies, we investigated the influence of narcissism and self-esteem along with gender on phenomenological ratings across the four subscales of the Autobiographical Memory Questionnaire (AMQ; impact, recollection, rehearsal, and belief). Memory cues varied in valence (positive vs. negative) and agency (agentic vs. communal). In Study 2, we used different memory cues reflecting these four Valence by Agency conditions and additionally investigated retrieval times for the autobiographical memories (AMs). Results were consistent with the agency model of narcissism [Campbell, W. K., Brunell, A. B., & Finkel, E. J. (2006). Narcissism, interpersonal self-regulation, and romantic relationships: An agency model approach. In E. J. Finkel & K. D. Vohs (Eds.), Self and relationships: Connecting intrapersonal and interpersonal processes. New York, NY: Guilford], which characterises narcissists as being more concerned with agentic (self-focused) rather than communal (other-focused) positive self-relevant information. Narcissism predicted greater phenomenology across the four subscales for the positive-agentic memories (Study 1: clever; Study 2: attractive, talented) as well as faster memory retrieval times. Narcissism also predicted greater recollection and faster retrieval times for the negative-communal AMs (Study 1: rude; Study 2: annoying, dishonest). In contrast, self-esteem predicted greater phenomenology and faster retrieval times for the positive-communal AMs (Study 1: cooperative; Study 2: romantic, sympathetic). In both studies, results of LIWC analyses further differentiated between narcissism and self-esteem in the content (word usage) of the AMs.

  9. Phenomenological and molecular-level Petri net modeling and simulation of long-term potentiation.

    PubMed

    Hardy, S; Robillard, P N

    2005-10-01

    Petri net-based modeling methods have been used in many research projects to represent biological systems. Among these, the hybrid functional Petri net (HFPN) was developed especially for biological modeling in order to provide biologists with a more intuitive Petri net-based method. In the literature, HFPNs are used to represent kinetic models at the molecular level. We present two models of long-term potentiation previously represented by differential equations which we have transformed into HFPN models: a phenomenological synapse model and a molecular-level model of the CaMKII regulation pathway. Through simulation, we obtained results similar to those of previous studies using these models. Our results open the way to a new type of modeling for systems biology where HFPNs are used to combine different levels of abstraction within one model. This approach can be useful in fully modeling a system at the molecular level when kinetic data is missing or when a full study of a system at the molecular level it is not within the scope of the research.

  10. A phenomenological study of assessment methods in the inquiry-based science classroom: How do educators decide?

    NASA Astrophysics Data System (ADS)

    Tash, Gina G.

    The purpose of this phenomenological study was to describe the experiences of science educators as they select and develop assessment methods for inquiry learning. Balancing preparations for standardized tests and authentic inquiry assessment experiences can be challenging for science educators. The review of literature revealed that current research focused on instructional methods and assessment, students' assessment experiences, and teachers' instructional methods experiences. There remains a gap in current literature regarding the experiences of science educators as they select and develop assessment methods for inquiry learning. This study filled the gap by providing a description of the experiences of science educators as they select and develop assessments for inquiry learning. The participants in this study were 16 fifth through eighth grade science teachers who participate in the Alabama Math, Science, and Technology Initiative (AMSTI) in northwest Alabama. A phenomenological research method was chosen in order to describe the experiences of AMSTI science teachers as they select and develop assessments for inquiry learning. Data were collected through interviews and focus group discussions. The data analysis used a modified Stevick-Colaizzi-Keen framework. The results showed AMSTI science teachers use a variety of assessment resources and methods, feel pressures to meet Adequate Yearly Progress (AYP), and implement varying degrees of change in their assessment process due to No Child Left Behind (NCLB). Contributing a positive social change, this study's findings supplied science teachers with descriptions of successful inquiry classrooms and creative assessments that correspond to inquiry-based learning methods.

  11. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  12. Re-Conceiving Ability in Physical Education: A Social Analysis

    ERIC Educational Resources Information Center

    Wright, Jan; Burrows, Lisette

    2006-01-01

    In this paper we explore how "ability" is currently conceptualised in physical education and with what effects for different groups of young people. We interrogate approaches to theorising ability in physical education that draw on sociological and phenomenological "foundations" together with notions of ability as…

  13. Reflections of Preservice Information Technology Teachers Regarding Cyberbullying

    ERIC Educational Resources Information Center

    Akbulut, Yavuz; Cuhadar, Cem

    2011-01-01

    The current phenomenological study addressed the reflections of preservice information technology (IT) teachers regarding their cyberbullying or victimization experiences. Fifty five preservice IT teachers at a Turkish teacher training institution were offered a lecture with the purpose of awareness-raising on cyberbullying, which was followed by…

  14. African American College Students, the Black Church, and Counseling

    ERIC Educational Resources Information Center

    Avent Harris, Janeé R.; Wong, Christine D.

    2018-01-01

    African American undergraduate students face numerous challenges during college; however, they are less likely to seek help from college counseling services. Often, African Americans seek support from spiritual resources. In the current phenomenological study, participants shared in a focus group interview. Overall, participants seemed to value…

  15. Flavored gauge mediation with discrete non-Abelian symmetries

    NASA Astrophysics Data System (ADS)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  16. REGIONAL OXIDANT MODEL (ROM) USER'S GUIDE, PART 3: THE CORE MODEL

    EPA Science Inventory

    The Regional Oxidant Model (ROM) determines hourly concentrations and fates of zone and 34 other chemical species over a scale of 1000 km x 1000 km for ozone "episodes" of up to one month's duration. he model structure, based on phenomenological concepts, consists of 3 1/2 layers...

  17. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    NASA Astrophysics Data System (ADS)

    Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2013-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.

  18. Accessing new understandings of trauma-informed care with queer birthing women in a rural context.

    PubMed

    Searle, Jennifer; Goldberg, Lisa; Aston, Megan; Burrow, Sylvia

    2017-11-01

    Participant narratives from a feminist and queer phenomenological study aim to broaden current understandings of trauma. Examining structural marginalisation within perinatal care relationships provides insights into the impact of dominant models of care on queer birthing women. More specifically, validation of queer experience as a key finding from the study offers trauma-informed strategies that reconstruct formerly disempowering perinatal relationships. Heteronormativity governs birthing spaces and presents considerable challenges for queer birthing women who may also have an increased risk of trauma due to structurally marginalising processes that create and maintain socially constructed differences. Analysis of the qualitative data was guided by feminist and queer phenomenology. This was well suited to understanding queer women's storied narratives of trauma, including disempowering processes of structural marginalisation. Semistructured and conversational interviews were conducted with a purposeful sample of thirteen queer-identified women who had experiences of birthing in rural Nova Scotia, Canada. Validation was identified as meaningful for queer women in the context of perinatal care in rural Nova Scotia. Offering new perspectives on traditional models of assessment provide strategies to create a context of care that reconstructs the birthing space insofar as women at risk do not have to come out as queer in opposition to the expectation of heterosexuality. Normative practices were found to further the effects of structural marginalisation suggesting that perinatal care providers, including nurses, can challenge dominant models of care and reconstruct the relationality between queer women and formerly disempowering expectations of heteronormativity that govern birthing spaces. New trauma-informed assessment strategies reconstruct the relationality within historically disempowering perinatal relationships through potentiating difference which avoids retraumatising women with re-experiencing the process of coming out as queer in opposition to the expectation of heterosexuality. © 2017 John Wiley & Sons Ltd.

  19. An Update on Tardive Dyskinesia: From Phenomenology to Treatment

    PubMed Central

    Waln, Olga; Jankovic, Joseph

    2013-01-01

    Tardive dyskinesia (TD), characterized by oro-buccal-lingual stereotypy, can manifest in the form of akathisia, dystonia, tics, tremor, chorea, or as a combination of different types of abnormal movements. In addition to movement disorders (including involuntary vocalizations), patients with TD may have a variety of sensory symptoms, such as urge to move (as in akathisia), paresthesias, and pain. TD is a form of tardive syndrome—a group of iatrogenic hyperkinetic and hypokinetic movement disorders caused by dopamine receptor-blocking agents. The pathophysiology of TD remains poorly understood, and treatment of this condition is often challenging. In this update, we provide the most current information on the history, nomenclature, etiology, pathophysiology, epidemiology, phenomenology, differential diagnosis, and treatment of TD. PMID:23858394

  20. The relationship between impulse control disorders and obsessive-compulsive disorder: a current understanding and future research directions

    PubMed Central

    Potenza, Marc Nicholas; Koran, Lorrin Michael; Pallanti, Stefano

    2009-01-01

    Impulse control disorders (ICDs) constitute a heterogeneous group of conditions linked diagnostically by difficulties in resisting “the impulse, drive, or temptation to perform an act that is harmful to the person or to others.” Specific ICDs share clinical, phenomenological and biological features with obsessive-compulsive disorder (OCD) that have suggested that these disorders might be categorized together. However, other data suggest significant differences between OCD and ICDs. In this article, clinical, phenomenological and biological features of the formal ICDs are reviewed and compared and contrasted with those of OCD. Available data indicate substantial differences between ICDs and OCD that suggest independent categorizations. Existing research gaps are identified and avenues for future research suggested. PMID:19811840

  1. Dreaming and the brain: from phenomenology to neurophysiology.

    PubMed

    Nir, Yuval; Tononi, Giulio

    2010-02-01

    Dreams are a remarkable experiment in psychology and neuroscience, conducted every night in every sleeping person. They show that the human brain, disconnected from the environment, can generate an entire world of conscious experiences by itself. Content analysis and developmental studies have promoted understanding of dream phenomenology. In parallel, brain lesion studies, functional imaging and neurophysiology have advanced current knowledge of the neural basis of dreaming. It is now possible to start integrating these two strands of research to address fundamental questions that dreams pose for cognitive neuroscience: how conscious experiences in sleep relate to underlying brain activity; why the dreamer is largely disconnected from the environment; and whether dreaming is more closely related to mental imagery or to perception. Published by Elsevier Ltd.

  2. Sport Sciences and the Promise of Phenomenology: Philosophy, Method, and Insight.

    ERIC Educational Resources Information Center

    Kerry, Daniel S.; Armour, Kathleen M.

    2000-01-01

    Examines how phenomenology might make a more significant contribution to knowledge and understanding within sport-related research. The paper discusses the philosophical roots of phenomenology; highlights the key contributions of and differences between Husserl and Heidegger; examines phenomenology as philosophy and phenomenology as method; and…

  3. Philosophy of phenomenology: how understanding aids research.

    PubMed

    Converse, Mary

    2012-01-01

    To assist the researcher in understanding the similarities and differences between the Husserlian and Heideggerian philosophies of phenomenology, and how that philosophy can inform nursing research as a useful methodology. Nurse researchers using phenomenology as a methodology need to understand the philosophy of phenomenology to produce a research design that is philosophically congruent. However, phenomenology has a long and complex history of development, and may be difficult to understand and apply. The author draws from Heidegger (1962), Gadamer (2004), and nurse scholars and methodologists. To give the reader a sense of the development of the philosophy of phenomenology, the author briefly recounts its historical origins and interpretations, specifically related to Husserl, Heidegger and Gadamer. The author outlines the ontological and epistemological assumptions of Husserlian and Heideggerian phenomenology and guidance for methodology inspired by these philosophers. Difficulties with engaging in phenomenological research are addressed, especially the processes of phenomenological reduction and bracketing, and the lack of clarity about the methods of interpretation. Despite its complexity, phenomenology can provide the nurse researcher with indepth insight into nursing practice. An understanding of phenomenology can guide nurse researchers to produce results that have meaning in nursing patient care.

  4. Memory in a fractional-order cardiomyocyte model alters properties of alternans and spontaneous activity

    NASA Astrophysics Data System (ADS)

    Comlekoglu, T.; Weinberg, S. H.

    2017-09-01

    Cardiac memory is the dependence of electrical activity on the prior history of one or more system state variables, including transmembrane potential (Vm), ionic current gating, and ion concentrations. While prior work has represented memory either phenomenologically or with biophysical detail, in this study, we consider an intermediate approach of a minimal three-variable cardiomyocyte model, modified with fractional-order dynamics, i.e., a differential equation of order between 0 and 1, to account for history-dependence. Memory is represented via both capacitive memory, due to fractional-order Vm dynamics, that arises due to non-ideal behavior of membrane capacitance; and ionic current gating memory, due to fractional-order gating variable dynamics, that arises due to gating history-dependence. We perform simulations for varying Vm and gating variable fractional-orders and pacing cycle length and measure action potential duration (APD) and incidence of alternans, loss of capture, and spontaneous activity. In the absence of ionic current gating memory, we find that capacitive memory, i.e., decreased Vm fractional-order, typically shortens APD, suppresses alternans, and decreases the minimum cycle length (MCL) for loss of capture. However, in the presence of ionic current gating memory, capacitive memory can prolong APD, promote alternans, and increase MCL. Further, we find that reduced Vm fractional order (typically less than 0.75) can drive phase 4 depolarizations that promote spontaneous activity. Collectively, our results demonstrate that memory reproduced by a fractional-order model can play a role in alternans formation and pacemaking, and in general, can greatly increase the range of electrophysiological characteristics exhibited by a minimal model.

  5. Strong competition between ΘI I-loop-current order and d -wave charge order along the diagonal direction in a two-dimensional hot spot model

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Kloss, Thomas; Montiel, Xavier; Freire, Hermann; Pépin, Catherine

    2015-08-01

    We study the fate of the so-called ΘI I-loop-current order that breaks both time-reversal and parity symmetries in a two-dimensional hot spot model with antiferromagnetically mediated interactions, using Fermi surfaces relevant to the phenomenology of the cuprate superconductors. We start from a three-band Emery model describing the hopping of holes in the CuO2 plane that includes two hopping parameters tp p and tp d, local onsite Coulomb interactions Ud and Up, and nearest-neighbor Vp d couplings between the fermions in the copper [Cu (3 dx2-y2) ] and oxygen [O (2 px) and O (2 py)] orbitals. By focusing on the lowest-energy band, we proceed to decouple the local interaction Ud of the Cu orbital in the spin channel using a Hubbard-Stratonovich transformation to arrive at the interacting part of the so-called spin-fermion model. We also decouple the nearest-neighbor interaction Vp d to introduce the order parameter of the ΘI I-loop-current order. In this way, we are able to construct a consistent mean-field theory that describes the strong competition between the composite order parameter made of a quadrupole-density wave and d -wave pairing fluctuations proposed in Efetov et al. [Nat. Phys. 9, 442 (2013), 10.1038/nphys2641] with the ΘI I-loop-current order parameter that is argued to be relevant for explaining important aspects of the physics of the pseudogap phase displayed in the underdoped cuprates.

  6. Supersymmetry models and phenomenology

    NASA Astrophysics Data System (ADS)

    Carpenter, Linda M.

    We present several models of supersymmetry breaking and explore their phenomenological consequences. First, we build models utilizing the supersymmetry breaking formalism of anomaly mediation. Our first model consists of the minimal supersymmetric standard model plus a singlet, anomaly-mediated soft masses and a Dirac mass which marries the bino to the singlet. The Dirac mass does not affect the so-called "UV insensitivity" of the other soft parameters to running or supersymmetric thresholds and thus flavor physics at intermediate scales would not reintroduce the flavor problem. The Dirac bino is integrated out at a few TeV and produces finite and positive contributions to all hyper-charged scalars at one loop thus producing positive squared slepton masses. Our second model approaches anomaly mediation from the point of view of the mu problem. We present a minimal method for generating a mu term while still generating a viable spectrum. We introduce a new operator involving a hidden sector U(1) gauge field which is then canceled against a Giudice-Masiero-like mu term. No new flavor violating operators are allowed. This procedure produces viable electroweak symmetry breaking in the Higgs sector. Only a single pair of new vector-like messenger fields is needed to correct the slepton masses by deflecting them from their anomaly mediated trajectories. Finally we attempt to solve the Higgs mass tuning problem in the MSSM; both electroweak precision measurements and simple supersymmetric extensions of the standard model prefer the mass of the Higgs boson to be around the Z mass. However, LEP II rules out a standard model-like Higgs lighter than 114.4 GeV. We show that supersymmetric models with R parity violation have a large range of parameter space in which the Higgs effectively decays to six jets (for Baryon number violation) or four jets plus taus and/or missing energy (for Lepton number violation). These decays are much more weakly constrained by current LEP analyses and could be probed by new exclusive channel analyses as well as a combined "model independent" Higgs search analysis by all experiments.

  7. Evolving the theory and praxis of knowledge translation through social interaction: a social phenomenological study

    PubMed Central

    McWilliam, Carol L; Kothari, Anita; Ward-Griffin, Catherine; Forbes, Dorothy; Leipert, Beverly

    2009-01-01

    Background As an inherently human process fraught with subjectivity, dynamic interaction, and change, social interaction knowledge translation (KT) invites implementation scientists to explore what might be learned from adopting the academic tradition of social constructivism and an interpretive research approach. This paper presents phenomenological investigation of the second cycle of a participatory action KT intervention in the home care sector to answer the question: What is the nature of the process of implementing KT through social interaction? Methods Social phenomenology was selected to capture how the social processes of the KT intervention were experienced, with the aim of representing these as typical socially-constituted patterns. Participants (n = 203), including service providers, case managers, administrators, and researchers organized into nine geographically-determined multi-disciplinary action groups, purposefully selected and audiotaped three meetings per group to capture their enactment of the KT process at early, middle, and end-of-cycle timeframes. Data, comprised of 36 hours of transcribed audiotapes augmented by researchers' field notes, were analyzed using social phenomenology strategies and authenticated through member checking and peer review. Results Four patterns of social interaction representing organization, team, and individual interests were identified: overcoming barriers and optimizing facilitators; integrating 'science push' and 'demand pull' approaches within the social interaction process; synthesizing the research evidence with tacit professional craft and experiential knowledge; and integrating knowledge creation, transfer, and uptake throughout everyday work. Achieved through relational transformative leadership constituted simultaneously by both structure and agency, in keeping with social phenomenology analysis approaches, these four patterns are represented holistically in a typical construction, specifically, a participatory action KT (PAKT) model. Conclusion Study findings suggest the relevance of principles and foci from the field of process evaluation related to intervention implementation, further illuminating KT as a structuration process facilitated by evolving transformative leadership in an active and integrated context. The model provides guidance for proactively constructing a 'fit' between content, context, and facilitation in the translation of evidence informing professional craft knowledge. PMID:19442294

  8. The Tensor and the Scalar Charges of the Nucleon from Hadron Phenomenology

    NASA Astrophysics Data System (ADS)

    Courtoy, A.

    2018-01-01

    We discuss the impact of the determination of the nucleon tensor charge on searches for physics Beyond the Standard Model. We also comment on the future extraction of the subleading-twist PDF e(x) from Jefferson Lab soon-to-be-released Beam Spin Asymmetry data as well as from the expected data of CLAS12 and SoLID, as the latter is related to the scalar charge. These analyses are possible through the phenomenology of Dihadron Fragmentation Functions related processes, which we report on here as well.

  9. A Simple Introduction to Gröbner Basis Methods in String Phenomenology

    NASA Astrophysics Data System (ADS)

    Gray, James

    In this talk I give an elementary introduction to the key algorithm used in recent applications of computational algebraic geometry to the subject of string phenomenology. I begin with a simple description of the algorithm itself and then give 3 examples of its use in physics. I describe how it can be used to obtain constraints on flux parameters, how it can simplify the equations describing vacua in 4d string models and lastly how it can be used to compute the vacuum space of the electroweak sector of the MSSM.

  10. A phenomenological π-p scattering length from pionic hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    2004-07-01

    We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length ah extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order α2logα using an extended charge distribution. A hadronic πN scattering length ahπ-p=0.0870(5)mπ-1 is deduced leading to a πNN coupling constant from the GMO relation gc2/(4π)=14.04(17).

  11. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    NASA Astrophysics Data System (ADS)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  12. Extension of the quantum-kinetic model to lunar and Mars return physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liechty, D. S.; Lewis, M. J.

    The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high-mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. A recently introduced molecular-level chemistry model, the quantum-kinetic, or Q-K, model that predicts reaction rates for gases in thermal equilibrium and non-equilibrium using only kinetic theory and fundamental molecular properties, is extended in the current work to include electronic energy level transitions and reactions involving charged particles. Like the Q-K procedures for neutral species chemical reactions, these new models are phenomenological procedures that aimmore » to reproduce the reaction/transition rates but do not necessarily capture the exact physics. These engineering models are necessarily efficient due to the requirement to compute billions of simulated collisions in direct simulation Monte Carlo (DSMC) simulations. The new models are shown to generally agree within the spread of reported transition and reaction rates from the literature for near equilibrium conditions.« less

  13. Phenomenology of the SU(3)_c⊗ SU(3)_L⊗ U(1)_X model with right-handed neutrinos

    NASA Astrophysics Data System (ADS)

    Gutiérrez, D. A.; Ponce, W. A.; Sánchez, L. A.

    2006-05-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)_c⊗ SU(3)_L⊗ U(1)_X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  14. Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with exotic charged leptons

    NASA Astrophysics Data System (ADS)

    Salazar, Juan C.; Ponce, William A.; Gutiérrez, Diego A.

    2007-04-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.

  15. Standard model with a complex scalar singlet: Cosmological implications and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Ramsey-Musolf, Michael J.; Senaha, Eibun

    2018-01-01

    We analyze the theoretical and phenomenological considerations for the electroweak phase transition and dark matter in an extension of the standard model with a complex scalar singlet (cxSM). In contrast with earlier studies, we use a renormalization group improved scalar potential and treat its thermal history in a gauge-invariant manner. We find that the parameter space consistent with a strong first-order electroweak phase transition (SFOEWPT) and present dark matter phenomenological constraints is significantly restricted compared to results of a conventional, gauge-noninvariant analysis. In the simplest variant of the cxSM, recent LUX data and a SFOEWPT require a dark matter mass close to half the mass of the standard model-like Higgs boson. We also comment on various caveats regarding the perturbative treatment of the phase transition dynamics.

  16. Obsessive-compulsive disorder and related disorders: a comprehensive survey

    PubMed Central

    Fornaro, Michele; Gabrielli, Filippo; Albano, Claudio; Fornaro, Stefania; Rizzato, Salvatore; Mattei, Chiara; Solano, Paola; Vinciguerra, Valentina; Fornaro, Pantaleo

    2009-01-01

    Our aim was to present a comprehensive, updated survey on obsessive-compulsive disorder (OCD) and obsessive-compulsive related disorders (OCRDs) and their clinical management via literature review, critical analysis and synthesis. Information on OCD and OCRD current nosography, clinical phenomenology and etiology, may lead to a better comprehension of their management. Clinicians should become familiar with the broad spectrum of OCD disorders, since it is a pivotal issue in current clinical psychiatry. PMID:19450269

  17. An Interpretative Phenomenological Study on Culturally Responsive Pedagogy in the Physical Education Practicum Setting

    ERIC Educational Resources Information Center

    Stratton, Jennifer Leary

    2013-01-01

    As the United States experiences a large demographic shift, current research demonstrates that effective educators implement culturally responsive strategies to support all students in achieving academic success with regards to race, ethnicity, language, socioeconomic status, gender, sexual orientation, religion and exceptionalities (Gollnick…

  18. A Phenomenological Investigation of Women's Learning Experiences in Counselor Education

    ERIC Educational Resources Information Center

    Meyers, Lindsay Pennell

    2016-01-01

    Counselor education pedagogy has not sufficiently recognized or incorporated current knowledge of gender differences and their potential impact on women's learning experiences. Instead, the body of research that addresses gender in counselor education refers to incorporating gender in the classroom as a topic of discussion rather than considering…

  19. Building Identity in Collegiate Midlevel Choral Ensembles: The Director's Perspective

    ERIC Educational Resources Information Center

    Major, Marci L.

    2017-01-01

    This study was designed to explore the director's perspective on the role organizational images play in social identity development in midlevel choral ensembles. Using a phenomenological methodology, I interviewed 10 current or former directors of midlevel choral ensembles from eight midwestern U.S. colleges and universities. Directors cited…

  20. "A Powerful Tool": A Phenomenological Study of School Counselors' Experiences with Social Stories

    ERIC Educational Resources Information Center

    Goodman-Scott, Emily; Carlisle, Robert; Clark, Madeline; Burgess, Melanie

    2017-01-01

    Social stories are an evidence-based practice used to address students' social skills. Current literature primarily addresses special education teachers' use of social stories when working with youth with autism spectrum disorder. Although school counselors meet students' social/emotional needs, little research exists documenting their experiences…

  1. Technology in Nursing Classrooms: A Qualitative Phenomenological Interpretative Study

    ERIC Educational Resources Information Center

    Martinez, Ose G.

    2016-01-01

    Nursing students have to learn how to critically think and pass a licensure examination to practice their profession. Current students seem to be bored by lecture strategies most commonly applied by seasoned nurse educators. A gap in the literature regarding lived experiences of seasoned nursing faculty members applying technological applications…

  2. A Phenomenological Understanding of Successful Stuttering Management

    ERIC Educational Resources Information Center

    Plexico, Laura; Manning, Walter H.; DiLollo, Anthony

    2005-01-01

    The purpose of this investigation was to understand, from the perspective of the speaker, how seven adults have been able to successfully manage their stuttering. Individual experiences were obtained across the three temporal stages (past, transitional, and current). Recurring themes were identified across participants in order to develop an…

  3. Planetary Bootstrap: A Prelude to Biosphere Phenomenology

    NASA Astrophysics Data System (ADS)

    Kazansky, Alexander B.

    2004-08-01

    This paper deals with systemic status as well as with some phenomenological and evolutionary aspects of biosphere. Biosphere is represented as multilevel autopoietic system in which different organizational levels are nested into each other. The conceptual model of punctuated epigenesis, biosphere evolutionary process is suggested, in which endogenous planetary organizational crises play role of evolutionary mechanism, creating novelty. The hypothesis is proposed, that the biosphere reaction on the humankind destructive activity reminds the distributed immune response of biological organism, described by F.Varela in his "cognitive immunology". The biosphere evolution is interpreted as the hermeneutical spiral of "Process Being" self-uncovering thus illustrating the historical process of transformation of biosphere as the type of Being in the periods of crises. Some arguments are adduced in favor of biosphere phenomenology development and application of the methods of second-order cybernetics to actual problems of planetary scale.

  4. Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Zank, G. P.

    1995-01-01

    Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.

  5. A CMB polarization primer

    NASA Astrophysics Data System (ADS)

    Hu, Wayne; White, Martin

    1997-10-01

    We present a pedagogical and phenomenological introduction to the study of cosmic microwave background (CMB) polarization to build intuition about the prospects and challenges facing its detection. Thomson scattering of temperature anisotropies on the last scattering surface generates a linear polarization pattern on the sky that can be simply read off from their quadrupole moments. These in turn correspond directly to the fundamental scalar (compressional), vector (vortical), and tensor (gravitational wave) modes of cosmological perturbations. We explain the origin and phenomenology of the geometric distinction between these patterns in terms of the so-called electric and magnetic parity modes, as well as their correlation with the temperature pattern. By its isolation of the last scattering surface and the various perturbation modes, the polarization provides unique information for the phenomenological reconstruction of the cosmological model. Finally we comment on the comparison of theory with experimental data and prospects for the future detection of CMB polarization.

  6. Principle component analyses of questionnaires measuring individual differences in synaesthetic phenomenology.

    PubMed

    Anderson, Hazel P; Ward, Jamie

    2015-05-01

    Questionnaires have been developed for categorising grapheme-colour synaesthetes into two sub-types based on phenomenology: associators and projectors. The general approach has been to assume a priori the existence of two sub-types on a single dimension (with endpoints as projector and associator) rather than explore, in a data-driven fashion, other possible models. We collected responses from 175 grapheme-colour synaesthetes on two questionnaires, the Illustrated Synaesthetic Experience Questionnaire (Skelton, Ludwig, & Mohr, 2009) and Rouw and Scholte's (2007) Projector-Associator Questionnaire. After Principle Component Analysis both questionnaires were comprised of two factors which coincide with the projector/associator distinction. This suggests that projectors and associators are not opposites of each other, but separate dimensions of experience (e.g. some synaesthetes claim to be both, others claim to be neither). The revised questionnaires provide a useful tool for researchers and insights into the phenomenology of synaesthesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Phenomenology of TeV little string theory from holography.

    PubMed

    Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit

    2012-02-24

    We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV.

  8. Disorder and Urbach energy in hydrogenated amorphous carbon: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Fanchini, G.; Tagliaferro, A.

    2004-08-01

    We develop a phenomenological model describing the structural and topological effects of the disorder in hydrogenated amorphous carbons (a-C :H), through the analysis of the Raman G-peak width and the optical absorption spectra, providing information on the densities of electronic π ad π* states (πDOS). We show that the Urbach energy is not related to topological disorder but to the Gaussian width (σπ) of the πDOS, peaked at ±Eπ energies above/below the Fermi level. σπ, on its turn, is not related in a straightforward manner to the disorder. The disorder is better represented by the σπ/Eπ ratio, expressing the disorder-induced narrowing of the Tauc optical gap.

  9. Palatini actions and quantum gravity phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es

    2011-10-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropicmore » cosmologies of this model also avoid the big bang singularity by means of a big bounce.« less

  10. PARTONS: PARtonic Tomography Of Nucleon Software. A computing framework for the phenomenology of Generalized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Berthou, B.; Binosi, D.; Chouika, N.; Colaneri, L.; Guidal, M.; Mezrag, C.; Moutarde, H.; Rodríguez-Quintero, J.; Sabatié, F.; Sznajder, P.; Wagner, J.

    2018-06-01

    We describe the architecture and functionalities of a C++ software framework, coined PARTONS, dedicated to the phenomenology of Generalized Parton Distributions. These distributions describe the three-dimensional structure of hadrons in terms of quarks and gluons, and can be accessed in deeply exclusive lepto- or photo-production of mesons or photons. PARTONS provides a necessary bridge between models of Generalized Parton Distributions and experimental data collected in various exclusive production channels. We outline the specification of the PARTONS framework in terms of practical needs, physical content and numerical capacity. This framework will be useful for physicists - theorists or experimentalists - not only to develop new models, but also to interpret existing measurements and even design new experiments.

  11. Conducting phenomenological research: Rationalizing the methods and rigour of the phenomenology of practice.

    PubMed

    Errasti-Ibarrondo, Begoña; Jordán, José Antonio; Díez-Del-Corral, Mercedes P; Arantzamendi, María

    2018-07-01

    To offer a complete outlook in a readable easy way of van Manen's hermeneutic-phenomenological method to nurses interested in undertaking phenomenological research. Phenomenology, as research methodology, involves a certain degree of complexity. It is difficult to identify a single article or author which sets out the didactic guidelines that specifically guide research of this kind. In this context, the theoretical-practical view of Max van Manen's Phenomenology of Practice may be seen as a rigorous guide and directive on which researchers may find support to undertake phenomenological research. Discussion paper. This discussion paper is based on our own experiences and supported by literature and theory. Our central sources of data have been the books and writings of Max van Manen and his website "Phenomenologyonline". The principal methods of the hermeneutic-phenomenological method are addressed and explained providing an enriching overview of phenomenology of practice. A proposal is made for the way the suggestions made by van Manen might be organized for use with the methods involved in Phenomenology of Practice: Social sciences, philosophical and philological methods. Thereby, nurse researchers interested in conducting phenomenological research may find a global outlook and support to understand and conduct this type of inquiry which draws on the art. The approach in this article may help nurse scholars and researchers reach an overall, encompassing perspective of the main methods and activities involved in doing phenomenological research. Nurses interested in doing phenomenology of practice are expected to commit with reflection and writing. © 2018 John Wiley & Sons Ltd.

  12. Measurement of the Generalized Forward Spin Polarizabilities of the Neutron

    NASA Astrophysics Data System (ADS)

    Amarian, M.; Auerbach, L.; Averett, T.; Berthot, J.; Bertin, P.; Bertozzi, W.; Black, T.; Brash, E.; Brown, D.; Burtin, E.; Calarco, J.; Cates, G.; Chai, Z.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Cisbani, E.; de Jager, C. W.; Deur, A.; Disalvo, R.; Dieterich, S.; Djawotho, P.; Finn, J. M.; Fissum, K.; Fonvieille, H.; Frullani, S.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Goldberg, E.; Gomez, J.; Gorbenko, V.; Hansen, J.-O.; Hersman, B.; Holmes, R.; Huber, G. M.; Hughes, E.; Humensky, B.; Incerti, S.; Iodice, M.; Jensen, S.; Jiang, X.; Jones, C.; Jones, G.; Jones, M.; Jutier, C.; Ketikyan, A.; Kominis, I.; Korsch, W.; Kramer, K.; Kumar, K.; Kumbartzki, G.; Kuss, M.; Lakuriqi, E.; Laveissiere, G.; Lerose, J.; Liang, M.; Liyanage, N.; Lolos, G.; Malov, S.; Marroncle, J.; McCormick, K.; McKeown, R.; Meziani, Z.-E.; Michaels, R.; Mitchell, J.; Papandreou, Z.; Pavlin, T.; Petratos, G. G.; Pripstein, D.; Prout, D.; Ransome, R.; Roblin, Y.; Rowntree, D.; Rvachev, M.; Sabatie, F.; Saha, A.; Slifer, K.; Souder, P.; Saito, T.; Strauch, S.; Suleiman, R.; Takahashi, K.; Teijiro, S.; Todor, L.; Tsubota, H.; Ueno, H.; Urciuoli, G.; der Meer, R. Van; Vernin, P.; Voskanian, H.; Wojtsekhowski, B.; Xiong, F.; Xu, W.; Yang, J.-C.; Zhang, B.; Żołnierczuk, P. A.

    2004-10-01

    The generalized forward spin polarizabilities γ0 and δLT of the neutron have been extracted for the first time in a Q2 range from 0.1 to 0.9 GeV2. Since γ0 is sensitive to nucleon resonances and δLT is insensitive to the Δ resonance, it is expected that the pair of forward spin polarizabilities should provide benchmark tests of the current understanding of the chiral dynamics of QCD. The new results on δLT show significant disagreement with chiral perturbation theory calculations, while the data for γ0 at low Q2 are in good agreement with a next-to-leading-order relativistic baryon chiral perturbation theory calculation. The data show good agreement with the phenomenological MAID model.

  13. Heavy Higgs searches: flavour matters

    NASA Astrophysics Data System (ADS)

    Gori, Stefania; Grojean, Christophe; Juste, Aurelio; Paul, Ayan

    2018-01-01

    We point out that the stringent lower bounds on the masses of additional electrically neutral and charged Higgs bosons crucially depend on the flavour structure of their Yukawa interactions. We show that these bounds can easily be evaded by the introduction of flavour-changing neutral currents in the Higgs sector. As an illustration, we study the phenomenology of a two Higgs doublet model with a Yukawa texture singling out the third family of quarks and leptons. We combine constraints from low-energy flavour physics measurements, LHC measurements of the 125 GeV Higgs boson rates, and LHC searches for new heavy Higgs bosons. We propose novel LHC searches that could be performed in the coming years to unravel the existence of these new Higgs bosons.

  14. Self-sustaining dynamical nuclear polarization oscillations in quantum dots.

    PubMed

    Rudner, M S; Levitov, L S

    2013-02-22

    Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a minimal albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field) and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The proposed framework naturally explains the differences in phenomenology between vertical and lateral quantum dot structures as well as the extremely long oscillation periods.

  15. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges

    PubMed Central

    Parker, Robert S.; Clermont, Gilles

    2010-01-01

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made. PMID:20147315

  16. [Swan Song: The Advent of the Psychotic Nucleus].

    PubMed

    Zúñiga, Fernando Muñoz

    2012-09-01

    Different forms of artistic expression, such as literature and cinema, constitute an inexhaustible source for the study of mental illness. The use of psychodynamic models may contribute to a better understanding of the spectrum between personality disorders and the psychosis spectrum, thus enriching the phenomenological approach in the psychiatric clinical practice. To examine from psychodynamic standpoints the main character of the American film Black Swan, and the nature of her psychotic symptoms. Reviewing of sources and relevant theoretical currents. Analysis shows the usefulness of a psychodynamically- oriented dimensional model for understanding the so-called psychotic breaks as well as the applicability of psychoanalytic psychosis theories in general psychiatric practice, as they may provide a more flexible clinical approach, closer to the patient's subjective experience. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  17. SUSY: Quo Vadis?

    NASA Astrophysics Data System (ADS)

    Ross, G. G.

    2014-05-01

    Given that there is currently no direct evidence for supersymmetric particles at the LHC it is timely to re-evaluate the need for low scale supersymmetry and to ask whether it is likely to be discoverable by the LHC running at its full energy. We review the status of simple SUSY extensions of the Standard Model in the light of the Higgs discovery and the non-observation of evidence for SUSY at the LHC. The need for large radiative corrections to drive the Higgs mass up to 126 GeV and for the coloured SUSY states to be heavy to explain their non-observation introduces a little hierarchy problem and we discuss how to quantify the associated fine tuning. The requirement of low fine tuning requires non-minimal SUSY extensions and we discuss the nature and phenomenology of models which still have perfectly acceptable low fine tuning. A brief discussion of SUSY flavour-changing and CP-violation problems and their resolution is presented.

  18. Ginzburg-Landau Theory for Flux Phase and Superconductivity in t-J Model

    NASA Astrophysics Data System (ADS)

    Kuboki, Kazuhiro

    2018-02-01

    Ginzburg-Landau (GL) equations and GL free energy for flux phase and superconductivity are derived microscopically from the t-J model on a square lattice. Order parameter (OP) for the flux phase has direct coupling to a magnetic field, in contrast to the superconducting OP which has minimal coupling to a vector potential. Therefore, when the flux phase OP has unidirectional spatial variation, staggered currents would flow in a perpendicular direction. The derived GL theory can be used for various problems in high-Tc cuprate superconductors, e.g., states near a surface or impurities, and the effect of an external magnetic field. Since the GL theory derived microscopically directly reflects the electronic structure of the system, e.g., the shape of the Fermi surface that changes with doping, it can provide more useful information than that from phenomenological GL theories.

  19. Improvement of persistent magnetic field trapping in bulk Y-Ba-Cu-O superconductors

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Weinstein, Roy

    1993-01-01

    For type-II superconductors, magnetic field can be trapped due to persistent internal supercurrent. Quasi-persistent magnetic fields near 2 T at 60 K (and 1.4 T at 77 K) have been measured in minimagnets made of proton-irradiated melt-textured Y-Ba-Cu-O (MT-Y123) samples. Using the trapping effect, high-field permanent magnets with dipole, quadrupole, or more complicated configurations can be made of existing MT-Y123 material, thus bypassing the need for high-temperature superconductor (HTS) wires. A phenomenological current model has been developed to account for the trapped field intensity and profile in HTS samples. This model is also a guide to select directions of materials development to further improve field trapping properties. General properties such as magnetic field intensities, spatial distributions, stabilities, and temperature dependence of trapped field are discussed.

  20. Everpresent Λ. II. Structural stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Maqbool; Sorkin, Rafael D.

    2013-03-01

    Ideas from causal set theory lead to a fluctuating, time-dependent cosmological constant of the right order of magnitude to match currently quoted “dark energy” values. Although this effect was predicted some time ago [R. D. Sorkin, in Relativity and Gravitation: Classical and Quantum, Proceedings of the SILARG VII Conference, Cocoyoc, Mexico, 1990, edited by J. C. D’Olivo, E. Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F. Urrutia, and F. Zertuche (World Scientific, Singapore, 1991), pp. 150-173; Rafael D. Sorkin, Int. J. Theor. Phys. 36, 2759 (1997).IJTPBM0020-7748], it is only more recently that a more detailed phenomenological model of a fluctuating Λ was introduced and simulated numerically [M. Ahmed, S. Dodelson, P. Greene, and R. D. Sorkin, Phys. Rev. D 69, 103523 (2004).PRVDAQ0556-2821]. In this paper we continue the investigation by studying the sensitivity of the model to some of the ad hoc choices made in setting it up.

  1. Top partner-resonance interplay in a composite Higgs framework

    NASA Astrophysics Data System (ADS)

    Yepes, Juan; Zerwekh, Alfonso

    2018-04-01

    Guided us by the scenario of weak scale naturalness and the possible existence of exotic resonances, we have explored in a SO(5) Composite Higgs setup the interplay among three matter sectors: elementary, top partners and vector resonances. We parametrize it through explicit interactions of spin-1 SO(4)-resonances, coupled to the SO(5)-invariant fermionic currents and tensors presented in this work. Such invariants are built upon the Standard Model fermion sector as well as top partners sourced by the unbroken SO(4). The mass scales entailed by the top partner and vector resonance sectors will control the low energy effects emerging from our interplaying model. Its phenomenological impact and parameter spaces have been considered via flavor-dijet processes and electric dipole moments bounds. Finally, the strength of the Nambu-Goldstone symmetry breaking and the extra couplings implied by the top partner mass scales are measured in accordance with expected estimations.

  2. Systems engineering medicine: engineering the inflammation response to infectious and traumatic challenges.

    PubMed

    Parker, Robert S; Clermont, Gilles

    2010-07-06

    The complexity of the systemic inflammatory response and the lack of a treatment breakthrough in the treatment of pathogenic infection demand that advanced tools be brought to bear in the treatment of severe sepsis and trauma. Systems medicine, the translational science counterpart to basic science's systems biology, is the interface at which these tools may be constructed. Rapid initial strides in improving sepsis treatment are possible through the use of phenomenological modelling and optimization tools for process understanding and device design. Higher impact, and more generalizable, treatment designs are based on mechanistic understanding developed through the use of physiologically based models, characterization of population variability, and the use of control-theoretic systems engineering concepts. In this review we introduce acute inflammation and sepsis as an example of just one area that is currently underserved by the systems medicine community, and, therefore, an area in which contributions of all types can be made.

  3. Phenomenology of soft hadron interactions and the relevant EAS data

    NASA Technical Reports Server (NTRS)

    Kalmykov, N. N.; Khristiansen, G. B.; Motova, M. V.

    1984-01-01

    The interpretation of the experimental data in superhigh energy cosmic rays requires the calculations using various models of elementary hadron interaction. One should prefer the models justified by accelerator data and giving definite predictions for superhigh energies. The model of quark-gluon pomeron strings (the QGPS models) satisfies this requirement.

  4. Baryon number and lepton universality violation in leptoquark and diquark models

    NASA Astrophysics Data System (ADS)

    Assad, Nima; Fornal, Bartosz; Grinstein, Benjamín

    2018-02-01

    We perform a systematic study of models involving leptoquarks and diquarks with masses well below the grand unification scale and demonstrate that a large class of them is excluded due to rapid proton decay. After singling out the few phenomenologically viable color triplet and sextet scenarios, we show that there exist only two leptoquark models which do not suffer from tree-level proton decay and which have the potential for explaining the recently discovered anomalies in B meson decays. Both of those models, however, contain dimension five operators contributing to proton decay and require a new symmetry forbidding them to emerge at a higher scale. This has a particularly nice realization for the model with the vector leptoquark (3 , 1) 2 / 3, which points to a specific extension of the Standard Model, namely the Pati-Salam unification model, where this leptoquark naturally arises as the new gauge boson. We explore this possibility in light of recent B physics measurements. Finally, we analyze also a vector diquark model, discussing its LHC phenomenology and showing that it has nontrivial predictions for neutron-antineutron oscillation experiments.

  5. Phenomenology as research method or substantive metaphysics? An overview of phenomenology's uses in nursing.

    PubMed

    Earle, Vicki

    2010-10-01

    In exploring phenomenological literature, it is evident that the term 'phenomenology' holds rather different meanings depending upon the context. Phenomenology has been described as both a philosophical movement and an approach to human science research. The phenomenology of Husserl, Heidegger, Gadamer, and Merleau-Ponty was philosophical in nature and not intended to provide rules or procedures for conducting research. The Canadian social scientist, van Manen, however, introduced specific guidelines for conducting human science research, which is rooted in hermeneutic phenomenology and this particular method has been employed in professional disciplines such as education, nursing, clinical psychology, and law. The purpose of this paper is to explore the difference between the phenomenological method as described by van Manen and that of other philosophers such as Husserl, Heidegger, Gadamer, and Merleau-Ponty. In so doing, the author aims to address the blurred boundaries of phenomenology as a research method and as a philosophical movement and highlight the influence of these blurred boundaries on nursing knowledge development.

  6. Axial-Current Matrix Elements in Light Nuclei from Lattice QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Martin; Shanahan, Phiala E.; Tiburzi, Brian C.

    2016-12-01

    I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections andmore » $$\\beta\\beta$$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $$g_A$$ that is required in nuclear many-body calculations.« less

  7. G{sub 2}-MSSM: An M theory motivated model of particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.

    2008-09-15

    We continue our study of the low energy implications of M theory vacua on G{sub 2}-manifolds, undertaken in B. S. Acharya, K. Bobkov, G. L. Kane, P. Kumar, and J. Shao, Phys. Rev. D 76, 126010 (2007); B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006), where it was shown that the moduli can be stabilized and a TeV scale generated, with the Planck scale as the only dimensionful input. A well-motivated phenomenological model, the G{sub 2}-MSSM, can be naturally defined within the above framework. In this paper, we study some ofmore » the important phenomenological features of the G{sub 2}-MSSM. In particular, the soft supersymmetry breaking parameters and the superpartner spectrum are computed. The G{sub 2}-MSSM generically gives rise to light gauginos and heavy scalars with wino lightest supersymmetric particles when one tunes the cosmological constant. Electroweak symmetry breaking is present but fine-tuned. The G{sub 2}-MSSM is also naturally consistent with precision gauge coupling unification. The phenomenological consequences for cosmology and collider physics of the G{sub 2}-MSSM will be reported in more detail soon.« less

  8. Observables of QCD diffraction

    NASA Astrophysics Data System (ADS)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  9. " L = R" - U(1) R lepton number at the LHC

    NASA Astrophysics Data System (ADS)

    Frugiuele, Claudia; Grégoire, Thomas; Kumar, Piyush; Pontón, Eduardo

    2013-05-01

    We perform a detailed study of a variety of LHC signals in supersymmetric models where lepton number is promoted to an (approximate) U(1) R symmetry. Such a symmetry has interesting implications for naturalness, as well as flavor- and CP-violation, among others. Interestingly, it makes large sneutrino vacuum expectation values phenomenologically viable, so that a slepton doublet can play the role of the down-type Higgs. As a result, (some of) the leptons and neutrinos are incorporated into the chargino and neutralino sectors. This leads to characteristic decay patterns that can be experimentally tested at the LHC. The corresponding collider phenomenology is largely determined by the new approximately conserved quantum number, which is itself closely tied to the presence of "leptonic R-parity violation". We find rather loose bounds on the first and second generation squarks, arising from a combination of suppressed production rates together with relatively small signal efficiencies of the current searches. Naturalness would indicate that such a framework should be discovered in the near future, perhaps through spectacular signals exhibiting the lepto-quark nature of the third generation squarks. The presence of fully visible decays, in addition to decay chains involving large missing energy (in the form of neutrinos) could give handles to access the details of the spectrum of new particles, if excesses over SM background were to be observed. The scale of neutrino masses is intimately tied to the source of U(1) R breaking, thus opening a window into the R-breaking sector through neutrino physics. Further theoretical aspects of the model have been presented in the companion paper [1].

  10. Phenomenology in Its Original Sense.

    PubMed

    van Manen, Max

    2017-05-01

    In this article, I try to think through the question, "What distinguishes phenomenology in its original sense?" My intent is to focus on the project and methodology of phenomenology in a manner that is not overly technical and that may help others to further elaborate on or question the singular features that make phenomenology into a unique qualitative form of inquiry. I pay special attention to the notion of "lived" in the phenomenological term "lived experience" to demonstrate its critical role and significance for understanding phenomenological reflection, meaning, analysis, and insights. I also attend to the kind of experiential material that is needed to focus on a genuine phenomenological question that should guide any specific research project. Heidegger, van den Berg, and Marion provide some poignant exemplars of the use of narrative "examples" in phenomenological explorations of the phenomena of "boredom," "conversation," and "the meaningful look in eye-contact." Only what is given or what gives itself in lived experience (or conscious awareness) are proper phenomenological "data" or "givens," but these givens are not to be confused with data material that can be coded, sorted, abstracted, and accordingly analyzed in some "systematic" manner. The latter approach to experiential research may be appropriate and worthwhile for various types of qualitative inquiry but not for phenomenology in its original sense. Finally, I use the mythical figure of Kairos to show that the famous phenomenological couplet of the epoché-reduction aims for phenomenological insights that require experiential analysis and attentive (but serendipitous) methodical inquiry practices.

  11. REGIONAL OXIDANT MODEL (ROM) USER'S GUIDE, PART 1: THE ROM PREPROCESSORS

    EPA Science Inventory

    The Regional Oxidant Model (ROM) determines hourly concentrations and fates of zone and 34 other chemical species over a scale of 1000 km x 1000 km for ozone "episodes" of up to one month's duration. he model structure, based on phenomenological concepts, consists of 3 1/2 layers...

  12. Fractional phenomenology of cosmic ray anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Uchaikin, V. V.

    2013-11-01

    We review the evolution of the cosmic ray diffusion concept from the ordinary (Einstein) model of Brownian motion to the fractional models that appeared in the last decade. The mathematical and physical foundations of these models are discussed, as are their consequences, related problems, and prospects for further development.

  13. Improved Limits for Higgs-Portal Dark Matter from LHC Searches.

    PubMed

    Hoferichter, Martin; Klos, Philipp; Menéndez, Javier; Schwenk, Achim

    2017-11-03

    Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the standard model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parametrized in a single quantity f_{N}. We evaluate f_{N} using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as f_{N}=0.308(18), show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.

  14. Analyzing reflectance spectra of human skin in legal medicine

    NASA Astrophysics Data System (ADS)

    Belenki, Liudmila; Sterzik, Vera; Schulz, Katharina; Bohnert, Michael

    2013-01-01

    Our current research in the framework of an interdisciplinary project focuses on modelling the dynamics of the hemoglobin reoxygenation process in post-mortem human skin by reflectance spectrometry. The observations of reoxygenation of hemoglobin in livores after postmortem exposure to a cold environment relate the reoxygenation to the commonly known phenomenon that the color impression of livores changes from livid to pink under low ambient temperatures. We analyze the spectra with respect to a physical model describing the optical properties of human skin, discuss the dynamics of the reoxygenation, and propose a phenomenological model for reoxygenation. For additional characterization of the reflectance spectra, the curvature of the local minimum and maximum in the investigated spectral range is considered. There is a strong correlation between the curvature of specra at a wavelength of 560 nm and the concentration of O2-Hb. The analysis is carried out via C programs, as well as MySQL database queries in Java EE, JDBC, Matlab, and Python.

  15. Analyzing reflectance spectra of human skin in legal medicine.

    PubMed

    Belenki, Liudmila; Sterzik, Vera; Schulz, Katharina; Bohnert, Michael

    2013-01-01

    Our current research in the framework of an interdisciplinary project focuses on modelling the dynamics of the hemoglobin reoxygenation process in post-mortem human skin by reflectance spectrometry. The observations of reoxygenation of hemoglobin in livores after postmortem exposure to a cold environment relate the reoxygenation to the commonly known phenomenon that the color impression of livores changes from livid to pink under low ambient temperatures. We analyze the spectra with respect to a physical model describing the optical properties of human skin, discuss the dynamics of the reoxygenation, and propose a phenomenological model for reoxygenation. For additional characterization of the reflectance spectra, the curvature of the local minimum and maximum in the investigated spectral range is considered. There is a strong correlation between the curvature of specra at a wavelength of 560 nm and the concentration of O2-Hb. The analysis is carried out via C programs, as well as MySQL database queries in Java EE, JDBC, Matlab, and Python.

  16. B{yields}X{sub s{gamma}} rate and CP asymmetry within the aligned two-Higgs-doublet model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Martin; Pich, Antonio; Tuzon, Paula

    In the two-Higgs-doublet model the alignment of the Yukawa matrices in flavor space guarantees the absence of flavor-changing neutral currents at tree level, while introducing new sources for CP violation parametrized in a very economical way [Antonio Pich and Paula Tuzon, Phys. Rev. D 80, 091702 (2009)]. This implies a potentially large influence in a number of processes, b{yields}s{gamma} being a prominent example where rather high experimental and theoretical precision meet. We analyze the CP rate asymmetry in this inclusive decay and determine the resulting constraints on the model parameters. We demonstrate the compatibility with previously obtained limits [Martin Jung,more » Antonio Pich, and Paula Tuzon, J. High Energy Phys. 11 (2010) 003]. Moreover, we extend the phenomenological analysis of the branching ratio, and examine the influence of resulting correlations on the like-sign dimuon charge asymmetry in B decays.« less

  17. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

    PubMed

    Rauch, Scott L; Shin, Lisa M; Phelps, Elizabeth A

    2006-08-15

    The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.

  18. The Phenomenology and Generation of Positive Mental Imagery in Early Psychosis.

    PubMed

    Laing, Jennifer; Morland, Tristan; Fornells-Ambrojo, Miriam

    2016-11-01

    Theoretical models of depression and bipolar disorder emphasise the importance of positive mental imagery in mood and behaviour. Distressing, intrusive images are common in psychosis; however, little is known about positive imagery experiences or their association with clinical symptoms. The aim of the current study was to examine the phenomenology of positive imagery in early psychosis and the relationship between the characteristics of positive, future-oriented imagery and symptom severity. Characteristics, thematic content and appraisals of recent self-reported images were examined in 31 people with early psychosis. The vividness and perceived likelihood of deliberately generated, future-oriented images were investigated in relation to clinical symptoms. Eighty-four percent of participants reported experiencing a recent positive image. Themes included the achievement of personal goals, spending enjoyable time with peers and family, loving, intimate relationships and escape from current circumstances. The vividness and perceived likelihood of generated prospective imagery were negatively correlated with levels of depression and social anxiety. The relationship between emotional problems and the ability to imagine positive, future events may have implications for motivation, mood and goal-directed behaviour in psychosis. Everyday experiences of positive imagery may represent the simulation of future goals, attempts to cope or avoid aversive experiences or idealised fantasy. Copyright © 2015 John Wiley & Sons, Ltd. The majority of participants experienced a recent positive image with themes related to goal attainment and social relationships. Depression and social anxiety levels were correlated with the vividness of intentionally generated positive future-oriented images and their perceived likelihood. The assessment of positive imagery in early psychosis appears warranted and may provide insights regarding individual coping strategies, values and goals. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  20. A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids

    NASA Astrophysics Data System (ADS)

    Ciancio, Vincenzo; Palumbo, Annunziata

    2018-04-01

    In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.

  1. Continuum mesoscopic framework for multiple interacting species and processes on multiple site types and/or crystallographic planes.

    PubMed

    Chatterjee, Abhijit; Vlachos, Dionisios G

    2007-07-21

    While recently derived continuum mesoscopic equations successfully bridge the gap between microscopic and macroscopic physics, so far they have been derived only for simple lattice models. In this paper, general deterministic continuum mesoscopic equations are derived rigorously via nonequilibrium statistical mechanics to account for multiple interacting surface species and multiple processes on multiple site types and/or different crystallographic planes. Adsorption, desorption, reaction, and surface diffusion are modeled. It is demonstrated that contrary to conventional phenomenological continuum models, microscopic physics, such as the interaction potential, determines the final form of the mesoscopic equation. Models of single component diffusion and binary diffusion of interacting particles on single-type site lattice and of single component diffusion on complex microporous materials' lattices consisting of two types of sites are derived, as illustrations of the mesoscopic framework. Simplification of the diffusion mesoscopic model illustrates the relation to phenomenological models, such as the Fickian and Maxwell-Stefan transport models. It is demonstrated that the mesoscopic equations are in good agreement with lattice kinetic Monte Carlo simulations for several prototype examples studied.

  2. [Phenomenology and phenomenological method: their usefulness for nursing knowledge and practice].

    PubMed

    Vellone, E; Sinapi, N; Rastelli, D

    2000-01-01

    Phenomenology is a thought movement the main aim of which is to study human fenomena as they are experienced and lived. Key concepts of phenomenology are: the study of lived experience and subjectivity of human beings, the intentionality of consciousness, perception and interpretation. Phenomenological research method has nine steps: definition of the research topic; superficial literature searching; sample selection; gathering of lived experiences; analysis of lived experiences; written synthesis of lived experiences; validation of written synthesis; deep literature searching; writing of the scientific document. Phenomenology and phenomenological method are useful for nursing either to develop knowledge or to guide practice. Qualitative-phenomenological and quantitative-positivistic research are complementary: the first one guides clinicians towards a person-centered approach, the second one allows the manipulation of phenomena which can damage health, worsen illness or decrease the quality of life of people who rely on nursing care.

  3. Phenomenology and adapted physical activity: philosophy and professional practice.

    PubMed

    Standal, Øyvind F

    2014-01-01

    Through the increased use of qualitative research methods, the term phenomenology has become a quite familiar notion for researchers in adapted physical activity (APA). In contrast to this increasing interest in phenomenology as methodology, relatively little work has focused on phenomenology as philosophy or as an approach to professional practice. Therefore, the purpose of this article is to examine the relevance of phenomenology as philosophy and as pedagogy to the field of APA. First, phenomenology as philosophy is introduced through three key notions, namely the first-person perspective, embodiment, and life-world. The relevance of these terms to APA is then outlined. Second, the concept of phenomenological pedagogy is introduced, and its application and potential for APA are discussed. In conclusion, it is argued that phenomenology can help theorize ways of understanding human difference in movement contexts and form a basis of action-oriented research aiming at developing professional practice.

  4. Tmd Factorization and Evolution for Tmd Correlation Functions

    NASA Astrophysics Data System (ADS)

    Mert Aybat, S.; Rogers, Ted C.

    We discuss the application of transverse momentum dependent (TMD) factorization theorems to phenomenology. Our treatment relies on recent extensions of the Collins-Soper-Sterman (CSS) formalism. Emphasis is placed on the importance of using well-defined TMD parton distribution functions (PDFs) and fragmentation functions (FFs) in calculating the evolution of these objects. We explain how parametrizations of unpolarized TMDs can be obtained from currently existing fixed-scale Gaussian fits and previous implementations of the CSS formalism in the Drell-Yan process, and provide some examples. We also emphasize the importance of agreed-upon definitions for having an unambiguous prescription for calculating higher orders in the hard part, and provide examples of higher order calculations. We end with a discussion of strategies for extending the phenomenological applications of TMD factorization to situations beyond the unpolarized case.

  5. Simulating the universe(s) II: phenomenology of cosmic bubble collisions in full general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, Carroll L.; Aguirre, Anthony; Johnson, Matthew C.

    2014-10-01

    Observing the relics of collisions between bubble universes would provide direct evidence for the existence of an eternally inflating Multiverse; the non-observation of such events can also provide important constraints on inflationary physics. Realizing these prospects requires quantitative predictions for observables from the properties of the possible scalar field Lagrangians underlying eternal inflation. Building on previous work, we establish this connection in detail. We perform a fully relativistic numerical study of the phenomenology of bubble collisions in models with a single scalar field, computing the comoving curvature perturbation produced in a wide variety of models. We also construct a setmore » of analytic predictions, allowing us to identify the phenomenologically relevant properties of the scalar field Lagrangian. The agreement between the analytic predictions and numerics in the relevant regions is excellent, and allows us to generalize our results beyond the models we adopt for the numerical studies. Specifically, the signature is completely determined by the spatial profile of the colliding bubble just before the collision, and the de Sitter invariant distance between the bubble centers. The analytic and numerical results support a power-law fit with an index 1< κ ∼< 2. For collisions between identical bubbles, we establish a lower-bound on the observed amplitude of collisions that is set by the present energy density in curvature.« less

  6. Developing a cosmic ray muon sampling capability for muon tomography and monitoring applications

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Chrysikopoulou, S.; Tsoukalas, L. H.

    2015-12-01

    In this study, a cosmic ray muon sampling capability using a phenomenological model that captures the main characteristics of the experimentally measured spectrum coupled with a set of statistical algorithms is developed. The "muon generator" produces muons with zenith angles in the range 0-90° and energies in the range 1-100 GeV and is suitable for Monte Carlo simulations with emphasis on muon tomographic and monitoring applications. The muon energy distribution is described by the Smith and Duller (1959) [35] phenomenological model. Statistical algorithms are then employed for generating random samples. The inverse transform provides a means to generate samples from the muon angular distribution, whereas the Acceptance-Rejection and Metropolis-Hastings algorithms are employed to provide the energy component. The predictions for muon energies 1-60 GeV and zenith angles 0-90° are validated with a series of actual spectrum measurements and with estimates from the software library CRY. The results confirm the validity of the phenomenological model and the applicability of the statistical algorithms to generate polyenergetic-polydirectional muons. The response of the algorithms and the impact of critical parameters on computation time and computed results were investigated. Final output from the proposed "muon generator" is a look-up table that contains the sampled muon angles and energies and can be easily integrated into Monte Carlo particle simulation codes such as Geant4 and MCNP.

  7. Charting the Unknown: A Hunt in the Dark

    NASA Astrophysics Data System (ADS)

    Mohlabeng, Gopolang Mokoka

    Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.

  8. Correlation between optical return loss and transmission fringe noise in high-index contrast waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Chi; Martin, Yves; Khater, Marwan

    2017-05-15

    We present a phenomenological model correlating optical return loss and amplitude of fringes in transmission spectrum due to distributed backscattering in high-index-contrast waveguides. The model is validated experimentally using four different waveguide cross sections.

  9. Surfing on Protein Waves: Proteophoresis as a Mechanism for Bacterial Genome Partitioning

    NASA Astrophysics Data System (ADS)

    Walter, J.-C.; Dorignac, J.; Lorman, V.; Rech, J.; Bouet, J.-Y.; Nollmann, M.; Palmeri, J.; Parmeggiani, A.; Geniet, F.

    2017-07-01

    Efficient bacterial chromosome segregation typically requires the coordinated action of a three-component machinery, fueled by adenosine triphosphate, called the partition complex. We present a phenomenological model accounting for the dynamic activity of this system that is also relevant for the physics of catalytic particles in active environments. The model is obtained by coupling simple linear reaction-diffusion equations with a proteophoresis, or "volumetric" chemophoresis, force field that arises from protein-protein interactions and provides a physically viable mechanism for complex translocation. This minimal description captures most known experimental observations: dynamic oscillations of complex components, complex separation, and subsequent symmetrical positioning. The predictions of our model are in phenomenological agreement with and provide substantial insight into recent experiments. From a nonlinear physics view point, this system explores the active separation of matter at micrometric scales with a dynamical instability between static positioning and traveling wave regimes triggered by the dynamical spontaneous breaking of rotational symmetry.

  10. Testing the Trower and Chadwick model of paranoia: Is 'poor-me' and 'bad-me' paranoia acting as a defence?

    PubMed

    Marley, Charles; Jones, Jason; Jones, Christopher A

    2017-12-01

    The study tested the predicted differences in phenomenology (self-esteem and depression) and insecurity of the subgroups of paranoia proposed by the Trower and Chadwick (1995) model of paranoia. Thirty-two inpatients experiencing persecutory delusions were assigned to either the poor me or bad me paranoid group. Questionnaire assessment of depression and self-esteem were conducted. A Dot Probe task measured detection latency (reaction time) to poor me words, bad me words and neutral words. The poor me and bad me groups displayed the predicted phenomenological differences. The dot probe task did not support the predicted insecurities of the Trower and Chadwick model, but unexpected significant results for the poor me subgroup may offer support for an alternative explanation of paranoia as an unstable phenomenon. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Modeling of solid-state and excimer laser processes for 3D micromachining

    NASA Astrophysics Data System (ADS)

    Holmes, Andrew S.; Onischenko, Alexander I.; George, David S.; Pedder, James E.

    2005-04-01

    An efficient simulation method has recently been developed for multi-pulse ablation processes. This is based on pulse-by-pulse propagation of the machined surface according to one of several phenomenological models for the laser-material interaction. The technique allows quantitative predictions to be made about the surface shapes of complex machined parts, given only a minimal set of input data for parameter calibration. In the case of direct-write machining of polymers or glasses with ns-duration pulses, this data set can typically be limited to the surface profiles of a small number of standard test patterns. The use of phenomenological models for the laser-material interaction, calibrated by experimental feedback, allows fast simulation, and can achieve a high degree of accuracy for certain combinations of material, laser and geometry. In this paper, the capabilities and limitations of the approach are discussed, and recent results are presented for structures machined in SU8 photoresist.

  12. Point and Click: Theoretical and Phenomenological Reflections on the Digitization of Early Childhood Education

    ERIC Educational Resources Information Center

    Mangen, Anne

    2010-01-01

    This article presents some theoretical-methodological reflections on the current state of the art of research on information and communication technology (ICT) in early childhood education. The implementation of ICT in preschool has triggered considerable research activity on the educational potential of digital technologies. Numerous projects and…

  13. IT Investment Guidelines in Taiwan's IT Industry under a Global Economic Downturn

    ERIC Educational Resources Information Center

    Cha, Un Un

    2011-01-01

    The current qualitative phenomenological study focused on how information technology (IT) leaders managed IT investment during the global economic downturn in the Taiwan IT industry. Organizations around the world spend billions of dollars on IT-related products and services every year. Determining an effective IT investment plan is a complex task…

  14. Industry Driven Electronic Communication Competencies for an Associate Electronics Degree: A Phenomenological Study

    ERIC Educational Resources Information Center

    McNeill, Dennis G.

    2013-01-01

    Scholars and professionals alike contend our nation's competitive position and economic growth depends considerably on the acumen of its science, technology, engineering, and math (STEM) talent pool. In spite of current economic conditions and high national unemployment, there is an increasing demand for those skilled in technology and…

  15. Supporting Chinese Undergraduate Students in Transition at U.S. Colleges and Universities

    ERIC Educational Resources Information Center

    Montgomery, Kerrie A.

    2017-01-01

    The Chinese undergraduate student population currently represents 12.8% of all international students enrolled in the United States (Institute for International Education, 2015a). In an effort to understand the experiences of this population in their first year of college in the United States, a phenomenological study was conducted using a…

  16. The Fear Factor: How It Affects Students Learning to Program in a Tertiary Environment

    ERIC Educational Resources Information Center

    Rogerson, Christine; Scott, Elsje

    2010-01-01

    This paper examines how students' experiences of learning to program are affected by feelings of fear, using a phenomenological approach to elicit rich descriptions of personal experiences from the narratives of final year undergraduate students. In the course of reviewing current work concerning learning or teaching programming, certain focal…

  17. Female Gambling, Trauma, and the Not Good Enough Self: An Interpretative Phenomenological Analysis

    ERIC Educational Resources Information Center

    Nixon, Gary; Evans, Kyler; Kalischuk, Ruth Grant; Solowoniuk, Jason; McCallum, Karim; Hagen, Brad

    2013-01-01

    A gap exists within current literature regarding understanding the role that trauma may play in the initiation, development, and progression of female problem and pathological gambling. The purpose of this study is to further illustrate the relationship between trauma and the development problem and pathological gambling by investigating the lived…

  18. Education and Selfhood: A Phenomenological Investigation

    ERIC Educational Resources Information Center

    Bonnett, Michael

    2009-01-01

    Although effectively the idea of selfhood receives scant attention in much current educational policy, it is an idea that is central to understanding education in the Western tradition. This paper evaluates the implications of a growing movement in educational philosophy and theory to see the self as relational to the extent that it possesses…

  19. The Changing Dynamics of Health Care: Physician Perceptions of Technology in Medical Practices

    ERIC Educational Resources Information Center

    Hatton, Jerald D.

    2012-01-01

    Political, economic, and safety concerns have militated for the adoption of electronic health records (EHR) by physicians in the United States, but current rates of adoption have failed to achieve the expected levels. This qualitative phenomenological study of practicing physicians reveals obstacles to adoption. Maintaining the physicians'…

  20. Female Islamic Studies Teachers in Saudi Arabia: A Phenomenological Study

    ERIC Educational Resources Information Center

    Jamjoom, Mounira I.

    2010-01-01

    This study highlights on describing the experiences of Saudi Arabian female Islamic Studies teachers by exploring what is means to be an Islamic Studies teacher teaching in the current unprecedented vibrant and complex tapestry of social, religious and political debates occurring in the larger context of the country. The study draws on…

  1. Gut Instinct: The Body and Learning

    ERIC Educational Resources Information Center

    Barnacle, Robyn

    2009-01-01

    In the current socio-political climate pedagogies consistent with rationalism are in the ascendancy. One way to challenge the purchase of rationalism within educational discourse and practice is through the body, or by re-thinking the nature of mind-body relations. While the orientation of this paper is ultimately phenomenological, it takes as its…

  2. Choice and Control within Family Relationships: The Lived Experience of Adults with Intellectual Disability

    ERIC Educational Resources Information Center

    Curryer, Bernadette; Stancliffe, Roger J.; Dew, Angela; Wiese, Michele Y.

    2018-01-01

    Increased choice and control is a driving force of current disability policy in Australia for people with disability and their families. Yet little is known of how adults with intellectual disability (ID) actually experience choice and control within their family relationships. We used interpretative phenomenological analysis of individual,…

  3. The Role of Personal Choice in Individual Language Shift

    ERIC Educational Resources Information Center

    Morse, Kira Gulko

    2012-01-01

    The existing literature views the phenomenon of language shift mostly on the societal, or macro, level, which takes the focus away from individual cases. This investigation provides an alternative perspective to the currently prevalent view. The purpose of this phenomenological study is to develop an understanding of the role of personal choice in…

  4. Exacerbated Vulnerability in Existential Changes: The Essence of Dealing with Reduced Working Capacity

    ERIC Educational Resources Information Center

    Steingrímsdóttir, Sigrún Hulda; Halldórsdóttir, Sigríður

    2016-01-01

    The purpose of this phenomenological study was to explore people's experience of reduced working capacity and their encounters with professionals in that life situation. We collected data through in-depth interviews with eight individuals. The main finding of the current research is how illness and accident impairing work capacity "exacerbate…

  5. My Rock: Black Women Attending Graduate School at a Southern Predominantly White University

    ERIC Educational Resources Information Center

    Alexander, Quentin R.; Bodenhorn, Nancy

    2015-01-01

    Participants in this phenomenological study were 11 Black women who received an undergraduate degree from a historically Black college or university and were currently attending graduate school at a southern predominantly White university. This study investigated the adjustment experiences of these women to life on a southern predominantly White…

  6. Experiences & Perceptions: A Phenomenological Study of the Personal Journey of California Community College Faculty Who Advanced into Dean Positions

    ERIC Educational Resources Information Center

    McManus, Melissa Joann

    2013-01-01

    California community colleges are facing an impending leadership crisis due to a lack of formal preparations related to leadership training practices, proper budgetary resources, and misconceptions associated with administration, which could prevent the preparation of individual advancement into academic leadership roles. Currently, formal…

  7. A Phenomenology of Learning Large: The Tutorial Sphere of xMOOC Video Lectures

    ERIC Educational Resources Information Center

    Adams, Catherine; Yin, Yin; Vargas Madriz, Luis Francisco; Mullen, C. Scott

    2014-01-01

    The current discourse surrounding Massive Open Online Courses (MOOCs) is powerful. Despite their rapid and widespread deployment, research has yet to confirm or refute some of the bold claims rationalizing the popularity and efficacy of these large-scale virtual learning environments. Also, MOOCs' reputed disruptive, game-changing potential…

  8. The Phenomenology of Late Life Depression.

    ERIC Educational Resources Information Center

    Blazer, Dan; And Others

    The paper reports results of one project from the National Institute of Mental Health Epidemiologic Catchment Area (ECA) Program: the Duke ECA study (also known as the Piedmont Health Survey). To determine if depressive symptoms are different in the depressed elderly, 46 community subjects, over 60 years of age with a current diagnosis of…

  9. Idols of the psychologist: Johannes Linschoten and the demise of phenomenological psychology in the Netherlands.

    PubMed

    van Hezewijk, René; Stam, Henderikus J

    2008-08-01

    Before and after World War II, a loose movement within Dutch psychology solidified as a nascent phenomenological psychology. Dutch phenomenological psychologists attempted to generate an understanding of psychology that was based on Husserlian interpretations of phenomenological philosophy. This movement came to a halt in the 1960s, even though it had been exported to North America and elsewhere as "phenomenological psychology." Frequently referred to as the "Utrecht school," most of the activity of the group was centered at Utrecht University. In this article, the authors examine the role played by Johannes Linschoten in both aspects of the development of a phenomenological psychology: its rise in North America and Europe, and its institutional demise. By the time of his early death in 1964, Linschoten had cast considerable doubt on the possibilities of a purely phenomenological psychology. Nonetheless, his own empirical work, especially his 1956 dissertation published in German, can be seen to be a form of empiricism inspired by phenomenology but that clearly distanced itself from the more elitist and esoteric aspects of Dutch phenomenological psychology.

  10. Cure Kinetics of Benzoxazine/Cycloaliphatic Epoxy Resin by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Gouni, Sreeja Reddy

    Understanding the curing kinetics of a thermoset resin has a significant importance in developing and optimizing curing cycles in various industrial manufacturing processes. This can assist in improving the quality of final product and minimizing the manufacturing-associated costs. One approach towards developing such an understanding is to formulate kinetic models that can be used to optimize curing time and temperature to reach a full cure state or to determine time to apply pressure in an autoclave process. Various phenomenological reaction models have been used in the literature to successfully predict the kinetic behavior of a thermoset system. The current research work was designed to investigate the cure kinetics of Bisphenol-A based Benzoxazine (BZ-a) and Cycloaliphatic epoxy resin (CER) system under isothermal and nonisothermal conditions by Differential Scanning Calorimetry (DSC). The cure characteristics of BZ-a/CER copolymer systems with 75/25 wt% and 50/50 wt% have been studied and compared to that of pure benzoxazine under nonisothermal conditions. The DSC thermograms exhibited by these BZ-a/CER copolymer systems showed a single exothermic peak, indicating that the reactions between benzoxazine-benzoxazine monomers and benzoxazine-cycloaliphatic epoxy resin were interactive and occurred simultaneously. The Kissinger method and isoconversional methods including Ozawa-Flynn-Wall and Freidman were employed to obtain the activation energy values and determine the nature of the reaction. The cure behavior and the kinetic parameters were determined by adopting a single step autocatalytic model based on Kamal and Sourour phenomenological reaction model. The model was found to suitably describe the cure kinetics of copolymer system prior to the diffusion-control reaction. Analyzing and understanding the thermoset resin system under isothermal conditions is also important since it is the most common practice in the industry. The BZ-a/CER copolymer system with 75/25 wt% ratio which exhibited high glass transition temperature compared to polybenzoxazine was investigated under isothermal conditions. The copolymer system exhibited the maximum reaction rate at an intermediate degree of cure (20 to 40%), indicating that the reaction was autocatalytic. Similar to the nonisothermal cure kinetics, Kamal and Sourour phenomenological reaction model was adopted to determine the kinetic behavior of the system. The theoretical values based on the developed model showed a deviation from the obtained experimental values, which indicated the change in kinetics from a reaction-controlled mechanism to a diffusion-controlled mechanism with increasing reaction conversion. To substantiate the hypothesis, Fournier et al's diffusion factor was introduced into the model, resulting in an agreement between the theoretical and experimental values. The changes in cross-linking density and the glass transition temperature (Tg) with increasing epoxy concentration were investigated under Dynamic Mechanical Analyzer (DMA). The BZ-a/CER copolymer system with the epoxy content of less than 40 wt% exhibited the greatest Tg and cross-linking density compared to benzoxazine homopolymer and other ratios.

  11. Beyond the Standard Model IV

    NASA Astrophysics Data System (ADS)

    Gunion, John F.; Han, Tao; Ohnemus, James

    1995-08-01

    The Table of Contents for the book is as follows: * Preface * Organizing and Advisory Committees * PLENARY SESSIONS * Looking Beyond the Standard Model from LEP1 and LEP2 * Virtual Effects of Physics Beyond the Standard Model * Extended Gauge Sectors * CLEO's Views Beyond the Standard Model * On Estimating Perturbative Coefficients in Quantum Field Theory and Statistical Physics * Perturbative Corrections to Inclusive Heavy Hadron Decay * Some Recent Developments in Sphalerons * Searching for New Matter Particles at Future Colliders * Issues in Dynamical Supersymmetry Breaking * Present Status of Fermilab Collider Accelerator Upgrades * The Extraordinary Scientific Opportunities from Upgrading Fermilab's Luminosity ≥ 1033 cm-2 sec-1 * Applications of Effective Lagrangians * Collider Phenomenology for Strongly Interacting Electroweak Sector * Physics of Self-Interacting Electroweak Bosons * Particle Physics at a TeV-Scale e+e- Linear Collider * Physics at γγ and eγ Colliders * Challenges for Non-Minimal Higgs Searchers at Future Colliders * Physics Potential and Development of μ+μ- Colliders * Beyond Standard Quantum Chromodynamics * Extracting Predictions from Supergravity/Superstrings for the Effective Theory Below the Planck Scale * Non-Universal SUSY Breaking, Hierarchy and Squark Degeneracy * Supersymmetric Phenomenology in the Light of Grand Unification * A Survey of Phenomenological Constraints on Supergravity Models * Precision Tests of the MSSM * The Search for Supersymmetry * Neutrino Physics * Neutrino Mass: Oscillations and Hot Dark Matter * Dark Matter and Large-Scale Structure * Electroweak Baryogenesis * Progress in Searches for Non-Baryonic Dark Matter * Big Bang Nucleosynthesis * Flavor Tests of Quark-Lepton * Where are We Coming from? What are We? Where are We Going? * Summary, Perspectives * PARALLEL SESSIONS * SUSY Phenomenology I * Is Rb Telling us that Superpartners will soon be Discovered? * Dark Matter in Constrained Minimal Supersymmetry * A Fourth Family in the MSSM? * Multi-channel Search for Supergravity at the Large Hadron Collider * Precise Predictions for Masses and Couplings in the Minimal Supersymmetric Standard Model * Radiative b Decays and the Detection of Supersymmetric Dark Matter * Bounds on ΔB = 1 Couplings in the Supersymmetric Standard Model * Testing Supersymmetry at the Next Linear Collider * SUSY Phenomenology II * Is There a Light Gluino Window? * Soft Supersymmetry Breaking and Finiteness * Consequences of Low Energy Dynamical Supersymmetry Breaking * String Model Theory and Phenomenology * Z2 × Z2 Orbifold Compactification - the Origin of Realistic Free Fermionic Models * Effective Supergravity from 4-D Fermionic Strings * String Models Featuring Direct Product Unification * Hadronic and Non-Perturbative Physics * Salient Features of High-Energy Multiparticle Distributions: 1-d Ising Model Captures Them All * Pion Fusion in the Equivalent Pion Approximation * Deterministic Theory of Atomic Structure * Disoriented Chiral Condensate * Higgs Physics * The LHC Phenomenology of the CP-Odd Scalar in Two-Doublet Models * Detection of Minimal Supersymmetric Model Higgs Bosons in γγ Collisions: Influence of SUSY Decay Modes * Electroweak Corrections to the Charged Higgs Production Cross-Section * A Comparison of Higgs Mass Bounds in the SM and the MSSM * Searching for Higgs Bosons on LHC Using b-Tagging * Top Quark and Flavor Physics * Flavor Mixing, CP Violation and a Heavy Top * New Fermion Families and Precision Electroweak Data * Dipole Operator Phenomenology and Quark Mass Generation: An Update * Possible Higgs Boson Effects on the Running of Third and Fourth Generation Quark Masses and Mixings * How the Top Family Differs * Fermion Masses in Extended Technicolour * New Developments in Perturbative QCD * Efficient Analytic Computation of Higher-Order QCD Amplitudes * Use of Recursion Relations to Compute One-Loop Helicity Amplitudes * Gluon Radiation Patterns in Hard Scattering Events * B Physics * Inclusive Hadronic Production of the Bc Meson via Heavy Quark Fragmentation * Helicity Probabilities for Heavy Quark Fragmentation into Heavy-Light Excited Mesons * Hadronic Penguins in B Decays and Extraction of α, β and γ * CP Violation Physics * Maximum Likelihood Method for New Physics Mixing Angles, and Projections to Using B Factory Results * CP Violation in Fermionic Decays of Higgs Bosons * Test of CP Violation in Non-Leptonic Hyperon Decays * CP Violation in the Weinberg Multi-Higgs Model * Triple-Product Spin-Momentum Correlations in Polarized Z Decays to Three Jets * Radiative CP Violation * HERA Results * A Search for Leptoquarks and Squarks in H1 at HERA * Search for Leptoquarks in ep Collisions at √ {s}=296; {GeV} * Search for Excited Fermions in ep Collisions at √ {s}=296; {GeV} * Tevatron Results * Measurement of Diboson Production at the Tevatron Collider with D0 * Search for SUSY in D0 * Search for SUSY at CDF * Search for First and Second Generation Leptoquarks with the D0 Detector * Search for Exotic Particles at CDF * e+e- and μ+μ- Physics * Aspects of Higgs Boson Searches * Measurements of the Forward-Backward Asymmetry of Quarks in the DELPHI Experiment at LEP * Astrophysics, Dark Matter, Cosmology and Neutrino Physics * A Model Independent Approach to Future Solar Neutrino Experiments * Neutrino Oscillations with Beams from AGN's and GRB's * Implication of Macho Detections for Dark Matter Searches * Chiral Restoration in the Early Universe: Pion Halo in the Sky * SEWS, Anomalous Couplings, and Precision EW * Do WL and H form a P-Wave Bound State? * An Update on Strong WLWL Scattering at the LHC * The Difficulties Involved in Calculating δρ * What Can We Learn from the Measurement R_{b}≡Γ(Z → bbar{b}/Γ(Z → Hadrons)? * Gauge Invariance and Anomalous Gauge Boson Couplings * Probing the Standard Model with Hadronic WZ Production * Consequences of Recent Electroweak Data and W-Mass for the Top Quark and Higgs Masses * Equivalence Theorem as a Criterion for Probing the Electroweak Symmetry Breaking Mechanism * Conference Schedule * Schedule of the Parallel Sessions * List of Participants

  12. Phenomenological study of the isovector tensor meson family

    NASA Astrophysics Data System (ADS)

    Pang, Cheng-Qun; He, Li-Ping; Liu, Xiang; Matsuki, Takayuki

    2014-07-01

    In this work, we study all the observed a2 states and group them into the a2 meson family, where their total and two-body Okubo-Zweig-Iizuka allowed strong decay partial widths are calculated via the quark pair creation model. Taking into account the present experimental data, we further give the corresponding phenomenological analysis, which is valuable to test whether each a2 state can be assigned into the a2 meson family. What is more important is that the prediction of their decay behaviors will be helpful for future experimental study of the a2 states.

  13. Overview of major hazards. Part 2: Source term; dispersion; combustion; blast, missiles, venting; fire; radiation; runaway reactions; toxic substances; dust explosions

    NASA Astrophysics Data System (ADS)

    Vilain, J.

    Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.

  14. Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry

    NASA Astrophysics Data System (ADS)

    Dyatlov, I. T.

    2017-03-01

    Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon-lepton asymmetry of the universe in models featuring broken mirror symmetry.

  15. Outsourcing within aerospace manufacturing enterprises: A phenomenological study and outsourcing leadership model

    NASA Astrophysics Data System (ADS)

    Sampson, Enrique, Jr.

    Many aerospace workers believe transferring work projects abroad has an erosive effect on the U.S. aerospace industry (Pritchard, 2002). This qualitative phenomenological study examines factors for outsourcing decisions and the perceived effects of outsourcing on U.S. aerospace workers. The research sample consists of aerospace industry leaders and nonleaders from the East Coast, Midwest, and West Coast of the United States. Moustakas' modified van Kaam methods of analysis (1994) and Decision Explorer analysis software were applied to the interview transcripts. Resultant data identified five core themes: communication, best value, opportunities, cost, and offset consideration. The themes provided the framework for a model designed to assist leaders in making effective decisions and communicating the benefits of those decisions when considering outsourcing of work projects.

  16. Phenomenological approach to mechanical damage growth analysis.

    PubMed

    Pugno, Nicola; Bosia, Federico; Gliozzi, Antonio S; Delsanto, Pier Paolo; Carpinteri, Alberto

    2008-10-01

    The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are briefly discussed and suggested.

  17. The health-related behaviors and attitudes of student nurses

    NASA Astrophysics Data System (ADS)

    Vowell, Maribeth

    Nurses are an important component of primary medical care, and patient education is a common and important role of most nurses. Patient education and positive role modeling by nurses have the potential to influence patients' life style choices and the serious diseases that may be affected by those choices. A greater understanding of the ways nurses think about their own health could help facilitate healthier choices for them and in their patients. The purpose of this inquiry was to examine the experiences, attitudes and beliefs of student nurses related to their personal health, and to investigate those experiences, attitudes and beliefs as they relate to their education, relationships, values and career choice. The purpose was achieved through phenomenological interviews with eleven senior nursing students, nine females and two males, encouraging them to provide in as much detail as possible their attitudes and values about their personal health. The interviews were tape recorded, transcribed verbatim, and phenomenologically analyzed. A thematic structure emerged such that the nursing students experiences were represented by the four interrelated themes of caring for myself/caring for others ; I control my health/my world controls my health; I have energy/I'm tired; and feeling good/looking good. The contextual grounds for the themes that emerged during the analysis were the Body and Time. This structure was presented in terms of its relationship to health education, other research and to current theory.

  18. Two methods for modeling vibrations of planetary gearboxes including faults: Comparison and validation

    NASA Astrophysics Data System (ADS)

    Parra, J.; Vicuña, Cristián Molina

    2017-08-01

    Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.

  19. Outdoor ground impedance models.

    PubMed

    Attenborough, Keith; Bashir, Imran; Taherzadeh, Shahram

    2011-05-01

    Many models for the acoustical properties of rigid-porous media require knowledge of parameter values that are not available for outdoor ground surfaces. The relationship used between tortuosity and porosity for stacked spheres results in five characteristic impedance models that require not more than two adjustable parameters. These models and hard-backed-layer versions are considered further through numerical fitting of 42 short range level difference spectra measured over various ground surfaces. For all but eight sites, slit-pore, phenomenological and variable porosity models yield lower fitting errors than those given by the widely used one-parameter semi-empirical model. Data for 12 of 26 grassland sites and for three beech wood sites are fitted better by hard-backed-layer models. Parameter values obtained by fitting slit-pore and phenomenological models to data for relatively low flow resistivity grounds, such as forest floors, porous asphalt, and gravel, are consistent with values that have been obtained non-acoustically. Three impedance models yield reasonable fits to a narrow band excess attenuation spectrum measured at short range over railway ballast but, if extended reaction is taken into account, the hard-backed-layer version of the slit-pore model gives the most reasonable parameter values.

  20. What matters to older people with assisted living needs? A phenomenological analysis of the use and non-use of telehealth and telecare.

    PubMed

    Greenhalgh, Trisha; Wherton, Joe; Sugarhood, Paul; Hinder, Sue; Procter, Rob; Stones, Rob

    2013-09-01

    Telehealth and telecare research has been dominated by efficacy trials. The field lacks a sophisticated theorisation of [a] what matters to older people with assisted living needs; [b] how illness affects people's capacity to use technologies; and [c] the materiality of assistive technologies. We sought to develop a phenomenologically and socio-materially informed theoretical model of assistive technology use. Forty people aged 60-98 (recruited via NHS, social care and third sector) were visited at home several times in 2011-13. Using ethnographic methods, we built a detailed picture of participants' lives, illness experiences and use (or non-use) of technologies. Data were analysed phenomenologically, drawing on the work of Heidegger, and contextualised using a structuration approach with reference to Bourdieu's notions of habitus and field. We found that participants' needs were diverse and unique. Each had multiple, mutually reinforcing impairments (e.g. tremor and visual loss and stiff hands) that were steadily worsening, culturally framed and bound up with the prospect of decline and death. They managed these conditions subjectively and experientially, appropriating or adapting technologies so as to enhance their capacity to sense and act on their world. Installed assistive technologies met few participants' needs; some devices had been abandoned and a few deliberately disabled. Successful technology arrangements were often characterised by 'bricolage' (pragmatic customisation, combining new with legacy devices) by the participant or someone who knew and cared about them. With few exceptions, the current generation of so-called 'assisted living technologies' does not assist people to live with illness. To overcome this irony, technology providers need to move beyond the goal of representing technology users informationally (e.g. as biometric data) to providing flexible components from which individuals and their carers can 'think with things' to improve the situated, lived experience of multi-morbidity. A radical revision of assistive technology design policy may be needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Elemental composition and energy spectra of galactic cosmic rays

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1988-01-01

    A brief review is presented of the major features of the elemental composition and energy spectra of galactic cosmic rays. The requirements for phenomenological models of cosmic ray composition and energy spectra are discussed, and possible improvements to an existing model are suggested.

  2. REGIONAL OXIDANT MODEL (ROM) USER'S GUIDE, PART 2: THE ROM PREPROCESSOR NETWORK

    EPA Science Inventory

    The Regional Oxidant Model (ROM) determines hourly concentrations and fates of zone and 34 other chemical species over a scale of 1000 km x 1000 km for ozone "episodes" of up to one month's duration. he model structure, based on phenomenological concepts, consists of 3 1/2 layers...

  3. Interaction of axions with relativistic spinning particles

    NASA Astrophysics Data System (ADS)

    Popov, V. A.; Balakin, A. B.

    2016-05-01

    We consider a covariant phenomenological model, which describes an interaction between a pseudoscalar (axion) field and massive spinning particles. The model extends the Bagrmann-Michel-Telegdy approach in application to the axion electrodynamics. We present some exact solutions and discuss them in the context of experimental tests of the model and axion detection.

  4. Semiosis stems from logical incompatibility in organic nature: Why biophysics does not see meaning, while biosemiotics does.

    PubMed

    Kull, Kalevi

    2015-12-01

    We suggest here a model of the origin of the phenomenal world via the naturalization of logical conflict or incompatibility (which is broader than, but includes logical contradiction). Physics rules out the reality of meaning because of the method of formalization, which requires that logical conflicts cannot be part of the model. We argue that (a) meaning-making requires a logical conflict; (b) logical conflict assumes a phenomenal present; (c) phenomenological specious present occurs in living systems as widely as meaning-making; (d) it is possible to provide a physiological description of a system in which the phenomenal present appears and choices are made; (e) logical conflict, or incompatibility itself, is the mechanism of intentionality; (f) meaning-making is assured by scaffolding, which is a product of earlier choices, or decision-making, or interpretation. This model can be seen as a model of semiosis. It also allows putting physiology and phenomenology (or physics and semiotics) into a natural connection. Copyright © 2015. Published by Elsevier Ltd.

  5. Phenomenology of the Higgs sector of a Dimension-7 Neutrino Mass Generation Mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tathagata; Jana, Sudip; Nandi, S.

    In this paper, we revisit the dimension-7 neutrino mass generation mechanism based on the addition of an isospinmore » $3/2$ scalar quadruplet and two vector-like iso-triplet leptons to the standard model. We discuss the LHC phenomenology of the charged scalars of this model, complemented by the electroweak precision and lepton flavor violation constraints. We pay particular attention to the triply charged and doubly charged components. We focus on the same-sign-tri-lepton signatures originating from the triply-charged scalars and find a discovery reach of 600 - 950 GeV at 3 ab$$^{-1}$$ of integrated luminosity at the LHC. On the other hand, doubly charged Higgs has been an object of collider searches for a long time, and we show how the present bounds on its mass depend on the particle spectrum of the theory. Strong constraint on the model parameter space can arise from the measured decay rate of the Standard Model Higgs to a pair of photons as well.« less

  6. The HPS experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colaneri, Luca

    2017-04-01

    With the experimental discovery of the Higgs boson, the Standard Model has been considered veri ed in all its previsions. The Standard Model, though, is still considered an incomplete theory, because it fails to address many theoretical and phenomenological issues. Among those, it doesn't provide any viable Dark Matter candidate. Many Beyond-Standard Model theories, such as the Supersymmetric Standard Model, provide possible solutions. In this work we have reported the experimental observations that led to considerate the existence of a new Force, mediated by a new massive vector boson, that could address all the observed phenomenology. This new dark Forcemore » could open an observational channel between the Standard Model and a new Dark Sector, convey by the interaction of the Standard Model photon with the massive dark photon, also called the A'. Purpose of this work was to develop an independent study of the background processes and the implementation of an independent event generator, to better understand the kinematics of the produced particles in the process e - +W → e - +W' + e + + e - and validate, or invalidate, the o cial event generator.« less

  7. Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly

    NASA Astrophysics Data System (ADS)

    Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn

    To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.

  8. Onset of the convection in a supercritical fluid.

    PubMed

    Meyer, H

    2006-01-01

    A model is proposed that leads to the scaled relation tp/tau D=Ftp(Ra-Rac) for the development of convection in a pure fluid in a Rayleigh-Bénard cell after the start of the heat current at t=0. Here tp is the time of the first maximum of the temperature drop DeltaT(t) across the fluid layer, the signature of rapidly growing convection, tau D is the diffusion relaxation time, and Rac is the critical Rayleigh number. Such a relation was first obtained empirically from experimental data. Because of the unknown perturbations in the cell that lead to convection development beyond the point of the fluid instability, the model determines tp/tau D within a multiplicative factor Psi square root Rac(HBL), the only fit parameter product. Here Rac(HBL), of the order 10(3), is the critical Rayleigh number of the hot boundary layer and Psi is a fit parameter. There is then good agreement over more than four decades of Ra-Rac between the model and the experiments on supercritical 3He at various heat currents and temperatures. The value of the parameter Psi, which phenomenologically represents the effectiveness of the perturbations, is discussed in connection with predictions by El Khouri and Carlès of the fluid instability onset time.

  9. Choosing phenomenology as a guiding philosophy for nursing research.

    PubMed

    Matua, Gerald Amandu

    2015-03-01

    To provide an overview of important methodological considerations that nurse researchers need to adhere to when choosing phenomenology as a guiding philosophy and research method. Phenomenology is a major philosophy and research method in the humanities, human sciences and arts disciplines with a central goal of describing people's experiences. However, many nurse researchers continue to grapple with methodological issues related to their choice of phenomenological method. The author conducted online and manual searches of relevant research books and electronic databases. Using an integrative method, peer-reviewed research and discussion papers published between January 1990 and December 2011 and listed in the CINAHL, Science Direct, PubMed and Google Scholar databases were reviewed. In addition, textbooks that addressed research methodologies such as phenomenology were used. Although phenomenology is widely used today to broaden understanding of human phenomena relevant to nursing practice, nurse researchers often fail to adhere to acceptable scientific and phenomenological standards. Cognisant of these challenges, researchers are expected to indicate in their work the focus of their investigations, designs, and approaches to collecting and analysing data. They are also expected to present their findings in an evocative and expressive manner. Choosing phenomenology requires researchers to understand it as a philosophy, including basic assumptions and tenets of phenomenology as a research method. This awareness enables researchers, especially novices, to make important methodological decisions, particularly those necessary to indicate the study's scientific rigour and phenomenological validity. This paper adds to the discussion of phenomenology as a guiding philosophy for nursing research. It aims to guide new researchers on important methodological decisions they need to make to safeguard their study's scientific rigour and phenomenological validity.

  10. Current crowding mediated large contact noise in graphene field-effect transistors

    PubMed Central

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-01-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene–metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V−1 s−1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal–channel interface, which could be generic to two-dimensional material-based electronic devices. PMID:27929087

  11. Current crowding mediated large contact noise in graphene field-effect transistors

    NASA Astrophysics Data System (ADS)

    Karnatak, Paritosh; Sai, T. Phanindra; Goswami, Srijit; Ghatak, Subhamoy; Kaushal, Sanjeev; Ghosh, Arindam

    2016-12-01

    The impact of the intrinsic time-dependent fluctuations in the electrical resistance at the graphene-metal interface or the contact noise, on the performance of graphene field-effect transistors, can be as adverse as the contact resistance itself, but remains largely unexplored. Here we have investigated the contact noise in graphene field-effect transistors of varying device geometry and contact configuration, with carrier mobility ranging from 5,000 to 80,000 cm2 V-1 s-1. Our phenomenological model for contact noise because of current crowding in purely two-dimensional conductors confirms that the contacts dominate the measured resistance noise in all graphene field-effect transistors in the two-probe or invasive four-probe configurations, and surprisingly, also in nearly noninvasive four-probe (Hall bar) configuration in the high-mobility devices. The microscopic origin of contact noise is directly linked to the fluctuating electrostatic environment of the metal-channel interface, which could be generic to two-dimensional material-based electronic devices.

  12. Taming Many-Parameter BSM Models with Bayesian Neural Networks

    NASA Astrophysics Data System (ADS)

    Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.

    2017-09-01

    The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.

  13. Mechanosensitive Ion Channels in Bacteria: Functional Domains and Mechanisms of Gating

    NASA Technical Reports Server (NTRS)

    Sukharev, Sergei

    2003-01-01

    The past funding period was productive for the group. The progress in the mechanosensitive channel field was critically affected in the end of 1998 by the solution of the crystal structure of the mycobacterial homolog of MscL by our colleagues from Caltech. Having the structure of TbMscL in the closed state, we developed a detailed homology model of EcoMscL, and related the structural model with the wealth of functional phenomenology available for the E. coli version of the channel (EcoMscL). The biophysical properties of the open MscL helped to model the open conformation and infer the pathway for the entire gating transition. The following experiments provided strong support to the atomic model of the gating process, and allowed to make further predictions. The work has advanced our understanding of tension-driven conformational transitions in membrane-embedded mechanosensory proteins, determine major energetic contributions and set the stage for further exploration of the whole family of mechanosensitive channels. The results have been published in seven experimental and theoretical papers, with three other papers currently in press or in preparation.

  14. The not-so-sterile 4th neutrino: constraints on new gauge interactions from neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Welter, Johannes

    2014-12-01

    Sterile neutrino models with new gauge interactions in the sterile sector are phenomenologically interesting since they can lead to novel effects in neutrino oscillation experiments, in cosmology and in dark matter detectors, possibly even explaining some of the observed anomalies in these experiments. Here, we use data from neutrino oscillation experiments, in particular from MiniBooNE, MINOS and solar neutrino experiments, to constrain such models. We focus in particular on the case where the sterile sector gauge boson A ' couples also to Standard Model particles (for instance to the baryon number current) and thus induces a large Mikheyev-Smirnov-Wolfenstein potential. For eV-scale sterile neutrinos, we obtain strong constraints especially from MINOS, which restricts the strength of the new interaction to be less than ˜ 10 times that of the Standard Model weak interaction unless active-sterile neutrino mixing is very small (sin2 θ 24 ≲ 10-3). This rules out gauge forces large enough to affect short-baseline experiments like MiniBooNE and it imposes nontrivial constraints on signals from sterile neutrino scattering in dark matter experiments.

  15. Critical study of the dispersive n- 90Zr mean field by means of a new variational method

    NASA Astrophysics Data System (ADS)

    Mahaux, C.; Sartor, R.

    1994-02-01

    A new variational method is developed for the construction of the dispersive nucleon-nucleus mean field at negative and positive energies. Like the variational moment approach that we had previously proposed, the new method only uses phenomenological optical-model potentials as input. It is simpler and more flexible than the previous approach. It is applied to a critical investigation of the n- 90Zr mean field between -25 and +25 MeV. This system is of particular interest because conflicting results had recently been obtained by two different groups. While the imaginary parts of the phenomenological optical-model potentials provided by these two groups are similar, their real parts are quite different. Nevertheless, we demonstrate that these two sets of phenomenological optical-model potentials are both compatible with the dispersion relation which connects the real and imaginary parts of the mean field. Previous hints to the contrary, by one of the two other groups, are shown to be due to unjustified approximations. A striking outcome of the present study is that it is important to explicitly introduce volume absorption in the dispersion relation, although volume absorption is negligible in the energy domain investigated here. Because of the existence of two sets of phenomenological optical-model potentials, our variational method yields two dispersive mean fields whose real parts are quite different at small or negative energies. No preference for one of the two dispersive mean fields can be expressed on purely empirical grounds since they both yield fair agreement with the experimental cross sections as well as with the observed energies of the bound single-particle states. However, we argue that one of these two mean fields is physically more meaningful, because the radial shape of its Hartree-Fock type component is independent of energy, as expected on theoretical grounds. This preferred mean field is very close to the one which had been obtained by the Ohio University group by means of fits to experimental cross sections. It is also in good agreement with a recent determination of the p- 90Zr average potential.

  16. SU-E-T-248: An Extended Generalized Equivalent Uniform Dose Accounting for Dose-Range Dependency of Radio-Biological Parameters.

    PubMed

    Troeller, A; Soehn, M; Yan, D

    2012-06-01

    Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way it is commonly done for the gEUD. © 2012 American Association of Physicists in Medicine.

  17. Introducing Postphenomenological Research: A Brief and Selective Sketch of Phenomenological Research Methods

    ERIC Educational Resources Information Center

    Aagaard, Jesper

    2017-01-01

    In time, phenomenology has become a viable approach to conducting qualitative studies in education. Popular and well-established methods include descriptive and hermeneutic phenomenology. Based on critiques of the essentialism and receptivity of these two methods, however, this article offers a third variation of empirical phenomenology:…

  18. The Domain-Specificity of Creativity: Insights from New Phenomenology

    ERIC Educational Resources Information Center

    Julmi, Christian; Scherm, Ewald

    2015-01-01

    The question of the domain-specificity of creativity represents one of the key questions in creativity research. This article contributes to the discussion by applying insights from "new phenomenology," which is a phenomenological movement from Germany initiated by philosopher Hermann Schmitz. The findings of new phenomenology suggest…

  19. Placed in a steady magnetic field, the flux density inside a permalloy-shielded volume decreases over hours and days

    NASA Astrophysics Data System (ADS)

    Feinberg, Benedict; Gould, Harvey

    2018-03-01

    Following the application of an external magnetic field to a thin-walled demagnetized Permalloy cylinder, the magnetic flux density at the center of the shielded volume decreases by roughly 20% over periods of hours to days. We measured this effect for applied magnetic fields from 0.48 A/m to 16 A/m, the latter being comparable to the Earths magnetic field at its weakest point. Delayed changes in magnetic flux density are also observed following alternating current demagnetization. We attribute these effects to delayed changes in magnetization, which have previously been observed in thin Permalloy films and small bulk samples of ferromagnetic materials. Phenomenological models of thermal activation are discussed. Some possible effects on experiments that rely on static shielding are noted.

  20. Astrophysical constraints on Planck scale dissipative phenomena.

    PubMed

    Liberati, Stefano; Maccione, Luca

    2014-04-18

    The emergence of a classical spacetime from any quantum gravity model is still a subtle and only partially understood issue. If indeed spacetime is arising as some sort of large scale condensate of more fundamental objects, then it is natural to expect that matter, being a collective excitation of the spacetime constituents, will present modified kinematics at sufficiently high energies. We consider here the phenomenology of the dissipative effects necessarily arising in such a picture. Adopting dissipative hydrodynamics as a general framework for the description of the energy exchange between collective excitations and the spacetime fundamental degrees of freedom, we discuss how rates of energy loss for elementary particles can be derived from dispersion relations and used to provide strong constraints on the base of current astrophysical observations of high-energy particles.

Top